Electrification Futures Study Modeling Approach | Energy Analysis | NREL
Electrification Futures Study Modeling Approach Electrification Futures Study Modeling Approach To quantitatively answer the research questions of the Electrification Futures Study, researchers will use multiple accounting for infrastructure inertia through stock turnover. Load Modeling The Electrification Futures Study
ERIC Educational Resources Information Center
National Academy of Sciences - National Research Council, Washington, DC. Inst. of Lab. Animal Resources.
This volume contains the prepared papers and discussions of a National Academy of Sciences - National Research Council Symposium on the Future of Animals, Cells, Models, and Systems in Research, Development, Education, and Testing. The purpose of the symposium was to examine the past, present, and future contributions of animals to human health…
Fidelity in Models-Based Practice Research in Sport Pedagogy: A Guide for Future Investigations
ERIC Educational Resources Information Center
Hastie, Peter A.; Casey, Ashley
2014-01-01
This paper provides a commentary on research on models-based practice within physical education and presents a tutorial that aims to guide the reporting of future research using pedagogical models. Three key elements are presented that could be considered as essential for inclusion in any methods section in order for readers to gain an accurate…
Musculoskeletal modelling in dogs: challenges and future perspectives.
Dries, Billy; Jonkers, Ilse; Dingemanse, Walter; Vanwanseele, Benedicte; Vander Sloten, Jos; van Bree, Henri; Gielen, Ingrid
2016-05-18
Musculoskeletal models have proven to be a valuable tool in human orthopaedics research. Recently, veterinary research started taking an interest in the computer modelling approach to understand the forces acting upon the canine musculoskeletal system. While many of the methods employed in human musculoskeletal models can applied to canine musculoskeletal models, not all techniques are applicable. This review summarizes the important parameters necessary for modelling, as well as the techniques employed in human musculoskeletal models and the limitations in transferring techniques to canine modelling research. The major challenges in future canine modelling research are likely to centre around devising alternative techniques for obtaining maximal voluntary contractions, as well as finding scaling factors to adapt a generalized canine musculoskeletal model to represent specific breeds and subjects.
On the Predictability of Future Impact in Science
Penner, Orion; Pan, Raj K.; Petersen, Alexander M.; Kaski, Kimmo; Fortunato, Santo
2013-01-01
Correctly assessing a scientist's past research impact and potential for future impact is key in recruitment decisions and other evaluation processes. While a candidate's future impact is the main concern for these decisions, most measures only quantify the impact of previous work. Recently, it has been argued that linear regression models are capable of predicting a scientist's future impact. By applying that future impact model to 762 careers drawn from three disciplines: physics, biology, and mathematics, we identify a number of subtle, but critical, flaws in current models. Specifically, cumulative non-decreasing measures like the h-index contain intrinsic autocorrelation, resulting in significant overestimation of their “predictive power”. Moreover, the predictive power of these models depend heavily upon scientists' career age, producing least accurate estimates for young researchers. Our results place in doubt the suitability of such models, and indicate further investigation is required before they can be used in recruiting decisions. PMID:24165898
ERIC Educational Resources Information Center
Morrison, James L.; Renfro, William L.
The concepts of long-range planning and strategic planning are explained, and a planning model is proposed. Attention is directed to an environmental scanning model that is congruent with the concept of strategic planning and that emerges from one portion of the futures research community, issues management. A third planning model, the strategic…
2004-06-01
Additionally, we offer 3 conceptual cartoons outlining our vision for the future progres of laser bioeffects research, metabonomic risk assessment...future progress of laser bioeffects research, metabonomic risk assessment modeling and knowledge building from laser bioeffects data. BACKGROUND In the...our concepts of future laser bioeffects research directions (Figure 5), a metabonomic risk assessment model of laser tissue interaction (Figure 6
Enhancing Interdisciplinary Human System Risk Research Through Modeling and Network Approaches
NASA Technical Reports Server (NTRS)
Mindock, Jennifer; Lumpkins, Sarah; Shelhamer, Mark
2015-01-01
NASA's Human Research Program (HRP) supports research to reduce human health and performance risks inherent in future human space exploration missions. Understanding risk outcomes and contributing factors in an integrated manner allows HRP research to support development of efficient and effective mitigations from cross-disciplinary perspectives, and to enable resilient human and engineered systems for spaceflight. The purpose of this work is to support scientific collaborations and research portfolio management by utilizing modeling for analysis and visualization of current and potential future interdisciplinary efforts.
Squires, Hazel; Chilcott, James; Akehurst, Ronald; Burr, Jennifer; Kelly, Michael P
2016-04-01
To identify the key methodological challenges for public health economic modelling and set an agenda for future research. An iterative literature search identified papers describing methodological challenges for developing the structure of public health economic models. Additional multidisciplinary literature searches helped expand upon important ideas raised within the review. Fifteen articles were identified within the formal literature search, highlighting three key challenges: inclusion of non-healthcare costs and outcomes; inclusion of equity; and modelling complex systems and multi-component interventions. Based upon these and multidisciplinary searches about dynamic complexity, the social determinants of health, and models of human behaviour, six areas for future research were specified. Future research should focus on: the use of systems approaches within health economic modelling; approaches to assist the systematic consideration of the social determinants of health; methods for incorporating models of behaviour and social interactions; consideration of equity; and methodology to help modellers develop valid, credible and transparent public health economic model structures.
Lung Cancer Screening Participation: Developing a Conceptual Model to Guide Research
Carter-Harris, Lisa; Davis, Lorie L.; Rawl, Susan M.
2017-01-01
Purpose To describe the development of a conceptual model to guide research focused on lung cancer screening participation from the perspective of the individual in the decision-making process. Methods Based on a comprehensive review of empirical and theoretical literature, a conceptual model was developed linking key psychological variables (stigma, medical mistrust, fatalism, worry, and fear) to the health belief model and precaution adoption process model. Results Proposed model concepts have been examined in prior research of either lung or other cancer screening behavior. To date, a few studies have explored a limited number of variables that influence screening behavior in lung cancer specifically. Therefore, relationships among concepts in the model have been proposed and future research directions presented. Conclusion This proposed model is an initial step to support theoretically based research. As lung cancer screening becomes more widely implemented, it is critical to theoretically guide research to understand variables that may be associated with lung cancer screening participation. Findings from future research guided by the proposed conceptual model can be used to refine the model and inform tailored intervention development. PMID:28304262
Lung Cancer Screening Participation: Developing a Conceptual Model to Guide Research.
Carter-Harris, Lisa; Davis, Lorie L; Rawl, Susan M
2016-11-01
To describe the development of a conceptual model to guide research focused on lung cancer screening participation from the perspective of the individual in the decision-making process. Based on a comprehensive review of empirical and theoretical literature, a conceptual model was developed linking key psychological variables (stigma, medical mistrust, fatalism, worry, and fear) to the health belief model and precaution adoption process model. Proposed model concepts have been examined in prior research of either lung or other cancer screening behavior. To date, a few studies have explored a limited number of variables that influence screening behavior in lung cancer specifically. Therefore, relationships among concepts in the model have been proposed and future research directions presented. This proposed model is an initial step to support theoretically based research. As lung cancer screening becomes more widely implemented, it is critical to theoretically guide research to understand variables that may be associated with lung cancer screening participation. Findings from future research guided by the proposed conceptual model can be used to refine the model and inform tailored intervention development.
Callina, Kristina Schmid; Johnson, Sara K; Tirrell, Jonathan M; Batanova, Milena; Weiner, Michelle B; Lerner, Richard M
2017-06-01
There were two purposes of the present research: first, to add to scholarship about a key character virtue, hopeful future expectations; and second, to demonstrate a recent innovation in longitudinal methodology that may be especially useful in enhancing the understanding of the developmental course of hopeful future expectations and other character virtues that have been the focus of recent scholarship in youth development. Burgeoning interest in character development has led to a proliferation of short-term, longitudinal studies on character. These data sets are sometimes limited in their ability to model character development trajectories due to low power or relatively brief time spans assessed. However, the integrative data analysis approach allows researchers to pool raw data across studies in order to fit one model to an aggregated data set. The purpose of this article is to demonstrate the promises and challenges of this new tool for modeling character development. We used data from four studies evaluating youth character strengths in different settings to fit latent growth curve models of hopeful future expectations from participants aged 7 through 26 years. We describe the analytic strategy for pooling the data and modeling the growth curves. Implications for future research are discussed in regard to the advantages of integrative data analysis. Finally, we discuss issues researchers should consider when applying these techniques in their own work.
Madan-Swain, Avi; Hankins, Shirley L; Gilliam, Margaux Barnes; Ross, Kelly; Reynolds, Nina; Milby, Jesse; Schwebel, David C
2012-03-01
This article considers the development of research competencies in professional psychology and how that movement might be applied to training in pediatric psychology. The field of pediatric psychology has a short but rich history, and experts have identified critical competencies. However, pediatric psychology has not yet detailed a set of research-based competencies. This article initially reviews the competency initiative in professional psychology, including the cube model as it relates to research training. Next, we review and adapt the knowledge-based/foundational and applied/functional research competencies proposed by health psychology into a cube model for pediatric psychology. We focus especially on graduate-level training but allude to its application throughout professional development. We present the cube model as it is currently being applied to the development of a systematic research competency evaluation for graduate training at our medical/clinical psychology doctoral program at the University of Alabama at Birmingham. Based on the review and synthesis of the literature on research competency in professional psychology we propose future initiatives to develop these competencies for the field of pediatric psychology. The cube model can be successfully applied to the development of research training competencies in pediatric psychology. Future research should address the development, implementation, and assessment of the research competencies for training and career development of future pediatric psychologists.
Global Scale Atmospheric Processes Research Program Review
NASA Technical Reports Server (NTRS)
Worley, B. A. (Editor); Peslen, C. A. (Editor)
1984-01-01
Global modeling; satellite data assimilation and initialization; simulation of future observing systems; model and observed energetics; dynamics of planetary waves; First Global Atmospheric Research Program Global Experiment (FGGE) diagnosis studies; and National Research Council Research Associateship Program are discussed.
Stephen R. Shifley; Hong S. He; Heike Lischke; Wen J. Wang; Wenchi Jin; Eric J. Gustafson; Jonathan R. Thompson; Frank R. Thompson; William D. Dijak; Jian Yang
2017-01-01
Context. Quantitative models of forest dynamics have followed a progression toward methods with increased detail, complexity, and spatial extent. Objectives. We highlight milestones in the development of forest dynamics models and identify future research and application opportunities. Methods. We reviewed...
Climate Change Research - What Do We Need Really?
NASA Astrophysics Data System (ADS)
Rama Chandra Prasad, P.
2015-01-01
This research note focuses on the current climate change research scenario and discusses primarily what is required in the present global climate change conditions. Most of the climate change research and models predict adverse future conditions that have to be faced by humanity, with less emphasis on mitigation measures. Moreover, research ends as reports on the shelves of scientists and researchers and as publications in journals. At this juncture the major focus should be on research that helps in reducing the impact rather than on analysing future scenarios of climate change using different models. The article raises several questions and suggestions regards climate change research and lays emphasis on what we really need from climate change researchers.
ERIC Educational Resources Information Center
Harding, David J.; Gennetian, Lisa; Winship, Christopher; Sanbonmatsu, Lisa; Kling, Jeffrey R.
2010-01-01
We motivate future neighborhood research through a simple model that considers youth educational outcomes as a function of neighborhood context, neighborhood exposure, individual vulnerability to neighborhood effects, and non-neighborhood educational inputs--with a focus on effect heterogeneity. Research using this approach would require three…
What Future for Educational Research in Europe? Political, Epistemological and Ethical Challenges
ERIC Educational Resources Information Center
Grimaldi, Emiliano
2015-01-01
This article reflects on the future of European educational research (EER) and its politics of knowledge. EER is interpreted as a field of power/knowledge, where a hegemonic epistemic framework is raised that assembles an evidence-based epistemology, a "what works" political rationality and a technocratic model of educational research.…
Developmental Programming: State-of-the-Science and Future Directions
Sutton, Elizabeth F.; Gilmore, L. Anne; Dunger, David B.; Heijmans, Bas T.; Hivert, Marie-France; Ling, Charlotte; Martinez, J. Alfredo; Ozanne, Susan E.; Simmons, Rebecca A.; Szyf, Moshe; Waterland, Robert A.; Redman, Leanne M.; Ravussin, Eric
2016-01-01
Objective On December 8–9, 2014, the Pennington Biomedical Research Center convened a scientific symposium to review the state-of-the-science and future directions for the study of developmental programming of obesity and chronic disease. The objectives of the symposium were to discuss: (i) past and current scientific advances in animal models, population-based cohort studies and human clinical trials, (ii) the state-of-the-science of epigenetic-based research, and (iii) considerations for future studies. Results The overarching goal was to provide a comprehensive assessment of the state of the scientific field, to identify research gaps and opportunities for future research in order to identify and understand the mechanisms contributing to the developmental programming of health and disease. Conclusions Identifying the mechanisms which cause or contribute to developmental programming of future generations will be invaluable to the scientific and medical community. The ability to intervene during critical periods of prenatal and early postnatal life to promote lifelong health is the ultimate goal. Considerations for future research including the use of animal models, the study design in human cohorts with considerations about the timing of the intrauterine exposure and the resulting tissue specific epigenetic signature were extensively discussed and are presented in this meeting summary. PMID:27037645
Potential barge transportation for inbound corn and grain
DOT National Transportation Integrated Search
1997-12-31
This research develops a model for estimating future barge and rail rates for decision making. The Box-Jenkins and the Regression Analysis with ARIMA errors forecasting methods were used to develop appropriate models for determining future rates. A s...
Natural Disasters and Human Behavior: Explanation, Research and Models.
ERIC Educational Resources Information Center
Glenn, Christopher
1979-01-01
A survey of published research determined that individual and group reactions to natural disasters differ greatly and depend partially on the predisaster personality. Four models are examined to explain individual and group reactions to natural disasters. A conglomerate model and a possible structure to future disaster research are offered.…
Research and Development Trend of Shape Control for Cold Rolling Strip
NASA Astrophysics Data System (ADS)
Wang, Dong-Cheng; Liu, Hong-Min; Liu, Jun
2017-09-01
Shape is an important quality index of cold rolling strip. Up to now, many problems in the shape control domain have not been solved satisfactorily, and a review on the research progress in the shape control domain can help to seek new breakthrough directions. In the past 10 years, researches and applications of shape control models, shape control means, shape detection technology, and shape control system have achieved significant progress. In the aspect of shape control models, the researches in the past improve the accuracy, speed and robustness of the models. The intelligentization of shape control models should be strengthened in the future. In the aspect of the shape control means, the researches in the past focus on the roll optimization, mill type selection, process optimization, local strip shape control, edge drop control, and so on. In the future, more attention should be paid to the coordination control of both strip shape and other quality indexes, and the refinement of control objective should be strengthened. In the aspects of shape detection technology and shape control system, some new types of shape detection meters and shape control systems are developed and have successfully industrial applications. In the future, the standardization of shape detection technology and shape control system should be promoted to solve the problem of compatibility. In general, the four expected development trends of shape control for cold rolling strip in the future are intelligentization, coordination, refinement, and standardization. The proposed research provides new breakthrough directions for improving shape quality.
Placebo Analgesia in Rodents: Current and Future Research
Keller, Asaf; Akintola, Titilola; Colloca, Luana
2018-01-01
The investigation of placebo effects in animal pain models has received less attention than human research. This may be related to a number of difficulties, including the fact that animals lack the ability to use language and establish expectancies verbally, that animals cannot report and rate the extent to which they experience pain, and the inadequacy of current models of pain. Here, we describe the relatively small number of studies that have been published, communicating the opportunities and excitement of this research. We critically discuss pitfalls and limitations with the hope that this will advance future animal placebo-related research. PMID:29681320
McDonnell Douglas Helicopter Company independent research and development: Preparing for the future
NASA Technical Reports Server (NTRS)
Haggerty, Allen C.
1988-01-01
During the 1970's and 80's, research has produced the technology that is seen in aircraft such as the LHX and future models. The technology is discussed that is reaching maturity and moving into the application stage of future programs. Technology is discussed in six major areas: advanced concepts, analysis techniques, structures, systems, simulation, and research and development facilities. The partnership of McDonnell Douglas Helicopter Co. and the government in developing these technologies is illustrated in several programs.
Disorders without borders: current and future directions in the meta-structure of mental disorders.
Carragher, Natacha; Krueger, Robert F; Eaton, Nicholas R; Slade, Tim
2015-03-01
Classification is the cornerstone of clinical diagnostic practice and research. However, the extant psychiatric classification systems are not well supported by research evidence. In particular, extensive comorbidity among putatively distinct disorders flags an urgent need for fundamental changes in how we conceptualize psychopathology. Over the past decade, research has coalesced on an empirically based model that suggests many common mental disorders are structured according to two correlated latent dimensions: internalizing and externalizing. We review and discuss the development of a dimensional-spectrum model which organizes mental disorders in an empirically based manner. We also touch upon changes in the DSM-5 and put forward recommendations for future research endeavors. Our review highlights substantial empirical support for the empirically based internalizing-externalizing model of psychopathology, which provides a parsimonious means of addressing comorbidity. As future research goals, we suggest that the field would benefit from: expanding the meta-structure of psychopathology to include additional disorders, development of empirically based thresholds, inclusion of a developmental perspective, and intertwining genomic and neuroscience dimensions with the empirical structure of psychopathology.
Nanotoxicity prediction using computational modelling - review and future directions
NASA Astrophysics Data System (ADS)
Saini, Bhavna; Srivastava, Sumit
2018-04-01
Nanomaterials has stimulated various outlooks for future in a number of industries and scientific ventures. A number of applications such as cosmetics, medicines, and electronics are employing nanomaterials due to their various compelling properties. The unending growth of nanomaterials usage in our daily life has escalated the health and environmental risks. Early nanotoxicity recognition is a big challenge. Various researches are going on in the field of nanotoxicity, which comprised of several problems such as inadequacy of proper datasets, lack of appropriate rules and characterization of nanomaterials. Computational modelling would be beneficial asset for nanomaterials researchers because it can foresee the toxicity, rest on previous experimental data. In this study, we have reviewed sufficient work demonstrating a proper pathway to proceed with QSAR analysis of Nanomaterials for toxicity modelling. The paper aims at providing comprehensive insight of Nano QSAR, various theories, tools and approaches used, along with an outline for future research directions to work on.
Scenario studies as a synthetic and integrative research activity for Long-Term Ecological Research
Jonathan R. Thompson; Arnim Wiek; Frederick J. Swanson; Stephen R. Carpenter; Nancy Fresco; Teresa Hollingsworth; Thomas A. Spies; David R. Foster
2012-01-01
Scenario studies have emerged as a powerful approach for synthesizing diverse forms of research and for articulating and evaluating alternative socioecological futures. Unlike predictive modeling, scenarios do not attempt to forecast the precise or probable state of any variable at a given point in the future. Instead, comparisons among a set of contrasting scenarios...
ERIC Educational Resources Information Center
Enzer, Selwyn
1977-01-01
Futures research offers new tools for forecasting and for designing alternative intervention strategies. Interactive cross-impact modeling is presented as a useful method for identifying future events. (Author/MV)
Teacher Emotion Research: Introducing a Conceptual Model to Guide Future Research
ERIC Educational Resources Information Center
Fried, Leanne; Mansfield, Caroline; Dobozy, Eva
2015-01-01
This article reports on the development of a conceptual model of teacher emotion through a review of teacher emotion research published between 2003 and 2013. By examining 82 publications regarding teacher emotion, the main aim of the review was to identify how teacher emotion was conceptualised in the literature and develop a conceptual model to…
Strategic Planning as a Basis for Restructuring Schools.
ERIC Educational Resources Information Center
Adams, Charles F.; Mecca, Thomas V.
An educational planning model and instructional approach to prepare school administrators for the role of strategic planners are described. The model, ED QUEST, integrates future research techniques and divergent thinking modes into a participatory group process that provides visions of alternative futures. Primary activities in the process…
Assessing the future of air freight
NASA Technical Reports Server (NTRS)
Dajani, J. S.
1977-01-01
The role of air cargo in the current transportation system in the United States is explored. Methods for assessing the future role of this mode of transportation include the use of continuous-time recursive systems modeling for the simulation of different components of the air freight system, as well as for the development of alternative future scenarios which may result from different policy actions. A basic conceptual framework for conducting such a dynamic simulation is presented within the context of the air freight industry. Some research needs are identified and recommended for further research. The benefits, limitations, pitfalls, and problems usually associated with large scale systems models are examined.
Hierarchical models of very large problems, dilemmas, prospects, and an agenda for the future
NASA Technical Reports Server (NTRS)
Richardson, J. M., Jr.
1975-01-01
Interdisciplinary approaches to the modeling of global problems are discussed in terms of multilevel cooperation. A multilevel regionalized model of the Lake Erie Basin is analyzed along with a multilevel regionalized world modeling project. Other topics discussed include: a stratified model of interacting region in a world system, and the application of the model to the world food crisis in south Asia. Recommended research for future development of integrated models is included.
ERIC Educational Resources Information Center
Carlisle, Joanna; Bhanugopan, Ramudu; Fish, Alan
2011-01-01
Purpose: This paper seeks to provide an overview of the concept of training needs analysis (TNA), current practice, models and the impact that training needs analysis currently has on nurses in public hospitals in Australia. Thus, the paper should aid future research in the area of TNA of nurses through helping researchers to clarify the…
The Future of Cell Biology: Emerging Model Organisms.
Goldstein, Bob; King, Nicole
2016-11-01
Most current research in cell biology uses just a handful of model systems including yeast, Arabidopsis, Drosophila, Caenorhabditis elegans, zebrafish, mouse, and cultured mammalian cells. And for good reason - for many biological questions, the best system for the question is likely to be found among these models. However, in some cases, and particularly as the questions that engage scientists broaden, the best system for a question may be a little-studied organism. Modern research tools are facilitating a renaissance for unusual and interesting organisms as emerging model systems. As a result, we predict that an ever-expanding breadth of model systems may be a hallmark of future cell biology. Copyright © 2016 Elsevier Ltd. All rights reserved.
Entrepreneurial propensity in health care: models and propositions for empirical research.
Asoh, Derek A; Rivers, Patrick A; McCleary, Karl J; Sarvela, Paul
2005-01-01
We maintain that entrepreneurial propensity is a focal construct in entrepreneurial research. We synthesize the literature to develop models depicting the antecedents and consequents of entrepreneurial propensity in a network of other constructs and variables of interest in the health care industry. We advance propositions for empirical investigation and validation of competing research models associated with entrepreneurial propensity. We conclude with a discussion of directions of future research.
Presentation on systems cluster research
NASA Technical Reports Server (NTRS)
Morgenthaler, George W.
1989-01-01
This viewgraph presentation presents an overview of systems cluster research performed by the Center for Space Construction. The goals of the research are to develop concepts, insights, and models for space construction and to develop systems engineering/analysis curricula for training future aerospace engineers. The following topics are covered: CSC systems analysis/systems engineering (SIMCON) model, CSC systems cluster schedule, system life-cycle, model optimization techniques, publications, cooperative efforts, and sponsored research.
Zloza, Andrew; Karolina Palucka, A; Coussens, Lisa M; Gotwals, Philip J; Headley, Mark B; Jaffee, Elizabeth M; Lund, Amanda W; Sharpe, Arlene H; Sznol, Mario; Wainwright, Derek A; Wong, Kwok-Kin; Bosenberg, Marcus W
2017-09-19
Understanding how murine models can elucidate the mechanisms underlying antitumor immune responses and advance immune-based drug development is essential to advancing the field of cancer immunotherapy. The Society for Immunotherapy of Cancer (SITC) convened a workshop titled, "Challenges, Insights, and Future Directions for Mouse and Humanized Models in Cancer Immunology and Immunotherapy" as part of the SITC 31st Annual Meeting and Associated Programs on November 10, 2016 in National Harbor, MD. The workshop focused on key issues in optimizing models for cancer immunotherapy research, with discussions on the strengths and weaknesses of current models, approaches to improve the predictive value of mouse models, and advances in cancer modeling that are anticipated in the near future. This full-day program provided an introduction to the most common immunocompetent and humanized models used in cancer immunology and immunotherapy research, and addressed the use of models to evaluate immune-targeting therapies. Here, we summarize the workshop presentations and subsequent panel discussion.
The Triad Research University or a Post 20th Century Research University Model
ERIC Educational Resources Information Center
Tadmor, Zehev
2006-01-01
In this paper, a model for the future research university is proposed, which answers some of the key challenges facing universities. It consists of three independent yet closely knitted entities: a research institute, a university teaching college and a business unit creating a "triad" structure. The possible inevitability, the advantages and…
Progress and Prospects for Genetic Modification of Nonhuman Primate Models in Biomedical Research
Chan, Anthony W. S.
2013-01-01
The growing interest of modeling human diseases using genetically modified (transgenic) nonhuman primates (NHPs) is a direct result of NHPs (rhesus macaque, etc.) close relation to humans. NHPs share similar developmental paths with humans in their anatomy, physiology, genetics, and neural functions; and in their cognition, emotion, and social behavior. The NHP model within biomedical research has played an important role in the development of vaccines, assisted reproductive technologies, and new therapies for many diseases. Biomedical research has not been the primary role of NHPs. They have mainly been used for safety evaluation and pharmacokinetics studies, rather than determining therapeutic efficacy. The development of the first transgenic rhesus macaque (2001) revolutionized the role of NHP models in biomedicine. Development of the transgenic NHP model of Huntington's disease (2008), with distinctive clinical features, further suggested the uniqueness of the model system; and the potential role of the NHP model for human genetic disorders. Modeling human genetic diseases using NHPs will continue to thrive because of the latest advances in molecular, genetic, and embryo technologies. NHPs rising role in biomedical research, specifically pre-clinical studies, is foreseeable. The path toward the development of transgenic NHPs and the prospect of transgenic NHPs in their new role in future biomedicine needs to be reviewed. This article will focus on the advancement of transgenic NHPs in the past decade, including transgenic technologies and disease modeling. It will outline new technologies that may have significant impact in future NHP modeling and will conclude with a discussion of the future prospects of the transgenic NHP model. PMID:24174443
Boninger, Michael L; Field-Fote, Edelle C; Kirshblum, Steven C; Lammertse, Daniel P; Dyson-Hudson, Trevor A; Hudson, Lesley; Heinemann, Allen W
2018-03-01
To describe current and future directions in spinal cord injury (SCI) research. The SCI Model Systems (SCIMS) programs funded by the National Institute on Disability, Independent Living, and Rehabilitation Research (NIDILRR) during the 2011 to 2016 cycle provided abstracts describing findings from current research projects. Discussion among session participants generated ideas for research opportunities. Pre-conference workshop before the 2016 American Spinal Injury Association (ASIA) annual meeting. A steering committee selected by the SCIMS directors that included the moderators of the sessions at the ASIA pre-conference workshop, researchers presenting abstracts during the session, and the audience of over 100 attending participants in the pre-conference workshop. Group discussion followed presentations in 5 thematic areas of (1) Demographics and Measurement; (2) Functional Training; (3) Psychosocial Considerations; (4) Assistive Technology; and (5) Secondary Conditions. The steering committee reviewed and summarized discussion points on future directions for research and made recommendations for research based on the discussion in each of the five areas. Significant areas in need of research in SCI remain, the goal of which is continued improvement in the quality of life of individuals with SCI.
Rainwater, Julie A.; Chiamvimonvat, Nipavan; Bonham, Ann C.; Robbins, John A.; Henderson, Stuart; Meyers, Frederick J.
2013-01-01
Abstract There is a need for successful models of how to recruit, train, and retain bench scientists at the earliest stages of their careers into translational research. One recent, promising model is the University of California Davis Howard Hughes Medical Institute Integrating Medicine into Basic Science (HHMI‐IMBS) program, part of the HHMI Med into Grad initiative. This paper outlines the HHMI‐IMBS program's logic, design, and curriculum that guide the goal of research that moves from bedside to bench. That is, a curriculum that provides graduate students with guided translational training, clinical exposure, team science competencies, and mentors from diverse disciplines that will advance the students careers in clinical translational research and re‐focusing of research to answer clinical dilemmas. The authors have collected data on 55 HHMI‐IMBS students to date. Many of these students are still completing their graduate work. In the current study the authors compare the initial two cohorts (15 students) with a group of 29 control students to examine the program success and outcomes. The data indicate that this training program provides an effective, adaptable model for training future translational researchers. HHMI‐IMBS students showed improved confidence in conducting translational research, greater interest in a future translational career, and higher levels of research productivity and collaborations than a comparable group of predoctoral students. PMID:24127920
A Hybrid Satellite-Terrestrial Approach to Aeronautical Communication Networks
NASA Technical Reports Server (NTRS)
Kerczewski, Robert J.; Chomos, Gerald J.; Griner, James H.; Mainger, Steven W.; Martzaklis, Konstantinos S.; Kachmar, Brian A.
2000-01-01
Rapid growth in air travel has been projected to continue for the foreseeable future. To maintain a safe and efficient national and global aviation system, significant advances in communications systems supporting aviation are required. Satellites will increasingly play a critical role in the aeronautical communications network. At the same time, current ground-based communications links, primarily very high frequency (VHF), will continue to be employed due to cost advantages and legacy issues. Hence a hybrid satellite-terrestrial network, or group of networks, will emerge. The increased complexity of future aeronautical communications networks dictates that system-level modeling be employed to obtain an optimal system fulfilling a majority of user needs. The NASA Glenn Research Center is investigating the current and potential future state of aeronautical communications, and is developing a simulation and modeling program to research future communications architectures for national and global aeronautical needs. This paper describes the primary requirements, the current infrastructure, and emerging trends of aeronautical communications, including a growing role for satellite communications. The need for a hybrid communications system architecture approach including both satellite and ground-based communications links is explained. Future aeronautical communication network topologies and key issues in simulation and modeling of future aeronautical communications systems are described.
Acoustic Modeling of Lightweight Structures: A Literature Review
NASA Astrophysics Data System (ADS)
Yang, Shasha; Shen, Cheng
2017-10-01
This paper gives an overview of acoustic modeling for three kinds of typical lightweight structures including double-leaf plate system, stiffened single (or double) plate and porous material. Classical models are citied to provide frame work of theoretical modeling for acoustic property of lightweight structures; important research advances derived by our research group and other authors are introduced to describe the current state of art for acoustic research. Finally, remaining problems and future research directions are concluded and prospected briefly
Schwander, Bjoern; Hiligsmann, Mickaël; Nuijten, Mark; Evers, Silvia
2016-10-01
Given the increasing clinical and economic burden of obesity, it is of major importance to identify cost-effective approaches for obesity management. Areas covered: This study aims to systematically review and compile an overview of published decision models for health economic assessments (HEA) in obesity, in order to summarize and compare their key characteristics as well as to identify, inform and guide future research. Of the 4,293 abstracts identified, 87 papers met our inclusion criteria. A wide range of different methodological approaches have been identified. Of the 87 papers, 69 (79%) applied unique /distinctive modelling approaches. Expert commentary: This wide range of approaches suggests the need to develop recommendations /minimal requirements for model-based HEA of obesity. In order to reach this long-term goal, further research is required. Valuable future research steps would be to investigate the predictiveness, validity and quality of the identified modelling approaches.
Latest animal models for anti-HIV drug discovery.
Sliva, Katja
2015-02-01
HIV research is limited by the fact that lentiviruses are highly species specific. The need for appropriate models to promote research has led to the development of many elaborate surrogate animal models. This review looks at the history of animal models for HIV research. Although natural animal lentivirus infections and chimeric viruses such as chimera between HIV and simian immunodeficiency virus and simian-tropic HIV are briefly discussed, the main focus is on small animal models, including the complex design of the 'humanized' mouse. The review also traces the historic evolution and milestones as well as depicting current models and future prospects for HIV research. HIV research is a complex and challenging task that is highly manpower-, money- and time-consuming. Besides factors such as hypervariability and latency, the lack of appropriate animal models that exhibit and recapitulate the entire infectious process of HIV, is one of the reasons behind the failure to eliminate the lentivirus from the human population. This obstacle has led to the exploitation and further development of many sophisticated surrogate animal models for HIV research. While there is no animal model that perfectly mirrors and mimics HIV infections in humans, there are a variety of host species and viruses that complement each other. Combining the insights from each model, and critically comparing the results obtained with data from human clinical trials should help expand our understanding of HIV pathogenesis and drive future drug development.
Modeling the Earth system in the Mission to Planet Earth era
NASA Technical Reports Server (NTRS)
Unninayar, Sushel; Bergman, Kenneth H.
1993-01-01
A broad overview is made of global earth system modeling in the Mission to Planet Earth (MTPE) era for the multidisciplinary audience encompassed by the Global Change Research Program (GCRP). Time scales of global system fluctuation and change are described in Section 2. Section 3 provides a rubric for modeling the global earth system, as presently understood. The ability of models to predict the future state of the global earth system and the extent to which their predictions are reliable are covered in Sections 4 and 5. The 'engineering' use of global system models (and predictions) is covered in Section 6. Section 7 covers aspects of an increasing need for improved transform algorithms and better methods to assimilate this information into global models. Future monitoring and data requirements are detailed in Section 8. Section 9 covers the NASA-initiated concept 'Mission to Planet Earth,' which employs space and ground based measurement systems to provide the scientific basis for understanding global change. Section 10 concludes this review with general remarks concerning the state of global system modeling and observing technology and the need for future research.
Future directions for positive body image research.
Halliwell, Emma
2015-06-01
The emergence of positive body image research during the last 10 years represents an important shift in the body image literature. The existing evidence provides a strong empirical basis for the study of positive body image and research has begun to address issues of age, gender, ethnicity, culture, development, and intervention in relation to positive body image. This article briefly reviews the existing evidence before outlining directions for future research. Specifically, six areas for future positive body image research are outlined: (a) conceptualization, (b) models, (c) developmental factors, (d) social interactions, (e) cognitive processing style, and (f) interventions. Finally, the potential role of positive body image as a protective factor within the broader body image literature is discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.
Domestic Wind Energy Workforce; NREL (National Renewable Energy Laboratory)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tegen, Suzanne
2015-07-30
A robust workforce is essential to growing domestic wind manufacturing capabilities. NREL researchers conducted research to better understand today's domestic wind workforce, projected needs for the future, and how existing and new education and training programs can meet future needs. This presentation provides an overview of this research and the accompanying industry survey, as well as the Energy Department's Career Maps, Jobs & Economic Development Impacts models, and the Wind for Schools project.
Hocking, Matthew C.; McCurdy, Mark; Turner, Elise; Kazak, Anne E.; Noll, Robert B.; Phillips, Peter; Barakat, Lamia P.
2014-01-01
Pediatric brain tumor (BT) survivors are at risk for psychosocial late effects across many domains of functioning, including neurocognitive and social. The literature on the social competence of pediatric BT survivors is still developing and future research is needed that integrates developmental and cognitive neuroscience research methodologies to identify predictors of survivor social adjustment and interventions to ameliorate problems. This review discusses the current literature on survivor social functioning through a model of social competence in childhood brain disorder and suggests future directions based on this model. Interventions pursuing change in survivor social adjustment should consider targeting social ecological factors. PMID:25382825
Miller, Brian W.; Morisette, Jeffrey T.
2014-01-01
Developing resource management strategies in the face of climate change is complicated by the considerable uncertainty associated with projections of climate and its impacts and by the complex interactions between social and ecological variables. The broad, interconnected nature of this challenge has resulted in calls for analytical frameworks that integrate research tools and can support natural resource management decision making in the face of uncertainty and complex interactions. We respond to this call by first reviewing three methods that have proven useful for climate change research, but whose application and development have been largely isolated: species distribution modeling, scenario planning, and simulation modeling. Species distribution models provide data-driven estimates of the future distributions of species of interest, but they face several limitations and their output alone is not sufficient to guide complex decisions for how best to manage resources given social and economic considerations along with dynamic and uncertain future conditions. Researchers and managers are increasingly exploring potential futures of social-ecological systems through scenario planning, but this process often lacks quantitative response modeling and validation procedures. Simulation models are well placed to provide added rigor to scenario planning because of their ability to reproduce complex system dynamics, but the scenarios and management options explored in simulations are often not developed by stakeholders, and there is not a clear consensus on how to include climate model outputs. We see these strengths and weaknesses as complementarities and offer an analytical framework for integrating these three tools. We then describe the ways in which this framework can help shift climate change research from useful to usable.
NASA Astrophysics Data System (ADS)
Abe, Manabu; Takata, Kumiko; Kawamiya, Michio; Watanabe, Shingo
2017-09-01
The Earth system model, Model for Interdisciplinary Research on Climate-Earth system model (MIROC-ESM), in which the leaf area index (LAI) is calculated interactively with an ecological land model, simulated future changes in the snow water equivalent under the scenario of global warming. Using MIROC-ESM, the effects of the snow albedo feedback (SAF) in a boreal forest region of northern Eurasia were examined under the possible climate future scenario RCP8.5. The simulated surface air temperature (SAT) in spring greatly increases across Siberia and the boreal forest region, whereas the snow cover decreases remarkably only in western Eurasia. The large increase in SAT across Siberia is attributed to strong SAF, which is caused by both the reduced snow-covered fraction and the reduced surface albedo of the snow-covered portion due to the vegetation masking effect in those grid cells. A comparison of the future changes with and without interactive LAI changes shows that in Siberia, the vegetation masking effect increases the spring SAF by about two or three times and enhances the spring warming by approximately 1.5 times. This implies that increases in vegetation biomass in the future are a potential contributing factor to warming trends and that further research on the vegetation masking effect is needed for reliable future projection.
The Vaccination Model in Psychoneuroimmunology Research: A Review.
Whittaker, Anna C
2018-01-01
This chapter explores the reasoning behind using the vaccination model to examine the influence of psychosocial factors on immunity. It then briefly discusses the mechanics of the vaccination response and the protocols used in psychoneuroimmunology vaccine research, before giving examples from the research literature of the studies examining relationships such as the association between stress and vaccination response. It also explores the ways the vaccination model can be used to answer key questions in psychoneuroimmunology, such as the following: "Does it matter when stressful life events occur relative to when the vaccine is received?" "What are the effects of prior exposure to the antigen?" "Do other psychosocial factors influence vaccine response besides stress?" Finally, it briefly considers the mechanisms underlying psychosocial factors and vaccination response associations and the future research needed to understand these better, and indeed to use current and future knowledge to improve and enhance vaccine responses in key at-risk populations.
NASA Technical Reports Server (NTRS)
Cheng-Campbell, Meg; Scott, Ryan T.; Torres, Samantha; Murray, Matthew; Moyer, Eric
2017-01-01
At the NASA Ames Research Center in California, the next generation of space biologists are working to understand the effects of long duration space flight on model organisms, and are developing ways to protect the health of future astronauts.
The Future of Student Engagement
ERIC Educational Resources Information Center
Buskist, William; Groccia, James E.
2018-01-01
This chapter underscores the importance of conceptualizing student engagement as a responsibility shared by all members of the academy and describes how Groccia's multidimensional model can serve as blueprint for future thinking and research on student engagement.
Ensuring the safety of future PCIVs : paper 09-0316.
DOT National Transportation Integrated Search
2009-06-01
NHTSA, in partnership with Federal agencies, industry, and academia, will support research on safety-centered design and performance modeling and validation to enable and foster superior, integrated safety performance of future light-weight Plastics ...
A Stochastic Model of Plausibility in Live Virtual Constructive Environments
2017-09-14
objective in virtual environment research and design is the maintenance of adequate consistency levels in the face of limited system resources such as...provides some commentary with regard to system design considerations and future research directions. II. SYSTEM MODEL DVEs are often designed as a...exceed the system’s requirements. Research into predictive models of virtual environment consistency is needed to provide designers the tools to
Interactions of changing climate and shifts in forest composition on stand carbon balance
Chiang Jyh-Min; Louis Iverson; Anantha Prasad; Kim Brown
2006-01-01
Given that climate influences forest biogeographic distribution, many researchers have created models predicting shifts in tree species range with future climate change scenarios. The objective of this study is to investigate the forest carbon consequences of shifts in stand species composition with current and future climate scenarios using such a model.
Agent-Based Modeling of Chronic Diseases: A Narrative Review and Future Research Directions
Lawley, Mark A.; Siscovick, David S.; Zhang, Donglan; Pagán, José A.
2016-01-01
The United States is experiencing an epidemic of chronic disease. As the US population ages, health care providers and policy makers urgently need decision models that provide systematic, credible prediction regarding the prevention and treatment of chronic diseases to improve population health management and medical decision-making. Agent-based modeling is a promising systems science approach that can model complex interactions and processes related to chronic health conditions, such as adaptive behaviors, feedback loops, and contextual effects. This article introduces agent-based modeling by providing a narrative review of agent-based models of chronic disease and identifying the characteristics of various chronic health conditions that must be taken into account to build effective clinical- and policy-relevant models. We also identify barriers to adopting agent-based models to study chronic diseases. Finally, we discuss future research directions of agent-based modeling applied to problems related to specific chronic health conditions. PMID:27236380
Agent-Based Modeling of Chronic Diseases: A Narrative Review and Future Research Directions.
Li, Yan; Lawley, Mark A; Siscovick, David S; Zhang, Donglan; Pagán, José A
2016-05-26
The United States is experiencing an epidemic of chronic disease. As the US population ages, health care providers and policy makers urgently need decision models that provide systematic, credible prediction regarding the prevention and treatment of chronic diseases to improve population health management and medical decision-making. Agent-based modeling is a promising systems science approach that can model complex interactions and processes related to chronic health conditions, such as adaptive behaviors, feedback loops, and contextual effects. This article introduces agent-based modeling by providing a narrative review of agent-based models of chronic disease and identifying the characteristics of various chronic health conditions that must be taken into account to build effective clinical- and policy-relevant models. We also identify barriers to adopting agent-based models to study chronic diseases. Finally, we discuss future research directions of agent-based modeling applied to problems related to specific chronic health conditions.
The Idea of a World University: Can Foucauldian Research Offer a Vision of Educational Futures?
ERIC Educational Resources Information Center
Allen, Ansgar
2011-01-01
Foucauldian research, as it is currently practised, is generally unwilling to offer a vision of alternative futures. This article examines the recent work (2007 and 2009) of Jan Masschelein and Maarten Simons which appears to be an exception. They offer a critique of contemporary trends in higher education and propose an alternative model: the…
NASA Astrophysics Data System (ADS)
Ginzburg, Vitalii L.
1988-06-01
(Invited talk at the 20th International Cosmic Ray Conference, Moscow, 2-15 August 1987) The basic topics discussed here are the primary cosmic rays near the earth, cosmic rays in the universe, the origin of cosmic rays, a galactic model with a halo, and some prospects for future research.
ERIC Educational Resources Information Center
Frees, Edward W.; Kim, Jee-Seon
2006-01-01
Multilevel models are proven tools in social research for modeling complex, hierarchical systems. In multilevel modeling, statistical inference is based largely on quantification of random variables. This paper distinguishes among three types of random variables in multilevel modeling--model disturbances, random coefficients, and future response…
Patient-Clinician Communication About Pain: A Conceptual Model and Narrative Review.
Henry, Stephen G; Matthias, Marianne S
2018-02-01
Productive patient-clinician communication is an important component of effective pain management, but we know little about how patients and clinicians actually talk about pain in clinical settings and how it might be improved to produce better patient outcomes. The objective of this review was to create a conceptual model of patient-clinician communication about noncancer pain, review and synthesize empirical research in this area, and identify priorities for future research. A conceptual model was developed that drew on existing pain and health communication research. CINAHL, EMBASE, and PubMed were searched to find studies reporting empirical data on patient-clinician communication about noncancer pain; results were supplemented with manual searches. Studies were categorized and analyzed to identify crosscutting themes and inform model development. The conceptual model comprised the following components: contextual factors, clinical interaction, attitudes and beliefs, and outcomes. Thirty-nine studies met inclusion criteria and were analyzed based on model components. Studies varied widely in quality, methodology, and sample size. Two provisional conclusions were identified: contrary to what is often reported in the literature, discussions about analgesics are most frequently characterized by patient-clinician agreement, and self-presentation during patient-clinician interactions plays an important role in communication about pain and opioids. Published studies on patient-clinician communication about noncancer pain are few and diverse. The conceptual model presented here can help to identify knowledge gaps and guide future research on communication about pain. Investigating the links between communication and pain-related outcomes is an important priority for future research. © 2018 American Academy of Pain Medicine. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
In vivo models in breast cancer research: progress, challenges and future directions
Holen, Ingunn; Speirs, Valerie; Morrissey, Bethny
2017-01-01
ABSTRACT Research using animal model systems has been instrumental in delivering improved therapies for breast cancer, as well as in generating new insights into the mechanisms that underpin development of the disease. A large number of different models are now available, reflecting different types and stages of the disease; choosing which one to use depends on the specific research question(s) to be investigated. Based on presentations and discussions from leading experts who attended a recent workshop focused on in vivo models of breast cancer, this article provides a perspective on the many varied uses of these models in breast cancer research, their strengths, associated challenges and future directions. Among the questions discussed were: how well do models represent the different stages of human disease; how can we model the involvement of the human immune system and microenvironment in breast cancer; what are the appropriate models of metastatic disease; can we use models to carry out preclinical drug trials and identify pathways responsible for drug resistance; and what are the limitations of patient-derived xenograft models? We briefly outline the areas where the existing breast cancer models require improvement in light of the increased understanding of the disease process, reflecting the drive towards more personalised therapies and identification of mechanisms of drug resistance. PMID:28381598
Lanius, Ruth A.
2015-01-01
The primary aim of this commentary is to describe trauma-related dissociation and altered states of consciousness in the context of a four-dimensional model that has recently been proposed (Frewen & Lanius, 2015). This model categorizes symptoms of trauma-related psychopathology into (1) those that occur within normal waking consciousness and (2) those that are dissociative and are associated with trauma-related altered states of consciousness (TRASC) along four dimensions: (1) time; (2) thought; (3) body; and (4) emotion. Clinical applications and future research directions relevant to each dimension are discussed. Conceptualizing TRASC across the dimensions of time, thought, body, and emotion has transdiagnostic implications for trauma-related disorders described in both the Diagnostic Statistical Manual and the International Classifications of Diseases. The four-dimensional model provides a framework, guided by existing models of dissociation, for future research examining the phenomenological, neurobiological, and physiological underpinnings of trauma-related dissociation. PMID:25994026
NASA Astrophysics Data System (ADS)
Kim, J. B.; Kim, Y.
2017-12-01
This study investigates how the water and carbon fluxes as well as vegetation distribution on the Korean peninsula would vary with climate change. Ecosystem Demography (ED) Model version 2 (ED2) is used in this study, which is an integrated terrestrial biosphere model that can utilize a set of size- and age- structured partial differential equations that track the changing structure and composition of the plant canopy. With using the vegetation distribution data of Jeju Island, located at the southern part of the Korean Peninsula, ED2 is setup and driven for the past 10 years. Then the results of ED2 are evaluated and adjusted with observed forestry data, i.e., growth and mortality, and the flux tower and MODIS satellite data, i.e., evapotranspiration (ET) and gross primary production (GPP). This adjusted ED2 are used to simulate the water and carbon fluxes as well as vegetation dynamics in the Korean Peninsula for the historical period with evaluating the model against the MODIS satellite data. Finally, the climate scenarios of RCP 2.6 and 6.0 are used to predict the fluxes and vegetation distribution of the Korean Peninsula in the future. With using the state-of-art terrestrial ecosystem model, this study would provide us better understanding of the future ecosystem vulnerability of the Korean Peninsula. AcknowledgementsThis work was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (2015R1C1A2A01054800) and by the Korea Meteorological Administration R&D Program under Grant KMIPA 2015-6180. This work was also supported by the Yonsei University Future-leading Research Initiative of 2015(2016-22-0061).
NASA Astrophysics Data System (ADS)
Felkner, John Sames
The scale and extent of global land use change is massive, and has potentially powerful effects on the global climate and global atmospheric composition (Turner & Meyer, 1994). Because of this tremendous change and impact, there is an urgent need for quantitative, empirical models of land use change, especially predictive models with an ability to capture the trajectories of change (Agarwal, Green, Grove, Evans, & Schweik, 2000; Lambin et al., 1999). For this research, a spatial statistical predictive model of land use change was created and run in two provinces of Thailand. The model utilized an extensive spatial database, and used a classification tree approach for explanatory model creation and future land use (Breiman, Friedman, Olshen, & Stone, 1984). Eight input variables were used, and the trees were run on a dependent variable of land use change measured from 1979 to 1989 using classified satellite imagery. The derived tree models were used to create probability of change surfaces, and these were then used to create predicted land cover maps for 1999. These predicted 1999 maps were compared with actual 1999 landcover derived from 1999 Landsat 7 imagery. The primary research hypothesis was that an explanatory model using both economic and environmental input variables would better predict future land use change than would either a model using only economic variables or a model using only environmental. Thus, the eight input variables included four economic and four environmental variables. The results indicated a very slight superiority of the full models to predict future agricultural change and future deforestation, but a slight superiority of the economic models to predict future built change. However, the margins of superiority were too small to be statistically significant. The resulting tree structures were used, however, to derive a series of principles or "rules" governing land use change in both provinces. The model was able to predict future land use, given a series of assumptions, with 90 percent overall accuracies. The model can be used in other developing or developed country locations for future land use prediction, determination of future threatened areas, or to derive "rules" or principles driving land use change.
I think of Ronald Reagan: future selves in the present.
Roberts, P
1992-01-01
A nonlinear perspective on time (where the future exists in and affects the present) has been described by several theorists but there is little research on the extent, quality or origins of the personal future perspective. The present study examined the existence and origin of the future in the present by asking adults aged nineteen to eighty-three to: 1) project themselves into the oldest age imaginable, 2) describe their hopes and fears for that age, and 3) name role models for those hopes and fears. Data analysis revealed that length of future perspective, number of hopes and number of role models for the distant future declined with age. In addition, types of fears for the future varied with age, with older adults stressing dependency issues while younger adults reported concerns about personality and mental health. Despite age differences, most participants could name role models for both their hopes and fears for aging, but specific models were identified more often for hopes than for fears. Personalized hopes and fears for the distant future as motivators for the present are discussed.
Rotor systems research aircraft simulation mathematical model
NASA Technical Reports Server (NTRS)
Houck, J. A.; Moore, F. L.; Howlett, J. J.; Pollock, K. S.; Browne, M. M.
1977-01-01
An analytical model developed for evaluating and verifying advanced rotor concepts is discussed. The model was used during in both open loop and real time man-in-the-loop simulation during the rotor systems research aircraft design. Future applications include: pilot training, preflight of test programs, and the evaluation of promising concepts before their implementation on the flight vehicle.
[Land use and land cover charnge (LUCC) and landscape service: Evaluation, mapping and modeling].
Song, Zhang-jian; Cao, Yu; Tan, Yong-zhong; Chen, Xiao-dong; Chen, Xian-peng
2015-05-01
Studies on ecosystem service from landscape scale aspect have received increasing attention from researchers all over the world. Compared with ecosystem scale, it should be more suitable to explore the influence of human activities on land use and land cover change (LUCC), and to interpret the mechanisms and processes of sustainable landscape dynamics on landscape scale. Based on comprehensive and systematic analysis of researches on landscape service, this paper firstly discussed basic concepts and classification of landscape service. Then, methods of evaluation, mapping and modeling of landscape service were analyzed and concluded. Finally, future trends for the research on landscape service were proposed. It was put forward that, exploring further connotation and classification system of landscape service, improving methods and quantitative indicators for evaluation, mapping and modelling of landscape service, carrying out long-term integrated researches on landscape pattern-process-service-scale relationships and enhancing the applications of theories and methods on landscape economics and landscape ecology are very important fields of the research on landscape service in future.
2009-04-03
Supersonic Aircraft Model The window in the sidewall of the 8- by 6-foot supersonic wind tunnel at NASA's Glenn Research Center shows a 1.79 percent scale model of a future concept supersonic aircraft built by The Boeing Company. In recent tests, researchers evaluated the performance of air inlets mounted on top of the model to see how changing the amount of airflow at supersonic speeds through the inlet affected performance. The inlet on the pilot's right side (top inlet in this side view) is larger because it contains a remote-controlled device through which the flow of air could be changed. The work is part of ongoing research in NASA's Aeronautics Research Mission Directorate to address the challenges of making future supersonic flight over land possible. Researchers are testing overall vehicle design and performance options to reduce emissions and noise, and identifying whether the volume of sonic booms can be reduced to a level that leads to a reversal of the current ruling that prohibits commercial supersonic flight over land. Image Credit: NASA/Quentin Schwinn
2009-04-03
Supersonic Aircraft Model The window in the sidewall of the 8- by 6-foot supersonic wind tunnel at NASA's Glenn Research Center shows a 1.79 percent scale model of a future concept supersonic aircraft built by The Boeing Company. In recent tests, researchers evaluated the performance of air inlets mounted on top of the model to see how changing the amount of airflow at supersonic speeds through the inlet affected performance. The inlet on the pilot's right side (top inlet in this side view) is larger because it contains a remote-controlled device through which the flow of air could be changed. The work is part of ongoing research in NASA's Aeronautics Research Mission Directorate to address the challenges of making future supersonic flight over land possible. Researchers are testing overall vehicle design and performance options to reduce emissions and noise, and identifying whether the volume of sonic booms can be reduced to a level that leads to a reversal of the current ruling that prohibits commercial supersonic flight over land. Image Credit: NASA/Quentin Schwinn
Rodent models in Down syndrome research: impact and future opportunities
2017-01-01
ABSTRACT Down syndrome is caused by trisomy of chromosome 21. To date, a multiplicity of mouse models with Down-syndrome-related features has been developed to understand this complex human chromosomal disorder. These mouse models have been important for determining genotype-phenotype relationships and identification of dosage-sensitive genes involved in the pathophysiology of the condition, and in exploring the impact of the additional chromosome on the whole genome. Mouse models of Down syndrome have also been used to test therapeutic strategies. Here, we provide an overview of research in the last 15 years dedicated to the development and application of rodent models for Down syndrome. We also speculate on possible and probable future directions of research in this fast-moving field. As our understanding of the syndrome improves and genome engineering technologies evolve, it is necessary to coordinate efforts to make all Down syndrome models available to the community, to test therapeutics in models that replicate the whole trisomy and design new animal models to promote further discovery of potential therapeutic targets. PMID:28993310
Rodent models in Down syndrome research: impact and future opportunities.
Herault, Yann; Delabar, Jean M; Fisher, Elizabeth M C; Tybulewicz, Victor L J; Yu, Eugene; Brault, Veronique
2017-10-01
Down syndrome is caused by trisomy of chromosome 21. To date, a multiplicity of mouse models with Down-syndrome-related features has been developed to understand this complex human chromosomal disorder. These mouse models have been important for determining genotype-phenotype relationships and identification of dosage-sensitive genes involved in the pathophysiology of the condition, and in exploring the impact of the additional chromosome on the whole genome. Mouse models of Down syndrome have also been used to test therapeutic strategies. Here, we provide an overview of research in the last 15 years dedicated to the development and application of rodent models for Down syndrome. We also speculate on possible and probable future directions of research in this fast-moving field. As our understanding of the syndrome improves and genome engineering technologies evolve, it is necessary to coordinate efforts to make all Down syndrome models available to the community, to test therapeutics in models that replicate the whole trisomy and design new animal models to promote further discovery of potential therapeutic targets. © 2017. Published by The Company of Biologists Ltd.
High Speed Research Program Structural Acoustics Multi-Year Summary Report
NASA Technical Reports Server (NTRS)
Beier, Theodor H.; Bhat, Waman V.; Rizzi, Stephen A.; Silcox, Richard J.; Simpson, Myles A.
2005-01-01
This report summarizes the work conducted by the Structural Acoustics Integrated Technology Development (ITD) Team under NASA's High Speed Research (HSR) Phase II program from 1993 to 1999. It is intended to serve as a reference for future researchers by documenting the results of the interior noise and sonic fatigue technology development activities conducted during this period. For interior noise, these activities included excitation modeling, structural acoustic response modeling, development of passive treatments and active controls, and prediction of interior noise. For sonic fatigue, these activities included loads prediction, materials characterization, sonic fatigue code development, development of response reduction techniques, and generation of sonic fatigue design requirements. Also included are lessons learned and recommendations for future work.
NASA Technical Reports Server (NTRS)
Haroutunian, Vahe
1995-01-01
This viewgraph presentation provides a brief review of two-equation eddy-viscosity models (TEM's) from the perspective of applied CFD. It provides objective assessment of both well-known and newer models, compares model predictions from various TEM's with experiments, identifies sources of modeling error and gives historical perspective of their effects on model performance and assessment, and recommends directions for future research on TEM's.
Modeling paradigms for medical diagnostic decision support: a survey and future directions.
Wagholikar, Kavishwar B; Sundararajan, Vijayraghavan; Deshpande, Ashok W
2012-10-01
Use of computer based decision tools to aid clinical decision making, has been a primary goal of research in biomedical informatics. Research in the last five decades has led to the development of Medical Decision Support (MDS) applications using a variety of modeling techniques, for a diverse range of medical decision problems. This paper surveys literature on modeling techniques for diagnostic decision support, with a focus on decision accuracy. Trends and shortcomings of research in this area are discussed and future directions are provided. The authors suggest that-(i) Improvement in the accuracy of MDS application may be possible by modeling of vague and temporal data, research on inference algorithms, integration of patient information from diverse sources and improvement in gene profiling algorithms; (ii) MDS research would be facilitated by public release of de-identified medical datasets, and development of opensource data-mining tool kits; (iii) Comparative evaluations of different modeling techniques are required to understand characteristics of the techniques, which can guide developers in choice of technique for a particular medical decision problem; and (iv) Evaluations of MDS applications in clinical setting are necessary to foster physicians' utilization of these decision aids.
Mechanical model development of rolling bearing-rotor systems: A review
NASA Astrophysics Data System (ADS)
Cao, Hongrui; Niu, Linkai; Xi, Songtao; Chen, Xuefeng
2018-03-01
The rolling bearing rotor (RBR) system is the kernel of many rotating machines, which affects the performance of the whole machine. Over the past decades, extensive research work has been carried out to investigate the dynamic behavior of RBR systems. However, to the best of the authors' knowledge, no comprehensive review on RBR modelling has been reported yet. To address this gap in the literature, this paper reviews and critically discusses the current progress of mechanical model development of RBR systems, and identifies future trends for research. Firstly, five kinds of rolling bearing models, i.e., the lumped-parameter model, the quasi-static model, the quasi-dynamic model, the dynamic model, and the finite element (FE) model are summarized. Then, the coupled modelling between bearing models and various rotor models including De Laval/Jeffcott rotor, rigid rotor, transfer matrix method (TMM) models and FE models are presented. Finally, the paper discusses the key challenges of previous works and provides new insights into understanding of RBR systems for their advanced future engineering applications.
Regional climate projection of the Maritime Continent using the MIT Regional Climate Model
NASA Astrophysics Data System (ADS)
IM, E. S.; Eltahir, E. A. B.
2014-12-01
Given that warming of the climate system is unequivocal (IPCC AR5), accurate assessment of future climate is essential to understand the impact of climate change due to global warming. Modelling the climate change of the Maritime Continent is particularly challenge, showing a high degree of uncertainty. Compared to other regions, model agreement of future projections in response to anthropogenic emission forcings is much less. Furthermore, the spatial and temporal behaviors of climate projections seem to vary significantly due to a complex geographical condition and a wide range of scale interactions. For the fine-scale climate information (27 km) suitable for representing the complexity of climate change over the Maritime Continent, dynamical downscaling is performed using the MIT regional climate model (MRCM) during two thirty-year period for reference (1970-1999) and future (2070-2099) climate. Initial and boundary conditions are provided by Community Earth System Model (CESM) simulations under the emission scenarios projected by MIT Integrated Global System Model (IGSM). Changes in mean climate as well as the frequency and intensity of extreme climate events are investigated at various temporal and spatial scales. Our analysis is primarily centered on the different behavior of changes in convective and large-scale precipitation over land vs. ocean during dry vs. wet season. In addition, we attempt to find the added value to downscaled results over the Maritime Continent through the comparison between MRCM and CESM projection. Acknowledgements.This research was supported by the National Research Foundation Singapore through the Singapore MIT Alliance for Research and Technology's Center for Environmental Sensing and Modeling interdisciplinary research program.
Assessment of the uncertainty in future projection for summer climate extremes over the East Asia
NASA Astrophysics Data System (ADS)
Park, Changyong; Min, Seung-Ki; Cha, Dong-Hyun
2017-04-01
Future projections of climate extremes in regional and local scales are essential information needed for better adapting to climate changes. However, future projections hold larger uncertainty factors arising from internal and external processes which reduce the projection confidence. Using CMIP5 (Coupled Model Intercomparison Project Phase 5) multi-model simulations, we assess uncertainties in future projections of the East Asian temperature and precipitation extremes focusing on summer. In examining future projection, summer mean and extreme projections of the East Asian temperature and precipitation would be larger as time. Moreover, uncertainty cascades represent wider scenario difference and inter-model ranges with increasing time. A positive mean-extreme relation is found in projections for both temperature and precipitation. For the assessment of uncertainty factors for these projections, dominant uncertainty factors from temperature and precipitation change as time. For uncertainty of mean and extreme temperature, contributions of internal variability and model uncertainty declines after mid-21st century while role of scenario uncertainty grows rapidly. For uncertainty of mean precipitation projections, internal variability is more important than the scenario uncertainty. Unlike mean precipitation, extreme precipitation shows that the scenario uncertainty is expected to be a dominant factor in 2090s. The model uncertainty holds as an important factor for both mean and extreme precipitation until late 21st century. The spatial changes for the uncertainty factors of mean and extreme projections generally are expressed according to temporal changes of the fraction of total variance from uncertainty factors in many grids of the East Asia. ACKNOWLEDGEMENTS The research was supported by the Korea Meteorological Administration Research and Development program under grant KMIPA 2015-2083 and the National Research Foundation of Korea Grant funded by the Ministry of Science, ICT and Future Planning of Korea (NRF-2016M3C4A7952637) for its support and assistant in completion of the study.
Schmidt, David; Kurtz, Megan; Davidson, Stuart
2017-01-01
District advisors in five allied health disciplines were introduced in a local health district in rural Australia in 2013. These strategic leadership roles provide support to clinicians and managers. As there is little research exploring allied health leadership models from a strategic and operational perspective, the coordinated commencement of these roles provided opportunity to study the creation of this leadership structure. Four advisors participated in this action research study which used focus groups and program logic processes to explore the inputs, outputs, barriers, outcomes to date, and preferred future outcomes of the leadership model. A purpose-built questionnaire was sent to 134 allied health clinicians or managers with questionnaire responses used by advisors to visualise the leadership model. Advisors prioritised policy development, representing the profession outside the organisation, and supporting department managers, whilst clinicians prioritised communication and connection-building within the organisation. Outcomes of the leadership model included connection, coordination, and advocacy for clinicians. Future preferred outcomes included increased strategic and workforce planning. Barriers included limited time, a widespread workforce and limited resourcing. Instituting a leadership model improved communication, cohesion, and coordination within the organisation. Future increases in workforce planning and coordination are limited by advisor capacity and competing workloads.
Future Modelling and Simulation Challenges (Defis futurs pour la modelisation et la simulation)
2002-11-01
Language School Figure 2: Location of the simulation center within the MEC Military operations research section - simulation lab Military operations... language . This logic can be probabilistic (branching is randomised, which is useful for modelling error), tactical (a branch goes to the task with the... language and a collection of simulation tools that can be used to create human and team behaviour models to meet users’ needs. Hence, different ways of
Identifying Talent in Youth Sport: A Novel Methodology Using Higher-Dimensional Analysis.
Till, Kevin; Jones, Ben L; Cobley, Stephen; Morley, David; O'Hara, John; Chapman, Chris; Cooke, Carlton; Beggs, Clive B
2016-01-01
Prediction of adult performance from early age talent identification in sport remains difficult. Talent identification research has generally been performed using univariate analysis, which ignores multivariate relationships. To address this issue, this study used a novel higher-dimensional model to orthogonalize multivariate anthropometric and fitness data from junior rugby league players, with the aim of differentiating future career attainment. Anthropometric and fitness data from 257 Under-15 rugby league players was collected. Players were grouped retrospectively according to their future career attainment (i.e., amateur, academy, professional). Players were blindly and randomly divided into an exploratory (n = 165) and validation dataset (n = 92). The exploratory dataset was used to develop and optimize a novel higher-dimensional model, which combined singular value decomposition (SVD) with receiver operating characteristic analysis. Once optimized, the model was tested using the validation dataset. SVD analysis revealed 60 m sprint and agility 505 performance were the most influential characteristics in distinguishing future professional players from amateur and academy players. The exploratory dataset model was able to distinguish between future amateur and professional players with a high degree of accuracy (sensitivity = 85.7%, specificity = 71.1%; p<0.001), although it could not distinguish between future professional and academy players. The validation dataset model was able to distinguish future professionals from the rest with reasonable accuracy (sensitivity = 83.3%, specificity = 63.8%; p = 0.003). Through the use of SVD analysis it was possible to objectively identify criteria to distinguish future career attainment with a sensitivity over 80% using anthropometric and fitness data alone. As such, this suggests that SVD analysis may be a useful analysis tool for research and practice within talent identification.
Identifying Talent in Youth Sport: A Novel Methodology Using Higher-Dimensional Analysis
Till, Kevin; Jones, Ben L.; Cobley, Stephen; Morley, David; O'Hara, John; Chapman, Chris; Cooke, Carlton; Beggs, Clive B.
2016-01-01
Prediction of adult performance from early age talent identification in sport remains difficult. Talent identification research has generally been performed using univariate analysis, which ignores multivariate relationships. To address this issue, this study used a novel higher-dimensional model to orthogonalize multivariate anthropometric and fitness data from junior rugby league players, with the aim of differentiating future career attainment. Anthropometric and fitness data from 257 Under-15 rugby league players was collected. Players were grouped retrospectively according to their future career attainment (i.e., amateur, academy, professional). Players were blindly and randomly divided into an exploratory (n = 165) and validation dataset (n = 92). The exploratory dataset was used to develop and optimize a novel higher-dimensional model, which combined singular value decomposition (SVD) with receiver operating characteristic analysis. Once optimized, the model was tested using the validation dataset. SVD analysis revealed 60 m sprint and agility 505 performance were the most influential characteristics in distinguishing future professional players from amateur and academy players. The exploratory dataset model was able to distinguish between future amateur and professional players with a high degree of accuracy (sensitivity = 85.7%, specificity = 71.1%; p<0.001), although it could not distinguish between future professional and academy players. The validation dataset model was able to distinguish future professionals from the rest with reasonable accuracy (sensitivity = 83.3%, specificity = 63.8%; p = 0.003). Through the use of SVD analysis it was possible to objectively identify criteria to distinguish future career attainment with a sensitivity over 80% using anthropometric and fitness data alone. As such, this suggests that SVD analysis may be a useful analysis tool for research and practice within talent identification. PMID:27224653
AGENT-BASED MODELS IN EMPIRICAL SOCIAL RESEARCH*
Bruch, Elizabeth; Atwell, Jon
2014-01-01
Agent-based modeling has become increasingly popular in recent years, but there is still no codified set of recommendations or practices for how to use these models within a program of empirical research. This article provides ideas and practical guidelines drawn from sociology, biology, computer science, epidemiology, and statistics. We first discuss the motivations for using agent-based models in both basic science and policy-oriented social research. Next, we provide an overview of methods and strategies for incorporating data on behavior and populations into agent-based models, and review techniques for validating and testing the sensitivity of agent-based models. We close with suggested directions for future research. PMID:25983351
Collaborative Multi-Scale 3d City and Infrastructure Modeling and Simulation
NASA Astrophysics Data System (ADS)
Breunig, M.; Borrmann, A.; Rank, E.; Hinz, S.; Kolbe, T.; Schilcher, M.; Mundani, R.-P.; Jubierre, J. R.; Flurl, M.; Thomsen, A.; Donaubauer, A.; Ji, Y.; Urban, S.; Laun, S.; Vilgertshofer, S.; Willenborg, B.; Menninghaus, M.; Steuer, H.; Wursthorn, S.; Leitloff, J.; Al-Doori, M.; Mazroobsemnani, N.
2017-09-01
Computer-aided collaborative and multi-scale 3D planning are challenges for complex railway and subway track infrastructure projects in the built environment. Many legal, economic, environmental, and structural requirements have to be taken into account. The stringent use of 3D models in the different phases of the planning process facilitates communication and collaboration between the stake holders such as civil engineers, geological engineers, and decision makers. This paper presents concepts, developments, and experiences gained by an interdisciplinary research group coming from civil engineering informatics and geo-informatics banding together skills of both, the Building Information Modeling and the 3D GIS world. New approaches including the development of a collaborative platform and 3D multi-scale modelling are proposed for collaborative planning and simulation to improve the digital 3D planning of subway tracks and other infrastructures. Experiences during this research and lessons learned are presented as well as an outlook on future research focusing on Building Information Modeling and 3D GIS applications for cities of the future.
Economic Disadvantage in Complex Family Systems: Expansion of Family Stress Models
ERIC Educational Resources Information Center
Barnett, Melissa A.
2008-01-01
Economic disadvantage is associated with multiple risks to early socioemotional development. This article reviews research regarding family stress frameworks to model the pathways from economic disadvantage to negative child outcomes via family processes. Future research in this area should expand definitions of family and household to incorporate…
NASA Astrophysics Data System (ADS)
Luo, Y.; Huang, Y.; Jiang, J.; MA, S.; Saruta, V.; Liang, G.; Hanson, P. J.; Ricciuto, D. M.; Milcu, A.; Roy, J.
2017-12-01
The past two decades have witnessed rapid development in sensor technology. Built upon the sensor development, large research infrastructure facilities, such as National Ecological Observatory Network (NEON) and FLUXNET, have been established. Through networking different kinds of sensors and other data collections at many locations all over the world, those facilities generate large volumes of ecological data every day. The big data from those facilities offer an unprecedented opportunity for advancing our understanding of ecological processes, educating teachers and students, supporting decision-making, and testing ecological theory. The big data from the major research infrastructure facilities also provides foundation for developing predictive ecology. Indeed, the capability to predict future changes in our living environment and natural resources is critical to decision making in a world where the past is no longer a clear guide to the future. We are living in a period marked by rapid climate change, profound alteration of biogeochemical cycles, unsustainable depletion of natural resources, and deterioration of air and water quality. Projecting changes in future ecosystem services to the society becomes essential not only for science but also for policy making. We will use this panel format to outline major opportunities and challenges in integrating research infrastructure and ecosystem models toward developing predictive ecology. Meanwhile, we will also show results from an interactive model-experiment System - Ecological Platform for Assimilating Data into models (EcoPAD) - that have been implemented at the Spruce and Peatland Responses Under Climatic and Environmental change (SPRUCE) experiment in Northern Minnesota and Montpellier Ecotron, France. EcoPAD is developed by integrating web technology, eco-informatics, data assimilation techniques, and ecosystem modeling. EcoPAD is designed to streamline data transfer seamlessly from research infrastructure facilities to model simulation, data assimilation, and ecological forecasting.
Innovations in projecting emissions for air quality modeling ...
Air quality modeling is used in setting air quality standards and in evaluating their costs and benefits. Historically, modeling applications have projected emissions and the resulting air quality only 5 to 10 years into the future. Recognition that the choice of air quality management strategy has climate change implications is encouraging longer modeling time horizons. However, for multi-decadal time horizons, many questions about future conditions arise. For example, will current population, economic, and land use trends continue, or will we see shifts that may alter the spatial and temporal pattern of emissions? Similarly, will technologies such as building-integrated solar photovoltaics, battery storage, electric vehicles, and CO2 capture emerge as disruptive technologies - shifting how we produce and use energy - or will these technologies achieve only niche markets and have little impact? These are some of the questions that are being evaluated by researchers within the U.S. EPA’s Office of Research and Development. In this presentation, Dr. Loughlin will describe a range of analytical approaches that are being explored. These include: (i) the development of alternative scenarios of the future that can be used to evaluate candidate management strategies over wide-ranging conditions, (ii) the application of energy system models to project emissions decades into the future and to assess the environmental implications of new technologies, (iii) and methodo
A System Dynamics Modeling of Water Supply and Demand in Las Vegas Valley
NASA Astrophysics Data System (ADS)
Parajuli, R.; Kalra, A.; Mastino, L.; Velotta, M.; Ahmad, S.
2017-12-01
The rise in population and change in climate have posed the uncertainties in the balance between supply and demand of water. The current study deals with the water management issues in Las Vegas Valley (LVV) using Stella, a system dynamics modeling software, to model the feedback based relationship between supply and demand parameters. Population parameters were obtained from Center for Business and Economic Research while historical water demand and conservation practices were modeled as per the information provided by local authorities. The water surface elevation of Lake Mead, which is the prime source of water supply to the region, was modeled as the supply side whereas the water demand in LVV was modeled as the demand side. The study was done from the period of 1989 to 2049 with 1989 to 2012 as the historical one and the period from 2013 to 2049 as the future period. This study utilizes Coupled Model Intercomparison Project data sets (2013-2049) (CMIP3&5) to model different future climatic scenarios. The model simulates the past dynamics of supply and demand, and then forecasts the future water budget for the forecasted future population and future climatic conditions. The results can be utilized by the water authorities in understanding the future water status and hence plan suitable conservation policies to allocate future water budget and achieve sustainable water management.
Promoting Positive Future Expectations During Adolescence: The Role of Assets.
Stoddard, Sarah A; Pierce, Jennifer
2015-12-01
Positive future expectations can facilitate optimal development and contribute to healthier outcomes for youth. Researchers suggest that internal resources and community-level factors may influence adolescent future expectations, yet little is known about the processes through which these benefits are conferred. The present study examined the relationship between contribution to community, neighborhood collective efficacy, purpose, hope and future expectations, and tested a mediation model that linked contribution to community and collective efficacy with future expectations through purpose and hope in a sample of 7th grade youth (N = 196; Mage = 12.39; 60 % female; 40 % African American; 71 % economically disadvantaged). Greater collective efficacy and contribution to community predicted higher levels of hope and purpose. Higher levels of hope and purpose predicted more positive future expectations. Contribution to community and neighborhood collective efficacy indirectly predicted future expectations via hope. Implications of the findings and suggestions for future research are discussed.
Promoting Positive Future Expectations during Adolescence: The Role of Assets
Stoddard, Sarah A.; Pierce, Jennifer
2015-01-01
Positive future expectations can facilitate optimal development and contribute to healthier outcomes for youth. Researchers suggest that internal resources and community-level factors may influence adolescent future expectations, yet little is known about the processes through which these benefits are conferred. The present study examined the relationship between contribution to community, neighborhood collective efficacy, purpose, hope and future expectations, and tested a mediation model that linked contribution to community and collective efficacy with future expectations through purpose and hope in a sample of 7th grade youth (N = 196; Mage = 12.39; 60% female; 40% African American; 71% economically disadvantaged). Greater collective efficacy and contribution to community predicted higher levels of hope and purpose. Higher levels of hope and purpose predicted more positive future expectations. Contribution to community and neighborhood collective efficacy indirectly predicted future expectations via hope. Implications of the findings and suggestions for future research are discussed. PMID:26385095
Evidence base and future research directions in the management of low back pain.
Abbott, Allan
2016-03-18
Low back pain (LBP) is a prevalent and costly condition. Awareness of valid and reliable patient history taking, physical examination and clinical testing is important for diagnostic accuracy. Stratified care which targets treatment to patient subgroups based on key characteristics is reliant upon accurate diagnostics. Models of stratified care that can potentially improve treatment effects include prognostic risk profiling for persistent LBP, likely response to specific treatment based on clinical prediction models or suspected underlying causal mechanisms. The focus of this editorial is to highlight current research status and future directions for LBP diagnostics and stratified care.
Luyten, Patrick; Blatt, Sidney J
2013-04-01
Two-polarities models of personality propose that personality development evolves through a dialectic synergistic interaction between two fundamental developmental psychological processes across the life span-the development of interpersonal relatedness on the one hand and of self-definition on the other. This article offers a broad review of extant research concerning these models, discusses their implications for psychology and psychiatry, and addresses future research perspectives deriving from these models. We first consider the implications of findings in this area for clinical research and practice. This is followed by a discussion of emerging research findings concerning the role of developmental, cross-cultural, evolutionary, and neurobiological factors influencing the development of these two fundamental personality dimensions. Taken together, this body of research suggests that theoretical formulations that focus on interpersonal relatedness and self-definition as central coordinates in personality development and psychopathology provide a comprehensive conceptual paradigm for future research in psychology and psychiatry exploring the interactions among neurobiological, psychological, and sociocultural factors in adaptive and disrupted personality development across the life span.
ERIC Educational Resources Information Center
Peacock, Christopher
2012-01-01
The purpose of this research effort was to develop a model that provides repeatable Location Management (LM) testing using a network simulation tool, QualNet version 5.1 (2011). The model will provide current and future protocol developers a framework to simulate stable protocol environments for development. This study used the Design Science…
ERIC Educational Resources Information Center
Grimm, Kevin; Marcoulides, Katerina
2016-01-01
Researchers are often interested in studying how the timing of a specific event affects concurrent and future development. When faced with such research questions there are multiple statistical models to consider and those models are the focus of this paper as well as their theoretical underpinnings and assumptions regarding the nature of the…
McClurg, Doreen; Frawley, Helena; Hay-Smith, Jean; Dean, Sarah; Chen, Shu-Yueh; Chiarelli, Pauline; Mair, Frances; Dumoulin, Chantale
2015-09-01
This paper, the first of four emanating from the International Continence Society's 2011 State-of-the-Science Seminar on pelvic-floor-muscle training (PFMT) adherence, aimed to summarize the literature on theoretical models to promote PFMT adherence, as identified in the research, or suggested by the seminar's expert panel, and recommends future directions for clinical practice and research. Existing literature on theories of health behavior were identified through a conventional subject search of electronic databases, reference-list checking, and input from the expert panel. A core eligibility criterion was that the study included a theoretical model to underpin adherence strategies used in an intervention to promote PFM training/exercise. A brief critique of 12 theoretical models/theories is provided and, were appropriate, their use in PFMT adherence strategies identified or examples of possible uses in future studies outlined. A better theoretical-based understanding of interventions to promote PFMT adherence through changes in health behaviors is required. The results of this scoping review and expert opinions identified several promising models. Future research should explicitly map the theories behind interventions that are thought to improve adherence in various populations (e.g., perinatal women to prevent or lessen urinary incontinence). In addition, identified behavioral theories applied to PFMT require a process whereby their impact can be evaluated. © 2015 Wiley Periodicals, Inc.
[Modeling of carbon cycling in terrestrial ecosystem: a review].
Mao, Liuxi; Sun, Yanling; Yan, Xiaodong
2006-11-01
Terrestrial carbon cycling is one of the important issues in global change research, while carbon cycling modeling has become a necessary method and tool in understanding this cycling. This paper reviewed the research progress in terrestrial carbon cycling, with the focus on the basic framework of simulation modeling, two essential models of carbon cycling, and the classes of terrestrial carbon cycling modeling, and analyzed the present situation of terrestrial carbon cycling modeling. It was pointed out that the future research direction could be based on the biophysical modeling of dynamic vegetation, and this modeling could be an important component in the earth system modeling.
The Neural Systems of Forgiveness: An Evolutionary Psychological Perspective
Billingsley, Joseph; Losin, Elizabeth A. R.
2017-01-01
Evolution-minded researchers posit that the suite of human cognitive adaptations may include forgiveness systems. According to these researchers, forgiveness systems regulate interpersonal motivation toward a transgressor in the wake of harm by weighing multiple factors that influence both the potential gains of future interaction with the transgressor and the likelihood of future harm. Although behavioral research generally supports this evolutionary model of forgiveness, the model’s claims have not been examined with available neuroscience specifically in mind, nor has recent neuroscientific research on forgiveness generally considered the evolutionary literature. The current review aims to help bridge this gap by using evolutionary psychology and cognitive neuroscience to mutually inform and interrogate one another. We briefly summarize the evolutionary research on forgiveness, then review recent neuroscientific findings on forgiveness in light of the evolutionary model. We emphasize neuroscientific research that links desire for vengeance to reward-based areas of the brain, that singles out prefrontal areas likely associated with inhibition of vengeful feelings, and that correlates the activity of a theory-of-mind network with assessments of the intentions and blameworthiness of those who commit harm. In addition, we identify gaps in the existing neuroscientific literature, and propose future research directions that might address them, at least in part. PMID:28539904
Research highlights of the global modeling and simulation branch for 1986-1987
NASA Technical Reports Server (NTRS)
Baker, Wayman (Editor); Susskind, Joel (Editor); Pfaendtner, James (Editor); Randall, David (Editor); Atlas, Robert (Editor)
1988-01-01
This document provides a summary of the research conducted in the Global Modeling and Simulation Branch and highlights the most significant accomplishments in 1986 to 1987. The Branch has been the focal point for global weather and climate prediction research in the Laboratory for Atmospheres through the retrieval and use of satellite data, the development of global models and data assimilation techniques, the simulation of future observing systems, and the performance of atmospheric diagnostic studies.
Computational Everyday Life Human Behavior Model as Servicable Knowledge
NASA Astrophysics Data System (ADS)
Motomura, Yoichi; Nishida, Yoshifumi
A project called `Open life matrix' is not only a research activity but also real problem solving as an action research. This concept is realized by large-scale data collection, probabilistic causal structure model construction and information service providing using the model. One concrete outcome of this project is childhood injury prevention activity in new team consist of hospital, government, and many varieties of researchers. The main result from the project is a general methodology to apply probabilistic causal structure models as servicable knowledge for action research. In this paper, the summary of this project and future direction to emphasize action research driven by artificial intelligence technology are discussed.
NASA Astrophysics Data System (ADS)
Oberländer, Sophie; Langematz, Ulrike; Kubin, Anne; Abalichin, Janna; Meul, Stefanie; Jöckel, Patrick; Brühl, Christoph
2010-05-01
First results of research performed within the new DFG Research Unit Stratospheric Change and its Role for Climate Prediction (SHARP) will be presented. SHARP investigates past and future changes in stratospheric dynamics and composition to improve the understanding of global climate change and the accuracy of climate change predictions. SHARP combines the efforts of eight German research institutes and expertise in state-of-the-art climate modelling and observations. Within the scope of the scientific sub-project SHARP-BDC (Brewer-Dobson-Circulation) the past and future evolution of the BDC in an atmosphere with changing composition will be analysed. Radiosonde data show an annual mean cooling of the tropical lower stratosphere over the past few decades (Thompson and Solomon, 2005). Several independent model simulations indicate an acceleration of the BDC due to higher greenhouse gas (GHG) concentrations with direct impact on the exchange of air masses between the troposphere and stratosphere (e.g., Butchart et al, 2006). In contrast, from balloon-born measurements no significant acceleration in the BDC could be identified (Engel et al, 2008). This disagreement between observations and model analyses motivates further studies. For the future, expected changes in planetary wave generation and propagation in an atmosphere with increasing GHG concentrations are a major source of uncertainty for predicting future levels of stratospheric composition. To analyse and interpret the past and future evolution of the BDC, results from a transient multi-decadal simulation with the Chemistry-Climate Model (CCM) EMAC will be presented. The model has been integrated from 1960 to 2100 following the SCN2d scenario recommendations of the SPARC CCMVal initiative for the temporal evolution of GHGs, ozone depleting substances and sea surface temperatures as well as sea ice. The role of increasing GHG concentrations for the BDC will be assessed by comparing the SCN2d-results with a ‘non-climate change' (NCC) simulation, in which greenhouse gases have been kept fixed at their 1960 concentrations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gallo, Giulia
Integrating increasingly high levels of variable generation in U.S. electricity markets requires addressing not only power system and grid modeling challenges but also an understanding of how market participants react and adapt to them. Key elements of current and future wholesale power markets can be modeled using an agent-based approach, which may prove to be a useful paradigm for researchers studying and planning for power systems of the future.
Crook, Jeremy Micah; Wallace, Gordon; Tomaskovic-Crook, Eva
2015-03-01
There is an urgent need for new and advanced approaches to modeling the pathological mechanisms of complex human neurological disorders. This is underscored by the decline in pharmaceutical research and development efficiency resulting in a relative decrease in new drug launches in the last several decades. Induced pluripotent stem cells represent a new tool to overcome many of the shortcomings of conventional methods, enabling live human neural cell modeling of complex conditions relating to aberrant neurodevelopment, such as schizophrenia, epilepsy and autism as well as age-associated neurodegeneration. This review considers the current status of induced pluripotent stem cell-based modeling of neurological disorders, canvassing proven and putative advantages, current constraints, and future prospects of next-generation culture systems for biomedical research and translation.
Exercise, Affect, and Adherence: An Integrated Model and a Case for Self-Paced Exercise
Williams, David M.
2014-01-01
This paper reviews research relevant to a proposed conceptual model of exercise adherence that integrates the dual mode model and hedonic theory. Exercise intensity is posited to influence affective response to exercise via interoceptive (e.g., ventilatory drive) and cognitive (e.g., perceived autonomy) pathways; affective response to exercise is posited to influence exercise adherence via anticipated affective response to future exercise. The potential for self-paced exercise to enhance exercise adherence is examined in the context of the proposed model and suggestions are given for future research. Further evidence in support of self-paced exercise could have implications for exercise prescription, especially among overweight, sedentary adults, who are most in need of interventions that enhance adherence to exercise programs. PMID:18971508
Malti, Tina; Noam, Gil G; Beelmann, Andreas; Sommer, Simon
2016-01-01
Children's and adolescents' mental health needs emphasize the necessity of a new era of translational research to enhance development and yield better lives for children, families, and communities. Developmental, clinical, and translational research serves as a powerful tool for managing the inevitable complexities in pursuit of these goals. This article proposes key ideas that will strengthen current evidence-based intervention practices by creating stronger links between research, practice, and complex systems contexts, with the potential of extending applicability, replicability, and impact. As exemplified in some of the articles throughout this special issue, new research and innovative implementation models will likely contribute to better ways of assessing and dynamically adapting structure and intervention practice within mental health systems. We contend that future models for effective interventions with children and adolescents will involve increased attention to (a) the connection of research on the developmental needs of children and adolescents to practice models; (b) consideration of informed contextual and cultural adaptation in implementation; and (c) a rational model of evidence-based planning, using a dynamic, inclusive approach with high support for adaptation, flexibility, and implementation fidelity. We discuss future directions for translational research for researchers, practitioners, and administrators in the field to continue and transform these ideas and their illustrations.
FORUM - FutureTox II: In vitro Data and In Silico Models for ...
FutureTox II, a Society of Toxicology Contemporary Concepts in Toxicology workshop, was held in January, 2014. The meeting goals were to review and discuss the state of the science in toxicology in the context of implementing the NRC 21st century vision of predicting in vivo responses from in vitro and in silico data, and to define the goals for the future. Presentations and discussions were held on priority concerns such as predicting and modeling of metabolism, cell growth and differentiation, effects on sensitive subpopulations, and integrating data into risk assessment. Emerging trends in technologies such as stem cell-derived human cells, 3D organotypic culture models, mathematical modeling of cellular processes and morphogenesis, adverse outcome pathway development, and high-content imaging of in vivo systems were discussed. Although advances in moving towards an in vitro/in silico based risk assessment paradigm were apparent, knowledge gaps in these areas and limitations of technologies were identified. Specific recommendations were made for future directions and research needs in the areas of hepatotoxicity, cancer prediction, developmental toxicity, and regulatory toxicology. This article reports on the outcome of FutureTox II1,2, the second in a series of Society of Toxicology (SOT) Contemporary Concepts in Toxicology (CCT) Workshops, which was attended by invitees and participants from governmental and regulatory agencies, research institutes, academ
ERIC Educational Resources Information Center
Mesmer, Heidi Anne; Cunningham, James W.; Hiebert, Elfrieda H.
2012-01-01
In this conceptual essay, we offer rationales and evidence for critical components of a working model of text complexity for the early grades. In the first three sections of the article, we examine word-level, syntax-level, and discourse-level features of text, posing questions for future research. In the fourth section, we address elements of…
Shaping the Future of Research: a perspective from junior scientists
MacKellar, Drew C.; Mazzilli, Sarah A.; Pai, Vaibhav P.; Goodwin, Patricia R.; Walsh, Erica M.; Robinson-Mosher, Avi; Bowman, Thomas A.; Kraemer, James; Erb, Marcella L.; Schoenfeld, Eldi; Shokri, Leila; Jackson, Jonathan D.; Islam, Ayesha; Mattozzi, Matthew D.; Krukenberg, Kristin A.; Polka, Jessica K.
2015-01-01
The landscape of scientific research and funding is in flux as a result of tight budgets, evolving models of both publishing and evaluation, and questions about training and workforce stability. As future leaders, junior scientists are uniquely poised to shape the culture and practice of science in response to these challenges. A group of postdocs in the Boston area who are invested in improving the scientific endeavor, planned a symposium held on October 2 nd and 3 rd, 2014, as a way to join the discussion about the future of US biomedical research. Here we present a report of the proceedings of participant-driven workshops and the organizers’ synthesis of the outcomes. PMID:25653845
Li, Ruopu; Merchant, James W
2013-03-01
Modeling groundwater vulnerability to pollution is critical for implementing programs to protect groundwater quality. Most groundwater vulnerability modeling has been based on current hydrogeology and land use conditions. However, groundwater vulnerability is strongly dependent on factors such as depth-to-water, recharge and land use conditions that may change in response to future changes in climate and/or socio-economic conditions. In this research, a modeling framework, which employs three sets of models linked within a geographic information system (GIS) environment, was used to evaluate groundwater pollution risks under future climate and land use changes in North Dakota. The results showed that areas with high vulnerability will expand northward and/or northwestward in Eastern North Dakota under different scenarios. GIS-based models that account for future changes in climate and land use can help decision-makers identify potential future threats to groundwater quality and take early steps to protect this critical resource. Copyright © 2013 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cort, K. A.; Hostick, D. J.; Belzer, D. B.
The purpose of the project was to identify and characterize the modeling of deployment programs within the EERE Technology Development (TD) programs, address possible improvements to the modeling process, and note gaps in knowledge for future research.
Our Campus, Our Health: A Model for Undergraduate Health Education Research Engagement
ERIC Educational Resources Information Center
Merten, Julie Williams; Johnson, Dana
2014-01-01
Research experience prepares undergraduate students for graduate school, a competitive job market, and their future as the next generation of leaders in public health education. This article describes a model, Our Campus, Our Health, to engage undergraduate students in the delivery of a college health behavior assessment. Through this project,…
Center of Excellence for Geospatial Information Science research plan 2013-18
Usery, E. Lynn
2013-01-01
The U.S. Geological Survey Center of Excellence for Geospatial Information Science (CEGIS) was created in 2006 and since that time has provided research primarily in support of The National Map. The presentations and publications of the CEGIS researchers document the research accomplishments that include advances in electronic topographic map design, generalization, data integration, map projections, sea level rise modeling, geospatial semantics, ontology, user-centered design, volunteer geographic information, and parallel and grid computing for geospatial data from The National Map. A research plan spanning 2013–18 has been developed extending the accomplishments of the CEGIS researchers and documenting new research areas that are anticipated to support The National Map of the future. In addition to extending the 2006–12 research areas, the CEGIS research plan for 2013–18 includes new research areas in data models, geospatial semantics, high-performance computing, volunteered geographic information, crowdsourcing, social media, data integration, and multiscale representations to support the Three-Dimensional Elevation Program (3DEP) and The National Map of the future of the U.S. Geological Survey.
Collaborative modelling: the future of computational neuroscience?
Davison, Andrew P
2012-01-01
Given the complexity of biological neural circuits and of their component cells and synapses, building and simulating robust, well-validated, detailed models increasingly surpasses the resources of an individual researcher or small research group. In this article, I will briefly review possible solutions to this problem, argue for open, collaborative modelling as the optimal solution for advancing neuroscience knowledge, and identify potential bottlenecks and possible solutions.
Flett, Gordon L; Hewitt, Paul L
2006-07-01
This article reviews the concepts of positive and negative perfectionism and the dual process model of perfectionism outlined by Slade and Owens (1998). The authors acknowledge that the dual process model represents a conceptual advance in the study of perfectionism and that Slade and Owens should be commended for identifying testable hypotheses and future research directions. However, the authors take issue with the notion that there are two types of perfectionism, with one type of perfectionism representing a "normal" or "healthy" form of perfectionism. They suggest that positive perfectionism is motivated, at least in part, by an avoidance orientation and fear of failure, and recent attempts to define and conceptualize positive perfectionism may have blurred the distinction between perfectionism and conscientiousness. Research findings that question the adaptiveness of positive forms of perfectionism are highlighted, and key issues for future research are identified.
Uchino, Bert N.; Bowen, Kimberly; Carlisle, McKenzie; Birmingham, Wendy
2012-01-01
Contemporary models postulate the importance of psychological mechanisms linking perceived and received social support to physical health outcomes. In this review, we examine studies that directly tested the potential psychological mechanisms responsible for links between social support and health-relevant physiological processes (1980s to 2010). Inconsistent with existing theoretical models, no evidence was found that psychological mechanisms such as depression, perceived stress, and other affective processes are directly responsible for links between support and health. We discuss the importance of considering statistical/design issues, emerging conceptual perspectives, and limitations of our existing models for future research aimed at elucidating the psychological mechanisms responsible for links between social support and physical health outcomes. PMID:22326104
Parker, Caroline M; Parker, Richard G; Philbin, Morgan M; Hirsch, Jennifer S
2018-04-01
This paper advances research on racism and health by presenting a conceptual model that delineates pathways linking policing practices to HIV vulnerability among Black men who have sex with men in the urban USA. Pathways include perceived discrimination based on race, sexuality and gender performance, mental health, and condom-carrying behaviors. The model, intended to stimulate future empirical work, is based on a review of the literature and on ethnographic data collected in 2014 in New York City. This paper contributes to a growing body of work that examines policing practices as drivers of racial health disparities extending far beyond violence-related deaths.
Multiscale agent-based cancer modeling.
Zhang, Le; Wang, Zhihui; Sagotsky, Jonathan A; Deisboeck, Thomas S
2009-04-01
Agent-based modeling (ABM) is an in silico technique that is being used in a variety of research areas such as in social sciences, economics and increasingly in biomedicine as an interdisciplinary tool to study the dynamics of complex systems. Here, we describe its applicability to integrative tumor biology research by introducing a multi-scale tumor modeling platform that understands brain cancer as a complex dynamic biosystem. We summarize significant findings of this work, and discuss both challenges and future directions for ABM in the field of cancer research.
Future Urban Climate Projection in A Tropical Megacity Based on Global and Regional Scenarios
NASA Astrophysics Data System (ADS)
Darmanto, N. S.; Varquez, A. C. G.; Kanda, M.
2017-12-01
Cities in Asian developing countries experience rapid transformation in urban morphology and energy consumption, which correspondingly affects urban climate. Weather Research and Forecasting (WRF) Model coupled with improved single-layer urban canopy model incorporating realistic distribution of urban parameters and anthropogenic heat emission (AHE) in the tropic Jakarta Greater Area was conducted. Simulation was conducted during the dry months from 2006 to 2015 and agreed well with point and satellite observation. The same technology coupled with pseudo global warming (PGW) method based on representative concentration pathways (RCP) scenario 2.6 and 8.5 was conducted to produce futuristic climate condition in 2050. Projected urban morphology and AHE in 2050s were constructed using regional urban growing model with shared socioeconomic pathways (SSP) among its inputs. Compact future urban configuration, based on SSP1, was coupled to RCP2.6. Unrestrained future urban configuration, based on SSP3, was coupled to RCP8.5. Results show that background warming from RCP 2.6 and 8.5 will increase background temperature by 0.55°C and 1.2°C throughout the region, respectively. Future projection of urban sprawl results to an additional 0.3°C and 0.5°C increase on average, with maximum increase of 1.1°C and 1.3°C due to urban effect for RCP2.6/compact and RCP8.5/unrestrained, respectively. Higher moisture content in urban area is indicated in the future due to higher evaporation. Change in urban roughness is likely affect slower wind velocity in urban area and sea breeze front inland penetration the future compare with current condition. Acknowledgement: This research was supported by the Environment Research and Technology Development Fund (S-14) of the Ministry of the Environment, Japan.
The Convoy Model: Explaining Social Relations From a Multidisciplinary Perspective
Antonucci, Toni C.
2014-01-01
Purpose of the Study: Social relations are a key aspect of aging and the life course. In this paper, we trace the scientific origins of the study of social relations, focusing in particular on research grounded in the convoy model. Design and Methods: We first briefly review and critique influential historical studies to illustrate how the scientific study of social relations developed. Next, we highlight early and current findings grounded in the convoy model that have provided key insights into theory, method, policy, and practice in the study of aging. Results: Early social relations research, while influential, lacked the combined approach of theoretical grounding and methodological rigor. Nevertheless, previous research findings, especially from anthropology, suggested the importance of social relations in the achievement of positive outcomes. Considering both life span and life course perspectives and grounded in a multidisciplinary perspective, the convoy model was developed to unify and consolidate scattered evidence while at the same time directing future empirical and applied research. Early findings are summarized, current evidence presented, and future directions projected. Implications: The convoy model has provided a useful framework in the study of aging, especially for understanding predictors and consequences of social relations across the life course. PMID:24142914
The mathematics of cancer: integrating quantitative models.
Altrock, Philipp M; Liu, Lin L; Michor, Franziska
2015-12-01
Mathematical modelling approaches have become increasingly abundant in cancer research. The complexity of cancer is well suited to quantitative approaches as it provides challenges and opportunities for new developments. In turn, mathematical modelling contributes to cancer research by helping to elucidate mechanisms and by providing quantitative predictions that can be validated. The recent expansion of quantitative models addresses many questions regarding tumour initiation, progression and metastases as well as intra-tumour heterogeneity, treatment responses and resistance. Mathematical models can complement experimental and clinical studies, but also challenge current paradigms, redefine our understanding of mechanisms driving tumorigenesis and shape future research in cancer biology.
An integrative dimensional classification of personality disorder.
Widiger, Thomas A; Livesley, W John; Clark, Lee Anna
2009-09-01
Psychological assessment research concerns how to describe psychological dysfunction in ways that are both valid and useful. Recent advances in assessment research hold the promise of facilitating significant improvements in description and diagnosis. One such contribution is in the classification of personality disorder symptomatology. The American Psychiatric Association's diagnostic manual considers personality disorders to be categorically distinct entities. However, research assessing personality disorders has consistently supported a dimensional perspective. Recognition of the many limitations of categorical models of personality disorder classification has led to the development of a variety of alternative proposals, which further research has indicated can be integrated within a common hierarchical structure. This article offers an alternative integrated dimensional model of normal and abnormal personality structure, and it illustrates how such a model could be used clinically to describe patients' normal adaptive personality traits as well as their maladaptive personality traits that could provide the basis for future assessments of personality disorder. The empirical support, feasibility, and clinical utility of the proposal are discussed. Points of ambiguity and dispute are highlighted, and suggestions for future research are provided. Copyright 2009 APA, all rights reserved.
NASA Astrophysics Data System (ADS)
Verhoef, Anne; Cook, Peter; Black, Emily; Macdonald, David; Sorensen, James
2017-04-01
This research addresses the terrestrial water balance for West Africa. Emphasis is on the prediction of groundwater recharge and how this may change in the future, which has relevance to the management of surface and groundwater resources. The study was conducted as part of the BRAVE research project, "Building understanding of climate variability into planning of groundwater supplies from low storage aquifers in Africa - Second Phase", funded under the NERC/DFID/ESRC Programme, Unlocking the Potential of Groundwater for the Poor (UPGro). We used model output data of water balance components (precipitation, surface and subsurface run-off, evapotranspiration and soil moisture content) from ERA-Interim/ERA-LAND reanalysis, CMIP5, and high resolution model runs with HadGEM3 (UPSCALE; Mizielinski et al., 2014), for current and future time-periods. Water balance components varied widely between the different models; variation was particularly large for sub-surface runoff (defined as drainage from the bottom-most soil layer of each model). In-situ data for groundwater recharge obtained from the peer-reviewed literature were compared with the model outputs. Separate off-line model sensitivity studies with key land surface models were performed to gain understanding of the reasons behind the model differences. These analyses were centered on vegetation, and soil hydraulic parameters. The modelled current and future recharge time series that had the greatest degree of confidence were used to examine the spatiotemporal variability in groundwater storage. Finally, the implications for water supply planning were assessed. Mizielinski, M.S. et al., 2014. High-resolution global climate modelling: the UPSCALE project, a large-simulation campaign. Geoscientific Model Development, 7(4), pp.1629-1640.
The agricultural model intercomparison and improvement project (AgMIP): Protocols and pilot studies
USDA-ARS?s Scientific Manuscript database
The Agricultural Model Intercomparison and Improvement Project (AgMIP) is a distributed climate-scenario simulation research activity for historical period model intercomparison and future climate change conditions with participation of multiple crop and agricultural economic model groups around the...
Treading lightly on shifting ground: The direction and motivation of future geological research
Witt, A.C.
2011-01-01
The future of the geosciences and geological research will involve complex scientific challenges, primarily concerning global and regional environmental issues, in the next 20-30 years. It is quite reasonable to suspect, based on current political and socioeconomic events, that young geoscientists will be faced with and involved in helping to resolve some well defined problems: water and energy security, the effects of anthropogenic climate change, coastal sea level rise and development, and the mitigation of geohazards. It is how we choose to approach these challenges that will define our future. Interdisciplinary applied research, improved modeling and prediction augmented with faster and more sophisticated computing, and a greater role in creating and guiding public policy, will help us achieve our goals of a cleaner and safer Earth environment in the next 30 years. In the far future, even grander possibilities for eliminating the risk of certain geohazards and finding sustainable solutions to our energy needs can be envisioned. Looking deeper into the future, the possibilities for geoscience research push the limits of the imagination.
Status, Emerging Ideas and Future Directions of Turbulence Modeling Research in Aeronautics
NASA Technical Reports Server (NTRS)
Duraisamy, Karthik; Spalart, Philippe R.; Rumsey, Christopher L.
2017-01-01
In July 2017, a three-day Turbulence Modeling Symposium sponsored by the University of Michigan and NASA was held in Ann Arbor, Michigan. This meeting brought together nearly 90 experts from academia, government and industry, with good international participation, to discuss the state of the art in turbulence modeling, emerging ideas, and to wrestle with questions surrounding its future. Emphasis was placed on turbulence modeling in a predictive context in complex problems, rather than on turbulence theory or descriptive modeling. This report summarizes many of the questions, discussions, and conclusions from the symposium, and suggests immediate next steps.
[Scientific indoctrination: a modality for incentives in nursing research].
Trevizan, M A; Mendes, I A
1991-07-01
The scientific commencement is pointed out as one of the strategies to be used to involve the future nurse with research activities and results. They also offer late displaying experiences in this model of teaching in two projects coordinated by them and granted by CNPq. This result includes synopsis of eleven works which were carried out by the students. They conclude by saying that these future nurses will be able to stimulate the research in their work context as a consequence of this way of extra-curricular teaching.
Research and the Personal Computer.
ERIC Educational Resources Information Center
Blackburn, D. A.
1989-01-01
Discussed is the history and elements of the personal computer. Its uses as a laboratory assistant and generic toolkit for mathematical analysis and modeling are included. The future of the personal computer in research is addressed. (KR)
Astrobiological Research on Tardigrades: Implications for Extraterrestrial Life Forms
NASA Astrophysics Data System (ADS)
Horikawa, D. D.
2013-11-01
Tardigrades have been considered as a model for astrobiological studies based on their tolerance to extreme environments. Future research on tardigrades might provide important insight into the possibilities of existence of multicellular life forms.
AnnAGNPS Model Application for the Future Midwest Landscape Study
The Future Midwest Landscape (FML) project is part of the US Environmental Protection Agency (EPA)’s new Ecosystem Services Research Program, undertaken to examine the variety of ways in which landscapes that include crop lands, conservation areas, wetlands, lakes, and streams af...
McMeekin, Tom; Bowman, John; McQuestin, Olivia; Mellefont, Lyndal; Ross, Tom; Tamplin, Mark
2008-11-30
This paper considers the future of predictive microbiology by exploring the balance that exists between science, applications and expectations. Attention is drawn to the development of predictive microbiology as a sub-discipline of food microbiology and of technologies that are required for its applications, including a recently developed biological indicator. As we move into the era of systems biology, in which physiological and molecular information will be increasingly available for incorporation into models, predictive microbiologists will be faced with new experimental and data handling challenges. Overcoming these hurdles may be assisted by interacting with microbiologists and mathematicians developing models to describe the microbial role in ecosystems other than food. Coupled with a commitment to maintain strategic research, as well as to develop innovative technologies, the future of predictive microbiology looks set to fulfil "great expectations".
Evidence base and future research directions in the management of low back pain
Abbott, Allan
2016-01-01
Low back pain (LBP) is a prevalent and costly condition. Awareness of valid and reliable patient history taking, physical examination and clinical testing is important for diagnostic accuracy. Stratified care which targets treatment to patient subgroups based on key characteristics is reliant upon accurate diagnostics. Models of stratified care that can potentially improve treatment effects include prognostic risk profiling for persistent LBP, likely response to specific treatment based on clinical prediction models or suspected underlying causal mechanisms. The focus of this editorial is to highlight current research status and future directions for LBP diagnostics and stratified care. PMID:27004162
Mathematical Models for Immunology: Current State of the Art and Future Research Directions.
Eftimie, Raluca; Gillard, Joseph J; Cantrell, Doreen A
2016-10-01
The advances in genetics and biochemistry that have taken place over the last 10 years led to significant advances in experimental and clinical immunology. In turn, this has led to the development of new mathematical models to investigate qualitatively and quantitatively various open questions in immunology. In this study we present a review of some research areas in mathematical immunology that evolved over the last 10 years. To this end, we take a step-by-step approach in discussing a range of models derived to study the dynamics of both the innate and immune responses at the molecular, cellular and tissue scales. To emphasise the use of mathematics in modelling in this area, we also review some of the mathematical tools used to investigate these models. Finally, we discuss some future trends in both experimental immunology and mathematical immunology for the upcoming years.
NASA Technical Reports Server (NTRS)
Tsao, D. Teh-Wei; Okos, M. R.; Sager, J. C.; Dreschel, T. W.
1992-01-01
A physical model of the Porous Ceramic Tube Plant Nutrification System (PCTPNS) was developed through microscopic observations of the tube surface under various operational conditions. In addition, a mathematical model of this system was developed which incorporated the effects of the applied suction pressure, surface tension, and gravitational forces as well as the porosity and physical dimensions of the tubes. The flow of liquid through the PCTPNS was thus characterized for non-biological situations. One of the key factors in the verification of these models is the accurate and rapid measurement of the 'wetness' or holding capacity of the ceramic tubes. This study evaluated a thermistor based moisture sensor device and recommendations for future research on alternative sensing devices are proposed. In addition, extensions of the physical and mathematical models to include the effects of plant physiology and growth are also discussed for future research.
NASA Astrophysics Data System (ADS)
Rosenzweig, C.
2011-12-01
The Agricultural Model Intercomparison and Improvement Project (AgMIP) is a distributed climate-scenario simulation exercise for historical model intercomparison and future climate change conditions with participation of multiple crop and agricultural trade modeling groups around the world. The goals of AgMIP are to improve substantially the characterization of risk of hunger and world food security due to climate change and to enhance adaptation capacity in both developing and developed countries. Recent progress and the current status of AgMIP will be presented, highlighting three areas of activity: preliminary results from crop pilot studies, outcomes from regional workshops, and emerging scientific challenges. AgMIP crop modeling efforts are being led by pilot studies, which have been established for wheat, maize, rice, and sugarcane. These crop-specific initiatives have proven instrumental in testing and contributing to AgMIP protocols, as well as creating preliminary results for aggregation and input to agricultural trade models. Regional workshops are being held to encourage collaborations and set research activities in motion for key agricultural areas. The first of these workshops was hosted by Embrapa and UNICAMP and held in Campinas, Brazil. Outcomes from this meeting have informed crop modeling research activities within South America, AgMIP protocols, and future regional workshops. Several scientific challenges have emerged and are currently being addressed by AgMIP researchers. Areas of particular interest include geospatial weather generation, ensemble methods for climate scenarios and crop models, spatial aggregation of field-scale yields to regional and global production, and characterization of future changes in climate variability.
Tolerance of uncertainty: Conceptual analysis, integrative model, and implications for healthcare.
Hillen, Marij A; Gutheil, Caitlin M; Strout, Tania D; Smets, Ellen M A; Han, Paul K J
2017-05-01
Uncertainty tolerance (UT) is an important, well-studied phenomenon in health care and many other important domains of life, yet its conceptualization and measurement by researchers in various disciplines have varied substantially and its essential nature remains unclear. The objectives of this study were to: 1) analyze the meaning and logical coherence of UT as conceptualized by developers of UT measures, and 2) develop an integrative conceptual model to guide future empirical research regarding the nature, causes, and effects of UT. A narrative review and conceptual analysis of 18 existing measures of Uncertainty and Ambiguity Tolerance was conducted, focusing on how measure developers in various fields have defined both the "uncertainty" and "tolerance" components of UT-both explicitly through their writings and implicitly through the items constituting their measures. Both explicit and implicit conceptual definitions of uncertainty and tolerance vary substantially and are often poorly and inconsistently specified. A logically coherent, unified understanding or theoretical model of UT is lacking. To address these gaps, we propose a new integrative definition and multidimensional conceptual model that construes UT as the set of negative and positive psychological responses-cognitive, emotional, and behavioral-provoked by the conscious awareness of ignorance about particular aspects of the world. This model synthesizes insights from various disciplines and provides an organizing framework for future research. We discuss how this model can facilitate further empirical and theoretical research to better measure and understand the nature, determinants, and outcomes of UT in health care and other domains of life. Uncertainty tolerance is an important and complex phenomenon requiring more precise and consistent definition. An integrative definition and conceptual model, intended as a tentative and flexible point of departure for future research, adds needed breadth, specificity, and precision to efforts to conceptualize and measure UT. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Optical Computing Based on Neuronal Models
1988-05-01
walking, and cognition are far too complex for existing sequential digital computers. Therefore new architectures, hardware, and algorithms modeled...collective behavior, and iterative processing into optical processing and artificial neurodynamical systems. Another intriguing promise of neural nets is...with architectures, implementations, and programming; and material research s -7- called for. Our future research in neurodynamics will continue to
Transcendental Political Systems and the Gravity Model
NASA Technical Reports Server (NTRS)
Lock, Connor
2012-01-01
This summer I have been working on an Army Deep Futures Model project named Themis. Themis is a JPL based modeling framework that anticipates possible future states for the world within the next 25 years. The goal of this framework is to determine the likelihood that the US Army will need to intervene on behalf of the US strategic interests. Key elements that are modeled within this tool include the world structure and major decisions that are made by key actors. Each actor makes decisions based on their goals and within the constraints of the structure of the system in which they are located. In my research I have focused primarily on the effects of structures upon the decision-making processes of the actors within them. This research is a natural extension of my major program at Georgetown University, where I am studying the International Political Economy and the structures that make it up. My basic goal for this summer project was to be a helpful asset to the Themis modeling team, with any research done or processes learned constituting a bonus.
Forging a link between mentoring and collaboration: a new training model for implementation science.
Luke, Douglas A; Baumann, Ana A; Carothers, Bobbi J; Landsverk, John; Proctor, Enola K
2016-10-13
Training investigators for the rapidly developing field of implementation science requires both mentoring and scientific collaboration. Using social network descriptive analyses, visualization, and modeling, this paper presents results of an evaluation of the mentoring and collaborations fostered over time through the National Institute of Mental Health (NIMH) supported by Implementation Research Institute (IRI). Data were comprised of IRI participant self-reported collaborations and mentoring relationships, measured in three annual surveys from 2012 to 2014. Network descriptive statistics, visualizations, and network statistical modeling were conducted to examine patterns of mentoring and collaboration among IRI participants and to model the relationship between mentoring and subsequent collaboration. Findings suggest that IRI is successful in forming mentoring relationships among its participants, and that these mentoring relationships are related to future scientific collaborations. Exponential random graph network models demonstrated that mentoring received in 2012 was positively and significantly related to the likelihood of having a scientific collaboration 2 years later in 2014 (p = 0.001). More specifically, mentoring was significantly related to future collaborations focusing on new research (p = 0.009), grant submissions (p = 0.003), and publications (p = 0.017). Predictions based on the network model suggest that for every additional mentoring relationships established in 2012, the likelihood of a scientific collaboration 2 years later is increased by almost 7 %. These results support the importance of mentoring in implementation science specifically and team science more generally. Mentoring relationships were established quickly and early by the IRI core faculty. IRI fellows reported increasing scientific collaboration of all types over time, including starting new research, submitting new grants, presenting research results, and publishing peer-reviewed papers. Statistical network models demonstrated that mentoring was strongly and significantly related to subsequent scientific collaboration, which supported a core design principle of the IRI. Future work should establish the link between mentoring and scientific productivity. These results may be of interest to team science, as they suggest the importance of mentoring for future team collaborations, as well as illustrate the utility of network analysis for studying team characteristics and activities.
Precision GPS ephemerides and baselines
NASA Technical Reports Server (NTRS)
1991-01-01
Based on the research, the area of precise ephemerides for GPS satellites, the following observations can be made pertaining to the status and future work needed regarding orbit accuracy. There are several aspects which need to be addressed in discussing determination of precise orbits, such as force models, kinematic models, measurement models, data reduction/estimation methods, etc. Although each one of these aspects was studied at CSR in research efforts, only points pertaining to the force modeling aspect are addressed.
Till, Charlotte; Haverkamp, Jamie; White, Devin; ...
2016-11-22
Climate change has the potential to displace large populations in many parts of the developed and developing world. Understanding why, how, and when environmental migrants decide to move is critical to successful strategic planning within organizations tasked with helping the affected groups, and mitigating their systemic impacts. One way to support planning is through the employment of computational modeling techniques. Models can provide a window into possible futures, allowing planners and decision makers to test different scenarios in order to understand what might happen. While modeling is a powerful tool, it presents both opportunities and challenges. This paper builds amore » foundation for the broader community of model consumers and developers by: providing an overview of pertinent climate-induced migration research, describing some different types of models and how to select the most relevant one(s), highlighting three perspectives on obtaining data to use in said model(s), and the consequences associated with each. It concludes with two case studies based on recent research that illustrate what can happen when ambitious modeling efforts are undertaken without sufficient planning, oversight, and interdisciplinary collaboration. Lastly, we hope that the broader community can learn from our experiences and apply this knowledge to their own modeling research efforts.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Till, Charlotte; Haverkamp, Jamie; White, Devin
Climate change has the potential to displace large populations in many parts of the developed and developing world. Understanding why, how, and when environmental migrants decide to move is critical to successful strategic planning within organizations tasked with helping the affected groups, and mitigating their systemic impacts. One way to support planning is through the employment of computational modeling techniques. Models can provide a window into possible futures, allowing planners and decision makers to test different scenarios in order to understand what might happen. While modeling is a powerful tool, it presents both opportunities and challenges. This paper builds amore » foundation for the broader community of model consumers and developers by: providing an overview of pertinent climate-induced migration research, describing some different types of models and how to select the most relevant one(s), highlighting three perspectives on obtaining data to use in said model(s), and the consequences associated with each. It concludes with two case studies based on recent research that illustrate what can happen when ambitious modeling efforts are undertaken without sufficient planning, oversight, and interdisciplinary collaboration. Lastly, we hope that the broader community can learn from our experiences and apply this knowledge to their own modeling research efforts.« less
A Framework for Studying Organizational Innovation in Research Libraries
ERIC Educational Resources Information Center
Jantz, Ronald C.
2012-01-01
The objective of this paper is two-fold: to propose a theoretical framework and model for studying organizational innovation in research libraries and to set forth propositions that can provide directions for future empirical studies of innovation in research libraries. Research libraries can be considered members of a class of organizations…
Health literacy: setting an international collaborative research agenda
Protheroe, Joanne; Wallace, Lorraine S; Rowlands, Gillian; DeVoe, Jennifer E
2009-01-01
Background Health literacy is an increasingly important topic in both the policy and research agendas of many countries. During the recent 36th Annual Meeting of the North American Primary Care Research Group, the authors led an audio-taped 3-hour forum, "Studying Health Literacy: Developing an International Collaboration," where the current state of health literacy (HL) in the United States (US) and United Kingdom (UK) was presented and attendees were encouraged to debate a future research agenda. Discussion of Forum Themes The debate centred around three distinct themes, including: (1) refining HL definitions and conceptual models, (2) HL measurement and assessment tools, and (3) developing a collaborative international research agenda. The attendees agreed that future research should be theoretically grounded and conceptual models employed in studies should be explicit to allow for international comparisons to be drawn. Summary and Authors Reflections The importance of HL research and its possible contribution to health disparities is becoming increasingly recognised internationally. International collaborations and comparative studies could illuminate some of the possible determinants of disparities, and also possibly provide a vehicle to examine other research questions of interest. PMID:19589176
DrosAfrica: Building an African biomedical research community using Drosophila.
Martín-Bermudo, María D; Gebel, Luka; Palacios, Isabel M
2017-10-01
The impact that research has on shaping the future of societies is perhaps as significant as never before. One of the problems for most regions in Africa is poor quality and quantity of research-based education, as well as low level of funding. Hence, African researchers produce only around one percent of the world's research. We believe that research with Drosophila melanogaster can contribute to changing that. As seen before in other places, Drosophila can be used as a powerful and cost-effective model system to scale-up and improve both academia and research output. The DrosAfrica project was founded to train and establish a connected community of researchers using Drosophila as a model system to investigate biomedical problems in Africa. Since founding, the project has trained eighty scientists from numerous African countries, and continues to grow. Here, we describe the DrosAfrica project, its conception and its mission. We also give detailed insights into DrosAfrica's approaches to achieve its aims, as well as future perspectives, and opportunities beyond Africa. Copyright © 2017 Elsevier Ltd. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-19
..., estimates biological benchmarks, projects future population conditions, and recommends research and... the Assessment webinars are as follows: 1. Participants will employ assessment models to evaluate stock status, estimate population benchmarks and management criteria, and project future conditions. The...
2016-01-01
The motivation behind this research is to innovatively combine new methods like wavelet, principal component analysis (PCA), and artificial neural network (ANN) approaches to analyze trade in today’s increasingly difficult and volatile financial futures markets. The main focus of this study is to facilitate forecasting by using an enhanced denoising process on market data, taken as a multivariate signal, in order to deduct the same noise from the open-high-low-close signal of a market. This research offers evidence on the predictive ability and the profitability of abnormal returns of a new hybrid forecasting model using Wavelet-PCA denoising and ANN (named WPCA-NN) on futures contracts of Hong Kong’s Hang Seng futures, Japan’s NIKKEI 225 futures, Singapore’s MSCI futures, South Korea’s KOSPI 200 futures, and Taiwan’s TAIEX futures from 2005 to 2014. Using a host of technical analysis indicators consisting of RSI, MACD, MACD Signal, Stochastic Fast %K, Stochastic Slow %K, Stochastic %D, and Ultimate Oscillator, empirical results show that the annual mean returns of WPCA-NN are more than the threshold buy-and-hold for the validation, test, and evaluation periods; this is inconsistent with the traditional random walk hypothesis, which insists that mechanical rules cannot outperform the threshold buy-and-hold. The findings, however, are consistent with literature that advocates technical analysis. PMID:27248692
Chan Phooi M'ng, Jacinta; Mehralizadeh, Mohammadali
2016-01-01
The motivation behind this research is to innovatively combine new methods like wavelet, principal component analysis (PCA), and artificial neural network (ANN) approaches to analyze trade in today's increasingly difficult and volatile financial futures markets. The main focus of this study is to facilitate forecasting by using an enhanced denoising process on market data, taken as a multivariate signal, in order to deduct the same noise from the open-high-low-close signal of a market. This research offers evidence on the predictive ability and the profitability of abnormal returns of a new hybrid forecasting model using Wavelet-PCA denoising and ANN (named WPCA-NN) on futures contracts of Hong Kong's Hang Seng futures, Japan's NIKKEI 225 futures, Singapore's MSCI futures, South Korea's KOSPI 200 futures, and Taiwan's TAIEX futures from 2005 to 2014. Using a host of technical analysis indicators consisting of RSI, MACD, MACD Signal, Stochastic Fast %K, Stochastic Slow %K, Stochastic %D, and Ultimate Oscillator, empirical results show that the annual mean returns of WPCA-NN are more than the threshold buy-and-hold for the validation, test, and evaluation periods; this is inconsistent with the traditional random walk hypothesis, which insists that mechanical rules cannot outperform the threshold buy-and-hold. The findings, however, are consistent with literature that advocates technical analysis.
Land-use and land-cover scenarios and spatial modeling at the regional scale
Sohl, Terry L.; Sleeter, Benjamin M.
2012-01-01
Land-use and land-cover (LULC) change has altered a large part of the earth's surface. Scenarios of potential future LULC change are required in order to better manage potential impacts on biodiversity, carbon fluxes, climate change, hydrology, and many other ecological processes. The U.S. Geological Survey is analyzing potential future LULC change in the United States, using an approach based on scenario construction and spatially explicit modeling. Similar modeling techniques are being used to produce historical LULC maps from 1940 to present. With the combination of backcast and forecast LULC data, the USGS is providing consistent LULC data for historical, current, and future time frames to support a variety of research applications.
Sanderson, Michael; Arbuthnott, Katherine; Kovats, Sari; Hajat, Shakoor; Falloon, Pete
2017-01-01
Heat related mortality is of great concern for public health, and estimates of future mortality under a warming climate are important for planning of resources and possible adaptation measures. Papers providing projections of future heat-related mortality were critically reviewed with a focus on the use of climate model data. Some best practice guidelines are proposed for future research. The electronic databases Web of Science and PubMed/Medline were searched for papers containing a quantitative estimate of future heat-related mortality. The search was limited to papers published in English in peer-reviewed journals up to the end of March 2017. Reference lists of relevant papers and the citing literature were also examined. The wide range of locations studied and climate data used prevented a meta-analysis. A total of 608 articles were identified after removal of duplicate entries, of which 63 were found to contain a quantitative estimate of future mortality from hot days or heat waves. A wide range of mortality models and climate model data have been used to estimate future mortality. Temperatures in the climate simulations used in these studies were projected to increase. Consequently, all the papers indicated that mortality from high temperatures would increase under a warming climate. The spread in projections of future climate by models adds substantial uncertainty to estimates of future heat-related mortality. However, many studies either did not consider this source of uncertainty, or only used results from a small number of climate models. Other studies showed that uncertainty from changes in populations and demographics, and the methods for adaptation to warmer temperatures were at least as important as climate model uncertainty. Some inconsistencies in the use of climate data (for example, using global mean temperature changes instead of changes for specific locations) and interpretation of the effects on mortality were apparent. Some factors which have not been considered when estimating future mortality are summarised. Most studies have used climate data generated using scenarios with medium and high emissions of greenhouse gases. More estimates of future mortality using climate information from the mitigation scenario RCP2.6 are needed, as this scenario is the only one under which the Paris Agreement to limit global warming to 2°C or less could be realised. Many of the methods used to combine modelled data with local climate observations are simplistic. Quantile-based methods might offer an improved approach, especially for temperatures at the ends of the distributions. The modelling of adaptation to warmer temperatures in mortality models is generally arbitrary and simplistic, and more research is needed to better quantify adaptation. Only a small number of studies included possible changes in population and demographics in their estimates of future mortality, meaning many estimates of mortality could be biased low. Uncertainty originating from establishing a mortality baseline, climate projections, adaptation and population changes is important and should be considered when estimating future mortality.
Draft Forecasts from Real-Time Runs of Physics-Based Models - A Road to the Future
NASA Technical Reports Server (NTRS)
Hesse, Michael; Rastatter, Lutz; MacNeice, Peter; Kuznetsova, Masha
2008-01-01
The Community Coordinated Modeling Center (CCMC) is a US inter-agency activity aiming at research in support of the generation of advanced space weather models. As one of its main functions, the CCMC provides to researchers the use of space science models, even if they are not model owners themselves. The second focus of CCMC activities is on validation and verification of space weather models, and on the transition of appropriate models to space weather forecast centers. As part of the latter activity, the CCMC develops real-time simulation systems that stress models through routine execution. A by-product of these real-time calculations is the ability to derive model products, which may be useful for space weather operators. After consultations with NOAA/SEC and with AFWA, CCMC has developed a set of tools as a first step to make real-time model output useful to forecast centers. In this presentation, we will discuss the motivation for this activity, the actions taken so far, and options for future tools from model output.
Pasupuleti, Mohan Kumar; Molahally, Subramanya Shetty; Salwaji, Supraja
2016-01-01
Laboratory animal models serve as a facilitator to investigate the etiopathogenesis of periodontal disease, are used to know the efficacy of reconstructive and regenerative procedures, and are also helpful in evaluation of newer therapeutic techniques including laser and implant therapies prior to application in the human beings. The aim of this review is to know the different animal models used in various specialties of dental research and to know the ethical guidelines prior to the usage of experimental models with main emphasis on how to refine, replace, and reduce the number of animal models usage in the laboratory. An online search for experimental animal models used in dental research was performed using MEDLINE/PubMed database. Publications from 2009 to May 2013 in the specialty of periodontics were included in writing this review. A total of 652 references were published in PubMed/MEDLINE databases based on the search terms used. Out of 245 studies, 241 were related to the periodontal research published in English from 2009 to 2013. Relevant papers were chosen according to the inclusion and exclusion criteria. After extensive electronic and hand search on animal models, it has been observed that various animal models were used in dental research. Search on animal models used for dental research purpose revealed that various animals such as rats, mice, guinea pigs, rabbit, beagle dogs, goats, and nonhuman primates were extensively used. However, with the new advancement of ex vivo animal models, it has become easy to investigate disease pathogenesis and to test the efficacy of newer therapeutic modalities with the reduced usage of animal models. This review summarized the large amount of literature on animal models used in periodontal research with main emphasis on ethical guidelines and on reducing the animal model usage in future perspective.
Pasupuleti, Mohan Kumar; Molahally, Subramanya Shetty; Salwaji, Supraja
2016-01-01
Laboratory animal models serve as a facilitator to investigate the etiopathogenesis of periodontal disease, are used to know the efficacy of reconstructive and regenerative procedures, and are also helpful in evaluation of newer therapeutic techniques including laser and implant therapies prior to application in the human beings. The aim of this review is to know the different animal models used in various specialties of dental research and to know the ethical guidelines prior to the usage of experimental models with main emphasis on how to refine, replace, and reduce the number of animal models usage in the laboratory. An online search for experimental animal models used in dental research was performed using MEDLINE/PubMed database. Publications from 2009 to May 2013 in the specialty of periodontics were included in writing this review. A total of 652 references were published in PubMed/MEDLINE databases based on the search terms used. Out of 245 studies, 241 were related to the periodontal research published in English from 2009 to 2013. Relevant papers were chosen according to the inclusion and exclusion criteria. After extensive electronic and hand search on animal models, it has been observed that various animal models were used in dental research. Search on animal models used for dental research purpose revealed that various animals such as rats, mice, guinea pigs, rabbit, beagle dogs, goats, and nonhuman primates were extensively used. However, with the new advancement of ex vivo animal models, it has become easy to investigate disease pathogenesis and to test the efficacy of newer therapeutic modalities with the reduced usage of animal models. This review summarized the large amount of literature on animal models used in periodontal research with main emphasis on ethical guidelines and on reducing the animal model usage in future perspective. PMID:28298815
A New Model that Generates Lotka's Law.
ERIC Educational Resources Information Center
Huber, John C.
2002-01-01
Develops a new model for a process that generates Lotka's Law. Topics include measuring scientific productivity through the number of publications; rate of production; career duration; randomness; Poisson distribution; computer simulations; goodness-of-fit; theoretical support for the model; and future research. (Author/LRW)
Ayllón, Daniel; Grimm, Volker; Attinger, Sabine; Hauhs, Michael; Simmer, Clemens; Vereecken, Harry; Lischeid, Gunnar
2018-05-01
Terrestrial environmental systems are characterised by numerous feedback links between their different compartments. However, scientific research is organized into disciplines that focus on processes within the respective compartments rather than on interdisciplinary links. Major feedback mechanisms between compartments might therefore have been systematically overlooked so far. Without identifying these gaps, initiatives on future comprehensive environmental monitoring schemes and experimental platforms might fail. We performed a comprehensive overview of feedbacks between compartments currently represented in environmental sciences and explores to what degree missing links have already been acknowledged in the literature. We focused on process models as they can be regarded as repositories of scientific knowledge that compile findings of numerous single studies. In total, 118 simulation models from 23 model types were analysed. Missing processes linking different environmental compartments were identified based on a meta-review of 346 published reviews, model intercomparison studies, and model descriptions. Eight disciplines of environmental sciences were considered and 396 linking processes were identified and ascribed to the physical, chemical or biological domain. There were significant differences between model types and scientific disciplines regarding implemented interdisciplinary links. The most wide-spread interdisciplinary links were between physical processes in meteorology, hydrology and soil science that drive or set the boundary conditions for other processes (e.g., ecological processes). In contrast, most chemical and biological processes were restricted to links within the same compartment. Integration of multiple environmental compartments and interdisciplinary knowledge was scarce in most model types. There was a strong bias of suggested future research foci and model extensions towards reinforcing existing interdisciplinary knowledge rather than to open up new interdisciplinary pathways. No clear pattern across disciplines exists with respect to suggested future research efforts. There is no evidence that environmental research would clearly converge towards more integrated approaches or towards an overarching environmental systems theory. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Sinner, K.; Teasley, R. L.
2016-12-01
Groundwater models serve as integral tools for understanding flow processes and informing stakeholders and policy makers in management decisions. Historically, these models tended towards a deterministic nature, relying on historical data to predict and inform future decisions based on model outputs. This research works towards developing a stochastic method of modeling recharge inputs from pipe main break predictions in an existing groundwater model, which subsequently generates desired outputs incorporating future uncertainty rather than deterministic data. The case study for this research is the Barton Springs segment of the Edwards Aquifer near Austin, Texas. Researchers and water resource professionals have modeled the Edwards Aquifer for decades due to its high water quality, fragile ecosystem, and stakeholder interest. The original case study and model that this research is built upon was developed as a co-design problem with regional stakeholders and the model outcomes are generated specifically for communication with policy makers and managers. Recently, research in the Barton Springs segment demonstrated a significant contribution of urban, or anthropogenic, recharge to the aquifer, particularly during dry period, using deterministic data sets. Due to social and ecological importance of urban water loss to recharge, this study develops an evaluation method to help predicted pipe breaks and their related recharge contribution within the Barton Springs segment of the Edwards Aquifer. To benefit groundwater management decision processes, the performance measures captured in the model results, such as springflow, head levels, storage, and others, were determined by previous work in elicitation of problem framing to determine stakeholder interests and concerns. The results of the previous deterministic model and the stochastic model are compared to determine gains to stakeholder knowledge through the additional modeling
Why System Safety Professionals Should Read Accident Reports
NASA Technical Reports Server (NTRS)
Holloway, C. M.; Johnson, C. W.
2006-01-01
System safety professionals, both researchers and practitioners, who regularly read accident reports reap important benefits. These benefits include an improved ability to separate myths from reality, including both myths about specific accidents and ones concerning accidents in general; an increased understanding of the consequences of unlikely events, which can help inform future designs; a greater recognition of the limits of mathematical models; and guidance on potentially relevant research directions that may contribute to safety improvements in future systems.
The TEF modeling and analysis approach to advance thermionic space power technology
NASA Astrophysics Data System (ADS)
Marshall, Albert C.
1997-01-01
Thermionics space power systems have been proposed as advanced power sources for future space missions that require electrical power levels significantly above the capabilities of current space power systems. The Defense Special Weapons Agency's (DSWA) Thermionic Evaluation Facility (TEF) is carrying out both experimental and analytical research to advance thermionic space power technology to meet this expected need. A Modeling and Analysis (M&A) project has been created at the TEF to develop analysis tools, evaluate concepts, and guide research. M&A activities are closely linked to the TEF experimental program, providing experiment support and using experimental data to validate models. A planning exercise has been completed for the M&A project, and a strategy for implementation was developed. All M&A activities will build on a framework provided by a system performance model for a baseline Thermionic Fuel Element (TFE) concept. The system model is composed of sub-models for each of the system components and sub-systems. Additional thermionic component options and model improvements will continue to be incorporated in the basic system model during the course of the program. All tasks are organized into four focus areas: 1) system models, 2) thermionic research, 3) alternative concepts, and 4) documentation and integration. The M&A project will provide a solid framework for future thermionic system development.
Gordon, Sarah; Daneshian, Mardas; Bouwstra, Joke; Caloni, Francesca; Constant, Samuel; Davies, Donna E; Dandekar, Gudrun; Guzman, Carlos A; Fabian, Eric; Haltner, Eleonore; Hartung, Thomas; Hasiwa, Nina; Hayden, Patrick; Kandarova, Helena; Khare, Sangeeta; Krug, Harald F; Kneuer, Carsten; Leist, Marcel; Lian, Guoping; Marx, Uwe; Metzger, Marco; Ott, Katharina; Prieto, Pilar; Roberts, Michael S; Roggen, Erwin L; Tralau, Tewes; van den Braak, Claudia; Walles, Heike; Lehr, Claus-Michael
2015-01-01
Models of the outer epithelia of the human body - namely the skin, the intestine and the lung - have found valid applications in both research and industrial settings as attractive alternatives to animal testing. A variety of approaches to model these barriers are currently employed in such fields, ranging from the utilization of ex vivo tissue to reconstructed in vitro models, and further to chip-based technologies, synthetic membrane systems and, of increasing current interest, in silico modeling approaches. An international group of experts in the field of epithelial barriers was convened from academia, industry and regulatory bodies to present both the current state of the art of non-animal models of the skin, intestinal and pulmonary barriers in their various fields of application, and to discuss research-based, industry-driven and regulatory-relevant future directions for both the development of new models and the refinement of existing test methods. Issues of model relevance and preference, validation and standardization, acceptance, and the need for simplicity versus complexity were focal themes of the discussions. The outcomes of workshop presentations and discussions, in relation to both current status and future directions in the utilization and development of epithelial barrier models, are presented by the attending experts in the current report.
Participatory Action Research Experiences for Undergraduates
NASA Astrophysics Data System (ADS)
Sample McMeeking, L. B.; Weinberg, A. E.
2013-12-01
Research experiences for undergraduates (REU) have been shown to be effective in improving undergraduate students' personal/professional development, ability to synthesize knowledge, improvement in research skills, professional advancement, and career choice. Adding to the literature on REU programs, a new conceptual model situating REU within a context of participatory action research (PAR) is presented and compared with data from a PAR-based coastal climate research experience that took place in Summer 2012. The purpose of the interdisciplinary Participatory Action Research Experiences for Undergraduates (PAREU) model is to act as an additional year to traditional, lab-based REU where undergraduate science students, social science experts, and community members collaborate to develop research with the goal of enacting change. The benefits to traditional REU's are well established and include increased content knowledge, better research skills, changes in attitudes, and greater career awareness gained by students. Additional positive outcomes are expected from undergraduate researchers (UR) who participate in PAREU, including the ability to better communicate with non-scientists. With highly politicized aspects of science, such as climate change, this becomes especially important for future scientists. Further, they will be able to articulate the relevance of science research to society, which is an important skill, especially given the funding climate where agencies require broader impacts statements. Making science relevant may also benefit URs who wish to apply their science research. Finally, URs will gain social science research skills by apprenticing in a research project that includes science and social science research components, which enables them to participate in future education and outreach. The model also positively impacts community members by elevating their voices within and outside the community, particularly in areas severely underserved socially and politically. The PAREU model empowers the community to take action from the research they, themselves, conducted, and enables them to carry out future research. Finally, many of these communities (and the general public) lack the understanding of the nature of science, which leads to ignorance on the part of citizens in areas of science such as climate change. By participating in science/social science research, community members gain a better understanding of the nature of science, making them more informed citizens. The PAREU model is theoretically grounded in decades of research in social science and documented impacts of student research experiences. In addition to providing practical benefits for communities with needs solvable by scientific research, the model builds on and expands student skills gained from traditional REU programs Deep and sustained engagement among scientists, social scientists, and community leaders is expected to create better informed citizens and improve their ability to solve problems.
AnnAGNPS Model Application for Nitrogen Loading Assessment for the Future Midwest Landscape Study
The Future Midwest Landscape (FML) project is part of the US Environmental Protection Agency (EPA)’s new Ecosystem Services Research Program, undertaken to examine the variety of ways in which landscapes that include crop lands, conservation areas, wetlands, lakes, and streams af...
ERIC Educational Resources Information Center
Dowrick, Peter W.; Kim-Rupnow, Weol Soon; Power, Thomas J.
2006-01-01
Video feedforward can create images of positive futures, as has been shown by researchers using self-modeling methods to teach new skills with carefully planned and edited videos that show the future capability of the individual. As a supplement to tutoring provided by community members, we extended these practices to young children struggling to…
Future Cities Engineering: Early Engineering Interventions in the Middle Grades
ERIC Educational Resources Information Center
McCue, Camille; James, David
2008-01-01
This paper describes qualitative and quantitative research conducted with middle school students participating in a Future Cities Engineering course. Insights were sought regarding both affective and cognitive changes which transpired during the one-semester schedule of activities focused on modeling the infrastructure of a city built 150 years in…
Libraries and the Chief Information Officer: Implications and Trends.
ERIC Educational Resources Information Center
Woodsworth, Anne
1988-01-01
Describes the roles and responsibilities of Chief Information Officers (CIOs) in research universities and presents five models of the position. Future trends and needs for management of converging information technologies are then discussed with attention to implications for libraries. Qualifications of the CIO and the future outlook of the…
Assessing the Health of Future Physicians: An Opportunity for Preventive Education
ERIC Educational Resources Information Center
Clair, Jennifer H.; Wilson, Diane B.; Clore, John N.
2004-01-01
Introduction: Research shows that physicians who model prevention are more likely to encourage preventive behaviors in their patients. Therefore, understanding the health of medical students ought to provide insight into the development of health promotion programs that influence the way these future physicians practice medicine. A…
ERIC Educational Resources Information Center
Sellar, Sam
2016-01-01
This article puts forward the provocation that optimism has become a trap for educational research. It is argued that optimism underpins the implicit model of modern educational thought, which is oriented toward the "future" and wants it to be better. However, optimism can become a trap when it encourages investment in promises about the…
Psychosocial Pain Management Moderation: The Limit, Activate, and Enhance Model.
Day, Melissa A; Ehde, Dawn M; Jensen, Mark P
2015-10-01
There is a growing emphasis in the pain literature on understanding the following second-order research questions: Why do psychosocial pain treatments work? For whom do various treatments work? This critical review summarizes research that addresses the latter question and proposes a moderation model to help guide future research. A theoretical moderation framework for matching individuals to specific psychosocial pain interventions has been lacking. However, several such frameworks have been proposed in the broad psychotherapy and implementation science literature. Drawing on these theories and adapting them specifically for psychosocial pain treatment, here we propose a Limit, Activate, and Enhance model of pain treatment moderation. This model is unique in that it includes algorithms not only for matching treatments on the basis of patient weaknesses but also for directing patients to interventions that build on their strengths. Critically, this model provides a basis for specific a priori hypothesis generation, and a selection of the possible hypotheses drawn from the model are proposed and discussed. Future research considerations are presented that could refine and expand the model based on theoretically driven empirical evidence. The Limit, Activate, and Enhance model presented here is a theoretically derived framework that provides an a priori basis for hypothesis generation regarding psychosocial pain treatment moderators. The model will advance moderation research via its unique focus on matching patients to specific treatments that (1) limit maladaptive responses, (2) activate adaptive responses, and (3) enhance treatment outcomes based on patient strengths and resources. Copyright © 2015 American Pain Society. Published by Elsevier Inc. All rights reserved.
The Future of Pedagogical Action Research in Psychology
ERIC Educational Resources Information Center
Cormack, Sophie; Bourne, Victoria; Deuker, Charmaine; Norton, Lin; O'Siochcru, Cathal; Watling, Rosamond
2014-01-01
Psychology lecturers are well-qualified to carry out action research which would contribute to the theoretical understanding of learning as well as having practical benefits for students. Pedagogical action research demonstrates how knowledge of psychology can be applied to solve practical problems, providing role models of psychological literacy…
Behavioral medicine: a voyage to the future.
Keefe, Francis J
2011-04-01
This paper discusses trends and future directions in behavioral medicine. It is divided into three sections. The first briefly reviews key developments in the history of behavioral medicine. The second section highlights trends and future directions in pain research and practice as a way of illustrating future directions for behavioral medicine. Consistent with the biopsychosocial model of pain, this section focuses on trends and future directions in three key areas: biological, psychological, and social. The third section describes recent Society of Behavioral Medicine initiatives designed to address some of the key challenges facing our field as we prepare for the future.
NASA Astrophysics Data System (ADS)
MU, J.; Antle, J. M.; Zhang, H.; Capalbo, S. M.; Eigenbrode, S.; Kruger, C.; Stockle, C.; Wolfhorst, J. D.
2013-12-01
Representative Agricultural Pathways (RAPs) are projections of plausible future biophysical and socio-economic conditions used to carry out climate impact assessments for agriculture. The development of RAPs iss motivated by the fact that the various global and regional models used for agricultural climate change impact assessment have been implemented with individualized scenarios using various data and model structures, often without transparent documentation or public availability. These practices have hampered attempts at model inter-comparison, improvement, and synthesis of model results across studies. This paper aims to (1) present RAPs developed for the principal wheat-producing region of the Pacific Northwest, and to (2) combine these RAPs with downscaled climate data, crop model simulations and economic model simulations to assess climate change impacts on winter wheat production and farm income. This research was carried out as part of a project funded by the USDA known as the Regional Approaches to Climate Change in the Pacific Northwest (REACCH). The REACCH study region encompasses the major winter wheat production area in Pacific Northwest and preliminary research shows that farmers producing winter wheat could benefit from future climate change. However, the future world is uncertain in many dimensions, including commodity and input prices, production technology, and policies, as well as increased probability of disturbances (pests and diseases) associated with a changing climate. Many of these factors cannot be modeled, so they are represented in the regional RAPS. The regional RAPS are linked to global agricultural and shared social-economic pathways, and used along with climate change projections to simulate future outcomes for the wheat-based farms in the REACCH region.
Optimisation of a green gas supply chain--a review.
Bekkering, J; Broekhuis, A A; van Gemert, W J T
2010-01-01
In this review the knowledge status of and future research options on a green gas supply based on biogas production by co-digestion is explored. Applications and developments of the (bio)gas supply in The Netherlands have been considered, whereafter literature research has been done into the several stages from production of dairy cattle manure and biomass to green gas injection into the gas grid. An overview of a green gas supply chain has not been made before. In this study it is concluded that on installation level (micro-level) much practical knowledge is available and on macro-level knowledge about availability of biomass. But on meso-level (operations level of a green gas supply) very little research has been done until now. Future research should include the modeling of a green gas supply chain on an operations level, i.e. questions must be answered as where to build digesters based on availability of biomass. Such a model should also advise on technology of upgrading depending on scale factors. Future research might also give insight in the usability of mixing (partly upgraded) biogas with natural gas. The preconditions for mixing would depend on composition of the gas, the ratio of gases to be mixed and the requirements on the mixture.
Multiscale Modeling, Simulation and Visualization and Their Potential for Future Aerospace Systems
NASA Technical Reports Server (NTRS)
Noor, Ahmed K. (Compiler)
2002-01-01
This document contains the proceedings of the Training Workshop on Multiscale Modeling, Simulation and Visualization and Their Potential for Future Aerospace Systems held at NASA Langley Research Center, Hampton, Virginia, March 5 - 6, 2002. The workshop was jointly sponsored by Old Dominion University's Center for Advanced Engineering Environments and NASA. Workshop attendees were from NASA, other government agencies, industry, and universities. The objectives of the workshop were to give overviews of the diverse activities in hierarchical approach to material modeling from continuum to atomistics; applications of multiscale modeling to advanced and improved material synthesis; defects, dislocations, and material deformation; fracture and friction; thin-film growth; characterization at nano and micro scales; and, verification and validation of numerical simulations, and to identify their potential for future aerospace systems.
[Research Progress of Multi-Model Medical Image Fusion at Feature Level].
Zhang, Junjie; Zhou, Tao; Lu, Huiling; Wang, Huiqun
2016-04-01
Medical image fusion realizes advantage integration of functional images and anatomical images.This article discusses the research progress of multi-model medical image fusion at feature level.We firstly describe the principle of medical image fusion at feature level.Then we analyze and summarize fuzzy sets,rough sets,D-S evidence theory,artificial neural network,principal component analysis and other fusion methods’ applications in medical image fusion and get summery.Lastly,we in this article indicate present problems and the research direction of multi-model medical images in the future.
2006-02-15
New testing is underway in the Aero-Acoustic Propulsion Laboratory (AAPL) at NASA's Glenn Research Center. The research focuses on a model called the Highly Variable Cycle Exhaust System -- a 0.17 scale model of an exhaust system that will operate at subsonic, transonic and supersonic exhaust speeds in a future supersonic business jet. The model features ejector doors used at different angles. Researchers are investigating the impact of these ejectors on the resulting acoustic radiation. Here, Steven Sedensky, a mechanical engineer with Jacobs Sverdrup, takes measurements of the ejector door positions.
NASA Technical Reports Server (NTRS)
1997-01-01
This CP contains the extended abstracts and presentation figures of 36 papers presented at the PPM and Other Propulsion R&T Conference. The focus of the research described in these presentations is on materials and structures technologies that are parts of the various projects within the NASA Aeronautics Propulsion Systems Research and Technology Base Program. These projects include Physics and Process Modeling; Smart, Green Engine; Fast, Quiet Engine; High Temperature Engine Materials Program; and Hybrid Hyperspeed Propulsion. Also presented were research results from the Rotorcraft Systems Program and work supported by the NASA Lewis Director's Discretionary Fund. Authors from NASA Lewis Research Center, industry, and universities conducted research in the following areas: material processing, material characterization, modeling, life, applied life models, design techniques, vibration control, mechanical components, and tribology. Key issues, research accomplishments, and future directions are summarized in this publication.
Retardation analytical model to extend service life
NASA Technical Reports Server (NTRS)
Matejczyk, J.
1984-01-01
A fatigue crack growth model that incorporates crack growth retardation effects and is applicable to the materials characteristics and service environments of high performance LH2/LO2 engine systems is discussed. Future Research plans are outlined.
Modeling the Stress Strain Behavior of Woven Ceramic Matrix Composites
NASA Technical Reports Server (NTRS)
Morscher, Gregory N.
2006-01-01
Woven SiC fiber reinforced SiC matrix composites represent one of the most mature composite systems to date. Future components fabricated out of these woven ceramic matrix composites are expected to vary in shape, curvature, architecture, and thickness. The design of future components using woven ceramic matrix composites necessitates a modeling approach that can account for these variations which are physically controlled by local constituent contents and architecture. Research over the years supported primarily by NASA Glenn Research Center has led to the development of simple mechanistic-based models that can describe the entire stress-strain curve for composite systems fabricated with chemical vapor infiltrated matrices and melt-infiltrated matrices for a wide range of constituent content and architecture. Several examples will be presented that demonstrate the approach to modeling which incorporates a thorough understanding of the stress-dependent matrix cracking properties of the composite system.
Understanding climate: A strategy for climate modeling and predictability research, 1985-1995
NASA Technical Reports Server (NTRS)
Thiele, O. (Editor); Schiffer, R. A. (Editor)
1985-01-01
The emphasis of the NASA strategy for climate modeling and predictability research is on the utilization of space technology to understand the processes which control the Earth's climate system and it's sensitivity to natural and man-induced changes and to assess the possibilities for climate prediction on time scales of from about two weeks to several decades. Because the climate is a complex multi-phenomena system, which interacts on a wide range of space and time scales, the diversity of scientific problems addressed requires a hierarchy of models along with the application of modern empirical and statistical techniques which exploit the extensive current and potential future global data sets afforded by space observations. Observing system simulation experiments, exploiting these models and data, will also provide the foundation for the future climate space observing system, e.g., Earth observing system (EOS), 1985; Tropical Rainfall Measuring Mission (TRMM) North, et al. NASA, 1984.
Conlin, Sarah E; Douglass, Richard P; Ouch, Staci
2017-10-26
The present study examined the link between discrimination and the three components of subjective wellbeing (positive and negative affect and life satisfaction) among a cisgender sample of lesbian, gay, and bisexual (LGB) adults. Specifically, we investigated internalized homonegativity and expectations of rejection as potential mediators of the links between discrimination and subjective wellbeing among a sample of 215 participants. Results from our structural equation model demonstrated a strong, positive direct link between discrimination and negative affect. Discrimination also had small, negative indirect effects on life satisfaction through our two mediators. Interestingly, neither discrimination nor our two mediators were related with positive affect, demonstrating the need for future research to uncover potential buffers of this link. Finally, our model evidenced configural, metric, and scalar invariance, suggesting that our model applies well for both women and men. Practical implications and future directions for research are discussed.
Collins, Lisa M.; Part, Chérie E.
2013-01-01
Simple Summary In this review paper we discuss the different modeling techniques that have been used in animal welfare research to date. We look at what questions they have been used to answer, the advantages and pitfalls of the methods, and how future research can best use these approaches to answer some of the most important upcoming questions in farm animal welfare. Abstract The use of models in the life sciences has greatly expanded in scope and advanced in technique in recent decades. However, the range, type and complexity of models used in farm animal welfare is comparatively poor, despite the great scope for use of modeling in this field of research. In this paper, we review the different modeling approaches used in farm animal welfare science to date, discussing the types of questions they have been used to answer, the merits and problems associated with the method, and possible future applications of each technique. We find that the most frequently published types of model used in farm animal welfare are conceptual and assessment models; two types of model that are frequently (though not exclusively) based on expert opinion. Simulation, optimization, scenario, and systems modeling approaches are rarer in animal welfare, despite being commonly used in other related fields. Finally, common issues such as a lack of quantitative data to parameterize models, and model selection and validation are discussed throughout the review, with possible solutions and alternative approaches suggested. PMID:26487411
NASA Astrophysics Data System (ADS)
Kang, S.; IM, E. S.; Eltahir, E. A. B.
2016-12-01
In this study, the future change in precipitation due to global warming is investigated over the Maritime Continent using the MIT Regional Climate Model (MRCM). A total of nine 30-year projections under multi-GCMs (CCSM, MPI, ACCESS) and multi-scenarios of emissions (Control, RCP4.5, RCP8.5) are dynamically downscaled using the MRCM with 12km horizontal resolution. Since downscaled results tend to systematically overestimate the precipitation regardless of GCM used as lateral boundary conditions, the Parametric Quantile Mapping (PQM) is applied to reduce this wet bias. The cross validation for the control simulation shows that the PQM method seems to retain the spatial pattern and temporal variability of raw simulation, however it effectively reduce the wet bias. Based on ensemble projections produced by dynamical downscaling and statistical bias correction, a reduction of future precipitation is discernible, in particular during dry season (June-July-August). For example, intense precipitation in Singapore is expected to be reduced in RCP8.5 projection compared to control simulation. However, the geographical patterns and magnitude of changes still remain uncertain, suffering from statistical insignificance and a lack of model agreement. Acknowledgements This research is supported by the National Research Foundation Singapore under its Campus for Research Excellence and Technological Enterprise programme. The Center for Environmental Sensing and Modeling is an interdisciplinary research group of the Singapore-MIT Alliance for Research and Technology
Research in Modeling and Simulation for Airspace Systems Innovation
NASA Technical Reports Server (NTRS)
Ballin, Mark G.; Kimmel, William M.; Welch, Sharon S.
2007-01-01
This viewgraph presentation provides an overview of some of the applied research and simulation methodologies at the NASA Langley Research Center that support aerospace systems innovation. Risk assessment methodologies, complex systems design and analysis methodologies, and aer ospace operations simulations are described. Potential areas for future research and collaboration using interactive and distributed simula tions are also proposed.
Siemann, Julia; Petermann, Franz
2018-01-01
This review reconciles past findings on numerical processing with key assumptions of the most predominant model of arithmetic in the literature, the Triple Code Model (TCM). This is implemented by reporting diverse findings in the literature ranging from behavioral studies on basic arithmetic operations over neuroimaging studies on numerical processing to developmental studies concerned with arithmetic acquisition, with a special focus on developmental dyscalculia (DD). We evaluate whether these studies corroborate the model and discuss possible reasons for contradictory findings. A separate section is dedicated to the transfer of TCM to arithmetic development and to alternative accounts focusing on developmental questions of numerical processing. We conclude with recommendations for future directions of arithmetic research, raising questions that require answers in models of healthy as well as abnormal mathematical development. This review assesses the leading model in the field of arithmetic processing (Triple Code Model) by presenting knowledge from interdisciplinary research. It assesses the observed contradictory findings and integrates the resulting opposing viewpoints. The focus is on the development of arithmetic expertise as well as abnormal mathematical development. The original aspect of this article is that it points to a gap in research on these topics and provides possible solutions for future models. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Sueishi, T.; Yucel, M.; Ashie, Y.; Varquez, A. C. G.; Inagaki, A.; Darmanto, N. S.; Nakayoshi, M.; Kanda, M.
2017-12-01
Recently, temperature in urban areas continue to rise as an effect of climate change and urbanization. Specifically, Asian megacities are projected to expand rapidly resulting to serious in the future atmospheric environment. Thus, detailed analysis of urban meteorology for Asian megacities is needed to prescribe optimum against these negative climate modifications. A building-resolving large eddy simulation (LES) coupled with an energy balance model is conducted for a highly urbanized district in central Jakarta on typical daytime hours. Five cases were considered; case 1 utilizes present urban scenario and four cases representing different urban configurations in 2050. The future configurations were based on representative concentration pathways (RCP) and shared socio-economic pathways (SSP). Building height maps and land use maps of simulation domains are shown in the attached figure (top). Case 1 3 focuses on the difference of future scenarios. Case 1 represents current climatic and urban conditions, case 2 and 3 was an idealized future represented by RCP2.6/SSP1 and RCP8.5/SSP3, respectively. More complex urban morphology was applied in case 4, vegetation and building area were changed in case 5. Meteorological inputs and anthropogenic heat emission (AHE) were calculated using Weather Research and Forecasting (WRF) model (Varquez et al [2017]). Sensible and latent heat flux from surfaces were calculated using an energy balance model (Ashie et al [2011]), with considers multi-reflection, evapotranspiration and evaporation. The results of energy balance model (shown in the middle line of figure), in addition to WRF outputs, were used as input into the PArallelized LES Model (PALM) (Raasch et al [2001]). From standard new effective temperature (SET*) which included the effects of temperature, wind speed, humidity and radiation, thermal comfort in urban area was evaluated. SET* contours at 1 m height are shown in the bottom line of the figure. Extreme climate change increase average SET* as expected; however, construction of dense high-rise buildings (case 2) can minimize this effect due to increased shading throughout the district. Acknowledgement: This research was supported by the Environment Research and Technology Development Fund (S-14) of the Ministry of the Environment, Japan.
Ford, Angela; Wat, Eric; Brayboy, Missy; Isaacs, Mei-Ling; Park, Alice; Strelnick, Hal; Seifer, Sarena D.
2015-01-01
A growing number of community-based organizations and community–academic partnerships are implementing processes to determine whether and how health research is conducted in their communities. These community-based research review processes (CRPs) can provide individual and community-level ethics protections, enhance the cultural relevance of study designs and competence of researchers, build community and academic research capacity, and shape research agendas that benefit diverse communities. To better understand how they are organized and function, representatives of 9 CRPs from across the United States convened in 2012 for a working meeting. In this article, we articulated and analyzed the models presented, offered guidance to communities that seek to establish a CRP, and made recommendations for future research, practice, and policy. PMID:25973834
The Five Key Questions of Human Performance Modeling.
Wu, Changxu
2018-01-01
Via building computational (typically mathematical and computer simulation) models, human performance modeling (HPM) quantifies, predicts, and maximizes human performance, human-machine system productivity and safety. This paper describes and summarizes the five key questions of human performance modeling: 1) Why we build models of human performance; 2) What the expectations of a good human performance model are; 3) What the procedures and requirements in building and verifying a human performance model are; 4) How we integrate a human performance model with system design; and 5) What the possible future directions of human performance modeling research are. Recent and classic HPM findings are addressed in the five questions to provide new thinking in HPM's motivations, expectations, procedures, system integration and future directions.
McKay, Michael T; Morgan, Grant B; van Exel, N Job; Worrell, Frank C
2015-01-01
Despite its widespread use, disagreement remains regarding the structure of the Consideration of Future Consequences Scale (CFCS). In particular there is disagreement regarding whether the scale assesses future orientation as a unidimensional or multidimensional (immediate and future) construct. Using 2 samples of high school students in the United Kingdom, 4 models were tested. The totality of results including item loadings, goodness-of-fit indexes, and reliability estimates all supported the bifactor model, suggesting that the 2 hypothesized factors are better understood as grouping or method factors rather than as representative of latent constructs. Accordingly this study supports the unidimensionality of the CFCS and the scoring of all 12 items to produce a global future orientation score. Researchers intending to use the CFCS, and those with existing data, are encouraged to examine a bifactor solution for the scale.
PRIORITIZING FUTURE RESEACH ON OFF-LABEL PRESCRIBING: RESULTS OF A QUANTITATIVE EVALUATION
Walton, Surrey M.; Schumock, Glen T.; Lee, Ky-Van; Alexander, G. Caleb; Meltzer, David; Stafford, Randall S.
2015-01-01
Background Drug use for indications not approved by the Food and Drug Administration exceeds 20% of prescribing. Available compendia indicate that a minority of off-label uses are well supported by evidence. Policy makers, however, lack information to identify where systematic reviews of the evidence or other research would be most valuable. Methods We developed a quantitative model for prioritizing individual drugs for future research on off-label uses. The base model incorporated three key factors, 1) the volume of off-label use with inadequate evidence, 2) safety, and 3) cost and market considerations. Nationally representative prescribing data were used to estimate the number of off-label drug uses by indication from 1/2005 through 6/2007 in the United States, and these indications were then categorized according to the adequacy of scientific support. Black box warnings and safety alerts were used to quantify drug safety. Drug cost, date of market entry, and marketing expenditures were used to quantify cost and market considerations. Each drug was assigned a relative value for each factor, and the factors were then weighted in the final model to produce a priority score. Sensitivity analyses were conducted by varying the weightings and model parameters. Results Drugs that were consistently ranked highly in both our base model and sensitivity analyses included quetiapine, warfarin, escitalopram, risperidone, montelukast, bupropion, sertraline, venlafaxine, celecoxib, lisinopril, duloxetine, trazodone, olanzapine, and epoetin alfa. Conclusion Future research into off-label drug use should focus on drugs used frequently with inadequate supporting evidence, particularly if further concerns are raised by known safety issues, high drug cost, recent market entry, and extensive marketing. Based on quantitative measures of these factors, we have prioritized drugs where targeted research and policy activities have high potential value. PMID:19025425
2016-12-01
collaborative effort is addressed by six Technical Panels who manage a wide range of scientific research activities, a Group specialising in modelling and...HFM Human Factors and Medicine Panel • IST Information Systems Technology Panel • NMSG NATO Modelling and Simulation Group • SAS System Analysis...and Studies Panel • SCI Systems Concepts and Integration Panel • SET Sensors and Electronics Technology Panel These Panels and Group are the
Markovian prediction of future values for food grains in the economic survey
NASA Astrophysics Data System (ADS)
Sathish, S.; Khadar Babu, S. K.
2017-11-01
Now-a-days prediction and forecasting are plays a vital role in research. For prediction, regression is useful to predict the future value and current value on production process. In this paper, we assume food grain production exhibit Markov chain dependency and time homogeneity. The economic generative performance evaluation the balance time artificial fertilization different level in Estrusdetection using a daily Markov chain model. Finally, Markov process prediction gives better performance compare with Regression model.
Motor Vehicle Demand Models : Assessment of the State of the Art and Directions for Future Research
DOT National Transportation Integrated Search
1981-04-01
The report provides an assessment of the current state of motor vehicle demand modeling. It includes a detailed evaluation of one leading large-scale econometric vehicle demand model, which is tested for both logical consistency and forecasting accur...
Modeling Atmospheric Nitrogen Deposition: The Current State of the Science and Future Directions
The Chesapeake Research Consortium (CRC), the Chesapeake Bay Program (CBP), along with the Chesapeake Community Modeling Program (CCMP) and CSDMS/CFRG, will convene a three-day workshop to undertake a comprehensive review of the status of the current CBP management modeling syste...
Integrated Modeling Approach for the Development of Climate-Informed, Actionable Information
DOE Office of Scientific and Technical Information (OSTI.GOV)
Judi, David R.; Rakowski, Cynthia L.; Waichler, Scott R.
Flooding is a prevalent natural disaster with both short and long-term social, economic, and infrastructure impacts. Changes in intensity and frequency of precipitation (including rain, snow, and rain on snow) events create challenges for the planning and management of resilient infrastructure and communities. While there is general acknowledgement that new infrastructure design should account for future climate change, no clear methods or actionable information is available to community planners and designers to ensure resilient design considering an uncertain climate future. This research used climate projections to drive high-resolution hydrology and flood models to evaluate social, economic, and infrastructure resilience formore » the Snohomish Watershed, WA, U.S.A. The proposed model chain has been calibrated and validated. Based on the established model chain, the peaks of precipitation and streamflows were found to shift from spring and summer to earlier winter season. The nonstationarity of peak discharges was discovered with more frequent and severe flood risks projected. The peak discharges were also projected to decrease for a certain period in the near future, which might be due to the reduced rain-on-snow events. This research was expected to provide a clear method for the incorporation of climate science in flood resilience analysis and to also provide actionable information relative to the frequency and intensity of future precipitation events.« less
NASA Astrophysics Data System (ADS)
El-Samra, R.; Bou-Zeid, E.; Bangalath, H. K.; Stenchikov, G.; El-Fadel, M.
2017-12-01
A set of ten downscaling simulations at high spatial resolution (3 km horizontally) were performed using the Weather Research and Forecasting (WRF) model to generate future climate projections of annual and seasonal temperature and precipitation changes over the Eastern Mediterranean (with a focus on Lebanon). The model was driven with the High Resolution Atmospheric Model (HiRAM), running over the whole globe at a resolution of 25 km, under the conditions of two Representative Concentration Pathways (RCP) (4.5 and 8.5). Each downscaling simulation spanned one year. Two past years (2003 and 2008), also forced by HiRAM without data assimilation, were simulated to evaluate the model's ability to capture the cold and wet (2003) and hot and dry (2008) extremes. The downscaled data were in the range of recent observed climatic variability, and therefore corrected for the cold bias of HiRAM. Eight future years were then selected based on an anomaly score that relies on the mean annual temperature and accumulated precipitation to identify the worst year per decade from a water resources perspective. One hot and dry year per decade, from 2011 to 2050, and per scenario was simulated and compared to the historic 2008 reference. The results indicate that hot and dry future extreme years will be exacerbated and the study area might be exposed to a significant decrease in annual precipitation (rain and snow), reaching up to 30% relative to the current extreme conditions.
Lexical Processing and Organization in Bilingual First Language Acquisition: Guiding Future Research
DeAnda, Stephanie; Poulin-Dubois, Diane; Zesiger, Pascal; Friend, Margaret
2016-01-01
A rich body of work in adult bilinguals documents an interconnected lexical network across languages, such that early word retrieval is language independent. This literature has yielded a number of influential models of bilingual semantic memory. However, extant models provide limited predictions about the emergence of lexical organization in bilingual first language acquisition (BFLA). Empirical evidence from monolingual infants suggests that lexical networks emerge early in development as children integrate phonological and semantic information. These findings tell us little about the interaction between two languages in the early bilingual memory. To date, an understanding of when and how languages interact in early bilingual development is lacking. In this literature review, we present research documenting lexical-semantic development across monolingual and bilingual infants. This is followed by a discussion of current models of bilingual language representation and organization and their ability to account for the available empirical evidence. Together, these theoretical and empirical accounts inform and highlight unexplored areas of research and guide future work on early bilingual memory. PMID:26866430
NASA Astrophysics Data System (ADS)
Keener, V. W.; Finucane, M.; Brewington, L.
2014-12-01
For the last century, the island of Maui, Hawaii, has been the center of environmental, agricultural, and legal conflict with respect to surface and groundwater allocation. Planning for adequate future freshwater resources requires flexible and adaptive policies that emphasize partnerships and knowledge transfer between scientists and non-scientists. In 2012 the Hawai'i state legislature passed the Climate Change Adaptation Priority Guidelines (Act 286) law requiring county and state policy makers to include island-wide climate change scenarios in their planning processes. This research details the ongoing work by researchers in the NOAA funded Pacific RISA to support the development of Hawaii's first island-wide water use plan under the new climate adaptation directive. This integrated project combines several models with participatory future scenario planning. The dynamically downscaled triply nested Hawaii Regional Climate Model (HRCM) was modified from the WRF community model and calibrated to simulate the many microclimates on the Hawaiian archipelago. For the island of Maui, the HRCM was validated using 20 years of hindcast data, and daily projections were created at a 1 km scale to capture the steep topography and diverse rainfall regimes. Downscaled climate data are input into a USGS hydrological model to quantify groundwater recharge. This model was previously used for groundwater management, and is being expanded utilizing future climate projections, current land use maps and future scenario maps informed by stakeholder input. Participatory scenario planning began in 2012 to bring together a diverse group of over 50 decision-makers in government, conservation, and agriculture to 1) determine the type of information they would find helpful in planning for climate change, and 2) develop a set of scenarios that represent alternative climate/management futures. This is an iterative process, resulting in flexible and transparent narratives at multiple scales. The resulting climate, land use, and groundwater recharge maps give stakeholders a common set of future scenarios that they understand through the participatory scenario process, and identify the vulnerabilities, trade-offs, and adaptive priorities for different groundwater management and land uses in an uncertain future.
Houben, R.; Cohen, T.; Pai, M.; Cobelens, F.; Vassall, A.; Menzies, N. A.; Gomez, G. B.; Langley, I.; Squire, S. B.; White, R.
2014-01-01
SUMMARY The landscape of diagnostic testing for tuberculosis (TB) is changing rapidly, and stakeholders need urgent guidance on how to develop, deploy and optimize TB diagnostics in a way that maximizes impact and makes best use of available resources. When decisions must be made with only incomplete or preliminary data available, modelling is a useful tool for providing such guidance. Following a meeting of modelers and other key stakeholders organized by the TB Modelling and Analysis Consortium, we propose a conceptual framework for positioning models of TB diagnostics. We use that framework to describe modelling priorities in four key areas: Xpert® MTB/RIF scale-up, target product profiles for novel assays, drug susceptibility testing to support new drug regimens, and the improvement of future TB diagnostic models. If we are to maximize the impact and cost-effectiveness of TB diagnostics, these modelling priorities should figure prominently as targets for future research. PMID:25189546
The Effect of Prosocial Cartoons on Preschool Children
ERIC Educational Resources Information Center
Forge, Karen L. S.; Phemister, Sherri
1987-01-01
Study examined the effect of prosocial cartoons on 40 preschool children. Supported hypothesis that prosocial program models would elicit more prosocial behavior than would neutral program models. Implications for future research on prosocial children's programming were discussed. (Author/RWB)
Hanchett, Marilyn
2012-05-01
The Association for Professionals in Infection Control and Epidemiology, Inc, developed its first model of infection preventionist (IP) competency in 2011. The model is based on the principles of patient safety, professional and practice standards, and core competencies identified through research conducted by the Certification Board of Infection Control and Epidemiology, Inc. In addition, the model highlights 4 domains that are predicted to be key areas for future competency development. Performance improvement (PI) and implementation represent 1 of the 4 forward-focused domains. Concurrently, the inclusion of implementation science (IS) in the competency model is consistent with the research goals established by the Association for Professionals in Infection Control and Epidemiology, Inc, in its 2020 strategic plan. This article explains the importance of PI and IS and describes their relevance to the current and future IP role development. Significant challenges such as role delineation and compression are discussed. The need for the IP to acquire new competencies at integrating, as well as differentiating, PI and IS are explored in terms of emerging issues and trends. Copyright © 2012 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Mosby, Inc. All rights reserved.
Methodological Innovation in Practice-Based Design Doctorates
ERIC Educational Resources Information Center
Yee, Joyce S. R.
2010-01-01
This article presents a selective review of recent design PhDs that identify and analyse the methodological innovation that is occurring in the field, in order to inform future provision of research training. Six recently completed design PhDs are used to highlight possible philosophical and practical models that can be adopted by future PhD…
The Research of the Personality Qualities of Future Educational Psychologists
ERIC Educational Resources Information Center
Dolgova, V. I.; Salamatov, A. A.; Potapova, M. V.; Yakovleva, N. O.
2016-01-01
In this article, the authors substantiate the existence of the personality qualities of future educational psychologists (PQFEP) that are, in fact, a sum of knowledge, skills, abilities, socially required qualities of personality allowing the psychologist to solve problems in all the fields of professional activities. A model of PQFEP predicts the…
International Futures (IFs): A Global Issues Simulation for Teaching and Research.
ERIC Educational Resources Information Center
Hughes, Barry B.
This paper describes the International Futures (IFs) computer assisted simulation game for use with undergraduates. Written in Standard Fortran IV, the model currently runs on mainframe or mini computers, but has not been adapted for micros. It has been successfully installed on Harris, Burroughs, Telefunken, CDC, Univac, IBM, and Prime machines.…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mickens, Ronald E.
2008-12-22
This research examined the following items/issues: the NSFD methodology, technical achievements and applications, dissemination efforts and research related professional activities. Also a list of unresolved issues were identified that could form the basis for future research in the area of constructing and analyzing NSFD schemes for both ODE's and PDE's.
Personnel for Research Libraries; Qualifications, Responsibilities and Use. Final Report.
ERIC Educational Resources Information Center
Clark, Philip M.
The project was conceived to examine the current manpower situation in research libraries and to develop a methodological model for projecting future personnel needs. Eight academic research libraries were selected for investigation and three instruments developed to gather data toward these ends. A personal interview format was used to interview…
Electricity Market Manipulation: How Behavioral Modeling Can Help Market Design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gallo, Giulia
The question of how to best design electricity markets to integrate variable and uncertain renewable energy resources is becoming increasingly important as more renewable energy is added to electric power systems. Current markets were designed based on a set of assumptions that are not always valid in scenarios of high penetrations of renewables. In a future where renewables might have a larger impact on market mechanisms as well as financial outcomes, there is a need for modeling tools and power system modeling software that can provide policy makers and industry actors with more realistic representations of wholesale markets. One optionmore » includes using agent-based modeling frameworks. This paper discusses how key elements of current and future wholesale power markets can be modeled using an agent-based approach and how this approach may become a useful paradigm that researchers can employ when studying and planning for power systems of the future.« less
ERIC Educational Resources Information Center
Tokar, David M.; Hall, Rosalie J.; Moradi, Bonnie
2003-01-01
In his comments regarding Tokar et al.'s article (this issue) Blustein offered several useful suggestions for future research in the area of relationship variables and career development and raised several concerns about the rationale for and use of structural equation modeling in testing their models. In this reply, the authors note points of…
Arbuthnott, Katherine; Kovats, Sari; Hajat, Shakoor; Falloon, Pete
2017-01-01
Background and objectives Heat related mortality is of great concern for public health, and estimates of future mortality under a warming climate are important for planning of resources and possible adaptation measures. Papers providing projections of future heat-related mortality were critically reviewed with a focus on the use of climate model data. Some best practice guidelines are proposed for future research. Methods The electronic databases Web of Science and PubMed/Medline were searched for papers containing a quantitative estimate of future heat-related mortality. The search was limited to papers published in English in peer-reviewed journals up to the end of March 2017. Reference lists of relevant papers and the citing literature were also examined. The wide range of locations studied and climate data used prevented a meta-analysis. Results A total of 608 articles were identified after removal of duplicate entries, of which 63 were found to contain a quantitative estimate of future mortality from hot days or heat waves. A wide range of mortality models and climate model data have been used to estimate future mortality. Temperatures in the climate simulations used in these studies were projected to increase. Consequently, all the papers indicated that mortality from high temperatures would increase under a warming climate. The spread in projections of future climate by models adds substantial uncertainty to estimates of future heat-related mortality. However, many studies either did not consider this source of uncertainty, or only used results from a small number of climate models. Other studies showed that uncertainty from changes in populations and demographics, and the methods for adaptation to warmer temperatures were at least as important as climate model uncertainty. Some inconsistencies in the use of climate data (for example, using global mean temperature changes instead of changes for specific locations) and interpretation of the effects on mortality were apparent. Some factors which have not been considered when estimating future mortality are summarised. Conclusions Most studies have used climate data generated using scenarios with medium and high emissions of greenhouse gases. More estimates of future mortality using climate information from the mitigation scenario RCP2.6 are needed, as this scenario is the only one under which the Paris Agreement to limit global warming to 2°C or less could be realised. Many of the methods used to combine modelled data with local climate observations are simplistic. Quantile-based methods might offer an improved approach, especially for temperatures at the ends of the distributions. The modelling of adaptation to warmer temperatures in mortality models is generally arbitrary and simplistic, and more research is needed to better quantify adaptation. Only a small number of studies included possible changes in population and demographics in their estimates of future mortality, meaning many estimates of mortality could be biased low. Uncertainty originating from establishing a mortality baseline, climate projections, adaptation and population changes is important and should be considered when estimating future mortality. PMID:28686743
[RESEARCH PROGRESS OF EXPERIMENTAL ANIMAL MODELS OF AVASCULAR NECROSIS OF FEMORAL HEAD].
Yu, Kaifu; Tan, Hongbo; Xu, Yongqing
2015-12-01
To summarize the current researches and progress on experimental animal models of avascular necrosis of the femoral head. Domestic and internation literature concerning experimental animal models of avascular necrosis of the femoral head was reviewed and analyzed. The methods to prepare the experimental animal models of avascular necrosis of the femoral head can be mainly concluded as traumatic methods (including surgical, physical, and chemical insult), and non-traumatic methods (including steroid, lipopolysaccharide, steroid combined with lipopolysaccharide, steroid combined with horse serum, etc). Each method has both merits and demerits, yet no ideal methods have been developed. There are many methods to prepare the experimental animal models of avascular necrosis of the femoral head, but proper model should be selected based on the aim of research. The establishment of ideal experimental animal models needs further research in future.
A stochastic Forest Fire Model for future land cover scenarios assessment
NASA Astrophysics Data System (ADS)
D'Andrea, M.; Fiorucci, P.; Holmes, T. P.
2010-10-01
Land cover is affected by many factors including economic development, climate and natural disturbances such as wildfires. The ability to evaluate how fire regimes may alter future vegetation, and how future vegetation may alter fire regimes, would assist forest managers in planning management actions to be carried out in the face of anticipated socio-economic and climatic change. In this paper, we present a method for calibrating a cellular automata wildfire regime simulation model with actual data on land cover and wildfire size-frequency. The method is based on the observation that many forest fire regimes, in different forest types and regions, exhibit power law frequency-area distributions. The standard Drossel-Schwabl cellular automata Forest Fire Model (DS-FFM) produces simulations which reproduce this observed pattern. However, the standard model is simplistic in that it considers land cover to be binary - each cell either contains a tree or it is empty - and the model overestimates the frequency of large fires relative to actual landscapes. Our new model, the Modified Forest Fire Model (MFFM), addresses this limitation by incorporating information on actual land use and differentiating among various types of flammable vegetation. The MFFM simulation model was tested on forest types with Mediterranean and sub-tropical fire regimes. The results showed that the MFFM was able to reproduce structural fire regime parameters for these two regions. Further, the model was used to forecast future land cover. Future research will extend this model to refine the forecasts of future land cover and fire regime scenarios under climate, land use and socio-economic change.
Explorations in achievement motivation
NASA Technical Reports Server (NTRS)
Helmreich, Robert L.
1982-01-01
Recent research on the nature of achievement motivation is reviewed. A three-factor model of intrinsic motives is presented and related to various criteria of performance, job satisfaction and leisure activities. The relationships between intrinsic and extrinsic motives are discussed. Needed areas for future research are described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cort, K. A.; Hostick, D. J.; Belzer, D. B.
This report compiles information and conclusions gathered as part of the “Modeling EERE Deployment Programs” project. The purpose of the project was to identify and characterize the modeling of deployment programs within the EERE Technology Development (TD) programs, address possible improvements to the modeling process, and note gaps in knowledge in which future research is needed.
The Future of Political Communication Research: A Japanese Perspective.
ERIC Educational Resources Information Center
Youichi, Ito
1993-01-01
Introduces two Japanese models of mass media effects: (1) the "joho kohdo" (information behavior) model which suggests that people use extracted information to check the credibility of mass media information; and (2) the tripolar "kuuki" model which suggests that the mass media have effects as part of the triadic relationship…
Monitoring with Trackers Based on Semi-Quantitative Models
NASA Technical Reports Server (NTRS)
Kuipers, Benjamin
1997-01-01
In three years of NASA-sponsored research preceding this project, we successfully developed a technology for: (1) building qualitative and semi-quantitative models from libraries of model-fragments, (2) simulating these models to predict future behaviors with the guarantee that all possible behaviors are covered, (3) assimilating observations into behaviors, shrinking uncertainty so that incorrect models are eventually refuted and correct models make stronger predictions for the future. In our object-oriented framework, a tracker is an object which embodies the hypothesis that the available observation stream is consistent with a particular behavior of a particular model. The tracker maintains its own status (consistent, superceded, or refuted), and answers questions about its explanation for past observations and its predictions for the future. In the MIMIC approach to monitoring of continuous systems, a number of trackers are active in parallel, representing alternate hypotheses about the behavior of a system. This approach is motivated by the need to avoid 'system accidents' [Perrow, 1985] due to operator fixation on a single hypothesis, as for example at Three Mile Island. As we began to address these issues, we focused on three major research directions that we planned to pursue over a three-year project: (1) tractable qualitative simulation, (2) semiquantitative inference, and (3) tracking set management. Unfortunately, funding limitations made it impossible to continue past year one. Nonetheless, we made major progress in the first two of these areas. Progress in the third area as slower because the graduate student working on that aspect of the project decided to leave school and take a job in industry. I enclosed a set of abstract of selected papers on the work describe below. Several papers that draw on the research supported during this period appeared in print after the grant period ended.
a Review of Recent Research in Indoor Modelling & Mapping
NASA Astrophysics Data System (ADS)
Gunduz, M.; Isikdag, U.; Basaraner, M.
2016-06-01
Indoor modeling and mapping has been an active area of research in last 20 years in order to tackle the problems related to positioning and tracking of people and objects indoors, and provides many opportunities for several domains ranging from emergency response to logistics in micro urban spaces. The outputs of recent research in the field have been presented in several scientific publications and events primarily related to spatial information science and technology. This paper summarizes the outputs of last 10 years of research on indoor modeling and mapping within a proper classification which covers 7 areas, i.e. Information Acquisition by Sensors, Model Definition, Model Integration, Indoor Positioning and LBS, Routing & Navigation Methods, Augmented and Virtual Reality Applications, and Ethical Issues. Finally, the paper outlines the current and future research directions and concluding remarks.
Reitmaier, Sandra; Graichen, Friedmar; Shirazi-Adl, Aboulfazl; Schmidt, Hendrik
2017-10-04
Approximately 5,168 large animals (pigs, sheep, goats, and cattle) were used for intervertebral disc research in identified studies published between 1985 and 2016. Most of the reviewed studies revealed a low scientific impact, a lack of sound justifications for the animal models, and a number of deficiencies in the documentation of the animal experimentation. The scientific community should take suitable measures to investigate the presumption that animal models have translational value in intervertebral disc research. Recommendations for future investigations are provided to improve the quality, validity, and usefulness of animal studies for intervertebral disc research. More in vivo studies are warranted to comprehensively evaluate the suitability of animal models in various applications and help place animal models as an integral, complementary part of intervertebral disc research.
Reduced-Order Modeling: Cooperative Research and Development at the NASA Langley Research Center
NASA Technical Reports Server (NTRS)
Silva, Walter A.; Beran, Philip S.; Cesnik, Carlos E. S.; Guendel, Randal E.; Kurdila, Andrew; Prazenica, Richard J.; Librescu, Liviu; Marzocca, Piergiovanni; Raveh, Daniella E.
2001-01-01
Cooperative research and development activities at the NASA Langley Research Center (LaRC) involving reduced-order modeling (ROM) techniques are presented. Emphasis is given to reduced-order methods and analyses based on Volterra series representations, although some recent results using Proper Orthogonal Deco in position (POD) are discussed as well. Results are reported for a variety of computational and experimental nonlinear systems to provide clear examples of the use of reduced-order models, particularly within the field of computational aeroelasticity. The need for and the relative performance (speed, accuracy, and robustness) of reduced-order modeling strategies is documented. The development of unsteady aerodynamic state-space models directly from computational fluid dynamics analyses is presented in addition to analytical and experimental identifications of Volterra kernels. Finally, future directions for this research activity are summarized.
Limitations in predicting the space radiation health risk for exploration astronauts.
Chancellor, Jeffery C; Blue, Rebecca S; Cengel, Keith A; Auñón-Chancellor, Serena M; Rubins, Kathleen H; Katzgraber, Helmut G; Kennedy, Ann R
2018-01-01
Despite years of research, understanding of the space radiation environment and the risk it poses to long-duration astronauts remains limited. There is a disparity between research results and observed empirical effects seen in human astronaut crews, likely due to the numerous factors that limit terrestrial simulation of the complex space environment and extrapolation of human clinical consequences from varied animal models. Given the intended future of human spaceflight, with efforts now to rapidly expand capabilities for human missions to the moon and Mars, there is a pressing need to improve upon the understanding of the space radiation risk, predict likely clinical outcomes of interplanetary radiation exposure, and develop appropriate and effective mitigation strategies for future missions. To achieve this goal, the space radiation and aerospace community must recognize the historical limitations of radiation research and how such limitations could be addressed in future research endeavors. We have sought to highlight the numerous factors that limit understanding of the risk of space radiation for human crews and to identify ways in which these limitations could be addressed for improved understanding and appropriate risk posture regarding future human spaceflight.
Liao, Xing; Xie, Yan-Ming; Yang, Wei; Chang, Yan-Peng
2014-03-01
There is a new research model named 'registry study/patient registry' in Western medicine, which could be referred to by Chinese medicine researchers, such as active safety surveillance. This article will introduce registry study from different aspects as the developing history, features, and application in order to inform Chinese medicine researchers of future studies.
ERIC Educational Resources Information Center
Dewsbury, Angela, Ed.
England's Learning and Skills Research Centre (LSRC) is working to build a strong body of evidence from rigorous research that is focused on critical and innovative thinking and models and solutions for the long-term development of post-16 learning. In 2002-2005, the LSRC will focus on the following activities and goals: identify key priorities;…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jablonowski, Christiane
The research investigates and advances strategies how to bridge the scale discrepancies between local, regional and global phenomena in climate models without the prohibitive computational costs of global cloud-resolving simulations. In particular, the research explores new frontiers in computational geoscience by introducing high-order Adaptive Mesh Refinement (AMR) techniques into climate research. AMR and statically-adapted variable-resolution approaches represent an emerging trend for atmospheric models and are likely to become the new norm in future-generation weather and climate models. The research advances the understanding of multi-scale interactions in the climate system and showcases a pathway how to model these interactions effectively withmore » advanced computational tools, like the Chombo AMR library developed at the Lawrence Berkeley National Laboratory. The research is interdisciplinary and combines applied mathematics, scientific computing and the atmospheric sciences. In this research project, a hierarchy of high-order atmospheric models on cubed-sphere computational grids have been developed that serve as an algorithmic prototype for the finite-volume solution-adaptive Chombo-AMR approach. The foci of the investigations have lied on the characteristics of both static mesh adaptations and dynamically-adaptive grids that can capture flow fields of interest like tropical cyclones. Six research themes have been chosen. These are (1) the introduction of adaptive mesh refinement techniques into the climate sciences, (2) advanced algorithms for nonhydrostatic atmospheric dynamical cores, (3) an assessment of the interplay between resolved-scale dynamical motions and subgrid-scale physical parameterizations, (4) evaluation techniques for atmospheric model hierarchies, (5) the comparison of AMR refinement strategies and (6) tropical cyclone studies with a focus on multi-scale interactions and variable-resolution modeling. The results of this research project demonstrate significant advances in all six research areas. The major conclusions are that statically-adaptive variable-resolution modeling is currently becoming mature in the climate sciences, and that AMR holds outstanding promise for future-generation weather and climate models on high-performance computing architectures.« less
Identity-Based Motivation: Constraints and Opportunities in Consumer Research.
Shavitt, Sharon; Torelli, Carlos J; Wong, Jimmy
2009-07-01
This commentary underscores the integrative nature of the identity-based motivation model (Oyserman, 2009). We situate the model within existing literatures in psychology and consumer behavior, and illustrate its novel elements with research examples. Special attention is devoted to, 1) how product- and brand-based affordances constrain identity-based motivation processes and, 2) the mindsets and action tendencies that can be triggered by specific cultural identities in pursuit of consumer goals. Future opportunities are suggested for researching the antecedents of product meanings and relevant identities.
Porcine models of digestive disease: the future of large animal translational research
Gonzalez, Liara M.; Moeser, Adam J.; Blikslager, Anthony T.
2015-01-01
There is increasing interest in non-rodent translational models for the study of human disease. The pig, in particular, serves as a useful animal model for the study of pathophysiological conditions relevant to the human intestine. This review assesses currently used porcine models of gastrointestinal physiology and disease and provides a rationale for the use of these models for future translational studies. The pig has proven its utility for the study of fundamental disease conditions such as ischemia/ reperfusion injury, stress-induced intestinal dysfunction, and short bowel syndrome. Pigs have also shown great promise for the study of intestinal barrier function, surgical tissue manipulation and intervention, as well as biomaterial implantation and tissue transplantation. Advantages of pig models highlighted by these studies include the physiological similarity to human intestine as well as to mechanisms of human disease. Emerging future directions for porcine models of human disease include the fields of transgenics and stem cell biology, with exciting implications for regenerative medicine. PMID:25655839
Using HexSim to simulate complex species, landscape, and stressor interactions
Background / Question / Methods The use of simulation models in conservation biology, landscape ecology, and other disciplines is increasing. Models are essential tools for researchers who, for example, need to forecast future conditions, weigh competing recovery and mitigation...
Progress and challenges in coupled hydrodynamic-ecological estuarine modeling.
Ganju, Neil K; Brush, Mark J; Rashleigh, Brenda; Aretxabaleta, Alfredo L; Del Barrio, Pilar; Grear, Jason S; Harris, Lora A; Lake, Samuel J; McCardell, Grant; O'Donnell, James; Ralston, David K; Signell, Richard P; Testa, Jeremy M; Vaudrey, Jamie M P
2016-03-01
Numerical modeling has emerged over the last several decades as a widely accepted tool for investigations in environmental sciences. In estuarine research, hydrodynamic and ecological models have moved along parallel tracks with regard to complexity, refinement, computational power, and incorporation of uncertainty. Coupled hydrodynamic-ecological models have been used to assess ecosystem processes and interactions, simulate future scenarios, and evaluate remedial actions in response to eutrophication, habitat loss, and freshwater diversion. The need to couple hydrodynamic and ecological models to address research and management questions is clear, because dynamic feedbacks between biotic and physical processes are critical interactions within ecosystems. In this review we present historical and modern perspectives on estuarine hydrodynamic and ecological modeling, consider model limitations, and address aspects of model linkage, skill assessment, and complexity. We discuss the balance between spatial and temporal resolution and present examples using different spatiotemporal scales. Finally, we recommend future lines of inquiry, approaches to balance complexity and uncertainty, and model transparency and utility. It is idealistic to think we can pursue a "theory of everything" for estuarine models, but recent advances suggest that models for both scientific investigations and management applications will continue to improve in terms of realism, precision, and accuracy.
Progress and challenges in coupled hydrodynamic-ecological estuarine modeling
Ganju, Neil K.; Brush, Mark J.; Rashleigh, Brenda; Aretxabaleta, Alfredo L.; del Barrio, Pilar; Grear, Jason S.; Harris, Lora A.; Lake, Samuel J.; McCardell, Grant; O'Donnell, James; Ralston, David K.; Signell, Richard P.; Testa, Jeremy; Vaudrey, Jamie M. P.
2016-01-01
Numerical modeling has emerged over the last several decades as a widely accepted tool for investigations in environmental sciences. In estuarine research, hydrodynamic and ecological models have moved along parallel tracks with regard to complexity, refinement, computational power, and incorporation of uncertainty. Coupled hydrodynamic-ecological models have been used to assess ecosystem processes and interactions, simulate future scenarios, and evaluate remedial actions in response to eutrophication, habitat loss, and freshwater diversion. The need to couple hydrodynamic and ecological models to address research and management questions is clear because dynamic feedbacks between biotic and physical processes are critical interactions within ecosystems. In this review, we present historical and modern perspectives on estuarine hydrodynamic and ecological modeling, consider model limitations, and address aspects of model linkage, skill assessment, and complexity. We discuss the balance between spatial and temporal resolution and present examples using different spatiotemporal scales. Finally, we recommend future lines of inquiry, approaches to balance complexity and uncertainty, and model transparency and utility. It is idealistic to think we can pursue a “theory of everything” for estuarine models, but recent advances suggest that models for both scientific investigations and management applications will continue to improve in terms of realism, precision, and accuracy.
Progress and challenges in coupled hydrodynamic-ecological estuarine modeling
Ganju, Neil K.; Brush, Mark J.; Rashleigh, Brenda; Aretxabaleta, Alfredo L.; del Barrio, Pilar; Grear, Jason S.; Harris, Lora A.; Lake, Samuel J.; McCardell, Grant; O’Donnell, James; Ralston, David K.; Signell, Richard P.; Testa, Jeremy M.; Vaudrey, Jamie M.P.
2016-01-01
Numerical modeling has emerged over the last several decades as a widely accepted tool for investigations in environmental sciences. In estuarine research, hydrodynamic and ecological models have moved along parallel tracks with regard to complexity, refinement, computational power, and incorporation of uncertainty. Coupled hydrodynamic-ecological models have been used to assess ecosystem processes and interactions, simulate future scenarios, and evaluate remedial actions in response to eutrophication, habitat loss, and freshwater diversion. The need to couple hydrodynamic and ecological models to address research and management questions is clear, because dynamic feedbacks between biotic and physical processes are critical interactions within ecosystems. In this review we present historical and modern perspectives on estuarine hydrodynamic and ecological modeling, consider model limitations, and address aspects of model linkage, skill assessment, and complexity. We discuss the balance between spatial and temporal resolution and present examples using different spatiotemporal scales. Finally, we recommend future lines of inquiry, approaches to balance complexity and uncertainty, and model transparency and utility. It is idealistic to think we can pursue a “theory of everything” for estuarine models, but recent advances suggest that models for both scientific investigations and management applications will continue to improve in terms of realism, precision, and accuracy. PMID:27721675
Pellicciotti, F; Carenzo, M; Bordoy, R; Stoffel, M
2014-09-15
Switzerland is one of the countries with some of the longest and best glaciological data sets. Its glaciers and their changes in response to climate have been extensively investigated, and the number and quality of related studies are notable. However, a comprehensive review of glacier changes and their impact on the hydrology of glacierised catchments for Switzerland is missing and we use the opportunity provided by the EU-FP7 ACQWA project to review the current state of knowledge about past changes and future projections. We examine the type of models that have been applied to infer glacier evolution and identify knowledge gaps that should be addressed in future research in addition to those indicated in previous publications. Common characteristics in long-term series of projected future glacier runoff are an initial peak followed by a decline, associated with shifts in seasonality, earlier melt onset and reduced summer runoff. However, the quantitative predictions are difficult to compare, as studies differ in terms of model structure, calibration strategies, input data, temporal and spatial resolution as well as future scenarios used for impact studies. We identify two sources of uncertainties among those emerging from recent research, and use simulations over four glaciers to: i) quantify the importance of the correct extrapolation of air temperature, and ii) point at the key role played by debris cover in modulating glacier response. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Jaehyeong, L.; Kim, Y.; Erfanian, A.; Wang, G.; Um, M. J.
2017-12-01
This study utilizes the Standardized Precipitation-Evapotranspiration Index (SPEI) to investigate the projected effect of vegetation feedbacks on drought in West Africa using the Regional Climate Model coupled to the NCAR Community Land Model with both the Carbon and Nitrogen module (CN) and Dynamic Vegetation module (DV) activated (RegCM-CLM-CN-DV). The role of vegetation feedbacks is examined based on simulations with and without dynamic vegetation. The four different future climate scenarios from CCSM, GFDL, MIROC and MPI are used as the boundary conditions of RegCM for two historical and future periods, i.e., for 1981 to 2000 and for 2081 to 2100, respectively. Using SPEI, the duration, frequency, severity and spatial extents are quantified over West Africa and analyzed for two regions of the Sahel and the Gulf of Guinea. In this study, we find that the estimated annual SPEIs clearly indicate that the projected future droughts over the Sahel are enhanced and prolonged when DV is activated. The opposite is shown over the Gulf of Guinea in general. AcknowledgementsThis work was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (2015R1C1A2A01054800), by the Korea Meteorological Administration R&D Program under Grant KMIPA 2015-6180 and by the Yonsei University Future-leading Research Initiative of 2015(2016-22-0061).
Remembering the past and planning for the future in rats
Crystal, Jonathon D.
2012-01-01
A growing body of research suggests that rats represent and remember specific earlier events from the past. An important criterion for validating a rodent model of episodic memory is to establish that the content of the representation is about a specific event in the past rather than vague information about remoteness. Recent evidence suggests that rats may also represent events that are anticipated to occur in the future. An important capacity afforded by a representation of the future is the ability to plan for the occurrence of a future event. However, relatively little is known about the content of represented future events and the cognitive mechanisms that may support planning. This article reviews evidence that rats remember specific earlier events from the past, represent events that are anticipated to ccur in the future, and develops criteria for validating a rodent model of future planning. These criteria include representing a specific time in the future, the ability to temporarily disengage from a plan and reactivate the plan at an appropriate time in the future, and flexibility to deploy a plan in novel conditions. PMID:23219951
Chowdhury, Shakhawat; Champagne, Pascale; McLellan, P James
2009-07-01
Disinfection for the supply of safe drinking water forms a variety of known and unknown byproducts through reactions between the disinfectants and natural organic matter. Chronic exposure to disinfection byproducts through the ingestion of drinking water, inhalation and dermal contact during regular indoor activities (e.g., showering, bathing, cooking) may pose cancer and non-cancer risks to human health. Since their discovery in drinking water in 1974, numerous studies have presented models to predict DBP formation in drinking water. To date, more than 48 scientific publications have reported 118 models to predict DBP formation in drinking waters. These models were developed through laboratory and field-scale experiments using raw, pretreated and synthetic waters. This paper aims to review DBP predictive models, analyze the model variables, assess the model advantages and limitations, and to determine their applicability to different water supply systems. The paper identifies the current challenges and future research needs to better control DBP formation. Finally, important directions for future research are recommended to protect human health and to follow the best management practices.
The ARPA-E Innovation Model: A Glimpse into the Future of Automotive Battery Technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gur, Ilan
2014-03-07
The Department of Energy's Advanced Research Projects Agency-Energy (ARPA-E) focuses on funding game-changing R&D aimed at reducing U.S. foreign energy dependence and emissions. ARPA-E has made a strong commitment to support breakthrough energy storage technologies that can accelerate the mass adoption of electrified vehicles. This presentation will highlight the range of ARPA-E's efforts in this area, offering a glimpse into the ARPA-E innovation model and the future of automotive battery technology.
The ARPA-E Innovation Model: A Glimpse into the Future of Automotive Battery Technology
Gur, Ilan (Program Director and Senior Advisor, ARPA-E)
2018-02-02
The Department of Energy's Advanced Research Projects Agency-Energy (ARPA-E) focuses on funding game-changing R&D aimed at reducing U.S. foreign energy dependence and emissions. ARPA-E has made a strong commitment to support breakthrough energy storage technologies that can accelerate the mass adoption of electrified vehicles. This presentation will highlight the range of ARPA-E's efforts in this area, offering a glimpse into the ARPA-E innovation model and the future of automotive battery technology.
NASA Astrophysics Data System (ADS)
Wang, Jie; Wang, Hao; Ning, Shaowei; Hiroshi, Ishidaira
2018-06-01
Sediment load can provide very important perspective on erosion of river basin. The changes of human-induced vegetation cover, such as deforestation or afforestation, affect sediment yield process of a catchment. We have already evaluated that climate change and land cover change changed the historical streamflow and sediment yield, and land cover change is the main factor in Red river basin. But future streamflow and sediment yield changes under potential future land cover change scenario still have not been evaluated. For this purpose, future scenario of land cover change is developed based on historical land cover changes and land change model (LCM). In addition, future leaf area index (LAI) is simulated by ecological model (Biome-BGC) based on future land cover scenario. Then future scenarios of land cover change and LAI are used to drive hydrological model and new sediment rating curve. The results of this research provide information that decision-makers need in order to promote water resources planning efforts. Besides that, this study also contributes a basic framework for assessing climate change impacts on streamflow and sediment yield that can be applied in the other basins around the world.
Robust Engineering Designs for Infrastructure Adaptation to a Changing Climate
NASA Astrophysics Data System (ADS)
Samaras, C.; Cook, L.
2015-12-01
Infrastructure systems are expected to be functional, durable and safe over long service lives - 50 to over 100 years. Observations and models of climate science show that greenhouse gas emissions resulting from human activities have changed climate, weather and extreme events. Projections of future changes (albeit with uncertainties caused by inadequacies of current climate/weather models) can be made based on scenarios for future emissions, but actual future emissions are themselves uncertain. Most current engineering standards and practices for infrastructure assume that the probabilities of future extreme climate and weather events will match those of the past. Climate science shows that this assumption is invalid, but is unable, at present, to define these probabilities over the service lives of existing and new infrastructure systems. Engineering designs, plans, and institutions and regulations will need to be adaptable for a range of future conditions (conditions of climate, weather and extreme events, as well as changing societal demands for infrastructure services). For their current and future projects, engineers should: Involve all stakeholders (owners, financers, insurance, regulators, affected public, climate/weather scientists, etc.) in key decisions; Use low regret, adaptive strategies, such as robust decision making and the observational method, comply with relevant standards and regulations, and exceed their requirements where appropriate; Publish design studies and performance/failure investigations to extend the body of knowledge for advancement of practice. The engineering community should conduct observational and modeling research with climate/weather/social scientists and the concerned communities and account rationally for climate change in revised engineering standards and codes. This presentation presents initial research on decisionmaking under uncertainty for climate resilient infrastructure design.
NASA Astrophysics Data System (ADS)
Barnes, C. C.; Byrne, J. M.; Hopkinson, C.; MacDonald, R. J.; Johnson, D. L.
2015-12-01
The Elk River is a mountain watershed located along the eastern border of British Columbia, Canada. The Elk River is confined by railway bridges, roads, and urban areas. Flooding has been a concern in the valley for more than a century. The most recent major flood event occurred in 2013 affecting several communities. River modifications such as riprapped dykes, channelization, and dredging have occurred in an attempt to reduce inundation, with limited success. Significant changes in land cover/land use (LCLU) such as natural state to urban, forestry practices, and mining from underground to mountaintop/valley fill have changed terrain and ground surfaces thereby altering water infiltration and runoff processes in the watershed. Future climate change in this region is expected to alter air temperature and precipitation as well as produce an earlier seasonal spring freshet potentially impacting future flood events. The objective of this research is to model historical and future hydrological conditions to identify flood frequency and risk under a range of climate and LCLU change scenarios in the Elk River watershed. Historic remote sensing data, forest management plans, and mining industry production/post-mining reclamation plans will be used to create a predictive past and future LCLU time series. A range of future air temperature and precipitation scenarios will be developed based on accepted Global Climate Modelling (GCM) research to examine how the hydrometeorological conditions may be altered under a range of future climate scenarios. The GENESYS (GENerate Earth SYstems Science input) hydrometeorological model will be used to simulate climate and LCLU to assess historic and potential future flood frequency and magnitude. Results will be used to create innovative flood mitigation, adaptation, and management strategies for the Elk River with the intent of being wildlife friendly and non-destructive to ecosystems and habitats for native species.
On Modeling Research Work for Describing and Filtering Scientific Information
NASA Astrophysics Data System (ADS)
Sicilia, Miguel-Ángel
Existing models for Research Information Systems (RIS) properly address the description of people and organizations, projects, facilities and their outcomes, e.g. papers, reports or patents. While this is adequate for the recording and accountability of research investments, helping researchers in finding relevant people, organizations or results requires considering both the content of research work and also its context. The content is not only related to the domain area, but it requires modeling methodological issues as variables, instruments or scientific methods that can then be used as search criteria. The context of research work is determined by the ongoing projects or scientific interests of an individual or a group, and can be expressed using the same methodological concepts. However, modeling methodological issues is notably complex and dependent on the scientific discipline and research area. This paper sketches the main requirements for those models, providing some motivating examples that could serve as a point of departure for future attempts in developing an upper ontology for research methods and tools.
Conceptual Model of Research to Reduce Stigma Related to Mental Disorders in Adolescents
Pinto-Foltz, Melissa D.; Logsdon, M. Cynthia
2010-01-01
Purpose: To explicate an initial conceptual model that is amenable to testing and guiding anti-stigma interventions with adolescents. Design/Sources Used: Multidisciplinary research and theoretical articles were reviewed. . Conclusions: The conceptual model may guide anti-stigma interventions, and undergo testing and refinement in the future to reflect scientific advances in stigma reduction among adolescents. Use of a conceptual model enhances empirical evaluation of anti-stigma interventions yielding a casual explanation for the intervention effects and enhances clinical applicability of interventions across settings. PMID:19916813
Technology Investments in the NASA Entry Systems Modeling Project
NASA Technical Reports Server (NTRS)
Barnhardt, Michael; Wright, Michael; Hughes, Monica
2017-01-01
The Entry Systems Modeling (ESM) technology development project, initiated in 2012 under NASAs Game Changing Development (GCD) Program, is engaged in maturation of fundamental research developing aerosciences, materials, and integrated systems products for entry, descent, and landing(EDL)technologies [1]. To date, the ESM project has published over 200 papers in these areas, comprising the bulk of NASAs research program for EDL modeling. This presentation will provide an overview of the projects successes and challenges, and an assessment of future investments in EDL modeling and simulation relevant to NASAs mission
Imagining the Future, or How the Standard Model May Survive the Attacks
NASA Astrophysics Data System (ADS)
Hooft, Gerard'T.
After the last missing piece, the Higgs particle, has probably been identified, the Standard Model of the subatomic particles appears to be a quite robust structure, that can survive on its own for a long time to come. Most researchers expect considerable modifications and improvements to come in the near future, but it could also be that the Model will stay essentially as it is. This, however, would also require a change in our thinking, and the question remains whether and how it can be reconciled with our desire for our theories to be "natural".
Imagining the future, or how the Standard Model may survive the attacks
NASA Astrophysics Data System (ADS)
'T Hooft, Gerard
2016-06-01
After the last missing piece, the Higgs particle, has probably been identified, the Standard Model of the subatomic particles appears to be a quite robust structure, that can survive on its own for a long time to come. Most researchers expect considerable modifications and improvements to come in the near future, but it could also be that the Model will stay essentially as it is. This, however, would also require a change in our thinking, and the question remains whether and how it can be reconciled with our desire for our theories to be “natural”.
Current status and future needs of the BehavePlus Fire Modeling System
Patricia L. Andrews
2014-01-01
The BehavePlus Fire Modeling System is among the most widely used systems for wildland fire prediction. It is designed for use in a range of tasks including wildfire behaviour prediction, prescribed fire planning, fire investigation, fuel hazard assessment, fire model understanding, communication and research. BehavePlus is based on mathematical models for fire...
Survey of three-dimensional numerical estuarine models
Cheng, Ralph T.; Smith, Peter E.
1989-01-01
This paper surveys the existing 3-D estuarine hydrodynamic and solute transport models by a review of the commonly used assumptions and approximations, and by an examination of the methods of solution. The model formulations, methods of solution, and known applications are surveyed and summarized in tables. In conclusion, the authors present their modeling philosophy and suggest future research needs.
Cutbush, Stacey; Williams, Jason
2016-12-01
This study investigated measurement invariance by gender among commonly used teen dating violence (TDV), sexual harassment, and bullying measures. Data were collected from one cohort of seventh-grade middle school students (N = 754) from four schools. Using structural equation modeling, exploratory and confirmatory factor analyses assessed measurement models and tested measurement invariance by gender for aggression measures. Analyses invoked baseline data only. Physical and psychological TDV perpetration measures achieved strict measurement invariance, while bullying perpetration demonstrated partial strict invariance. Electronic TDV and sexual harassment perpetration achieved metric/scalar invariance. Study findings lend validation to prior and future studies using these measures with similar populations. Future research should increase attention to measurement development, refinement, and testing among study measures. © 2016 The Authors. Journal of Research on Adolescence © 2016 Society for Research on Adolescence.
Veltri, Stefania; Bronzetti, Giovanni; Sicoli, Graziella
2011-01-01
This article analyzes the concept of intellectual capital (IC) in the health sector sphere by studying the case of a major nonprofit research organization in this sector, which has for some time been publishing IC reports. In the last few years, health care organizations have been the object of great attention in the implementation and transfer of managerial models and tools; however, there is still a lack of attention paid to the strategic management of IC as a fundamental resource for supporting and enhancing performance improvement dynamics. The main aim of this article is to examine the IC reporting model used by the Center of Molecular Medicine (CMM), a Swedish health organization which is an outstanding benchmark in reporting its IC. We also consider the specifics of IC reporting for health organizations, the lessons learned by analyzing CMM's IC reporting, and future perspectives for research.
Basic Requirements for Systems Software Research and Development
NASA Technical Reports Server (NTRS)
Kuszmaul, Chris; Nitzberg, Bill
1996-01-01
Our success over the past ten years evaluating and developing advanced computing technologies has been due to a simple research and development (R/D) model. Our model has three phases: (a) evaluating the state-of-the-art, (b) identifying problems and creating innovations, and (c) developing solutions, improving the state- of-the-art. This cycle has four basic requirements: a large production testbed with real users, a diverse collection of state-of-the-art hardware, facilities for evalua- tion of emerging technologies and development of innovations, and control over system management on these testbeds. Future research will be irrelevant and future products will not work if any of these requirements is eliminated. In order to retain our effectiveness, the numerical aerospace simulator (NAS) must replace out-of-date production testbeds in as timely a fashion as possible, and cannot afford to ignore innovative designs such as new distributed shared memory machines, clustered commodity-based computers, and multi-threaded architectures.
Wright, Kevin B; King, Shawn; Rosenberg, Jenny
2014-01-01
This study investigated the influence of social support and self-verification on loneliness, depression, and stress among 477 college students. The authors propose and test a theoretical model using structural equation modeling. The results indicated empirical support for the model, with self-verification mediating the relation between social support and health outcomes. The results have implications for social support and self-verification research, which are discussed along with directions for future research and limitations of the study.
[Research progress of multi-model medical image fusion and recognition].
Zhou, Tao; Lu, Huiling; Chen, Zhiqiang; Ma, Jingxian
2013-10-01
Medical image fusion and recognition has a wide range of applications, such as focal location, cancer staging and treatment effect assessment. Multi-model medical image fusion and recognition are analyzed and summarized in this paper. Firstly, the question of multi-model medical image fusion and recognition is discussed, and its advantage and key steps are discussed. Secondly, three fusion strategies are reviewed from the point of algorithm, and four fusion recognition structures are discussed. Thirdly, difficulties, challenges and possible future research direction are discussed.
Sensors, nano-electronics and photonics for the Army of 2030 and beyond
NASA Astrophysics Data System (ADS)
Perconti, Philip; Alberts, W. C. K.; Bajaj, Jagmohan; Schuster, Jonathan; Reed, Meredith
2016-02-01
The US Army's future operating concept will rely heavily on sensors, nano-electronics and photonics technologies to rapidly develop situational understanding in challenging and complex environments. Recent technology breakthroughs in integrated 3D multiscale semiconductor modeling (from atoms-to-sensors), combined with ARL's Open Campus business model for collaborative research provide a unique opportunity to accelerate the adoption of new technology for reduced size, weight, power, and cost of Army equipment. This paper presents recent research efforts on multi-scale modeling at the US Army Research Laboratory (ARL) and proposes the establishment of a modeling consortium or center for semiconductor materials modeling. ARL's proposed Center for Semiconductor Materials Modeling brings together government, academia, and industry in a collaborative fashion to continuously push semiconductor research forward for the mutual benefit of all Army partners.
Thermal fatigue durability for advanced propulsion materials
NASA Technical Reports Server (NTRS)
Halford, Gary R.
1989-01-01
A review is presented of thermal and thermomechanical fatigue (TMF) crack initiation life prediction and cyclic constitutive modeling efforts sponsored recently by the NASA Lewis Research Center in support of advanced aeronautical propulsion research. A brief description is provided of the more significant material durability models that were created to describe TMF fatigue resistance of both isotropic and anisotropic superalloys, with and without oxidation resistant coatings. The two most significant crack initiation models are the cyclic damage accumulation model and the total strain version of strainrange partitioning. Unified viscoplastic cyclic constitutive models are also described. A troika of industry, university, and government research organizations contributed to the generation of these analytic models. Based upon current capabilities and established requirements, an attempt is made to project which TMF research activities most likely will impact future generation propulsion systems.
Facione, N C
1993-03-01
The Triandis model of social behavior offers exceptional promise to nurse researchers whose goal is to achieve cultural sensitivity in their research investigations. The model includes six components: consequential beliefs, affect, social influences, previous behavioral habits, physiologic arousal, and facilitating environmental resources. A directed methodology to include culture-relevant items in the measurement of each of these model components allows researchers to capture the diverse explanations of health and illness behavior that might pertain in diverse populations. Researchers utilizing the model can achieve theory-based explanations of differences they observe by gender, race/ethnicity, social class, and sexual orientation. The Triandis model can provide studies to target variables for future intervention studies, as well as highlight areas for needed political action to equalize access to and delivery of nursing care.
NASA Astrophysics Data System (ADS)
Darmanto, N. S.; Varquez, A. C. G.; Kanda, M.; Takakuwa, S.
2016-12-01
Economic development in Southeast Asia megacities leads to rapid transformation into more complicated urban configurations. These configurations, including building geometry, enhance aerodynamic drag thus reducing near-surface wind speeds. Roughness parameters representing building geometry, along with anthropogenic heat emissions, contribute to the formation of urban heat islands (UHI). All these have been reproduced successfully in the Weather Research and Forecasting (WRF) Model coupled with an improved single-layer urban canopy model incorporating a realistic distribution of urban parameters and anthropogenic heat emission in the Jakarta Greater Area. We apply this technology to climate change studies by introducing future urbanization defined by urban sprawl, vertical rise in buildings, and increase anthropogenic heat emission (AHE) due to population changes, into futuristic climate modelling. To simulate 2050s future climate, pseudo-global warming method was used which relied on current and ensembles of 5 CMIP5 GCMs for 2 representative concentration pathways (RCP), 2.6 and 8.5. To determine future urbanization level, 2050 population growth and energy consumption were estimated from shared socioeconomic pathways (SSP). This allows the estimation of future urban sprawl, building geometry, and AHE using the SLEUTH urban growth model and spatial growth assumptions. Two cases representing combinations of RCP and SSP were simulated in WRF: RCP2.6-SSP1 and RCP8.5-SSP3. Each case corresponds to best and worst-case scenarios of implementing adaptation and mitigation strategies, respectively. It was found that 2-m temperature of Jakarta will increase by 0.62°C (RCP2.6) and 1.44°C (RCP8.5) solely from background climate change; almost on the same magnitude as the background temperature increase of RCP2.6 (0.5°C) and RCP8.5 (1.2°C). Compared with previous studies, the result indicates that the effect of climate change on UHI in tropical cities may be lesser than cities located in the mid-latitudes. However, it is expected that the combined effect of urbanization and climate change will result to significant changes on future urban temperature. ACK: This research was supported by the Environment Research and Technology Development Fund (S-14) of the Ministry of the Environment, Japan.
Dosmann, Michael; Groover, Andrew
2012-01-01
Living botanical collections include germplasm repositories, long-term experimental plantings, and botanical gardens. We present here a series of vignettes to illustrate the central role that living collections have played in plant biology research, including evo-devo research. Looking toward the future, living collections will become increasingly important in support of future evo-devo research. The driving force behind this trend is nucleic acid sequencing technologies, which are rapidly becoming more powerful and cost-effective, and which can be applied to virtually any species. This allows for more extensive sampling, including non-model organisms with unique biological features and plants from diverse phylogenetic positions. Importantly, a major challenge for sequencing-based evo-devo research is to identify, access, and propagate appropriate plant materials. We use a vignette of the ongoing 1,000 Transcriptomes project as an example of the challenges faced by such projects. We conclude by identifying some of the pinch points likely to be encountered by future evo-devo researchers, and how living collections can help address them. PMID:22737158
ERIC Educational Resources Information Center
Teo, Timothy; Lee, Chwee Beng; Chai, Ching Sing; Wong, Su Luan
2009-01-01
This study assesses the pre-service teachers' self-reported future intentions to use technology in Singapore and Malaysia. A survey was employed to validate items from past research. Using the Technology Acceptance Model (TAM) as a research framework, 495 pre-service teachers from Singapore and Malaysia responded to an 11-item questionnaires…
Concepts for Future Large Fire Modeling
A. P. Dimitrakopoulos; R. E. Martin
1987-01-01
A small number of fires escape initial attack suppression efforts and become large, but their effects are significant and disproportionate. In 1983, of 200,000 wildland fires in the United States, only 4,000 exceeded 100 acres. However, these escaped fires accounted for roughly 95 percent of wildfire-related costs and damages (Pyne, 1984). Thus, future research efforts...
Collection Directions: Some Reflections on the Future of Library Collections and Collecting
ERIC Educational Resources Information Center
Dempsey, Lorcan; Malpas, Constance; Lavoie, Brian
2014-01-01
This article takes a broad view of the evolution of collecting behaviors in a network environment and suggests some future directions based on various simple models. The authors look at the changing dynamics of print collections, at the greater engagement with research and learning behaviors, and at trends in scholarly communication. The goal is…
The effects of three possible land use futures in the Willamette Basin are evaluated with respect to present and historic conditions of wildlife habitat. Basin wide land use/land cover maps were developed by the Pacific Northwest Ecosystem Research Consortium (PNW-ERC) in coopera...
Mapping the Past, Present, and Future of Teaching Leadership Chairs in Canada: A Report
ERIC Educational Resources Information Center
Andrews, David M.; Bornais, Judy A. K.; Cramer, Ken M.
2016-01-01
We explore the advent and initiatives of teaching leadership chairs--modeled after the Canada Research Chair framework--to instill individuals or small groups of teaching leaders at various centres across the country to stimulate educational change. In its past, present, and future, we explore the grassroots of teaching leadership chairs and their…
Exploring Air-Climate-Energy Impacts with GCAM-USA
The Global Climate Assessment Model (GCAM) is a global integrated assessment model used for exploring future scenarios and examining strategies that address air pollution, climate change and energy (ACE) goals. My research focuseson integration of impact factors in GCAM-USA and a...
Aggregate Auto Travel Forecasting : State of the Art and Suggestions for Future Research
DOT National Transportation Integrated Search
1976-12-01
The report reviews existing forecasting models of auto vehicle miles of travel (VMT), and presents evidence that such models incorrectly omit time cost and spatial form variables. The omission of these variables biases parameter estimates in existing...
Clinical Research: A Psychotherapeutic Assessment Model for Siblings in Care
ERIC Educational Resources Information Center
Hindle, Debbie
2007-01-01
This paper focuses on the aspects of a qualitative research project that examines an assessment protocol for the placement of siblings in foster care and/or future adoption. A brief description of the background to the study and the research design is given. Evaluating the material from the quantitative instruments used and the psychotherapeutic…
The futures of climate engineering
NASA Astrophysics Data System (ADS)
Low, Sean
2017-01-01
This piece examines the need to interrogate the role of the conceptions of the future, as embedded in academic papers, policy documents, climate models, and other artifacts that serve as currencies of the science-society interface, in shaping scientific and policy agendas in climate engineering. Growing bodies of work on framings, metaphors, and models in the past decade serve as valuable starting points, but can benefit from integration with science and technology studies work on the sociology of expectations, imaginaries, and visions. Potentially valuable branches of work to come might be the anticipatory use of the future: the design of experimental spaces for exploring the future of an engineered climate in service of responsible research and innovation, and the integration of this work within the unfolding context of the Paris Agreement.
NASA Technical Reports Server (NTRS)
Chan, William N.; Kopardekar, Parimal H.; Carmichael, Bruce; Cornman, Larry
2017-01-01
Presentation highlighting how weather affected UAS operations during the UTM field tests. Research to develop UAS weather translation models with a description of current and future work for UTM weather.
Recommended Research Directions for Improving the Validation of Complex Systems Models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vugrin, Eric D.; Trucano, Timothy G.; Swiler, Laura Painton
Improved validation for models of complex systems has been a primary focus over the past year for the Resilience in Complex Systems Research Challenge. This document describes a set of research directions that are the result of distilling those ideas into three categories of research -- epistemic uncertainty, strong tests, and value of information. The content of this document can be used to transmit valuable information to future research activities, update the Resilience in Complex Systems Research Challenge's roadmap, inform the upcoming FY18 Laboratory Directed Research and Development (LDRD) call and research proposals, and facilitate collaborations between Sandia and externalmore » organizations. The recommended research directions can provide topics for collaborative research, development of proposals, workshops, and other opportunities.« less
A synopsis of climate change effects on groundwater recharge
NASA Astrophysics Data System (ADS)
Smerdon, Brian D.
2017-12-01
Six review articles published between 2011 and 2016 on groundwater and climate change are briefly summarized. This synopsis focuses on aspects related to predicting changes to groundwater recharge conditions, with several common conclusions between the review articles being noted. The uncertainty of distribution and trend in future precipitation from General Circulation Models (GCMs) results in varying predictions of recharge, so much so that modelling studies are often not able to predict the magnitude and direction (increase or decrease) of future recharge conditions. Evolution of modelling approaches has led to the use of multiple GCMs and hydrologic models to create an envelope of future conditions that reflects the probability distribution. The choice of hydrologic model structure and complexity, and the choice of emissions scenario, has been investigated and somewhat resolved; however, recharge results remain sensitive to downscaling methods. To overcome uncertainty and provide practical use in water management, the research community indicates that modelling at a mesoscale, somewhere between watersheds and continents, is likely ideal. Improvements are also suggested for incorporating groundwater processes within GCMs.
VIII. THE PAST, PRESENT, AND FUTURE OF DEVELOPMENTAL METHODOLOGY.
Little, Todd D; Wang, Eugene W; Gorrall, Britt K
2017-06-01
This chapter selectively reviews the evolution of quantitative practices in the field of developmental methodology. The chapter begins with an overview of the past in developmental methodology, discussing the implementation and dissemination of latent variable modeling and, in particular, longitudinal structural equation modeling. It then turns to the present state of developmental methodology, highlighting current methodological advances in the field. Additionally, this section summarizes ample quantitative resources, ranging from key quantitative methods journal articles to the various quantitative methods training programs and institutes. The chapter concludes with the future of developmental methodology and puts forth seven future innovations in the field. The innovations discussed span the topics of measurement, modeling, temporal design, and planned missing data designs. Lastly, the chapter closes with a brief overview of advanced modeling techniques such as continuous time models, state space models, and the application of Bayesian estimation in the field of developmental methodology. © 2017 The Society for Research in Child Development, Inc.
A model for interprovincial air pollution control based on futures prices.
Zhao, Laijun; Xue, Jian; Gao, Huaizhu Oliver; Li, Changmin; Huang, Rongbing
2014-05-01
Based on the current status of research on tradable emission rights futures, this paper introduces basic market-related assumptions for China's interprovincial air pollution control problem. The authors construct an interprovincial air pollution control model based on futures prices: the model calculated the spot price of emission rights using a classic futures pricing formula, and determined the identities of buyers and sellers for various provinces according to a partitioning criterion, thereby revealing five trading markets. To ensure interprovincial cooperation, a rational allocation result for the benefits from this model was achieved using the Shapley value method to construct an optimal reduction program and to determine the optimal annual decisions for each province. Finally, the Beijing-Tianjin-Hebei region was used as a case study, as this region has recently experienced serious pollution. It was found that the model reduced the overall cost of reducing SO2 pollution. Moreover, each province can lower its cost for air pollution reduction, resulting in a win-win solution. Adopting the model would therefore enhance regional cooperation and promote the control of China's air pollution. The authors construct an interprovincial air pollution control model based on futures prices. The Shapley value method is used to rationally allocate the cooperation benefit. Interprovincial pollution control reduces the overall reduction cost of SO2. Each province can lower its cost for air pollution reduction by cooperation.
Computational Modeling of Tires
NASA Technical Reports Server (NTRS)
Noor, Ahmed K. (Compiler); Tanner, John A. (Compiler)
1995-01-01
This document contains presentations and discussions from the joint UVA/NASA Workshop on Computational Modeling of Tires. The workshop attendees represented NASA, the Army and Air force, tire companies, commercial software developers, and academia. The workshop objectives were to assess the state of technology in the computational modeling of tires and to provide guidelines for future research.
The Role of Creativity in Models of Resilience: Theoretical Exploration and Practical Applications
ERIC Educational Resources Information Center
Metzl, Einat S.; Morrell, Malissa A.
2008-01-01
This exploration reviews current conceptualizations of resilience and creativity, suggesting important links between these two concepts, and offers a modified model for future research and applied clinical interventions. First, the authors examine four main models of resilience. Then, an overview of definitions and characteristics of creativity is…
Modelling Faculty Replacement Strategies Using a Time-Dependent Finite Markov-Chain Process.
ERIC Educational Resources Information Center
Hackett, E. Raymond; Magg, Alexander A.; Carrigan, Sarah D.
1999-01-01
Describes the use of a time-dependent Markov-chain model to develop faculty-replacement strategies within a college at a research university. The study suggests that a stochastic modelling approach can provide valuable insight when planning for personnel needs in the immediate (five-to-ten year) future. (MSE)
Modeling Cultural Context for Aspiring Women Educational Leaders
ERIC Educational Resources Information Center
Sperandio, Jill
2010-01-01
Purpose: The purpose of the paper is to discuss and examine the development of frameworks and models to guide future research into studies of women's paths to educational leadership worldwide. Design/methodology/approach: A grounded theory approach to the development of a model of the factors and their interaction that determine the path to…
Common Object Library Description
2012-08-01
Information Modeling ( BIM ) technology to be successful, it must be consistently applied across many projects, by many teams. The National Building Information ...distribution is unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT For Building Information Modeling ( BIM ) technology to be successful, it must be... BIM standards and for future research projects. 15. SUBJECT TERMS building information modeling ( BIM ), object
Research opportunities in muscle atrophy
NASA Technical Reports Server (NTRS)
Herbison, G. J. (Editor); Talbot, J. M. (Editor)
1984-01-01
Muscle atrophy in a weightless environment is studied. Topics of investigation include physiological factors of muscle atrophy in space flight, biochemistry, countermeasures, modelling of atrophied muscle tissue, and various methods of measurement of muscle strength and endurance. A review of the current literature and suggestions for future research are included.
The Design, Implementation, and Evaluation of Online Credit Nutrition Courses: A Systematic Review
ERIC Educational Resources Information Center
Cohen, Nancy L.; Carbone, Elena T.; Beffa-Negrini, Patricia A.
2011-01-01
Objective: To assess how postsecondary online nutrition education courses (ONEC) are delivered, determine ONEC effectiveness, identify theoretical models used, and identify future research needs. Design: Systematic search of database literature. Setting: Postsecondary education. Participants: Nine research articles evaluating postsecondary ONEC.…
The Ecosystem Services Research Program of the EPA Office of Research and Development envisions a comprehensive theory and practice for characterizing, quantifying and valuing ecosystem services and their relationship to human well-being. This vision of future environmental deci...
Heisler, Michele
2010-06-01
Much of diabetes care needs to be carried out by patients between office visits with their health care providers. Yet, many patients face difficulties carrying out these tasks. In addition, many adults with diabetes cannot count on effective support from their families and friends to help them with their self-management. Peer support programmes are a promising approach to enhance social and emotional support, assist patients in daily management and living with diabetes and promote linkages to clinical care. This background paper provides a brief overview of different approaches to mobilize peer support for diabetes self-management support, discusses evidence to date on the effectiveness of each of these models, highlights logistical and evaluation issues for each model and concludes with a discussion of directions for future research in this area.
2010-01-01
Much of diabetes care needs to be carried out by patients between office visits with their health care providers. Yet, many patients face difficulties carrying out these tasks. In addition, many adults with diabetes cannot count on effective support from their families and friends to help them with their self-management. Peer support programmes are a promising approach to enhance social and emotional support, assist patients in daily management and living with diabetes and promote linkages to clinical care. This background paper provides a brief overview of different approaches to mobilize peer support for diabetes self-management support, discusses evidence to date on the effectiveness of each of these models, highlights logistical and evaluation issues for each model and concludes with a discussion of directions for future research in this area. PMID:19293400
Validation of X1 motorcycle model in industrial plant layout by using WITNESSTM simulation software
NASA Astrophysics Data System (ADS)
Hamzas, M. F. M. A.; Bareduan, S. A.; Zakaria, M. Z.; Tan, W. J.; Zairi, S.
2017-09-01
This paper demonstrates a case study on simulation, modelling and analysis for X1 Motorcycles Model. In this research, a motorcycle assembly plant has been selected as a main place of research study. Simulation techniques by using Witness software were applied to evaluate the performance of the existing manufacturing system. The main objective is to validate the data and find out the significant impact on the overall performance of the system for future improvement. The process of validation starts when the layout of the assembly line was identified. All components are evaluated to validate whether the data is significance for future improvement. Machine and labor statistics are among the parameters that were evaluated for process improvement. Average total cycle time for given workstations is used as criterion for comparison of possible variants. From the simulation process, the data used are appropriate and meet the criteria for two-sided assembly line problems.
Towards artificial tissue models: past, present, and future of 3D bioprinting.
Arslan-Yildiz, Ahu; El Assal, Rami; Chen, Pu; Guven, Sinan; Inci, Fatih; Demirci, Utkan
2016-03-01
Regenerative medicine and tissue engineering have seen unprecedented growth in the past decade, driving the field of artificial tissue models towards a revolution in future medicine. Major progress has been achieved through the development of innovative biomanufacturing strategies to pattern and assemble cells and extracellular matrix (ECM) in three-dimensions (3D) to create functional tissue constructs. Bioprinting has emerged as a promising 3D biomanufacturing technology, enabling precise control over spatial and temporal distribution of cells and ECM. Bioprinting technology can be used to engineer artificial tissues and organs by producing scaffolds with controlled spatial heterogeneity of physical properties, cellular composition, and ECM organization. This innovative approach is increasingly utilized in biomedicine, and has potential to create artificial functional constructs for drug screening and toxicology research, as well as tissue and organ transplantation. Herein, we review the recent advances in bioprinting technologies and discuss current markets, approaches, and biomedical applications. We also present current challenges and provide future directions for bioprinting research.
NASA Astrophysics Data System (ADS)
Li, Y.; Akbariyeh, S.; Gomez Peña, C. A.; Bartlet-Hunt, S.
2017-12-01
Understanding the impacts of future climate change on soil hydrological processes and solute transport is crucial to develop appropriate strategies to minimize adverse impacts of agricultural activities on groundwater quality. The goal of this work is to evaluate the direct effects of climate change on the fate and transport of nitrate beneath a center-pivot irrigated corn field in Nebraska Management Systems Evaluation Area (MSEA) site. Future groundwater recharge rate and actual evapotranspiration rate were predicted based on an inverse modeling approach using climate data generated by Weather Research and Forecasting (WRF) model under the RCP 8.5 scenario, which was downscaled from global CCSM4 model to a resolution of 24 by 24 km2. A groundwater flow model was first calibrated based on historical groundwater table measurement and was then applied to predict future groundwater table in the period 2057-2060. Finally, predicted future groundwater recharge rate, actual evapotranspiration rate, and groundwater level, together with future precipitation data from WRF, were used in a three-dimensional (3D) model, which was validated based on rich historic data set collected from 1993-1996, to predict nitrate concentration in soil and groundwater from the year 2057 to 2060. Future groundwater recharge was found to be decreasing in the study area compared to average groundwater recharge data from the literature. Correspondingly, groundwater elevation was predicted to decrease (1 to 2 ft) over the five years of simulation. Predicted higher transpiration data from climate model resulted in lower infiltration of nitrate concentration in subsurface within the root zone.
NASA Astrophysics Data System (ADS)
Li, Y.; Akbariyeh, S.; Gomez Peña, C. A.; Bartlet-Hunt, S.
2016-12-01
Understanding the impacts of future climate change on soil hydrological processes and solute transport is crucial to develop appropriate strategies to minimize adverse impacts of agricultural activities on groundwater quality. The goal of this work is to evaluate the direct effects of climate change on the fate and transport of nitrate beneath a center-pivot irrigated corn field in Nebraska Management Systems Evaluation Area (MSEA) site. Future groundwater recharge rate and actual evapotranspiration rate were predicted based on an inverse modeling approach using climate data generated by Weather Research and Forecasting (WRF) model under the RCP 8.5 scenario, which was downscaled from global CCSM4 model to a resolution of 24 by 24 km2. A groundwater flow model was first calibrated based on historical groundwater table measurement and was then applied to predict future groundwater table in the period 2057-2060. Finally, predicted future groundwater recharge rate, actual evapotranspiration rate, and groundwater level, together with future precipitation data from WRF, were used in a three-dimensional (3D) model, which was validated based on rich historic data set collected from 1993-1996, to predict nitrate concentration in soil and groundwater from the year 2057 to 2060. Future groundwater recharge was found to be decreasing in the study area compared to average groundwater recharge data from the literature. Correspondingly, groundwater elevation was predicted to decrease (1 to 2 ft) over the five years of simulation. Predicted higher transpiration data from climate model resulted in lower infiltration of nitrate concentration in subsurface within the root zone.
Center for Advanced Computational Technology
NASA Technical Reports Server (NTRS)
Noor, Ahmed K.
2000-01-01
The Center for Advanced Computational Technology (ACT) was established to serve as a focal point for diverse research activities pertaining to application of advanced computational technology to future aerospace systems. These activities include the use of numerical simulations, artificial intelligence methods, multimedia and synthetic environments, and computational intelligence, in the modeling, analysis, sensitivity studies, optimization, design and operation of future aerospace systems. The Center is located at NASA Langley and is an integral part of the School of Engineering and Applied Science of the University of Virginia. The Center has four specific objectives: 1) conduct innovative research on applications of advanced computational technology to aerospace systems; 2) act as pathfinder by demonstrating to the research community what can be done (high-potential, high-risk research); 3) help in identifying future directions of research in support of the aeronautical and space missions of the twenty-first century; and 4) help in the rapid transfer of research results to industry and in broadening awareness among researchers and engineers of the state-of-the-art in applications of advanced computational technology to the analysis, design prototyping and operations of aerospace and other high-performance engineering systems. In addition to research, Center activities include helping in the planning and coordination of the activities of a multi-center team of NASA and JPL researchers who are developing an intelligent synthesis environment for future aerospace systems; organizing workshops and national symposia; as well as writing state-of-the-art monographs and NASA special publications on timely topics.
Determing Credibility of Regional Simulations of Future Climate
NASA Astrophysics Data System (ADS)
Mearns, L. O.
2009-12-01
Climate models have been evaluated or validated ever since they were first developed. Establishing that a climate model can reproduce (some) aspects of the current climate of the earth on various spatial and temporal scales has long been a standard procedure for providing confidence in the model's ability to simulate future climate. However, direct links between the successes and failures of models in reproducing the current climate with regard to what future climates the models simulate has been largely lacking. This is to say that the model evaluation process has been largely divorced from the projections of future climate that the models produce. This is evidenced in the separation in the Intergovernmental Panel on Climate Change (IPCC) WG1 report of the chapter on evaluation of models from the chapter on future climate projections. There has also been the assumption of 'one model, one vote, that is, that each model projection is given equal weight in any multi-model ensemble presentation of the projections of future climate. There have been various attempts at determing measures of credibility that would avoid the 'ultrademocratic' assumption of the IPCC. Simple distinctions between models were made by research such as in Giorgi and Mearns (2002), Tebaldi et al., (2005), and Greene et al., (2006). But the metrics used were rather simplistic. More ambitous means of discriminating among the quality of model simulations have been made through the production of complex multivariate metrics, but insufficent work has been produced to verify that the metrics successfully discriminate in meaningful ways. Indeed it has been suggested that we really don't know what a model must successfully model to establish confidence in its regional-scale projections (Gleckler et al., 2008). Perhaps a more process oriented regional expert judgment approach is needed to understand which errors in climate models really matter for the model's response to future forcing. Such an approach is being attempted in the North American Climate Change Assessment Program (NARCCAP) whereby multiple global models are used to drive multiple regional models for the current period and the mid-21st century over the continent. Progress in this endeavor will be reported.
NASA Astrophysics Data System (ADS)
Adachi, S. A.; Hara, M.; Takahashi, H. G.; Ma, X.; Yoshikane, T.; Kimura, F.
2013-12-01
Severe hot weather in summer season becomes a big social problem in metropolitan areas, including the Nagoya region in Japan. Surface air temperature warming is projected in the future. Therefore, the reduction of surface air temperature is an urgent issue in the urban area. Although there are several studies dealing with the effects of global climate change and urbanization to the local climate in the future, these studies tend to ignore the future population changes. This study estimates future land-use scenarios associated with the multi-projections of future population and investigates the impacts of these scenarios on the surface temperature change. The Weather Research and Forecast model ver. 3.3.1 (hereafter, WRF) was used in this study. The horizontal resolutions were 20km, 4km, and 2km, for outer, middle, and inner domains, respectively. The results from the inner domain, covering the Nagoya region, were used for the analysis. The Noah land surface model and the single-layer urban canopy model were applied to calculate the land surface processes and urban surface processes, respectively. The initial and boundary conditions were given from the NCEP/NCAR reanalysis data in August 2010. The urban area ratio used in the WRF model was calculated from the future land-use data provided by the S8 project. The land-use data was created as follows. (1) Three scenarios of population, namely, with high-fertility assumption and low-mortality assumption (POP-high), with medium-fertility assumption and medium-mortality assumption (POP-med), and with low-fertility assumption and high-mortality assumption (POP-low), are estimated using the method proposed by Ariga and Matsuhashi (2012). These scenarios are based on the future projections provided by the National Institute of Population and Social Security Research. (2) The future changes in urban area ratio were assumed to be proportional to the population change (Hanasaki et al., 2012). The averaged urban area ratio in the Nagoya region was 0.37 in 2010. The area ratios were projected to reach a peak in 2010 to 2020, and then to decrease in the future in all of scenarios. The urban heat island intensity in the Nagoya region is about 1.5°C in 2010. In contrast, the differences of surface temperature is -0.17°C, -0.21°C, and -0.30°C in POP-high, POP-med, and POP-low, from the current situation in 2010. These impacts correspond to the 10% to 20% of current urban heat island intensity. However, the changes in the efficiency of energy consumption were not considered. Considering that the future surface temperature change is projected to be about 1.2°C to 4°C in 2070, it is required to quantitatively evaluate future urban scenarios including the mitigation strategies for urban heat island such as the improvement of energy consumption, greening, and so on. Acknowledgments. This study was supported by the Research Program on Climate Change Adaptation (RECCA) Fund by Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan and the Global Environment Research Fund (S-8) of the Ministry of the Environment of Japan.
How to become a top model: impact of animal experimentation on human Salmonella disease research.
Tsolis, Renée M; Xavier, Mariana N; Santos, Renato L; Bäumler, Andreas J
2011-05-01
Salmonella serotypes are a major cause of human morbidity and mortality worldwide. Over the past decades, a series of animal models have been developed to advance vaccine development, provide insights into immunity to infection, and study the pathogenesis of human Salmonella disease. The successive introduction of new animal models, each suited to interrogate previously neglected aspects of Salmonella disease, has ushered in important conceptual advances that continue to have a strong and sustained influence on the ideas driving research on Salmonella serotypes. This article reviews important milestones in the use of animal models to study human Salmonella disease and identify research needs to guide future work.
U.S. Army Workshop on Solid-Propellant Ignition and Combustion Modeling.
1997-07-01
saving tool in the design, development, testing, and evaluation of future gun-propulsion systems , and that, under current funding constraints, research...53 7.1 What systems are currently being addressed...9 ............. . . .. .. . . . . . . . . . . . . . . . . . . . . . . . . 56 7.5 What model systems might be valuable for
Understanding fecundity is fundamental to understanding fitness, population dynamics, conservation, ecological risk, and management issues of birds. For all the efforts placed in measuring fecundity or its surrogates over the past century of avian research, it is still poorly me...
Architectural Optimization of Digital Libraries
NASA Technical Reports Server (NTRS)
Biser, Aileen O.
1998-01-01
This work investigates performance and scaling issues relevant to large scale distributed digital libraries. Presently, performance and scaling studies focus on specific implementations of production or prototype digital libraries. Although useful information is gained to aid these designers and other researchers with insights to performance and scaling issues, the broader issues relevant to very large scale distributed libraries are not addressed. Specifically, no current studies look at the extreme or worst case possibilities in digital library implementations. A survey of digital library research issues is presented. Scaling and performance issues are mentioned frequently in the digital library literature but are generally not the focus of much of the current research. In this thesis a model for a Generic Distributed Digital Library (GDDL) and nine cases of typical user activities are defined. This model is used to facilitate some basic analysis of scaling issues. Specifically, the calculation of Internet traffic generated for different configurations of the study parameters and an estimate of the future bandwidth needed for a large scale distributed digital library implementation. This analysis demonstrates the potential impact a future distributed digital library implementation would have on the Internet traffic load and raises questions concerning the architecture decisions being made for future distributed digital library designs.
The development and preliminary psychometric evaluation of an attachment Implicit Association Task.
Venta, Amanda; Jardin, Charles; Kalpakci, Allison; Sharp, Carla
2016-01-01
The importance of measuring attachment insecurity is underscored by a vast literature tying attachment insecurity to numerous psychological disorders. Self-report measures assess explicit attachment beliefs and experiences, while interview measures, like the Adult Attachment Interview, assess implicit internal working models about the self as worthy of care and others as reliable sources of care. The present study is a preliminary psychometric evaluation of a potentially cost-effective method of assessing implicit internal working models of attachment through the development of an Implicit Association Test (IAT). A racially diverse sample of 104 college females was administered Internet-based versions of three IATs (assessing views of the self, mother, and father) as well as self-report measures of attachment and interpersonal problems. Analyses were conducted to evaluate the (a) internal consistency of each task, (b) correlations among the tasks, (c) concurrent validity, and (d) convergent validity. Adequate internal consistency was noted and correlations among the three IATs were significant. No significant associations were observed between the explicit self-report measures of attachment and the IATs. Two primary areas for future research are discussed. First, future research should utilize an implicit attachment measure alongside an IAT. Second, future research should reevaluate the IAT stimuli used.
Symposium overview the Shell Conference on computer-aided molecular modelling
NASA Astrophysics Data System (ADS)
Hays, G. R.; de Bruijn, D. P.
1988-10-01
The `Shell Conference on ...' series began in 1985 and meetings are held approximately twice a year. The idea behind the conferences is to bring together invited scientists from both universities and industry, and representatives from different Shell Research laboratories, to create a forum to discuss the future directions of the chosen research area. These meetings have embraced a wide range of topics of interest to Shell Research as a whole. This particular conference, organised by the Analytical Department of the Koninklijke/ShellLaboratorium, Amsterdam (KSLA), was held on 4-6 October, 1987 at Hoenderloo in the Netherlands. The aim was to review the state-of-the-art and to discuss the future of molecular modelling and design. The programme itself consisted of a series of presentations on prescribed topics, panel discussions, and software and hardware demonstrations. Many of the presentations given consisted of overviews, experiences, advice and predictions for the future. The panel sessions, which involved the speakers within that session and a discussion leader who summarised some of the points made in an introduction, encouraged even further discussion and speculation. This overview attempts to catch the flavour of the meeting and convey some personal views that were expressed and conclusions drawn.
Colorectal cancer screening and adverse childhood experiences: Which adversities matter?
Alcalá, Héctor E; Keim-Malpass, Jessica; Mitchell, Emma
2017-07-01
Adverse Childhood Experiences (ACEs) have been associated with an increased risk of a variety of diseases, including cancer. However, research has not paid enough attention to the association between ACEs and cancer screening. As such, the present study examined the association between ACEs and ever using colorectal cancer (CRC) screening, among adults age 50 and over. Analyses used the 2011 Behavioral Risk Factor Surveillance System (n=24,938) to model odds of ever engaging in CRC screening from nine different adversities. Bivariate and multivariate models were fit. In bivariate models, physical abuse, having parents that were divorced or separated, and living in a household where adults treated each other violently were associated with lower odds of engaging in CRC. In multivariate models that accounted for potential confounders, emotional and sexual abuse were each associated with higher odds of engaging in CRC. Results suggest potential pathways by which early childhood experiences can impact future health behaviors. Future research should examine this association longitudinally. Copyright © 2017 Elsevier Ltd. All rights reserved.
A hypothetical model for predicting the toxicity of high aspect ratio nanoparticles (HARN)
NASA Astrophysics Data System (ADS)
Tran, C. L.; Tantra, R.; Donaldson, K.; Stone, V.; Hankin, S. M.; Ross, B.; Aitken, R. J.; Jones, A. D.
2011-12-01
The ability to predict nanoparticle (dimensional structures which are less than 100 nm in size) toxicity through the use of a suitable model is an important goal if nanoparticles are to be regulated in terms of exposures and toxicological effects. Recently, a model to predict toxicity of nanoparticles with high aspect ratio has been put forward by a consortium of scientists. The High aspect ratio nanoparticles (HARN) model is a platform that relates the physical dimensions of HARN (specifically length and diameter ratio) and biopersistence to their toxicity in biological environments. Potentially, this model is of great public health and economic importance, as it can be used as a tool to not only predict toxicological activity but can be used to classify the toxicity of various fibrous nanoparticles, without the need to carry out time-consuming and expensive toxicology studies. However, this model of toxicity is currently hypothetical in nature and is based solely on drawing similarities in its dimensional geometry with that of asbestos and synthetic vitreous fibres. The aim of this review is two-fold: (a) to present findings from past literature, on the physicochemical property and pathogenicity bioassay testing of HARN (b) to identify some of the challenges and future research steps crucial before the HARN model can be accepted as a predictive model. By presenting what has been done, we are able to identify scientific challenges and research directions that are needed for the HARN model to gain public acceptance. Our recommendations for future research includes the need to: (a) accurately link physicochemical data with corresponding pathogenicity assay data, through the use of suitable reference standards and standardised protocols, (b) develop better tools/techniques for physicochemical characterisation, (c) to develop better ways of monitoring HARN in the workplace, (d) to reliably measure dose exposure levels, in order to support future epidemiological studies.
Modeling conflict : research methods, quantitative modeling, and lessons learned.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rexroth, Paul E.; Malczynski, Leonard A.; Hendrickson, Gerald A.
2004-09-01
This study investigates the factors that lead countries into conflict. Specifically, political, social and economic factors may offer insight as to how prone a country (or set of countries) may be for inter-country or intra-country conflict. Largely methodological in scope, this study examines the literature for quantitative models that address or attempt to model conflict both in the past, and for future insight. The analysis concentrates specifically on the system dynamics paradigm, not the political science mainstream approaches of econometrics and game theory. The application of this paradigm builds upon the most sophisticated attempt at modeling conflict as a resultmore » of system level interactions. This study presents the modeling efforts built on limited data and working literature paradigms, and recommendations for future attempts at modeling conflict.« less
ISMIP6: Ice Sheet Model Intercomparison Project for CMIP6
NASA Technical Reports Server (NTRS)
Nowicki, S.
2015-01-01
ISMIP6 (Ice Sheet Model Intercomparison Project for CMIP6) targets the Cryosphere in a Changing Climate and the Future Sea Level Grand Challenges of the WCRP (World Climate Research Program). Primary goal is to provide future sea level contribution from the Greenland and Antarctic ice sheets, along with associated uncertainty. Secondary goal is to investigate feedback due to dynamic ice sheet models. Experiment design uses and augment the existing CMIP6 (Coupled Model Intercomparison Project Phase 6) DECK (Diagnosis, Evaluation, and Characterization of Klima) experiments. Additonal MIP (Model Intercomparison Project)- specific experiments will be designed for ISM (Ice Sheet Model). Effort builds on the Ice2sea, SeaRISE (Sea-level Response to Ice Sheet Evolution) and COMBINE (Comprehensive Modelling of the Earth System for Better Climate Prediction and Projection) efforts.
NASA Astrophysics Data System (ADS)
Coakley, Bernard; Edmonds, Henrietta N.; Frey, Karen; Gascard, Jean-Claude; Grebmeier, Jacqueline M.; Kassens, Heidemarie; Thiede, Jörn; Wegner, Carolyn
2007-07-01
A follow-up to the 2nd International Conference on Arctic Research Planning, 19-21 November 2007, Potsdam, Germany The Arctic Ocean is the missing piece for any global model. Records of processes at both long and short timescales will be necessary to predict the future evolution of the Arctic Ocean through what appears to be a period of rapid climate change. Ocean monitoring is impoverished without the long-timescale records available from paleoceanography and the boundary conditions that can be obtained from marine geology and geophysics. The past and the present are the key to our ability to predict the future.
NASA Astrophysics Data System (ADS)
Shouquan Cheng, Chad; Li, Qian; Li, Guilong
2010-05-01
The synoptic weather typing approach has become popular in evaluating the impacts of climate change on a variety of environmental problems. One of the reasons is its ability to categorize a complex set of meteorological variables as a coherent index, which can facilitate analyses of local climate change impacts. The weather typing method has been successfully applied in Environment Canada for several research projects to analyze climatic change impacts on a number of extreme weather events, such as freezing rain, heavy rainfall, high-/low-flow events, air pollution, and human health. These studies comprise of three major parts: (1) historical simulation modeling to verify the extreme weather events, (2) statistical downscaling to provide station-scale future hourly/daily climate data, and (3) projections of changes in frequency and intensity of future extreme weather events in this century. To achieve these goals, in addition to synoptic weather typing, the modeling conceptualizations in meteorology and hydrology and a number of linear/nonlinear regression techniques were applied. Furthermore, a formal model result verification process has been built into each of the three parts of the projects. The results of the verification, based on historical observations of the outcome variables predicted by the models, showed very good agreement. The modeled results from these projects found that the frequency and intensity of future extreme weather events are projected to significantly increase under a changing climate in this century. This talk will introduce these research projects and outline the modeling exercise and result verification process. The major findings on future projections from the studies will be summarized in the presentation as well. One of the major conclusions from the studies is that the procedures (including synoptic weather typing) used in the studies are useful for climate change impact analysis on future extreme weather events. The implication of the significant increases in frequency and intensity of future extreme weather events would be useful to be considered when revising engineering infrastructure design standards and developing adaptation strategies and policies.
Emotional distress impacts fear of the future among breast cancer survivors not the reverse.
Lebel, Sophie; Rosberger, Zeev; Edgar, Linda; Devins, Gerald M
2009-06-01
Fear of the future is one of the most stressful aspects of having cancer. Research to date has conceptualized fear of the future as a precursor of distress or stress-response symptoms. Yet it is equally plausible that distress would predict increased fear of the future or that they would have a reciprocal influence on each other. The purpose of the present study was to examine the bidirectional relations between fear of the future and distress as well as intrusion and avoidance among breast cancer survivors at 3, 7, 11, and 15 months after diagnosis. We used a bivariate latent difference score model for dynamic change to examine these bidirectional relationships among 146 early-stage breast cancer survivors. Using Lisrel version 8.80, we examined four models testing different hypothesized relationships between fear of the future and distress and intrusion and avoidance. Based on model fit evaluation, our data shows that decreases in distress over time lead to a reduction of fear of the future but that changes in fear do not lead to changes in distress. On the other hand, there is no relationship between changes in fear of the future and intrusion and avoidance over time. Ongoing fear of the future does not appear to be a necessary condition for the development of stress-response symptoms. Future studies need to explore the role of distressing emotions in the development and exacerbation of fear of the future among cancer survivors.
NASA Astrophysics Data System (ADS)
Kumar, Pankaj; Yoshifumi, Masago; Ammar, Rafieiemam; Mishra, Binaya; Fukushi, Ken
2017-04-01
Uncontrolled release of pollutants, increasing extreme weather condition, rapid urbanization and poor governance posing a serious threat to sustainable water resource management in developing urban spaces. Considering half of the world's mega-cities are in the Asia and the Pacific with 1.7 billion people do not access to improved water and sanitation, water security through its proper management is both an increasing concern and an imperative critical need. This research work strives to give a brief glimpse about predicted future water environment in Bagmati, Pasig and Ciliwung rivers from three different cities viz. Manila, Kathmandu and Jakarta respectively. Hydrological model used here to foresee the collective impacts of rapid population growth because of urbanization as well as climate change on unmet demand and water quality in near future time by 2030. All three rivers are major source of water for different usage viz. domestic, industrial, agriculture and recreation but uncontrolled withdrawal and sewerage disposal causing deterioration of water environment in recent past. Water Evaluation and Planning (WEAP) model was used to model river water quality pollution future scenarios using four indicator species i.e. Dissolved Oxygen (DO), Biochemical Oxygen Demand (BOD), Chemical Oxygen Demand (COD) and Nitrate (NO3). Result for simulated water quality as well as unmet demand for year 2030 when compared with that of reference year clearly indicates that not only water quality deteriorates but also unmet demands is increasing in future course of time. This also suggests that current initiatives and policies for water resource management are not sufficient enough and hence immediate and inclusive action through transdisciplinary research.
Latent Patient Cluster Discovery for Robust Future Forecasting and New-Patient Generalization
Masino, Aaron J.
2016-01-01
Commonly referred to as predictive modeling, the use of machine learning and statistical methods to improve healthcare outcomes has recently gained traction in biomedical informatics research. Given the vast opportunities enabled by large Electronic Health Records (EHR) data and powerful resources for conducting predictive modeling, we argue that it is yet crucial to first carefully examine the prediction task and then choose predictive methods accordingly. Specifically, we argue that there are at least three distinct prediction tasks that are often conflated in biomedical research: 1) data imputation, where a model fills in the missing values in a dataset, 2) future forecasting, where a model projects the development of a medical condition for a known patient based on existing observations, and 3) new-patient generalization, where a model transfers the knowledge learned from previously observed patients to newly encountered ones. Importantly, the latter two tasks—future forecasting and new-patient generalizations—tend to be more difficult than data imputation as they require predictions to be made on potentially out-of-sample data (i.e., data following a different predictable pattern from what has been learned by the model). Using hearing loss progression as an example, we investigate three regression models and show that the modeling of latent clusters is a robust method for addressing the more challenging prediction scenarios. Overall, our findings suggest that there exist significant differences between various kinds of prediction tasks and that it is important to evaluate the merits of a predictive model relative to the specific purpose of a prediction task. PMID:27636203
Latent Patient Cluster Discovery for Robust Future Forecasting and New-Patient Generalization.
Qian, Ting; Masino, Aaron J
2016-01-01
Commonly referred to as predictive modeling, the use of machine learning and statistical methods to improve healthcare outcomes has recently gained traction in biomedical informatics research. Given the vast opportunities enabled by large Electronic Health Records (EHR) data and powerful resources for conducting predictive modeling, we argue that it is yet crucial to first carefully examine the prediction task and then choose predictive methods accordingly. Specifically, we argue that there are at least three distinct prediction tasks that are often conflated in biomedical research: 1) data imputation, where a model fills in the missing values in a dataset, 2) future forecasting, where a model projects the development of a medical condition for a known patient based on existing observations, and 3) new-patient generalization, where a model transfers the knowledge learned from previously observed patients to newly encountered ones. Importantly, the latter two tasks-future forecasting and new-patient generalizations-tend to be more difficult than data imputation as they require predictions to be made on potentially out-of-sample data (i.e., data following a different predictable pattern from what has been learned by the model). Using hearing loss progression as an example, we investigate three regression models and show that the modeling of latent clusters is a robust method for addressing the more challenging prediction scenarios. Overall, our findings suggest that there exist significant differences between various kinds of prediction tasks and that it is important to evaluate the merits of a predictive model relative to the specific purpose of a prediction task.
Analyzing data from open enrollment groups: current considerations and future directions.
Morgan-Lopez, Antonio A; Fals-Stewart, William
2008-07-01
Difficulties in modeling turnover in treatment-group membership have been cited as one of the major impediments to ecological validity of substance abuse and alcoholism treatment research. In this review, our primary foci are on (a) the discussion of approaches that draw on state-of-the-science analytic methods for modeling open-enrollment group data and (b) highlighting emerging issues that are critical to this relatively new area of methodological research (e.g., quantifying membership change, modeling "holiday" effects, and modeling membership change among group members and leaders). Continuing refinement of new modeling tools to address these analytic complexities may ultimately lead to the development of more federally funded open-enrollment trials. These developments may also facilitate the building of a "community-friendly" treatment research portfolio for funding agencies that support substance abuse and alcoholism treatment research.
Webber, Laura; Divajeva, Diana; Marsh, Tim; McPherson, Klim; Brown, Martin; Galea, Gauden; Breda, Joao
2014-01-01
Objective Non-communicable diseases (NCDs) are the biggest cause of death in Europe putting an unsustainable burden on already struggling health systems. Increases in obesity are a major cause of NCDs. This paper projects the future burden of coronary heart disease (CHD), stroke, type 2 diabetes and seven cancers by 2030 in 53 WHO European Region countries based on current and past body mass index (BMI) trends. It also tests the impact of obesity interventions on the future disease burden. Setting and participants Secondary data analysis of country-specific epidemiological data using a microsimulation modelling process. Interventions The effect of three hypothetical scenarios on the future burden of disease in 2030 was tested: baseline scenario, BMI trends go unchecked; intervention 1, population BMI decreases by 1%; intervention 2, BMI decreases by 5%. Primary and secondary outcome measures Quantifying the future burden of major NCDs and the impact of interventions on this future disease burden. Results By 2030 in the whole of the European region, the prevalence of diabetes, CHD and stroke and cancers was projected to reach an average of 3990, 4672 and 2046 cases/100 000, respectively. The highest prevalence of diabetes was predicted in Slovakia (10 870), CHD and stroke—in Greece (11 292) and cancers—in Finland (5615 cases/100 000). A 5% fall in population BMI was projected to significantly reduce cumulative incidence of diseases. The largest reduction in diabetes and CHD and stroke was observed in Slovakia (3054 and 3369 cases/100 000, respectively), and in cancers was predicted in Germany (331/100 000). Conclusions Modelling future disease trends is a useful tool for policymakers so that they can allocate resources effectively and implement policies to prevent NCDs. Future research will allow real policy interventions to be tested; however, better surveillance data on NCDs and their risk factors are essential for research and policy. PMID:25063459
Instrumentation and telemetry systems for free-flight drop model testing
NASA Technical Reports Server (NTRS)
Hyde, Charles R.; Massie, Jeffrey J.
1993-01-01
This paper presents instrumentation and telemetry system techniques used in free-flight research drop model testing at the NASA Langley Research Center. The free-flight drop model test technique is used to conduct flight dynamics research of high performance aircraft using dynamically scaled models. The free-flight drop model flight testing supplements research using computer analysis and wind tunnel testing. The drop models are scaled to approximately 20 percent of the size of the actual aircraft. This paper presents an introduction to the Free-Flight Drop Model Program which is followed by a description of the current instrumentation and telemetry systems used at the NASA Langley Research Center, Plum Tree Test Site. The paper describes three telemetry downlinks used to acquire the data, video, and radar tracking information from the model. Also described are two telemetry uplinks, one used to fly the model employing a ground-based flight control computer and a second to activate commands for visual tracking and parachute recovery of the model. The paper concludes with a discussion of free-flight drop model instrumentation and telemetry system development currently in progress for future drop model projects at the NASA Langley Research Center.
Research Needs for Wind Resource Characterization
NASA Astrophysics Data System (ADS)
Schreck, S. J.; Lundquist, J. K.; Shaw, W. J.
2008-12-01
Currently, wind energy provides about 1 percent of U.S. electricity generation. A recent analysis by DOE, NREL, and AWEA showed the feasibility of expanding U.S. wind energy capacity to 20 percent, comprising approximately 300 gigawatts. Though not a prediction of the future, this represents a plausible scenario for U.S. wind energy. To exploit these opportunities, a workshop on Research Needs for Wind Resource Characterization was held during January 2008. This event was organized on behalf of two DOE organizations; the Office of Biological and Environmental Research and the Office of Energy Efficiency and Renewable Energy. Over 120 atmospheric science and wind energy researchers attended the workshop from industry, academia, and federal laboratories in North America and Europe. Attendees identified problems that could impede achieving the 20 percent wind scenario and formulated research recommendations to attack these problems. Findings were structured into four focus areas: 1) Turbine Dynamics, 2) Micrositing and Array Effects, 3) Mesoscale Processes, and 4) Climate Effects. In the Turbine Dynamics area, detailed characterizations of inflows and turbine flow fields were deemed crucial to attaining accuracy levels in aerodynamics loads required for future designs. To address the complexities inherent in this area, an incremental approach involving hierarchical computational modeling and detailed measurements was recommended. Also recommended was work to model extreme and anomalous atmospheric inflow events and aerostructural responses of turbines to these events. The Micrositing and Array Effects area considered improved wake models important for large, multiple row wind plants. Planetary boundary layer research was deemed necessary to accurately determine inflow characteristics in the presence of atmospheric stability effects and complex surface characteristics. Finally, a need was identified to acquire and exploit large wind inflow data sets, covering heights to 200 meters and encompassing spatial and temporal resolution ranges unique to wind energy. The Mesoscale Processes area deemed improved understanding of mesoscale and local flows crucial to providing enhanced model outputs for wind energy production forecasts and wind plant siting. Modeling approaches need to be developed to resolve spatial scales in the 100 to 1000 meter range, a notable gap in current capabilities. Validation of these models will require new instruments and observational strategies, including augmented analyses of existing measurements. In the Climate Effects area, research was recommended to understand historical trends in wind resource variability. This was considered a prerequisite for improved predictions of future wind climate and resources, which would enable reliable wind resource estimation for future planning. Participants also considered it important to characterize interactions between wind plants and climates through modeling and observations that suitably emphasize atmospheric boundary layer dynamics. High-penetration wind energy deployment represents a crucial and attainable U.S. strategic objective. Achieving the 20 percent wind scenario will require an unprecedented ability for characterizing large wind turbines arrayed in gigawatt wind plants and extracting elevated energy levels from the atmosphere. DOE national laboratories, with industry and academia, represents a formidable capability for attaining these objectives.
Bartha, Erzsebet; Davidson, Thomas; Brodtkorb, Thor-Henrik; Carlsson, Per; Kalman, Sigridur
2013-07-09
A randomized, controlled trial, intended to include 460 patients, is currently studying peroperative goal-directed hemodynamic treatment (GDHT) of aged hip-fracture patients. Interim efficacy analysis performed on the first 100 patients was statistically uncertain; thus, the trial is continuing in accordance with the trial protocol. This raised the present investigation's main question: Is it reasonable to continue to fund the trial to decrease uncertainty? To answer this question, a previously developed probabilistic cost-effectiveness model was used. That model depicts (1) a choice between routine fluid treatment and GDHT, given uncertainty of current evidence and (2) the monetary value of further data collection to decrease uncertainty. This monetary value, that is, the expected value of perfect information (EVPI), could be used to compare future research costs. Thus, the primary aim of the present investigation was to analyze EVPI of an ongoing trial with interim efficacy observed. A previously developed probabilistic decision analytic cost-effectiveness model was employed to compare the routine fluid treatment to GDHT. Results from the interim analysis, published trials, the meta-analysis, and the registry data were used as model inputs. EVPI was predicted using (1) combined uncertainty of model inputs; (2) threshold value of society's willingness to pay for one, quality-adjusted life-year; and (3) estimated number of future patients exposed to choice between GDHT and routine fluid treatment during the expected lifetime of GDHT. If a decision to use GDHT were based on cost-effectiveness, then the decision would have a substantial degree of uncertainty. Assuming a 5-year lifetime of GDHT in clinical practice, the number of patients who would be subject to future decisions was 30,400. EVPI per patient would be €204 at a €20,000 threshold value of society's willingness to pay for one quality-adjusted life-year. Given a future population of 30,400 individuals, total EVPI would be €6.19 million. If future trial costs are below EVPI, further data collection is potentially cost-effective. When applying a cost-effectiveness model, statements such as 'further research is needed' are replaced with 'further research is cost-effective and 'further funding of a trial is justified'. ClinicalTrials.gov NCT01141894.
Some Considerations Necessary for a Viable Theory of Human Memory.
ERIC Educational Resources Information Center
Sietsema, Douglas J.
Empirical research is reviewed in the area of cognitive psychology pertaining to models of human memory. Research evidence and theoretical considerations are combined to develop guidelines for future theory development related to the human memory. The following theoretical constructs and variables are discussed: (1) storage versus process…
Simulation of a Schema Theory-Based Knowledge Delivery System for Scientists.
ERIC Educational Resources Information Center
Vaughan, W. S., Jr.; Mavor, Anne S.
A future, automated, interactive, knowledge delivery system for use by researchers was tested using a manual cognitive model. Conceptualized from schema/frame/script theories in cognitive psychology and artificial intelligence, this hypothetical system was simulated by two psychologists who interacted with four researchers in microbiology to…
Tomorrow's Research Library: Vigor or Rigor Mortis?
ERIC Educational Resources Information Center
Hacken, Richard D.
1988-01-01
Compares, contrasts, and critiques predictions that have been made about the future of research libraries, focusing on the impact of technology on the library's role and users' needs. The discussion includes models for the adaptation of new technologies that may assist in library planning and change. (38 references) (CLB)
The Social Change Model as Pedagogy: Examining Undergraduate Leadership Growth
ERIC Educational Resources Information Center
Buschlen, Eric; Dvorak, Robert
2011-01-01
Understanding whether leadership can be learned is important as many colleges and universities attempt to develop future leaders through a variety of programmatic efforts. Historic leadership research argues leadership is an innate skill. While contemporary leadership research tends to argue that leadership can be learned. The purpose of this…
University of Maryland MRSEC - Research: Seed 3
MRSEC Templates Opportunities Search Home » Research » Seed 3 Seed 3: Modeling Elastic Effects on controlling parameters and variables include temperature, deposition flux, external electric field and elastic simulating the effects of these controlling factors often lead to predictions that guide future experiments
Research and management issues in large-scale fire modeling
David L. Peterson; Daniel L. Schmoldt
2000-01-01
In 1996, a team of North American fire scientists and resource managers convened to assess the effects of fire disturbance on ecosystems and to develop scientific recommendations for future fire research and management activities. These recommendations - elicited with the Analytic Hierarchy Process - include numerically ranked scientific and managerial questions and...
Modern Psychometrics for Assessing Achievement Goal Orientation: A Rasch Analysis
ERIC Educational Resources Information Center
Muis, Krista R.; Winne, Philip H.; Edwards, Ordene V.
2009-01-01
Background: A program of research is needed that assesses the psychometric properties of instruments designed to quantify students' achievement goal orientations to clarify inconsistencies across previous studies and to provide a stronger basis for future research. Aim: We conducted traditional psychometric and modern Rasch-model analyses of the…
Preparing Current and Future Practitioners to Integrate Research in Real Practice Settings
ERIC Educational Resources Information Center
Thyer, Bruce A.
2015-01-01
Past efforts aimed at promoting a better integration between research and practice are reviewed. These include the empirical clinical practice movement (ECP), originating within social work; the empirically supported treatment (EST) initiative of clinical psychology; and the evidence-based practice (EBP) model developed within medicine. The…
DeAnda, Stephanie; Poulin-Dubois, Diane; Zesiger, Pascal; Friend, Margaret
2016-06-01
A rich body of work in adult bilinguals documents an interconnected lexical network across languages, such that early word retrieval is language independent. This literature has yielded a number of influential models of bilingual semantic memory. However, extant models provide limited predictions about the emergence of lexical organization in bilingual first language acquisition (BFLA). Empirical evidence from monolingual infants suggests that lexical networks emerge early in development as children integrate phonological and semantic information. These findings tell us little about the interaction between 2 languages in early bilingual memory. To date, an understanding of when and how languages interact in early bilingual development is lacking. In this literature review, we present research documenting lexical-semantic development across monolingual and bilingual infants. This is followed by a discussion of current models of bilingual language representation and organization and their ability to account for the available empirical evidence. Together, these theoretical and empirical accounts inform and highlight unexplored areas of research and guide future work on early bilingual memory. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Future Directions in Idiopathic Pulmonary Fibrosis Research. An NHLBI Workshop Report
Blackwell, Timothy S.; Tager, Andrew M.; Borok, Zea; Moore, Bethany B.; Schwartz, David A.; Anstrom, Kevin J.; Bar-Joseph, Ziv; Bitterman, Peter; Blackburn, Michael R.; Bradford, William; Brown, Kevin K.; Chapman, Harold A.; Collard, Harold R.; Cosgrove, Gregory P.; Deterding, Robin; Doyle, Ramona; Flaherty, Kevin R.; Garcia, Christine Kim; Hagood, James S.; Henke, Craig A.; Herzog, Erica; Hogaboam, Cory M.; Horowitz, Jeffrey C.; King, Talmadge E.; Loyd, James E.; Lawson, William E.; Marsh, Clay B.; Noble, Paul W.; Noth, Imre; Sheppard, Dean; Olsson, Julie; Ortiz, Luis A.; O’Riordan, Thomas G.; Oury, Tim D.; Raghu, Ganesh; Roman, Jesse; Sime, Patricia J.; Sisson, Thomas H.; Tschumperlin, Daniel; Violette, Shelia M.; Weaver, Timothy E.; Wells, Rebecca G.; White, Eric S.; Kaminski, Naftali; Martinez, Fernando J.; Wynn, Thomas A.; Thannickal, Victor J.
2014-01-01
The median survival of patients with idiopathic pulmonary fibrosis (IPF) continues to be approximately 3 years from the time of diagnosis, underscoring the lack of effective medical therapies for this disease. In the United States alone, approximately 40,000 patients die of this disease annually. In November 2012, the NHLBI held a workshop aimed at coordinating research efforts and accelerating the development of IPF therapies. Basic, translational, and clinical researchers gathered with representatives from the NHLBI, patient advocacy groups, pharmaceutical companies, and the U.S. Food and Drug Administration to review the current state of IPF research and identify priority areas, opportunities for collaborations, and directions for future research. The workshop was organized into groups that were tasked with assessing and making recommendations to promote progress in one of the following six critical areas of research: (1) biology of alveolar epithelial injury and aberrant repair; (2) role of extracellular matrix; (3) preclinical modeling; (4) role of inflammation and immunity; (5) genetic, epigenetic, and environmental determinants; (6) translation of discoveries into diagnostics and therapeutics. The workshop recommendations provide a basis for directing future research and strategic planning by scientific, professional, and patient communities and the NHLBI. PMID:24160862
Future directions in idiopathic pulmonary fibrosis research. An NHLBI workshop report.
Blackwell, Timothy S; Tager, Andrew M; Borok, Zea; Moore, Bethany B; Schwartz, David A; Anstrom, Kevin J; Bar-Joseph, Ziv; Bitterman, Peter; Blackburn, Michael R; Bradford, William; Brown, Kevin K; Chapman, Harold A; Collard, Harold R; Cosgrove, Gregory P; Deterding, Robin; Doyle, Ramona; Flaherty, Kevin R; Garcia, Christine Kim; Hagood, James S; Henke, Craig A; Herzog, Erica; Hogaboam, Cory M; Horowitz, Jeffrey C; King, Talmadge E; Loyd, James E; Lawson, William E; Marsh, Clay B; Noble, Paul W; Noth, Imre; Sheppard, Dean; Olsson, Julie; Ortiz, Luis A; O'Riordan, Thomas G; Oury, Tim D; Raghu, Ganesh; Roman, Jesse; Sime, Patricia J; Sisson, Thomas H; Tschumperlin, Daniel; Violette, Shelia M; Weaver, Timothy E; Wells, Rebecca G; White, Eric S; Kaminski, Naftali; Martinez, Fernando J; Wynn, Thomas A; Thannickal, Victor J; Eu, Jerry P
2014-01-15
The median survival of patients with idiopathic pulmonary fibrosis (IPF) continues to be approximately 3 years from the time of diagnosis, underscoring the lack of effective medical therapies for this disease. In the United States alone, approximately 40,000 patients die of this disease annually. In November 2012, the NHLBI held a workshop aimed at coordinating research efforts and accelerating the development of IPF therapies. Basic, translational, and clinical researchers gathered with representatives from the NHLBI, patient advocacy groups, pharmaceutical companies, and the U.S. Food and Drug Administration to review the current state of IPF research and identify priority areas, opportunities for collaborations, and directions for future research. The workshop was organized into groups that were tasked with assessing and making recommendations to promote progress in one of the following six critical areas of research: (1) biology of alveolar epithelial injury and aberrant repair; (2) role of extracellular matrix; (3) preclinical modeling; (4) role of inflammation and immunity; (5) genetic, epigenetic, and environmental determinants; (6) translation of discoveries into diagnostics and therapeutics. The workshop recommendations provide a basis for directing future research and strategic planning by scientific, professional, and patient communities and the NHLBI.
Dynamic interactions in neural networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arbib, M.A.; Amari, S.
The study of neural networks is enjoying a great renaissance, both in computational neuroscience, the development of information processing models of living brains, and in neural computing, the use of neurally inspired concepts in the construction of intelligent machines. This volume presents models and data on the dynamic interactions occurring in the brain, and exhibits the dynamic interactions between research in computational neuroscience and in neural computing. The authors present current research, future trends and open problems.
Elhai, Jon D; Palmieri, Patrick A
2011-08-01
We present an update of recent literature (since 2007) exploring the factor structure of posttraumatic stress disorder (PTSD) symptom measures. Research supporting a four-factor emotional numbing model and a four-factor dysphoria model is presented, with these models fitting better than all other models examined. Variables accounting for factor structure differences are reviewed, including PTSD query instructions, type of PTSD measure, extent of trauma exposure, ethnicity, and timing of administration. Methodological and statistical limitations with recent studies are presented. Finally, a research agenda and recommendations are offered to push this research area forward, including suggestions to validate PTSD’s factors against external measures of psychopathology, test moderators of factor structure, and examine heterogeneity of symptom presentations based on factor structure examination.
Psychological Perspectives on Pathways Linking Socioeconomic Status and Physical Health
Matthews, Karen A.; Gallo, Linda C.
2011-01-01
Low socioeconomic status (SES) is a reliable correlate of poor physical health. Rather than treat SES as a covariate, health psychology has increasingly focused on the psychobiological pathways that inform understanding why SES is related to physical health. This review assesses the status of research that has examined stress and its associated distress, and social and personal resources as pathways. It highlights work on biomarkers and biological pathways related to SES that can serve as intermediate outcomes in future studies. Recent emphasis on the accumulation of psychobiological risks across the life course is summarized and represents an important direction for future research. Studies that test pathways from SES to candidate psychosocial pathways to health outcomes are few in number but promising. Future research should test integrated models rather than taking piecemeal approaches to evidence. Much work remains to be done, but the questions are of great health significance. PMID:20636127
ERIC Educational Resources Information Center
Hodges, Nancy J.
2017-01-01
In January of 2016, the Council of Graduate Schools held a workshop in Washington, DC, on the "Future of the Dissertation." Papers given during the workshop promoted new models for doctoral education and related research practices, specifically focusing on the dissertation. Built on a tradition of apprenticeship, the monographic…
The Center for Sponsored Coastal Ocean Research (CSCOR) is addressing current and future impacts to ecological systems due to the long term effect of sea level rise due to climate change and subsidence on coastal ecosystems through the peer-reviewed research program, the Ecologic...
ERIC Educational Resources Information Center
Sturikova, Marina V.; Albrekht, Nina V.; Kondyurina, Irina M.; Rozhneva, Svetlana S.; Sankova, Larisa V.; Morozova, Elena S.
2016-01-01
The relevance of the research problem driven by the necessity of formation of future specialists' communicative competence as a component of professional competence with the aim of further professional mobility of graduates. The purpose of the article is to justify the possibility and necessity of formation of the required competencies in language…
ERIC Educational Resources Information Center
Dai, Zhongxin
2015-01-01
In the research on "New Characteristics of Future Basic Education in China," Dina Pei formulates a "three-powered" model to theorize about the characteristics of future basic education in China. The three powers refer to the "Policy-making Power" of the local educational administration, the "Leading Power"…
ERIC Educational Resources Information Center
Zholdasbekova, Saule; Nurzhanbayeva, Zhanat; Karatayev, Galymzhan; Akhmet, Laura Smatullaevna; Anarmetov, Bahitzhan
2016-01-01
In the article the author presents the theoretical understanding of research problems of training of the future teachers-organizers of the dual training system in vocational education & training (VET) in the conditions of the credit technology of education. The author's vision of way to solve the problem is discussed in the description of the…
Biomedical wellness challenges and opportunities
NASA Astrophysics Data System (ADS)
Tangney, John F.
2012-06-01
The mission of ONR's Human and Bioengineered Systems Division is to direct, plan, foster, and encourage Science and Technology in cognitive science, computational neuroscience, bioscience and bio-mimetic technology, social/organizational science, training, human factors, and decision making as related to future Naval needs. This paper highlights current programs that contribute to future biomedical wellness needs in context of humanitarian assistance and disaster relief. ONR supports fundamental research and related technology demonstrations in several related areas, including biometrics and human activity recognition; cognitive sciences; computational neurosciences and bio-robotics; human factors, organizational design and decision research; social, cultural and behavioral modeling; and training, education and human performance. In context of a possible future with automated casualty evacuation, elements of current science and technology programs are illustrated.
Identity-Based Motivation: Constraints and Opportunities in Consumer Research
Shavitt, Sharon; Torelli, Carlos J.; Wong, Jimmy
2009-01-01
This commentary underscores the integrative nature of the identity-based motivation model (Oyserman, 2009). We situate the model within existing literatures in psychology and consumer behavior, and illustrate its novel elements with research examples. Special attention is devoted to, 1) how product- and brand-based affordances constrain identity-based motivation processes and, 2) the mindsets and action tendencies that can be triggered by specific cultural identities in pursuit of consumer goals. Future opportunities are suggested for researching the antecedents of product meanings and relevant identities. PMID:20161045
FutureTox II: In vitro Data and In Silico Models for Predictive Toxicology
Knudsen, Thomas B.; Keller, Douglas A.; Sander, Miriam; Carney, Edward W.; Doerrer, Nancy G.; Eaton, David L.; Fitzpatrick, Suzanne Compton; Hastings, Kenneth L.; Mendrick, Donna L.; Tice, Raymond R.; Watkins, Paul B.; Whelan, Maurice
2015-01-01
FutureTox II, a Society of Toxicology Contemporary Concepts in Toxicology workshop, was held in January, 2014. The meeting goals were to review and discuss the state of the science in toxicology in the context of implementing the NRC 21st century vision of predicting in vivo responses from in vitro and in silico data, and to define the goals for the future. Presentations and discussions were held on priority concerns such as predicting and modeling of metabolism, cell growth and differentiation, effects on sensitive subpopulations, and integrating data into risk assessment. Emerging trends in technologies such as stem cell-derived human cells, 3D organotypic culture models, mathematical modeling of cellular processes and morphogenesis, adverse outcome pathway development, and high-content imaging of in vivo systems were discussed. Although advances in moving towards an in vitro/in silico based risk assessment paradigm were apparent, knowledge gaps in these areas and limitations of technologies were identified. Specific recommendations were made for future directions and research needs in the areas of hepatotoxicity, cancer prediction, developmental toxicity, and regulatory toxicology. PMID:25628403
Spanish/English Bilingual Codeswitching: A Syncretic Model.
ERIC Educational Resources Information Center
Becker, Kristin R.
1997-01-01
Presents a syncretic model to provide a stepping stone between current codeswitching literature and future research by analyzing the form that bilingual codeswitched utterances take, as well as the internal and external factors that trigger these codeswitches. Includes an analysis of three dimensions of bilingual codeswitching: linguistic,…
Technical Challenges and Solutions in Representing Lakes when using WRF in Downscaling Applications
The Weather Research and Forecasting (WRF) model is commonly used to make high resolution future projections of regional climate by downscaling global climate model (GCM) outputs. Because the GCM fields are typically at a much coarser spatial resolution than the target regional ...
Industry-Wide Workshop on Computational Turbulence Modeling
NASA Technical Reports Server (NTRS)
Shabbir, Aamir (Compiler)
1995-01-01
This publication contains the presentations made at the Industry-Wide Workshop on Computational Turbulence Modeling which took place on October 6-7, 1994. The purpose of the workshop was to initiate the transfer of technology developed at Lewis Research Center to industry and to discuss the current status and the future needs of turbulence models in industrial CFD.
[Research progress on real-time deformable models of soft tissues for surgery simulation].
Xu, Shaoping; Liu, Xiaoping; Zhang, Hua; Luo, Jie
2010-04-01
Biological tissues generally exhibit nonlinearity, anisotropy, quasi-incompressibility and viscoelasticity about material properties. Simulating the behaviour of elastic objects in real time is one of the current objectives of virtual surgery simulation which is still a challenge for researchers to accurately depict the behaviour of human tissues. In this paper, we present a classification of the different deformable models that have been developed. We present the advantages and disadvantages of each one. Finally, we make a comparison of deformable models and perform an evaluation of the state of the art and the future of deformable models.
Cost Optimization Model for Business Applications in Virtualized Grid Environments
NASA Astrophysics Data System (ADS)
Strebel, Jörg
The advent of Grid computing gives enterprises an ever increasing choice of computing options, yet research has so far hardly addressed the problem of mixing the different computing options in a cost-minimal fashion. The following paper presents a comprehensive cost model and a mixed integer optimization model which can be used to minimize the IT expenditures of an enterprise and help in decision-making when to outsource certain business software applications. A sample scenario is analyzed and promising cost savings are demonstrated. Possible applications of the model to future research questions are outlined.
Pervasive healthcare: paving the way for a pervasive, user-centered and preventive healthcare model.
Arnrich, B; Mayora, O; Bardram, J; Tröster, G
2010-01-01
The aging of the population creates pressure on the healthcare systems in various ways. A massive increase of chronic disease conditions and age-related illness are predicted as the dominant forces driving the future health care. The objective of this paper is to present future research demands in pervasive healthcare with the goal to meet the healthcare challenges by paving the way for a pervasive, user-centered and preventive healthcare model. This paper presents recent methodological approaches and proposes future research topics in three areas: i) pervasive, continuous and reliable long-term monitoring systems; ii) prevention through pervasive technology as a key element to maintain lifelong wellness; and iii) design and evaluation methods for ubiquitous, patient-centric technologies. Pervasive technology has been identified as a strong asset for achieving the vision of user-centered preventive healthcare. In order to make this vision a reality, new strategies for design, development and evaluation of technology have to find a common denominator and consequently interoperate. Moreover, the potential of pervasive healthcare technologies offers new opportunities beyond traditional disease treatment and may play a major role in prevention, e.g. motivate healthy behavior and disease prevention throughout all stages of life. In this sense, open challenges in future research have to be addressed such as the variability of health indicators between individuals and the manner in which relevant health indicators are provided to the users in order to maximize their motivation to mitigate or prevent unhealthy behaviors. Additionally, collecting evidence that pervasive technology improves health is seen as one of the toughest challenges. Promising approaches are recently introduced, such as "clinical proof-of-concept" and balanced observational studies. The paper concludes that pervasive healthcare will enable a paradigm shift from the established centralized healthcare model to a pervasive, user-centered and preventive overall lifestyle health management. In order to provide these new opportunities everywhere, anytime and to anyone, future research in the fields of pervasive sensing, pervasive prevention and evaluation of pervasive technology is inevitably needed.
Critical review: Uncharted waters? The future of the electricity-water nexus.
Sanders, Kelly T
2015-01-06
Electricity generation often requires large amounts of water, most notably for cooling thermoelectric power generators and moving hydroelectric turbines. This so-called "electricity-water nexus" has received increasing attention in recent years by governments, nongovernmental organizations, industry, and academics, especially in light of increasing water stress in many regions around the world. Although many analyses have attempted to project the future water requirements of electricity generation, projections vary considerably due to differences in temporal and spatial boundaries, modeling frameworks, and scenario definitions. This manuscript is intended to provide a critical review of recent publications that address the future water requirements of electricity production and define the factors that will moderate the water requirements of the electric grid moving forward to inform future research. The five variables identified include changes in (1) fuel consumption patterns, (2) cooling technology preferences, (3) environmental regulations, (4) ambient climate conditions, and (5) electric grid characteristics. These five factors are analyzed to provide guidance for future research related to the electricity-water nexus.
Andriessen, Iris; Phalet, Karen; Lens, Willy
2006-12-01
Cross-cultural research on minority school achievement yields mixed findings on the motivational impact of future goal setting for students from disadvantaged minority groups. Relevant and recent motivational research, integrating Future Time Perspective Theory with Self-Determination Theory, has not yet been validated among minority students. To replicate across cultures the known motivational benefits of perceived instrumentality and internal regulation by distant future goals; to clarify when and how the future motivates minority students' educational performance. Participants in this study were 279 minority students (100 of Turkish and 179 of Moroccan origin) and 229 native Dutch students in Dutch secondary schools. Participants rated the importance of future goals, their perceptions of instrumentality, their task motivation and learning strategies. Dependent measures and their functional relations with future goal setting were simultaneously validated across minority and non-minority students, using structural equation modelling in multiple groups. As expected, Positive Perceived Instrumentality for the future increases task motivation and (indirectly) adaptive learning of both minority and non-minority students. But especially internally regulating future goals are strongly related to more task motivation and indirectly to more adaptive learning strategies. Our findings throw new light on the role of future goal setting in minority school careers: distant future goals enhance minority and non-minority students' motivation and learning, if students perceive positive instrumentality and if their schoolwork is internally regulated by future goals.
Cognitive Attachment Model of Voices: Evidence Base and Future Implications
Berry, Katherine; Varese, Filippo; Bucci, Sandra
2017-01-01
There is a robust association between hearing voices and exposure to traumatic events. Identifying mediating mechanisms for this relationship is key to theories of voice hearing and the development of therapies for distressing voices. This paper outlines the Cognitive Attachment model of Voices (CAV), a theoretical model to understand the relationship between earlier interpersonal trauma and distressing voice hearing. The model builds on attachment theory and well-established cognitive models of voices and argues that attachment and dissociative processes are key psychological mechanisms that explain how trauma influences voice hearing. Following the presentation of the model, the paper will review the current state of evidence regarding the proposed mechanisms of vulnerability to voice hearing and maintenance of voice-related distress. This review will include evidence from studies supporting associations between dissociation and voices, followed by details of our own research supporting the role of dissociation in mediating the relationship between trauma and voices and evidence supporting the role of adult attachment in influencing beliefs and relationships that voice hearers can develop with voices. The paper concludes by outlining the key questions that future research needs to address to fully test the model and the clinical implications that arise from the work. PMID:28713292
The BGC Feedbacks Scientific Focus Area 2016 Annual Progress Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoffman, Forrest M.; Riley, William J.; Randerson, James T.
2016-06-01
The BGC Feedbacks Project will identify and quantify the feedbacks between biogeochemical cycles and the climate system, and quantify and reduce the uncertainties in Earth System Models (ESMs) associated with those feedbacks. The BGC Feedbacks Project will contribute to the integration of the experimental and modeling science communities, providing researchers with new tools to compare measurements and models, thereby enabling DOE to contribute more effectively to future climate assessments by the U.S. Global Change Research Program (USGCRP) and the Intergovernmental Panel on Climate Change (IPCC).
Electrical Systems Analysis at NASA Glenn Research Center: Status and Prospects
NASA Technical Reports Server (NTRS)
Freeh, Joshua E.; Liang, Anita D.; Berton, Jeffrey J.; Wickenheiser, Timothy J.
2003-01-01
An analysis of an electrical power and propulsion system for a 2-place general aviation aircraft is presented to provide a status of such modeling at NASA Glenn Research Center. The thermodynamic/ electrical model and mass prediction tools are described and the resulting system power and mass are shown. Three technology levels are used to predict the effect of advancements in component technology. Methods of fuel storage are compared by mass and volume. Prospects for future model development and validation at NASA as well as possible applications are also summarized.
Predicting future protection of respirator users: Statistical approaches and practical implications.
Hu, Chengcheng; Harber, Philip; Su, Jing
2016-01-01
The purpose of this article is to describe a statistical approach for predicting a respirator user's fit factor in the future based upon results from initial tests. A statistical prediction model was developed based upon joint distribution of multiple fit factor measurements over time obtained from linear mixed effect models. The model accounts for within-subject correlation as well as short-term (within one day) and longer-term variability. As an example of applying this approach, model parameters were estimated from a research study in which volunteers were trained by three different modalities to use one of two types of respirators. They underwent two quantitative fit tests at the initial session and two on the same day approximately six months later. The fitted models demonstrated correlation and gave the estimated distribution of future fit test results conditional on past results for an individual worker. This approach can be applied to establishing a criterion value for passing an initial fit test to provide reasonable likelihood that a worker will be adequately protected in the future; and to optimizing the repeat fit factor test intervals individually for each user for cost-effective testing.
NASA Astrophysics Data System (ADS)
Harun, R.
2013-05-01
This research provides an opportunity of collaboration between urban planners and modellers by providing a clear theoretical foundations on the two most widely used urban land use models, and assessing the effectiveness of applying the models in urban planning context. Understanding urban land cover change is an essential element for sustainable urban development as it affects ecological functioning in urban ecosystem. Rapid urbanization due to growing inclination of people to settle in urban areas has increased the complexities in predicting that at what shape and size cities will grow. The dynamic changes in the spatial pattern of urban landscapes has exposed the policy makers and environmental scientists to great challenge. But geographic science has grown in symmetry to the advancements in computer science. Models and tools are developed to support urban planning by analyzing the causes and consequences of land use changes and project the future. Of all the different types of land use models available in recent days, it has been found by researchers that the most frequently used models are Cellular Automaton (CA) and Artificial Neural Networks (ANN) models. But studies have demonstrated that the existing land use models have not been able to meet the needs of planners and policy makers. There are two primary causes identified behind this prologue. First, there is inadequate understanding of the fundamental theories and application of the models in urban planning context i.e., there is a gap in communication between modellers and urban planners. Second, the existing models exclude many key drivers in the process of simplification of the complex urban system that guide urban spatial pattern. Thus the models end up being effective in assessing the impacts of certain land use policies, but cannot contribute in new policy formulation. This paper is an attempt to increase the knowledge base of planners on the most frequently used land use model and also assess the relative effectiveness of the two models, ANN and CA, in urban planning. The questions that are addressed in this research are: a) What makes ANN models different from CA models?; b) Which model has higher accuracy in predicting future urban land use change?; and c) Are the models effective enough in guiding urban land use policies and strategies? The models that are used for this research are Multilayer Perceptron (MLP) and CA model, available in IDRISI Taiga. Since, the objective is to perform a comparative analysis and draw general inferences irrespective of specific urban policies, the availability of data was given more emphasis over the selection of particular location. Urban area in Massachusetts was chosen to conduct the study due to data availability. Extensive literature review was performed to understand the functionality of the two models. The models were applied to predict future changes and the accuracy assessment was performed using standard matrix. Inferences were drawn about the applicability of the models in urban planning context along with recommendations. This research will not only develop understanding of land use models among urban planners, but also will create an environment of coupled research between planners and modellers.
Saini, B; Krass, I; Smith, L; Bosnic-Anticevich, S; Armour, C
2011-01-01
Asthma is one of the most common chronic conditions affecting the Australian population. Amongst primary healthcare professionals, pharmacists are the most accessible and this places pharmacists in an excellent position to play a role in the management of asthma. Globally, trials of many community pharmacy-based asthma care models have provided evidence that pharmacist delivered interventions can improve clinical, humanistic and economic outcomes for asthma patients. In Australia, a decade of coordinated research efforts, in various aspects of asthma care, has culminated in the implementation trial of the Pharmacy Asthma Management Service (PAMS), a comprehensive disease management model.There has been research investigating asthma medication adherence through data mining, ways in which usual asthma care can be improved. Our research has focused on self-management education, inhaler technique interventions, spirometry trials, interprofessional models of care, and regional trials addressing the particular needs of rural communities. We have determined that inhaler technique education is a necessity and should be repeated if correct technique is to be maintained. We have identified this effectiveness of health promotion and health education, conducted within and outside the confines of the pharmacy, in public for a and settings such as schools, and established that this outreach role is particularly well received and increases the opportunity for people with asthma to engage in their asthma management.Our research has identified that asthma patients have needs which pharmacists delivering specialized models of care, can address. There is a lot of evidence for the effectiveness of asthma care by pharmacists, the future must involve integration of this role into primary care.
Crellin, Nadia E.; Orrell, Martin; McDermott, Orii; Charlesworth, Georgina
2014-01-01
Objectives: This review aims to explore the role of self-efficacy (SE) in the health-related quality of life (QoL) of family carers of people with dementia. Methods: A systematic review of literature identified a range of qualitative and quantitative studies. Search terms related to caring, SE, and dementia. Narrative synthesis was adopted to synthesise the findings. Results: Twenty-two studies met the full inclusion criteria, these included 17 quantitative, four qualitative, and one mixed-method study. A model describing the role of task/domain-specific SE beliefs in family carer health-related QoL was constructed. This model was informed by review findings and discussed in the context of existing conceptual models of carer adaptation and empirical research. Review findings offer support for the application of the SE theory to caring and for the two-factor view of carer appraisals and well-being. Findings do not support the independence of the negative and positive pathways. The review was valuable in highlighting methodological challenges confronting this area of research, particularly the conceptualisation and measurement issues surrounding both SE and health-related QoL. Conclusions: The model might have theoretical implications in guiding future research and advancing theoretical models of caring. It might also have clinical implications in facilitating the development of carer support services aimed at improving SE. The review highlights the need for future research, particularly longitudinal research, and further exploration of domain/task-specific SE beliefs, the influence of carer characteristics, and other mediating/moderating variables. PMID:24943873
Recent progress and future direction of cancer epidemiological research in Japan.
Sobue, Tomotaka
2015-06-01
In 2006, the Cancer Control Act was approved and a Basic Plan, to Promote the Cancer Control Program at the national level, was developed in 2007. Cancer research is recognized as a fundamental component to provide evidence in cancer control program. Cancer epidemiology plays central role in connecting research and policy, since it directly deals with data from humans. Research for cancer epidemiology in Japan made substantial progress, in the field of descriptive studies, cohort studies, intervention studies and activities for summarizing evidences. In future, promoting high-quality large-scale intervention studies, individual-level linkage studies, simulation models and studies for elderly population will be of great importance, but at the same time research should be promoted in well-balanced fashion not placing too much emphasis on one particular research field. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Patient Derived Xenograft Models: An Emerging Platform for Translational Cancer Research
Hidalgo, Manuel; Amant, Frederic; Biankin, Andrew V.; Budinská, Eva; Byrne, Annette T.; Caldas, Carlos; Clarke, Robert B.; de Jong, Steven; Jonkers, Jos; Mælandsmo, Gunhild Mari; Roman-Roman, Sergio; Seoane, Joan; Trusolino, Livio; Villanueva, Alberto
2014-01-01
Recently, there has been increasing interest in the development and characterization of patient derived tumor xenograft (PDX) models for cancer research. PDX models mostly retain the principal histological and genetic characteristics of their donor tumor and remain stable across passages. These models have been shown to be predictive of clinical outcomes and are being used for preclinical drug evaluation, biomarker identification, biological studies, and personalized medicine strategies. This paper summarizes the current state of the art in this field including methodological issues, available collections, practical applications, challenges and shortcoming, and future directions, and introduces a European consortium of PDX models. PMID:25185190
NASA Lewis Research Center's Program on Icing Research
NASA Technical Reports Server (NTRS)
Reinmann, J. J.; Shaw, R. J.; Olsen, W. A., Jr.
1982-01-01
The helicopter and general aviation, light transport, and commercial transport aircraft share common icing requirements: highly effective, lightweight, low power consuming deicing systems, and detailed knowledge of the aeropenalties due to ice on aircraft surfaces. To meet current and future needs, NASA has a broadbased icing research program which covers both research and engineering applications, and is well coordinated with the FAA, DOD, universities, industry, and some foreign governments. Research activity in ice protection systems, icing instrumentation, experimental methods, analytical modeling, and in-flight research are described.
Ensemble averaging and stacking of ARIMA and GSTAR model for rainfall forecasting
NASA Astrophysics Data System (ADS)
Anggraeni, D.; Kurnia, I. F.; Hadi, A. F.
2018-04-01
Unpredictable rainfall changes can affect human activities, such as in agriculture, aviation, shipping which depend on weather forecasts. Therefore, we need forecasting tools with high accuracy in predicting the rainfall in the future. This research focus on local forcasting of the rainfall at Jember in 2005 until 2016, from 77 rainfall stations. The rainfall here was not only related to the occurrence of the previous of its stations, but also related to others, it’s called the spatial effect. The aim of this research is to apply the GSTAR model, to determine whether there are some correlations of spatial effect between one to another stations. The GSTAR model is an expansion of the space-time model that combines the time-related effects, the locations (stations) in a time series effects, and also the location it self. The GSTAR model will also be compared to the ARIMA model that completely ignores the independent variables. The forcested value of the ARIMA and of the GSTAR models then being combined using the ensemble forecasting technique. The averaging and stacking method of ensemble forecasting method here provide us the best model with higher acuracy model that has the smaller RMSE (Root Mean Square Error) value. Finally, with the best model we can offer a better local rainfall forecasting in Jember for the future.
Regenerative life support system research
NASA Technical Reports Server (NTRS)
1988-01-01
Sections on modeling, experimental activities during the grant period, and topics under consideration for the future are contained. The sessions contain discussions of: four concurrent modeling approaches that were being integrated near the end of the period (knowledge-based modeling support infrastructure and data base management, object-oriented steady state simulations for three concepts, steady state mass-balance engineering tradeoff studies, and object-oriented time-step, quasidynamic simulations of generic concepts); interdisciplinary research activities, beginning with a discussion of RECON lab development and use, and followed with discussions of waste processing research, algae studies and subsystem modeling, low pressure growth testing of plants, subsystem modeling of plants, control of plant growth using lighting and CO2 supply as variables, search for and development of lunar soil simulants, preliminary design parameters for a lunar base life support system, and research considerations for food processing in space; and appendix materials, including a discussion of the CELSS Conference, detailed analytical equations for mass-balance modeling, plant modeling equations, and parametric data on existing life support systems for use in modeling.
Simulating potato gas exchange as influenced by CO2 and irrigation
USDA-ARS?s Scientific Manuscript database
Recent research suggests that an energy balance approach is required for crop models to adequately respond to current and future climatic conditions associated with elevated CO2, higher temperatures, and water scarcity. More realistic models are needed in order to understand the impact of, and deve...
A Model for Intelligent Computer-Aided Education Systems.
ERIC Educational Resources Information Center
Du Plessis, Johan P.; And Others
1995-01-01
Proposes a model for intelligent computer-aided education systems that is based on cooperative learning, constructive problem-solving, object-oriented programming, interactive user interfaces, and expert system techniques. Future research is discussed, and a prototype for teaching mathematics to 10- to 12-year-old students is appended. (LRW)
Toward an Expanded Definition of Adaptive Decision Making.
ERIC Educational Resources Information Center
Phillips, Susan D.
1997-01-01
Uses the lifespan, life-space model to examine the definition of adaptive decision making. Reviews the existing definition of adaptive decision making as "rational" decision making and offers alternate perspectives on decision making with an emphasis on the implications of using the model. Makes suggestions for future theory, research,…
Exact Analysis of Squared Cross-Validity Coefficient in Predictive Regression Models
ERIC Educational Resources Information Center
Shieh, Gwowen
2009-01-01
In regression analysis, the notion of population validity is of theoretical interest for describing the usefulness of the underlying regression model, whereas the presumably more important concept of population cross-validity represents the predictive effectiveness for the regression equation in future research. It appears that the inference…
Weather Research and Forecasting (WRF) meteorological data are used for USEPA multimedia air and water quality modeling applications, within the CMAQ modeling system to estimate wet deposition and to evaluate future climate and land-use scenarios. While it is not expected that hi...
NASA Astrophysics Data System (ADS)
Iyer, Gokul; Edmonds, James
2018-05-01
Quantitative scenarios from energy-economic models inform decision-making about uncertain futures. Now, research shows the different ways these scenarios are subsequently used by users not involved in their initial development. In the absence of clear guidance from modellers, users may place too much or too little confidence in scenario assumptions and results.
A Model for Web-based Information Systems in E-Retailing.
ERIC Educational Resources Information Center
Wang, Fang; Head, Milena M.
2001-01-01
Discusses the use of Web-based information systems (WIS) by electronic retailers to attract and retain consumers and deliver business functions and strategy. Presents an abstract model for WIS design in electronic retailing; discusses customers, business determinants, and business interface; and suggests future research. (Author/LRW)
A Bibliometric Analysis on Cancer Population Science with Topic Modeling.
Li, Ding-Cheng; Rastegar-Mojarad, Majid; Okamoto, Janet; Liu, Hongfang; Leichow, Scott
2015-01-01
Bibliometric analysis is a research method used in library and information science to evaluate research performance. It applies quantitative and statistical analyses to describe patterns observed in a set of publications and can help identify previous, current, and future research trends or focus. To better guide our institutional strategic plan in cancer population science, we conducted bibliometric analysis on publications of investigators currently funded by either Division of Cancer Preventions (DCP) or Division of Cancer Control and Population Science (DCCPS) at National Cancer Institute. We applied two topic modeling techniques: author topic modeling (AT) and dynamic topic modeling (DTM). Our initial results show that AT can address reasonably the issues related to investigators' research interests, research topic distributions and popularities. In compensation, DTM can address the evolving trend of each topic by displaying the proportion changes of key words, which is consistent with the changes of MeSH headings.
Agent-Based Modeling in Public Health: Current Applications and Future Directions.
Tracy, Melissa; Cerdá, Magdalena; Keyes, Katherine M
2018-04-01
Agent-based modeling is a computational approach in which agents with a specified set of characteristics interact with each other and with their environment according to predefined rules. We review key areas in public health where agent-based modeling has been adopted, including both communicable and noncommunicable disease, health behaviors, and social epidemiology. We also describe the main strengths and limitations of this approach for questions with public health relevance. Finally, we describe both methodologic and substantive future directions that we believe will enhance the value of agent-based modeling for public health. In particular, advances in model validation, comparisons with other causal modeling procedures, and the expansion of the models to consider comorbidity and joint influences more systematically will improve the utility of this approach to inform public health research, practice, and policy.
Mitigating Insider Sabotage and Espionage: A Review of the United States Air Force’s Current Posture
2009-03-01
published on ins ider threat, to include the variables that come into play and historical case studies. Existing insider threat models are discussed ...problem, including the initial development of a logical da ta mod el and a system dynamics model. This chapter also discusses the selection of the...Finally, Chapter V provides a summary of the research along with a discussion of its conclusions and impact. Recommendations for future research
Goel, Sonu; V Kumar, Ajay M; Aggarwal, Arun Kumar; Singh, Rana J; Lal, Pranay; Kumar, Ravinder; Gupta, Madhu; Dogra, Vishal; Gupta, Deepti
2018-01-01
Several competing priorities with health and development sector currently deter research, and as a result of which evidence does not drive policy- or decision-making. There is limited operational research (OR) within the India's National Tobacco Control Programme, as it is in other middle- and low-income countries, primarily due to limited capacity and skills in undertaking OR and lack of dedicated funding. Few models of OR have been developed to meet the needs of different settings; however, they were found to be costly and time-consuming. To elucidate a cost-effective and less resource arduous training model for building capacity in OR focused on tobacco control. This 5½-day partly funded course enrolled 15 participants across the country and nine facilitators. The facilitator-participants interactions were initiated 2 weeks before the course, which enabled them to develop possible research questions and a plan for data analysis. This article presents the new OR model along with experiences of the participants which will provide useful insights on lessons learned for planning similar courses in the future. While we faced several challenges in the process and the outputs were modest, several lessons were learned which will be instrumental in the future courses that we are planning to conduct. This low cost and less time intensive model can be applied in similar settings across range of public health issues.
Developing a scalable modeling architecture for studying survivability technologies
NASA Astrophysics Data System (ADS)
Mohammad, Syed; Bounker, Paul; Mason, James; Brister, Jason; Shady, Dan; Tucker, David
2006-05-01
To facilitate interoperability of models in a scalable environment, and provide a relevant virtual environment in which Survivability technologies can be evaluated, the US Army Research Development and Engineering Command (RDECOM) Modeling Architecture for Technology Research and Experimentation (MATREX) Science and Technology Objective (STO) program has initiated the Survivability Thread which will seek to address some of the many technical and programmatic challenges associated with the effort. In coordination with different Thread customers, such as the Survivability branches of various Army labs, a collaborative group has been formed to define the requirements for the simulation environment that would in turn provide them a value-added tool for assessing models and gauge system-level performance relevant to Future Combat Systems (FCS) and the Survivability requirements of other burgeoning programs. An initial set of customer requirements has been generated in coordination with the RDECOM Survivability IPT lead, through the Survivability Technology Area at RDECOM Tank-automotive Research Development and Engineering Center (TARDEC, Warren, MI). The results of this project are aimed at a culminating experiment and demonstration scheduled for September, 2006, which will include a multitude of components from within RDECOM and provide the framework for future experiments to support Survivability research. This paper details the components with which the MATREX Survivability Thread was created and executed, and provides insight into the capabilities currently demanded by the Survivability faculty within RDECOM.
“Humanized mice for HIV and AIDS research”
Garcia, J. Victor
2016-01-01
HIV has a very limited species tropism that prevents the use of most conventional small animal models for AIDS research. The in vivo analysis of HIV/AIDS has benefited extensively from novel chimeric animal models that accurately recapitulate key aspects of the human condition. Specifically, immunodeficient mice that are systemically repopulated with human hematolymphoid cells offer a viable alternative for the study of a multitude of highly relevant aspects of HIV replication, pathogenesis, therapy, transmission, prevention, and eradication. This article summarizes some of the multiple contributions that humanized mouse models of HIV infection have made to the field of AIDS research. These models have proven to be highly informative and hold great potential for accelerating multiple aspects of HIV research in the future. PMID:27447446
Animal models of aging research: implications for human aging and age-related diseases.
Mitchell, Sarah J; Scheibye-Knudsen, Morten; Longo, Dan L; de Cabo, Rafael
2015-01-01
Aging is characterized by an increasing morbidity and functional decline that eventually results in the death of an organism. Aging is the largest risk factor for numerous human diseases, and understanding the aging process may thereby facilitate the development of new treatments for age-associated diseases. The use of humans in aging research is complicated by many factors, including ethical issues; environmental and social factors; and perhaps most importantly, their long natural life span. Although cellular models of human disease provide valuable mechanistic information, they are limited in that they may not replicate the in vivo biology. Almost all organisms age, and thus animal models can be useful for studying aging. Herein, we review some of the major models currently used in aging research and discuss their benefits and pitfalls, including interventions known to extend life span and health span. Finally, we conclude by discussing the future of animal models in aging research.
Sánchez-Johnsen, Lisa; Escamilla, Julia; Rodriguez, Erin M; Vega, Susan; Bolaños, Liliana
2015-01-01
Many behavioral health materials have not been translated into Spanish. Of those that are available in Spanish, some of them have not been translated correctly, many are only appropriate for a subgroup of Latinos, and/or multiple versions of the same materials exist. This article describes an innovative model of conducting bilingual English-Spanish translations as part of community-based participatory research studies and provides recommendations based on this model. In this article, the traditional process of conducting bilingual translations is reviewed, and an innovative model for conducting translations in collaboration with community partners is described. Finally, recommendations for conducting future health research studies with community partners are provided. Researchers, health care providers, educators, and community partners will benefit from learning about this innovative model that helps produce materials that are more culturally appropriate than those that are produced with the most commonly used method of conducting translations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horng, Jao-Jia; Lee, R.F.; Liao, K.Y.
2004-03-31
Using a system dynamic model (SDM), such as STELLA, to analyze the waste management policy is a new trial for Taiwan's research communities. We have developed an easy and relatively accurate model for analyzing the greenhouse gases emission for the wastes from animal farming and municipalities. With the local research data of the past decade, we extract the most prominent factors and assemble the SDM. The results and scenarios were compared with the national inventory. By comparing to the past data, we found these models reasonably represent the situation in Taiwan. However, SDM can program many scenarios and produce amore » lot of prediction data. With the development of many program control tools on STELLA, we believe the models could be further used by researchers or policy-makers to find the needed research topics, to set the future scenarios and to determine the management tools.« less
Ynalvez, Ruby; Garza-Gongora, Claudia; Ynalvez, Marcus Antonius; Hara, Noriko
2014-01-01
Although doctoral mentors recognize the benefits of providing quality advisement and close guidance, those of sharing project management responsibilities with mentees are still not well recognized. We observed that mentees, who have the opportunity to co-manage projects, generate more written output. Here we examine the link between research productivity, doctoral mentoring practices (DMP), and doctoral research experiences (DRE) of mentees in programs in the non-West. Inspired by previous findings that early career productivity is a strong predictor of later productivity, we examine the research productivity of 210 molecular biology doctoral students in selected programs in Japan, Singapore, and Taiwan. Using principal component (PC) analysis, we derive two sets of PCs: one set from 15 DMP and another set from 16 DRE items. We model research productivity using Poisson and negative-binomial regression models with these sets as predictors. Our findings suggest a need to re-think extant practices and to allocate resources toward professional career development in training future scientists. We contend that doctoral science training must not only be an occasion for future scientists to learn scientific and technical skills, but it must also be the opportunity to experience, to acquire, and to hone research management skills. © 2014 The International Union of Biochemistry and Molecular Biology.
Physiology of motion sickness symptoms
NASA Technical Reports Server (NTRS)
Harm, Deborah L.
1990-01-01
Motion sickness research is reviewed with the emphasis placed on theories developed to explain its symptomatology. A general review of central nervous system, autonomic nervous system, and neuroendocrine system involvement in the syndrome. Particular attention is given to signs, symptoms, and physiological correlates, methodological issues, and directions for future research based on a dynamic interactive systems model.
ERIC Educational Resources Information Center
Georges, Jane M.; Gonzales, Lucia; Aube, Patti; Connelly, Cynthia D.
2013-01-01
Collaborations between diverse Catholic organizations will be important in fulfilling the goals contained in the Institute of Medicine (IOM) 2010 document, "The Future of Nursing: Leading Change, Advancing Health." This article describes a qualitative research study examining the partnership between a graduate-level school of nursing in…
Creating a New Definition of Library Cooperation: Past, Present, and Future Models.
ERIC Educational Resources Information Center
Lenzini, Rebecca T.; Shaw, Ward
1991-01-01
Describes the creation and purpose of the Colorado Alliance of Research Libraries (CARL), the subsequent development of CARL Systems, and its current research projects. Topics discussed include online catalogs; UnCover, a journal article database; full text data; document delivery; visual images in computer systems; networks; and implications for…
The Social Stress Model of Substance Abuse among Childbearing-Age Women: A Review of the Literature.
ERIC Educational Resources Information Center
Lindenberg, Cathy Strachan; And Others
1994-01-01
This article synthesizes current empirical evidence for the interaction between stress level, stress modification, and drug abuse. The authors analyze 13 research studies of women; and they profile consistencies and inconsistencies in the findings, provide critiques of key methodological issues, and examine implications for future research,…
Integrating Practice-to-Theory and Theory-to-Practice
ERIC Educational Resources Information Center
Johnson, R. Burke; Stefurak, Tres
2012-01-01
In "Towards a systemic theory of gifted education", Ziegler and Phillipson offer a useful critique of current research and the current paradigm in gifted education. They provide an interesting and useful merging of systems theory with their actiotope model, and using this paradigm they suggest many fruitful areas for future research. However, the…
Climate change and health modeling: horses for courses.
Ebi, Kristie L; Rocklöv, Joacim
2014-01-01
Mathematical and statistical models are needed to understand the extent to which weather, climate variability, and climate change are affecting current and may affect future health burdens in the context of other risk factors and a range of possible development pathways, and the temporal and spatial patterns of any changes. Such understanding is needed to guide the design and the implementation of adaptation and mitigation measures. Because each model projection captures only a narrow range of possible futures, and because models serve different purposes, multiple models are needed for each health outcome ('horses for courses'). Multiple modeling results can be used to bracket the ranges of when, where, and with what intensity negative health consequences could arise. This commentary explores some climate change and health modeling issues, particularly modeling exposure-response relationships, developing early warning systems, projecting health risks over coming decades, and modeling to inform decision-making. Research needs are also suggested.
Team Modelling: Literature Review
2006-08-01
elucidating this complex topic . The report concludes that four areas of future team research are particularly germane to the needs of the Canadian Forces...provide a shield for team members that are not performing at high levels (Bowers, Pharmer and Salas, 2000),. Some researchers have suggested that...mid level, performance is high . Other research has explored the relationship between team turnover and the accumulation of knowledge within teams
Harper, D C
1991-10-01
Significant research perspectives in investigating chronic illness and disability are presented. Historical research conceptualizations in childhood disability are reviewed and newer contexts for evaluating disorder are presented. Future research in childhood illness and disability is directed toward basing investigations on theoretical models and promoting prospective longitudinal programs. Pediatric psychologists are encouraged to consider more collaborative efforts to move the field forward systematically.
3D Data Acquisition Platform for Human Activity Understanding
2016-03-02
3D data. The support for the acquisition of such research instrumentation have significantly facilitated our current and future research and educate ...SECURITY CLASSIFICATION OF: In this project, we incorporated motion capture devices, 3D vision sensors, and EMG sensors to cross validate...multimodality data acquisition, and address fundamental research problems of representation and invariant description of 3D data, human motion modeling and
ERIC Educational Resources Information Center
Whitman Inst., San Francisco, CA.
This document contains an edited transcript of a forum held as part of a research project called Thinkahead, which was designed to serve as a catalyst for developing educational models that will prepare people to think more critically and creatively in the world of the future. The forum participants, all business people concerned about the ways in…
ERIC Educational Resources Information Center
Tenopir, Carol; Dalton, Elizabeth D.; Christian, Lisa; Jones, Misty K.; McCabe, Mark; Smith, MacKenzie; Fish, Allison
2017-01-01
The viability of gold open access publishing models into the future will depend, in part, on the attitudes of authors toward open access (OA). In a survey of academics at four major research universities in North America, we examine academic authors' opinions and behaviors toward gold OA. The study allows us to see what academics know and perceive…
ERIC Educational Resources Information Center
Gillian-Daniel, Donald L.; Walz, Kenneth A.
2016-01-01
Over the past decade, the University of Wisconsin-Madison (UW-Madison) and Madison Area Technical College (Madison College) partnered to create an internship pathway for graduate students pursuing careers as future science, technology, engineering and math (STEM) faculty members. Since 2003, 10 doctoral students from the university completed…
Crop area estimation based on remotely-sensed data with an accurate but costly subsample
NASA Technical Reports Server (NTRS)
Gunst, R. F.
1985-01-01
Research activities conducted under the auspices of National Aeronautics and Space Administration Cooperative Agreement NCC 9-9 are discussed. During this contract period research efforts are concentrated in two primary areas. The first are is an investigation of the use of measurement error models as alternatives to least squares regression estimators of crop production or timber biomass. The secondary primary area of investigation is on the estimation of the mixing proportion of two-component mixture models. This report lists publications, technical reports, submitted manuscripts, and oral presentation generated by these research efforts. Possible areas of future research are mentioned.
An assessment of global meteorological droughts based on HAPPI experiments
NASA Astrophysics Data System (ADS)
Liu, Wenbin; Sun, Fubao; Lim, Wee Ho; Zhang, Jie
2017-04-01
Droughts caused water shortages could lead to serious consequences on the socioeconomic and environmental well-being. In the context of changing climate, droughts monitoring, attributions and impact assessments have been performed using observations (e.g., Sun et al., 2012; Zhang et al., 2016) and climate model projections (e.g., Liu et al., 2016, 2017); with expectation that such scientific knowledge would feed into long-term adaptation and mitigation plans to tackle potentially unfavorable future drought impacts in a warming world. Inspired by the 2015 Paris Agreement, the HAPPI (Half a degree Additional warming, Projections, Prognosis and Impacts) experiments were set up to better inform international policymakers about the socioeconomic and environmental impacts under less severe global warming conditions. This study aims to understand the potential shift in meteorological droughts from the past into the future on a global scale. Based on the HAPPI data, we evaluate the change in drought related indices (i.e., PET/P, PDSI) from the past to the future scenarios (1.5 and 2 degrees Celsius warming). Here we present some early results (MIROC5 as demonstration) on identified hotspots and discuss the differences in severity of droughts between these warming worlds and associated consequences. References: Liu W, and Sun F, 2017. Projecting and attributing future changes of evaporative demand over China in CMIP5 climate models, Journal of Hydrometeorology, doi: 10.1175/JHM-D-16-0204.1 Liu W, and Sun F, 2016. Assessing estimates of evaporative demand in climate models using observed pan evaporation over China. Journal of Geophysical Research-Atmosphere 121, 8329-8349 Zhang J, Sun F, Xu J, Chen Y, Sang Y, -F, and Liu C, 2016. Dependence of trends in and sensitivity of drought over China (1961-2013) on potential evaporation model. Geophysical Research Letters 43, 206-213 Sun F, Roderick M, Farquhar G, 2012. Changes in the variability of global land precipitation. Geophysical Research Letters 39, L19402
NASA Astrophysics Data System (ADS)
Pasten-Zapata, Ernesto; Jones, Julie; Moggridge, Helen
2015-04-01
As climate change is expected to generate variations on the Earth's precipitation and temperature, the water cycle will also experience changes. Consequently, water users will have to be prepared for possible changes in future water availability. The main objective of this research is to evaluate the impacts of climate change on river regimes and the implications to the operation and feasibility of run of the river hydropower schemes by analyzing four UK study sites. Run of the river schemes are selected for analysis due to their higher dependence to the available river flow volumes when compared to storage hydropower schemes that can rely on previously accumulated water volumes (linked to poster in session HS5.3). Global Climate Models (GCMs) represent the main tool to assess future climate change. In this research, Regional Climate Models (RCMs), which dynamically downscale GCM outputs providing higher resolutions, are used as starting point to evaluate climate change within the study catchments. RCM daily temperature and precipitation will be downscaled to an appropriate scale for impact studies and bias corrected using different statistical methods: linear scaling, local intensity scaling, power transformation, variance scaling and delta change correction. The downscaled variables will then be coupled to hydrological models that have been previously calibrated and validated against observed daily river flow data. The coupled hydrological and climate models will then be used to simulate historic river flows that are compared to daily observed values in order to evaluate the model accuracy. As this research will employ several different RCMs (from the EURO-CORDEX simulations), downscaling and bias correction methodologies, greenhouse emission scenarios and hydrological models, the uncertainty of each element will be estimated. According to their uncertainty magnitude, a prediction of the best downscaling approach (or approaches) is expected to be obtained. The current progress of the project will be presented along with the steps to be followed in the future.
NASA Astrophysics Data System (ADS)
McCray, Wilmon Wil L., Jr.
The research was prompted by a need to conduct a study that assesses process improvement, quality management and analytical techniques taught to students in U.S. colleges and universities undergraduate and graduate systems engineering and the computing science discipline (e.g., software engineering, computer science, and information technology) degree programs during their academic training that can be applied to quantitatively manage processes for performance. Everyone involved in executing repeatable processes in the software and systems development lifecycle processes needs to become familiar with the concepts of quantitative management, statistical thinking, process improvement methods and how they relate to process-performance. Organizations are starting to embrace the de facto Software Engineering Institute (SEI) Capability Maturity Model Integration (CMMI RTM) Models as process improvement frameworks to improve business processes performance. High maturity process areas in the CMMI model imply the use of analytical, statistical, quantitative management techniques, and process performance modeling to identify and eliminate sources of variation, continually improve process-performance; reduce cost and predict future outcomes. The research study identifies and provides a detail discussion of the gap analysis findings of process improvement and quantitative analysis techniques taught in U.S. universities systems engineering and computing science degree programs, gaps that exist in the literature, and a comparison analysis which identifies the gaps that exist between the SEI's "healthy ingredients " of a process performance model and courses taught in U.S. universities degree program. The research also heightens awareness that academicians have conducted little research on applicable statistics and quantitative techniques that can be used to demonstrate high maturity as implied in the CMMI models. The research also includes a Monte Carlo simulation optimization model and dashboard that demonstrates the use of statistical methods, statistical process control, sensitivity analysis, quantitative and optimization techniques to establish a baseline and predict future customer satisfaction index scores (outcomes). The American Customer Satisfaction Index (ACSI) model and industry benchmarks were used as a framework for the simulation model.
The role of scripts in psychological maladjustment and psychotherapy.
Demorest, Amy P
2013-12-01
This article considers the value of script theory for understanding psychological maladjustment and psychotherapy. Scripts are implicit expectations that individuals develop to understand and deal with emotionally significant life experiences. Script theory provides a way to understand the complex patterns of thinking, feeling, and behavior that characterize personal consistency, as well as a way to address personality development and change. As such it is a vital model for understanding both personality and clinical phenomena. The article begins by describing script theory and noting similar models in personality and clinical psychology. It then outlines both idiographic and nomothetic methods for assessing scripts and discusses the strengths and weaknesses of each. A survey of the author's program of research follows, using a nomothetic method to examine the role of interpersonal scripts in psychological maladjustment and psychotherapy. The article concludes by presenting a promising method for future research synthesizing idiographic and nomothetic approaches and raising important questions for future research on the role of scripts in psychological maladjustment and psychotherapy. © 2012 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Cook, B.; Anchukaitis, K. J.
2017-12-01
Comparative analyses of paleoclimate reconstructions and climate model simulations can provide valuable insights into past and future climate events. Conducting meaningful and quantitative comparisons, however, can be difficult for a variety of reasons. Here, we use tree-ring based hydroclimate reconstructions to discuss some best practices for paleoclimate-model comparisons, highlighting recent studies that have successfully used this approach. These analyses have improved our understanding of the Medieval-era megadroughts, ocean forcing of large scale drought patterns, and even climate change contributions to future drought risk. Additional work is needed, however, to better reconcile and formalize uncertainties across observed, modeled, and reconstructed variables. In this regard, process based forward models of proxy-systems will likely be a critical tool moving forward.
Jones, Marian Moser; Roy, Kevin
2017-10-01
Purpose This article offers constructive commentary on The Life Course Health and Development Model (LCHD) as an organizing framework for MCH research. Description The LCHD has recently been proposed as an organizing framework for MCH research. This model integrates biomedical, biopsychosocial, and life course frameworks, to explain how "individual health trajectories" develop over time. In this article, we propose that the LCHD can improve its relevance to MCH policy and practice by: (1) placing individual health trajectories within the context of family health trajectories, which unfold within communities and societies, over historical and generational time; and (2) placing greater weight on the social determinants that shape health development trajectories of individuals and families to produce greater or lesser health equity. Assessment We argue that emphasizing these nested, historically specific social contexts in life course models will enrich study design and data analysis for future developmental science research, will make the LCHD model more relevant in shaping MCH policy and interventions, and will guard against its application as a deterministic framework. Specific ways to measure these and examples of how they can be integrated into the LCHD model are articulated. Conclusion Research applying the LCHD should incorporate the specific family and socio-historical contexts in which development occurs to serve as a useful basis for policy and interventions. Future longitudinal studies of maternal and child health should include collection of time-dependent data related to family environment and other social determinants of health, and analyze the impact of historical events and trends on specific cohorts.
Aging and orthopedics: how a lifespan development model can inform practice and research.
Gautreau, Sylvia; Gould, Odette N; Forsythe, Michael E
2016-08-01
Orthopedic surgical care, like all health care today, is in flux owing to an aging population and to chronic medical conditions leading to an increased number of people with illnesses that need to be managed over the lifespan. The result is an ongoing shift from curing acute illnesses to the management and care of chronic illness and conditions. Theoretical models that provide a useful and feasible vision for the future of health care and health care research are needed. This review discusses how the lifespan development model used in some disciplines within the behavioural sciences can be seen as an extension of the biopsychosocial model. We posit that the lifespan development model provides useful perspectives for both orthopedic care and research. We present key concepts and recommendations, and we discuss how the lifespan development model can contribute to new and evolving perspectives on orthopedic outcomes and to new directions for research. We also offer practical guidelines on how to implement the model in orthopedic practice.
Quiet Clean Short Haul Experimental Engine
1973-02-21
Program manager Carl Ciepluch poses with a model of the Quiet Clean Short Haul Experimental Engine (QCSEE) conceived by the National Aeronautics and Space Administration (NASA) Lewis Research Center. The QCSEE engine was designed to power future short-distance transport aircraft without generating significant levels of noise or pollution and without hindering performance. The engines were designed to be utilized on aircraft operating from small airports with short runways. Lewis researchers investigated two powered-lift designs and an array of new technologies to deal with the shorter runways. Lewis contracted General Electric to design the two QCSEE engines—one with over-the-wing power-lift and one with an under-the-wing design. A scale model of the over-the-wing engine was tested in the Full Scale Tunnel at the Langley Research Center in 1975 and 1976. Lewis researchers investigated both versions in a specially-designed test stand, the Engine Noise Test Facility, on the hangar apron. The QCSEE engines met the goals set out by the NASA researchers. The aircraft industry, however, never built the short-distance transport aircraft for which the engines were intended. Different technological elements of the engine, however, were applied to some future General Electric engines.
Modeling Future Fire danger over North America in a Changing Climate
NASA Astrophysics Data System (ADS)
Jain, P.; Paimazumder, D.; Done, J.; Flannigan, M.
2016-12-01
Fire danger ratings are used to determine wildfire potential due to weather and climate factors. The Fire Weather Index (FWI), part of the Canadian Forest Fire Danger Rating System (CFFDRS), incorporates temperature, relative humidity, windspeed and precipitation to give a daily fire danger rating that is used by wildfire management agencies in an operational context. Studies using GCM output have shown that future wildfire danger will increase in a warming climate. However, these studies are somewhat limited by the coarse spatial resolution (typically 100-400km) and temporal resolution (typically 6-hourly to monthly) of the model output. Future wildfire potential over North America based on FWI is calculated using output from the Weather, Research and Forecasting (WRF) model, which is used to downscale future climate scenarios from the bias-corrected Community Climate System Model (CCSM) under RCP8.5 scenarios at a spatial resolution of 36km. We consider five eleven year time slices: 1990-2000, 2020-2030, 2030-2040, 2050-2060 and 2080-2090. The dynamically downscaled simulation improves determination of future extreme weather by improving both spatial and temporal resolution over most GCM models. To characterize extreme fire weather we calculate annual numbers of spread days (days for which FWI > 19) and annual 99th percentile of FWI. Additionally, an extreme value analysis based on the peaks-over-threshold method allows us to calculate the return values for extreme FWI values.
NASA Astrophysics Data System (ADS)
Evans, B. J. K.; Foster, C.; Minchin, S. A.; Pugh, T.; Lewis, A.; Wyborn, L. A.; Evans, B. J.; Uhlherr, A.
2014-12-01
The National Computational Infrastructure (NCI) has established a powerful in-situ computational environment to enable both high performance computing and data-intensive science across a wide spectrum of national environmental data collections - in particular climate, observational data and geoscientific assets. This paper examines 1) the computational environments that supports the modelling and data processing pipelines, 2) the analysis environments and methods to support data analysis, and 3) the progress in addressing harmonisation of the underlying data collections for future transdisciplinary research that enable accurate climate projections. NCI makes available 10+ PB major data collections from both the government and research sectors based on six themes: 1) weather, climate, and earth system science model simulations, 2) marine and earth observations, 3) geosciences, 4) terrestrial ecosystems, 5) water and hydrology, and 6) astronomy, social and biosciences. Collectively they span the lithosphere, crust, biosphere, hydrosphere, troposphere, and stratosphere. The data is largely sourced from NCI's partners (which include the custodians of many of the national scientific records), major research communities, and collaborating overseas organisations. The data is accessible within an integrated HPC-HPD environment - a 1.2 PFlop supercomputer (Raijin), a HPC class 3000 core OpenStack cloud system and several highly connected large scale and high-bandwidth Lustre filesystems. This computational environment supports a catalogue of integrated reusable software and workflows from earth system and ecosystem modelling, weather research, satellite and other observed data processing and analysis. To enable transdisciplinary research on this scale, data needs to be harmonised so that researchers can readily apply techniques and software across the corpus of data available and not be constrained to work within artificial disciplinary boundaries. Future challenges will involve the further integration and analysis of this data across the social sciences to facilitate the impacts across the societal domain, including timely analysis to more accurately predict and forecast future climate and environmental state.
McCracken, Lance M; Trost, Zina
2014-01-01
Accumulating evidence suggests that the experience of injustice in patients with chronic pain is associated with poorer pain-related outcomes. Despite this evidence, a theoretical framework to understand this relationship is presently lacking. This review is the first to propose that the psychological flexibility model underlying Acceptance and Commitment Therapy (ACT) may provide a clinically useful conceptual framework to understand the association between the experience of injustice and chronic pain outcomes. A literature review was conducted to identify research and theory on the injustice experience in chronic pain, chronic pain acceptance, and ACT. Research relating injustice to chronic pain outcomes is summarised, the relevance of psychological flexibility to the injustice experience is discussed, and the subprocesses of psychological flexibility are proposed as potential mediating factors in the relationship between injustice and pain outcomes. Application of the psychological flexibility model to the experience of pain-related injustice may provide new avenues for future research and clinical interventions for patients with pain. Summary points • Emerging research links the experience of pain-related injustice to problematic pain outcomes. • A clinically relevant theoretical framework is currently lacking to guide future research and intervention on pain-related injustice. • The psychological flexibility model would suggest that the overarching process of psychological inflexibility mediates between the experience of injustice and adverse chronic pain outcomes. • Insofar as the processes of psychological inflexibility account for the association between injustice experiences and pain outcomes, methods of Acceptance and Commitment Therapy (ACT) may reduce the impact of injustice of pain outcomes. • Future research is needed to empirically test the proposed associations between the experience of pain-related injustice, psychological flexibility and pain outcomes, and whether ACT interventions mitigate the impact of pain-related injustice on pain outcomes. PMID:26516537
Contingency Theories of Leadership: A Study.
ERIC Educational Resources Information Center
Saha, Sunhir K.
1979-01-01
Some of the major contingency theories of leadership are reviewed; some results from the author's study of Fiedler's contingency model are reported; and some thoughts for the future of leadership research are provided. (Author/MLF)
Research of Trust Chain of Operating System
NASA Astrophysics Data System (ADS)
Li, Hongjiao; Tian, Xiuxia
Trust chain is one of the key technologies in designing secure operating system based on TC technology. Constructions of trust chain and trust models are analyzed. Future works in these directions are discussed.
Chen, Hai; Liang, Xiaoying; Li, Rui
2013-01-01
Multi-Agent Systems (MAS) offer a conceptual approach to include multi-actor decision making into models of land use change. Through the simulation based on the MAS, this paper tries to show the application of MAS in the micro scale LUCC, and reveal the transformation mechanism of difference scale. This paper starts with a description of the context of MAS research. Then, it adopts the Nested Spatial Choice (NSC) method to construct the multi-scale LUCC decision-making model. And a case study for Mengcha village, Mizhi County, Shaanxi Province is reported. Finally, the potentials and drawbacks of the following approach is discussed and concluded. From our design and implementation of the MAS in multi-scale model, a number of observations and conclusions can be drawn on the implementation and future research directions. (1) The use of the LUCC decision-making and multi-scale transformation framework provides, according to us, a more realistic modeling of multi-scale decision making process. (2) By using continuous function, rather than discrete function, to construct the decision-making of the households is more realistic to reflect the effect. (3) In this paper, attempts have been made to give a quantitative analysis to research the household interaction. And it provides the premise and foundation for researching the communication and learning among the households. (4) The scale transformation architecture constructed in this paper helps to accumulate theory and experience for the interaction research between the micro land use decision-making and the macro land use landscape pattern. Our future research work will focus on: (1) how to rational use risk aversion principle, and put the rule on rotation between household parcels into model. (2) Exploring the methods aiming at researching the household decision-making over a long period, it allows us to find the bridge between the long-term LUCC data and the short-term household decision-making. (3) Researching the quantitative method and model, especially the scenario analysis model which may reflect the interaction among different household types.
NASA Astrophysics Data System (ADS)
Gray, D.; Estes, M. G., Jr.; Griffin, R.; Estes, S. M.
2017-12-01
As the global urban population rapidly increases, many wild species lose habitat to human development. The Western Cape of South Africa contains one of Earth's 35 biodiversity hotspots, with remarkably high levels of species richness and endemism. Understanding the relationship between anthropogenic changes and key species in this region is crucial for conservation of its threatened ecosystems. The objective of this research was to investigate the effect that climate change and urbanization each have on habitat suitability of the Cape Vulture. This research utilized NASA satellite data and crowdsourced species sightings to model past, current, and future habitat suitability for this key species in the Western Cape. Data used from NASA Earth Observations included: Landsat 8- derived Land Cover, Modis Land Surface Temperature, Digital Elevation Models from the Shuttle Radar Topography Mission, and precipitation data which integrated in-situ stations with Infrared data. Species observations were sourced from the Global Biodiversity Information Facility online database. A geospatial modelling framework was used to generate maps of present, past and future suitable habitats for analysis and comparison. Changes in precipitation and temperature may be a factor in the extreme loss of habitat since 1995, and predict even more drastic loss in the future. This research provides insights on anthropogenic effects on a species' range which may be used to inform discussions of conservation as an element of environmentally sustainable development.
Review of Dynamic Modeling and Simulation of Large Scale Belt Conveyor System
NASA Astrophysics Data System (ADS)
He, Qing; Li, Hong
Belt conveyor is one of the most important devices to transport bulk-solid material for long distance. Dynamic analysis is the key to decide whether the design is rational in technique, safe and reliable in running, feasible in economy. It is very important to study dynamic properties, improve efficiency and productivity, guarantee conveyor safe, reliable and stable running. The dynamic researches and applications of large scale belt conveyor are discussed. The main research topics, the state-of-the-art of dynamic researches on belt conveyor are analyzed. The main future works focus on dynamic analysis, modeling and simulation of main components and whole system, nonlinear modeling, simulation and vibration analysis of large scale conveyor system.
Suldovsky, Brianne
2016-05-01
Despite mounting criticism, the deficit model remains an integral part of science communication research and practice. In this article, I advance three key factors that contribute to the idea of the public deficit in science communication, including the purpose of science communication, how communication processes and outcomes are conceptualized, and how science and scientific knowledge are defined. Affording science absolute epistemic privilege, I argue, is the most compelling factor contributing to the continued use of the deficit model. In addition, I contend that the deficit model plays a necessary, though not sufficient, role in science communication research and practice. Areas for future research are discussed. © The Author(s) 2016.
Beischel, Kelly P; Hart, Julie; Turkelson, Sandra L
2016-01-01
Multisite education research projects have many benefits as well as perceived barriers. In this article, we share our experiences with a multisite education research project and the barriers we overcame to reap the benefits. The outcome of our research resulted in increased rigor, role-modeling professional collaboration, and promotion of future multisite education studies. The strategies presented in this article will help alleviate perceived barriers and ameliorate the process of conducting multisite education research studies.
Review of the status of learning in research on sport education: future research and practice.
Araújo, Rui; Mesquita, Isabel; Hastie, Peter A
2014-12-01
Research concerning Sport Education's educational impact has shown unequivocal results according to students' personal and social development. Nevertheless, research is still sparse with respect to the model's impact on student learning outcomes. The goal of the present review is to therefore scrutinize what is currently known regarding students' learning during their participation in Sport Education. This research spans a variety of studies, cross various countries, school grades, the sports studied, as well as the methods applied and dimensions of student learning analyzed. While research on the impact of Sport Education on students' learning, as well as teachers' and students' perceptions about student learning has shown students' improvements during the participation in Sport Education seasons, there is still considerable variance in these results. For example, some studies report superior learning opportunities to boys and higher skill-level students while other studies have identified superior learning opportunities for girls and lower skill-level students. These inconsistent results can be explained by factors not considered in the Sport Education research, such as the effect of time on students' learning and the control of the teaching-learning process within Sport Education units. In this review directions for future research and practice are also described. Future research should define, implement, and evaluate protocols for student-coaches' preparation in order to understand the influence of this issue on students' learning as well as consider the implementation of hybrid approaches. Moreover, future studies should consider the interaction of gender and skill level and a retention test in the analysis of students' learning improvements in order to obtain a more realist and complete portrait of the impact of Sport Education. Finally, in order to reach an entirely understanding of the teaching-learning process, it is necessary to use research designs that attend to the complexity of this process. Key PointsDespite research regarding has showed students' improvements during the participation in Sport Education seasons, it remains somewhat equivocal.The studies included in this review show students' improvements on skill, knowledge and tactical development, as we as game play, during the participation in Sport Education units.Some studies report superior learning opportunities to boys and higher skill-level students while other studies exposed superior learning opportunities to girls and lower skill-level students.The effect of time on students' learning and the control of the teaching-learning process within Sport Education units can explain these equivocal results.Future research is encouraged to consider the implementation of protocols for student-coaches' preparation, hybrid models, a retention test, the interaction of gender and skill level, and use research designs that attend to the complexity of the teaching-learning process.
Animal models for rotator cuff repair.
Lebaschi, Amir; Deng, Xiang-Hua; Zong, Jianchun; Cong, Guang-Ting; Carballo, Camila B; Album, Zoe M; Camp, Christopher; Rodeo, Scott A
2016-11-01
Rotator cuff (RC) injuries represent a significant source of pain, functional impairment, and morbidity. The large disease burden of RC pathologies necessitates rapid development of research methodologies to treat these conditions. Given their ability to model anatomic, biomechanical, cellular, and molecular aspects of the human RC, animal models have played an indispensable role in reducing injury burden and advancing this field of research for many years. The development of animal models in the musculoskeletal (MSK) research arena is uniquely different from that in other fields in that the similarity of macrostructures and functions is as critical to replicate as cellular and molecular functions. Traditionally, larger animals have been used because of their anatomic similarity to humans and the ease of carrying out realistic surgical procedures. However, refinement of current molecular methods, introduction of novel research tools, and advancements in microsurgical techniques have increased the applicability of small animal models in MSK research. In this paper, we review RC animal models and emphasize a murine model that may serve as a valuable instrument for future RC tendon repair investigations. © 2016 New York Academy of Sciences.
Bellen, Hugo J; Tong, Chao; Tsuda, Hiroshi
2010-07-01
Discoveries in fruit flies have greatly contributed to our understanding of neuroscience. The use of an unparalleled wealth of tools, many of which originated between 1910–1960, has enabled milestone discoveries in nervous system development and function. Such findings have triggered and guided many research efforts in vertebrate neuroscience. After 100 years, fruit flies continue to be the choice model system for many neuroscientists. The combinational use of powerful research tools will ensure that this model organism will continue to lead to key discoveries that will impact vertebrate neuroscience.
Development and Validation of a Comprehensive Work-Related Needs Measure.
Gallagher, Vickie C; Maher, Liam P; Gallagher, Kevin P; Valle, Matthew
2017-01-01
In a work context, employees tend to gravitate toward situations that are most conducive to meeting their needs. The purpose of this research is threefold. First, we define and specify the psychological needs under investigation, briefly highlight extant research, and differentiate needs from other individual difference variables. Second, we demonstrate the limitations of one of the most highly cited psychological needs instruments and introduce a new needs model. Third, we develop and evaluate a multi-dimensional needs inventory using a multi-study design. The strengths and limitations of the proposed and tested model are discussed, as are implications for future research.
Bellen, Hugo J; Tong, Chao; Tsuda, Hiroshi
2014-01-01
Discoveries in fruit flies have greatly contributed to our understanding of neuroscience. The use of an unparalleled wealth of tools, many of which originated between 1910–1960, has enabled milestone discoveries in nervous system development and function. Such findings have triggered and guided many research efforts in vertebrate neuroscience. After 100 years, fruit flies continue to be the choice model system for many neuroscientists. The combinational use of powerful research tools will ensure that this model organism will continue to lead to key discoveries that will impact vertebrate neuroscience. PMID:20383202
Small, La Fleur F
2011-09-01
Understanding the factors that influence differing types of health care utilization within vulnerable groups can serve as a basis for projecting future health care needs, forecasting future health care expenditures, and influencing social policy. In this article the Behavioral Model for Vulnerable Populations is used to evaluate discretionary (physician visits) and non-discretionary (emergency room visits, and hospitalizations) health utilization patterns of a sample of 1466 respondents with one or more vulnerable health classification. Reported vulnerabilities include: (1) persons with substance disorders; (2) homeless persons; (3) persons with mental health problems; (4) victims of violent crime; (5) persons diagnosed with HIV/AIDS; (6) and persons in receipt of public benefits. Hierarchical logistic regression is used on three nested models to model factors that influence physician visits, emergency room visits, and hospitalizations. Additionally, bivariate logistic regression analyses are completed using a vulnerability index to evaluate the impact of increased numbers of vulnerability on all three forms of health care utilization. Findings from this study suggest the Behavioral Model of Vulnerable Populations be employed in future research regarding health care utilization patterns among vulnerable populations. This article encourages further research investigating the cumulative effect of health vulnerabilities on the use of non-discretionary services so that this behavior could be better understood and appropriate social policies and behavioral interventions implemented.
Correlations in fertility across generations: can low fertility persist?
Kolk, Martin; Cownden, Daniel; Enquist, Magnus
2014-03-22
Correlations in family size across generations could have a major influence on human population size in the future. Empirical studies have shown that the associations between the fertility of parents and the fertility of children are substantial and growing over time. Despite their potential long-term consequences, intergenerational fertility correlations have largely been ignored by researchers. We present a model of the fertility transition as a cultural process acting on new lifestyles associated with fertility. Differences in parental and social influences on the acquisition of these lifestyles result in intergenerational correlations in fertility. We show different scenarios for future population size based on models that disregard intergenerational correlations in fertility, models with fertility correlations and a single lifestyle, and models with fertility correlations and multiple lifestyles. We show that intergenerational fertility correlations will result in an increase in fertility over time. However, present low-fertility levels may persist if the rapid introduction of new cultural lifestyles continues into the future.
Correlations in fertility across generations: can low fertility persist?
Kolk, Martin; Cownden, Daniel; Enquist, Magnus
2014-01-01
Correlations in family size across generations could have a major influence on human population size in the future. Empirical studies have shown that the associations between the fertility of parents and the fertility of children are substantial and growing over time. Despite their potential long-term consequences, intergenerational fertility correlations have largely been ignored by researchers. We present a model of the fertility transition as a cultural process acting on new lifestyles associated with fertility. Differences in parental and social influences on the acquisition of these lifestyles result in intergenerational correlations in fertility. We show different scenarios for future population size based on models that disregard intergenerational correlations in fertility, models with fertility correlations and a single lifestyle, and models with fertility correlations and multiple lifestyles. We show that intergenerational fertility correlations will result in an increase in fertility over time. However, present low-fertility levels may persist if the rapid introduction of new cultural lifestyles continues into the future. PMID:24478294
Placing biodiversity in ecosystem models without getting lost in translation
NASA Astrophysics Data System (ADS)
Queirós, Ana M.; Bruggeman, Jorn; Stephens, Nicholas; Artioli, Yuri; Butenschön, Momme; Blackford, Jeremy C.; Widdicombe, Stephen; Allen, J. Icarus; Somerfield, Paul J.
2015-04-01
A key challenge to progressing our understanding of biodiversity's role in the sustenance of ecosystem function is the extrapolation of the results of two decades of dedicated empirical research to regional, global and future landscapes. Ecosystem models provide a platform for this progression, potentially offering a holistic view of ecosystems where, guided by the mechanistic understanding of processes and their connection to the environment and biota, large-scale questions can be investigated. While the benefits of depicting biodiversity in such models are widely recognized, its application is limited by difficulties in the transfer of knowledge from small process oriented ecology into macro-scale modelling. Here, we build on previous work, breaking down key challenges of that knowledge transfer into a tangible framework, highlighting successful strategies that both modelling and ecology communities have developed to better interact with one another. We use a benthic and a pelagic case-study to illustrate how aspects of the links between biodiversity and ecosystem process have been depicted in marine ecosystem models (ERSEM and MIRO), from data, to conceptualisation and model development. We hope that this framework may help future interactions between biodiversity researchers and model developers by highlighting concrete solutions to common problems, and in this way contribute to the advance of the mechanistic understanding of the role of biodiversity in marine (and terrestrial) ecosystems.
Methodological development for selection of significant predictors explaining fatal road accidents.
Dadashova, Bahar; Arenas-Ramírez, Blanca; Mira-McWilliams, José; Aparicio-Izquierdo, Francisco
2016-05-01
Identification of the most relevant factors for explaining road accident occurrence is an important issue in road safety research, particularly for future decision-making processes in transport policy. However model selection for this particular purpose is still an ongoing research. In this paper we propose a methodological development for model selection which addresses both explanatory variable and adequate model selection issues. A variable selection procedure, TIM (two-input model) method is carried out by combining neural network design and statistical approaches. The error structure of the fitted model is assumed to follow an autoregressive process. All models are estimated using Markov Chain Monte Carlo method where the model parameters are assigned non-informative prior distributions. The final model is built using the results of the variable selection. For the application of the proposed methodology the number of fatal accidents in Spain during 2000-2011 was used. This indicator has experienced the maximum reduction internationally during the indicated years thus making it an interesting time series from a road safety policy perspective. Hence the identification of the variables that have affected this reduction is of particular interest for future decision making. The results of the variable selection process show that the selected variables are main subjects of road safety policy measures. Published by Elsevier Ltd.
Read, Jessica; Pincus, Tamar
2004-12-01
Depressive symptoms are common in chronic pain. Previous research has found differences in information-processing biases in depressed pain patients and depressed people without pain. The schema enmeshment model of pain (SEMP) has been proposed to explain chronic pain patients' information-processing biases. Negative future thinking is common in depression but has not been explored in relation to chronic pain and information-processing models. The study aimed to test the SEMP with reference to future thinking. An information-processing paradigm compared endorsement and recall bias between depressed and non-depressed chronic low back pain patients and control participants. Twenty-five depressed and 35 non-depressed chronic low back pain patients and 25 control participants (student osteopaths) were recruited from an osteopathy practice. Participants were asked to endorse positive and negative ill-health, depression-related, and neutral (control) adjectives, encoded in reference to either current or future time-frame. Incidental recall of the adjectives was then tested. While the expected hypothesis of a recall bias by depressed pain patients towards ill-health stimuli in the current condition was confirmed, the recall bias was not present in the future condition. Additionally, patterns of endorsement and recall bias differed. Results extend understanding of future thinking in chronic pain within the context of the SEMP.
PTSD symptoms and sexual harassment: the role of attributions and perceived control.
Larsen, Sadie E; Fitzgerald, Louise F
2011-09-01
Researchers have compiled significant evidence demonstrating that sexual harassment leads to psychological harm, including the full symptom picture of PTSD, but few have examined the psychological processes involved. Research on attributions among trauma victims would suggest that causal attributions and perceptions of control may be important predictors of outcomes. The authors discuss a study involving a path model that used data from 189 women involved in sexual harassment litigation. Results indicate that both self-blame and harasser blame were positively related to PTSD symptoms. Control over recovery and the perception that future harassment is unlikely were both related to fewer PTSD symptoms. Unexpectedly, perceived control over future harassment is related to higher levels of PTSD symptoms. Implications for research and practice are discussed.
Space Electrochemical Research and Technology (SERT), 1989
NASA Technical Reports Server (NTRS)
Baldwin, Richard S. (Editor)
1989-01-01
The proceedings of NASA's second Space Electrochemical Research and Technology Conference are presented. The objectives of the conference were to examine current technologies, research efforts, and advanced ideas, and to identify technical barriers which affect the advancement of electrochemical energy storage systems for space applications. The conference provided a forum for the exchange of ideas and opinions of those actively involved in the field, with the intention of coalescing views and findings into conclusions on progress in the field, prospects for future advances, areas overlooked, and the directions of future efforts. Related overviews were presented in the areas of NASA advanced mission models. Papers were presented and workshops conducted in four technical areas: advanced concepts, hydrogen-oxygen fuel cells and electrolyzers, the nickel electrode, and advanced rechargable batteries.
Informatics in clinical research in oncology: current state, challenges, and a future perspective.
Chahal, Amar P S
2011-01-01
The informatics landscape of clinical trials in oncology has changed significantly in the last 10 years. The current state of the infrastructure for clinical trial management, execution, and data management is reviewed. The systems, their functionality, the users, and the standards available to researchers are discussed from the perspective of the oncologist-researcher. Challenges in complexity and in the processing of information are outlined. These challenges include the lack of communication and information-interchange between systems, the lack of simplified standards, and the lack of implementation and adherence to the standards that are available. The clinical toxicology criteria from the National Cancer Institute (CTCAE) are cited as a successful standard in oncology, and HTTP on the Internet is referenced for its simplicity. Differences in the management of information standards between industries are discussed. Possible future advances in oncology clinical research informatics are addressed. These advances include strategic policy review of standards and the implementation of actions to make standards free, ubiquitous, simple, and easily interpretable; the need to change from a local data-capture- or transaction-driven model to a large-scale data-interpretation model that provides higher value to the oncologist and the patient; and the need for information technology investment in a readily available digital educational model for clinical research in oncology that is customizable for individual studies. These new approaches, with changes in information delivery to mobile platforms, will set the stage for the next decade in clinical research informatics.
Mouri, Goro; Nakano, Katsuhiro; Tsuyama, Ikutaro; Tanaka, Nobuyuki
2016-08-01
Forest disturbance (or land-cover change) and climatic variability are commonly recognised as two major drivers interactively influencing hydrology in forested watersheds. Future climate changes and corresponding changes in forest type and distribution are expected to generate changes in rainfall runoff that pose a threat to river catchments. It is therefore important to understand how future climate changes will effect average rainfall distribution and temperature and what effect this will have upon forest types across Japan. Recent deforestation of the present-day coniferous forest and expected increases in evergreen forest are shown to influence runoff processes and, therefore, to influence future runoff conditions. We strongly recommend that variations in forest type be considered in future plans to ameliorate projected climate changes. This will help to improve water retention and storage capacities, enhance the flood protection function of forests, and improve human health. We qualitatively assessed future changes in runoff including the effects of variation in forest type across Japan. Four general circulation models (GCMs) were selected from the Coupled Model Intercomparison Project Phase 5 (CMIP5) ensemble to provide the driving fields: the Model for Interdisciplinary Research on Climate (MIROC), the Meteorological Research Institute Atmospheric General Circulation Model (MRI-GCM), the Hadley Centre Global Environment Model (HadGEM), and the Geophysical Fluid Dynamics Laboratory (GFDL) climate model. The simulations consisted of an ensemble including multiple physics configurations and different reference concentration pathways (RCP2.6, 4.5, and 8.5), the results of which have produced monthly data sets for the whole of Japan. The impacts of future climate changes on forest type in Japan are based on the balance amongst changes in rainfall distribution, temperature and hydrological factors. Methods for assessing the impact of such changes include the Catchment Simulator modelling frameworks based on the Minimal Advanced Treatments of Surface Interaction and Runoff (MATSIRO) model, which was expanded to estimate discharge by incorporating the effects of forest-type transition across the whole of Japan. The results indicated that, by the 2090s, annual runoff will increase above present-day values. Increases in annual variation in runoff by the 2090s was predicted to be around 14.1% when using the MRI-GCM data and 44.4% when using the HadGEM data. Analysis by long-term projection showed the largest increases in runoff in the 2090s were related to the type of forest, such as evergreen. Increased runoff can have negative effects on both society and the environment, including increased flooding events, worsened water quality, habitat destruction and changes to the forest moisture-retaining function. Prediction of the impacts of future climate change on water generation is crucial for effective environmental planning and management. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Antle, J. M.; Valdivia, R. O.; Jones, J.; Rosenzweig, C.; Ruane, A. C.
2013-12-01
This presentation provides an overview of the new methods developed by researchers in the Agricultural Model Inter-comparison and Improvement Project (AgMIP) for regional climate impact assessment and analysis of adaptation in agricultural systems. This approach represents a departure from approaches in the literature in several dimensions. First, the approach is based on the analysis of agricultural systems (not individual crops) and is inherently trans-disciplinary: it is based on a deep collaboration among a team of climate scientists, agricultural scientists and economists to design and implement regional integrated assessments of agricultural systems. Second, in contrast to previous approaches that have imposed future climate on models based on current socio-economic conditions, this approach combines bio-physical and economic models with a new type of pathway analysis (Representative Agricultural Pathways) to parameterize models consistent with a plausible future world in which climate change would be occurring. Third, adaptation packages for the agricultural systems in a region are designed by the research team with a level of detail that is useful to decision makers, such as research administrators and donors, who are making agricultural R&D investment decisions. The approach is illustrated with examples from AgMIP's projects currently being carried out in Africa and South Asia.
Active choice but not too active: Public perspectives on biobank consent models
Simon, Christian M.; L’Heureux, Jamie; Murray, Jeffrey C.; Winokur, Patricia; Weiner, George; Newbury, Elizabeth; Shinkunas, Laura; Zimmerman, Bridget
2013-01-01
Purpose Despite important recent work, US public attitudes toward specific biobank consent models are not well understood. Public opinion data can help shape efforts to develop ethically sound and publicly trusted mechanisms for informing and consenting prospective biobank donors. The purpose of this study was to explore public perspectives toward a range of consent models currently being used or considered for use among comprehensive US biobanks. Methods The study used an exploratory mixed-methods design, using focus groups and telephone surveys. Eligible participants were English-speaking residents in the catchment area of a comprehensive biobank being developed at the University of Iowa. Results Forty-eight participants in seven focus groups and 751 survey participants were recruited. Biobanks were unfamiliar to almost all study participants but were seen as valuable resources. Most focus group (63%) and survey (67%) participants preferred a prospective opt-in over an opt-out consent approach. Broad, research-unspecific consent was preferred over categorical and study-specific consent models for purposes of approving future research use. Conclusion Many individuals may want to make an active and informed choice at the point of being approached for biobank participation but are prepared to consent broadly to future research use and to forego additional choices as a result. PMID:21555942
A review of contrast pattern based data mining
NASA Astrophysics Data System (ADS)
Zhu, Shiwei; Ju, Meilong; Yu, Junfeng; Cai, Binlei; Wang, Aiping
2015-07-01
Contrast pattern based data mining is concerned with the mining of patterns and models that contrast two or more datasets. Contrast patterns can describe similarities or differences between the datasets. They represent strong contrast knowledge and have been shown to be very successful for constructing accurate and robust clusters and classifiers. The increasing use of contrast pattern data mining has initiated a great deal of research and development attempts in the field of data mining. A comprehensive revision on the existing contrast pattern based data mining research is given in this paper. They are generally categorized into background and representation, definitions and mining algorithms, contrast pattern based classification, clustering, and other applications, the research trends in future. The primary of this paper is to server as a glossary for interested researchers to have an overall picture on the current contrast based data mining development and identify their potential research direction to future investigation.
Yang, Huiping; Tiersch, Terrence R.
2009-01-01
Aquarium fishes are becoming increasingly important because of their value in biomedical research and the ornamental fish trade, and because many have become threatened or endangered in the wild. This review summarizes the current status of sperm cryopreservation in three fishes widely used in biomedical research: zebrafish, medaka, and live-bearing fishes of the genus Xiphophorus, and will focus on the needs and opportunities for future research and application of cryopreservation in aquarium fish. First, we summarize the basic biological characteristics regarding natural habitat, testis structure, spermatogenesis, sperm morphology, and sperm physiology. Second, we compare protocol development of sperm cryopreservation. Third, we emphasize the importance of artificial fertilization in sperm cryopreservation to evaluate the viability of thawed sperm. We conclude with a look to future research directions for sperm cryopreservation and the application of this technique in aquarium species. PMID:18691673
Nonlinear Constitutive Relations for High Temperature Application, 1984
NASA Technical Reports Server (NTRS)
1985-01-01
Nonlinear constitutive relations for high temperature applications were discussed. The state of the art in nonlinear constitutive modeling of high temperature materials was reviewed and the need for future research and development efforts in this area was identified. Considerable research efforts are urgently needed in the development of nonlinear constitutive relations for high temperature applications prompted by recent advances in high temperature materials technology and new demands on material and component performance. Topics discussed include: constitutive modeling, numerical methods, material testing, and structural applications.
Meeting report: a hard look at the state of enamel research
Klein, Ophir D; Duverger, Olivier; Shaw, Wendy; Lacruz, Rodrigo S; Joester, Derk; Moradian-Oldak, Janet; Pugach, Megan K; Wright, J Timothy; Millar, Sarah E; Kulkarni, Ashok B; Bartlett, John D; Diekwisch, Thomas GH; DenBesten, Pamela; Simmer, James P
2017-01-01
The Encouraging Novel Amelogenesis Models and Ex vivo cell Lines (ENAMEL) Development workshop was held on 23 June 2017 at the Bethesda headquarters of the National Institute of Dental and Craniofacial Research (NIDCR). Discussion topics included model organisms, stem cells/cell lines, and tissues/3D cell culture/organoids. Scientists from a number of disciplines, representing institutions from across the United States, gathered to discuss advances in our understanding of enamel, as well as future directions for the field. PMID:29165423
Building a Shared Definitional Model of Long Duration Human Spaceflight
NASA Technical Reports Server (NTRS)
Arias, Diana; Orr, Martin; Whitmire, Alexandra; Leveton, Lauren; Sandoval, Luis
2012-01-01
Objective: To establish the need for a shared definitional model of long duration human spaceflight, that would provide a framework and vision to facilitate communication, research and practice In 1956, on the eve of human space travel, Hubertus Strughold first proposed a "simple classification of the present and future stages of manned flight" that identified key factors, risks and developmental stages for the evolutionary journey ahead. As we look to new destinations, we need a current shared working definitional model of long duration human space flight to help guide our path. Here we describe our preliminary findings and outline potential approaches for the future development of a definition and broader classification system
Modeling Addictive Consumption as an Infectious Disease*
Alamar, Benjamin; Glantz, Stanton A.
2011-01-01
The dominant model of addictive consumption in economics is the theory of rational addiction. The addict in this model chooses how much they are going to consume based upon their level of addiction (past consumption), the current benefits and all future costs. Several empirical studies of cigarette sales and price data have found a correlation between future prices and consumption and current consumption. These studies have argued that the correlation validates the rational addiction model and invalidates any model in which future consumption is not considered. An alternative to the rational addiction model is one in which addiction spreads through a population as if it were an infectious disease, as supported by the large body of empirical research of addictive behaviors. In this model an individual's probability of becoming addicted to a substance is linked to the behavior of their parents, friends and society. In the infectious disease model current consumption is based only on the level of addiction and current costs. Price and consumption data from a simulation of the infectious disease model showed a qualitative match to the results of the rational addiction model. The infectious disease model can explain all of the theoretical results of the rational addiction model with the addition of explaining initial consumption of the addictive good. PMID:21339848
Russell, Joanne; van Zonneveld, Maarten; Dawson, Ian K.; Booth, Allan; Waugh, Robbie; Steffenson, Brian
2014-01-01
Describing genetic diversity in wild barley (Hordeum vulgare ssp. spontaneum) in geographic and environmental space in the context of current, past and potential future climates is important for conservation and for breeding the domesticated crop (Hordeum vulgare ssp. vulgare). Spatial genetic diversity in wild barley was revealed by both nuclear- (2,505 SNP, 24 nSSR) and chloroplast-derived (5 cpSSR) markers in 256 widely-sampled geo-referenced accessions. Results were compared with MaxEnt-modelled geographic distributions under current, past (Last Glacial Maximum, LGM) and mid-term future (anthropogenic scenario A2, the 2080s) climates. Comparisons suggest large-scale post-LGM range expansion in Central Asia and relatively small, but statistically significant, reductions in range-wide genetic diversity under future climate. Our analyses support the utility of ecological niche modelling for locating genetic diversity hotspots and determine priority geographic areas for wild barley conservation under anthropogenic climate change. Similar research on other cereal crop progenitors could play an important role in tailoring conservation and crop improvement strategies to support future human food security. PMID:24505252
A hierarchical competing systems model of the emergence and early development of executive function
Marcovitch, Stuart; Zelazo, Philip David
2010-01-01
The hierarchical competing systems model (HCSM) provides a framework for understanding the emergence and early development of executive function – the cognitive processes underlying the conscious control of behavior – in the context of search for hidden objects. According to this model, behavior is determined by the joint influence of a developmentally invariant habit system and a conscious representational system that becomes increasingly influential as children develop. This article describes a computational formalization of the HCSM, reviews behavioral and computational research consistent with the model, and suggests directions for future research on the development of executive function. PMID:19120405
A perspective on modeling the multiscale response of energetic materials
NASA Astrophysics Data System (ADS)
Rice, Betsy M.
2017-01-01
The response of an energetic material to insult is perhaps one of the most difficult processes to model due to concurrent chemical and physical phenomena occurring over scales ranging from atomistic to continuum. Unraveling the interdependencies of these complex processes across the scales through modeling can only be done within a multiscale framework. In this paper, I will describe progress in the development of a predictive, experimentally validated multiscale reactive modeling capability for energetic materials at the Army Research Laboratory. I will also describe new challenges and research opportunities that have arisen in the course of our development which should be pursued in the future.
Edgecombe, Kay; Bowden, Margaret
2009-03-01
This article describes the development of a model of nursing students as evolving registered nurses (RNs). It aims to generate critical debate about innovations in nursing teaching and learning. The model is the outcome of research conducted with undergraduate nursing students (n=111) from Flinders University, Adelaide, South Australia. It identifies the positive and negative intrinsic and extrinsic factors that impact on nursing students' clinical learning development and progression from students to proficient novice RNs. This model has implications for future curriculum development, staff development, placement approaches and research in relation to clinical teaching and learning.
Acceptance versus Change in Behavior Therapy: An Interview with Neil Jacobson.
ERIC Educational Resources Information Center
Hines, Max
1998-01-01
Neil Jacobson is a leader in research-based efforts to improve behavioral couples therapy. This interview focuses on his professional journey toward an integrative model, as well as his thoughts about the future directions of behavioral therapy and family counseling. The integrative-couples therapy model is described and discussed. (Author/EMK)
Modelling Question Difficulty in an A Level Physics Examination
ERIC Educational Resources Information Center
Crisp, Victoria; Grayson, Rebecca
2013-01-01
"Item difficulty modelling" is a technique used for a number of purposes such as to support future item development, to explore validity in relation to the constructs that influence difficulty and to predict the difficulty of items. This research attempted to explore the factors influencing question difficulty in a general qualification…
Analysis of the Professional Choice Self-Efficacy Scale Using the Rasch-Andrich Rating Scale Model
ERIC Educational Resources Information Center
Ambiel, Rodolfo A. M.; Noronha, Ana Paula Porto; de Francisco Carvalho, Lucas
2015-01-01
The aim of this research was to analyze the psychometrics properties of the professional choice self-efficacy scale (PCSES), using the Rasch-Andrich rating scale model. The PCSES assesses four factors: self-appraisal, gathering occupational information, practical professional information search and future planning. Participants were 883 Brazilian…
ERIC Educational Resources Information Center
Falk, Richard A.
The book suggests models of new world organizations that will be necessary to achieve the elimination of global poverty, injustice, war, and environmental imbalance by the end of the 20th century. The book was developed by the World Order Models Project (WOMP), an international group of researchers and scholars established in 1968 to explore…
ERIC Educational Resources Information Center
Thompson, Richard; Zuroff, David C.
1999-01-01
Proposed a model of the development of self-criticism in adolescent girls in which maternal dissatisfaction leads to maternal coldness. The model was supported in a sample of 54 early adolescent girls and their mothers. Discusses implications of the findings for theory and future research. (SLD)
Rethinking School Bullying: Towards an Integrated Model
ERIC Educational Resources Information Center
Dixon, Roz; Smith, Peter K.
2011-01-01
What would make anti-bullying initiatives more successful? This book offers a new approach to the problem of school bullying. The question of what constitutes a useful theory of bullying is considered and suggestions are made as to how priorities for future research might be identified. The integrated, systemic model of school bullying introduced…
The USDA and K-12 Partnership: A Model Program for Federal Agencies
ERIC Educational Resources Information Center
Scott, Timothy P.; Wilson, Craig; Upchurch, Dan R.; Goldberg, Maria; Bentz, Adrienne
2011-01-01
The Future Scientists Program of Texas A&M University and the Agricultural Research Service branch of USDA serves as a model program of effective collaboration between a federal agency and K-12. It demonstrates true partnership that contextualizes learning of science and provides quality professional development, benefiting teachers and their…
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-19
... benchmarks, projects future population conditions, and recommends research and monitoring needs. Participants....--4 p.m. Assessment panelists will discuss data inputs to the stock assessment model and make recommendations for additional years of data to be updated in the model. New information on black sea bass life...
The Educational Psychologist in the Early Years: Current Practice and Future Directions
ERIC Educational Resources Information Center
Shannon, Deborah; Posada, Susan
2007-01-01
Following suggestions for updated models of service within the early years educational psychologist (EP) role, the study aimed to provide exploratory research evidence of current models of service delivery and EP attitudes. Questionnaires were completed by 32 EPs. Interviews were conducted with three EPs. Quantitative data obtained were analysed…
Prediction of Soil Deformation in Tunnelling Using Artificial Neural Networks.
Lai, Jinxing; Qiu, Junling; Feng, Zhihua; Chen, Jianxun; Fan, Haobo
2016-01-01
In the past few decades, as a new tool for analysis of the tough geotechnical problems, artificial neural networks (ANNs) have been successfully applied to address a number of engineering problems, including deformation due to tunnelling in various types of rock mass. Unlike the classical regression methods in which a certain form for the approximation function must be presumed, ANNs do not require the complex constitutive models. Additionally, it is traced that the ANN prediction system is one of the most effective ways to predict the rock mass deformation. Furthermore, it could be envisaged that ANNs would be more feasible for the dynamic prediction of displacements in tunnelling in the future, especially if ANN models are combined with other research methods. In this paper, we summarized the state-of-the-art and future research challenges of ANNs on the tunnel deformation prediction. And the application cases as well as the improvement of ANN models were also presented. The presented ANN models can serve as a benchmark for effective prediction of the tunnel deformation with characters of nonlinearity, high parallelism, fault tolerance, learning, and generalization capability.
Prediction of Soil Deformation in Tunnelling Using Artificial Neural Networks
Lai, Jinxing
2016-01-01
In the past few decades, as a new tool for analysis of the tough geotechnical problems, artificial neural networks (ANNs) have been successfully applied to address a number of engineering problems, including deformation due to tunnelling in various types of rock mass. Unlike the classical regression methods in which a certain form for the approximation function must be presumed, ANNs do not require the complex constitutive models. Additionally, it is traced that the ANN prediction system is one of the most effective ways to predict the rock mass deformation. Furthermore, it could be envisaged that ANNs would be more feasible for the dynamic prediction of displacements in tunnelling in the future, especially if ANN models are combined with other research methods. In this paper, we summarized the state-of-the-art and future research challenges of ANNs on the tunnel deformation prediction. And the application cases as well as the improvement of ANN models were also presented. The presented ANN models can serve as a benchmark for effective prediction of the tunnel deformation with characters of nonlinearity, high parallelism, fault tolerance, learning, and generalization capability. PMID:26819587
Kwok, Kin On; Read, Jonathan M; Tang, Arthur; Chen, Hong; Riley, Steven; Kam, Kai Man
2018-04-18
Non-hospital residential facilities are important reservoirs for MRSA transmission. However, conclusions and public health implications drawn from the many mathematical models depicting nosocomial MRSA transmission may not be applicable to these settings. Therefore, we reviewed the MRSA transmission dynamics studies in defined non-hospital residential facilities to: (1) provide an overview of basic epidemiology which has been addressed; (2) identify future research direction; and (3) improve future model implementation. A review was conducted by searching related keywords in PUBMED without time restriction as well as internet searches via Google search engine. We included only articles describing the epidemiological transmission pathways of MRSA/community-associated MRSA within and between defined non-hospital residential settings. Among the 10 included articles, nursing homes (NHs) and correctional facilities (CFs) were two settings considered most frequently. Importation of colonized residents was a plausible reason for MRSA outbreaks in NHs, where MRSA was endemic without strict infection control interventions. The importance of NHs over hospitals in increasing nosocomial MRSA prevalence was highlighted. Suggested interventions in NHs included: appropriate staffing level, screening and decolonizing, and hand hygiene. On the other hand, the small population amongst inmates in CFs has no effect on MRSA community transmission. Included models ranged from system-level compartmental models to agent-based models. There was no consensus over the course of disease progression in these models, which were mainly featured with NH residents /CF inmates/ hospital patients as transmission pathways. Some parameters used by these models were outdated or unfit. Importance of NHs has been highlighted from these current studies addressing scattered aspects of MRSA epidemiology. However, the wide variety of non-hospital residential settings suggest that more work is needed before robust conclusions can be drawn. Learning from existing work for hospitals, we identified critical future research direction in this area from infection control, ecological and economic perspectives. From current model deficiencies, we suggest more transmission pathways be specified to depict MRSA transmission, and further empirical studies be stressed to support evidence-based mathematical models of MRSA in non-hospital facilities. Future models should be ready to cope with the aging population structure.
Emergence of a Common Modeling Architecture for Earth System Science (Invited)
NASA Astrophysics Data System (ADS)
Deluca, C.
2010-12-01
Common modeling architecture can be viewed as a natural outcome of common modeling infrastructure. The development of model utility and coupling packages (ESMF, MCT, OpenMI, etc.) over the last decade represents the realization of a community vision for common model infrastructure. The adoption of these packages has led to increased technical communication among modeling centers and newly coupled modeling systems. However, adoption has also exposed aspects of interoperability that must be addressed before easy exchange of model components among different groups can be achieved. These aspects include common physical architecture (how a model is divided into components) and model metadata and usage conventions. The National Unified Operational Prediction Capability (NUOPC), an operational weather prediction consortium, is collaborating with weather and climate researchers to define a common model architecture that encompasses these advanced aspects of interoperability and looks to future needs. The nature and structure of the emergent common modeling architecture will be discussed along with its implications for future model development.
Fundamental constructs in food parenting practices: a content map to guide future research
Ward, Dianne S.; Fisher, Jennifer O.; Faith, Myles S.; Hughes, Sheryl O.; Kremers, Stef P.J.; Musher-Eizenman, Dara R.; O’Connor, Teresia M.; Patrick, Heather; Power, Thomas G.
2016-01-01
Although research shows that “food parenting practices” can impact children’s diet and eating habits, current understanding of the impact of specific practices has been limited by inconsistencies in terminology and definitions. This article represents a critical appraisal of food parenting practices, including clear terminology and definitions, by a working group of content experts. The result of this effort was the development of a content map for future research that presents 3 overarching, higher-order food parenting constructs – coercive control, structure, and autonomy support – as well as specific practice subconstructs. Coercive control includes restriction, pressure to eat, threats and bribes, and using food to control negative emotions. Structure includes rules and limits, limited/guided choices, monitoring, meal- and snacktime routines, modeling, food availability and accessibility, food preparation, and unstructured practices. Autonomy support includes nutrition education, child involvement, encouragement, praise, reasoning, and negotiation. Literature on each construct is reviewed, and directions for future research are offered. Clear terminology and definitions should facilitate cross-study comparisons and minimize conflicting findings resulting from previous discrepancies in construct operationalization. PMID:26724487
Welch, Janet L; Thomas-Hawkins, Charlotte
2005-07-01
We reviewed psycho-educational intervention studies that were designed to reduce interdialytic weight gain (IDWG) in adult hemodialysis patients. Our goals were to critique research methods, describe the effectiveness of tested interventions, and make recommendations for future research. Medline, PsychInfo, and the Cumulative Index to Nursing and Applied Health (CINAHL) databases were searched to identify empirical work. Each study was evaluated in terms of sample, design, theoretical framework, intervention delivery, and outcome. Nine studies were reviewed. Self-monitoring appears to be a promising strategy to be considered to reduce IDWG. Theory was not usually used to guide interventions, designs generally had control groups, interventions were delivered individually, more than one intervention was delivered at a time, the duration of the intervention varied greatly, there was no long-term follow-up, IDWG was the only outcome, and IDWG was operationalized in different ways. Theoretical models and methodological rigor are needed to guide future research. Specific recommendations on design, measurement, and conceptual issues are offered to enhance the effectiveness of future research.
A changing climate: impacts on human exposures to O3 using ...
Predicting the impacts of changing climate on human exposure to air pollution requires future scenarios that account for changes in ambient pollutant concentrations, population sizes and distributions, and housing stocks. An integrated methodology to model changes in human exposures due to these impacts was developed by linking climate, air quality, land-use, and human exposure models. This methodology was then applied to characterize changes in predicted human exposures to O3 under multiple future scenarios. Regional climate projections for the U.S. were developed by downscaling global circulation model (GCM) scenarios for three of the Intergovernmental Panel on Climate Change’s (IPCC’s) Representative Concentration Pathways (RCPs) using the Weather Research and Forecasting (WRF) model. The regional climate results were in turn used to generate air quality (concentration) projections using the Community Multiscale Air Quality (CMAQ) model. For each of the climate change scenarios, future U.S. census-tract level population distributions from the Integrated Climate and Land Use Scenarios (ICLUS) model for four future scenarios based on the IPCC’s Special Report on Emissions Scenarios (SRES) storylines were used. These climate, air quality, and population projections were used as inputs to EPA’s Air Pollutants Exposure (APEX) model for 12 U.S. cities. Probability density functions show changes in the population distribution of 8 h maximum daily O3 exposur
Lü, Na; Ni, Jian
2013-01-01
By using spatially explicit landscape model (LANDIS 6.0 PRO), and parameterized this model with the long-term research and observation data of Tiantong National Station of Forest Eco-system Observation and Research, this paper simulated the natural succession of evergreen broad-leaved forest in Tiantong National Forest park, Zhejiang Province in the future 500 years, analyzed the spatial distribution and age structure of dominant species and major landscapes, and explored the succession pattern of the evergreen broad-leaved forest. In the park, the species alternation mostly occurred before the stage of evergreen broad-leaved forest. Pinus massoniana, Quercus fabric, and Liquidambar formosana occupied a large proportion during the early succession, but gradually disappeared with the succession process. Schima superba and Castanopsis fargesii took the main advantage in late succession, and developed to the climax community. Under the conditions without disturbances, the community was mainly composed of young forests in the early succession, and of mature or over-mature forests in the late succession, implying the insufficient regeneration ability of the community. LANDIS model could be used for simulating the landscape dynamics of evergreen broad-leaved forest in eastern China. In the future research, both the model structure and the model parameters should be improved, according to the complexity and diversity of subtropical evergreen broad-leaved forest.
Research on Information Sharing Method for Future C2 in Network Centric Environment
2011-06-01
subscription (or search) request. Then, some of the information service nodes for future C2 deal with these users’ requests, locate, federated search the... federated search server is responsible for resolving the search requests sending out from the users, and executing the federated search . The information... federated search server, information filtering model, or information subscription matching algorithm (such as users subscribe the target information at two
Future Projections of Heating and Cooling Degree Days in a Changing Climate of Turkey
NASA Astrophysics Data System (ADS)
An, Nazan; Turp, M. Tufan; Kurnaz, M. Levent
2017-04-01
The use of the degree days method is the most practical way to forsee the future changes in energy demand due to climate change-induced heating and cooling. Since the temperatures in Turkey vary considerably on a regional basis, the periods 2016-2035 and 2046-2065 have been respectively examined with reference to the period of 1981-2000, taking the mean temperature values into consideration in order to make the most accurate estimation. The future projections were applied based on the RCP8.5 (BAU-business as usual case) emission scenario using regional climate model called RegCM. According to the result of the study, it is projected that the numbers of heating degree days (HDDs) will decrease in the whole country, whereas the frequency of cooling degree days(CDDs) will increase in general. This decrease in HDDs and the increase in CDDs will be higher in the period of 2046-2065 than in the period of 2016-2035. These findings are also consistent with the expectation of temperature increases over these regions for the future period, obtained from the studies of climate modeling for the Mediterranean Basin and Turkey as well. Acknowledgement: This research has been supported by Bogazici University Research Fund Grant Number 12220.
Software reliability models for critical applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pham, H.; Pham, M.
This report presents the results of the first phase of the ongoing EG G Idaho, Inc. Software Reliability Research Program. The program is studying the existing software reliability models and proposes a state-of-the-art software reliability model that is relevant to the nuclear reactor control environment. This report consists of three parts: (1) summaries of the literature review of existing software reliability and fault tolerant software reliability models and their related issues, (2) proposed technique for software reliability enhancement, and (3) general discussion and future research. The development of this proposed state-of-the-art software reliability model will be performed in the secondmore » place. 407 refs., 4 figs., 2 tabs.« less
Software reliability models for critical applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pham, H.; Pham, M.
This report presents the results of the first phase of the ongoing EG&G Idaho, Inc. Software Reliability Research Program. The program is studying the existing software reliability models and proposes a state-of-the-art software reliability model that is relevant to the nuclear reactor control environment. This report consists of three parts: (1) summaries of the literature review of existing software reliability and fault tolerant software reliability models and their related issues, (2) proposed technique for software reliability enhancement, and (3) general discussion and future research. The development of this proposed state-of-the-art software reliability model will be performed in the second place.more » 407 refs., 4 figs., 2 tabs.« less
ERIC Educational Resources Information Center
Schnoll, Robert A.; Fang, Carolyn Y.; Manne, Sharon L.
2004-01-01
The past decade has seen a tremendous growth in the use of structural equation modeling (SEM) to address research questions in 2 subfields of behavioral science: cancer prevention and control (e.g., determinants of cancer screening adherence) and behavioral oncology (e.g., determinants of psychosocial adjustment among cancer patients or…
ERIC Educational Resources Information Center
Charleston, LaVar J.; Gilbert, Juan E.; Escobar, Barbara; Jackson, Jerlando F. L.
2014-01-01
African Americans represent 1.3% of all computing sciences faculty in PhD-granting departments, underscoring the severe underrepresentation of Black/African American tenure-track faculty in computing (CRA, 2012). The Future Faculty/Research Scientist Mentoring (FFRM) program, funded by the National Science Foundation, was found to be an effective…
Using Multilevel Modeling for Change to Assess Early Children's Reading Growth over Time
ERIC Educational Resources Information Center
Liu, Xing; O'Connell, Ann A.
2008-01-01
Childhood is the crucial period for early children's reading ability building. Former research (Hanson & Farrell, 1995) found that early reading experience had a positive and long-term effect on reading competence for high school seniors in the future. Therefore, it is of great importance for researchers to understand children's initial reading…
Sixty-Year Career in Solar Physics
NASA Astrophysics Data System (ADS)
Fang, C.
2018-05-01
This memoir reviews my academic career in solar physics for 60 years, including my research on non-LTE modeling, white-light flares, and small-scale solar activities. Through this narrative, the reader can catch a glimpse of the development of solar physics research in mainland China from scratch. In the end, some prospects for future development are given.
Toward a Theory of User-Based Relevance: A Call for a New Paradigm of Inquiry.
ERIC Educational Resources Information Center
Park, Taemin Kim
1994-01-01
Discusses the need to develop the concept of user-based relevance for the benefit of users and for the meaningful development of future research in information retrieval. Characteristics of users' criteria of relevance are examined; and research methodology models are considered, including naturalistic inquiry versus scientific, or rationalistic,…
Remediating Reading Difficulties in a Response to Intervention Model with Secondary Students
ERIC Educational Resources Information Center
Pyle, Nicole; Vaughn, Sharon
2012-01-01
The research on Response to Intervention (RtI) with secondary students is scant; however, a recently conducted, multiyear, large-scale implementation of RtI with middle-school students provides findings that inform practices and future directions for research. This article provides an overview of the findings from each of the 3 years of an…
Understanding Drug Use Over the Life Course: Past, Present, and Future
Hser, Yih-Ing; Hamilton, Alison; Niv, Noosha
2009-01-01
Over the past 20 years, much exciting addiction research has been conducted. Extensive knowledge has been gathered about comorbid issues, particularly mental health disorders, HIV, and criminal justice involvement. Health services addiction research has become increasingly sophisticated, shifting its focus from patients to consider also services, organizations, and financing structures. Furthermore, through several long-term follow-up studies, empirical evidence convincingly demonstrates that drug dependence is not an acute disorder, and is best understood through a life course perspective with an emphasis on chronicity This article highlights three major directions for future addiction research: developing strategies for chronic care (including longitudinal intervention studies), furthering cross-system linkage and coordination, and utilizing innovative methods (e.g., growth curve modeling, longitudinal mixed methods research) to strengthen the evidence base for the life course perspective on drug addiction. PMID:21234276
Prayer and health: review, meta-analysis, and research agenda.
Masters, Kevin S; Spielmans, Glen I
2007-08-01
This article reviews the empirical research on prayer and health and offers a research agenda to guide future studies. Though many people practice prayer and believe it affects their health, scientific evidence is limited. In keeping with a general increase in interest in spirituality and complementary and alternative treatments, prayer has garnered attention among a growing number of behavioral scientists. The effects of distant intercessory prayer are examined by meta-analysis and it is concluded that no discernable effects can be found. The literature regarding frequency of prayer, content of prayer, and prayer as a coping strategy is subsequently reviewed. Suggestions for future research include the conduct of experimental studies based on conceptual models that include precise operationally defined constructs, longitudinal investigations with proper measure of control variables, and increased use of ecological momentary assessment techniques.
NASA Astrophysics Data System (ADS)
Kim, Y.; Woo, J. H.; Choi, K. C.; Lee, J. B.; Song, C. K.; Kim, S. K.; Hong, J.; Hong, S. C.; Zhang, Q.; Hong, C.; Tong, D.
2015-12-01
Future emission scenarios based on up-to-date regional socio-economic and control policy information were developed in support of climate-air quality integrated modeling research over East Asia. Two IPCC-participated Integrated Assessment Models(IAMs) were used to developed those scenario pathways. The two emission processing systems, KU-EPS and SMOKE-Asia, were used to convert these future scenario emissions to comprehensive chemical transport model-ready form. The NIER/KU-CREATE (Comprehensive Regional Emissions inventory for Atmospheric Transport Experiment) served as the regional base-year emission inventory. For anthropogenic emissions, it has 54 fuel classes, 201 sub-sectors and 13 pollutants, including CO2, CH4, N2O, SO2, NOx, CO, NMVOC, NH3, OC, BC, PM10, PM2.5, and mercury. Fast energy growth and aggressive penetration of the control measures make emissions projection very active for East Asia. Despite of more stringent air pollution control policies by the governments, however, air quality over the region seems not been improved as much - even worse in many cases. The needs of more scientific understanding of inter-relationship among emissions, transport, chemistry over the region are very high to effectively protect public health and ecosystems against ozone, fine particles, and other toxic pollutants in the air. After developing these long-term future emissions, therefore, we also tried to apply our future scenarios to develop the present emissions inventory for chemical weather forecasting and aircraft field campaign. On site, we will present; 1) the future scenario development framework and process methodologies, 2) initial development results of the future emission pathways, 3) present emission inventories from short-term projection, and 4) air quality modeling performance improvements over the region.
Analyzing the Response of Climate Perturbations to (Tropical) Cyclones using the WRF Model
NASA Astrophysics Data System (ADS)
Tewari, M.; Mittal, R.; Radhakrishnan, C.; Cipriani, J.; Watson, C.
2015-12-01
An analysis of global climate models shows considerable changes in the intensity and characteristics of future, warm climate cyclones. At regional scales, deviations in cyclone characteristics are often derived using idealized perturbations in the humidity, temperature and surface conditions. In this work, a more realistic approach is adopted by applying climate perturbations from the Community Climate System Model (CCSM4) to ERA-interim data to generate the initial and boundary conditions for future climate simulations. The climate signal perturbations are generated from the differences in 21 years of mean data from CCSM4 with representative concentration pathways (RCP8.5) for the periods: (a) 2070-2090 (future climate), (b) 2025-2045 (near-future climate) and (c) 1985-2005 (current climate). Four individual cyclone cases are simulated with and without climate perturbations using the Weather Research and Forecasting model with a nested configuration. Each cyclone is characterized by variations in intensity, landfall location, precipitation and societal damage. To calculate societal damage, we use the recently introduced Cyclone Damage Potential (CDP) index evolved from the Willis Hurricane Index (WHI). As CDP has been developed for general societal applications, this work should provide useful insights for resilience analyses and industry (e.g., re-insurance).
NASA Astrophysics Data System (ADS)
Logan, J. A.
2010-12-01
Significant progress has been made in using satellite data to provide bottom-up constraints on biomass burning (BB) emissions. However, inverse studies with CO satellite data imply that tropical emissions are underestimated by current inventories, while model simulations of the ARCTAS period imply that the FLAMBE estimates of extratropical emissions are significantly overestimated. Injection heights of emissions from BB have been quantified recently using MISR data, and these data provide some constraints on 1-d plume models. I will discuss recent results in these areas, highlighting future research needs.
Programs Model the Future of Air Traffic Management
NASA Technical Reports Server (NTRS)
2010-01-01
Through Small Business Innovation Research (SBIR) contracts with Ames Research Center, Intelligent Automation Inc., based in Rockville, Maryland, advanced specialized software the company had begun developing with U.S. Department of Defense funding. The agent-based infrastructure now allows NASA's Airspace Concept Evaluation System to explore ways of improving the utilization of the National Airspace System (NAS), providing flexible modeling of every part of the NAS down to individual planes, airports, control centers, and even weather. The software has been licensed to a number of aerospace and robotics customers, and has even been used to model the behavior of crowds.
Windt, Jennifer M; Noreika, Valdas
2011-12-01
In this paper, we address the different ways in which dream research can contribute to interdisciplinary consciousness research. As a second global state of consciousness aside from wakefulness, dreaming is an important contrast condition for theories of waking consciousness. However, programmatic suggestions for integrating dreaming into broader theories of consciousness, for instance by regarding dreams as a model system of standard or pathological wake states, have not yielded straightforward results. We review existing proposals for using dreaming as a model system, taking into account concerns about the concept of modeling and the adequacy and practical feasibility of dreaming as a model system. We conclude that existing modeling approaches are premature and rely on controversial background assumptions. Instead, we suggest that contrastive analysis of dreaming and wakefulness presents a more promising strategy for integrating dreaming into a broader research context and solving many of the problems involved in the modeling approach. Copyright © 2010 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Maña, Antonio; Spanoudakis, George; Kokolakis, Spyros
In this chapter we present the prospects of the SERENITY approach towards secure and dependable AmI ecosystems and identify issues for further research. We also describe the foreseen impact that the SERENITY model, processes, tools, and technologies can produce.
Life sciences domain analysis model
Freimuth, Robert R; Freund, Elaine T; Schick, Lisa; Sharma, Mukesh K; Stafford, Grace A; Suzek, Baris E; Hernandez, Joyce; Hipp, Jason; Kelley, Jenny M; Rokicki, Konrad; Pan, Sue; Buckler, Andrew; Stokes, Todd H; Fernandez, Anna; Fore, Ian; Buetow, Kenneth H
2012-01-01
Objective Meaningful exchange of information is a fundamental challenge in collaborative biomedical research. To help address this, the authors developed the Life Sciences Domain Analysis Model (LS DAM), an information model that provides a framework for communication among domain experts and technical teams developing information systems to support biomedical research. The LS DAM is harmonized with the Biomedical Research Integrated Domain Group (BRIDG) model of protocol-driven clinical research. Together, these models can facilitate data exchange for translational research. Materials and methods The content of the LS DAM was driven by analysis of life sciences and translational research scenarios and the concepts in the model are derived from existing information models, reference models and data exchange formats. The model is represented in the Unified Modeling Language and uses ISO 21090 data types. Results The LS DAM v2.2.1 is comprised of 130 classes and covers several core areas including Experiment, Molecular Biology, Molecular Databases and Specimen. Nearly half of these classes originate from the BRIDG model, emphasizing the semantic harmonization between these models. Validation of the LS DAM against independently derived information models, research scenarios and reference databases supports its general applicability to represent life sciences research. Discussion The LS DAM provides unambiguous definitions for concepts required to describe life sciences research. The processes established to achieve consensus among domain experts will be applied in future iterations and may be broadly applicable to other standardization efforts. Conclusions The LS DAM provides common semantics for life sciences research. Through harmonization with BRIDG, it promotes interoperability in translational science. PMID:22744959
Data publishing - visions of the future
NASA Astrophysics Data System (ADS)
Schäfer, Leonie; Klump, Jens; Bertelmann, Roland; Klar, Jochen; Enke, Harry; Rathmann, Torsten; Koudela, Daniela; Köhler, Klaus; Müller-Pfefferkorn, Ralph; van Uytvanck, Dieter; Strathmann, Stefan; Engelhardt, Claudia
2013-04-01
This poster describes future scenarios of information infrastructures in science and other fields of research. The scenarios presented are based on practical experience resulting from interaction with research data in a research center and its library, and further enriched by the results of a baseline study of existing data repositories and data infrastructures. The baseline study was conducted as part of the project "Requirements for a multi-disciplinary research data infrastructure (Radieschen)", which is funded by the German Research Foundation (DFG). Current changes in information infrastructures pose new challenges to libraries and scientific journals, which both act as information service providers, facilitating access to digital media, support publications of research data and enable their long-term archiving. Digital media and research data open new aspects in the field of activity of libraries and scientific journals. What will a library of the future look like? Will a library purely serve as interface to data centres? Will libraries and data centres merge into a new service unit? Will a future library be the interface to academic cloud services? Scientific journals already converted from mostly print editions to print and e-journals. What type of journals will emerge in the future? Is there a role for data-centred journals? Will there be journals to publish software code to make this type of research result citable and a part of the record of science? Just as users evolve from being consumers of information into producers, the role of information service providers, such as libraries, changes from a purely supporting to a contributing role. Furthermore, the role of the library changes from a central point of access for the search of publications to an important link in the value-adding chain from author to publication. Journals for software publication might be another vision for the future in data publishing. Software forms the missing link between big data collected by experiments, monitoring or simulation. In order to verify the results presented, a paper should also report on the process of data analysis applied to the data sets stored at data centers. In this case data, software, and interpretation supplement each other as a trustworthy, reproducible presentation of research results. Another approach is suggested by researchers of the EU-funded project "Liquid Publications" (1). Instead of traditional publications the researchers propose liquid journals as evolving collections of links and material, and recommend new methods in reviewing and assessing publications. Another point of interest are workflows in data publication. The commonly used model to depict the data life cycle might look appealing but does not necessarily represent reality. The model proposed by Treloar et. al. (2) offers a better approach to depict transition of research data between different domains of use, e.g. from the group domain to the public domain. However, several questions need to be addressed, such as how to avoid the loss of contextual information during transitions between domains, and the influence of the size of the data on the workflow process. This poster aims to present different scenarios of the future - from the point of view of researchers, libraries and scientific journals and will invite for further discussion. (1) LiquidPub Green Paper, https://dev.liquidpub.org/svn/liquidpub/papers/deliverables/LPGreenPaper.pdf (2) Treloar, A., Harboe-Ree, C. (2008). Data management and the curation continuum: how the Monash experience is informing repository relationships. In VALA2008, Melbourne, Australia. Retrieved from http://www.valaconf.org.au/vala2008/papers2008/111_Treloar_Final.pdf
Defining Safety in the Nursing Home Setting: Implications for Future Research.
Simmons, Sandra F; Schnelle, John F; Sathe, Nila A; Slagle, Jason M; Stevenson, David G; Carlo, Maria E; McPheeters, Melissa L
2016-06-01
Currently, the Agency for Healthcare Research and Quality (AHRQ) Common Format for nursing homes (NHs) accommodates voluntary reporting for 4 adverse events: falls with injury, pressure ulcers, medication errors, and infections. In 2015, AHRQ funded a technical brief to describe the state of the science related to safety in the NH setting to inform a research agenda. Thirty-six recent systematic reviews evaluated NH safety-related interventions to address these 4 adverse events and reported mostly mixed evidence about effective approaches to ameliorate them. Furthermore, these 4 events are likely inadequate to capture safety issues that are unique to the NH setting and encompass other domains related to residents' quality of care and quality of life. Future research needs include expanding our definition of safety in the NH setting, which differs considerably from that of hospitals, to include contributing factors to adverse events as well as more resident-centered care measures. Second, future research should reflect more rigorous implementation science to include objective measures of care processes related to adverse events, intervention fidelity, and staffing resources for intervention implementation to inform broader uptake of efficacious interventions. Weaknesses in implementation contribute to the current inconclusive and mixed evidence base as well as remaining questions about what outcomes are even achievable in the NH setting, given the complexity of most resident populations. Also related to implementation, future research should determine the effects of specific staffing models on care processes related to safety outcomes. Last, future efforts should explore the potential for safety issues in other care settings for older adults, most notably dementia care within assisted living. Copyright © 2016 AMDA – The Society for Post-Acute and Long-Term Care Medicine. All rights reserved.
Oxland, Thomas R
2016-04-11
Since the publication of the 2nd edition of White and Panjabi׳s textbook, Clinical Biomechanics of the Spine in 1990, there has been considerable research on the biomechanics of the spine. The focus of this manuscript will be to review what we have learned in regards to the fundamentals of spine biomechanics. Topics addressed include the whole spine, the functional spinal unit, and the individual components of the spine (e.g. vertebra, intervertebral disc, spinal ligaments). In these broad categories, our understanding in 1990 is reviewed and the important knowledge or understanding gained through the subsequent 25 years of research is highlighted. Areas where our knowledge is lacking helps to identify promising topics for future research. In this manuscript, as in the White and Panjabi textbook, the emphasis is on experimental research using human material, either in vivo or in vitro. The insights gained from mathematical models and animal experimentation are included where other data are not available. This review is intended to celebrate the substantial gains that have been made in the field over these past 25 years and also to identify future research directions. Copyright © 2015 Elsevier Ltd. All rights reserved.
Bennett, L. Michelle; Cicutto, Lisa; Gadlin, Howard; Moss, Marc; Tentler, John; Schoenbaum, Ellie
2015-01-01
Abstract This paper is the third in a five‐part series on the clinical and translational science educational pipeline, and it focuses on strategies for enhancing graduate research education to improve skills for interdisciplinary team science. Although some of the most cutting edge science takes place at the borders between disciplines, it is widely perceived that advancements in clinical and translational science are hindered by the “siloed” efforts of researchers who are comfortable working in their separate domains, and reluctant to stray from their own discipline when conducting research. Without appropriate preparation for career success as members and leaders of interdisciplinary teams, talented scientists may choose to remain siloed or to leave careers in clinical and translational science all together, weakening the pipeline and depleting the future biomedical research workforce. To address this threat, it is critical to begin at what is perhaps the most formative moment for academics: graduate training. This paper focuses on designs for graduate education, and contrasts the methods and outcomes from traditional educational approaches with those skills perceived as essential for the workforce of the future, including the capacity for research collaboration that crosses disciplinary boundaries. PMID:26643714
Unintended consequences of atmospheric injection of sulphate aerosols.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brady, Patrick Vane; Kobos, Peter Holmes; Goldstein, Barry
2010-10-01
Most climate scientists believe that climate geoengineering is best considered as a potential complement to the mitigation of CO{sub 2} emissions, rather than as an alternative to it. Strong mitigation could achieve the equivalent of up to -4Wm{sup -2} radiative forcing on the century timescale, relative to a worst case scenario for rising CO{sub 2}. However, to tackle the remaining 3Wm{sup -2}, which are likely even in a best case scenario of strongly mitigated CO{sub 2} releases, a number of geoengineering options show promise. Injecting stratospheric aerosols is one of the least expensive and, potentially, most effective approaches and formore » that reason an examination of the possible unintended consequences of the implementation of atmospheric injections of sulphate aerosols was made. Chief among these are: reductions in rainfall, slowing of atmospheric ozone rebound, and differential changes in weather patterns. At the same time, there will be an increase in plant productivity. Lastly, because atmospheric sulphate injection would not mitigate ocean acidification, another side effect of fossil fuel burning, it would provide only a partial solution. Future research should aim at ameliorating the possible negative unintended consequences of atmospheric injections of sulphate injection. This might include modeling the optimum rate and particle type and size of aerosol injection, as well as the latitudinal, longitudinal and altitude of injection sites, to balance radiative forcing to decrease negative regional impacts. Similarly, future research might include modeling the optimum rate of decrease and location of injection sites to be closed to reduce or slow rapid warming upon aerosol injection cessation. A fruitful area for future research might be system modeling to enhance the possible positive increases in agricultural productivity. All such modeling must be supported by data collection and laboratory and field testing to enable iterative modeling to increase the accuracy and precision of the models, while reducing epistemic uncertainties.« less
Leading the Higher Education IT Organization: Six Building Blocks of Success
ERIC Educational Resources Information Center
Laster, Stephen J.
2011-01-01
Many of the worries for IT leaders are new--and much broader. The traditional teaching, learning, and research models of the past will not be and cannot be the models for the future. These models break down as costs (human and financial) continue to grow faster than they can be funded, as digital natives change forever the nature of being "in…
ERIC Educational Resources Information Center
Morrison, James L.
Policy-impact analysis is introduced as a model to aid higher education in dealing with the significant problems in the decade of the 1980s. The model provides a framework within which a variety of futures research techniques are tied to policy development, implementation, and evaluation. The utility of the model is that it structures…
Zebrafish neurobehavioral phenomics for aquatic neuropharmacology and toxicology research.
Kalueff, Allan V; Echevarria, David J; Homechaudhuri, Sumit; Stewart, Adam Michael; Collier, Adam D; Kaluyeva, Aleksandra A; Li, Shaomin; Liu, Yingcong; Chen, Peirong; Wang, JiaJia; Yang, Lei; Mitra, Anisa; Pal, Subharthi; Chaudhuri, Adwitiya; Roy, Anwesha; Biswas, Missidona; Roy, Dola; Podder, Anupam; Poudel, Manoj K; Katare, Deepshikha P; Mani, Ruchi J; Kyzar, Evan J; Gaikwad, Siddharth; Nguyen, Michael; Song, Cai
2016-01-01
Zebrafish (Danio rerio) are rapidly emerging as an important model organism for aquatic neuropharmacology and toxicology research. The behavioral/phenotypic complexity of zebrafish allows for thorough dissection of complex human brain disorders and drug-evoked pathological states. As numerous zebrafish models become available with a wide spectrum of behavioral, genetic, and environmental methods to test novel drugs, here we discuss recent zebrafish phenomics methods to facilitate drug discovery, particularly in the field of biological psychiatry. Additionally, behavioral, neurological, and endocrine endpoints are becoming increasingly well-characterized in zebrafish, making them an inexpensive, robust and effective model for toxicology research and pharmacological screening. We also discuss zebrafish behavioral phenotypes, experimental considerations, pharmacological candidates and relevance of zebrafish neurophenomics to other 'omics' (e.g., genomic, proteomic) approaches. Finally, we critically evaluate the limitations of utilizing this model organism, and outline future strategies of research in the field of zebrafish phenomics. Copyright © 2015 Elsevier B.V. All rights reserved.
Integrated human-earth system modeling—state of the science and future directions
NASA Astrophysics Data System (ADS)
Calvin, Katherine; Bond-Lamberty, Ben
2018-06-01
Research on humans and the Earth system has historically occurred separately, with different teams and models devoted to each. Increasingly, however, these communities and models are becoming intricately linked. In this review, we survey the literature on integrated human-Earth system models, quantify the direction and strength of feedbacks in those models, and put them in context of other, more frequently considered, feedbacks in the Earth system. We find that such feedbacks have the potential to alter both human and Earth systems; however, there is significant uncertainty in these results, and the number of truly integrated studies remains small. More research, more models, and more studies are needed to robustly quantify the sign and magnitude of human-Earth system feedbacks. Integrating human and earth models entails significant complexity and cost, and researchers should carefully assess the costs and benefits of doing so with respect to the object of study.
Núñez, Rafael E; Sweetser, Eve
2006-05-06
Cognitive research on metaphoric concepts of time has focused on differences between moving Ego and moving time models, but even more basic is the contrast between Ego- and temporal-reference-point models. Dynamic models appear to be quasi-universal cross-culturally, as does the generalization that in Ego-reference-point models, FUTURE IS IN FRONT OF EGO and PAST IS IN BACK OF EGO. The Aymara language instead has a major static model of time wherein FUTURE IS BEHIND EGO and PAST IS IN FRONT OF EGO; linguistic and gestural data give strong confirmation of this unusual culture-specific cognitive pattern. Gestural data provide crucial information unavailable to purely linguistic analysis, suggesting that when investigating conceptual systems both forms of expression should be analyzed complementarily. Important issues in embodied cognition are raised: how fully shared are bodily grounded motivations for universal cognitive patterns, what makes a rare pattern emerge, and what are the cultural entailments of such patterns? 2006 Lawrence Erlbaum Associates, Inc.
Grimm, Sabine E; Dixon, Simon; Stevens, John W
Health technology assessments (HTAs) that take account of future price changes have been examined in the literature, but the important issue of price reductions that are generated by the reimbursement decision has been ignored. To explore the impact of future price reductions caused by increasing uptake on HTAs and decision making for medical devices. We demonstrate the use of a two-stage modeling approach to derive estimates of technology price as a consequence of changes in technology uptake over future periods on the basis of existing theory and supported by empirical studies. We explore the impact on cost-effectiveness and expected value of information analysis in an illustrative example on the basis of a technology in development for preterm birth screening. The application of our approach to the case study technology generates smaller incremental cost-effectiveness ratios compared with the commonly used single cohort approach. The extent of this reduction in the incremental cost-effectiveness ratio depends on the magnitude of the modeled price reduction, the speed of diffusion, and the length of the assumed technology life horizon. Results of value of information analysis are affected through changes in the expected net benefit calculation, the addition of uncertain parameters, and the diffusion-adjusted estimate of the affected patient population. Because modeling future changes in price and uptake has the potential to affect HTA outcomes, modeling techniques that can address such changes should be considered for medical devices that may otherwise be rejected. Copyright © 2016 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.
Cross-cultural comparisons of delay discounting of gain and loss.
Ishii, Keiko; Gang, Lili; Takahashi, Taiki
2016-11-01
People generally tend to discount future outcomes in favor of smaller but immediate gains (i.e., delay discounting). The present research examined cultural similarities and differences in delay discounting of gain and loss between Chinese and Japanese, based on a q-exponential model of intertemporal choice. Using a hypothetical situation, we asked 65 Japanese participants and 51 Chinese participants to choose between receiving (or paying) a different amount of money immediately or with a specified delay (1 week, 2 weeks, 1 month, 6 months, 1 year, 5 years, and 25 years). For each delay, participants completed a series of 40 binary choices for gain or loss. Regardless of cultures, the q-exponential model was the optimal model. Both impulsivity and time-inconsistency were higher for future gains than for future losses. In addition to the cultural similarities, Chinese participants discounted future gains and losses more steeply than did Japanese. In contrast, Japanese participants were more time-inconsistent in delay discounting than were Chinese, suggesting that the reduction in their subjective value depended relatively on delay.
An Index-Based Assessment of Agricultural Water Scarcity for Sustainable Water Resource Management
NASA Astrophysics Data System (ADS)
Kim, S. E.; Lee, D. K.; Kim, K. S.; Hyun, S.; Kim, Y.
2017-12-01
Global precipitation pattern is changing due to climate change, causing drought and water scarcity all around the world. As water is mandatory to all lives, water availability is becoming essential and so is sustainable water resource management. Especially in agriculture, water resource management is crucial, as it is directly connected to the production. However, many studies about water scarcity show limits by focusing on current situation and overlooking future possibilities of water availability. Also, most of the studies about water scarcity use single index or model. To overcome these shortcomings, we assessed agricultural water scarcity considering future climate, using water scarcity indices. We assessed present and future water scarcity using several indices and compared the results derived from each index. The study area of this research is South Korea, as drought is a prominent problem in agricultural sector. Precipitation in Korea is concentrated in summer, causing severe drought in spring and fall. Rainfall density in Korea is increasing with climate change, and sustainable water resource management is inevitable. In this research, we used irrigational demand along with current and future crop production of 2030 and 2050 as water demand. We projected the future (2020-2100) runoff of dams located in Korea as water demand under future scenarios, RCP 4.5 and 8.5. The result showed severe water scarcity in Southern area of Korea both in the present and the future. It was due to increase of water demand and decrease of precipitation. It indicates that the water scarcity gets more intense in the future, and emphasizes the importance of water resource management of the southern part. This research will be valuable in establishing water resource management in agricultural sector for sustainable water availability in the future.
Pierce, Jessica S; Kozikowski, Chelsea; Lee, Joyce M; Wysocki, Tim
2017-02-01
The incidence of type 1 diabetes (T1D) in very young children (YC-T1D) is increasing globally. Managing YC-T1D is challenging from both a medical and psychosocial perspective during this vulnerable developmental period when complete dependence upon parental caretaking is normative and child behavior is unpredictable. The consequences of suboptimal glycemic control during this age range are substantial since these children will have T1D for many years and they are prone to adverse neuropsychological sequelae. Poor adaptation to T1D during these early years may engender a persistent trajectory of negative outcomes that can be very resistant to change. The empirical research on the YC-T1D population (age <6 yr) has indicated multiple mechanisms through which parent characteristics, parent coping skills, and child characteristics interact to yield a pattern of T1D management behaviors that affect T1D outcomes. However, this research has not yet led to a well-conceived conceptual model for identifying and understanding these mechanisms or for specifying research gaps and future research directions. The aim of this review is to propose such a conceptual model linking parent characteristics, parent coping, and child characteristics to T1D management behaviors and outcomes. This article reviews the literature focusing on research pertinent to YC-T1D and elements of our proposed model, identifies and discusses gaps in the literature, offers directions for future research, and considers a range of possible interventions targeting the unique needs of this special population. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Kinetic Modeling of Microbiological Processes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Chongxuan; Fang, Yilin
Kinetic description of microbiological processes is vital for the design and control of microbe-based biotechnologies such as waste water treatment, petroleum oil recovery, and contaminant attenuation and remediation. Various models have been proposed to describe microbiological processes. This editorial article discusses the advantages and limiation of these modeling approaches in cluding tranditional, Monod-type models and derivatives, and recently developed constraint-based approaches. The article also offers the future direction of modeling researches that best suit for petroleum and environmental biotechnologies.
NASA Astrophysics Data System (ADS)
Pulido-Velazquez, David; Marín-Lechado, Carlos; Martos-Rosillo, Sergio; Collados-Lara, Antonio-Juan; Ruíz-Constan, Ana
2017-04-01
The mean residence time in an aquifer, also known as natural turnover time or renewable period, can be obtained as the relation (R / St) between its storage capacity (St) and its recharge (R). It is an excellent indicator of the aquifer response capacity to its exploitation. Aquifers in which R is close to St values are extremely vulnerable to exploitation, even when it is less than the average recharge. This is especially relevant in Mediterranean climate areas, where long and intensive drought periods appear and will be exacerbated in future scenarios of global change. The natural turnover time depends on the recharge and the Global Change can produce important changes on it in the future. In this research we propose a method for a detailed estimation of natural turnover time by combining detailed 3D geological modelling of the case studies, estimated fields of specific yield for the aquifers (based on the analysis of multiple field sample), and rainfall-recharge models in several aquifer with different ratios of natural turnover time. These detailed 3D geological models have been defined by integrating information coming from seismic profiles, boreholes, magnetotelluric, electromagnetic and electrical sounding, digital elevation models, previous geological maps and new structural dates. They also allow us to deduce the reserve curve as a function of the elevation. On the other hand, different ensemble and downscaling techniques will be used to define potential future global climate change scenarios for the test-regions based on the data coming from simulations with different Regional Circulation Models (RCMs). These precipitation and temperature scenarios will be employed to feed the previously calibrated rainfall-recharge models in order to estimated future recharge and turnover time values. The methodology applied in this work could be a tool of special interest to identify at regional level which aquifers are most vulnerable to exploitation considering hydrogeological and climate change aspects. This research has been supported by the CGL2013-48424-C2-2-R (MINECO) Project.
Animal models of middle ear cholesteatoma.
Yamamoto-Fukuda, Tomomi; Takahashi, Haruo; Koji, Takehiko
2011-01-01
Middle ear acquired cholesteatoma is a pathological condition associated with otitis media, which may be associated with temporal bone resorption, otorrhea and hearing loss, and occasionally various other complications. Cholesteatoma is characterized by the enhanced proliferation of epithelial cells with aberrant morphologic characteristics. Unfortunately, our understanding of the mechanism underlying its pathogenesis is limited. To investigate its pathogenesis, different animal models have been used. This paper provides a brief overview of the current status of research in the field of pathogenesis of middle ear acquired cholesteatoma, four types of animal models previously reported on, up-to-date cholesteatoma research using these animal models, our current studies of the local hybrid ear model, and the future prospect of new animal models of middle ear cholesteatoma.
Animal Models of Middle Ear Cholesteatoma
Yamamoto-Fukuda, Tomomi; Takahashi, Haruo; Koji, Takehiko
2011-01-01
Middle ear acquired cholesteatoma is a pathological condition associated with otitis media, which may be associated with temporal bone resorption, otorrhea and hearing loss, and occasionally various other complications. Cholesteatoma is characterized by the enhanced proliferation of epithelial cells with aberrant morphologic characteristics. Unfortunately, our understanding of the mechanism underlying its pathogenesis is limited. To investigate its pathogenesis, different animal models have been used. This paper provides a brief overview of the current status of research in the field of pathogenesis of middle ear acquired cholesteatoma, four types of animal models previously reported on, up-to-date cholesteatoma research using these animal models, our current studies of the local hybrid ear model, and the future prospect of new animal models of middle ear cholesteatoma. PMID:21541229
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai, Ming; Deng, Yi
2015-02-06
El Niño-Southern Oscillation (ENSO) and Annular Modes (AMs) represent respectively the most important modes of low frequency variability in the tropical and extratropical circulations. The future projection of the ENSO and AM variability, however, remains highly uncertain with the state-of-the-art coupled general circulation models. A comprehensive understanding of the factors responsible for the inter-model discrepancies in projecting future changes in the ENSO and AM variability, in terms of multiple feedback processes involved, has yet to be achieved. The proposed research aims to identify sources of such uncertainty and establish a set of process-resolving quantitative evaluations of the existing predictions ofmore » the future ENSO and AM variability. The proposed process-resolving evaluations are based on a feedback analysis method formulated in Lu and Cai (2009), which is capable of partitioning 3D temperature anomalies/perturbations into components linked to 1) radiation-related thermodynamic processes such as cloud and water vapor feedbacks, 2) local dynamical processes including convection and turbulent/diffusive energy transfer and 3) non-local dynamical processes such as the horizontal energy transport in the oceans and atmosphere. Taking advantage of the high-resolution, multi-model ensemble products from the Coupled Model Intercomparison Project Phase 5 (CMIP5) soon to be available at the Lawrence Livermore National Lab, we will conduct a process-resolving decomposition of the global three-dimensional (3D) temperature (including SST) response to the ENSO and AM variability in the preindustrial, historical and future climate simulated by these models. Specific research tasks include 1) identifying the model-observation discrepancies in the global temperature response to ENSO and AM variability and attributing such discrepancies to specific feedback processes, 2) delineating the influence of anthropogenic radiative forcing on the key feedback processes operating on ENSO and AM variability and quantifying their relative contributions to the changes in the temperature anomalies associated with different phases of ENSO and AMs, and 3) investigating the linkages between model feedback processes that lead to inter-model differences in time-mean temperature projection and model feedback processes that cause inter-model differences in the simulated ENSO and AM temperature response. Through a thorough model-observation and inter-model comparison of the multiple energetic processes associated with ENSO and AM variability, the proposed research serves to identify key uncertainties in model representation of ENSO and AM variability, and investigate how the model uncertainty in predicting time-mean response is related to the uncertainty in predicting response of the low-frequency modes. The proposal is thus a direct response to the first topical area of the solicitation: Interaction of Climate Change and Low Frequency Modes of Natural Climate Variability. It ultimately supports the accomplishment of the BER climate science activity Long Term Measure (LTM): "Deliver improved scientific data and models about the potential response of the Earth's climate and terrestrial biosphere to increased greenhouse gas levels for policy makers to determine safe levels of greenhouse gases in the atmosphere."« less
Siegert, Richard J; McPherson, Kathryn M; Taylor, William J
2004-10-21
The aim of this article is to argue that self-regulation theory might offer a useful model for clinical practice, theory-building and empirical research on goal-setting in rehabilitation. Relevant literature on goal-setting and motivation in rehabilitation is considered and some problematic issues for current practice and future research are highlighted. Carver and Scheier's self-regulation theory and its application to rehabilitation research is examined. It is argued that self-regulation theory offers a robust theoretical framework for goal-setting and one in which the salient concepts of motivation and emotion are prominent. Self-regulation theory offers a potentially useful heuristic framework for rehabilitation research.
The Esophagiome: concept, status, and future perspectives.
Gregersen, Hans; Liao, Donghua; Brasseur, James G
2016-09-01
The term "Esophagiome" is meant to imply a holistic, multiscale treatment of esophageal function from cellular and muscle physiology to the mechanical responses that transport and mix fluid contents. The development and application of multiscale mathematical models of esophageal function are central to the Esophagiome concept. These model elements underlie the development of a "virtual esophagus" modeling framework to characterize and analyze function and disease by quantitatively contrasting normal and pathophysiological function. Functional models incorporate anatomical details with sensory-motor properties and functional responses, especially related to biomechanical functions, such as bolus transport and gastrointestinal fluid mixing. This brief review provides insight into Esophagiome research. Future advanced models can provide predictive evaluations of the therapeutic consequences of surgical and endoscopic treatments and will aim to facilitate clinical diagnostics and treatment. © 2016 New York Academy of Sciences.
Autism: a transdiagnostic, dimensional, construct of reasoning?
Aggernaes, Bodil
2018-03-01
The concept of autism has changed across time, from the Bleulerian concept, which defined it as one of several symptoms of dementia praecox, to the present-day concept representing a pervasive development disorder. The present theoretical contribution to this special issue of EJN on autism introduces new theoretical ideas and discusses them in light of selected prior theories, clinical examples, and recent empirical evidence. The overall aim is to identify some present challenges of diagnostic practice and autism research and to suggest new pathways that may help direct future research. Future research must agree on the definitions of core concepts such as autism and psychosis. A possible redefinition of the concept of autism may be a condition in which the rationale of an individual's behaviour differs qualitatively from that of the social environment due to characteristic cognitive impairments affecting reasoning. A broad concept of psychosis could focus on deviances in the experience of reality resulting from impairments of reasoning. In this light and consistent with recent empirical evidence, it may be appropriate to redefine dementia praecox as a developmental disorder of reasoning. A future challenge of autism research may be to develop theoretical models that can account for the impact of complex processes acting at the social level in addition to complex neurobiological and psychological processes. Such models could profit from a distinction among processes related to (i) basic susceptibility, (ii) adaptive processes and (iii) decompensating factors involved in the development of manifest illness. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Bai, Yunjun; Wei, Xueping
2018-01-01
Background The ongoing change in climate is predicted to exert unprecedented effects on Earth’s biodiversity at all levels of organization. Biological conservation is important to prevent biodiversity loss, especially for species facing a high risk of extinction. Understanding the past responses of species to climate change is helpful for revealing response mechanisms, which will contribute to the development of effective conservation strategies in the future. Methods In this study, we modelled the distributional dynamics of a ‘Vulnerable’ species, Pseudolarix amabilis, in response to late Quaternary glacial-interglacial cycles and future 2080 climate change using an ecological niche model (MaxEnt). We also performed migration vector analysis to reveal the potential migration of the population over time. Results Historical modelling indicates that the range dynamics of P. amabilis is highly sensitive to climate change and that its long-distance dispersal ability and potential for evolutionary adaption are limited. Compared to the current climatically suitable areas for this species, future modelling showed significant migration northward towards future potential climatically suitable areas. Discussion In combination with the predicted future distribution, the mechanism revealed by the historical response suggests that this species will not be able to fully occupy the future expanded areas of suitable climate or adapt to the unsuitable climate across the future contraction regions. As a result, we suggest assisted migration as an effective supplementary means of conserving this vulnerable species in the face of the unprecedentedly rapid climate change of the 21st century. As a study case, this work highlights the significance of introducing historical perspectives while researching species conservation, especially for currently vulnerable or endangered taxa that once had a wider distribution in geological time. PMID:29362700
Bai, Yunjun; Wei, Xueping; Li, Xiaoqiang
2018-01-01
The ongoing change in climate is predicted to exert unprecedented effects on Earth's biodiversity at all levels of organization. Biological conservation is important to prevent biodiversity loss, especially for species facing a high risk of extinction. Understanding the past responses of species to climate change is helpful for revealing response mechanisms, which will contribute to the development of effective conservation strategies in the future. In this study, we modelled the distributional dynamics of a 'Vulnerable' species, Pseudolarix amabilis , in response to late Quaternary glacial-interglacial cycles and future 2080 climate change using an ecological niche model (MaxEnt). We also performed migration vector analysis to reveal the potential migration of the population over time. Historical modelling indicates that the range dynamics of P. amabilis is highly sensitive to climate change and that its long-distance dispersal ability and potential for evolutionary adaption are limited. Compared to the current climatically suitable areas for this species, future modelling showed significant migration northward towards future potential climatically suitable areas. In combination with the predicted future distribution, the mechanism revealed by the historical response suggests that this species will not be able to fully occupy the future expanded areas of suitable climate or adapt to the unsuitable climate across the future contraction regions. As a result, we suggest assisted migration as an effective supplementary means of conserving this vulnerable species in the face of the unprecedentedly rapid climate change of the 21st century. As a study case, this work highlights the significance of introducing historical perspectives while researching species conservation, especially for currently vulnerable or endangered taxa that once had a wider distribution in geological time.
Space Weather Products at the Community Coordinated Modeling Center
NASA Technical Reports Server (NTRS)
Hesse, Michael; Kuznetsova, M.; Pulkkinen, A.; Maddox, M.; Rastaetter, L.; Berrios, D.; MacNeice, P.
2010-01-01
The Community Coordinated Modeling Center (CCMC) is a US inter-agency activity aiming at research in support of the generation of advanced space weather models. As one of its main functions, the CCMC provides to researchers the use of space science models, even if they are not model owners themselves. The second CCMC activity is to support Space Weather forecasting at national Space Weather Forecasting Centers. This second activity involves model evaluations, model transitions to operations, and the development of space weather forecasting tools. Owing to the pace of development in the science community, new model capabilities emerge frequently. Consequently, space weather products and tools involve not only increased validity, but often entirely new capabilities. This presentation will review the present state of space weather tools as well as point out emerging future capabilities.
NASA Astrophysics Data System (ADS)
Tagaris, Efthimios; -Eleni Sotiropoulou, Rafaella; Sotiropoulos, Andreas; Spanos, Ioannis; Milonas, Panayiotis; Michaelakis, Antonios
2017-04-01
Establishment and seasonal abundance of a region for Invasive Mosquito Species (IMS) are related to climatic parameters such as temperature and precipitation. In this work the current state is assessed using data from the European Climate Assessment and Dataset (ECA&D) project over Greece and Italy for the development of current spatial risk databases of IMS. Results are validated from the installation of a prototype IMS monitoring device that has been designed and developed in the framework of the LIFE CONOPS project at key points across the two countries. Since climate models suggest changes in future temperature and precipitation rates, the future potentiality of IMS establishment and spread over Greece and Italy is assessed using the climatic parameters in 2050's provided by the NASA GISS GCM ModelE under the IPCC-A1B emissions scenarios. The need for regional climate projections in a finer grid size is assessed using the Weather Research and Forecasting (WRF) model to dynamically downscale GCM simulations. The estimated changes in the future meteorological parameters are combined with the observation data in order to estimate the future levels of the climatic parameters of interest. The final product includes spatial distribution maps presenting the future suitability of a region for the establishment and seasonal abundance of the IMS over Greece and Italy. Acknowledgement: LIFE CONOPS project "Development & demonstration of management plans against - the climate change enhanced - invasive mosquitoes in S. Europe" (LIFE12 ENV/GR/000466).
Tax, Casper; Govaert, Paulien H M; Stommel, Martijn W J; Besselink, Marc G H; Gooszen, Hein G; Rovers, Maroeska M
2017-11-02
To illustrate how decision modeling may identify relevant uncertainty and can preclude or identify areas of future research in surgery. To optimize use of research resources, a tool is needed that assists in identifying relevant uncertainties and the added value of reducing these uncertainties. The clinical pathway for laparoscopic distal pancreatectomy (LDP) versus open (ODP) for nonmalignant lesions was modeled in a decision tree. Cost-effectiveness based on complications, hospital stay, costs, quality of life, and survival was analyzed. The effect of existing uncertainty on the cost-effectiveness was addressed, as well as the expected value of eliminating uncertainties. Based on 29 nonrandomized studies (3.701 patients) the model shows that LDP is more cost-effective compared with ODP. Scenarios in which LDP does not outperform ODP for cost-effectiveness seem unrealistic, e.g., a 30-day mortality rate of 1.79 times higher after LDP as compared with ODP, conversion in 62.2%, surgically repair of incisional hernias in 21% after LDP, or an average 2.3 days longer hospital stay after LDP than after ODP. Taking all uncertainty into account, LDP remained more cost-effective. Minimizing these uncertainties did not change the outcome. The results show how decision analytical modeling can help to identify relevant uncertainty and guide decisions for future research in surgery. Based on the current available evidence, a randomized clinical trial on complications, hospital stay, costs, quality of life, and survival is highly unlikely to change the conclusion that LDP is more cost-effective than ODP.
The Navy Oceanic Vertical Aerosol Model
1993-12-01
development of models from the basic research community in the future. Another area of concern is the use of the model in close-in coastal areas. Compensation...34windows" exist in the molecular absorption of the electromagnetic energy through which trans- missions in IR communication can take place. In these...commercial market ) will greatly improve the overall operation of the model. It will do this in conjunction with the optical visibility by pinning down
The Impact of United States Monetary Policy in the Crude Oil futures market
NASA Astrophysics Data System (ADS)
Padilla-Padilla, Fernando M.
This research examines the empirical impact the United States monetary policy, through the federal fund interest rate, has on the volatility in the crude oil price in the futures market. Prior research has shown how macroeconomic events and variables have impacted different financial markets within short and long--term movements. After testing and decomposing the variables, the two stationary time series were analyzed using a Vector Autoregressive Model (VAR). The empirical evidence shows, with statistical significance, a direct relationship when explaining crude oil prices as function of fed fund rates (t-1) and an indirect relationship when explained as a function of fed fund rates (t-2). These results partially address the literature review lacunas within the topic of the existing implication monetary policy has within the crude oil futures market.
Atmospheric studies in complex terrain: a planning guide for future studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Orgill, M.M.
The objective of this study is to assist the US Department of Energy in Conducting its atmospheric studies in complex terrain (ASCOT0 by defining various complex terrain research systems and relating these options to specific landforms sites. This includes: (1) reviewing past meteorological and diffusion research on complex terrain; (2) relating specific terrain-induced airflow phenomena to specific landforms and time and space scales; (3) evaluating the technical difficulty of modeling and measuring terrain-induced airflow phenomena; and (4) avolving severdal research options and proposing candidate sites for continuing and expanding field and modeling work. To evolve research options using variable candidatemore » sites, four areas were considered: site selection, terrain uniqueness and quantification, definition of research problems and research plans. 36 references, 111 figures, 20 tables.« less
Adedokun, Babatunde; Nyasulu, Peter; Maseko, Fresier; Adedini, Sunday; Akinyemi, Joshua; Afolabi, Sulaimon; de Wet, Nicole; Sulaimon, Adedokun; Sambai, Caroline; Utembe, Wells; Opiyo, Rose; Awotidebe, Taofeek; Chirwa, Esnat; Nabakwe, Esther; Niragire, François; Uwizeye, Dieudonné; Niwemahoro, Celine; Kamndaya, Mphatso; Mwakalinga, Victoria; Otwombe, Kennedy
2014-01-01
Resolution of public health problems in Africa remains a challenge because of insufficient skilled human resource capacity. The Consortium for Advanced Research Training in Africa (CARTA) was established to enhance capacity in multi-disciplinary health research that will make a positive impact on population health in Africa. The first cohort of the CARTA program describes their perspectives and experiences during the 4 years of fellowship and puts forward suggestions for future progress and direction of research in Africa. The model of training as shown by the CARTA program is an effective model of research capacity building in African academic institutions. An expansion of the program is therefore warranted to reach out to more African academics in search of advanced research training.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Onishi, Yasuo
Four JAEA researchers visited PNNL for two weeks in February, 2013 to learn the PNNL-developed, unsteady, one-dimensional, river model, TODAM and the PNNL-developed, time-dependent, three dimensional, coastal water model, FLESCOT. These codes predict sediment and contaminant concentrations by accounting sediment-radionuclide interactions, e.g., adsorption/desorption and transport-deposition-resuspension of sediment-sorbed radionuclides. The objective of the river and coastal water modeling is to simulate • 134Cs and 137Cs migration in Fukushima rivers and the coastal water, and • their accumulation in the river and ocean bed along the Fukushima coast. Forecasting the future cesium behavior in the river and coastal water under various scenariosmore » would enable JAEA to assess the effectiveness of various on-land remediation activities and if required, possible river and coastal water clean-up operations to reduce the contamination of the river and coastal water, agricultural products, fish and other aquatic biota. PNNL presented the following during the JAEA visit to PNNL: • TODAM and FLESCOT’s theories and mathematical formulations • TODAM and FLESCOT model structures • Past TODAM and FLESCOT applications • Demonstrating these two codes' capabilities by applying them to simple hypothetical river and coastal water cases. • Initial application of TODAM to the Ukedo River in Fukushima and JAEA researchers' participation in its modeling. PNNL also presented the relevant topics relevant to Fukushima environmental assessment and remediation, including • PNNL molecular modeling and EMSL computer facilities • Cesium adsorption/desorption characteristics • Experiences of connecting molecular science research results to macro model applications to the environment • EMSL tour • Hanford Site road tour. PNNL and JAEA also developed future course of actions for joint research projects on the Fukushima environmental and remediation assessments.« less
Pratt, Bridget; Hyder, Adnan A
2017-02-01
Global health research partnerships are increasingly taking the form of consortia that conduct programs of research in low and middle-income countries (LMICs). An ethical framework has been developed that describes how the governance of consortia comprised of institutions from high-income countries and LMICs should be structured to promote health equity. It encompasses initial guidance for sharing sovereignty in consortia decision-making and sharing consortia resources. This paper describes a first effort to examine whether and how consortia can uphold that guidance. Case study research was undertaken with the Future Health Systems consortium, performs research to improve health service delivery for the poor in Bangladesh, China, India, and Uganda. Data were thematically analysed and revealed that proposed ethical requirements for sharing sovereignty and sharing resources are largely upheld by Future Health Systems. Facilitating factors included having a decentralised governance model, LMIC partners with good research capacity, and firm budgets. Higher labour costs in the US and UK and the funder's policy of allocating funds to consortia on a reimbursement basis prevented full alignment with guidance on sharing resources. The lessons described in this paper can assist other consortia to more systematically link their governance policy and practice to the promotion of health equity. Copyright © 2016 Elsevier Ltd. All rights reserved.
Study Designs and Evaluation Models for Emergency Department Public Health Research
Broderick, Kerry B.; Ranney, Megan L.; Vaca, Federico E.; D’Onofrio, Gail; Rothman, Richard E.; Rhodes, Karin V.; Becker, Bruce; Haukoos, Jason S.
2011-01-01
Public health research requires sound design and thoughtful consideration of potential biases that may influence the validity of results. It also requires careful implementation of protocols and procedures that are likely to translate from the research environment to actual clinical practice. This article is the product of a breakout session from the 2009 Academic Emergency Medicine consensus conference entitled “Public Health in the ED: Screening, Surveillance, and Intervention” and serves to describe in detail aspects of performing emergency department (ED)-based public health research, while serving as a resource for current and future researchers. In doing so, the authors describe methodologic features of study design, participant selection and retention, and measurements and analyses pertinent to public health research. In addition, a number of recommendations related to research methods and future investigations related to public health work in the ED are provided. Public health investigators are poised to make substantial contributions to this important area of research, but this will only be accomplished by employing sound research methodology in the context of rigorous program evaluation. PMID:20053232
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Boer, Gijs
Data were collected to improve understanding of the Arctic troposphere, and to provide researchers with a focused case-study period for future observational and modeling studies pertaining to Arctic atmospheric processes.
Teacher Research Experiences: What We Have Learned and What We Need to Know
NASA Astrophysics Data System (ADS)
Scowcroft, G. A.; Knowlton, C. W.
2006-12-01
The immersion of teachers in scientific research is an effective model for science teacher professional development that builds the capacity of teachers to engage students in scientific inquiry. Most science teachers have had little opportunity to "practice" science. Yet national and state science education standards expect teachers to provide these kinds of experiences for their students. Through the renewal and enhancement that a teacher research experience (TRE) offers, teachers become more capable and motivated to challenge their classes through inquiry-based activities. Although TREs are believed to be successful, there is little published research on their impacts to teaching practice and student science competencies. Research shows that teacher expertise can account for approximately 40 percent of the variance in student learning in reading and mathematics achievement more than any other single factor including student background. Other studies show a similar correlation between teacher expertise and student achievement across the subject areas. There is a critical need for empirical research on the impacts of TREs on science education. Future research could guide funding agencies in setting priorities for the professional development of science teachers as it fine tunes the TRE model to achieve the maximum impact. This presentation will review some of the available literature on TREs and accepted best practices. It will also point to future directions that the TRE community can take to optimize these worthwhile opportunities for teachers.
Thompson, Robert Stephen; Hostetler, Steven W.; Bartlein, Patrick J.; Anderson, Katherine H.
1998-01-01
Historical and geological data indicate that significant changes can occur in the Earth's climate on time scales ranging from years to millennia. In addition to natural climatic change, climatic changes may occur in the near future due to increased concentrations of carbon dioxide and other trace gases in the atmosphere that are the result of human activities. International research efforts using atmospheric general circulation models (AGCM's) to assess potential climatic conditions under atmospheric carbon dioxide concentrations of twice the pre-industrial level (a '2 X CO2' atmosphere) conclude that climate would warm on a global basis. However, it is difficult to assess how the projected warmer climatic conditions would be distributed on a regional scale and what the effects of such warming would be on the landscape, especially for temperate mountainous regions such as the Western United States. In this report, we present a strategy to assess the regional sensitivity to global climatic change. The strategy makes use of a hierarchy of models ranging from an AGCM, to a regional climate model, to landscape-scale process models of hydrology and vegetation. A 2 X CO2 global climate simulation conducted with the National Center for Atmospheric Research (NCAR) GENESIS AGCM on a grid of approximately 4.5o of latitude by 7.5o of longitude was used to drive the NCAR regional climate model (RegCM) over the Western United States on a grid of 60 km by 60 km. The output from the RegCM is used directly (for hydrologic models) or interpolated onto a 15-km grid (for vegetation models) to quantify possible future environmental conditions on a spatial scale relevant to policy makers and land managers.
Human Factors Research for Space Exploration: Measurement, Modeling, and Mitigation
NASA Technical Reports Server (NTRS)
Kaiser, Mary K.; Allen, Christopher S.; Barshi, Immanuel; Billman, Dorrit; Holden, Kritina L.
2010-01-01
As part of NASA's Human Research Program, the Space Human Factors Engineering Project serves as the bridge between Human Factors research and Human Spaceflight applications. Our goal is to be responsive to the operational community while addressing issues at a sufficient level of abstraction to ensure that our tools and solutions generalize beyond the point design. In this panel, representatives from four of our research domains will discuss the challenges they face in solving current problems while also enabling future capabilities.
Critchlow, Simone; Hirst, Matthew; Akehurst, Ron; Phillips, Ceri; Philips, Zoe; Sullivan, Will; Dunlop, Will C N
2017-02-01
Complexities in the neuropathic-pain care pathway make the condition difficult to manage and difficult to capture in cost-effectiveness models. The aim of this study is to understand, through a systematic review of previous cost-effectiveness studies, some of the key strengths and limitations in data and modeling practices in neuropathic pain. Thus, the aim is to guide future research and practice to improve resource allocation decisions and encourage continued investment to find novel and effective treatments for patients with neuropathic pain. The search strategy was designed to identify peer-reviewed cost-effectiveness evaluations of non-surgical, pharmaceutical therapies for neuropathic pain published since January 2000, accessing five key databases. All identified publications were reviewed and screened according to pre-defined eligibility criteria. Data extraction was designed to reflect key data challenges and approaches to modeling in neuropathic pain and based on published guidelines. The search strategy identified 20 cost-effectiveness analyses meeting the inclusion criteria, of which 14 had original model structures. Cost-effectiveness modeling in neuropathic pain is established and increasing across multiple jurisdictions; however, amongst these studies, there is substantial variation in modeling approach, and there are common limitations. Capturing the effect of treatments upon health outcomes, particularly health-related quality-of-life, is challenging, and the health effects of multiple lines of ineffective treatment, common for patients with neuropathic pain, have not been consistently or robustly modeled. To improve future economic modeling in neuropathic pain, further research is suggested into the effect of multiple lines of treatment and treatment failure upon patient outcomes and subsequent treatment effectiveness; the impact of treatment-emergent adverse events upon patient outcomes; and consistent and appropriate pain measures to inform models. The authors further encourage transparent reporting of inputs used to inform cost-effectiveness models, with robust, comprehensive and clear uncertainty analysis and, where feasible, open-source modeling is encouraged.
Integrating Antarctic Science Into Geospace System Science
NASA Astrophysics Data System (ADS)
Kelly, J. D.
2010-12-01
Addressing the scientific, technical, and sociological challenges of the future requires both detailed basic research and system based approaches to the entire geospace system from the Earth’s core, through solid Earth, ice, oceans, atmosphere, ionosphere, and magnetosphere to the Sun’s outer atmosphere and even beyond. Fully integrating Antarctic science, and fully exploiting the scientific research possibilities of the Antarctic continent through effective and efficient support infrastructure, will be a very important contribution to future success. Amongst many new facilities and programs which can and are being proposed, the Moveable Antarctic Incoherent Scatter Radar (MAISR) at McMurdo illustrates the potential for innovative future science. This poster uses some of the proposed science programs to show how the scientific community can use the data products of this facility, and how they can contribute to the development of the tools and mechanisms for proposing, executing, and utilizing such new research capabilities. In particular, incoherent scatter radars played a big role in data collection during the recent International Polar Year and plans for future extended operations, including those in Antarctica, will be discussed in the light of lessons learnt in applying observations to global modeling developments.
Adaptability-what it is and what it is not: Comment on Chandra and Leong (2016).
Martin, Andrew J
2017-10-01
Chandra and Leong (2016) propose a new model of adaptability: the diversified portfolio model (DPM) of adaptability. Further thought and research on adaptability is a welcome addition to the limited body of work conducted on this topic to date. However, in their discussion there is a lack of definitional clarity, and there is frequent conflation of adaptability and resilience. It is also the case that the hypothesized adaptability model is general and could apply to many psychological constructs and processes (not just adaptability). In addition, there are gaps in research suggested by the authors that have been addressed by other researchers and there is a good deal of contemporary adaptability research that is not cited. Addressing these limitations in future work is vital to the further development of theory, research, and practice in the area of adaptability. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Cavodeassi, Florencia; Del Bene, Filippo; Fürthauer, Maximilian; Grabher, Clemens; Herzog, Wiebke; Lehtonen, Sanna; Linker, Claudia; Mercader, Nadia; Mikut, Ralf; Norton, William; Strähle, Uwe; Tiso, Natascia; Foulkes, Nicholas S
2013-03-01
The second European Zebrafish Principal Investigator (PI) Meeting was held in March, 2012, in Karlsruhe, Germany. It brought together PIs from all over Europe who work with fish models such as zebrafish and medaka to discuss their latest results, as well as to resolve strategic issues faced by this research community. Scientific discussion ranged from the development of new technologies for working with fish models to progress in various fields of research such as injury and repair, disease models, and cell polarity and dynamics. This meeting also marked the establishment of the European Zebrafish Resource Centre (EZRC) at Karlsruhe that in the future will serve as an important focus and community resource for zebrafish- and medaka-based research.
Mobile robotics research at Sandia National Laboratories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morse, W.D.
Sandia is a National Security Laboratory providing scientific and engineering solutions to meet national needs for both government and industry. As part of this mission, the Intelligent Systems and Robotics Center conducts research and development in robotics and intelligent machine technologies. An overview of Sandia`s mobile robotics research is provided. Recent achievements and future directions in the areas of coordinated mobile manipulation, small smart machines, world modeling, and special application robots are presented.