Seasonal Variation of the Indonesian Throughflow in Makassar Strait
2012-07-01
HYCOM). Twenty-eight years (1981–2008) of 1/38 Indo-Pacific basin HYCOM simulations and three years (2004–06) from a 1/128 global HYCOM simulation are...eight years (1981?2008) of 1/ 38 Indo-Pacific basin HYCOM simulations and three years (2004?06) from a 1/ 128 global HYCOM simulation are analyzed...Wyrtki 1973) and the propa- gation of Kelvin waves along the coasts of Sumatra and Java, such as observed and modeled during May 1997 (Sprintall et
2010-01-01
Circulation in the Indonesian Seas: 1/12 degree Global HYCOM and the INSTANT Observations 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM...SUPPLEMENTARY NOTES 14. ABSTRACT A l/l 2 global version of the HYbrid Coordinate Ocean Model (HYCOM) using 3-hourly atmospheric forcing is analyzed and...TERMS Indonesian Throughflow, global HYCOM, INSTANT, Inter-ocean exchange, ocean modeling 16. SECURITY CLASSIFICATION OF: a. REPORT Unclassified b
The FIM-iHYCOM Model in SubX: Evaluation of Subseasonal Errors and Variability
NASA Astrophysics Data System (ADS)
Green, B.; Sun, S.; Benjamin, S.; Grell, G. A.; Bleck, R.
2017-12-01
NOAA/ESRL/GSD has produced both real-time and retrospective forecasts for the Subseasonal Experiment (SubX) using the FIM-iHYCOM model. FIM-iHYCOM couples the atmospheric Flow-following finite volume Icosahedral Model (FIM) to an icosahedral-grid version of the Hybrid Coordinate Ocean Model (HYCOM). This coupled model is unique in terms of its grid structure: in the horizontal, the icosahedral meshes are perfectly matched for FIM and iHYCOM, eliminating the need for a flux interpolator; in the vertical, both models use adaptive arbitrary Lagrangian-Eulerian hybrid coordinates. For SubX, FIM-iHYCOM initializes four time-lagged ensemble members around each Wednesday, which are integrated forward to provide 32-day forecasts. While it has already been shown that this model has similar predictive skill as NOAA's operational CFSv2 in terms of the RMM index, FIM-iHYCOM is still fairly new and thus its overall performance needs to be thoroughly evaluated. To that end, this study examines model errors as a function of forecast lead week (1-4) - i.e., model drift - for key variables including 2-m temperature, precipitation, and SST. Errors are evaluated against two reanalysis products: CFSR, from which FIM-iHYCOM initial conditions are derived, and the quasi-independent ERA-Interim. The week 4 error magnitudes are similar between FIM-iHYCOM and CFSv2, albeit with different spatial distributions. Also, intraseasonal variability as simulated in these two models will be compared with reanalyses. The impact of hindcast frequency (4 times per week, once per week, or once per day) on the model climatology is also examined to determine the implications for systematic error correction in FIM-iHYCOM.
NASA Astrophysics Data System (ADS)
Kang, H.; Kourafalou, V. H.; Hogan, P. J.; Smedstad, O.
2008-12-01
The South Florida coastal seas include shelf areas and shallow water bodies around ecologically fragile environments and Marine Protected Areas, such as Florida Bay, the Florida Keys National Marine Sanctuary (around the largest coral reef system of the continental U.S.) and the Dry Tortugas Ecological Reserve. Man- made changes in the hydrology of the Everglades have caused dramatic degradation of the coastal ecosystem through discharge in Florida Bay. New management scenarios are under way to restore historical flows. The environmental impacts of the management propositions are examined with an inter-disciplinary, multi-nested modeling system. The HYbrid Coordinate Ocean Model (HYCOM) has been employed for the Regional Model for South Florida Coastal Seas (SoFLA-HYCOM, 1/25 degree resolution) and for the embedded, high resolution coastal Florida Keys model (FKEYS- HYCOM, 1/100 degree). Boundary conditions are extracted from GODAE products: the large scale North Atlantic model (ATL-HYCOM, 1/12 degree) and the intermediate scale Gulf of Mexico model (GOM-HYCOM, 1/25 degree). The study targets the impacts of large scale oceanic features on the coastal dynamics. Eddies that travel along the Loop Current/Florida Current front are known to be an important mechanism for the interaction of nearshore and offshore flows. The high resolution FKEYS simulations reveal both mescoscale and sub- mesoscale eddy passages during a targeted 2-year simulation period (2004-2005), forced with high resolution/high frequency atmospheric forcing. Eddies influence sea level changes in the vicinity of Florida Bay with possible implications on current and future flushing patterns. They also enable upwelling of cooler, nutrient-rich waters in the vicinity of the Reef Tract and they influence transport and recruitment pathways for coral fish larvae, as they carry waters of different properties (such as river-borne low-salinity/nutrient-rich waters from as far as the Mississippi River) and waters containing larvae from upstream sources (such as from the Dry Tortugas spawning grounds).
Salt Transport in the Near-Surface Layer in the Monsoon-Influenced Indian Ocean Using HYCOM
2010-08-04
A copy is filed in this office. Office of Counsel,Code 1008.3 ADOR/Director NCST E. R. Franchi , 7000 .^SLjdM/fc^- */?//<» Public Affairs...mechanisms for the transport of salt in the Indian Ocean are not fully understood. Global HYCOM simulated SSS data, validated with in situ observations...included in the HYCOM SSS simulations. 2. Data and Methods [6] This study uses the 4 year period (2003-2006) monthly SSS from the global HYbrid
The internal gravity wave spectrum in two high-resolution global ocean models
NASA Astrophysics Data System (ADS)
Arbic, B. K.; Ansong, J. K.; Buijsman, M. C.; Kunze, E. L.; Menemenlis, D.; Müller, M.; Richman, J. G.; Savage, A.; Shriver, J. F.; Wallcraft, A. J.; Zamudio, L.
2016-02-01
We examine the internal gravity wave (IGW) spectrum in two sets of high-resolution global ocean simulations that are forced concurrently by atmospheric fields and the astronomical tidal potential. We analyze global 1/12th and 1/25th degree HYCOM simulations, and global 1/12th, 1/24th, and 1/48th degree simulations of the MITgcm. We are motivated by the central role that IGWs play in ocean mixing, by operational considerations of the US Navy, which runs HYCOM as an ocean forecast model, and by the impact of the IGW continuum on the sea surface height (SSH) measurements that will be taken by the planned NASA/CNES SWOT wide-swath altimeter mission. We (1) compute the IGW horizontal wavenumber-frequency spectrum of kinetic energy, and interpret the results with linear dispersion relations computed from the IGW Sturm-Liouville problem, (2) compute and similarly interpret nonlinear spectral kinetic energy transfers in the IGW band, (3) compute and similarly interpret IGW contributions to SSH variance, (4) perform comparisons of modeled IGW kinetic energy frequency spectra with moored current meter observations, and (5) perform comparisons of modeled IGW kinetic energy vertical wavenumber-frequency spectra with moored observations. This presentation builds upon our work in Muller et al. (2015, GRL), who performed tasks (1), (2), and (4) in 1/12th and 1/25th degree HYCOM simulations, for one region of the North Pacific. New for this presentation are tasks (3) and (5), the inclusion of MITgcm solutions, and the analysis of additional ocean regions.
2013-09-30
Tripolar Wave Model Grid: NAVGEM / WaveWatch III / HYCOM W. Erick Rogers Naval Research Laboratory, Code 7322 Stennis Space Center, MS 39529...Parameterizations and Tripolar Wave Model Grid: NAVGEM / WaveWatch III / HYCOM 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6
NASA Technical Reports Server (NTRS)
Subrahmanyam, Bulusu; Heffner, David M.; Cromwell, David; Shriver, Jay F.
2009-01-01
Rossby waves are difficult to detect with in situ methods. However, as we show in this paper, they can be clearly identified in multi-parameters in multi-mission satellite observations of sea surface height (SSH), sea surface temperature (SST) and ocean color observations of chlorophyll-a (chl-a), as well as 1/12-deg global HYbrid Coordinate Ocean Model (HYCOM) simulations of SSH, SST and sea surface salinity (SSS) in the Indian Ocean. While the surface structure of Rossby waves can be elucidated from comparisons of the signal in different sea surface parameters, models are needed to gain direct information about how these waves affect the ocean at depth. The first three baroclinic modes of the Rossby waves are inferred from the Fast Fourier Transform (FFT), and two-dimensional Radon Transform (2D RT). At many latitudes the first and second baroclinic mode Rossby wave phase speeds from satellite observations and model parameters are identified.
CMIP5 Historical Simulations (1850-2012) with GISS ModelE2
NASA Technical Reports Server (NTRS)
Miller, Ronald Lindsay; Schmidt, Gavin A.; Nazarenko, Larissa S.; Tausnev, Nick; Bauer, Susanne E.; DelGenio, Anthony D.; Kelley, Max; Lo, Ken K.; Ruedy, Reto; Shindell, Drew T.;
2014-01-01
Observations of climate change during the CMIP5 extended historical period (1850-2012) are compared to trends simulated by six versions of the NASA Goddard Institute for Space Studies ModelE2 Earth System Model. The six models are constructed from three versions of the ModelE2 atmospheric general circulation model, distinguished by their treatment of atmospheric composition and the aerosol indirect effect, combined with two ocean general circulation models, HYCOM and Russell. Forcings that perturb the model climate during the historical period are described. Five-member ensemble averages from each of the six versions of ModelE2 simulate trends of surface air temperature, atmospheric temperature, sea ice and ocean heat content that are in general agreement with observed trends, although simulated warming is slightly excessive within the past decade. Only simulations that include increasing concentrations of long-lived greenhouse gases match the warming observed during the twentieth century. Differences in twentieth-century warming among the six model versions can be attributed to differences in climate sensitivity, aerosol and ozone forcing, and heat uptake by the deep ocean. Coupled models with HYCOM export less heat to the deep ocean, associated with reduced surface warming in regions of deepwater formation, but greater warming elsewhere at high latitudes along with reduced sea ice. All ensembles show twentieth-century annular trends toward reduced surface pressure at southern high latitudes and a poleward shift of the midlatitude westerlies, consistent with observations.
2010-04-14
for inter- basin exchange, including the net throughflow transport. The simulated total ITF transport (-13.4 Sv) is similar to the observational...May 2004 and 2005, November 2004, 2005 and 2006) appear to be associated with coastally-trapped Kelvin waves propagating eastward along Sumatra coast...in global HYCOM, this submerged multi-passage plateau causes the flow to separate into three branches, an eastern and central branch that feeds the
NASA Astrophysics Data System (ADS)
Halliwell, George R.
Vertical coordinate and vertical mixing algorithms included in the HYbrid Coordinate Ocean Model (HYCOM) are evaluated in low-resolution climatological simulations of the Atlantic Ocean. The hybrid vertical coordinates are isopycnic in the deep ocean interior, but smoothly transition to level (pressure) coordinates near the ocean surface, to sigma coordinates in shallow water regions, and back again to level coordinates in very shallow water. By comparing simulations to climatology, the best model performance is realized using hybrid coordinates in conjunction with one of the three available differential vertical mixing models: the nonlocal K-Profile Parameterization, the NASA GISS level 2 turbulence closure, and the Mellor-Yamada level 2.5 turbulence closure. Good performance is also achieved using the quasi-slab Price-Weller-Pinkel dynamical instability model. Differences among these simulations are too small relative to other errors and biases to identify the "best" vertical mixing model for low-resolution climate simulations. Model performance deteriorates slightly when the Kraus-Turner slab mixed layer model is used with hybrid coordinates. This deterioration is smallest when solar radiation penetrates beneath the mixed layer and when shear instability mixing is included. A simulation performed using isopycnic coordinates to emulate the Miami Isopycnic Coordinate Ocean Model (MICOM), which uses Kraus-Turner mixing without penetrating shortwave radiation and shear instability mixing, demonstrates that the advantages of switching from isopycnic to hybrid coordinates and including more sophisticated turbulence closures outweigh the negative numerical effects of maintaining hybrid vertical coordinates.
Spectral decomposition of internal gravity wave sea surface height in global models
NASA Astrophysics Data System (ADS)
Savage, Anna C.; Arbic, Brian K.; Alford, Matthew H.; Ansong, Joseph K.; Farrar, J. Thomas; Menemenlis, Dimitris; O'Rourke, Amanda K.; Richman, James G.; Shriver, Jay F.; Voet, Gunnar; Wallcraft, Alan J.; Zamudio, Luis
2017-10-01
Two global ocean models ranging in horizontal resolution from 1/12° to 1/48° are used to study the space and time scales of sea surface height (SSH) signals associated with internal gravity waves (IGWs). Frequency-horizontal wavenumber SSH spectral densities are computed over seven regions of the world ocean from two simulations of the HYbrid Coordinate Ocean Model (HYCOM) and three simulations of the Massachusetts Institute of Technology general circulation model (MITgcm). High wavenumber, high-frequency SSH variance follows the predicted IGW linear dispersion curves. The realism of high-frequency motions (>0.87 cpd) in the models is tested through comparison of the frequency spectral density of dynamic height variance computed from the highest-resolution runs of each model (1/25° HYCOM and 1/48° MITgcm) with dynamic height variance frequency spectral density computed from nine in situ profiling instruments. These high-frequency motions are of particular interest because of their contributions to the small-scale SSH variability that will be observed on a global scale in the upcoming Surface Water and Ocean Topography (SWOT) satellite altimetry mission. The variance at supertidal frequencies can be comparable to the tidal and low-frequency variance for high wavenumbers (length scales smaller than ˜50 km), especially in the higher-resolution simulations. In the highest-resolution simulations, the high-frequency variance can be greater than the low-frequency variance at these scales.
Olascoaga, M. J.; Beron-Vera, F. J.; Brand, L. E.; Koçak, H.
2008-01-01
Several theories have been proposed to explain the development of harmful algal blooms (HABs) produced by the toxic dinoflagellate Karenia brevis on the West Florida Shelf. However, because the early stages of HAB development are usually not detected, these theories have been so far very difficult to verify. In this paper we employ simulated Lagrangian coherent structures (LCSs) to trace potential early locations of the development of a HAB in late 2004 before it was transported to a region where it could be detected by satellite imagery. The LCSs, which are extracted from surface ocean currents produced by a data-assimilative HYCOM (HYbrid-Coordinate Ocean Model) simulation, constitute material fluid barriers that demarcate potential pathways for HAB evolution. Using a simplified population dynamics model we infer the factors that could possibly lead to the development of the HAB in question. The population dynamics model determines nitrogen in two components, nutrients and phytoplankton, which are assumed to be passively advected by surface ocean currents produced by the above HYCOM simulation. Two nutrient sources are inferred for the HAB whose evolution is found to be strongly tied to the simulated LCSs. These nutrient sources are found to be located nearshore and possibly due to land runoff. PMID:19137076
Comparisons between data assimilated HYCOM output and in situ Argo measurements in the Bay of Bengal
NASA Astrophysics Data System (ADS)
Wilson, E. A.; Riser, S.
2014-12-01
This study evaluates the performance of data assimilated Hybrid Coordinate Ocean Model (HYCOM) output for the Bay of Bengal from September 2008 through July 2013. We find that while HYCOM assimilates Argo data, the model still suffers from significant temperature and salinity biases in this region. These biases are most severe in the northern Bay of Bengal, where the model tends to be too saline near the surface and too fresh at depth. The maximum magnitude of these biases is approximately 0.6 PSS. We also find that the model's salinity biases have a distinct seasonal cycle. The most problematic periods are the months following the summer monsoon (Oct-Jan). HYCOM's near surface temperature estimates compare more favorably with Argo, but significant errors exist at deeper levels. We argue that optimal interpolation will tend to induce positive salinity biases in the northern regions of the Bay. Further, we speculate that these biases are introduced when the model relaxes to climatology and assimilates real-time data.
NASA Astrophysics Data System (ADS)
Dukhovskoy, D. S.; Chassignet, E. P.; Hogan, P. J.; Metzger, E. J.; Posey, P.; Smedstad, O. M.; Stefanova, L. B.; Wallcraft, A. J.
2016-12-01
The great potential of numerical models to provide a high-resolution continuous picture of the environmental characteristics of the Arctic system is related to the problem of reliability and accuracy of the simulations. Recent Arctic Ocean model intercomparison projects have identified substantial disagreements in water mass distribution and circulation among the models over the last two decades. In situ and satellite observations cannot yield enough continuous in time and space information to interpret the observed changes in the Arctic system. Observations combined with Arctic Ocean models via data assimilation provide perhaps the most complete knowledge about the state of the Arctic system. We use outputs from the US Navy Global Ocean Forecast System (20-year reanalysis + analysis) to investigate several hypotheses that have been put forward regarding the current state and recent changes in the Arctic Ocean. The system is based on the 0.08-degree HYbrid Coordinate Ocean Model (HYCOM) and can be run with two-way coupling to the Los Alamos Community Ice CodE (CICE) or with an energy-loan ice model. Observations are assimilated by the Navy Coupled Ocean Data Assimilation (NCODA) algorithm. HYCOM temperature and salinity fields are shown to be in good agreement with observational data in the Arctic and North Atlantic. The model reproduces changes in the freshwater budget in the Arctic as reported in other studies. The modeled freshwater fluxes between the Arctic Ocean and the North Atlantic are analyzed to document and discuss the interaction between the two regions over the last two decades.
Modeling the Influence of the Dardanelles Outflow on the Aegean Sea Dynamics
2009-01-01
Sporades Limnos Lesvos Samothraki Evia Trough The North Aegean Hybrid Coordinate Ocean Model ( NAEG -HYCOM) •What is the role of outflow properties, strait...11 12 13 14 15 16 17 18 19 20 26 March NAEG -HYCOM SST (NOGAPS) 20 40 60 80 100 120 140 160 180 200 220 20 40 60 80 100 120 140 160 8 9 10 11 12 13...14 15 16 17 18 19 20 26 March NAEG -HYCOM SST (SKIRON) •Atmospheric fluxes •BSW temperature MODIS SST MODEL (w/ NOGAPS) MODEL (w/ SKIRON) 2 April
Towards the use of HYCOM in Coupled ENSO Prediction: Assessment of ENSO Skill in Forced Global HYCOM
2016-08-10
CICE spun-up state forced with climatological surface atmospheric fluxes. This run was initialized from Generalized Digital Environmental Model4...GDEM4) climatological temperature and salinity. It was configured with 41layers. 2. Global 0.72° HYCOM/CICE forced with NOGAPS for 2003-2012. The same...surface temperature, sea-ice concentration, and precipitation products. It was initialized from Levitus-PHC2 climatology . It was configured with 32 layers
Ocean state and uncertainty forecasts using HYCOM with Local Ensemble Transfer Kalman Filter (LETKF)
NASA Astrophysics Data System (ADS)
Wei, Mozheng; Hogan, Pat; Rowley, Clark; Smedstad, Ole-Martin; Wallcraft, Alan; Penny, Steve
2017-04-01
An ensemble forecast system based on the US Navy's operational HYCOM using Local Ensemble Transfer Kalman Filter (LETKF) technology has been developed for ocean state and uncertainty forecasts. One of the advantages is that the best possible initial analysis states for the HYCOM forecasts are provided by the LETKF which assimilates the operational observations using ensemble method. The background covariance during this assimilation process is supplied with the ensemble, thus it avoids the difficulty of developing tangent linear and adjoint models for 4D-VAR from the complicated hybrid isopycnal vertical coordinate in HYCOM. Another advantage is that the ensemble system provides the valuable uncertainty estimate corresponding to every state forecast from HYCOM. Uncertainty forecasts have been proven to be critical for the downstream users and managers to make more scientifically sound decisions in numerical prediction community. In addition, ensemble mean is generally more accurate and skilful than the single traditional deterministic forecast with the same resolution. We will introduce the ensemble system design and setup, present some results from 30-member ensemble experiment, and discuss scientific, technical and computational issues and challenges, such as covariance localization, inflation, model related uncertainties and sensitivity to the ensemble size.
Impact of GODAE Products on Nested HYCOM Simulations of the West Florida Shelf
2009-01-20
circulation and the Atlantic Meridional Overturning Circulation . For temperature, the non-assimilative outer model had a cold...associated with the basin-scale wind-driven gyres and with the Atlantic Meridional Overturning Circulation is incor- rectly represented. In contrast...not contain realistic LC transport variability associated with the wind-driven gyre circulation and the Atlantic Meridio- nal Overturning Circulation
NASA Astrophysics Data System (ADS)
Jessen, P. G.; Chen, S.
2014-12-01
This poster introduces and evaluates features concerning the Hawaii, USA region using the U.S. Navy's fully Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS-OS™) coupled to the Navy Coastal Ocean Model (NCOM). It also outlines some challenges in verifying ocean currents in the open ocean. The system is evaluated using in situ ocean data and initial forcing fields from the operational global Hybrid Coordinate Ocean Model (HYCOM). Verification shows difficulties in modelling downstream currents off the Hawaiian islands (Hawaii's wake). Comparing HYCOM to NCOM current fields show some displacement of small features such as eddies. Generally, there is fair agreement from HYCOM to NCOM in salinity and temperature fields. There is good agreement in SSH fields.
Sensitivity of the Carolina Coastal Ocean Circulation to Open Boundary and Atmospheric Forcing
NASA Astrophysics Data System (ADS)
Liu, X.; Xie, L.; Pietrafesa, L.
2003-12-01
The ocean circulation on the continental shelf off the Carolina coast is characterized by a complex flow regime and temporal variability, which is influenced by atmospheric forcing, the Gulf Stream system, complex coastline and bathymetry, river discharge and tidal forcing. In this study, a triple-nested, HYbrid Coordinate Ocean Model (HYCOM) is used to simulate the coastal ocean circulation on the continental shelf off the Carolina coast and its interactions with the offshore large-scale ocean circulation system. The horizontal mesh size in the innermost domain was set to 1 km, whereas the outermost domain coincides with the near real-time 1/12’ Atlantic HYCOM Nowcast/Forecast System operated at the Naval Research Laboratory. The intermediate domain uses a mesh size of 3 km. Atmospheric forcing fields for the Carolina coastal region are derived from the NOAA operational ETA model, the ECMWF reanalysis fields and NCEP/NCAR reanalysis fields. These forcing fields are derived at 0.8›¦, 1.125›¦ and 1.875›¦ resolutions, and at intervals of 6 hour, daily and monthly. The sensitivity of the model results to the spatial and temporal resolution of the atmospheric forcing fields is analyzed. To study the dependence of the model sensitivity on the model grid size, single-window simulations at resolutions of 1km, 3km and 9km are carried out using the same forcing fields that were applied to the nested system. Comparisons between the nested and the single domain simulation results will be presented.
Inferring Dynamics from the Wavenumber Spectra of an Eddying Global Ocean Model with Embedded Tides
2012-12-12
MODEL WAVENUMBER SPECTRA (12(112 Ocean Model (HYCOM) [Chassignet et al., 2007 ; Metzger et al., 2010] with 1/12.5° (approximately 9 km) equatorial...Chassignet, E. P., H. E. Ilurlburt. O. M. Smedstad, G. R. Halliwcll, P. J. Hogan, A. J. Wallcraft, R. Baraille. and R. Bleck ( 2007 ), The HYCOM (HYbrid...tide models, J. Geophys. Res., 102, 25,173 25,194, doi:10.1029/97JC00445. Stammer , D. (1997), Global characteristics of ocean variability estimated
Impact of Data Assimilation And Resolution On Modeling The Gulf Stream Pathway
2011-11-18
currents could be generated by either the Deep Western Boundary Current (DWBC) associated with the Meridional Overturning Circulation (MOC) or by...abyssal gyre centered directly beneath the surface gyre. Figure 7. Meridional overturning circulation stream function for four 1/12° global HYCOM... circulation and have a weak overturning circulation . The Gulf Stream path is poorly simulated without the steering by the abyssal circulation . A
Dynamics of the Brazil-Malvinas Confluence: Energy Conversions
NASA Astrophysics Data System (ADS)
Francisco, C. P. F.; da Silveira, I. C. A.; Campos, E. J. D.
2011-03-01
In this work, we investigated the mesoscale dynamics of the Brazil-Malvinas Confluence (BMC) region. Particularly, we were interested in the role of geophysical instability in the formation and development of the mesoscale features commonly observed in this region. We dynamically analyzed the results of numerical simulations of the BMC region conducted with 'Hybrid Coordinate Ocean Model' (HYCOM). We quantified the effect of barotropic and baroclinic energy conversions in the modeled flow and showed the dominance of the latter in the region.
2014-09-30
Here we use the newly launched Aquarius satellite derived Sea Surface Salinity ( SSS ) data as well as Argo salinity profiles, model simulations and...dipolar sea surface salinity ( SSS ) structure with the salty Arabian Sea (AS) on the west and the fresher Bay of Bengal (BoB) on the east. At the surface...interconnected, region is quantified. PRELIMINARY RESULTS Figure 1 shows the mean Aquarius SSS during August 2011-May 2014 and several boxes that
Geostrophic Turbulence in the Frequency-Wavenumber Domain: Eddy-Driven Low-Frequency Variability
2014-08-01
QG versus realistic models than was done in ASFMRS. Previous studies of oceanic frequency– wavenumber spectra include Wunsch and Stammer (1995...HYCOM; Chassignet et al. 2007 ), in place of the Naval Research Laboratory (NRL) Layered Ocean Model (NLOM; Hurlburt and AUGUST 2014 ARB I C ET AL . 2051...Thompson 1980; Shriver et al. 2007 ) used in ASFMRS. HYCOM has more layers in the vertical direction than doesNLOMand a number of othermore realistic
Verification and Validation of a Navy ESPC Hindcast with Loosely Coupled Data Assimilation
NASA Astrophysics Data System (ADS)
Metzger, E. J.; Barton, N. P.; Smedstad, O. M.; Ruston, B. C.; Wallcraft, A. J.; Whitcomb, T. R.; Ridout, J. A.; Franklin, D. S.; Zamudio, L.; Posey, P. G.; Reynolds, C. A.; Phelps, M.
2016-12-01
The US Navy is developing an Earth System Prediction Capability (ESPC) to provide global environmental information to meet Navy and Department of Defense (DoD) operations and planning needs from the upper atmosphere to under the sea. It will be a fully coupled global atmosphere/ocean/ice/wave/land prediction system providing daily deterministic forecasts out to 16 days at high horizontal and vertical resolution, and daily probabilistic forecasts out to 45 days at lower resolution. The system will run at the Navy DoD Supercomputing Resource Center with an initial operational capability scheduled for the end of FY18 and the final operational capability scheduled for FY22. The individual model and data assimilation components include: atmosphere - NAVy Global Environmental Model (NAVGEM) and Naval Research Laboratory (NRL) Atmospheric Variational Data Assimilation System - Accelerated Representer (NAVDAS-AR); ocean - HYbrid Coordinate Ocean Model (HYCOM) and Navy Coupled Ocean Data Assimilation (NCODA); ice - Community Ice CodE (CICE) and NCODA; WAVEWATCH III™ and NCODA; and land - NAVGEM Land Surface Model (LSM). Currently, NAVGEM/HYCOM/CICE are three-way coupled and each model component is cycling with its respective assimilation scheme. The assimilation systems do not communicate with each other, but future plans call for these to be coupled as well. NAVGEM runs with a 6-hour update cycle while HYCOM/CICE run with a 24-hour update cycle. The T359L50 NAVGEM/0.08° HYCOM/0.08° CICE system has been integrated in hindcast mode and verification/validation metrics have been computed against unassimilated observations and against stand-alone versions of NAVGEM and HYCOM/CICE. This presentation will focus on typical operational diagnostics for atmosphere, ocean, and ice analyses including 500 hPa atmospheric height anomalies, low-level winds, temperature/salinity ocean depth profiles, ocean acoustical proxies, sea ice edge, and sea ice drift. Overall, the global coupled ESPC system is performing with comparable skill to the stand-alone systems at the nowcast time.
NASA Astrophysics Data System (ADS)
Tanajura, C. A. S.; Lima, L. N.; Belyaev, K. P.
2015-09-01
The data of sea height anomalies calculated along the tracks of the Jason-1 and Jason-2 satellites are assimilated into the HYCOM hydrodynamic ocean model developed at the University of Miami, USA. We used a known method of data assimilation, the so-called ensemble method of the optimal interpolation scheme (EnOI). In this work, we study the influence of the assimilation of sea height anomalies on other variables of the model. The behavior of the time series of the analyzed and predicted values of the model is compared with a reference calculation (free run), i.e., with the behavior of model variables without assimilation but under the same initial and boundary conditions. The results of the simulation are also compared with the independent data of observations on moorings of the Pilot Research Array in the Tropical Atlantic (PIRATA) and the data of the ARGO floats using objective metrics. The investigations demonstrate that data assimilation under specific conditions results in a significant improvement of the 24-h prediction of the ocean state. The experiments also show that the assimilated fields of the ocean level contain a clearly pronounced mesoscale variability; thus they quantitatively differ from the dynamics obtained in the reference experiment.
NASA Astrophysics Data System (ADS)
Gallagher, R. L.
2016-02-01
During heavy rain events in the tropics, areas of relatively low salinity water collect on the ocean surface. Rainfall events increase the buoyancy of the ocean surface and impact upper ocean salinity and temperature profiles. This resists downward mixing and as a result can persist (SPURS II planning group, 2012; Oceanography 28(1) 150-159). Salinity at the surface adjusts through advective and diffusive mixing processes (Scott, J. et al, 2013; AGU Fall meeting abstracts). This project investigates the upper ocean salinity response in both advection and diffusion dominated regions. The changes in ocean surface salinity are tracked before, during, and after rainfall events. Data from a standard oceanographic model, HYCOM, are used to identify areas where each surface process is significant. Rainfall events are identified using a TRMM dataset. It provides a tropical rainfall analysis which uses amalgamated satellite data to develop detailed global precipitation grids between 50 o north and south latitude. TRMM is useful due its high temporal and spatial resolutions. The salinity response in HYCOM is tested against simple theoretical advective and diffusive mixing models. The magnitude of sea surface salinity minima, their persistence and the precision by which HYCOM can resolve these phenomena are of interest.
Surface Current Skill Assessment of Global and Regional forecast models.
NASA Astrophysics Data System (ADS)
Allen, A. A.
2016-02-01
The U.S. Coast Guard has been using SAROPS since January 2007 at all fifty of its operational centers to plan search and rescue missions. SAROPS relies on an Environmental Data Server (EDS) that integrates global, national, and regional ocean and meteorological observation and forecast data. The server manages spatial and temporal aggregation of hindcast, nowcast, and forecast data so the SAROPS controller has the best available data for search planning. The EDS harvests a wide range of global and regional forecasts and data, including NOAA NCEP's global HYCOM model (RTOFS), the U.S. Navy's Global HYCOM model, the 5 NOAA NOS Great Lakes models and a suite of other reginal forecasts from NOS and IOOS Regional Associations. The EDS also integrates surface drifter data as the U.S. Coast Guard regularly deploys Self-Locating Datum Marker Buoys (SLDMBs) during SAR cases and a significant set of drifter data has been collected and the archive continues to grow. This data is critically useful during real-time SAR planning, but also represents a valuable scientific dataset for analyzing surface currents. In 2014, a new initiative was started by the U.S. Coast Guard to evaluate the skill of the various models to support the decision making process during search and rescue planning. This analysis falls into 2 categories: historical analysis of drifter tracks and model predictions to provide skill assessment of models in different regions and real-time analysis of models and drifter tracks during a SAR incident. The EDS, using Liu and Wiesberg's (2014) autonomously determines surface skill measurements of the co-located models' simulated surface trajectories versus the actual drift of the SLDMBs (CODE/Davis style surface drifters GPS positioned at 30min intervals). Surface skill measurements are archived in a database and are user retrieval by lat/long/time cubes. This paper will focus on the comparison of models from in the period from 23 August to 21 September 2015. Surface Skill was determined for the following regions: California Coast, Gulf of Mexico, South and Mid Atlantic Bights. Skill was determined for the two version of the NCEP Global RTOFS, Navy's Global HYCOM model, and where appropriated the local regional models
NASA Astrophysics Data System (ADS)
Halliwell, G. R.; Srinivasan, A.; Kourafalou, V. H.; Yang, H.; Le Henaff, M.; Atlas, R. M.
2012-12-01
The accuracy of hurricane intensity forecasts produced by coupled forecast models is influenced by errors and biases in SST forecasts produced by the ocean model component and the resulting impact on the enthalpy flux from ocean to atmosphere that powers the storm. Errors and biases in fields used to initialize the ocean model seriously degrade SST forecast accuracy. One strategy for improving ocean model initialization is to design a targeted observing program using airplanes and in-situ devices such as floats and drifters so that assimilation of the additional data substantially reduces errors in the ocean analysis system that provides the initial fields. Given the complexity and expense of obtaining these additional observations, observing system design methods such as OSSEs are attractive for designing efficient observing strategies. A new fraternal-twin ocean OSSE system based on the HYbrid Coordinate Ocean Model (HYCOM) is used to assess the impact of targeted ocean profiles observed by hurricane research aircraft, and also by in-situ float and drifter deployments, on reducing errors in initial ocean fields. A 0.04-degree HYCOM simulation of the Gulf of Mexico is evaluated as the nature run by determining that important ocean circulation features such as the Loop Current and synoptic cyclones and anticyclones are realistically simulated. The data-assimilation system is run on a 0.08-degree HYCOM mesh with substantially different model configuration than the nature run, and it uses a new ENsemble Kalman Filter (ENKF) algorithm optimized for the ocean model's hybrid vertical coordinates. The OSSE system is evaluated and calibrated by first running Observing System Experiments (OSEs) to evaluate existing observing systems, specifically quantifying the impact of assimilating more than one satellite altimeter, and also the impact of assimilating targeted ocean profiles taken by the NOAA WP-3D hurricane research aircraft in the Gulf of Mexico during the Deepwater Horizon oil spill. OSSE evaluation and calibration is then performed by repeating these two OSEs with synthetic observations and comparing the resulting observing system impact to determine if it differs from the OSE results. OSSEs are first run to evaluate different airborne sampling strategies with respect to temporal frequency of flights and the horizontal separation of upper-ocean profiles during each flight. They are then run to assess the impact of releasing multiple floats and gliders. Evaluation strategy focuses on error reduction in fields important for hurricane forecasting such as the structure of ocean currents and eddies, upper ocean heat content distribution, and upper-ocean stratification.
Evaluation of hydrodynamic ocean models as a first step in larval dispersal modelling
NASA Astrophysics Data System (ADS)
Vasile, Roxana; Hartmann, Klaas; Hobday, Alistair J.; Oliver, Eric; Tracey, Sean
2018-01-01
Larval dispersal modelling, a powerful tool in studying population connectivity and species distribution, requires accurate estimates of the ocean state, on a high-resolution grid in both space (e.g. 0.5-1 km horizontal grid) and time (e.g. hourly outputs), particularly of current velocities and water temperature. These estimates are usually provided by hydrodynamic models based on which larval trajectories and survival are computed. In this study we assessed the accuracy of two hydrodynamic models around Australia - Bluelink ReANalysis (BRAN) and Hybrid Coordinate Ocean Model (HYCOM) - through comparison with empirical data from the Australian National Moorings Network (ANMN). We evaluated the models' predictions of seawater parameters most relevant to larval dispersal - temperature, u and v velocities and current speed and direction - on the continental shelf where spawning and nursery areas for major fishery species are located. The performance of each model in estimating ocean parameters was found to depend on the parameter investigated and to vary from one geographical region to another. Both BRAN and HYCOM models systematically overestimated the mean water temperature, particularly in the top 140 m of water column, with over 2 °C bias at some of the mooring stations. HYCOM model was more accurate than BRAN for water temperature predictions in the Great Australian Bight and along the east coast of Australia. Skill scores between each model and the in situ observations showed lower accuracy in the models' predictions of u and v ocean current velocities compared to water temperature predictions. For both models, the lowest accuracy in predicting ocean current velocities, speed and direction was observed at 200 m depth. Low accuracy of both model predictions was also observed in the top 10 m of the water column. BRAN had more accurate predictions of both u and v velocities in the upper 50 m of water column at all mooring station locations. While HYCOM predictions of ocean current speed were generally more accurate than BRAN, BRAN predictions of both ocean current speed and direction were more accurate than HYCOM along the southeast coast of Australia and Tasmania. This study identified important inaccuracies in the hydrodynamic models' estimations of the real ocean parameters and on time scales relevant to larval dispersal studies. These findings highlight the importance of the choice and validation of hydrodynamic models, and calls for estimates of such bias to be incorporated in dispersal studies.
2013-09-30
the Study of the Environmental Arctic Change (SEARCH) Sea Ice Outlook (SIO) effort. The SIO is an international effort to provide a community-wide...summary of the expected September arctic sea ice minimum. Monthly reports released throughout the summer synthesize community estimates of the current...state and expected minimum of sea ice . Along with the backbone components of this system (NAVGEM/HYCOM/CICE), other data models have been used to
Internal gravity wave contributions to global sea surface variability
NASA Astrophysics Data System (ADS)
Savage, A.; Arbic, B. K.; Richman, J. G.; Shriver, J. F.; Buijsman, M. C.; Zamudio, L.; Wallcraft, A. J.; Sharma, H.
2016-02-01
High-resolution (1/12th and 1/25th degree) 41-layer simulations of the HYbrid Coordinate Ocean Model (HYCOM), forced by both atmospheric fields and the astronomical tidal potential, are used to construct global maps of sea-surface height (SSH). The HYCOM output has been separated into steric, non-steric, and total sea-surface height and the maps display variance in subtidal, tidal, and supertidal bands. Two of the global maps are of particular interest in planning for the upcoming Surface Water and Ocean Topography (SWOT) wide-swath satellite altimeter mission; (1) a map of the nonstationary tidal signal (estimated after removing the stationary tidal signal via harmonic analysis), and (2) a map of the steric supertidal contributions, which are dominated by the internal gravity wave continuum. Both of these maps display signals of order 1 cm2, the target accuracy for the SWOT mission. Therefore, both non-stationary internal tides and non-tidal internal gravity waves are likely to be important sources of "noise" that must be accurately removed before examination of lower-frequency phenomena can take place.
Estimation of the barrier layer thickness in the Indian Ocean using Aquarius Salinity
NASA Astrophysics Data System (ADS)
Felton, Clifford S.; Subrahmanyam, Bulusu; Murty, V. S. N.; Shriver, Jay F.
2014-07-01
Monthly barrier layer thickness (BLT) estimates are derived from satellite measurements using a multilinear regression model (MRM) within the Indian Ocean. Sea surface salinity (SSS) from the recently launched Soil Moisture and Ocean Salinity (SMOS) and Aquarius SAC-D salinity missions are utilized to estimate the BLT. The MRM relates BLT to sea surface salinity (SSS), sea surface temperature (SST), and sea surface height anomalies (SSHA). Three regions where the BLT variability is most rigorous are selected to evaluate the performance of the MRM for 2012; the Southeast Arabian Sea (SEAS), Bay of Bengal (BoB), and Eastern Equatorial Indian Ocean (EEIO). The MRM derived BLT estimates are compared to gridded Argo and Hybrid Coordinate Ocean Model (HYCOM) BLTs. It is shown that different mechanisms are important for sustaining the BLT variability in each of the selected regions. Sensitivity tests show that SSS is the primary driver of the BLT within the MRM. Results suggest that salinity measurements obtained from Aquarius and SMOS can be useful for tracking and predicting the BLT in the Indian Ocean. Largest MRM errors occur along coastlines and near islands where land contamination skews the satellite SSS retrievals. The BLT evolution during 2012, as well as the advantages and disadvantages of the current model are discussed. BLT estimations using HYCOM simulations display large errors that are related to model layer structure and the selected BLT methodology.
2012-04-10
System (GOFS) V3.0 – 1/12 HYCOM/NCODA: Phase I‖ by Metzger et al., dated 26 November 2008 (NRL/MR/7320—08- 9148). The HYbrid Coordinate Ocean...C. Lozano, H.L. Tolman, A. Srinivasan, S. Hankin, P. Cornillon, R. Weisberg, A. Barth, R. He, F. Werner, and J. Wilkin , 2009. U.S. GODAE: Global...E.J. Metzger, J.F. Shriver, O.M. Smedstad, A.J. Wallcraft, and C.N. Barron, 2008 : Eddy-resolving global ocean prediction. In "Eddy-Resolving Ocean
NASA Astrophysics Data System (ADS)
Zhai, Fangguo; Wang, Qingye; Wang, Fujun; Hu, Dunxin
2014-11-01
Outputs from a high-resolution data assimilation system, the global Hybrid Coordinate Ocean Model and Navy Coupled Ocean Data Assimilation (HYCOM+NCODA) 1/12° analysis, were analyzed for the period September 2008 to February 2012. The objectives were to evaluate the performance of the system in simulating ocean circulation in the tropical northwestern Pacific and to examine the seasonal to interannual variations of the western boundary currents. The HYCOM assimilation compares well with altimetry observations and mooring current measurements. The mean structures and standard deviations of velocities of the North Equatorial Current (NEC), Mindanao Current (MC) and Kuroshio Current (KC) also compare well with previous observations. Seasonal to interannual variations of the NEC transport volume are closely correlated with the MC transport volume, instead of that of the KC. The NEC and MC transport volumes mainly show well-defined annual cycles, with their maxima in spring and minima in fall, and are closely related to the circulation changes in the Mindanao Dome (MD) region. In seasons of transport maxima, the MD region experiences negative SSH anomalies and a cyclonic gyre anomaly, and in seasons of transport minima the situation is reversed. The sea surface NEC bifurcation latitude (NBL) in the HYCOM assimilation also agrees well with altimetry observations. In 2009, the NBL shows an annual cycle similar to previous studies, reaching its southernmost position in summer and its northernmost position in winter. In 2010 and 2011, the NBL variations are dominantly influenced by La Niña events. The dynamics responsible for the seasonal to interannual variations of the NEC-MC-KC current system are also discussed.
The Use of the Regional Navy Coastal Ocean Model (RNCOM) by the US Navy in Operational Oceanography
NASA Astrophysics Data System (ADS)
Rayburn, J. T.
2016-02-01
The operational RNCOM is a 1/30° resolution nested model run daily by the Naval Oceanographic Office (NAVOCEANO), Stennis Space Center, Mississippi. Operational RNCOM areas are used in combination with the Global HYbrid Coordinate Ocean Model (HYCOM) to provide full global model coverage with enhanced resolution for temperature, salinity, currents in key areas. This talk will discuss two aspects of RNCOM. First, it will focus on how the model is configured. As a nested model, issues to consider include the source of boundary condition, boundary placement, and observational inputs. Secondly, this talk will focus on the strengths and weaknesses RNCOM demonstrates in accurately characterizing ocean condition with respect to HYCOM and how this regional model's output is used by NAVOCEANO Ocean Forecasters to develop operational forecasts.
Ocean Predictability and Uncertainty Forecasts Using Local Ensemble Transfer Kalman Filter (LETKF)
NASA Astrophysics Data System (ADS)
Wei, M.; Hogan, P. J.; Rowley, C. D.; Smedstad, O. M.; Wallcraft, A. J.; Penny, S. G.
2017-12-01
Ocean predictability and uncertainty are studied with an ensemble system that has been developed based on the US Navy's operational HYCOM using the Local Ensemble Transfer Kalman Filter (LETKF) technology. One of the advantages of this method is that the best possible initial analysis states for the HYCOM forecasts are provided by the LETKF which assimilates operational observations using ensemble method. The background covariance during this assimilation process is implicitly supplied with the ensemble avoiding the difficult task of developing tangent linear and adjoint models out of HYCOM with the complicated hybrid isopycnal vertical coordinate for 4D-VAR. The flow-dependent background covariance from the ensemble will be an indispensable part in the next generation hybrid 4D-Var/ensemble data assimilation system. The predictability and uncertainty for the ocean forecasts are studied initially for the Gulf of Mexico. The results are compared with another ensemble system using Ensemble Transfer (ET) method which has been used in the Navy's operational center. The advantages and disadvantages are discussed.
Evaluating the Ocean Component of the US Navy Earth System Model
NASA Astrophysics Data System (ADS)
Zamudio, L.
2017-12-01
Ocean currents, temperature, and salinity observations are used to evaluate the ocean component of the US Navy Earth System Model. The ocean and atmosphere components of the system are an eddy-resolving (1/12.5° equatorial resolution) version of the HYbrid Coordinate Ocean Model (HYCOM), and a T359L50 version of the NAVy Global Environmental Model (NAVGEM), respectively. The system was integrated in hindcast mode and the ocean results are compared against unassimilated observations, a stand-alone version of HYCOM, and the Generalized Digital Environment Model ocean climatology. The different observation types used in the system evaluation are: drifting buoys, temperature profiles, salinity profiles, and acoustical proxies (mixed layer depth, sonic layer depth, below layer gradient, and acoustical trapping). To evaluate the system's performance in each different metric, a scorecard is used to translate the system's errors into scores, which provide an indication of the system's skill in both space and time.
National Centers for Environmental Prediction
Statistics Observational Data Processing Data Assimilation Monsoon Desk Model Transition Seminars Seminar Documentation for operational and research users Operational Models All of the secondary bulleted items will be climate MOM4 HYCOM-Wavewatch Modeling Research Global and regional Institutionally supported components
2015-09-30
effecting the salinity of the upper layer and the formation of the barrier layer (BL) within the isothermal layer. The BL in turn controls vertical mixing...daily values over a month with a 1° horizontal resolution [Reynolds et al., 2002]. Daily data (from Coriolis project) and Monthly gridded Argo
Quadratic bottom friction coefficient: 0.003 Bottom boundary layer thickness: 10 m EMC/MMAB Information . Provide seamless boundary and initial conditions to regional ocean physical and biogeochemical models RTOFS. Their report is available here (pdf). Model Configuration The dynamical model is HYCOM. The model
Software Design Description for the HYbrid Coordinate Ocean Model (HYCOM), Version 2.2
2009-02-12
scalars. J. Phys. Oceanogr. 32: 240–264. Carnes, M., (2002). Data base description for the Generalized Digital Environmental Model ( GDEM -V) (U...Direction FCT Flux-Corrected Transport scheme GDEM Generalized Digital Environmental Model GISS NASA Goddard Institute for Space Studies GRD
National Centers for Environmental Prediction
Modeling Mesoscale Modeling Marine Modeling and Analysis Teams Climate Data Assimilation Ensembles and Post Chuang (POST) Fanglin Yang (VSDB) Perry Shafran (VERIFICATION) Ilya Rivin (HYCOM) David Behringer (MOM4 * Functional Equivalence test for MOM4p0 on GAEA - Dave Behringer * NCEP Gaea module - $NETCDF * Use a forum
HYCOM High-resolution Eddying Simulations
2014-07-01
Meteorological Organization,the International Council for Science and the Intergovernmental Oceanographic Commission of UNESCO . * 2 ExciJa IJQes I I I I I...forecasting systems (Metzger et al., 2014a ). Within the framework of the multinational Global Ocean Data Assimilation Experiment (GODAE) and under the...10.1016/j.ocemod.2011.02.011. Metzger, E. J., and Coauthors, 2014a : US Navy operational global ocean and Arctic ice prediction systems. Oceanography
Multi-Sensor Improved Sea Surface Temperature (MISST) for GODAE
2007-01-01
new data streams. NAVOCEANO has improved on its methodology to add retrieval error information to the US Navy operational data stream. Quantitative ...HYCOM)”: http://hycom.rsmas.miami.edu/ “ POSITIV : Prototype Operational System – ISAR – Temperature Instrumentation for the VOS fleet” CIRA/CSU Joint
Monitoring red tide with satellite imagery and numerical models: a case study in the Arabian Gulf.
Zhao, Jun; Ghedira, Hosni
2014-02-15
A red tide event that occurred in August 2008 in the Arabian Gulf was monitored and assessed using satellite observations and numerical models. Satellite observations revealed the bloom extent and evolution from August 2008 to August 2009. Flow patterns of the bloom patch were confirmed by results from a HYCOM model. HYCOM data and satellite-derived sea surface temperature data further suggested that the bloom could have been initiated offshore and advected onshore by bottom Ekman layer. Analysis indicated that nutrient sources supporting the bloom included upwelling, Trichodesmium, and dust deposition while other potential sources of nutrient supply should also be considered. In order to monitor and detect red tide effectively and provide insights into its initiation and maintenance mechanisms, the integration of multiple platforms is required. The case study presented here demonstrated the benefit of combing satellite observations and numerical models for studying red tide outbreaks and dynamics. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
2011-03-01
DATE (DD-MM- YYYY) 02-16-2011 2. REPORT TYPE Journal Article 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE Circulation in the... circulation . This archipelago provides two secondary routes for both the Indonesian throughflow and the western boundary current of the Pacific...Philippine Archipelago circulation , Philippine straits, Mindoro Strait transport, Indonesian throughflow 16. SECURITY CLASSIFICATION OF: a
NASA Astrophysics Data System (ADS)
Liu, Y.; Weisberg, R. H.
2017-12-01
The Lagrangian separation distance between the endpoints of simulated and observed drifter trajectories is often used to assess the performance of numerical particle trajectory models. However, the separation distance fails to indicate relative model performance in weak and strong current regions, such as a continental shelf and its adjacent deep ocean. A skill score is proposed based on the cumulative Lagrangian separation distances normalized by the associated cumulative trajectory lengths. The new metrics correctly indicates the relative performance of the Global HYCOM in simulating the strong currents of the Gulf of Mexico Loop Current and the weaker currents of the West Florida Shelf in the eastern Gulf of Mexico. In contrast, the Lagrangian separation distance alone gives a misleading result. Also, the observed drifter position series can be used to reinitialize the trajectory model and evaluate its performance along the observed trajectory, not just at the drifter end position. The proposed dimensionless skill score is particularly useful when the number of drifter trajectories is limited and neither a conventional Eulerian-based velocity nor a Lagrangian-based probability density function may be estimated.
Frequency content of sea surface height variability from internal gravity waves to mesoscale eddies
NASA Astrophysics Data System (ADS)
Savage, Anna C.; Arbic, Brian K.; Richman, James G.; Shriver, Jay F.; Alford, Matthew H.; Buijsman, Maarten C.; Thomas Farrar, J.; Sharma, Hari; Voet, Gunnar; Wallcraft, Alan J.; Zamudio, Luis
2017-03-01
High horizontal-resolution (1/12.5° and 1/25°) 41-layer global simulations of the HYbrid Coordinate Ocean Model (HYCOM), forced by both atmospheric fields and the astronomical tidal potential, are used to construct global maps of sea surface height (SSH) variability. The HYCOM output is separated into steric and nonsteric and into subtidal, diurnal, semidiurnal, and supertidal frequency bands. The model SSH output is compared to two data sets that offer some geographical coverage and that also cover a wide range of frequencies—a set of 351 tide gauges that measure full SSH and a set of 14 in situ vertical profilers from which steric SSH can be calculated. Three of the global maps are of interest in planning for the upcoming Surface Water and Ocean Topography (SWOT) two-dimensional swath altimeter mission: (1) maps of the total and (2) nonstationary internal tidal signal (the latter calculated after removing the stationary internal tidal signal via harmonic analysis), with an average variance of 1.05 and 0.43 cm2, respectively, for the semidiurnal band, and (3) a map of the steric supertidal contributions, which are dominated by the internal gravity wave continuum, with an average variance of 0.15 cm2. Stationary internal tides (which are predictable), nonstationary internal tides (which will be harder to predict), and nontidal internal gravity waves (which will be very difficult to predict) may all be important sources of high-frequency "noise" that could mask lower frequency phenomena in SSH measurements made by the SWOT mission.
Global Ocean Prediction with the HYbrid Coordinate Ocean Model, HYCOM
NASA Astrophysics Data System (ADS)
Chassignet, E.
A broad partnership of institutions is collaborating in developing and demonstrating the performance and application of eddy-resolving, real-time global and Atlantic ocean prediction systems using the the HYbrid Coordinate Ocean Model (HYCOM). These systems will be transitioned for operational use by both the U.S. Navy at the Naval Oceanographic Office (NAVOCEANO), Stennis Space Center, MS, and the Fleet Numerical Meteorology and Oceanography Centre (FNMOC), Monterey, CA, and by NOAA at the National Centers for Environmental Prediction (NCEP), Washington, D.C. These systems will run efficiently on a variety of massively parallel computers and will include sophisticated data assimilation techniques for assimilation of satellite altimeter sea surface height and sea surface temperature as well as in situ temperature, salinity, and float displacement. The Partnership addresses the Global Ocean Data Assimilation Experiment (GODAE) goals of three-dimensional (3D) depiction of the ocean state at fine resolution in real-time and provision of boundary conditions for coastal and regional models. An overview of the effort will be presented.
NASA Astrophysics Data System (ADS)
Button, N.
2016-02-01
The Agulhas Current System is an important western boundary current, particularly due to its vital role in the transport of heat and salt from the Indian Ocean to the Atlantic Ocean, such as through Agulhas rings. Accurate measurements of salinity are necessary for assessing the role of the Agulhas Current System and these rings in the global climate system are necessary. With ESA's Soil Moisture and Ocean Salinity (SMOS) and NASA's Aquarius/SAC-D satellites, we now have complete spatial and temporal (since 2009 and 2011, respectively) coverage of salinity data. To use this data to understand the role of the Agulhas Current System in the context of salinity within the global climate system, we must first understand validate the satellite data using in situ and model comparisons. In situ comparisons are important because of the accuracy, but they lack in the spatial and temporal coverage to validate the satellite data. For example, there are approximately 100 floats in the Agulhas Return Current. Therefore, model comparisons, such as the Hybrid Coordinate Ocean Model (HYCOM), are used along with the in situ data for the validation. For the validation, the satellite data, Argo float data, and HYCOM simulations were compared within box regions both inside and outside of the Agulhas Current. These boxed regions include the main Agulhas Current, Agulhas Return Current, Agulhas Retroflection, and Agulhas rings, as well as a low salinity and high salinity region outside of the current system. This analysis reveals the accuracy of the salinity measurements from the Aquarius/SAC-D and SMOS satellites within the Agulhas Current, which then provides accurate salinity data that can then be used to understand the role of the Agulhas Current System in the global climate system.
Kendall, Matthew S; Poti, Matt; Karnauskas, Kristopher B
2016-04-01
Changes in larval import, export, and self-seeding will affect the resilience of coral reef ecosystems. Climate change will alter the ocean currents that transport larvae and also increase sea surface temperatures (SST), hastening development, and shortening larval durations. Here, we use transport simulations to estimate future larval connectivity due to: (1) physical transport of larvae from altered circulation alone, and (2) the combined effects of altered currents plus physiological response to warming. Virtual larvae from islands throughout Micronesia were moved according to present-day and future ocean circulation models. The Hybrid Coordinate Ocean Model (HYCOM) spanning 2004-2012 represented present-day currents. For future currents, we altered HYCOM using analysis from the National Center for Atmospheric Research Community Earth System Model, version 1-Biogeochemistry, Representative Concentration Pathway 8.5 experiment. Based on the NCAR model, regional SST is estimated to rise 2.74 °C which corresponds to a ~17% decline in larval duration for some taxa. This reduction was the basis for a separate set of simulations. Results predict an increase in self-seeding in 100 years such that 62-76% of islands experienced increased self-seeding, there was an average domainwide increase of ~1-3% points in self-seeding, and increases of up to 25% points for several individual islands. When changed currents alone were considered, approximately half (i.e., random) of all island pairs experienced decreased connectivity but when reduced PLD was added as an effect, ~65% of connections were weakened. Orientation of archipelagos relative to currents determined the directional bias in connectivity changes. There was no universal relationship between climate change and connectivity applicable to all taxa and settings. Islands that presently export large numbers of larvae but that also maintain or enhance this role into the future should be the focus of conservation measures that promote long-term resilience of larval supply. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.
Monsoon Variability in the Arabian Sea from Global 0.08 deg HYCOM Simulations
2015-09-30
modes to help explain the series of events leading up to the anomalous behavior in the SC, the GW and upwelling strength . WORK COMPLETED...Number: N00014-15-1-2189 LONG-TERM GOALS The Arabian Sea upper ocean circulation switches direction seasonally due to the change in direction ...of the prevailing winds associated with the Indian Monsoon. Predictability of the monsoon circulation however is uncertain due to incomplete
Toward a Global 1/25degree HYCOM Ocean Prediction System with Tides
2010-01-01
configurations of ARCc. 6 Figure 4. Annual temperature field at 200 m. Left: ARCc0.72 experiment 040 (2006); Middle: GDEM climatology...Eurasian Basin. Solid lines indicate results from ARCc0.72 experiment 040 (black), 060 (blue) and GDEM climatology (green). Shades delineate 10 – 90...range of the data. Note the Atlantic Layer (positive T) is markedly well simulated in experiment 040 compared to GDEM profile. Figure 7
Transport variability of the Brazil Current from observations and a data assimilation model
NASA Astrophysics Data System (ADS)
Schmid, Claudia; Majumder, Sudip
2018-06-01
The Brazil Current transports from observations and the Hybrid Coordinate Model (HYCOM) model are analyzed to improve our understanding of the current's structure and variability. A time series of the observed transport is derived from a three-dimensional field of the velocity in the South Atlantic covering the years 1993 to 2015 (hereinafter called Argo & SSH). The mean transports of the Brazil Current increases from 3.8 ± 2.2 Sv (1 Sv is 106 m3 s-1) at 25° S to 13.9 ± 2.6 Sv at 32° S, which corresponds to a mean slope of 1.4 ± 0.4 Sv per degree. Transport estimates derived from HYCOM fields are somewhat higher (5.2 ± 2.7 and 18.7 ± 7.1 Sv at 25 and 32° S, respectively) than those from Argo & SSH, but these differences are small when compared with the standard deviations. Overall, the observed latitude dependence of the transport of the Brazil Current is in agreement with the wind-driven circulation in the super gyre of the subtropical South Atlantic. A mean annual cycle with highest (lowest) transports in austral summer (winter) is found to exist at selected latitudes (24, 35, and 38° S). The significance of this signal shrinks with increasing latitude (both in Argo & SSH and HYCOM), mainly due to mesoscale and interannual variability. Both Argo & SSH, as well as HYCOM, reveal interannual variability at 24 and 35° S that results in relatively large power at periods of 2 years or more in wavelet spectra. It is found that the interannual variability at 24° S is correlated with the South Atlantic Subtropical Dipole Mode (SASD), the Southern Annular Mode (SAM), and the Niño 3.4 index. Similarly, correlations between SAM and the Brazil Current transport are also found at 35° S. Further investigation of the variability reveals that the first and second mode of a coupled empirical orthogonal function of the meridional transport and the sea level pressure explain 36 and 15 % of the covariance, respectively. Overall, the results indicate that SAM, SASD, and El Niño-Southern Oscillation have an influence on the transport of the Brazil Current.
Assessment of Hybrid Coordinate Model Velocity Fields During Agulhas Return Current 2012 Cruise
2013-06-01
Forecasts GDEM Generalized Digital Environmental Model GPS Global Positioning System HYCOM HYbrid Coordinate Ocean Model MICOM Miami Isopycnal...speed profiles was climatology from the Generalized Digital Environmental Model ( GDEM ; Teague et al. 1990). Made operational in 1999, the Modular... GDEM was the only tool a naval oceanographer had at his or her disposal to characterize ocean conditions where in-situ observations could not be
Toward a Global 1/25 degree HYCOM Ocean Prediction System with Tides
2013-09-30
Generalized Digital Environmental Model [ GDEM , Carnes, 2009], and were spun-up from rest using the climatological surface forcing from the ECMWF...depth of isopycnal interface are restored to the monthly GDEM with an e-folding time of 5-60 days that increases with distance from the boundary
Upper-Ocean Processes under the Stratus Cloud Deck in the Southeast Pacific Ocean
2010-01-01
resolving Hybrid Coordinate Ocean Model (HYCOM). Both are compared with estimates based on Woods Hole Oceano - graphic Institution (WHOI) Improved...Jason-1 and Jason-2 sea surface heights and geostrophic currents (computed from absolute topography) produced by Segment Sol Multimissions d’Altimétrie
An Integration and Evaluation Framework for ESPC Coupled Models
2014-09-30
the CESM-HYCOM coupled system under the OI for ESPC award. This should be simplified by the use of the MCT datatype in ESMF. Make it available to...ESPC Testbed: Basic optimization Implement MCT datatype in ESMF and include in ESMF release. This was not yet started. 5 ESPC Testbed
The 1/12 deg Global HYCOM Nowcast/Forecast System
2010-01-13
DATE (DD-MM-YYYY) 13-01-2010 REPORT TYPE Conference Proceeding 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE The 1/12° Global HYCOM...advaneed global ocean nowcasting/forecasting system has been of long-time US Navy interest. Such a system will provide the capability to depict (nowcast...73-8677-A8-5 Classification X U Sponsor ONR approval obtained yes 4. AUTHOR Title of Paper or Presentation The MM degree Global
Toward a Global 1/25deg HYCOM Ocean Prediction System with Tides
2009-01-01
global, regional, and coastal applications. Figure 1 shows the cross-vertical section of the zonal baroclinic velocity after 5 days for two of the...Lorenzo et al., 2003). Figure 1: Snapshots (~4.7 days) of cross-vertical section of zonal baroclinic velocity for HYCOM (left panels) and ROMS...MITgcm, we used two idealized configurations: 1) the well known lock exchange problem (Haidvogel and Beckman, 1999) as a reference and 2) the pure
Geostrophic Turbulence in the Frequency-Wavenumber Domain: Eddy-Driven Low-Frequency Variability
2014-01-01
in ASFMRS. Previous studies of oceanic frequency– wavenumber spectra include Wunsch and Stammer (1995), Chelton and Schlax (1996), Farrar (2008...ASFMRS. However, the realistic eddying ocean model utilized here is the Hy- brid Coordinate Ocean Model (HYCOM; Chassignet et al. 2007 ), in place of...the Naval Research Laboratory (NRL) Layered Ocean Model (NLOM; Hurlburt and AUGUST 2014 ARB I C ET AL . 2051 Thompson 1980; Shriver et al. 2007 ) used
An operational global ocean forecast system and its applications
NASA Astrophysics Data System (ADS)
Mehra, A.; Tolman, H. L.; Rivin, I.; Rajan, B.; Spindler, T.; Garraffo, Z. D.; Kim, H.
2012-12-01
A global Real-Time Ocean Forecast System (RTOFS) was implemented in operations at NCEP/NWS/NOAA on 10/25/2011. This system is based on an eddy resolving 1/12 degree global HYCOM (HYbrid Coordinates Ocean Model) and is part of a larger national backbone capability of ocean modeling at NWS in strong partnership with US Navy. The forecast system is run once a day and produces a 6 day long forecast using the daily initialization fields produced at NAVOCEANO using NCODA (Navy Coupled Ocean Data Assimilation), a 3D multi-variate data assimilation methodology. As configured within RTOFS, HYCOM has a horizontal equatorial resolution of 0.08 degrees or ~9 km. The HYCOM grid is on a Mercator projection from 78.64 S to 47 N and north of this it employs an Arctic dipole patch where the poles are shifted over land to avoid a singularity at the North Pole. This gives a mid-latitude (polar) horizontal resolution of approximately 7 km (3.5 km). The coastline is fixed at 10 m isobath with open Bering Straits. This version employs 32 hybrid vertical coordinate surfaces with potential density referenced to 2000 m. Vertical coordinates can be isopycnals, often best for resolving deep water masses, levels of equal pressure (fixed depths), best for the well mixed unstratified upper ocean and sigma-levels (terrain-following), often the best choice in shallow water. The dynamic ocean model is coupled to a thermodynamic energy loan ice model and uses a non-slab mixed layer formulation. The forecast system is forced with 3-hourly momentum, radiation and precipitation fluxes from the operational Global Forecast System (GFS) fields. Results include global sea surface height and three dimensional fields of temperature, salinity, density and velocity fields used for validation and evaluation against available observations. Several downstream applications of this forecast system will also be discussed which include search and rescue operations at US Coast Guard, navigation safety information provided by OPC using real time ocean model guidance from Global RTOFS surface ocean currents, operational guidance on radionuclide dispersion near Fukushima using 3D tracers, boundary conditions for various operational coastal ocean forecast systems (COFS) run by NOS etc.
How Stationary Are the Internal Tides in a High-Resolution Global Ocean Circulation Model?
2014-05-12
Egbert et al., 1994] and that the model global internal tide amplitudes compare well with an altimetric-based tidal analysis [Ray and Byrne, 2010]. The... analysis [Foreman, 1977] applied to the HYCOM total SSH. We will follow Shriver et al. [2012], analyzing the tides along satellite altimeter tracks...spots,’’ the comparison between the model and altimetric analysis is not as good due, in part, to two prob- lems, errors in the model barotropic tides and
Dynamical Evaluation of Ocean Models using the Gulf Stream as an Example
2010-01-01
transport for the Atlantic meridional overturning circulation (AMOC) as the 3 nonlinear solutions discussed in Section 2. The model boundary is...Hellerman and Rosenstein (1983) wind stress climatology and the northward upper ocean flow (14 Sv) of the Atlantic meridional overturning circulation ... overturning circulation (AMOC) streamfunction with a 5 Sv contour interval from (a) 1/12° Atlantic MICOM, (b) 1/12° Atlantic HYCOM, and (c) 1/12
NASA Astrophysics Data System (ADS)
Talley, L. D.; Riser, S.; Johnson, K. S.; Wang, J.; Kamenkovich, I. V.; Rosso, I.; Mazloff, M. R.; Ogle, S.; Sarmiento, J. L.
2016-12-01
Biogeochemical profiling floats are being deployed in the Southern Ocean south of 30°S, including within the seasonal sea ice zone, as part of the SOCCOM project. The floats carry oxygen, nitrate, pH, fluorescence and backscatter sensors, in addition to standard T/S measurements that contribute to the Argo program. The total array size over the expected 6 years of deployment will be 180 to 200 floats. At the conclusion of Year 2 (2015-2016), 58 floats had been deployed and 50 were still active (see figure from http://soccom.princeton.edu). In order to calibrate the biogeochemical sensors using shipboard measurements, deployment takes place from research ships. As the ship tracks are dictated by other programs, care is taken prior to deployment to maximize the probability that the floats sample varied oceanographic regimes, and that all important regimes present along a deployment track are seeded with at least one float. Prior GO-SHIP hydrographic sections are used to locate water mass regimes that are targeted for deployments, yielding a background description of the oceanography along each of these sections. Simulations of Argo floats in the Southern Ocean State Estimate (SOSE) and data-assimilating HYCOM model and previous Argo trajectories are used to predict ensemble float trajectories. Trajectories and water mass regimes from floats after deployment have generally agreed well with those projected prior to deployment. The exercise of examining this suite of information prior to the deployment cruises provides valuable regional information for interpreting the actual SOCCOM float profiles and trajectories. Particularly useful are demarcation of the major frontal regimes and their relation to sea ice and topography, regions of upwelling from the deep ocean to the surface, and upper ocean mode water regions associated with both the Subantarctic and Polar Fronts.
Ocean Data Impacts in Global HYCOM
2014-08-01
The purpose of assimilation is to reduce the model initial condition error. Improved initial con- ditions should lead to an improved forecast...the determination of locations where forecast errors are sensitive to the initial conditions are essential for improving the data assimilation system...longwave radiation, total (large scale plus convective) precipitation, ground/sea temperature, zonal and me- ridional wind velocities at 10m, mean sea
West Florida Shelf Response to Hurricane Irma
NASA Astrophysics Data System (ADS)
Liu, Y.; Weisberg, R. H.; Chen, J.; Merz, C. R.; Law, J.; Zheng, L.
2017-12-01
Hurricane Irma impacted the west Florida continental shelf (WFS) as it transited the state of Florida during September 10-12, 2017, making landfall first at Cudjoe Key and then again at Naples, as a Category 2 hurricane. The WFS response to Hurricane Irma is analyzed using a combination of in situ observations and numerical model simulations. The observations include water column velocity (by Acoustic Doppler Current Profilers), sea surface temperature and meteorological records from three moorings on the shelf, surface currents by high-frequency radars, and coastal tide gauge records. The West Florida Coastal Ocean Model (WFCOM) employed downscales from the deep Gulf of Mexico, across the shelf and into the estuaries by nesting the unstructured grid FVCOM in the Gulf of Mexico HYCOM. Both the observations and the model simulations revealed strong upwelling and vertical mixing followed by downwelling as the storm passed by. This was accompanied by a rapid drop in sea surface temperature of approximately 4ºC and large decreases in sea level with associated negative surges, causing drying in the Florida Bay, Charlotte Harbor, Tampa Bay estuaries and the Big Bend region. The transport and exchange of water between the shelf and the estuaries and between the shelf and the Florida Keys reef track during the hurricane may have important implications for ecosystem studies within the region.
2011-01-01
A.J.. Lozano. C. Tolman, H.L. Srinivasan. A.. Hankin. S„ Cornillon. P.. Weisberg, R.. Barth. A.. He. R.. Werner. C. Wilkin .. J.. 2009. U.S. GODAE...Halliwell. G.R., Wallcrart. A.J.. Metzger, E.J.. Blanton, B.O., a. CL. Rao, D.B., Hogan , P.J.. Srinivasan. A., 2006. Generalized vertical
US GODAE: Global Ocean Prediction with the Hybrid Coordinate Ocean Model (HYCOM)
2009-06-01
Administration, New York, NY, USA, and Earth Systems Research Laboratory, NOAA, Boulder, CO, USA. Remy Baraille is Research Scientist, Service Hydrographique...Coastal Sciences, Rutgers University, New Brunswick, NJ, USA. John Wilkin is Associate Professor, Institute of Marine and Coastal Sciences, Rutgers...University, New Brunswick, NJ, USA. Oceanography June 2009 67 coordinates (depth, density, and terrain- following) provide universal optimality, it is
NASA Astrophysics Data System (ADS)
Allard, Richard; Metzger, E. Joseph; Broome, Robert; Franklin, Deborah; Smedstad, Ole Martin; Wallcraft, Alan
2013-04-01
Multiple international agencies have performed atmospheric reanalyses using static dynamical models and assimilation schemes while ingesting all available quality controlled observational data. Some are clearly aimed at climate time scales while others focus on the more recent time period in which assimilated satellite data are used to constrain the system. Typically these are performed at horizontal and vertical resolutions that are coarser than the existing operational atmospheric prediction system. Multiple agencies have also performed ocean reanalyses using some of the atmospheric forcing products described above. However, only a few are eddy-permitting and none are capable of resolving oceanic mesoscale features (eddies and current meanders) across the entire globe. To fill this void, the Naval Research Laboratory is performing an eddy-resolving 1993-2010 ocean reanalysis using the 1/12° global HYbrid Coordinate Ocean Model (HYCOM) that employs the Navy Coupled Ocean Data Assimilation (NCODA) scheme. A 1/12° global HYCOM/NCODA prediction system has been running in real-time at the Naval Oceanographic Office (NAVOCEANO) since 22 December 2006. It has undergone operational testing and will become an operational product by early 2013. It is capable of nowcasting and forecasting the oceanic "weather" which includes the 3D ocean temperature, salinity and current structure, the surface mixed layer, and the location of mesoscale features such as eddies, meandering currents and fronts. The system has a mid-latitude resolution of ~7 km and employs 32 hybrid vertical coordinate surfaces. Compared to traditional isopycnal coordinate models, the hybrid vertical coordinate extends the geographic range of applicability toward shallow coastal seas and the unstratified parts of the world ocean. HYCOM contains a built-in thermodynamic ice model, where ice grows and melts due to heat flux and sea surface temperature (SST) changes, but it does not contain advanced rheological physics. The ice edge is constrained by satellite ice concentration. Once per day, NCODA performs a 3D ocean analysis using all available observational data and the 1-day HYCOM forecast as the first guess in a sequential incremental update cycle. Observational data include surface observations from satellites, including sea surface height (SSH) anomalies, SST, and sea ice concentrations, plus in-situ SST observations from ships and buoys as well as temperature and salinity profiles from XBTs, CTDs and Argo profiling floats. Surface information is projected downward using synthetic profiles from the Modular Ocean Data Assimilation System (MODAS) at those locations with a predefined SSH anomaly. Unlike previous reanalyses, this ocean reanalysis will be integrated at the same horizontal and vertical resolution as the operational system running at NAVOCEANO. The system is forced with atmospheric output from the National Centers for Environmental Prediction (NCEP) Climate Forecast System Reanalysis (CFSR) and the observations listed above. The reanalysis began in 1993 because of the advent of satellite altimeter data that will constrain the oceanic mesoscale. Significant effort has been put into obtaining and quality controlling all input observational data, with special emphasis on the profile data. The computational resources are obtained through the High Performance Computing Modernization Office.
Impact of Remote Forcing, Model Resolution and Bathymetry on Predictions of Currents on the Shelf
2013-01-01
San Diego467. Zamudio, L. Hogan , P.J., Metzger. E.J.. 2008 . Summer generation of the southern Gulf of California eddy train. J. Geophys. Res. 113...1987; Zamudio et al., 2008 . 2011). These anomalies therefore represent remote forcing which will impact the Monterey Bay area, and a smaller region...Werner. F.. Wilkin . J., 2009. U.S. GODAE: Global Ocean Prediction with the HYbrid Coordinate Ocean Model (HYCOM). Oceanography 22 (2). 64-75. Chelton
2008-10-01
Director NCST E. R. Franchi , 7000 ^^M^4^k ro£— 4// 2^/s y Public Affairs (Unclassified/ Unlimited Only), Code 7030 4 Division, Code Author, Code...from the Navy Operational Global Atmospheric Prediction System (NOGAPS, Hogan and Rosmond, 1991) and assimilates data via the Navy Coupled Ocean...forecasts using Global , Atlantic, Gulf of Mexico, and northern Gulf of Mexico configurations of HYCOM. Proceedings, Ocean Optics XIX, Castelvecchio Pascoli
Oregon Washington Coastal Ocean Forecast System: Real-time Modeling and Data Assimilation
NASA Astrophysics Data System (ADS)
Erofeeva, S.; Kurapov, A. L.; Pasmans, I.
2016-02-01
Three-day forecasts of ocean currents, temperature and salinity along the Oregon and Washington coasts are produced daily by a numerical ROMS-based ocean circulation model. NAM is used to derive atmospheric forcing for the model. Fresh water discharge from Columbia River, Fraser River, and small rivers in Puget Sound are included. The forecast is constrained by open boundary conditions derived from the global Navy HYCOM model and once in 3 days assimilation of recent data, including HF radar surface currents, sea surface temperature from the GOES satellite, and SSH from several satellite altimetry missions. 4-dimensional variational data assimilation is implemented in 3-day time windows using the tangent linear and adjoint codes developed at OSU. The system is semi-autonomous - all the data, including NAM and HYCOM fields are automatically updated, and daily operational forecast is automatically initiated. The pre-assimilation data quality control and post-assimilation forecast quality control require the operator's involvement. The daily forecast and 60 days of hindcast fields are available for public on opendap. As part of the system model validation plots to various satellites and SEAGLIDER are also automatically updated and available on the web (http://ingria.coas.oregonstate.edu/rtdavow/). Lessons learned in this pilot real-time coastal ocean forecasting project help develop and test metrics for forecast skill assessment for the West Coast Operational Forecast System (WCOFS), currently at testing and development phase at the National Oceanic and Atmospheric Administration (NOAA).
NASA Technical Reports Server (NTRS)
Romanou, A.; Gregg, Watson W.; Romanski, J.; Kelley, M.; Bleck, R.; Healy, R.; Nazarenko, L.; Russell, G.; Schmidt, G. A.; Sun, S.;
2013-01-01
Results from twin control simulations of the preindustrial CO2 gas exchange (natural flux of CO2) between the ocean and the atmosphere are presented here using the NASA-GISS climate model, in which the same atmospheric component (modelE2) is coupled to two different ocean models, the Russell ocean model and HYCOM. Both incarnations of the GISS climate model are also coupled to the same ocean biogeochemistry module (NOBM) which estimates prognostic distributions for biotic and abiotic fields that influence the air-sea flux of CO2. Model intercomparison is carried out at equilibrium conditions and model differences are contrasted with biases from present day climatologies. Although the models agree on the spatial patterns of the air-sea flux of CO2, they disagree on the strength of the North Atlantic and Southern Ocean sinks mainly because of kinematic (winds) and chemistry (pCO2) differences rather than thermodynamic (SST) ones. Biology/chemistry dissimilarities in the models stem from the different parameterizations of advective and diffusive processes, such as overturning, mixing and horizontal tracer advection and to a lesser degree from parameterizations of biogeochemical processes such as gravitational settling and sinking. The global meridional overturning circulation illustrates much of the different behavior of the biological pump in the two models, together with differences in mixed layer depth which are responsible for different SST, DIC and nutrient distributions in the two models and consequently different atmospheric feedbacks (in the wind, net heat and freshwater fluxes into the ocean).
Configuration and Assessment of the GISS ModelE2 Contributions to the CMIP5 Archive
NASA Technical Reports Server (NTRS)
Schmidt, Gavin A.; Kelley, Max; Nazarenko, Larissa; Ruedy, Reto; Russell, Gary L.; Aleinov, Igor; Bauer, Mike; Bauer, Susanne E.; Bhat, Maharaj K.; Bleck, Rainer;
2014-01-01
We present a description of the ModelE2 version of the Goddard Institute for Space Studies (GISS) General Circulation Model (GCM) and the configurations used in the simulations performed for the Coupled Model Intercomparison Project Phase 5 (CMIP5). We use six variations related to the treatment of the atmospheric composition, the calculation of aerosol indirect effects, and ocean model component. Specifically, we test the difference between atmospheric models that have noninteractive composition, where radiatively important aerosols and ozone are prescribed from precomputed decadal averages, and interactive versions where atmospheric chemistry and aerosols are calculated given decadally varying emissions. The impact of the first aerosol indirect effect on clouds is either specified using a simple tuning, or parameterized using a cloud microphysics scheme. We also use two dynamic ocean components: the Russell and HYbrid Coordinate Ocean Model (HYCOM) which differ significantly in their basic formulations and grid. Results are presented for the climatological means over the satellite era (1980-2004) taken from transient simulations starting from the preindustrial (1850) driven by estimates of appropriate forcings over the 20th Century. Differences in base climate and variability related to the choice of ocean model are large, indicating an important structural uncertainty. The impact of interactive atmospheric composition on the climatology is relatively small except in regions such as the lower stratosphere, where ozone plays an important role, and the tropics, where aerosol changes affect the hydrological cycle and cloud cover. While key improvements over previous versions of the model are evident, these are not uniform across all metrics.
Upper Ocean Measurements from Profiling Floats in the Arabian Sea During NASCar
2015-09-30
top-level goals] OBJECTIVES The work proposed here is designed to examine the seasonal evolution of the upper ocean in the northern Arabian...Sea over several seasonal cycles, with the specific objectives of (1) Documenting the spatial variations in the seasonal cycle of the upper ocean...circulation of the Arabian Sea and the seasonal and spatial evolution of the surface mixed layer, and would be used in conjunction with HYCOM model
Addressing Common Cloud-Radiation Errors from 4-hour to 4-week Model Prediction
NASA Astrophysics Data System (ADS)
Benjamin, S.; Sun, S.; Grell, G. A.; Green, B.; Olson, J.; Kenyon, J.; James, E.; Smirnova, T. G.; Brown, J. M.
2017-12-01
Cloud-radiation representation in models for subgrid-scale clouds is a known gap from subseasonal-to-seasonal models down to storm-scale models applied for forecast duration of only a few hours. NOAA/ESRL has been applying common physical parameterizations for scale-aware deep/shallow convection and boundary-layer mixing over this wide range of time and spatial scales, with some progress to be reported in this presentation. The Grell-Freitas scheme (2014, Atmos. Chem. Phys.) and MYNN boundary-layer EDMF scheme (Olson / Benjamin et al. 2016 Mon. Wea. Rev.) have been applied and tested extensively for the NOAA hourly updated 3-km High-Resolution Rapid Refresh (HRRR) and 13-km Rapid Refresh (RAP) model/assimilation systems over the United States and North America, with targeting toward improvement to boundary-layer evolution and cloud-radiation representation in all seasons. This representation is critical for both warm-season severe convective storm forecasting and for winter-storm prediction of snow and mixed precipitation. At the same time the Grell-Freitas scheme has been applied also as an option for subseasonal forecasting toward improved US week 3-4 prediction with the FIM-HYCOM coupled model (Green et al 2017, MWR). Cloud/radiation evaluation using CERES satellite-based estimates have been applied to both 12-h RAP (13km) and also during Weeks 1-4 from 32-day FIM-HYCOM (60km) forecasts. Initial results reveal that improved cloud representation is needed for both resolutions and now is guiding further refinement for cloud representation including with the Grell-Freitas scheme and with the updated MYNN-EDMF scheme (both now also in global testing as well as with the 3km HRRR and 13km RAP models).
The HYCOM (HYbrid Coordinate Ocean Model) Data Assimilative System
2007-06-01
Systems Inc., Stennis Space Center. MS, USA d SHOM/CMO, Toulouse. France € Los Alamos National Laboratory, Los Alamos, NM. USA Received 1 October 2004...Global Ocean Data Assimilation ’U. of Miami, NRL, Los Alamos, NOAA/NCEP, NOAA/AOML, Experiment (GODAE). GODAE is a coordinated inter- NOAA/PMEL, PSI...of Miami, the Naval all three approaches and the optimal distribution is Research Laboratory (NRL), and the Los Alamos chosen at every time step. The
U.S. GODAE: Global Ocean Prediction with the Hybrid Coordinate Ocean Model (HYCOM)
2009-01-01
Cummings, G. Jacobs, H. Ngodock, C.A. Blain, P. Hogan , J. Kindle), NAVOCEANO (F. Bub), FNMOC (M. Clancy), NRL/MONTEREY (R. Hodur, J. Pullen, P. May...Carolina (C. Werner), Rutgers (J. Wilkin ), U. of S. Florida (R. Weisberg), Horizon Marine Inc. (J. Feeney, S. Anderson), ROFFS (M. Roffer), Shell Oil... 2008 and 2009, the Coastal Ocean Observing Lab at Rutgers University attempted two trans-Atlantic flights using Slocum gliders. These began off the
U.S. GODAE: Global Ocean Prediction With the HYbrid Coordinate Ocean Model (HYCOM)
2009-06-01
REPORT DATE (DD-MM- YYYY) 12-08-2009 2. REPORT TYPE Journal Article 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE U.S. GODAE: Global ...the lerformance and application of eddy-resolving, real-time global - and basin-scale ocean prediction systems using the HYbrid Coordinate Ocean...prediction system outputs. In addnion to providing real-time, eddy-resolving global - and basin-scale ocean prediction systems for the US Navy and NOAA, this
2007-09-30
marine.usf.edu Aida Alvera -Azcárate Phone: (727) 553-3508 Fax: (727) 553 1189 email: aalvera@marine.usf.edu Alexander Barth, Phone: (727...WFS and the data assimilation are being performed by Alexander Barth. The Cariaco nesting is performed by Aida Alvera -Azcárate. WORK COMPLETED...363–380. Barth, A., Beckers, J.-M., Alvera -Azcárate, A. and Weisberg, R.H. (2007), Filtering inertia-gravity waves from the initial conditions of
First Step Towards a Coastal Modelling System for South Africa: a St. Helena Bay Case Study
NASA Astrophysics Data System (ADS)
Collins, C.; Lamont, T.; Loveday, B. R.; Hermes, J. C.; Veitch, J.; Backeberg, B.
2016-02-01
St. Helena Bay, forming part of the southern Benguela ecosystem, is the largest bay on the west coast of South Africa and is a biologically important region for pelagic fish, hake, and rock lobster. To date, only a few infrequent studies have focussed on variations in the bay scale circulation. A monthly ship-based monitoring line, the St. Helena Bay Monitoring Line (SHBML), was initiated in 2000 to determine the seasonal changes in cross-shelf hydrography and biology. Even though there has been an increase in ocean modelling in and around South Africa in recent years, coastal modelling is still in its infancy. The 12-year observational data set in the St. Helena Bay region, the only long-term, cross-shelf, full water column data-set for South Africa, makes this area the perfect natural laboratory for the development of a coastal modelling system. In this study, the climatological mean temperature and salinity from three different ROMS simulations and a HYCOM simulation are evaluated against the in situ observations from the SHBML with the aim of determining the influence of different forcing products, horizontal and vertical resolution as well as vertical coordinate schemes on the vertical structure of the ocean. The model simulations tend to overestimate the temperature and salinity across the shelf, and particularly within St. Helena Bay. Furthermore, the models misrepresent the vertical salinity and temperature structures. Interestingly, below 800m, there is a better agreement between temperature in the models and the in-situ observations. This is the first detailed comparison of modelled and in-situ data for the greater St. Helena Bay area at this scale and the next phase will examine whether the model that is most congruent with the observations resolves the same interannual signals as observed in the in-situ data.
Assessing the vertical structure of baroclinic tidal currents in a global model
NASA Astrophysics Data System (ADS)
Timko, Patrick; Arbic, Brian; Scott, Robert
2010-05-01
Tidal forcing plays an important role in many aspects of oceanography. Mixing, transport of particulates and internal wave generation are just three examples of local phenomena that may depend on the strength of local tidal currents. Advances in satellite altimetry have made an assessment of the global barotropic tide possible. However, the vertical structure of the tide may only be observed by deployment of instruments throughout the water column. Typically these observations are conducted at pre-determined depths based upon the interest of the observer. The high cost of such observations often limits both the number and the length of the observations resulting in a limit to our knowledge of the vertical structure of tidal currents. One way to expand our insight into the baroclinic structure of the ocean is through the use of numerical models. We compare the vertical structure of the global baroclinic tidal velocities in 1/12 degree HYCOM (HYbrid Coordinate Ocean Model) to a global database of current meter records. The model output is a subset of a 5 year global simulation that resolves the eddying general circulation, barotropic tides and baroclinic tides using 32 vertical layers. The density structure within the simulation is both vertically and horizontally non-uniform. In addition to buoyancy forcing the model is forced by astronomical tides and winds. We estimate the dominant semi-diurnal (M2), and diurnal (K1) tidal constituents of the model data using classical harmonic analysis. In regions where current meter record coverage is adequate, the model skill in replicating the vertical structure of the dominant diurnal and semi-diurnal tidal currents is assessed based upon the strength, orientation and phase of the tidal ellipses. We also present a global estimate of the baroclinic tidal energy at fixed depths estimated from the model output.
The Occurrence of Tidal Hybrid Kelvin-Edge Waves in the Global Ocean
NASA Astrophysics Data System (ADS)
Kaur, H.; Buijsman, M. C.; Yankovsky, A. E.; Zhang, T.; Jeon, C. H.
2017-12-01
This study presents the analysis of hybrid Kelvin-edge waves on the continental shelves in a global ocean model. Our objective is to find areas where the transition occurs from Kelvin waves to hybrid Kelvin-edge waves. The change in continental shelf width may convert a Kelvin wave into a hybrid Kelvin-edge wave. In this process the group velocity reaches a minimum and tidal energy is radiated on and/or offshore [Zhang 2016]. We extract M2 SSH (Sea Surface Height) and velocity from the Hybrid Coordinate Ocean Model (HYCOM) and calculate barotropic energy fluxes. We analyze these three areas: the Bay of Biscay, the Amazon Shelf and North West Africa. In these three regions, the continental shelf widens in the propagation direction and the alongshore flux changes its direction towards the coast. A transect is taken at different points in these areas to compute the dispersion relations of the waves on the continental shelf. In model simulations, we change the bathymetry of the Bay of Biscay to study the behavior of the hybrid Kelvin-edge waves. BibliographyZhang, T., and A. E Yankovsky. (2016), On the nature of cross-isobath energy fluxes in topographically modified barotropic semidiurnal Kelvin waves, J. Geophys. Res. Oceans, 121, 3058-3074, doi:10.1002/2015JC011617.
2011-06-30
aspects of the oceanography of the Gulf of Mexico using satellite and in situ data , J. Geophys. Res., 84, 7749–7768, doi:10.1029/ JC084iC12p07749. Walker, N...nested in a data ‐assimilative regional Gulf of Mexico HYCOM model) reveals that the offshore removal is a frequent plume pathway. Eastward wind‐driven...estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data
Sea Ice Sensitivities in the 0.72 deg and 0.08 deg Arctic Cap Coupled HYCOM/CICE Models
2014-09-30
1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Sea Ice Sensitivities in the 0.72°and 0.08° Arctic Cap...Arctic ice extent, which corresponds to the sea ice that remains during the summer minimum, has decreased over the years 1979–2007 by more than 10% per...Goosse et al. 2009) with the lowest observed sea ice extent in the satellite record (1979-present) occurring in September 2012 (Perovich et al. 2012
Toward An Internal Gravity Wave Spectrum In Global Ocean Models
2015-05-14
advection, thus capturing the full range of nonlinear effects at the expense of identifying specific interactions in detail. We will compute horizontal...spectrum [Garrett and Munk, 1975]. At some locations, HYCOM25 displays peaks at frequencies of 2f and f+ωM2 (f refers to the Coriolis frequency and...specified. By definition , the resulting wave fulfills k3 = k1 ± k2 and ω3 =ω1 ±ω2. Note that Figure 4a is schematic in nature—for simplicity, we have not
Future climate change under RCP emission scenarios with GISS ModelE2
Nazarenko, L.; Schmidt, G. A.; Miller, R. L.; ...
2015-02-24
We examine the anthropogenically forced climate response for the 21st century representative concentration pathway (RCP) emission scenarios and their extensions for the period 2101–2500. The experiments were performed with ModelE2, a new version of the NASA Goddard Institute for Space Sciences (GISS) coupled general circulation model that includes three different versions for the atmospheric composition components: a noninteractive version (NINT) with prescribed composition and a tuned aerosol indirect effect (AIE), the TCAD version with fully interactive aerosols, whole-atmosphere chemistry, and the tuned AIE, and the TCADI version which further includes a parameterized first indirect aerosol effect on clouds. Each atmosphericmore » version is coupled to two different ocean general circulation models: the Russell ocean model (GISS-E2-R) and HYCOM (GISS-E2-H). By 2100, global mean warming in the RCP scenarios ranges from 1.0 to 4.5° C relative to 1850–1860 mean temperature in the historical simulations. In the RCP2.6 scenario, the surface warming in all simulations stays below a 2 °C threshold at the end of the 21st century. For RCP8.5, the range is 3.5–4.5° C at 2100. Decadally averaged sea ice area changes are highly correlated to global mean surface air temperature anomalies and show steep declines in both hemispheres, with a larger sensitivity during winter months. By the year 2500, there are complete recoveries of the globally averaged surface air temperature for all versions of the GISS climate model in the low-forcing scenario RCP2.6. TCADI simulations show enhanced warming due to greater sensitivity to CO₂, aerosol effects, and greater methane feedbacks, and recovery is much slower in RCP2.6 than with the NINT and TCAD versions. All coupled models have decreases in the Atlantic overturning stream function by 2100. In RCP2.6, there is a complete recovery of the Atlantic overturning stream function by the year 2500 while with scenario RCP8.5, the E2-R climate model produces a complete shutdown of deep water formation in the North Atlantic.« less
The Navy's First Seasonal Ice Forecasts using the Navy's Arctic Cap Nowcast/Forecast System
NASA Astrophysics Data System (ADS)
Preller, Ruth
2013-04-01
As conditions in the Arctic continue to change, the Naval Research Laboratory (NRL) has developed an interest in longer-term seasonal ice extent forecasts. The Arctic Cap Nowcast/Forecast System (ACNFS), developed by the Oceanography Division of NRL, was run in forward model mode, without assimilation, to estimate the minimum sea ice extent for September 2012. The model was initialized with varying assimilative ACNFS analysis fields (June 1, July 1, August 1 and September 1, 2012) and run forward for nine simulations using the archived Navy Operational Global Atmospheric Prediction System (NOGAPS) atmospheric forcing fields from 2003-2011. The mean ice extent in September, averaged across all ensemble members was the projected summer ice extent. These results were submitted to the Study of Environmental Arctic Change (SEARCH) Sea Ice Outlook project (http://www.arcus.org/search/seaiceoutlook). The ACNFS is a ~3.5 km coupled ice-ocean model that produces 5 day forecasts of the Arctic sea ice state in all ice covered areas in the northern hemisphere (poleward of 40° N). The ocean component is the HYbrid Coordinate Ocean Model (HYCOM) and is coupled to the Los Alamos National Laboratory Community Ice CodE (CICE) via the Earth System Modeling Framework (ESMF). The ocean and ice models are run in an assimilative cycle with the Navy's Coupled Ocean Data Assimilation (NCODA) system. Currently the ACNFS is being transitioned to operations at the Naval Oceanographic Office.
Numerical simulation of wave-current interaction under strong wind conditions
NASA Astrophysics Data System (ADS)
Larrañaga, Marco; Osuna, Pedro; Ocampo-Torres, Francisco Javier
2017-04-01
Although ocean surface waves are known to play an important role in the momentum and other scalar transfer between the atmosphere and the ocean, most operational numerical models do not explicitly include the terms of wave-current interaction. In this work, a numerical analysis about the relative importance of the processes associated with the wave-current interaction under strong off-shore wind conditions in Gulf of Tehuantepec (the southern Mexican Pacific) was carried out. The numerical system includes the spectral wave model WAM and the 3D hydrodynamic model POLCOMS, with the vertical turbulent mixing parametrized by the kappa-epsilon closure model. The coupling methodology is based on the vortex-force formalism. The hydrodynamic model was forced at the open boundaries using the HYCOM database and the wave model was forced at the open boundaries by remote waves from the southern Pacific. The atmospheric forcing for both models was provided by a local implementation of the WRF model, forced at the open boundaries using the CFSR database. The preliminary analysis of the model results indicates an effect of currents on the propagation of the swell throughout the study area. The Stokes-Coriolis term have an impact on the transient Ekman transport by modifying the Ekman spiral, while the Stokes drift has an effect on the momentum advection and the production of TKE, where the later induces a deepening of the mixing layer. This study is carried out in the framework of the project CONACYT CB-2015-01 255377 and RugDiSMar Project (CONACYT 155793).
NASA Astrophysics Data System (ADS)
Hong, X.; Reynolds, C. A.; Doyle, J. D.
2016-12-01
In this study, two-sets of monthly forecasts for the period during the Dynamics of Madden-Julian Oscillation (MJO)/Cooperative Indian Ocean Experiment of Intraseasonal Variability (DAYNAMO/CINDY) in November 2011 are examined. Each set includes three forecasts with the first set from Navy Global Environmental Model (NAVGEM) and the second set from Navy's non-hydrostatic Coupled Ocean-Atmosphere Mesoscale Prediction System (COAMPS®1). Three NAVGEM monthly forecasts have used sea surface temperature (SST) from persistent at the initial time, from Navy Coupled Ocean Data Assimilation (NCODA) analysis, and from coupled NAVGEM-Hybrid Coordinate Ocean Model (HYCOM) forecasts. Examination found that NAVGEM can predict the MJO at 20-days lead time using SST from analysis and from coupled NAVGEM-HYCOM but cannot predict the MJO using the persistent SST, in which a clear circumnavigating signal is absent. Three NAVGEM monthly forecasts are then applied as lateral boundary conditions for three COAMPS monthly forecasts. The results show that all COAMPS runs, including using lateral boundary conditions from the NAVGEM that is without the MJO signal, can predict the MJO. Vertically integrated moisture anomaly and 850-hPa wind anomaly in all COAMPS runs have indicated strong anomalous equatorial easterlies associated with Rossby wave prior to the MJO initiation. Strong surface heat fluxes and turbulence kinetic energy have promoted the convective instability and triggered anomalous ascending motion, which deepens moist boundary layer and develops deep convection into the upper troposphere to form the MJO phase. The results have suggested that air-sea interaction process is important for the initiation and development of the MJO. 1COAMPS® is a registered trademark of the Naval Research Laboratory
The Sargassum Early Advisory System (SEAS)
NASA Astrophysics Data System (ADS)
Armstrong, D.; Gallegos, S. C.
2016-02-01
The Sargassum Early Advisory System (SEAS) web-app was designed to automatically detect Sargassum at sea, forecast movement of the seaweed, and alert users of potential landings. Inspired to help address the economic hardships caused by large landings of Sargassum, the web app automates and enhances the manual tasks conducted by the SEAS group of Texas A&M University at Galveston. The SEAS web app is a modular, mobile-friendly tool that automates the entire workflow from data acquisition to user management. The modules include: 1) an Imagery Retrieval Module to automatically download Landsat-8 Operational Land Imagery (OLI) from the United States Geological Survey (USGS), 2) a Processing Module for automatic detection of Sargassum in the OLI imagery, and subsequent mapping of theses patches in the HYCOM grid, producing maps that show Sargassum clusters; 3) a Forecasting engine fed by the HYbrid Coordinate Ocean Model (HYCOM) model currents and winds from weather buoys; and 4) a mobile phone optimized geospatial user interface. The user can view the last known position of Sargassum clusters, trajectory and location projections for the next 24, 72 and 168 hrs. Users can also subscribe to alerts generated for particular areas. Currently, the SEAS web app produces advisories for Texas beaches. The forecasted Sargassum landing locations are validated by reports from Texas beach managers. However, the SEAS web app was designed to easily expand to other areas, and future plans call for extending the SEAS web app to Mexico and the Caribbean islands. The SEAS web app development is led by NASA, with participation by ASRC Federal/Computer Science Corporation, and the Naval Research Laboratory, all at Stennis Space Center, and Texas A&M University at Galveston.
Multi-sensor Improved Sea Surface Temperature (MISST) for GODAE
2007-09-30
NAVOCEANO has improved on its methodology to add retrieval error information to the US Navy operational data stream. Quantitative estimates of...hycom.rsmas.miami.edu/ “ POSITIV : Prototype Operational System – ISAR – Temperature Instrumentation for the VOS fleet” CIRA/CSU Joint Hurricane Testbed
Frontal Representation as a Metric of Model Performance
NASA Astrophysics Data System (ADS)
Douglass, E.; Mask, A. C.
2017-12-01
Representation of fronts detected by altimetry are used to evaluate the performance of the HYCOM global operational product. Fronts are detected and assessed in daily alongtrack altimetry. Then, modeled sea surface height is interpolated to the locations of the alongtrack observations, and the same frontal detection algorithm is applied to the interpolated model output. The percentage of fronts found in the altimetry and replicated in the model gives a score (0-100) that assesses the model's ability to replicate fronts in the proper location with the proper orientation. Further information can be obtained from determining the number of "extra" fronts found in the model but not in the altimetry, and from assessing the horizontal and vertical dimensions of the front in the model as compared to observations. Finally, the sensitivity of this metric to choices regarding the smoothing of noisy alongtrack altimetry observations, and to the minimum size of fronts being analyzed, is assessed.
Multi-Sensor Improved Sea Surface Temperature (MISST) for GODAE
2008-01-01
its methodology to add 3 retrieval error information to the US Navy operational data stream. Quantitative estimates of reliability are added to...hycom.rsmas.miami.edu/ “ POSITIV : Prototype Operational System – ISAR – Temperature Instrumentation for the VOS fleet” CIRA/CSU Joint Hurricane Testbed project
NASA Astrophysics Data System (ADS)
Kourafalou, V.; Androulidakis, I.; Halliwell, G. R., Jr.; Kang, H.; Mehari, M. F.; Atlas, R. M.
2016-02-01
A prototype ocean Observing System Simulation Experiments (OSSE) system, first developed and data validated in the Gulf of Mexico, has been applied on the extended North Atlantic Ocean hurricane region. The main objectives of this study are: a) to contribute toward a fully relocatable ocean OSSE system by expanding the Gulf of Mexico OSSE to the North Atlantic Ocean; b) demonstrate and quantify improvements in hurricane forecasting when the ocean component of coupled hurricane models is advanced through targeted observations and assimilation. The system is based on the Hybrid Coordinate Ocean Model (HYCOM) and has been applied on a 1/250 Mercator mesh for the free-running Nature Run (NR) and on a 1/120 Mercator mesh for the data assimilative forecast model (FM). A "fraternal twin" system is employed, using two different realizations for NR and FM, each configured to produce substantially different physics and truncation errors. The NR has been evaluated using a variety of available observations, such as from AVISO, GDEM climatology and GHRSST observations, plus specific regional products (upper ocean profiles from air-borne instruments, surface velocity maps derived from the historical drifter data set and tropical cyclone heat potential maps derived from altimetry observations). The utility of the OSSE system to advance the knowledge of regional air-sea interaction processes related to hurricane activity is demonstrated in the Amazon region (salinity induced surface barrier layer) and the Gulf Stream region (hurricane impact on the Gulf Stream extension).
Detection and characterization of submesoscale eddies off the southwestern coast of Puerto Rico
NASA Astrophysics Data System (ADS)
Pomales, L.; Morell, J. M.
2016-02-01
Ubiquitous submesoscale eddies (SE) have been reported to play a major role in upper ocean stirring, mixing and littoral water circulation. Remotely sensed ocean color imagery provided the first views of coherent submesoscale features all around the Puerto Rico coast. Operational numerical models for the region such as NCOM AMSEAS (3km and 3-hours) and global HYCOM (9km and 3-hours) are not able to resolve these. Deployments of High-Frequency Radars (HFRs) off the southwest coast of Puerto Rico now make possible hourly surface current observations which allow detection and characterization of the two dimensional structure of these submesoscale features. Numerical detection of these features has been achieved by the implementation of a vector geometry identification scheme on the HFR data, which has recently led to an exploratory analysis of a cyclonic persistent SE structure. The detected cyclone had a strong well-defined inner core structure coherency and a 13.86km radius, SE was manually confirmed using USF's Alternative Floating Algae Index satellite imagery (1km and daily), which showed the detected eddy center location had an offset of <8km from the real eddy center which was estimated thanks to a patch of floating algae, presumably Sargassum sp., entrained in its center. NCOM AMSEAS or HYCOM did not resolve the observed SE. Further work will focus on the 3D description of these SEs. HFR vector fields, XBT's, CTD's and Glider profile data will be used to characterize the horizontal and vertical extent of the dynamics involved with these SEs.
Downscaling Ocean Conditions: Initial Results using a Quasigeostrophic and Realistic Ocean Model
NASA Astrophysics Data System (ADS)
Katavouta, Anna; Thompson, Keith
2014-05-01
Previous theoretical work (Henshaw et al, 2003) has shown that the small-scale modes of variability of solutions of the unforced, incompressible Navier-Stokes equation, and Burgers' equation, can be reconstructed with surprisingly high accuracy from the time history of a few of the large-scale modes. Motivated by this theoretical work we first describe a straightforward method for assimilating information on the large scales in order to recover the small scale oceanic variability. The method is based on nudging in specific wavebands and frequencies and is similar to the so-called spectral nudging method that has been used successfully for atmospheric downscaling with limited area models (e.g. von Storch et al., 2000). The validity of the method is tested using a quasigestrophic model configured to simulate a double ocean gyre separated by an unstable mid-ocean jet. It is shown that important features of the ocean circulation including the position of the meandering mid-ocean jet and associated pinch-off eddies can indeed be recovered from the time history of a small number of large-scales modes. The benefit of assimilating additional time series of observations from a limited number of locations, that alone are too sparse to significantly improve the recovery of the small scales using traditional assimilation techniques, is also demonstrated using several twin experiments. The final part of the study outlines the application of the approach using a realistic high resolution (1/36 degree) model, based on the NEMO (Nucleus for European Modelling of the Ocean) modeling framework, configured for the Scotian Shelf of the east coast of Canada. The large scale conditions used in this application are obtained from the HYCOM (HYbrid Coordinate Ocean Model) + NCODA (Navy Coupled Ocean Data Assimilation) global 1/12 degree analysis product. Henshaw, W., Kreiss, H.-O., Ystrom, J., 2003. Numerical experiments on the interaction between the larger- and the small-scale motion of the Navier-Stokes equations. Multiscale Modeling and Simulation 1, 119-149. von Storch, H., Langenberg, H., Feser, F., 2000. A spectral nudging technique for dynamical downscaling purposes. Monthly Weather Review 128, 3664-3673.
How does the Red Sea outflow water interact with Gulf of Aden Eddies?
NASA Astrophysics Data System (ADS)
Ilıcak, Mehmet; Özgökmen, Tamay M.; Johns, William E.
As the Red Sea overflow water (RSOW) enters the Gulf of Aden (GOA), it interacts with a sequence of nearly barotropic, mesoscale eddies originating in the Indian Ocean. To investigate how these eddies impact the dispersal and eastward transport of the RSOW toward the Indian Ocean, a high resolution 3D regional model is employed to explore systematically the interaction between the RSOW and mesoscale eddies. Two types of experiments are conducted. In the first set, we simulate the behavior of RSOW in the presence of an idealized cyclone and an idealized anticyclone. The second type of simulation involves nesting of the regional model (ROMS) within a data-assimilating global model (HYCOM), in which a sequence of mesoscale eddies entering the Gulf of Aden is realistically captured. This simulation is integrated for one year, and includes a simple representation of the seasonality of the RSOW. Bower et al. (2002) suggest that the Red Sea overflow might be a western boundary undercurrent. Consistent with these expectations, the idealized simulations show that the preferred pathway of the RSOW in the absence of eddies is along the coast of Somalia (southern continental shelf) as a western boundary undercurrent. Simultaneously, a cyclonic circulation is generated in the far western GOA due to vortex stretching by the descending outflow. The presence of a cyclone in the western GOA increases the peak RSOW transport, but the cyclone itself rapidly loses its coherence after interacting with the rough topography in the western GOA. The presence of an anticyclone tends to block the preferred boundary pathway and inhibits the eastward transport of the RSOW. The eddies also result in substantially increased mixing of the RSOW in the western GOA. On the basis of the more realistic ROMS experiment, it is found that the modeled RSOW leaves the western part of the Gulf of Aden in short episodic bursts with transports that are an order of magnitude greater than that associated with the quasi-steady RSOW inflow into GOA. Such enhancement in RSOW transport is shown to be induced by cyclonic eddies that cause a rapid discharge of RSOW from the western part of the GOA. We conclude that mesoscale eddies play a key role in the transport and mixing of the RSOW within GOA.
NASA Astrophysics Data System (ADS)
Simon, Ehouarn; Samuelsen, Annette; Bertino, Laurent; Mouysset, Sandrine
2015-12-01
A sequence of one-year combined state-parameter estimation experiments has been conducted in a North Atlantic and Arctic Ocean configuration of the coupled physical-biogeochemical model HYCOM-NORWECOM over the period 2007-2010. The aim is to evaluate the ability of an ensemble-based data assimilation method to calibrate ecosystem model parameters in a pre-operational setting, namely the production of the MyOcean pilot reanalysis of the Arctic biology. For that purpose, four biological parameters (two phyto- and two zooplankton mortality rates) are estimated by assimilating weekly data such as, satellite-derived Sea Surface Temperature, along-track Sea Level Anomalies, ice concentrations and chlorophyll-a concentrations with an Ensemble Kalman Filter. The set of optimized parameters locally exhibits seasonal variations suggesting that time-dependent parameters should be used in ocean ecosystem models. A clustering analysis of the optimized parameters is performed in order to identify consistent ecosystem regions. In the north part of the domain, where the ecosystem model is the most reliable, most of them can be associated with Longhurst provinces and new provinces emerge in the Arctic Ocean. However, the clusters do not coincide anymore with the Longhurst provinces in the Tropics due to large model errors. Regarding the ecosystem state variables, the assimilation of satellite-derived chlorophyll concentration leads to significant reduction of the RMS errors in the observed variables during the first year, i.e. 2008, compared to a free run simulation. However, local filter divergences of the parameter component occur in 2009 and result in an increase in the RMS error at the time of the spring bloom.
Accelerated Prediction of the Polar Ice and Global Ocean (APPIGO)
2015-09-30
and so HYCOM was 10x slower on the K20X Keplers than on the 16-Core AMDs alone. The initial lack of performance was not a surprise. Our goal was to...MPI ranks to take advantage of the Hyper-Q capabilities on newer Kepler architectures. Hyper-Q allows multiple GPU kernels originating from
Automated Sargassum Detection for Landsat Imagery
NASA Astrophysics Data System (ADS)
McCarthy, S.; Gallegos, S. C.; Armstrong, D.
2016-02-01
We implemented a system to automatically detect Sargassum, a floating seaweed, in 30-meter LANDSAT-8 Operational Land Imager (OLI) imagery. Our algorithm for Sargassum detection is an extended form of Hu's approach to derive a floating algae index (FAI) [1]. Hu's algorithm was developed for Moderate Resolution Imaging Spectroradiometer (MODIS) data, but we extended it for use with the OLI bands centered at 655, 865, and 1609 nm, which are comparable to the MODIS bands located at 645, 859, and 1640 nm. We also developed a high resolution true color product to mask cloud pixels in the OLI scene by applying a threshold to top of the atmosphere (TOA) radiances in the red (655 nm), green (561 nm), and blue (443 nm) wavelengths, as well as a method for removing false positive identifications of Sargassum in the imagery. Hu's algorithm derives a FAI for each Sargassum identified pixel. Our algorithm is currently set to only flag the presence of Sargassum in an OLI pixel by classifying any pixel with a FAI > 0.0 as Sargassum. Additionally, our system geo-locates the flagged Sargassum pixels identified in the OLI imagery into the U.S. Navy Global HYCOM model grid. One element of the model grid covers an area 0.125 degrees of latitude by 0.125 degrees of longitude. To resolve the differences in spatial coverage between Landsat and HYCOM, a scheme was developed to calculate the percentage of pixels flagged within the grid element and if above a threshold, it will be flagged as Sargassum. This work is a part of a larger system, sponsored by NASA/Applied Science and Technology Project at J.C. Stennis Space Center, to forecast when and where Sargassum will land on shore. The focus area of this work is currently the Texas coast. Plans call for extending our efforts into the Caribbean. References: [1] Hu, Chuanmin. A novel ocean color index to detect floating algae in the global oceans. Remote Sensing of Environment 113 (2009) 2118-2129.
NASA Astrophysics Data System (ADS)
Duncan, B.; Han, W.
2010-12-01
An ocean general circulation model (the Hybrid Coordinate Ocean Model, HYCOM) is used to examine the rectification of atmospheric intraseasonal oscillations (ISOs) on lower-frequency seasonal to interannual sea surface temperatures (SSTs) in the Indian Ocean (IO). Existing studies have shown that ISOs rectify on low-frequency equatorial surface currents, suggesting that they may also have important impacts on low-frequency SST variability. To evaluate these impacts, a hierarchy of experiments is run with HYCOM that isolates the ocean response to atmospheric forcing by 10-30 day (submonthly), 30-90 day (dominated by the Madden-Julian Oscillation), and 10-90 day (all ISO) events. Other experiments isolate the ocean response to a range of forcing processes including shortwave radiation, precipitation, and winds. Results indicate that ISOs have a non-negligible effect on the seasonal and annual cycles of SST in the Arabian Sea. The maximum seasonal SST variability in the Arabian Sea is 1.6°C, while the ISO-forced seasonal SST variability has a maximum of 0.4°C. Because SSTs in the Arabian Sea are already warm (>28°C), a change of 0.4°C can affect convection there. ISOs also have non-negligible effects on the seasonal variability of SST in the south- and west- equatorial IO. The ISO contribution to the seasonal cycle of mixed layer thickness (hmix) in the eastern equatorial IO has a maximum of 9m, while the total hmix seasonal cycle has a maximum of 14m. ISOs affect the hmix seasonal cycle by up to 10m in the Arabian Sea, where the total seasonal cycle has a maximum of 75m. Further work will seek to explain the causes of this observed rectification of ISOs on seasonal SST and mixed layer variability, and to extend our results to include interannual timescales.
Rain Impact Model Assessment of Near-Surface Salinity Stratification Following Rainfall
NASA Astrophysics Data System (ADS)
Drushka, K.; Jones, L.; Jacob, M. M.; Asher, W.; Santos-Garcia, A.
2016-12-01
Rainfall over oceans produces a layer of fresher surface water, which can have a significant effect on the exchanges between the surface and the bulk mixed layer and also on satellite/in-situ comparisons. For satellite sea surface salinity (SSS) measurements, the standard is the Hybrid Coordinate Ocean Model (HYCOM), but there is a significant difference between the remote sensing sampling depth of 0.01 m and the typical range of 5-10 m of in-situ instruments. Under normal conditions the upper layer of the ocean is well mixed and there is uniform salinity; however, under rainy conditions, there is a dilution of the near-surface salinity that mixes downward by diffusion and by mechanical mixing (gravity waves/wind speed). This significantly modifies the salinity gradient in the upper 1-2 m of the ocean, but these transient salinity stratifications dissipate in a few hours, and the upper layer becomes well mixed at a slightly fresher salinity. Based upon research conducted within the NASA/CONAE Aquarius/SAC-D mission, a rain impact model (RIM) was developed to estimate the change in SSS due to rainfall near the time of the satellite observation, with the objective to identify the probability of salinity stratification. RIM uses HYCOM (which does not include the short-term rain effects) and a NOAA global rainfall product CMORPH to model changes in the near-surface salinity profile in 0.5 h increments. Based upon SPURS-2 experimental near-surface salinity measurements with rain, this paper introduces a term in the RIM model that accounts for the effect of wind speed in the mechanical mixing, which translates into a dynamic vertical diffusivity; whereby a Generalized Ocean Turbulence Model (GOTM) is used to investigate the response to rain events of the upper few meters of the ocean. The objective is to determine how rain and wind forcing control the thickness, stratification strength, and lifetime of fresh lenses and to quantify the impacts of rain-formed fresh lenses on the fresh bias in satellite retrievals of salinity. Results will be presented of comparisons of RIM measurements at depth of a few meters with measurements from in-situ salinity instruments. Also, analytical results will be shown, which assess the accuracy of RIM salinity profiles under a variety of rain rate, wind/wave conditions.
2009-10-09
Ocean Data Assimilation Scientist, Met Office, Exeter, UK. Shan Mei is Research Scientist, National Marine Environment Forecast Center, Beijing ...An MFS-MEDSLICK coupled system is operationally used for oil spill fore- casting in support of Regional Marine Pollution Emergency Response Centre...configura- tion with 11-km to 16-km horizontal resolution and 22 hybrid vertical layers. HYCOM is coupled to an Elastic Viscous Plastic dynamic and
Toward a Global 1/25 deg HYCOM Ocean Prediction System with Tides
2011-09-30
Wallcraft, C. Lozano, H. L.Tolman, A. Srinivasan, S. Hankin, P. Cornillon, R. Weisberg, A. Barth, R. He, C. Werner, and J. Wilkin , 2009. U.S. GODAE...United States. Climate Dynamics, doi:10.1007/s00382-010-0988-7. Xu, X., W.J. Schmitz Jr., H.E. Hurlburt, P.J. Hogan , and E.P. Chassignet, 2010. Transport
Variation in the Mississippi River Plume from Data Synthesis of Model Outputs and MODIS Imagery
NASA Astrophysics Data System (ADS)
Fitzpatrick, C.; Kolker, A.; Chu, P. Y.
2017-12-01
Understanding the Mississippi River (MR) plume's interaction with the open ocean is crucial for understanding many processes in the Gulf of Mexico. Though the Mississippi River and its delta and plume have been studied extensively, recent archives of model products and satellite imagery have allowed us to highlight patterns in plume behavior over the last two decades through large scale data synthesis. Using 8 years of USGS discharge data and Landsat imagery, we identified the spatial extent, geographic patterns, depth, and freshwater concentration of the MR plume across seasons and years. Using 20 years of HYCOM (HYbrid Coordinate Ocean Model) analysis and reanalysis model output, and several years of NGOFS FVCOM model outputs, we mapped the minimum and maximum spatial area of the MR plume, and its varied extent east and west. From the synthesis and analysis of these data, the statistical probability of the MR plume's spatial area and geographical extent were computed. Measurements of the MR plume and its response to river discharge may predict future behavior and provide a path forward to understanding MR plume influence on nearby ecosystems.
Seasonal Variability of Salt Transports in the Northern Indian Ocean
NASA Astrophysics Data System (ADS)
D'Addezio, J. M.; Bulusu, S.
2016-02-01
Due to limited observational data in the Indian Ocean compared to other regions of the global ocean, past work on the Northern Indian Ocean (NIO) has relied heavily upon model analysis to study the variability of regional salinity advection caused by the monsoon seasons. With the launch of the Soil Moisture and Ocean Salinity (SMOS) satellite in 2009 and the Aquarius SAC-D mission in 2011 (ended on June 7, 2011), remotely sensed, synoptic scale sea surface salinity (SSS) data is now readily available to study this dynamic region. The new observational data has allowed us to revisit the region to analyze seasonal variability of salinity advection in the NIO using several modeled products, the Aquarius and SMOS satellites, and Argo floats data. The model simulations include the Consortium for Estimating the Circulation and Climate of the Ocean (ECCO2), European Centre for Medium-Range Weather Forecasts - Ocean Reanalysis System 4 (ECMWF-ORSA4), Simple Ocean Data Assimilation (SODA) Reanalysis, and HYbrid Coordinate Ocean Model (HYCOM). Our analyses of salinity at the surface and at depths up to 200 m, surface salt transport in the top 5 m layer, and depth-integrated salt transports revealed different salinity processes in the NIO that are dominantly related to the semi-annual monsoons. Aquarius and SMOS prove useful tools for observing this dynamic region, and reveal some aspects of SSS that Argo cannot resolve. Meridional depth-integrated salt transports using the modeled products along 6°N revealed dominant advective processes from the surface towards near-bottom depths. Finally, a difference in subsurface salinity stratification causes many of the modeled products to incorrectly estimate the magnitude and seasonality of NIO barrier layer thickness (BLT) when compared to the Argo solution. This problem is also evident in model output from the Seychelles-Chagos Thermocline Ridge (SCTR), a region with strong air-sea teleconnections with the Arabian Sea.
AXBT Observations during Trident Warrior 2013
2013-09-30
Standard P ::~~ Standard ::= ISOP ··-10.3818) U~E:AST ::=~ HYCOM ~~~~ GDEM 0 .5 (0.4289) ....... , (me an S tD E nor) (1.836) (Ala) U CUP Standard...P f:~~l standard F.~n [1.617] (1 .311 ) I SOP U SEAST ::~~~ HVCOM 1:1’:~1 GDEM (1..663) I I A] 1 .5 AXBT 38.5 38 37.5 s: 37 ~ 3G.5 ! 36
2012-09-30
Alterman, graduate student in the Applied Physics Program, University of Michigan: Alterman will collaborate with Arbic, NRL researchers , and...relationship that the lead PI of this proposal, Brian Arbic, has established since 2006 with the Naval Research Laboratory (NRL) and Florida State...NAVOCEANO), Stennis Space Center, MS. This project builds upon work begun with Naval Research Laboratory contract N000173-06-2-C003, and reported on in
NASA Astrophysics Data System (ADS)
Bower, Amy; Furey, Heather; Xu, Xiaobiao
2015-04-01
Detailed observations of the pathways, transports and water properties of dense overflows associated with the Atlantic Meridional Overturning Circulation (AMOC) provide critical benchmarks for climate models and mixing parameterizations. A recent two-year time series from eight moorings offers the first long-term simultaneous observations of the hydrographic properties and transport of Iceland-Scotland Overflow Water (ISOW) flowing westward through the Charlie-Gibbs Fracture Zone (CGFZ), a major deep gap in the Mid-Atlantic Ridge (MAR) connecting the eastern and western basins of the North Atlantic. In addition, current meters up to 500-m depth and satellite altimetry allow us to investigate the overlying North Atlantic Current (NAC) as a source of ISOW transport variability. Using the isohaline 34.94 to define the ISOW layer, the two year mean and standard deviation of ISOW transport was -1.7 ± 1.5 Sv, compared to -2.4 ± 3.0 Sv reported by Saunders for a 13-month period in 1988-1989 using the same isohaline. Differences in the two estimates are partly explained by limitations of the Saunders array, but more importantly reflect the strong low-frequency variability in ISOW transport through CGFZ (which includes complete reversals). Both the observations and output from a multi-decadal simulation of the North Atlantic using the Hybrid Coordinate Ocean Model (HYCOM) forced with interannually varying wind and buoyancy fields indicate a strong positive correlation between ISOW transport and the strength of the NAC through the CGFZ. This result raises new questions regarding the interaction of the upper and lower limbs of the AMOC, downstream propagation of ISOW transport variability in the Deep Western Boundary Current and alternative pathways of ISOW across the MAR.
THE EARTH SYSTEM PREDICTION SUITE: Toward a Coordinated U.S. Modeling Capability
Theurich, Gerhard; DeLuca, C.; Campbell, T.; Liu, F.; Saint, K.; Vertenstein, M.; Chen, J.; Oehmke, R.; Doyle, J.; Whitcomb, T.; Wallcraft, A.; Iredell, M.; Black, T.; da Silva, AM; Clune, T.; Ferraro, R.; Li, P.; Kelley, M.; Aleinov, I.; Balaji, V.; Zadeh, N.; Jacob, R.; Kirtman, B.; Giraldo, F.; McCarren, D.; Sandgathe, S.; Peckham, S.; Dunlap, R.
2017-01-01
The Earth System Prediction Suite (ESPS) is a collection of flagship U.S. weather and climate models and model components that are being instrumented to conform to interoperability conventions, documented to follow metadata standards, and made available either under open source terms or to credentialed users. The ESPS represents a culmination of efforts to create a common Earth system model architecture, and the advent of increasingly coordinated model development activities in the U.S. ESPS component interfaces are based on the Earth System Modeling Framework (ESMF), community-developed software for building and coupling models, and the National Unified Operational Prediction Capability (NUOPC) Layer, a set of ESMF-based component templates and interoperability conventions. This shared infrastructure simplifies the process of model coupling by guaranteeing that components conform to a set of technical and semantic behaviors. The ESPS encourages distributed, multi-agency development of coupled modeling systems, controlled experimentation and testing, and exploration of novel model configurations, such as those motivated by research involving managed and interactive ensembles. ESPS codes include the Navy Global Environmental Model (NavGEM), HYbrid Coordinate Ocean Model (HYCOM), and Coupled Ocean Atmosphere Mesoscale Prediction System (COAMPS®); the NOAA Environmental Modeling System (NEMS) and the Modular Ocean Model (MOM); the Community Earth System Model (CESM); and the NASA ModelE climate model and GEOS-5 atmospheric general circulation model. PMID:29568125
THE EARTH SYSTEM PREDICTION SUITE: Toward a Coordinated U.S. Modeling Capability.
Theurich, Gerhard; DeLuca, C; Campbell, T; Liu, F; Saint, K; Vertenstein, M; Chen, J; Oehmke, R; Doyle, J; Whitcomb, T; Wallcraft, A; Iredell, M; Black, T; da Silva, A M; Clune, T; Ferraro, R; Li, P; Kelley, M; Aleinov, I; Balaji, V; Zadeh, N; Jacob, R; Kirtman, B; Giraldo, F; McCarren, D; Sandgathe, S; Peckham, S; Dunlap, R
2016-07-01
The Earth System Prediction Suite (ESPS) is a collection of flagship U.S. weather and climate models and model components that are being instrumented to conform to interoperability conventions, documented to follow metadata standards, and made available either under open source terms or to credentialed users. The ESPS represents a culmination of efforts to create a common Earth system model architecture, and the advent of increasingly coordinated model development activities in the U.S. ESPS component interfaces are based on the Earth System Modeling Framework (ESMF), community-developed software for building and coupling models, and the National Unified Operational Prediction Capability (NUOPC) Layer, a set of ESMF-based component templates and interoperability conventions. This shared infrastructure simplifies the process of model coupling by guaranteeing that components conform to a set of technical and semantic behaviors. The ESPS encourages distributed, multi-agency development of coupled modeling systems, controlled experimentation and testing, and exploration of novel model configurations, such as those motivated by research involving managed and interactive ensembles. ESPS codes include the Navy Global Environmental Model (NavGEM), HYbrid Coordinate Ocean Model (HYCOM), and Coupled Ocean Atmosphere Mesoscale Prediction System (COAMPS ® ); the NOAA Environmental Modeling System (NEMS) and the Modular Ocean Model (MOM); the Community Earth System Model (CESM); and the NASA ModelE climate model and GEOS-5 atmospheric general circulation model.
The Earth System Prediction Suite: Toward a Coordinated U.S. Modeling Capability
NASA Technical Reports Server (NTRS)
Theurich, Gerhard; DeLuca, C.; Campbell, T.; Liu, F.; Saint, K.; Vertenstein, M.; Chen, J.; Oehmke, R.; Doyle, J.; Whitcomb, T.;
2016-01-01
The Earth System Prediction Suite (ESPS) is a collection of flagship U.S. weather and climate models and model components that are being instrumented to conform to interoperability conventions, documented to follow metadata standards, and made available either under open source terms or to credentialed users.The ESPS represents a culmination of efforts to create a common Earth system model architecture, and the advent of increasingly coordinated model development activities in the U.S. ESPS component interfaces are based on the Earth System Modeling Framework (ESMF), community-developed software for building and coupling models, and the National Unified Operational Prediction Capability (NUOPC) Layer, a set of ESMF-based component templates and interoperability conventions. This shared infrastructure simplifies the process of model coupling by guaranteeing that components conform to a set of technical and semantic behaviors. The ESPS encourages distributed, multi-agency development of coupled modeling systems, controlled experimentation and testing, and exploration of novel model configurations, such as those motivated by research involving managed and interactive ensembles. ESPS codes include the Navy Global Environmental Model (NavGEM), HYbrid Coordinate Ocean Model (HYCOM), and Coupled Ocean Atmosphere Mesoscale Prediction System (COAMPS); the NOAA Environmental Modeling System (NEMS) and the Modular Ocean Model (MOM); the Community Earth System Model (CESM); and the NASA ModelE climate model and GEOS-5 atmospheric general circulation model.
Ghisolfi, Renato David; Pereira da Silva, Meyre; Thomaz dos Santos, Felipe; Servino, Ricardo Nogueira; Cirano, Mauro; Thompson, Fabiano Lopes
2015-01-01
The Abrolhos Bank is part of the so-called Eastern Brazilian Shelf and is an area of high ecological and economic importance. The bank supports the largest and richest coral reefs in the South Atlantic and the largest rhodolith bed in the world. The spatial and seasonal variation of phytoplankton concentration, however, and the dynamic processes controlling that variability have remained poorly known. The present study investigates the seasonal and spatial distributions of chlorophyll-a (Chl-a) and water conditions by analyzing nine years (2003–2011) of level-3 Moderate-resolution Imaging Spectroradiometer (MODIS) derived Chl-a, National Centers for Environmental Prediction (NCEP)/ETA model-derived winds, NCEP model-derived heat fluxes, thermohaline and velocity results from the Hybrid Circulation Ocean Model (HYCOM) 1/12o assimilated simulation. The results show that low/high concentrations occurred in austral spring-summer (wet season)/autumn-winter (dry season), with the highest values observed in the northern portion of the Abrolhos Bank. The typical meteorological and oceanographic conditions during austral summer favor the development of strong stratification. These conditions are 1) N-NE winds that favor an upwelling-type Ekman circulation; 2) coupling between the open ocean and the continental shelf through the western boundary current, which promotes cooler subsurface water to rise onto the shelf break; and 3) positive net heat flux. In contrast, the S-SE winds during autumn are in the opposite direction of the predominant current system over the Abrolhos Bank, thus reducing their speed and inducing an inverse shear. The warmer ocean and a somewhat cool and dry atmosphere promote the evaporative cooling of the surface layer. The above processes drive mixed layer cooling and deepening that reaches its maximum in winter. The blooming of phytoplankton in the Abrolhos Bank waters appears to be regulated by changes in the mixed layer depth, with Chl-a levels that start to increase during autumn and reach their peak in June-July. PMID:25700269
SMAP Salinity Artifacts Associated With Presence of Rain
NASA Astrophysics Data System (ADS)
Jacob, M. M.; Santos-Garcia, A.; Jones, L.
2016-02-01
The Soil Moisture Active Passive (SMAP) satellite carries an L-band radiometer, which measures sea surface salinity (SSS) over a swath of 1000 km @ 40 km resolution. SMAP can extend the Aquarius (AQ) salinity data record with improved temporal/spatial sampling. Previous studies [see references] have demonstrated significant differences between satellite and in-situ salinity measurements during rain. In the presence of precipitation, salinity stratification exists near the sea surface, which nullifies the presumption of a well-mixed salinity. In general, these salinity gradients last only a few hours and the upper layer becomes slightly fresher in salinity. This paper describes the Rain Impact Model (RIM) that simulates the effects of rain accumulation on the SSS [Santos-Garcia et al., 2014] applied to SMAP. This model incorporates rainfall information for the previous 24 hours to the measurement sample (in this case SMAP) and uses as initialization the Hybrid Coordinate Ocean Model (HYCOM) data. Given the better resolution of SMAP, the goal of this paper is to continue the analysis previously done with AQ to better understand the effects of the instantaneous and accumulated rain on the salinity measurements. Boutin, J., N. Martin, G. Reverdin, X. Yin, and F. Gaillard (2013), Sea surface freshening inferred from SMOS and ARGO salinity: Impact of rain, Ocean Sci., 9(1), 183-192, doi:10.5194/os-9-183-2013. Santos-Garcia, A., M. Jacob, L. Jones, W. Asher, Y. Hejazin, H. Ebrahimi, and M. Rabolli (2014), Investigation of rain effects on Aquarius Sea Surface Salinity measurements, J. Geophys. Res. Oceans, 119, 7605-7624, doi:10.1002/2014JC010137. Tang, W., S.H Yueh, A. Hayashi, A.G. Fore, W.L. Jones, A. Santos-Garcia, and M.M. Jacob, (2015), Rain-Induced Near Surface Salinity Stratification and Rain Roughness Correction for Aquarius SSS Retrieval, in Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of, 8(99), 1-11, doi: 10.1109/JSTARS.2015.2463768.
Ghisolfi, Renato David; Pereira da Silva, Meyre; Thomaz dos Santos, Felipe; Servino, Ricardo Nogueira; Cirano, Mauro; Thompson, Fabiano Lopes
2015-01-01
The Abrolhos Bank is part of the so-called Eastern Brazilian Shelf and is an area of high ecological and economic importance. The bank supports the largest and richest coral reefs in the South Atlantic and the largest rhodolith bed in the world. The spatial and seasonal variation of phytoplankton concentration, however, and the dynamic processes controlling that variability have remained poorly known. The present study investigates the seasonal and spatial distributions of chlorophyll-a (Chl-a) and water conditions by analyzing nine years (2003-2011) of level-3 Moderate-resolution Imaging Spectroradiometer (MODIS) derived Chl-a, National Centers for Environmental Prediction (NCEP)/ETA model-derived winds, NCEP model-derived heat fluxes, thermohaline and velocity results from the Hybrid Circulation Ocean Model (HYCOM) 1/12o assimilated simulation. The results show that low/high concentrations occurred in austral spring-summer (wet season)/autumn-winter (dry season), with the highest values observed in the northern portion of the Abrolhos Bank. The typical meteorological and oceanographic conditions during austral summer favor the development of strong stratification. These conditions are 1) N-NE winds that favor an upwelling-type Ekman circulation; 2) coupling between the open ocean and the continental shelf through the western boundary current, which promotes cooler subsurface water to rise onto the shelf break; and 3) positive net heat flux. In contrast, the S-SE winds during autumn are in the opposite direction of the predominant current system over the Abrolhos Bank, thus reducing their speed and inducing an inverse shear. The warmer ocean and a somewhat cool and dry atmosphere promote the evaporative cooling of the surface layer. The above processes drive mixed layer cooling and deepening that reaches its maximum in winter. The blooming of phytoplankton in the Abrolhos Bank waters appears to be regulated by changes in the mixed layer depth, with Chl-a levels that start to increase during autumn and reach their peak in June-July.
2013-09-30
since 2006 with Florida State University (FSU) and the Stennis Space Center branch of the Naval Research Laboratory (NRL) . NRL and FSU have a long...begun with Naval Research Laboratory contract N000173-06-2-C003, and reported on in Arbic et al. (2010). OBJECTIVES The partnership is utilizing...of Naval Research (ONR) grant (John Goff and Brian Arbic, N00014- 07-1-0792 and N00014-09-1-1003, “Effects of small-scale bathymetric roughness on the
NASA Astrophysics Data System (ADS)
Garnier, Valérie; Honnorat, Marc; Benshila, Rachid; Boutet, Martial; Cambon, Gildas; Chanut, Jérome; Couvelard, Xavier; Debreu, Laurent; Ducousso, Nicolas; Duhaut, Thomas; Dumas, Franck; Flavoni, Simona; Gouillon, Flavien; Lathuilière, Cyril; Le Boyer, Arnaud; Le Sommer, Julien; Lyard, Florent; Marsaleix, Patrick; Marchesiello, Patrick; Soufflet, Yves
2016-04-01
The COMODO group (http://www.comodo-ocean.fr) gathers developers of global and limited-area ocean models (NEMO, ROMS_AGRIF, S, MARS, HYCOM, S-TUGO) with the aim to address well-identified numerical issues. In order to evaluate existing models, to improve numerical approaches and methods or concept (such as effective resolution) to assess the behavior of numerical model in complex hydrodynamical regimes and to propose guidelines for the development of future ocean models, a benchmark suite that covers both idealized test cases dedicated to targeted properties of numerical schemes and more complex test case allowing the evaluation of the kernel coherence is proposed. The benchmark suite is built to study separately, then together, the main components of an ocean model : the continuity and momentum equations, the advection-diffusion of the tracers, the vertical coordinate design and the time stepping algorithms. The test cases are chosen for their simplicity of implementation (analytic initial conditions), for their capacity to focus on a (few) scheme or part of the kernel, for the availability of analytical solutions or accurate diagnoses and lastly to simulate a key oceanic processus in a controlled environment. Idealized test cases allow to verify properties of numerical schemes advection-diffusion of tracers, - upwelling, - lock exchange, - baroclinic vortex, - adiabatic motion along bathymetry, and to put into light numerical issues that remain undetected in realistic configurations - trajectory of barotropic vortex, - interaction current - topography. When complexity in the simulated dynamics grows up, - internal wave, - unstable baroclinic jet, the sharing of the same experimental designs by different existing models is useful to get a measure of the model sensitivity to numerical choices (Soufflet et al., 2016). Lastly, test cases help in understanding the submesoscale influence on the dynamics (Couvelard et al., 2015). Such a benchmark suite is an interesting bed to continue research in numerical approaches as well as an efficient tool to maintain any oceanic code and assure the users a stamped model in a certain range of hydrodynamical regimes. Thanks to a common netCDF format, this suite is completed with a python library that encompasses all the tools and metrics used to assess the efficiency of the numerical methods. References - Couvelard X., F. Dumas, V. Garnier, A.L. Ponte, C. Talandier, A.M. Treguier (2015). Mixed layer formation and restratification in presence of mesoscale and submesoscale turbulence. Ocean Modelling, Vol 96-2, p 243-253. doi:10.1016/j.ocemod.2015.10.004. - Soufflet Y., P. Marchesiello, F. Lemarié, J. Jouanno, X. Capet, L. Debreu , R. Benshila (2016). On effective resolution in ocean models. Ocean Modelling, in press. doi:10.1016/j.ocemod.2015.12.004
The Earth System Prediction Suite: Toward a Coordinated U.S. Modeling Capability
Theurich, Gerhard; DeLuca, C.; Campbell, T.; ...
2016-08-22
The Earth System Prediction Suite (ESPS) is a collection of flagship U.S. weather and climate models and model components that are being instrumented to conform to interoperability conventions, documented to follow metadata standards, and made available either under open-source terms or to credentialed users. Furthermore, the ESPS represents a culmination of efforts to create a common Earth system model architecture, and the advent of increasingly coordinated model development activities in the United States. ESPS component interfaces are based on the Earth System Modeling Framework (ESMF), community-developed software for building and coupling models, and the National Unified Operational Prediction Capability (NUOPC)more » Layer, a set of ESMF-based component templates and interoperability conventions. Our shared infrastructure simplifies the process of model coupling by guaranteeing that components conform to a set of technical and semantic behaviors. The ESPS encourages distributed, multiagency development of coupled modeling systems; controlled experimentation and testing; and exploration of novel model configurations, such as those motivated by research involving managed and interactive ensembles. ESPS codes include the Navy Global Environmental Model (NAVGEM), the Hybrid Coordinate Ocean Model (HYCOM), and the Coupled Ocean–Atmosphere Mesoscale Prediction System (COAMPS); the NOAA Environmental Modeling System (NEMS) and the Modular Ocean Model (MOM); the Community Earth System Model (CESM); and the NASA ModelE climate model and the Goddard Earth Observing System Model, version 5 (GEOS-5), atmospheric general circulation model.« less
The Earth System Prediction Suite: Toward a Coordinated U.S. Modeling Capability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Theurich, Gerhard; DeLuca, C.; Campbell, T.
The Earth System Prediction Suite (ESPS) is a collection of flagship U.S. weather and climate models and model components that are being instrumented to conform to interoperability conventions, documented to follow metadata standards, and made available either under open-source terms or to credentialed users. Furthermore, the ESPS represents a culmination of efforts to create a common Earth system model architecture, and the advent of increasingly coordinated model development activities in the United States. ESPS component interfaces are based on the Earth System Modeling Framework (ESMF), community-developed software for building and coupling models, and the National Unified Operational Prediction Capability (NUOPC)more » Layer, a set of ESMF-based component templates and interoperability conventions. Our shared infrastructure simplifies the process of model coupling by guaranteeing that components conform to a set of technical and semantic behaviors. The ESPS encourages distributed, multiagency development of coupled modeling systems; controlled experimentation and testing; and exploration of novel model configurations, such as those motivated by research involving managed and interactive ensembles. ESPS codes include the Navy Global Environmental Model (NAVGEM), the Hybrid Coordinate Ocean Model (HYCOM), and the Coupled Ocean–Atmosphere Mesoscale Prediction System (COAMPS); the NOAA Environmental Modeling System (NEMS) and the Modular Ocean Model (MOM); the Community Earth System Model (CESM); and the NASA ModelE climate model and the Goddard Earth Observing System Model, version 5 (GEOS-5), atmospheric general circulation model.« less
2013-01-01
be found in Lermusiaux et al. (2006a, 2006b). Yin and Oey ( 2007 ) employed 20 members using the breeding method to study an eddy shedding event in the... 2007 ). Only a very brief description is provided here. Let Zf ¼ 1ffiffiffiffiffiffiffiffiffi k1 p ½zf1; zf2;…; zfk; Za...2003; Buizza et al., 2005; Wei et al., 2006, 2008; Bowler et al., 2009; McLay et al., 2007 ; Reynolds et al., 2011). If we compare the RMS errors of
LiveOcean: A Daily Forecast Model of Ocean Acidification for Shellfish Growers
NASA Astrophysics Data System (ADS)
MacCready, P.; Siedlecki, S. A.; McCabe, R. M.
2016-12-01
The coastal estuaries of the NE Pacific host a highly productive shellfish industry, but in the past decade they have suffered from many years in which no natural set of oysters occurred. It appears that coastal waters with low Aragonite saturation state may be the cause. This "acidified" water is the result of (i) upwelling of NE Pacific water from near the shelf break that is already low in pH, and (ii) further acidification of that water by productivity and remineralization on the shelf, and (iii) increasing atmospheric CO2. As part of a coordinated research response to this issue, we have developed the LiveOcean modeling system, which creates daily three-day forecasts of circulation and biogeochemical properties in Oregon-Washington-British Columbia coastal and estuarine waters. The system includes realistic tides, atmospheric forcing (from a regional WRF model), ocean boundary conditions (from HYCOM), and rivers (from USGS and Environment Canada). The model is also used for Harmful Algal Bloom prediction. There has been extensive validation of hindcast runs for currents and hydrography, and more limited validation of biogeochemical variables. Model results are pushed daily to the cloud, and made available to the public through the NANOOS Visualization System (NVS). NVS also includes automated model-data comparisons with real-time NDBC and OOI moorings. Future work will focus on optimizing the utility of this system for regional shellfish growers.
The Charlie-Gibbs Fracture Zone: A Crossroads of the Atlantic Meridional Overturning Circulation
NASA Astrophysics Data System (ADS)
Bower, A. S.; Furey, H. H.; Xu, X.
2016-02-01
The Charlie-Gibbs Fracture Zone (CGFZ), a deep gap in the Mid-Atlantic Ridge at 52N, is the primary conduit for westward-flowing Iceland-Scotland Overflow Water (ISOW), which merges with Denmark Strait Overflow Water to form the Deep Western Boundary Current. The CGFZ has also been shown to "funnel" the path of the northern branch of the eastward-flowing North Atlantic Current (NAC), thereby bringing these two branches of the AMOC into close proximity. A recent two-year time series of hydrographic properties and currents from eight tall moorings across the CGFZ offers the first opportunity to investigate the NAC as a source of variability for ISOW transport. The two-year mean and standard deviation of ISOW transport was -1.7 ± 1.5 Sv, compared to -2.4 ± 3.0 Sv reported by Saunders for a 13-month period in 1988-1989. Differences in the two estimates are partly explained by limitations of the Saunders array, but more importantly reflect the strong low-frequency variability in ISOW transport through CGFZ (which includes complete reversals). Both the observations and output from a multi-decadal simulation of the North Atlantic using the Hybrid Coordinate Ocean Model (HYCOM) forced with interannually varying wind and buoyancy fields indicate a strong positive correlation between ISOW transport and the strength of the NAC through the CGFZ (stronger eastward NAC related to weaker westward ISOW transport). Vertical structure of the low-frequency current variability and water mass structure in the CGFZ will also be discussed. The results have implications regarding the interaction of the upper and lower limbs of the AMOC, and downstream propagation of ISOW transport variability in the Deep Western Boundary Current.
Seychelles Dome variability in a high resolution ocean model
NASA Astrophysics Data System (ADS)
Nyadjro, E. S.; Jensen, T.; Richman, J. G.; Shriver, J. F.
2016-02-01
The Seychelles-Chagos Thermocline Ridge (SCTR; 5ºS-10ºS, 50ºE-80ºE) in the tropical Southwest Indian Ocean (SWIO) has been recognized as a region of prominence with regards to climate variability in the Indian Ocean. Convective activities in this region have regional consequences as it affect socio-economic livelihood of the people especially in the countries along the Indian Ocean rim. The SCTR is characterized by a quasi-permanent upwelling that is often associated with thermocline shoaling. This upwelling affects sea surface temperature (SST) variability. We present results on the variability and dynamics of the SCTR as simulated by the 1/12º high resolution HYbrid Coordinate Ocean Model (HYCOM). It is observed that locally, wind stress affects SST via Ekman pumping of cooler subsurface waters, mixing and anomalous zonal advection. Remotely, wind stress curl in the eastern equatorial Indian Ocean generates westward-propagating Rossby waves that impacts the depth of the thermocline which in turn impacts SST variability in the SCTR region. The variability of the contributions of these processes, especially with regard to the Indian Ocean Dipole (IOD) are further examined. In a typical positive IOD (PIOD) year, the net vertical velocity in the SCTR is negative year-round as easterlies along the region are intensified leading to a strong positive curl. This vertical velocity is caused mainly by anomalous local Ekman downwelling (with peak during September-November), a direct opposite to the climatology scenario when local Ekman pumping is positive (upwelling favorable) year-round. The anomalous remote contribution to the vertical velocity changes is minimal especially during the developing and peak stages of PIOD events. In a typical negative IOD (NIOD) year, anomalous vertical velocity is positive almost year-round with peaks in May and October. The remote contribution is positive, in contrast to the climatology and most of the PIOD years.
Developing an Automated Method for Detection of Operationally Relevant Ocean Fronts and Eddies
NASA Astrophysics Data System (ADS)
Rogers-Cotrone, J. D.; Cadden, D. D. H.; Rivera, P.; Wynn, L. L.
2016-02-01
Since the early 90's, the U.S. Navy has utilized an observation-based process for identification of frontal systems and eddies. These Ocean Feature Assessments (OFA) rely on trained analysts to identify and position ocean features using satellite-observed sea surface temperatures. Meanwhile, as enhancements and expansion of the navy's Hybrid Coastal Ocean Model (HYCOM) and Regional Navy Coastal Ocean Model (RNCOM) domains have proceeded, the Naval Oceanographic Office (NAVO) has provided Tactical Oceanographic Feature Assessments (TOFA) that are based on data-validated model output but also rely on analyst identification of significant features. A recently completed project has migrated OFA production to the ArcGIS-based Acoustic Reach-back Cell Ocean Analysis Suite (ARCOAS), enabling use of additional observational datasets and significantly decreasing production time; however, it has highlighted inconsistencies inherent to this analyst-based identification process. Current efforts are focused on development of an automated method for detecting operationally significant fronts and eddies that integrates model output and observational data on a global scale. Previous attempts to employ techniques from the scientific community have been unable to meet the production tempo at NAVO. Thus, a system that incorporates existing techniques (Marr-Hildreth, Okubo-Weiss, etc.) with internally-developed feature identification methods (from model-derived physical and acoustic properties) is required. Ongoing expansions to the ARCOAS toolset have shown promising early results.
Intercomparison of the Gulf Stream in ocean reanalyses: 1993-2010
NASA Astrophysics Data System (ADS)
Chi, Lequan; Wolfe, Christopher L. P.; Hameed, Sultan
2018-05-01
In recent years, significant progress has been made in the development of high-resolution ocean reanalysis products. This paper compares aspects of the Gulf Stream (GS) from the Florida Straits to south of the Grand Banks-particularly Florida Strait transport, separation of the GS near Cape Hatteras, GS properties along the Oleander Line (from New Jersey to Bermuda), GS path, and the GS north wall positions-in 13 widely used global reanalysis products of various resolutions, including two unconstrained products. A large spread across reanalysis products is found. HYCOM and GLORYS2v4 stand out for their superior performance by most metrics. Some common biases are found in all discussed models; for example, the velocity structure of the GS near the Oleander Line is too symmetrical and the maximum velocity is too weak compared with observations. Less than half of the reanalysis products show significant correlations (at the 95% confidence level) with observations for the GS separation latitude at Cape Hatteras, the GS transport, and net transport across Oleander Line. The cross-stream velocity structure is further discussed by a theoretical model idealizing GS as a smoothed PV front.
Natural ocean carbon cycle sensitivity to parameterizations of the recycling in a climate model
NASA Astrophysics Data System (ADS)
Romanou, A.; Romanski, J.; Gregg, W. W.
2014-02-01
Sensitivities of the oceanic biological pump within the GISS (Goddard Institute for Space Studies ) climate modeling system are explored here. Results are presented from twin control simulations of the air-sea CO2 gas exchange using two different ocean models coupled to the same atmosphere. The two ocean models (Russell ocean model and Hybrid Coordinate Ocean Model, HYCOM) use different vertical coordinate systems, and therefore different representations of column physics. Both variants of the GISS climate model are coupled to the same ocean biogeochemistry module (the NASA Ocean Biogeochemistry Model, NOBM), which computes prognostic distributions for biotic and abiotic fields that influence the air-sea flux of CO2 and the deep ocean carbon transport and storage. In particular, the model differences due to remineralization rate changes are compared to differences attributed to physical processes modeled differently in the two ocean models such as ventilation, mixing, eddy stirring and vertical advection. GISSEH(GISSER) is found to underestimate mixed layer depth compared to observations by about 55% (10%) in the Southern Ocean and overestimate it by about 17% (underestimate by 2%) in the northern high latitudes. Everywhere else in the global ocean, the two models underestimate the surface mixing by about 12-34%, which prevents deep nutrients from reaching the surface and promoting primary production there. Consequently, carbon export is reduced because of reduced production at the surface. Furthermore, carbon export is particularly sensitive to remineralization rate changes in the frontal regions of the subtropical gyres and at the Equator and this sensitivity in the model is much higher than the sensitivity to physical processes such as vertical mixing, vertical advection and mesoscale eddy transport. At depth, GISSER, which has a significant warm bias, remineralizes nutrients and carbon faster thereby producing more nutrients and carbon at depth, which eventually resurfaces with the global thermohaline circulation especially in the Southern Ocean. Because of the reduced primary production and carbon export in GISSEH compared to GISSER, the biological pump efficiency, i.e., the ratio of primary production and carbon export at 75 m, is half in the GISSEH of that in GISSER, The Southern Ocean emerges as a key region where the CO2 flux is as sensitive to biological parameterizations as it is to physical parameterizations. The fidelity of ocean mixing in the Southern Ocean compared to observations is shown to be a good indicator of the magnitude of the biological pump efficiency regardless of physical model choice.
Natural Ocean Carbon Cycle Sensitivity to Parameterizations of the Recycling in a Climate Model
NASA Technical Reports Server (NTRS)
Romanou, A.; Romanski, J.; Gregg, W. W.
2014-01-01
Sensitivities of the oceanic biological pump within the GISS (Goddard Institute for Space Studies ) climate modeling system are explored here. Results are presented from twin control simulations of the air-sea CO2 gas exchange using two different ocean models coupled to the same atmosphere. The two ocean models (Russell ocean model and Hybrid Coordinate Ocean Model, HYCOM) use different vertical coordinate systems, and therefore different representations of column physics. Both variants of the GISS climate model are coupled to the same ocean biogeochemistry module (the NASA Ocean Biogeochemistry Model, NOBM), which computes prognostic distributions for biotic and abiotic fields that influence the air-sea flux of CO2 and the deep ocean carbon transport and storage. In particular, the model differences due to remineralization rate changes are compared to differences attributed to physical processes modeled differently in the two ocean models such as ventilation, mixing, eddy stirring and vertical advection. GISSEH(GISSER) is found to underestimate mixed layer depth compared to observations by about 55% (10 %) in the Southern Ocean and overestimate it by about 17% (underestimate by 2%) in the northern high latitudes. Everywhere else in the global ocean, the two models underestimate the surface mixing by about 12-34 %, which prevents deep nutrients from reaching the surface and promoting primary production there. Consequently, carbon export is reduced because of reduced production at the surface. Furthermore, carbon export is particularly sensitive to remineralization rate changes in the frontal regions of the subtropical gyres and at the Equator and this sensitivity in the model is much higher than the sensitivity to physical processes such as vertical mixing, vertical advection and mesoscale eddy transport. At depth, GISSER, which has a significant warm bias, remineralizes nutrients and carbon faster thereby producing more nutrients and carbon at depth, which eventually resurfaces with the global thermohaline circulation especially in the Southern Ocean. Because of the reduced primary production and carbon export in GISSEH compared to GISSER, the biological pump efficiency, i.e., the ratio of primary production and carbon export at 75 m, is half in the GISSEH of that in GISSER, The Southern Ocean emerges as a key region where the CO2 flux is as sensitive to biological parameterizations as it is to physical parameterizations. The fidelity of ocean mixing in the Southern Ocean compared to observations is shown to be a good indicator of the magnitude of the biological pump efficiency regardless of physical model choice.
NASA Astrophysics Data System (ADS)
Megann, A.; New, A.; Blaker, A.
2012-04-01
Vellinga and Wu (2004) and others have identified feedback cycles governing the decadal variability of the North Atlantic overturning circulation, in which modulation of tropical rainfall creates near-surface salinity anomalies that propagate northward to the winter convection regions, where they affect the wintertime convection through changes in surface density. Freshwater "hosing" experiments, in which 0.1 Sv of extra freshwater is added to the convection region, are described using two climate models: the UK Met Office's HadCM3; and CHIME, which is identical to HadCM3 except for the replacement of the z-coordinate ocean component of HadCM3 with the hybrid isopycnic model HYCOM. While HadCM3 shows an unambiguous weakening of the meridional overturning circulation (MOC) by 5 Sv, the MOC in CHIME initially starts to decrease but returns to a value close to that in the control experiment after 40-50 years even though the hosing flux is still being applied. It will be shown that the recovery of the overturning in CHIME is mainly due to enhanced advective transport of salt from the subtropics by salinity anomalies. These are found to be substantially more coherent meridionally in CHIME than in HadCM3, consistent with the known superior ability of the isopycnic model formulation to preserve watermass properties over long distances.
NASA Astrophysics Data System (ADS)
Barton, N. P.; Metzger, E. J.; Smedstad, O. M.; Ruston, B. C.; Wallcraft, A. J.; Whitcomb, T.; Ridout, J. A.; Zamudio, L.; Posey, P.; Reynolds, C. A.; Richman, J. G.; Phelps, M.
2017-12-01
The Naval Research Laboratory is developing an Earth System Model (NESM) to provide global environmental information to meet Navy and Department of Defense (DoD) operations and planning needs from the upper atmosphere to under the sea. This system consists of a global atmosphere, ocean, ice, wave, and land prediction models and the individual models include: atmosphere - NAVy Global Environmental Model (NAVGEM); ocean - HYbrid Coordinate Ocean Model (HYCOM); sea ice - Community Ice CodE (CICE); WAVEWATCH III™; and land - NAVGEM Land Surface Model (LSM). Data assimilation is currently loosely coupled between the atmosphere component using a 6-hour update cycle in the Naval Research Laboratory (NRL) Atmospheric Variational Data Assimilation System - Accelerated Representer (NAVDAS-AR) and the ocean/ice components using a 24-hour update cycle in the Navy Coupled Ocean Data Assimilation (NCODA) with 3 hours of incremental updating. This presentation will describe the US Navy's coupled forecast model, the loosely coupled data assimilation, and compare results against stand-alone atmosphere and ocean/ice models. In particular, we will focus on the unique aspects of this modeling system, which includes an eddy resolving ocean model and challenges associated with different update-windows and solvers for the data assimilation in the atmosphere and ocean. Results will focus on typical operational diagnostics for atmosphere, ocean, and ice analyses including 500 hPa atmospheric height anomalies, low-level winds, temperature/salinity ocean depth profiles, ocean acoustical proxies, sea ice edge, and sea ice drift. Overall, the global coupled system is performing with comparable skill to the stand-alone systems.
Interannual and Decadal Changes in Salinity in the Oceanic Subtropical Gyres
NASA Astrophysics Data System (ADS)
Bulusu, Subrahmanyam
2017-04-01
There is evidence that the global water cycle has been undergoing an intensification over several decades as a response to increasing atmospheric temperatures, particularly in regions with skewed evaporation - precipitation (E-P) patterns such as the oceanic subtropical gyres. Moreover, observational data (rain gauges, etc.) are quite sparse over such areas due to the inaccessibility of open ocean regions. In this work, a comparison of observational and model simulations are conducted to highlight the potential applications of satellite derived salinity from NASA Aquarius Salinity mission, NASA Soil Moisture and Ocean Salinity (SMOS), and ESA's Soil Moisture Active Passive (SMAP). We explored spatial and temporal salinity changes (and trends) in surface and subsurface in the oceanic subtropical gyres using Argo floats salinity data, Simple Ocean Data Assimilation (SODA) reanalysis, Estimating the Circulations & Climate of the Ocean GECCO (German ECCO) model simulations, and Hybrid Coordinate Ocean Model (HYCOM). Our results based on SODA reanalysis reveals that a positive rising trend in sea surface salinity in the subtropical gyres emphasizing evidence for decadal intensification in the surface forcing in these regions. Zonal drift in the location of the salinity maximum of the south Pacific, north Atlantic, and south Indian regions implies a change in the mean near-surface currents responsible for advecting high salinity waters into the region. Also we found out that an overall salinity increase within the mixed layer, and a subsurface salinity decrease at depths greater than 200m in the global subtropical gyres over 61 years. We determine that freshwater fluxes at the air-sea interface are the primary drivers of the sea surface salinity (SSS) signature over these open ocean regions by quantifying the advective contribution within the surface layer. This was demonstrated through a mixed layer salinity budget in each subtropical gyre based on the vertically integrated advection and entrainment of salt. Our analysis of decadal variability of fluxes into and out of the gyres reveals little change in the strength of the mean currents through this region despite an increase in the annual export of salt in all subtropical gyres, with the meridional component dominating the zonal. This study reveals that the salt content of E-P maximum waters advected into the subtropical gyres is increasing over time. A combination of increasing direct evaporation over the regions with increasing remote evaporation over nearby E-P maxima is believed to be the main driver in increasing salinity of the subtropical oceans, suggesting an intensification of the global water cycle over decadal timescales.
NASA Astrophysics Data System (ADS)
Baart, F.; Donchyts, G.; van Dam, A.; Plieger, M.
2015-12-01
The emergence of interactive art has blurred the line between electronic, computer graphics and art. Here we apply this art form to numerical models. Here we show how the transformation of a numerical model into an interactive painting can both provide insights and solve real world problems. The cases that are used as an example include forensic reconstructions, dredging optimization, barrier design. The system can be fed using any source of time varying vector fields, such as hydrodynamic models. The cases used here, the Indian Ocean (HYCOM), the Wadden Sea (Delft3D Curvilinear), San Francisco Bay (3Di subgrid and Delft3D Flexible Mesh), show that the method used is suitable for different time and spatial scales. High resolution numerical models become interactive paintings by exchanging their velocity fields with a high resolution (>=1M cells) image based flow visualization that runs in a html5 compatible web browser. The image based flow visualization combines three images into a new image: the current image, a drawing, and a uv + mask field. The advection scheme that computes the resultant image is executed in the graphics card using WebGL, allowing for 1M grid cells at 60Hz performance on mediocre graphic cards. The software is provided as open source software. By using different sources for a drawing one can gain insight into several aspects of the velocity fields. These aspects include not only the commonly represented magnitude and direction, but also divergence, topology and turbulence .
Role of the Southwest Tropical Indian Ocean on the Modulation of Tropical Cyclones
NASA Astrophysics Data System (ADS)
Burns, J. M.; Bulusu, S.
2016-02-01
The Seychelles-Chagos Thermocline Ridge (SCTR), located in the Indian Ocean and bound by 55°E-65°E and 5°S-12°S, is a key region for air-sea interaction. This feature inhabits one of the seven ocean basins where tropical cyclones regularly form and is unique in that the variability of the subsurface can influence cyclogenesis. Tropical cyclone days for this region span from November through April, with peaks in the months of January and February. The influence of thermocline variation is particularly strong during the months of December through May and it is known that a high correlation exists between the depth of the thermocline and sea surface temperature (key ingredient for cyclogenesis). Past research provides evidence that more tropical cyclone days are observed in Southwest Tropical Indian Ocean (SWTIO) during austral summers with a deep thermocline ridge than in austral summers when a shallow thermocline ridge exists. The formation and thickness of the Barrier layer (BL) have also been shown to impact tropical cyclones in this region. BL formation is an important parameter for surface heat exchange. The amount of salt in the boundary layer may also effect heat exchange and thus cyclones. Other ocean basins have verified that salt-stratified barrier layers influence the intensification of tropical cyclones, however, the role that salinity in SWTIO plays in the modulation of tropical cycles has still yet to be explored. This study further explores how the dynamic properties of the SCTR influence the modulation of cyclones. Primarily Argo observations of salinity and temperature along with Soil Moisture Ocean Salinity (SMOS) and Aquarius salinity, and Hybrid Coordinate Ocean Model (HYCOM) simulations are used to examine this influence of the BL and salinity on cyclone formation and intensity in this region. This study is progressed with a particular focus on the austral summer of 2012/2013 when seven tropical cyclones developed in the region.
NASA Astrophysics Data System (ADS)
Khade, Vikram; Kurian, Jaison; Chang, Ping; Szunyogh, Istvan; Thyng, Kristen; Montuoro, Raffaele
2017-05-01
This paper demonstrates the potential of ocean ensemble forecasting in the Gulf of Mexico (GoM). The Bred Vector (BV) technique with one week rescaling frequency is implemented on a 9 km resolution version of the Regional Ocean Modelling System (ROMS). Numerical experiments are carried out by using the HYCOM analysis products to define the initial conditions and the lateral boundary conditions. The growth rates of the forecast uncertainty are estimated to be about 10% of initial amplitude per week. By carrying out ensemble forecast experiments with and without perturbed surface forcing, it is demonstrated that in the coastal regions accounting for uncertainties in the atmospheric forcing is more important than accounting for uncertainties in the ocean initial conditions. In the Loop Current region, the initial condition uncertainties, are the dominant source of the forecast uncertainty. The root-mean-square error of the Lagrangian track forecasts at the 15-day forecast lead time can be reduced by about 10 - 50 km using the ensemble mean Eulerian forecast of the oceanic flow for the computation of the tracks, instead of the single-initial-condition Eulerian forecast.
The Gulf Stream in Ocean Reanalyses: 1993-2010
NASA Astrophysics Data System (ADS)
Chi, L.; Wolfe, C.; Hameed, S.
2017-12-01
In recent years, significant progress has been made in the development of high-resolution ocean reanalysis products. However, errors are likely to remain because of inadequate coverage of observations, model resolutions, physical parameterizations, etc. We compare the representation of the Gulf Stream (GS) in several widely used global reanalysis products with resolutions ranging from 1° to 1/12°. This intercomparison focuses on the Florida Current transport, the separation of GS near Cape Hatteras, GS properties along the Oleander Line (from New Jersey to Bermuda), GS path and the GS north wall positions between 73°W and 55°W. A large spread exists across the reanalysis products. HYCOM and GLORYS2v4 stand out for their top performance in most metrics. Some common biases are found in all discussed products; for example, the velocity structure of the GS near the Oleander Line is too symmetric and the maximum velocity is weaker than in observations. In addition, the annual mean values of GS separation latitude near Cape Hatteras, the GS transport, and net transport across Oleander Line (which runs from New Jersey to Bermuda), less than half of the reanalysis products are correlated to the observations at 95% confidence level.
Water exchange through the Kerama Gap estimated with a 25-year Pacific HYbrid Coordinate Ocean Model
NASA Astrophysics Data System (ADS)
Zhou, Wenzheng; Yu, Fei; Nan, Feng
2017-11-01
Variations in water exchange through the Kerama Gap (between Okinawa Island and Miyakojima Island) from 1979 to 2003 were estimated with the 0.08° Pacific HYbrid Coordinate Ocean Model (HYCOM). The model results show that the mean transport through the Kerama Gap (KGT) from the Pacific Ocean to the East China Sea (ECS) was 2.1 Sv, which agrees well with the observed mean KGT (2.0 Sv) for 2009-2010. Over the time period examined, the monthly KGT varied from -10.9 Sv to 15.8 Sv and had a standard deviation of ± 5.0 Sv. The water mainly enters the ECS via the subsurface layer (300-500 m) along the northeastern slope of the Kerama Gap and mainly flows out of the ECS into the southwest of the Kerama Gap. The seasonal and interannual variations of the KGT and the Kuroshio upstream transport were negatively correlated. The Kuroshio upstream transport was largest in summer and smallest in autumn while the KGT was smallest in summer (1.02 Sv) and largest in spring (2.94 Sv) and autumn (2.44 Sv). The seasonal and interannual variations in the Kuroshio downstream (across the PN-line) transport differed significantly from the Kuroshio upstream transport but corresponded well with the KGT and the sum of the transport through the Kerama Gap and the Kuroshio upstream, which indicates that information about variation in the KGT is important for determining variation in the Kuroshio transport along the PN-line.
An information model for managing multi-dimensional gridded data in a GIS
NASA Astrophysics Data System (ADS)
Xu, H.; Abdul-Kadar, F.; Gao, P.
2016-04-01
Earth observation agencies like NASA and NOAA produce huge volumes of historical, near real-time, and forecasting data representing terrestrial, atmospheric, and oceanic phenomena. The data drives climatological and meteorological studies, and underpins operations ranging from weather pattern prediction and forest fire monitoring to global vegetation analysis. These gridded data sets are distributed mostly as files in HDF, GRIB, or netCDF format and quantify variables like precipitation, soil moisture, or sea surface temperature, along one or more dimensions like time and depth. Although the data cube is a well-studied model for storing and analyzing multi-dimensional data, the GIS community remains in need of a solution that simplifies interactions with the data, and elegantly fits with existing database schemas and dissemination protocols. This paper presents an information model that enables Geographic Information Systems (GIS) to efficiently catalog very large heterogeneous collections of geospatially-referenced multi-dimensional rasters—towards providing unified access to the resulting multivariate hypercubes. We show how the implementation of the model encapsulates format-specific variations and provides unified access to data along any dimension. We discuss how this framework lends itself to familiar GIS concepts like image mosaics, vector field visualization, layer animation, distributed data access via web services, and scientific computing. Global data sources like MODIS from USGS and HYCOM from NOAA illustrate how one would employ this framework for cataloging, querying, and intuitively visualizing such hypercubes. ArcGIS—an established platform for processing, analyzing, and visualizing geospatial data—serves to demonstrate how this integration brings the full power of GIS to the scientific community.
Bottom friction optimization for a better barotropic tide modelling
NASA Astrophysics Data System (ADS)
Boutet, Martial; Lathuilière, Cyril; Son Hoang, Hong; Baraille, Rémy
2015-04-01
At a regional scale, barotropic tides are the dominant source of variability of currents and water heights. A precise representation of these processes is essential because of their great impacts on human activities (submersion risks, marine renewable energies, ...). Identified sources of error for tide modelling at a regional scale are the followings: bathymetry, boundary forcing and dissipation due to bottom friction. Nevertheless, bathymetric databases are nowadays known with a good accuracy, especially over shelves, and global tide models performances are better than ever. The most promising improvement is thus the bottom friction representation. The method used to estimate bottom friction is the simultaneous perturbation stochastic approximation (SPSA) which consists in the approximation of the gradient based on a fixed number of cost function measurements, regardless of the dimension of the vector to be estimated. Indeed, each cost function measurement is obtained by randomly perturbing every component of the parameter vector. An important feature of SPSA is its relative ease of implementation. In particular, the method does not require the development of tangent linear and adjoint version of the circulation model. Experiments are carried out to estimate bottom friction with the HYbrid Coordinate Ocean Model (HYCOM) in barotropic mode (one isopycnal layer). The study area is the Northeastern Atlantic margin which is characterized by strong currents and an intense dissipation. Bottom friction is parameterized with a quadratic term and friction coefficient is computed with the water height and the bottom roughness. The latter parameter is the one to be estimated. Assimilated data are the available tide gauge observations. First, the bottom roughness is estimated taking into account bottom sediment natures and bathymetric ranges. Then, it is estimated with geographical degrees of freedom. Finally, the impact of the estimation of a mixed quadratic/linear friction is evaluated.
NASA Astrophysics Data System (ADS)
Alvera-Azcarate, A.; Barth, A.; Virmani, J. I.; Weisberg, R. H.
2007-05-01
The Intra-Americas Sea (IAS) surface circulation is characterized by large scale currents. The Caribbean current, which originates in the Lesser Antilles, travels westwards through the Caribbean Sea and eastern Mexico and passes through the Gulf of Mexico to finally form the Gulf Stream. This complex system of currents is also characterized by a high mesoscale variability, such as eddies and meanders. The objectives of this work are twofold: first, the multi-scale surface circulation of the IAS is described using satellite altimetry. The topographic influence of the different basins forming the IAS, the characteristic time and spatial scales, and the time variability of the surface circulation will be addressed. The second objective is to analyze the influence of this large scale circulation on a small scale coastal domain with a ROMS-based model of the Cariaco basin (Venezuela). Cariaco is a deep (1400 m), semi-enclosed basin connected to the open ocean by two shallow channels (Tortuga and Centinela Channels). Its connection with the open sea, and therefore the ventilation of the basin, occurs in the surface layers. The Cariaco ROMS model will be used to study the exchanges of mass, heat and salt through the channels. A 1/60 degree ROMS model nested in the global 1/12 degree HYCOM model from the Naval Research Laboratory will be used for this study. In addition, a series of observations (satellite altimetry and in situ temperature, salinity and velocity data), will be used to assess the influence of the Caribbean circulation on the basin.
NASA Astrophysics Data System (ADS)
Kim, J.; Park, K.
2016-12-01
In order to evaluate the performance of operational forecast models in the Korea operational oceanographic system (KOOS) which has been developed by Korea Institute of Ocean Science and Technology (KIOST), a skill assessment (SA) tool has developed and provided multiple skill metrics including not only correlation and error skills by comparing predictions and observation but also pattern clustering with numerical models, satellite, and observation. The KOOS has produced 72 hours forecast information on atmospheric and hydrodynamic forecast variables of wind, pressure, current, tide, wave, temperature, and salinity at every 12 hours per day produced by operating numerical models such as WRF, ROMS, MOM5, WW-III, and SWAN and the SA has conducted to evaluate the forecasts. We have been operationally operated several kinds of numerical models such as WRF, ROMS, MOM5, MOHID, WW-III. Quantitative assessment of operational ocean forecast model is very important to provide accurate ocean forecast information not only to general public but also to support ocean-related problems. In this work, we propose a method of pattern clustering using machine learning method and GIS-based spatial analytics to evaluate spatial distribution of numerical models and spatial observation data such as satellite and HF radar. For the clustering, we use 10 or 15 years-long reanalysis data which was computed by the KOOS, ECMWF, and HYCOM to make best matching clusters which are classified physical meaning with time variation and then we compare it with forecast data. Moreover, for evaluating current, we develop extraction method of dominant flow and apply it to hydrodynamic models and HF radar's sea surface current data. By applying pattern clustering method, it allows more accurate and effective assessment of ocean forecast models' performance by comparing not only specific observation positions which are determined by observation stations but also spatio-temporal distribution of whole model areas. We believe that our proposed method will be very useful to examine and evaluate large amount of numerical modeling data as well as satellite data.
NASA Astrophysics Data System (ADS)
Kourafalou, Villy; Androulidakis, Yannis
2013-04-01
Large river plumes are a major supplier of freshwater, sediments and nutrients in coastal and shelf seas. Novel processes controlling the transport and fate of riverine waters (and associated materials) will be presented, under flood conditions and in the presence of complex topography, ambient shelf circulation and slope processes, controlled by the interaction with rim currents. The Mississippi River (MR) freshwater outflow is chosen as a test case, as a major circulation forcing mechanism for the Northern Gulf of Mexico and a unique river plume for the intense interactions with a large scale ocean current, namely the Loop Current branch of the Gulf Stream, and associated eddy field. The largest MR outflow in history (45,000 m3/sec in 2011) is compared with the second largest outflow in the last 8 years (41,000 m3/sec in 2008). Realistically forced simulations, based on the Hybrid Coordinate Ocean Model (HYCOM) with careful treatment of river plume dynamics and nested to a data assimilated, basin-wide model, reveal the synergistic effect of enhanced discharge, winds, stratification of ambient shelf waters and offshore circulation over the transport of plume waters. The investigation targets a broader understanding of the dynamics of large scale river plumes in general, and of the MR plume in particular. In addition, in situ observations from ship surveys and satellite chl-a data showed that the mathematical simulations with high temporal resolution river outflow input may reproduce adequately the buoyant waters spreading over the Northern Gulf of Mexico shelf and offshore areas. The fate of the river plume is strongly determined and affected by deep basin processes. The strong impacts of the Loop Current system (and its frontal eddies) on river plume evolution are of particular importance under conditions of increased offshore spreading, which is presumed under large discharge rates and can cause loss of riverine materials to the basin interior. Flood conditions can increase both downstream (westward) and upstream (eastward) spreading. The high outflow rates enhance the anticyclonic bulge, strengthen the downstream coastal current toward the western Louisiana-Texas shelf. The substantial eastward spreading over the eastern Mississippi-Alabama-Florida shelf was highly correlated with the Loop Current northward extension. On the contrary, cyclonic eddies east of the Delta effectively block the offshore eastward spreading of the plume and may keep the river waters away from the eastern shelf. We show that the proximity of eddies to the shelf break is a sufficient condition for shelf-to-offshore interaction, which is facilitated by the steep bottom topography near the Delta.
Improving Barotropic Tides by Two-way Nesting High and Low Resolution Domains
NASA Astrophysics Data System (ADS)
Jeon, C. H.; Buijsman, M. C.; Wallcraft, A. J.; Shriver, J. F.; Hogan, P. J.; Arbic, B. K.; Richman, J. G.
2017-12-01
In a realistically forced global ocean model, relatively large sea-surface-height root-mean-square (RMS) errors are observed in the North Atlantic near the Hudson Strait. These may be associated with large tidal resonances interacting with coastal bathymetry that are not correctly represented with a low resolution grid. This issue can be overcome by using high resolution grids, but at a high computational cost. In this paper we apply two-way nesting as an alternative solution. This approach applies high resolution to the area with large RMS errors and a lower resolution to the rest. It is expected to improve the tidal solution as well as reduce the computational cost. To minimize modification of the original source codes of the ocean circulation model (HYCOM), we apply the coupler OASIS3-MCT. This coupler is used to exchange barotropic pressures and velocity fields through its APIs (Application Programming Interface) between the parent and the child components. The developed two-way nesting framework has been validated with an idealized test case where the parent and the child domains have identical grid resolutions. The result of the idealized case shows very small RMS errors between the child and parent solutions. We plan to show results for a case with realistic tidal forcing in which the resolution of the child grid is three times that of the parent grid. The numerical results of this realistic case are compared to TPXO data.
Massive Cloud-Based Big Data Processing for Ocean Sensor Networks and Remote Sensing
NASA Astrophysics Data System (ADS)
Schwehr, K. D.
2017-12-01
Until recently, the work required to integrate and analyze data for global-scale environmental issues was prohibitive both in cost and availability. Traditional desktop processing systems are not able to effectively store and process all the data, and super computer solutions are financially out of the reach of most people. The availability of large-scale cloud computing has created tools that are usable by small groups and individuals regardless of financial resources or locally available computational resources. These systems give scientists and policymakers the ability to see how critical resources are being used across the globe with little or no barrier to entry. Google Earth Engine has the Moderate Resolution Imaging Spectroradiometer (MODIS) Terra, MODIS Aqua, and Global Land Data Assimilation Systems (GLDAS) data catalogs available live online. Here we demonstrate these data to calculate the correlation between lagged chlorophyll and rainfall to identify areas of eutrophication, matching these events to ocean currents from datasets like HYbrid Coordinate Ocean Model (HYCOM) to check if there are constraints from oceanographic configurations. The system can provide addition ground truth with observations from sensor networks like the International Comprehensive Ocean-Atmosphere Data Set / Voluntary Observing Ship (ICOADS/VOS) and Argo floats. This presentation is intended to introduce users to the datasets, programming idioms, and functionality of Earth Engine for large-scale, data-driven oceanography.
Water mass formation and circulation in the Persian Gulf and water exchange with the Indian Ocean
NASA Astrophysics Data System (ADS)
Yao, Fengchao
The Persian Gulf is a shallow, semi-enclosed marginal sea where the Persian Gulf Water (PGW), one of the most saline water masses in the world, is formed due to the arid climate. The PGW flushes out of the Persian Gulf as a deep outflow and induces a surface inflow of the Indian Ocean Surface Water (IOSW), driving an inverse-estuarine type water exchange through the Strait of Hormuz. In this dissertation, the circulation and water mass transformation processes in the Persian Gulf and the water exchange with the Indian Ocean through the Strait of Hormuz, in response to the atmospheric forcing, are studied using the HYbrid Coordinate Ocean Model (HYCOM). The model is driven by surface wind stress, heat and fresh water fluxes derived from two sources: the COADS (Comprehensive Ocean-Atmosphere Data Set) monthly climatology and high frequency (2-hourly) MM5 (The Fifth-Generation NCAR/Penn State Mesoscale Model) output. This study is motivated by the time series measurements in the Strait during December 1996 to March 1998 by Johns et al. (2003), which also serve as a major benchmark for evaluating the model results. The simulations with climatological forcing show that the IOSW propagates in two branches into the Gulf, one along the Iranian coast toward the northern gulf and the other one onto the southern banks driven by the Ekman drift by the prevailing northwesterly winds. These two branches of inflow form two cyclonic gyres in the northern and in the southern gulf respectively. Cold, saline deep waters are formed both in the northern gulf and in the southern gulf during the wintertime cooling period and their exports contribute seasonally to the outflow in the strait. After formation in winter, the dense water in the shallow southwestern gulf spills off into the strait and causes high-salinity pulses in the outflow in the strait, a phenomenon also present in the observations. The export of dense waters from the northern gulf persists throughout the year, with the largest cold water export in summer. The intrusion of the IOSW in the model extends much farther into the Gulf in summer than in winter, which is in agreement with observations. By analyzing the salt balance in the basin and conducting sensitivity experiments, we show that it is the balance between the advection of IOSW and vertical upward flux induced by vertical mixing that mainly controls the seasonal variation of the surface salinity. The surface salinity in winter is increased by upward mixing from saltier subsurface waters, which is caused by the strong vertical mixing condition maintained by the surface heat loss. Surface wind stress, which opposes the inflow and is stronger in winter than in summer, plays a secondary role in modulating the seasonal intrusion of the IOSW. The MM5 high frequency forcing, capable of resolving synoptic weather events, leads to increased heat loss in winter, enhanced vertical mixing and higher annual mean evaporation rate. In the simulation with the high frequency forcing, the waters in the gulf are generally about 3°C colder and 1 psu fresher than with COADS forcing, and agree better with observations. The high-frequency forcing has little effect on the export of the dense waters from the northern gulf but delays the spillage of the waters from the southern gulf to April. A notable synoptic feature of the simulations is the annual appearance of eddies along the intruding salinity front. The typical sizes of the fully developed eddies in summer are about 100 km, about 3 times of the local Rossby deformation radius, consistent with a baroclinic instability process. The existence of these eddies is confirmed in satellite images of surface temperature in the Gulf.
Strategies for the Use of Tidal Stream Currents for Power Generation
NASA Astrophysics Data System (ADS)
Orhan, Kadir; Mayerle, Roberto
2015-04-01
Indonesia is one of the priority countries in Southeast Asia for the development of ocean renewable energy facilities and The National Energy Council intends to increase the role of ocean energy significantly in the energy mix for 2010-2050. To this end, the joint German-Indonesian project "Ocean Renewable Energy ORE-12" aims at the identification of marine environments in the Indonesian Archipelago, which are suitable for the efficient generation of electric power by converter facilities. This study, within the ORE-12 project, is focused on the tidal stream currents on the straits between the Indian Ocean and Flores Sea to estimate the energy potentials and to develop strategies for producing renewable energy. FLOW module of Delft3D has been used to run hydrodynamic models for site assessment and design development. In site assessment phase, 2D models have been operated for a-month long periods and with a resolution of 500 m. Later on, in design development phase, detailed 3D models have been developed and operated for three-month long periods and with a resolution of 50 m. Bathymetric data for models have been obtained from the GEBCO_08 Grid and wind data from the Global Forecast System of NOAA's National Climatic Data Center. To set the boundary conditions of models, tidal forcing with 11 harmonic constituents was supplied from TPXO Indian Ocean Atlas (1/12° regional model) and data from HYCOM+NCODA Global 1/12° Analysis have been used to determine salinity and temperature on open boundaries. After the field survey is complete, water level time-series supplied from a tidal gauge located in the domain of interest (8° 20΄ 9.7" S, 122° 54΄ 51.9" E) have been used to verify the models and then energy potentials of the straits have been estimated. As a next step, correspondence between model outputs and measurements taken by the radar system of TerraSAR-X satellite (DLR) will be analysed. Also for the assessment of environmental impacts caused by tidal stream current power plants, studies are being conducted in a cooperation with CRM (Coastal Research & Management) company.
NASA Astrophysics Data System (ADS)
Rayson, Matthew D.; Ivey, Gregory N.; Jones, Nicole L.; Fringer, Oliver B.
2018-02-01
We apply the unstructured grid hydrodynamic model SUNTANS to investigate the internal wave dynamics around Scott Reef, Western Australia, an isolated coral reef atoll located on the edge of the continental shelf in water depths of 500,m and more. The atoll is subject to strong semi-diurnal tidal forcing and consists of two relatively shallow lagoons separated by a 500 m deep, 2 km wide and 15 km long channel. We focus on the dynamics in this channel as the internal tide-driven flow and resulting mixing is thought to be a key mechanism controlling heat and nutrient fluxes into the reef lagoons. We use an unstructured grid to discretise the domain and capture both the complex topography and the range of internal wave length scales in the channel flow. The model internal wave field shows super-tidal frequency lee waves generated by the combination of the steep channel topography and strong tidal flow. We evaluate the model performance using observations of velocity and temperature from two through water-column moorings in the channel separating the two reefs. Three different global ocean state estimate datasets (global HYCOM, CSIRO Bluelink, CSIRO climatology atlas) were used to provide the model initial and boundary conditions, and the model outputs from each were evaluated against the field observations. The scenario incorporating the CSIRO Bluelink data performed best in terms of through-water column Murphy skill scores of water temperature and eastward velocity variability in the channel. The model captures the observed vertical structure of the tidal (M2) and super-tidal (M4) frequency temperature and velocity oscillations. The model also predicts the direction and magnitude of the M2 internal tide energy flux. An energy analysis reveals a net convergence of the M2 energy flux and a divergence of the M4 energy flux in the channel, indicating the channel is a region of either energy transfer to higher frequencies or energy loss to dissipation. This conclusion is supported by the mooring observations that reveal high frequency lee waves breaking on the turning phase of the tide.
NASA Astrophysics Data System (ADS)
Wren, J.; Toonen, R. J.
2016-02-01
As a result of climate change, scientists predict stronger, more frequent El Niño events in the future. These events in the Central Equatorial Pacific cause increased sea surface temperatures (SST), a depressed thermocline, and decreased primary production. The oceanographic effects in the Hawaiian Archipelago located in the Subtropical North Pacific, are not equally well understood, and have shown both increased and decreased SST and primary production during El Niño events. Marine larval fish development rates can be affected by factors such as food availability and temperature, thus oceanographic changes caused by El Niño can potentially alter larval dispersal patterns throughout the Hawaiian Archipelago, affecting regional population connectivity. Using a two dimensional Lagrangian particle dispersal model coupled with high resolution Hybrid Coordinate Ocean Model (HYCOM) currents for the Hawaiian Archipelago we are able to model annual settlement probabilities and self-recruitment, important metrics for understanding population dynamics and connectivity. Preliminary data comparing modeled dispersal during the 1997-98 El Niño with four years of normal state oceanographic conditions (2011-2014), showed an increase in total settlement during the El Niño years for the North Western Hawaiian Islands, and a decreased settlement success for the Main Hawaiian Islands. Self-recruitment across the archipelago was lower during El Niño and the distance the successful settlers traveled was greater, indicating that El Niño may be playing an important role in long distance dispersal and genetic exchange between distant sites not otherwise connected. We see a much greater connectivity between the Hawaiian Archipelago and Johnnston Atoll during the El Niño event, with a significant increase of larval exchange in both directions. Since these ecologically rare but extreme events can have a disproportionate influence on dispersal, it's important to understand how connectivity is affected in order to manage for diverse coral reefs in the future.
Changes in atmospheric circulation between solar maximum and minimum conditions in winter and summer
NASA Astrophysics Data System (ADS)
Lee, Jae Nyung
2008-10-01
Statistically significant climate responses to the solar variability are found in Northern Annular Mode (NAM) and in the tropical circulation. This study is based on the statistical analysis of numerical simulations with ModelE version of the chemistry coupled Goddard Institute for Space Studies (GISS) general circulation model (GCM) and National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis. The low frequency large scale variability of the winter and summer circulation is described by the NAM, the leading Empirical Orthogonal Function (EOF) of geopotential heights. The newly defined seasonal annular modes and its dynamical significance in the stratosphere and troposphere in the GISS ModelE is shown and compared with those in the NCEP/NCAR reanalysis. In the stratosphere, the summer NAM obtained from NCEP/NCAR reanalysis as well as from the ModelE simulations has the same sign throughout the northern hemisphere, but shows greater variability at low latitudes. The patterns in both analyses are consistent with the interpretation that low NAM conditions represent an enhancement of the seasonal difference between the summer and the annual averages of geopotential height, temperature and velocity distributions, while the reverse holds for high NAM conditions. Composite analysis of high and low NAM cases in both the model and observation suggests that the summer stratosphere is more "summer-like" when the solar activity is near a maximum. This means that the zonal easterly wind flow is stronger and the temperature is higher than normal. Thus increased irradiance favors a low summer NAM. A quantitative comparison of the anti-correlation between the NAM and the solar forcing is presented in the model and in the observation, both of which show lower/higher NAM index in solar maximum/minimum conditions. The summer NAM in the troposphere obtained from NCEP/NCAR reanalysis has a dipolar zonal structure with maximum variability over the Asian monsoon region. The corresponding EOF in ModelE has a qualitatively similar structure but with less variability in the Asian monsoon region which is displaced eastward of its observed position. In both the NCEP/NCAR reanalysis and the GISS GCM, the negative anomalies associated with the NAM in the Euro-Atlantic and Aleutian island regions are enhanced in the solar minimum conditions, though the results are not statistically significant. The difference of the downward propagation of NAM between solar maximum and solar minimum is shown with the NCEP/NCAR reanalysis. For the winter NAM, a much greater fraction of stratospheric circulation perturbations penetrate to the surface in solar maximum conditions than in minimum conditions. This difference is more striking when the zonal wind direction in the tropics is from the west: when equatorial 50 hPa winds are from the west, no stratospheric signals reach the surface under solar minimum conditions, while over 50 percent reach the surface under solar maximum conditions. This work also studies the response of the tropical circulation to the solar forcing in combination with different atmospheric compositions and with different ocean modules. Four model experiments have been designed to investigate the role of solar forcing in the tropical circulation: one with the present day (PD) greenhouse gases and aerosol conditions, one with the preindustrial (PI) conditions, one with the doubled minimum solar forcing, and finally one with the hybrid-isopycnic ocean model (HYCOM). The response patterns in the tropical humidity and in the vertical motion due to solar forcing are season dependent and spatially heterogeneous. The tropical humidity response from the model experiments are compared with the corresponding differences obtained from the NCEP/NCAR reanalysis with all years and with non-ENSO years. Both the model and the reanalysis consistently show that the specific humidity is significantly greater in the convective region in solar maximum compared to solar minimum for January and July. The column integrated humidity in all the model experiments with different composition, different solar forcing, and different ocean module, increased with solar forcing in the tropical band over the Atlantic sector in both seasons. The model's humidity response pattern is generally consistent with the paleoclimate records indicating increased precipitation near the equator that decreases at subtropical to middle latitudes with increased solar output. The differences in the zonally averaged vertical velocities indicate that the ascending branch of the Hadley cell is enhanced and shifted northward, and that the descending branch is weakened and shifted northward in the solar MAX simulation in January. The downward branch of the Hadley cell is strengthened in MAX in July. A possible link of climate response in midlatitudes to solar forcing is also presented by showing changes in zonal mean wind, changes in temperature gradient, and changes in E-P flux.
Can We Infer Ocean Dynamics from Altimeter Wavenumber Spectra?
NASA Technical Reports Server (NTRS)
Richman, James; Shriver, Jay; Arbic, Brian
2012-01-01
The wavenumber spectra of sea surface height (SSH) and kinetic energy (KE) have been used to infer the dynamics of the ocean. When quasi-geostrophic dynamics (QG) or surface quasi-geostrophic (SQG) turbulence dominate and an inertial subrange exists, a steep SSH wavenumber spectrum is expected with k-5 for QG turbulence and a flatter k-11/3 for SQG turbulence. However, inspection of the spectral slopes in the mesoscale band of 70 to 250 km shows that the altimeter wavenumber slopes typically are much flatter than the QG or SQG predictions over most of the ocean. Comparison of the altimeter wavenumber spectra with the spectra estimated from the output of an eddy resolving global ocean circulation model (the Hybrid Coordinate Ocean Model, HYCOM, at 1/25 resolution), which is forced by high frequency winds and includes the astronomical forcing of the sun and the moon, suggests that the flatter slopes of the altimeter may arise from three possible sources, the presence of internal waves, the lack of an inertial subrange in the 70 to 250 km band and noise or submesoscales at small scales. When the wavenumber spectra of SSH and KE are estimated near the internal tide generating regions, the resulting spectra are much flatter than the expectations of QG or SQG theory. If the height and velocity variability are separated into low frequency (periods greater than 2 days) and high frequency (periods less than a day), then a different pattern emerges with a relatively flat wavenumber spectrum at high frequency and a steeper wavenumber spectrum at low frequency. The stationary internal tides can be removed from the altimeter spectrum, which steepens the spectral slopes in the energetic internal wave regions. Away from generating regions where the internal waves
NASA Astrophysics Data System (ADS)
Subarna, D.
2018-03-01
The volume of landing fish of the Sadeng Fishing Port within certain months showed an increase from year to year, especially during June, July and August (JJA). While in other months the fish production was low. The purpose of this research was to understand the influence of monsoon variability on fish landing in the Sadeng Fishing Port. Data were analyzed descriptively as spatial and temporal catch. Data were namely catch fish production collected from fishing port, while satellite and HYCOM model during 2011–2012 period were selected. The wind data, sea surface temperature (SST) and chlorophyll-a were analyzed from ASCAT and MODIS sensors during the Southeast Monsoon. The result showed the wind from the southeasterly provide wind stress at sea level and caused Ekman Transport to move away water mass from the sea shore. The lost water mass in the ocean surface was replaced by cold water from deeper layer which was rich in nutrients. The distribution of chlorophyll-a during the Southeast Monsoon was relatively higher in the southern coast of Java than during the Northwest monsoon. The SST showed approximately 25.3 °C. The abundance of nutrients indicated by the distribution of chlorophyll-a around the coast during the Southeast Monsoon, will enhance the arrival of larger fish. Thus, it can be understood that during June, July, and August the catch production is higher than the other months.
a 24/7 High Resolution Storm Surge, Inundation and Circulation Forecasting System for Florida Coast
NASA Astrophysics Data System (ADS)
Paramygin, V.; Davis, J. R.; Sheng, Y.
2012-12-01
A 24/7 forecasting system for Florida is needed because of the high risk of tropical storm surge-induced coastal inundation and damage, and the need to support operational management of water resources, utility infrastructures, and fishery resources. With the anticipated climate change impacts, including sea level rise, coastal areas are facing the challenges of increasing inundation risk and increasing population. Accurate 24/7 forecasting of water level, inundation, and circulation will significantly enhance the sustainability of coastal communities and environments. Supported by the Southeast Coastal Ocean Observing Regional Association (SECOORA) through NOAA IOOS, a 24/7 high-resolution forecasting system for storm surge, coastal inundation, and baroclinic circulation is being developed for Florida using CH3D Storm Surge Modeling System (CH3D-SSMS). CH3D-SSMS is based on the CH3D hydrodynamic model coupled to a coastal wave model SWAN and basin scale surge and wave models. CH3D-SSMS has been verified with surge, wave, and circulation data from several recent hurricanes in the U.S.: Isabel (2003); Charley, Dennis and Ivan (2004); Katrina and Wilma (2005); Ike and Fay (2008); and Irene (2011), as well as typhoons in the Pacific: Fanapi (2010) and Nanmadol (2011). The effects of tropical cyclones on flow and salinity distribution in estuarine and coastal waters has been simulated for Apalachicola Bay as well as Guana-Tolomato-Matanzas Estuary using CH3D-SSMS. The system successfully reproduced different physical phenomena including large waves during Ivan that damaged I-10 Bridges, a large alongshore wave and coastal flooding during Wilma, salinity drop during Fay, and flooding in Taiwan as a result of combined surge and rain effect during Fanapi. The system uses 4 domains that cover entire Florida coastline: West, which covers the Florida panhandle and Tampa Bay; Southwest spans from Florida Keys to Charlotte Harbor; Southeast, covering Biscayne Bay and Miami and East, which continues north to the Florida/Georgia border. The system has a data acquisition and processing module that is used to collect data for model runs (e.g. wind, river flow, precipitation). Depending on the domain, forecasts runs can take ~1-18 hours to complete on a single CPU (8-core) system (1-2 hrs for 2D setup and up to 18 hrs for a 3D setup) with 4 forecasts generated per day. All data is archived / catalogued and model forecast skill is continuously being evaluated. In addition to the baseline forecasts, additional forecasts are being perform using various options for wind forcing (GFS, GFDL, WRF, and parametric hurricane models), model configurations (2D/ 3D), and open boundary conditions by coupling with large scale models (ROMS, NCOM, HYCOM), as well as incorporating real-time and forecast river flow and precipitation data to better understand how to improve model skill. In addition, new forecast products (e.g. more informative inundation maps) are being developed to targeted stakeholders. To support modern data standards, CH3D-SSMS results are available online via a THREDDS server in CF-Compliant NetCDF format as well as other stakeholder-friendly (e.g. GIS) formats. The SECOORA website provides visualization of the model via GODIVA-THREDDS interface.
ArcGIS Framework for Scientific Data Analysis and Serving
NASA Astrophysics Data System (ADS)
Xu, H.; Ju, W.; Zhang, J.
2015-12-01
ArcGIS is a platform for managing, visualizing, analyzing, and serving geospatial data. Scientific data as part of the geospatial data features multiple dimensions (X, Y, time, and depth) and large volume. Multidimensional mosaic dataset (MDMD), a newly enhanced data model in ArcGIS, models the multidimensional gridded data (e.g. raster or image) as a hypercube and enables ArcGIS's capabilities to handle the large volume and near-real time scientific data. Built on top of geodatabase, the MDMD stores the dimension values and the variables (2D arrays) in a geodatabase table which allows accessing a slice or slices of the hypercube through a simple query and supports animating changes along time or vertical dimension using ArcGIS desktop or web clients. Through raster types, MDMD can manage not only netCDF, GRIB, and HDF formats but also many other formats or satellite data. It is scalable and can handle large data volume. The parallel geo-processing engine makes the data ingestion fast and easily. Raster function, definition of a raster processing algorithm, is a very important component in ArcGIS platform for on-demand raster processing and analysis. The scientific data analytics is achieved through the MDMD and raster function templates which perform on-demand scientific computation with variables ingested in the MDMD. For example, aggregating monthly average from daily data; computing total rainfall of a year; calculating heat index for forecasting data, and identifying fishing habitat zones etc. Addtionally, MDMD with the associated raster function templates can be served through ArcGIS server as image services which provide a framework for on-demand server side computation and analysis, and the published services can be accessed by multiple clients such as ArcMap, ArcGIS Online, JavaScript, REST, WCS, and WMS. This presentation will focus on the MDMD model and raster processing templates. In addtion, MODIS land cover, NDFD weather service, and HYCOM ocean model will be used to illustrate how ArcGIS platform and MDMD model can facilitate scientific data visualization and analytics and how the analysis results can be shared to more audience through ArcGIS Online and Portal.
Energetics of eddy-mean flow interactions in the Brazil current between 20°S and 36°S
NASA Astrophysics Data System (ADS)
Magalhães, F. C.; Azevedo, J. L. L.; Oliveira, L. R.
2017-08-01
The energetics of eddy-mean flow interactions in the Brazil Current (BC) between 20°S and 36°S are investigated in 19 transects perpendicular to the 200 m isobath. Ten years (2000-2009) of output data from the Hybrid Coordinate Ocean Model (HYCOM) NCODA reanalysis, with a spatial resolution of 1/12.5° and 5 day averages, are used. The mean kinetic energy (MKE) and eddy kinetic energy (EKE) fields presented the same subsurface spatial pattern but with reduced values. The EKE increases southward, with high values along the BC path and the offshore portion of the jet. The values of the barotropic conversion term (BTC) are highest in the surface layers and decreased with depth, whereas the values of the baroclinic conversion term (BCC) and the vertical eddy heat flux (VEHF) are highest in the subsurface. Despite the vertical thickening of the BC, the highest energy conversion rates are confined to the upper 700 m of the water column. The energetic analysis showed that the current features mixed instability processes. The vertical weighted mean of the BTC and BCC presented an oscillatory pattern related to the bathymetry. The eddy field accelerates the time-mean flow upstream and downstream of bathymetric features and drains energy from the time-mean flow over the features. The BC is baroclinically unstable south of 28°S, and the highest energy conversion rates occur in Cabo de São Tomé, Cabo Frio, and the Cone do Rio Grande.
NASA Astrophysics Data System (ADS)
Rhines, P. B.; Xu, X.; Chassignet, E.; Schmitz, W. J., Jr.
2016-02-01
An eddy-resolving HYCOM circulation model (driven by a reanalysis atmosphere) shows the structure of the North Atlantic meridional overturning circulation (AMOC), heat transport (MHT) and freshwater transport (MFWT). We project the zonal-mean lateral volume transport, called V(θ,S,y), onto the potential temperature/salinity (θ/S-) plane, and `collapse' V into four zonally integrated volume-transport stream-functions with respect to potential density σ, θ, S and vertical coordinate. The figure shows V(θ,S,y) at 4 latitudes, y, labeled a-d, with northward volume transport in red, southward in blue; Sverdrups of transport are inscribed in σ-bands. Collapsing V onto overturning streamfunctions loses the connection with classic water masses, the hydrologic cycle and convective mode-water production. It is essential that the model resolve boundary currents and the dense northern overflows: model and observations show the dominance of basin-scale AMOC in both MHT and MFWT with potential density, σ, as the vertical coordinate... but much less so with z as a vertical coordinate. With adequate resolution of deep sinking, the Lower North Atlantic Deep Water contributes significantly to MHT. Time-mean MHT and MFWT are dominated by 5-year mean-fields: contributions from annual cycles of velocity and θ are surprisingly small. Quantitative comparison between model and observations at 26N and in the subpolar gyre is supportive of these results. Yet isopycnal processes involving lateral gyres and wind forcing are important. They concentrate the activity of the MOC near western boundaries where essential water-mass transformation (WMT) takes place. V(θ,S,y) transport adds thermohaline `spice' to the MOC, revealing both isopycnal and diapycnal mixing and transport and connects directly with classical water masses. 3-dimensional maps of diapycnal and isopycnal mixing/transport connect internal and externally driven WMT and transports. Particularly important transformation sites are the downslope overflow regions, boundary current extensions (Gulf Stream/North Atlantic Current), mode-water convection sites, deep western boundary currents where topographic transitions occur, and frontal regions (Newfoundland Basin) where northward and southward AMOC branches brush against one another.
NASA Astrophysics Data System (ADS)
Perry, R.; Leung, P.; McCall, W.; Martin, K. M.; Howden, S. D.; Vandermeulen, R. A.; Kim, H. S. S.; Kirkpatrick, B. A.; Watson, S.; Smith, W.
2016-02-01
In 2008, Shell partnered with NOAA to explore opportunities for improving storm predictions in the Gulf of Mexico. Since, the collaboration has grown to include partners from Shell, NOAA National Data Buoy Center and National Center for Environmental Information, National Center for Environmental Prediction, University of Southern Mississippi, and the Gulf of Mexico Coastal Ocean Observing System. The partnership leverages complementary strengths of each collaborator to build a comprehensive and sustainable monitoring and data program to expand observing capacity and protect offshore assets and Gulf communities from storms and hurricanes. The program combines in situ and autonomous platforms with remote sensing and numerical modeling. Here we focus on profiling gliders and the benefits of a public-private partnership model for expanding regional ocean observing capacity. Shallow and deep gliders measure ocean temperature to derive ocean heat content (OHC), along with salinity, dissolved oxygen, fluorescence, and CDOM, in the central and eastern Gulf shelf and offshore. Since 2012, gliders have collected 4500+ vertical profiles and surveyed 5000+ nautical miles. Adaptive sampling and mission coordination with NCEP modelers provides specific datasets to assimilate into EMC's coupled HYCOM-HWRF model and 'connect-the-dots' between well-established Eulerian metocean measurements by obtaining (and validating) data between fixed stations (e.g. platform and buoy ADCPs) . Adaptive sampling combined with remote sensing provides satellite-derived OHC validation and the ability to sample productive coastal waters advected offshore by the Loop Current. Tracking coastal waters with remote sensing provides another verification of estimate Loop Current and eddy boundaries, as well as quantifying productivity and analyzing water quality on the Gulf coast, shelf break and offshore. Incorporating gliders demonstrates their value as tools to better protect offshore oil and gas assets and the greater Gulf coast communities from storms and hurricanes. Data collected under the collaboration, along with deployment of gliders, will have long-term benefits in helping to understand the ecological and environmental health of the Gulf by monitoring real-time annual and seasonal physical variability.
The impact of underwater glider observations in the forecast of Hurricane Gonzalo (2014)
NASA Astrophysics Data System (ADS)
Goni, G. J.; Domingues, R. M.; Kim, H. S.; Domingues, R. M.; Halliwell, G. R., Jr.; Bringas, F.; Morell, J. M.; Pomales, L.; Baltes, R.
2017-12-01
The tropical Atlantic basin is one of seven global regions where tropical cyclones (TC) are commonly observed to originate and intensify from June to November. On average, approximately 12 TCs travel through the region every year, frequently affecting coastal, and highly populated areas. In an average year, 2 to 3 of them are categorized as intense hurricanes. Given the appropriate atmospheric conditions, TC intensification has been linked to ocean conditions, such as increased ocean heat content and enhanced salinity stratification near the surface. While errors in hurricane track forecasts have been reduced during the last years, errors in intensity forecasts remain mostly unchanged. Several studies have indicated that the use of in situ observations has the potential to improve the representation of the ocean to correctly initialize coupled hurricane intensity forecast models. However, a sustained in situ ocean observing system in the tropical North Atlantic Ocean and Caribbean Sea dedicated to measuring subsurface thermal and salinity fields in support of TC intensity studies and forecasts has yet to be implemented. Autonomous technologies offer new and cost-effective opportunities to accomplish this objective. We highlight here a partnership effort that utilize underwater gliders to better understand air-sea processes during high wind events, and are particularly geared towards improving hurricane intensity forecasts. Results are presented for Hurricane Gonzalo (2014), where glider observations obtained in the tropical Atlantic: Helped to provide an accurate description of the upper ocean conditions, that included the presence of a low salinity barrier layer; Allowed a detailed analysis of the upper ocean response to hurricane force winds of Gonzalo; Improved the initialization of the ocean in a coupled ocean-atmosphere numerical model; and together with observations from other ocean observing platforms, substantially reduced the error in intensity forecast using the HYCOM-HWRF model. Data collected by this project are transmitted in real-time to the Global Telecommunication System, distributed through the institutional web pages, by the IOOS Glider Data Assembly Center, and by NCEI, and assimilated in real-time numerical weather forecast models.
NASA Astrophysics Data System (ADS)
Burnett, W.
2016-12-01
The Department of Defense's (DoD) High Performance Computing Modernization Program (HPCMP) provides high performance computing to address the most significant challenges in computational resources, software application support and nationwide research and engineering networks. Today, the HPCMP has a critical role in ensuring the National Earth System Prediction Capability (N-ESPC) achieves initial operational status in 2019. A 2015 study commissioned by the HPCMP found that N-ESPC computational requirements will exceed interconnect bandwidth capacity due to the additional load from data assimilation and passing connecting data between ensemble codes. Memory bandwidth and I/O bandwidth will continue to be significant bottlenecks for the Navy's Hybrid Coordinate Ocean Model (HYCOM) scalability - by far the major driver of computing resource requirements in the N-ESPC. The study also found that few of the N-ESPC model developers have detailed plans to ensure their respective codes scale through 2024. Three HPCMP initiatives are designed to directly address and support these issues: Productivity Enhancement, Technology, Transfer and Training (PETTT), the HPCMP Applications Software Initiative (HASI), and Frontier Projects. PETTT supports code conversion by providing assistance, expertise and training in scalable and high-end computing architectures. HASI addresses the continuing need for modern application software that executes effectively and efficiently on next-generation high-performance computers. Frontier Projects enable research and development that could not be achieved using typical HPCMP resources by providing multi-disciplinary teams access to exceptional amounts of high performance computing resources. Finally, the Navy's DoD Supercomputing Resource Center (DSRC) currently operates a 6 Petabyte system, of which Naval Oceanography receives 15% of operational computational system use, or approximately 1 Petabyte of the processing capability. The DSRC will provide the DoD with future computing assets to initially operate the N-ESPC in 2019. This talk will further describe how DoD's HPCMP will ensure N-ESPC becomes operational, efficiently and effectively, using next-generation high performance computing.
Filtering observations without the initial guess
NASA Astrophysics Data System (ADS)
Chin, T. M.; Abbondanza, C.; Gross, R. S.; Heflin, M. B.; Parker, J. W.; Soja, B.; Wu, X.
2017-12-01
Noisy geophysical observations sampled irregularly over space and time are often numerically "analyzed" or "filtered" before scientific usage. The standard analysis and filtering techniques based on the Bayesian principle requires "a priori" joint distribution of all the geophysical parameters of interest. However, such prior distributions are seldom known fully in practice, and best-guess mean values (e.g., "climatology" or "background" data if available) accompanied by some arbitrarily set covariance values are often used in lieu. It is therefore desirable to be able to exploit efficient (time sequential) Bayesian algorithms like the Kalman filter while not forced to provide a prior distribution (i.e., initial mean and covariance). An example of this is the estimation of the terrestrial reference frame (TRF) where requirement for numerical precision is such that any use of a priori constraints on the observation data needs to be minimized. We will present the Information Filter algorithm, a variant of the Kalman filter that does not require an initial distribution, and apply the algorithm (and an accompanying smoothing algorithm) to the TRF estimation problem. We show that the information filter allows temporal propagation of partial information on the distribution (marginal distribution of a transformed version of the state vector), instead of the full distribution (mean and covariance) required by the standard Kalman filter. The information filter appears to be a natural choice for the task of filtering observational data in general cases where prior assumption on the initial estimate is not available and/or desirable. For application to data assimilation problems, reduced-order approximations of both the information filter and square-root information filter (SRIF) have been published, and the former has previously been applied to a regional configuration of the HYCOM ocean general circulation model. Such approximation approaches are also briefed in the presentation.
An extreme internal solitary wave event observed in the northern South China Sea
Huang, Xiaodong; Chen, Zhaohui; Zhao, Wei; Zhang, Zhiwei; Zhou, Chun; Yang, Qingxuan; Tian, Jiwei
2016-01-01
With characteristics of large amplitude and strong current, internal solitary wave (ISW) is a major hazard to marine engineering and submarine navigation; it also has significant impacts on marine ecosystems and fishery activity. Among the world oceans, ISWs are particular active in the northern South China Sea (SCS). In this spirit, the SCS Internal Wave Experiment has been conducted since March 2010 using subsurface mooring array. Here, we report an extreme ISW captured on 4 December 2013 with a maximum amplitude of 240 m and a peak westward current velocity of 2.55 m/s. To the authors’ best knowledge, this is the strongest ISW of the world oceans on record. Full-depth measurements also revealed notable impacts of the extreme ISW on deep-ocean currents and thermal structures. Concurrent mooring measurements near Batan Island showed that the powerful semidiurnal internal tide generation in the Luzon Strait was likely responsible for the occurrence of the extreme ISW event. Based on the HYCOM data-assimilation product, we speculate that the strong stratification around Batan Island related to the strengthening Kuroshio may have contributed to the formation of the extreme ISW. PMID:27444063
Estimation of Surface Seawater Fugacity of Carbon Dioxide Using Satellite Data and Machine Learning
NASA Astrophysics Data System (ADS)
Jang, E.; Im, J.; Park, G.; Park, Y.
2016-12-01
The ocean controls the climate of Earth by absorbing and releasing CO2 through the carbon cycle. The amount of CO2 in the ocean has increased since the industrial revolution. High CO2 concentration in the ocean has a negative influence to marine organisms and reduces the ability of absorbing CO2 in the ocean. This study estimated surface seawater fugacity of CO2 (fCO2) in the East Sea of Korea using Geostationary Ocean Color Imager (GOCI) and Moderate Resolution Imaging Spectroradiometer (MODIS) satellite data, and Hybrid Coordinate Ocean Model (HYCOM) reanalysis data. GOCI is the world first geostationary ocean color observation satellite sensor, and it provides 8 images with 8 bands hourly per day from 9 am to 4 pm at 500m resolution. Two machine learning approaches (i.e., random forest and support vector regression) were used to model fCO2 in this study. While most of the existing studies used multiple linear regression to estimate the pressure of CO2 in the ocean, machine learning may handle more complex relationship between surface seawater fCO2 and ocean parameters in a dynamic spatiotemporal environment. Five ocean related parameters, colored dissolved organic matter (CDOM), chlorophyll-a (chla), sea surface temperature (SST), sea surface salinity (SSS), and mixed layer depth (MLD), were used as input variables. This study examined two schemes, one with GOCI-derived products and the other with MODIS-derived ones. Results show that random forest performed better than support vector regression regardless of satellite data used. The accuracy of GOCI-based estimation was higher than MODIS-based one, possibly thanks to the better spatiotemporal resolution of GOCI data. MLD was identified the most contributing parameter in estimating surface seawater fCO2 among the five ocean related parameters, which might be related with an active deep convection in the East Sea. The surface seawater fCO2 in summer was higher in general with some spatial variation than the other seasons because of higher SST.
NASA Astrophysics Data System (ADS)
Richman, J. G.; Shriver, J. F.; Metzger, E. J.; Hogan, P. J.; Smedstad, O. M.
2017-12-01
The Oceanography Division of the Naval Research Laboratory recently completed a 23-year (1993-2015) coupled ocean-sea ice reanalysis forced by NCEP CFS reanalysis fluxes. The reanalysis uses the Global Ocean Forecast System (GOFS) framework of the HYbrid Coordinate Ocean Model (HYCOM) and the Los Alamos Community Ice CodE (CICE) and the Navy Coupled Ocean Data Assimilation 3D Var system (NCODA). The ocean model has 41 layers and an equatorial resolution of 0.08° (8.8 km) on a tri-polar grid with the sea ice model on the same grid that reduces to 3.5 km at the North Pole. Sea surface temperature (SST), sea surface height (SSH) and temperature-salinity profile data are assimilated into the ocean every day. The SSH anomalies are converted into synthetic profiles of temperature and salinity prior to assimilation. Incremental analysis updating of geostrophically balanced increments is performed over a 6-hour insertion window. Sea ice concentration is assimilated into the sea ice model every day. Following the lead of the Ocean Reanalysis Intercomparison Project (ORA-IP), the monthly mean upper ocean heat and salt content from the surface to 300 m, 700m and 1500 m, the mixed layer depth, the depth of the 20°C isotherm, the steric sea surface height and the Atlantic Meridional Overturning Circulation for the GOFS reanalysis and the Simple Ocean Data Assimilation (SODA 3.3.1) eddy-permitting reanalysis have been compared on a global uniform 0.5° grid. The differences between the two ocean reanalyses in heat and salt content increase with increasing integration depth. Globally, GOFS trends to be colder than SODA at all depth. Warming trends are observed at all depths over the 23 year period. The correlation of the upper ocean heat content is significant above 700 m. Prior to 2004, differences in the data assimilated lead to larger biases. The GOFS reanalysis assimilates SSH as profile data, while SODA doesn't. Large differences are found in the Western Boundary Currents, Southern Ocean and equatorial regions. In the Indian Ocean, the Equatorial Counter Current extends to far to the east and the subsurface flow in the thermocline is too weak in GOFS. The 20°C isotherm is biased 2 m shallow in SODA compared to GOFS, but the monthly anomalies in the depth are highly correlated.
A Simulation of Alternatives for Wholesale Inventory Replenishment
2016-03-01
algorithmic details. The last method is a mixed-integer, linear optimization model. Comparative Inventory Simulation, a discrete event simulation model, is...simulation; event graphs; reorder point; fill-rate; backorder; discrete event simulation; wholesale inventory optimization model 15. NUMBER OF PAGES...model. Comparative Inventory Simulation, a discrete event simulation model, is designed to find fill rates achieved for each National Item
NASA Technical Reports Server (NTRS)
Pace, Dale K.
2000-01-01
A simulation conceptual model is a simulation developers way of translating modeling requirements (i. e., what is to be represented by the simulation or its modification) into a detailed design framework (i. e., how it is to be done), from which the software, hardware, networks (in the case of distributed simulation), and systems/equipment that will make up the simulation can be built or modified. A conceptual model is the collection of information which describes a simulation developers concept about the simulation and its pieces. That information consists of assumptions, algorithms, characteristics, relationships, and data. Taken together, these describe how the simulation developer understands what is to be represented by the simulation (entities, actions, tasks, processes, interactions, etc.) and how that representation will satisfy the requirements to which the simulation responds. Thus the conceptual model is the basis for judgment about simulation fidelity and validity for any condition that is not specifically tested. The more perspicuous and precise the conceptual model, the more likely it is that the simulation development will both fully satisfy requirements and allow demonstration that the requirements are satisfied (i. e., validation). Methods used in simulation conceptual model development have significant implications for simulation management and for assessment of simulation uncertainty. This paper suggests how to develop and document a simulation conceptual model so that the simulation fidelity and validity can be most effectively determined. These ideas for conceptual model development apply to all simulation varieties. The paper relates these ideas to uncertainty assessments as they relate to simulation fidelity and validity. The paper also explores implications for simulation management from conceptual model development methods, especially relative to reuse of simulation components.
Desktop Modeling and Simulation: Parsimonious, yet Effective Discrete-Event Simulation Analysis
NASA Technical Reports Server (NTRS)
Bradley, James R.
2012-01-01
This paper evaluates how quickly students can be trained to construct useful discrete-event simulation models using Excel The typical supply chain used by many large national retailers is described, and an Excel-based simulation model is constructed of it The set of programming and simulation skills required for development of that model are then determined we conclude that six hours of training are required to teach the skills to MBA students . The simulation presented here contains all fundamental functionallty of a simulation model, and so our result holds for any discrete-event simulation model. We argue therefore that Industry workers with the same technical skill set as students having completed one year in an MBA program can be quickly trained to construct simulation models. This result gives credence to the efficacy of Desktop Modeling and Simulation whereby simulation analyses can be quickly developed, run, and analyzed with widely available software, namely Excel.
Monitoring of oil pollution in the Arabian Gulf based on medium resolution satellite imagery
NASA Astrophysics Data System (ADS)
Zhao, J.; Ghedira, H.
2013-12-01
A large number of inland and offshore oil fields are located in the Arabian Gulf where about 25% of the world's oil is produced by the countries surrounding the Arabian Gulf region. Almost all of this oil production is shipped by sea worldwide through the Strait of Hormuz making the region vulnerable to environmental and ecological threats that might arise from accidental or intentional oil spills. Remote sensing technologies have the unique capability to detect and monitor oil pollutions over large temporal and spatial scales. Synoptic satellite imaging can date back to 1972 when Landsat-1 was launched. Landsat satellite missions provide long time series of imagery with a spatial resolution of 30 m. MODIS sensors onboard NASA's Terra and Aqua satellites provide a wide and frequent coverage at medium spatial resolution, i.e. 250 m and 500, twice a day. In this study, the capability of medium resolution MODIS and Landsat data in detecting and monitoring oil pollutions in the Arabian Gulf was tested. Oil spills and slicks show negative or positive contrasts in satellite derived RGB images compared with surrounding clean waters depending on the solar/viewing geometry, oil thickness and evolution, etc. Oil-contaminated areas show different spectral characteristics compared with surrounding waters. Rayleigh-corrected reflectance at the seven medium resolution bands of MODIS is lower in oil affected areas. This is caused by high light absorption of oil slicks. 30-m Landsat image indicated the occurrence of oil spill on May 26 2000 in the Arabian Gulf. The oil spill showed positive contrast and lower temperature than surrounding areas. Floating algae index (FAI) images are also used to detect oil pollution. Oil-contaminated areas were found to have lower FAI values. To track the movement of oil slicks found on October 21 2007, ocean circulations from a HYCOM model were examined and demonstrated that the oil slicks were advected toward the coastal areas of United Arab Emirates (UAE). This can help to enable an early alarm for oil pollution and minimize the potential adverse effects. Remote sensing provides an effective tool for monitoring oil pollution. Medium resolution MODIS and Landsat data have shown to be effective in detecting oil pollution over small areas. Combined with remote sensing imagery, ocean circulation models demonstrate their unique value for developing a warning and forecasting system for oil pollution management.
Mosquito population dynamics from cellular automata-based simulation
NASA Astrophysics Data System (ADS)
Syafarina, Inna; Sadikin, Rifki; Nuraini, Nuning
2016-02-01
In this paper we present an innovative model for simulating mosquito-vector population dynamics. The simulation consist of two stages: demography and dispersal dynamics. For demography simulation, we follow the existing model for modeling a mosquito life cycles. Moreover, we use cellular automata-based model for simulating dispersal of the vector. In simulation, each individual vector is able to move to other grid based on a random walk. Our model is also capable to represent immunity factor for each grid. We simulate the model to evaluate its correctness. Based on the simulations, we can conclude that our model is correct. However, our model need to be improved to find a realistic parameters to match real data.
Gustafsson, Leif; Sternad, Mikael
2007-10-01
Population models concern collections of discrete entities such as atoms, cells, humans, animals, etc., where the focus is on the number of entities in a population. Because of the complexity of such models, simulation is usually needed to reproduce their complete dynamic and stochastic behaviour. Two main types of simulation models are used for different purposes, namely micro-simulation models, where each individual is described with its particular attributes and behaviour, and macro-simulation models based on stochastic differential equations, where the population is described in aggregated terms by the number of individuals in different states. Consistency between micro- and macro-models is a crucial but often neglected aspect. This paper demonstrates how the Poisson Simulation technique can be used to produce a population macro-model consistent with the corresponding micro-model. This is accomplished by defining Poisson Simulation in strictly mathematical terms as a series of Poisson processes that generate sequences of Poisson distributions with dynamically varying parameters. The method can be applied to any population model. It provides the unique stochastic and dynamic macro-model consistent with a correct micro-model. The paper also presents a general macro form for stochastic and dynamic population models. In an appendix Poisson Simulation is compared with Markov Simulation showing a number of advantages. Especially aggregation into state variables and aggregation of many events per time-step makes Poisson Simulation orders of magnitude faster than Markov Simulation. Furthermore, you can build and execute much larger and more complicated models with Poisson Simulation than is possible with the Markov approach.
Using a simulation assistant in modeling manufacturing systems
NASA Technical Reports Server (NTRS)
Schroer, Bernard J.; Tseng, Fan T.; Zhang, S. X.; Wolfsberger, John W.
1988-01-01
Numerous simulation languages exist for modeling discrete event processes, and are now ported to microcomputers. Graphic and animation capabilities were added to many of these languages to assist the users build models and evaluate the simulation results. With all these languages and added features, the user is still plagued with learning the simulation language. Futhermore, the time to construct and then to validate the simulation model is always greater than originally anticipated. One approach to minimize the time requirement is to use pre-defined macros that describe various common processes or operations in a system. The development of a simulation assistant for modeling discrete event manufacturing processes is presented. A simulation assistant is defined as an interactive intelligent software tool that assists the modeler in writing a simulation program by translating the modeler's symbolic description of the problem and then automatically generating the corresponding simulation code. The simulation assistant is discussed with emphasis on an overview of the simulation assistant, the elements of the assistant, and the five manufacturing simulation generators. A typical manufacturing system will be modeled using the simulation assistant and the advantages and disadvantages discussed.
NASA Technical Reports Server (NTRS)
Baron, S.; Muralidharan, R.; Kleinman, D. L.
1978-01-01
The optimal control model of the human operator is used to develop closed loop models for analyzing the effects of (digital) simulator characteristics on predicted performance and/or workload. Two approaches are considered: the first utilizes a continuous approximation to the discrete simulation in conjunction with the standard optimal control model; the second involves a more exact discrete description of the simulator in a closed loop multirate simulation in which the optimal control model simulates the pilot. Both models predict that simulator characteristics can have significant effects on performance and workload.
SMI Compatible Simulation Scheduler Design for Reuse of Model Complying with Smp Standard
NASA Astrophysics Data System (ADS)
Koo, Cheol-Hea; Lee, Hoon-Hee; Cheon, Yee-Jin
2010-12-01
Software reusability is one of key factors which impacts cost and schedule on a software development project. It is very crucial also in satellite simulator development since there are many commercial simulator models related to satellite and dynamics. If these models can be used in another simulator platform, great deal of confidence and cost/schedule reduction would be achieved. Simulation model portability (SMP) is maintained by European Space Agency and many models compatible with SMP/simulation model interface (SMI) are available. Korea Aerospace Research Institute (KARI) is developing hardware abstraction layer (HAL) supported satellite simulator to verify on-board software of satellite. From above reasons, KARI wants to port these SMI compatible models to the HAL supported satellite simulator. To port these SMI compatible models to the HAL supported satellite simulator, simulation scheduler is preliminary designed according to the SMI standard.
2016-04-01
incorporated with nonlinear elements to produce a continuous, quasi -nonlinear simulation model. Extrapolation methods within the model stitching architecture...Simulation Model, Quasi -Nonlinear, Piloted Simulation, Flight-Test Implications, System Identification, Off-Nominal Loading Extrapolation, Stability...incorporated with nonlinear elements to produce a continuous, quasi -nonlinear simulation model. Extrapolation methods within the model stitching
Construction of dynamic stochastic simulation models using knowledge-based techniques
NASA Technical Reports Server (NTRS)
Williams, M. Douglas; Shiva, Sajjan G.
1990-01-01
Over the past three decades, computer-based simulation models have proven themselves to be cost-effective alternatives to the more structured deterministic methods of systems analysis. During this time, many techniques, tools and languages for constructing computer-based simulation models have been developed. More recently, advances in knowledge-based system technology have led many researchers to note the similarities between knowledge-based programming and simulation technologies and to investigate the potential application of knowledge-based programming techniques to simulation modeling. The integration of conventional simulation techniques with knowledge-based programming techniques is discussed to provide a development environment for constructing knowledge-based simulation models. A comparison of the techniques used in the construction of dynamic stochastic simulation models and those used in the construction of knowledge-based systems provides the requirements for the environment. This leads to the design and implementation of a knowledge-based simulation development environment. These techniques were used in the construction of several knowledge-based simulation models including the Advanced Launch System Model (ALSYM).
Understanding Emergency Care Delivery Through Computer Simulation Modeling.
Laker, Lauren F; Torabi, Elham; France, Daniel J; Froehle, Craig M; Goldlust, Eric J; Hoot, Nathan R; Kasaie, Parastu; Lyons, Michael S; Barg-Walkow, Laura H; Ward, Michael J; Wears, Robert L
2018-02-01
In 2017, Academic Emergency Medicine convened a consensus conference entitled, "Catalyzing System Change through Health Care Simulation: Systems, Competency, and Outcomes." This article, a product of the breakout session on "understanding complex interactions through systems modeling," explores the role that computer simulation modeling can and should play in research and development of emergency care delivery systems. This article discusses areas central to the use of computer simulation modeling in emergency care research. The four central approaches to computer simulation modeling are described (Monte Carlo simulation, system dynamics modeling, discrete-event simulation, and agent-based simulation), along with problems amenable to their use and relevant examples to emergency care. Also discussed is an introduction to available software modeling platforms and how to explore their use for research, along with a research agenda for computer simulation modeling. Through this article, our goal is to enhance adoption of computer simulation, a set of methods that hold great promise in addressing emergency care organization and design challenges. © 2017 by the Society for Academic Emergency Medicine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tonks, Michael R; Zhang, Yongfeng; Bai, Xianming
2014-06-01
This report summarizes development work funded by the Nuclear Energy Advanced Modeling Simulation program's Fuels Product Line (FPL) to develop a mechanistic model for the average grain size in UO₂ fuel. The model is developed using a multiscale modeling and simulation approach involving atomistic simulations, as well as mesoscale simulations using INL's MARMOT code.
NASA Technical Reports Server (NTRS)
Hueschen, Richard M.
2011-01-01
A six degree-of-freedom, flat-earth dynamics, non-linear, and non-proprietary aircraft simulation was developed that is representative of a generic mid-sized twin-jet transport aircraft. The simulation was developed from a non-proprietary, publicly available, subscale twin-jet transport aircraft simulation using scaling relationships and a modified aerodynamic database. The simulation has an extended aerodynamics database with aero data outside the normal transport-operating envelope (large angle-of-attack and sideslip values). The simulation has representative transport aircraft surface actuator models with variable rate-limits and generally fixed position limits. The simulation contains a generic 40,000 lb sea level thrust engine model. The engine model is a first order dynamic model with a variable time constant that changes according to simulation conditions. The simulation provides a means for interfacing a flight control system to use the simulation sensor variables and to command the surface actuators and throttle position of the engine model.
Simulation Models for Socioeconomic Inequalities in Health: A Systematic Review
Speybroeck, Niko; Van Malderen, Carine; Harper, Sam; Müller, Birgit; Devleesschauwer, Brecht
2013-01-01
Background: The emergence and evolution of socioeconomic inequalities in health involves multiple factors interacting with each other at different levels. Simulation models are suitable for studying such complex and dynamic systems and have the ability to test the impact of policy interventions in silico. Objective: To explore how simulation models were used in the field of socioeconomic inequalities in health. Methods: An electronic search of studies assessing socioeconomic inequalities in health using a simulation model was conducted. Characteristics of the simulation models were extracted and distinct simulation approaches were identified. As an illustration, a simple agent-based model of the emergence of socioeconomic differences in alcohol abuse was developed. Results: We found 61 studies published between 1989 and 2013. Ten different simulation approaches were identified. The agent-based model illustration showed that multilevel, reciprocal and indirect effects of social determinants on health can be modeled flexibly. Discussion and Conclusions: Based on the review, we discuss the utility of using simulation models for studying health inequalities, and refer to good modeling practices for developing such models. The review and the simulation model example suggest that the use of simulation models may enhance the understanding and debate about existing and new socioeconomic inequalities of health frameworks. PMID:24192788
Surrogate model approach for improving the performance of reactive transport simulations
NASA Astrophysics Data System (ADS)
Jatnieks, Janis; De Lucia, Marco; Sips, Mike; Dransch, Doris
2016-04-01
Reactive transport models can serve a large number of important geoscientific applications involving underground resources in industry and scientific research. It is common for simulation of reactive transport to consist of at least two coupled simulation models. First is a hydrodynamics simulator that is responsible for simulating the flow of groundwaters and transport of solutes. Hydrodynamics simulators are well established technology and can be very efficient. When hydrodynamics simulations are performed without coupled geochemistry, their spatial geometries can span millions of elements even when running on desktop workstations. Second is a geochemical simulation model that is coupled to the hydrodynamics simulator. Geochemical simulation models are much more computationally costly. This is a problem that makes reactive transport simulations spanning millions of spatial elements very difficult to achieve. To address this problem we propose to replace the coupled geochemical simulation model with a surrogate model. A surrogate is a statistical model created to include only the necessary subset of simulator complexity for a particular scenario. To demonstrate the viability of such an approach we tested it on a popular reactive transport benchmark problem that involves 1D Calcite transport. This is a published benchmark problem (Kolditz, 2012) for simulation models and for this reason we use it to test the surrogate model approach. To do this we tried a number of statistical models available through the caret and DiceEval packages for R, to be used as surrogate models. These were trained on randomly sampled subset of the input-output data from the geochemical simulation model used in the original reactive transport simulation. For validation we use the surrogate model to predict the simulator output using the part of sampled input data that was not used for training the statistical model. For this scenario we find that the multivariate adaptive regression splines (MARS) method provides the best trade-off between speed and accuracy. This proof-of-concept forms an essential step towards building an interactive visual analytics system to enable user-driven systematic creation of geochemical surrogate models. Such a system shall enable reactive transport simulations with unprecedented spatial and temporal detail to become possible. References: Kolditz, O., Görke, U.J., Shao, H. and Wang, W., 2012. Thermo-hydro-mechanical-chemical processes in porous media: benchmarks and examples (Vol. 86). Springer Science & Business Media.
Building occupancy simulation and data assimilation using a graph-based agent-oriented model
NASA Astrophysics Data System (ADS)
Rai, Sanish; Hu, Xiaolin
2018-07-01
Building occupancy simulation and estimation simulates the dynamics of occupants and estimates their real-time spatial distribution in a building. It requires a simulation model and an algorithm for data assimilation that assimilates real-time sensor data into the simulation model. Existing building occupancy simulation models include agent-based models and graph-based models. The agent-based models suffer high computation cost for simulating large numbers of occupants, and graph-based models overlook the heterogeneity and detailed behaviors of individuals. Recognizing the limitations of existing models, this paper presents a new graph-based agent-oriented model which can efficiently simulate large numbers of occupants in various kinds of building structures. To support real-time occupancy dynamics estimation, a data assimilation framework based on Sequential Monte Carlo Methods is also developed and applied to the graph-based agent-oriented model to assimilate real-time sensor data. Experimental results show the effectiveness of the developed model and the data assimilation framework. The major contributions of this work are to provide an efficient model for building occupancy simulation that can accommodate large numbers of occupants and an effective data assimilation framework that can provide real-time estimations of building occupancy from sensor data.
Simulation Modelling in Healthcare: An Umbrella Review of Systematic Literature Reviews.
Salleh, Syed; Thokala, Praveen; Brennan, Alan; Hughes, Ruby; Booth, Andrew
2017-09-01
Numerous studies examine simulation modelling in healthcare. These studies present a bewildering array of simulation techniques and applications, making it challenging to characterise the literature. The aim of this paper is to provide an overview of the level of activity of simulation modelling in healthcare and the key themes. We performed an umbrella review of systematic literature reviews of simulation modelling in healthcare. Searches were conducted of academic databases (JSTOR, Scopus, PubMed, IEEE, SAGE, ACM, Wiley Online Library, ScienceDirect) and grey literature sources, enhanced by citation searches. The articles were included if they performed a systematic review of simulation modelling techniques in healthcare. After quality assessment of all included articles, data were extracted on numbers of studies included in each review, types of applications, techniques used for simulation modelling, data sources and simulation software. The search strategy yielded a total of 117 potential articles. Following sifting, 37 heterogeneous reviews were included. Most reviews achieved moderate quality rating on a modified AMSTAR (A Measurement Tool used to Assess systematic Reviews) checklist. All the review articles described the types of applications used for simulation modelling; 15 reviews described techniques used for simulation modelling; three reviews described data sources used for simulation modelling; and six reviews described software used for simulation modelling. The remaining reviews either did not report or did not provide enough detail for the data to be extracted. Simulation modelling techniques have been used for a wide range of applications in healthcare, with a variety of software tools and data sources. The number of reviews published in recent years suggest an increased interest in simulation modelling in healthcare.
KU-Band rendezvous radar performance computer simulation model
NASA Technical Reports Server (NTRS)
Griffin, J. W.
1980-01-01
The preparation of a real time computer simulation model of the KU band rendezvous radar to be integrated into the shuttle mission simulator (SMS), the shuttle engineering simulator (SES), and the shuttle avionics integration laboratory (SAIL) simulator is described. To meet crew training requirements a radar tracking performance model, and a target modeling method were developed. The parent simulation/radar simulation interface requirements, and the method selected to model target scattering properties, including an application of this method to the SPAS spacecraft are described. The radar search and acquisition mode performance model and the radar track mode signal processor model are examined and analyzed. The angle, angle rate, range, and range rate tracking loops are also discussed.
2007-03-01
LEARNING : MODELING & SIMULATION EDUCATION CATALOG by Jean Catalano Jarema M. Didoszak March 2007...Technical Report, 11/06 – 02/07 4. TITLE AND SUBTITLE: Workforce Modeling & Simulation Education and Training for Lifelong Learning ...Modeling and Simulation Education and Training for Lifelong Learning project. The catalog contains searchable information about 253 courses from 23 U.S
THE MARK I BUSINESS SYSTEM SIMULATION MODEL
of a large-scale business simulation model as a vehicle for doing research in management controls. The major results of the program were the...development of the Mark I business simulation model and the Simulation Package (SIMPAC). SIMPAC is a method and set of programs facilitating the construction...of large simulation models. The object of this document is to describe the Mark I Corporation model, state why parts of the business were modeled as they were, and indicate the research applications of the model. (Author)
High Speed Civil Transport Aircraft Simulation: Reference-H Cycle 1, MATLAB Implementation
NASA Technical Reports Server (NTRS)
Sotack, Robert A.; Chowdhry, Rajiv S.; Buttrill, Carey S.
1999-01-01
The mathematical model and associated code to simulate a high speed civil transport aircraft - the Boeing Reference H configuration - are described. The simulation was constructed in support of advanced control law research. In addition to providing time histories of the dynamic response, the code includes the capabilities for calculating trim solutions and for generating linear models. The simulation relies on the nonlinear, six-degree-of-freedom equations which govern the motion of a rigid aircraft in atmospheric flight. The 1962 Standard Atmosphere Tables are used along with a turbulence model to simulate the Earth atmosphere. The aircraft model has three parts - an aerodynamic model, an engine model, and a mass model. These models use the data from the Boeing Reference H cycle 1 simulation data base. Models for the actuator dynamics, landing gear, and flight control system are not included in this aircraft model. Dynamic responses generated by the nonlinear simulation are presented and compared with results generated from alternate simulations at Boeing Commercial Aircraft Company and NASA Langley Research Center. Also, dynamic responses generated using linear models are presented and compared with dynamic responses generated using the nonlinear simulation.
Event-driven simulation in SELMON: An overview of EDSE
NASA Technical Reports Server (NTRS)
Rouquette, Nicolas F.; Chien, Steve A.; Charest, Leonard, Jr.
1992-01-01
EDSE (event-driven simulation engine), a model-based event-driven simulator implemented for SELMON, a tool for sensor selection and anomaly detection in real-time monitoring is described. The simulator is used in conjunction with a causal model to predict future behavior of the model from observed data. The behavior of the causal model is interpreted as equivalent to the behavior of the physical system being modeled. An overview of the functionality of the simulator and the model-based event-driven simulation paradigm on which it is based is provided. Included are high-level descriptions of the following key properties: event consumption and event creation, iterative simulation, synchronization and filtering of monitoring data from the physical system. Finally, how EDSE stands with respect to the relevant open issues of discrete-event and model-based simulation is discussed.
Testing the World with Simulations.
ERIC Educational Resources Information Center
Roberts, Nancy
1983-01-01
Discusses steps involved in model building and simulation: understanding a problem, building a model, and simulation. Includes a mathematical model (focusing on a problem dealing with influenza) written in the DYNAMO computer language, developed specifically for writing simulation models. (Author/JN)
Simulation as a vehicle for enhancing collaborative practice models.
Jeffries, Pamela R; McNelis, Angela M; Wheeler, Corinne A
2008-12-01
Clinical simulation used in a collaborative practice approach is a powerful tool to prepare health care providers for shared responsibility for patient care. Clinical simulations are being used increasingly in professional curricula to prepare providers for quality practice. Little is known, however, about how these simulations can be used to foster collaborative practice across disciplines. This article provides an overview of what simulation is, what collaborative practice models are, and how to set up a model using simulations. An example of a collaborative practice model is presented, and nursing implications of using a collaborative practice model in simulations are discussed.
An accurate behavioral model for single-photon avalanche diode statistical performance simulation
NASA Astrophysics Data System (ADS)
Xu, Yue; Zhao, Tingchen; Li, Ding
2018-01-01
An accurate behavioral model is presented to simulate important statistical performance of single-photon avalanche diodes (SPADs), such as dark count and after-pulsing noise. The derived simulation model takes into account all important generation mechanisms of the two kinds of noise. For the first time, thermal agitation, trap-assisted tunneling and band-to-band tunneling mechanisms are simultaneously incorporated in the simulation model to evaluate dark count behavior of SPADs fabricated in deep sub-micron CMOS technology. Meanwhile, a complete carrier trapping and de-trapping process is considered in afterpulsing model and a simple analytical expression is derived to estimate after-pulsing probability. In particular, the key model parameters of avalanche triggering probability and electric field dependence of excess bias voltage are extracted from Geiger-mode TCAD simulation and this behavioral simulation model doesn't include any empirical parameters. The developed SPAD model is implemented in Verilog-A behavioral hardware description language and successfully operated on commercial Cadence Spectre simulator, showing good universality and compatibility. The model simulation results are in a good accordance with the test data, validating high simulation accuracy.
Modeling of Army Research Laboratory EMP simulators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miletta, J.R.; Chase, R.J.; Luu, B.B.
1993-12-01
Models are required that permit the estimation of emitted field signatures from EMP simulators to design the simulator antenna structure, to establish the usable test volumes, and to estimate human exposure risk. This paper presents the capabilities and limitations of a variety of EMP simulator models useful to the Army's EMP survivability programs. Comparisons among frequency and time-domain models are provided for two powerful US Army Research Laboratory EMP simulators: AESOP (Army EMP Simulator Operations) and VEMPS II (Vertical EMP Simulator II).
Expert systems and simulation models; Proceedings of the Seminar, Tucson, AZ, November 18, 19, 1985
NASA Technical Reports Server (NTRS)
1986-01-01
The seminar presents papers on modeling and simulation methodology, artificial intelligence and expert systems, environments for simulation/expert system development, and methodology for simulation/expert system development. Particular attention is given to simulation modeling concepts and their representation, modular hierarchical model specification, knowledge representation, and rule-based diagnostic expert system development. Other topics include the combination of symbolic and discrete event simulation, real time inferencing, and the management of large knowledge-based simulation projects.
An Example-Based Brain MRI Simulation Framework.
He, Qing; Roy, Snehashis; Jog, Amod; Pham, Dzung L
2015-02-21
The simulation of magnetic resonance (MR) images plays an important role in the validation of image analysis algorithms such as image segmentation, due to lack of sufficient ground truth in real MR images. Previous work on MRI simulation has focused on explicitly modeling the MR image formation process. However, because of the overwhelming complexity of MR acquisition these simulations must involve simplifications and approximations that can result in visually unrealistic simulated images. In this work, we describe an example-based simulation framework, which uses an "atlas" consisting of an MR image and its anatomical models derived from the hard segmentation. The relationships between the MR image intensities and its anatomical models are learned using a patch-based regression that implicitly models the physics of the MR image formation. Given the anatomical models of a new brain, a new MR image can be simulated using the learned regression. This approach has been extended to also simulate intensity inhomogeneity artifacts based on the statistical model of training data. Results show that the example based MRI simulation method is capable of simulating different image contrasts and is robust to different choices of atlas. The simulated images resemble real MR images more than simulations produced by a physics-based model.
[New simulation technologies in neurosurgery].
Byvaltsev, V A; Belykh, E G; Konovalov, N A
2016-01-01
The article presents a literature review on the current state of simulation technologies in neurosurgery, a brief description of the basic technology and the classification of simulation models, and examples of simulation models and skills simulators used in neurosurgery. Basic models for the development of physical skills, the spectrum of available computer virtual simulators, and their main characteristics are described. It would be instructive to include microneurosurgical training and a cadaver course of neurosurgical approaches in neurosurgery training programs and to extend the use of three-dimensional imaging. Technologies for producing three-dimensional anatomical models and patient-specific computer simulators as well as improvement of tactile feedback systems and display quality of virtual models are promising areas. Continued professional education necessitates further research for assessing the validity and practical use of simulators and physical models.
Upper ocean response to the passage of two sequential typhoons
NASA Astrophysics Data System (ADS)
Wu, Renhao; Li, Chunyan
2018-02-01
Two sequential typhoons, separated by five days, Chan-hom and Nangka in the summer of 2015, provided a unique opportunity to study the oceanic response and cold wake evolution. The upper ocean response to the passage of these two typhoons was investigated using multi-satellite, Argo float data and HYCOM global model output. The sea surface cooling (SSC) induced by Chan-hom was gradually enhanced along its track when the storm was intensified while moving over the ocean with shallow mixed layer. The location of maximum cooling of sea surface was determined by the storm's translation speed as well as pre-typhoon oceanic conditions. As a fast-moving storm, Chan-hom induced significant SSC on the right side of its track. Localized maximum cooling patches are found over a cyclonic eddy (CE). An analysis of data from Argo floats near the track of Chan-hom demonstrated that the mixed layer temperature (MLT) and mixed layer depth (MLD) had more variabilities on the right side than those on the left side of Chan-hom's track, while mixed layer salinity (MLS) response was different from those of MLT and MLD with an increase in salinity to the right side and a decrease in salinity to the left side of the track. Subsequently, because of the remnant effect of Chan-hom, the strong upwelling induced by Typhoon Nangka, the pre-existing CE as well as a slow translation speed (<2 m s-1) of the storm, the most significant SSC ( 6 °C) was observed over the CE region in the wake of the storm. Further, Nangka experienced a rapid weakening suggesting immediate negative feedback from the intensified SSC occurred in the CE region. After these two typhoons, the CE was enhanced and the sea surface height of eddy core was depressed by 10 cm. It took more than one month for SSC to restore to its pre-typhoon conditions, with the anomalous geostrophic current advection playing an important role in the process. The enhancement of chlorophyll-a concentrations was also noticed at both the CE region and close to Chan-hom's track.
NASA Astrophysics Data System (ADS)
Ammouri, Aymen; Ben Salah, Walid; Khachroumi, Sofiane; Ben Salah, Tarek; Kourda, Ferid; Morel, Hervé
2014-05-01
Design of integrated power converters needs prototype-less approaches. Specific simulations are required for investigation and validation process. Simulation relies on active and passive device models. Models of planar devices, for instance, are still not available in power simulator tools. There is, thus, a specific limitation during the simulation process of integrated power systems. The paper focuses on the development of a physically-based planar inductor model and its validation inside a power converter during transient switching. The planar inductor model remains a complex device to model, particularly when the skin, the proximity and the parasitic capacitances effects are taken into account. Heterogeneous simulation scheme, including circuit and device models, is successfully implemented in VHDL-AMS language and simulated in Simplorer platform. The mixed simulation results has been favorably tested and compared with practical measurements. It is found that the multi-domain simulation results and measurements data are in close agreement.
NASA Astrophysics Data System (ADS)
van Walsum, P. E. V.
2011-11-01
Climate change impact modelling of hydrologic responses is hampered by climate-dependent model parameterizations. Reducing this dependency was one of the goals of extending the regional hydrologic modelling system SIMGRO with a two-way coupling to the crop growth simulation model WOFOST. The coupling includes feedbacks to the hydrologic model in terms of the root zone depth, soil cover, leaf area index, interception storage capacity, crop height and crop factor. For investigating whether such feedbacks lead to significantly different simulation results, two versions of the model coupling were set up for a test region: one with exogenous vegetation parameters, the "static" model, and one with endogenous simulation of the crop growth, the "dynamic" model WOFOST. The used parameterization methods of the static/dynamic vegetation models ensure that for the current climate the simulated long-term average of the actual evapotranspiration is the same for both models. Simulations were made for two climate scenarios. Owing to the higher temperatures in combination with a higher CO2-concentration of the atmosphere, a forward time shift of the crop development is simulated in the dynamic model; the used arable land crop, potatoes, also shows a shortening of the growing season. For this crop, a significant reduction of the potential transpiration is simulated compared to the static model, in the example by 15% in a warm, dry year. In consequence, the simulated crop water stress (the unit minus the relative transpiration) is lower when the dynamic model is used; also the simulated increase of crop water stress due to climate change is lower; in the example, the simulated increase is 15 percentage points less (of 55) than when a static model is used. The static/dynamic models also simulate different absolute values of the transpiration. The difference is most pronounced for potatoes at locations with ample moisture supply; this supply can either come from storage release of a good soil or from capillary rise. With good supply of moisture, the dynamic model simulates up to 10% less actual evapotranspiration than the static one in the example. This can lead to cases where the dynamic model predicts a slight increase of the recharge in a climate scenario, where the static model predicts a decrease. The use of a dynamic model also affects the simulated demand for surface water from external sources; especially the timing is affected. The proposed modelling approach uses postulated relationships that require validation with controlled field trials. In the Netherlands there is a lack of experimental facilities for performing such validations.
Closed loop models for analyzing engineering requirements for simulators
NASA Technical Reports Server (NTRS)
Baron, S.; Muralidharan, R.; Kleinman, D.
1980-01-01
A closed loop analytic model, incorporating a model for the human pilot, (namely, the optimal control model) that would allow certain simulation design tradeoffs to be evaluated quantitatively was developed. This model was applied to a realistic flight control problem. The resulting model is used to analyze both overall simulation effects and the effects of individual elements. The results show that, as compared to an ideal continuous simulation, the discrete simulation can result in significant performance and/or workload penalties.
Mars Exploration Rover Terminal Descent Mission Modeling and Simulation
NASA Technical Reports Server (NTRS)
Raiszadeh, Behzad; Queen, Eric M.
2004-01-01
Because of NASA's added reliance on simulation for successful interplanetary missions, the MER mission has developed a detailed EDL trajectory modeling and simulation. This paper summarizes how the MER EDL sequence of events are modeled, verification of the methods used, and the inputs. This simulation is built upon a multibody parachute trajectory simulation tool that has been developed in POST I1 that accurately simulates the trajectory of multiple vehicles in flight with interacting forces. In this model the parachute and the suspended bodies are treated as 6 Degree-of-Freedom (6 DOF) bodies. The terminal descent phase of the mission consists of several Entry, Descent, Landing (EDL) events, such as parachute deployment, heatshield separation, deployment of the lander from the backshell, deployment of the airbags, RAD firings, TIRS firings, etc. For an accurate, reliable simulation these events need to be modeled seamlessly and robustly so that the simulations will remain numerically stable during Monte-Carlo simulations. This paper also summarizes how the events have been modeled, the numerical issues, and modeling challenges.
Atmospheric turbulence simulation for Shuttle orbiter
NASA Technical Reports Server (NTRS)
Tatom, F. B.; Smith, S. R.
1979-01-01
An improved non-recursive model for atmospheric turbulence along the flight path of the Shuttle Orbiter is developed which provides for simulation of instantaneous vertical and horizontal gusts at the vehicle center-of-gravity, and also for simulation of instantaneous gust gradients. Based on this model the time series for both gusts and gust gradients are generated and stored on a series of magnetic tapes. Section 2 provides a description of the various technical considerations associated with the turbulence simulation model. Included in this section are descriptions of the digital filter simulation model, the von Karman spectra with finite upper limits, and the final non recursive turbulence simulation model which was used to generate the time series. Section 2 provides a description of the various technical considerations associated with the turbulence simulation model. Included in this section are descriptions of the digial filter simulation model, the von Karman spectra with finite upper limits, and the final non recursive turbulence simulation model which was used to generate the time series. Section 3 provides a description of the time series as currently recorded on magnetic tape. Conclusions and recommendations are presented in Section 4.
Piloted Evaluation of a UH-60 Mixer Equivalent Turbulence Simulation Model
NASA Technical Reports Server (NTRS)
Lusardi, Jeff A.; Blanken, Chris L.; Tischeler, Mark B.
2002-01-01
A simulation study of a recently developed hover/low speed Mixer Equivalent Turbulence Simulation (METS) model for the UH-60 Black Hawk helicopter was conducted in the NASA Ames Research Center Vertical Motion Simulator (VMS). The experiment was a continuation of previous work to develop a simple, but validated, turbulence model for hovering rotorcraft. To validate the METS model, two experienced test pilots replicated precision hover tasks that had been conducted in an instrumented UH-60 helicopter in turbulence. Objective simulation data were collected for comparison with flight test data, and subjective data were collected that included handling qualities ratings and pilot comments for increasing levels of turbulence. Analyses of the simulation results show good analytic agreement between the METS model and flight test data, with favorable pilot perception of the simulated turbulence. Precision hover tasks were also repeated using the more complex rotating-frame SORBET (Simulation Of Rotor Blade Element Turbulence) model to generate turbulence. Comparisons of the empirically derived METS model with the theoretical SORBET model show good agreement providing validation of the more complex blade element method of simulating turbulence.
On the deterministic and stochastic use of hydrologic models
Farmer, William H.; Vogel, Richard M.
2016-01-01
Environmental simulation models, such as precipitation-runoff watershed models, are increasingly used in a deterministic manner for environmental and water resources design, planning, and management. In operational hydrology, simulated responses are now routinely used to plan, design, and manage a very wide class of water resource systems. However, all such models are calibrated to existing data sets and retain some residual error. This residual, typically unknown in practice, is often ignored, implicitly trusting simulated responses as if they are deterministic quantities. In general, ignoring the residuals will result in simulated responses with distributional properties that do not mimic those of the observed responses. This discrepancy has major implications for the operational use of environmental simulation models as is shown here. Both a simple linear model and a distributed-parameter precipitation-runoff model are used to document the expected bias in the distributional properties of simulated responses when the residuals are ignored. The systematic reintroduction of residuals into simulated responses in a manner that produces stochastic output is shown to improve the distributional properties of the simulated responses. Every effort should be made to understand the distributional behavior of simulation residuals and to use environmental simulation models in a stochastic manner.
NASA Astrophysics Data System (ADS)
Wei, Jiangfeng; Dirmeyer, Paul A.; Yang, Zong-Liang; Chen, Haishan
2017-10-01
Through a series of model simulations with an atmospheric general circulation model coupled to three different land surface models, this study investigates the impacts of land model ensembles and coupled model ensemble on precipitation simulation. It is found that coupling an ensemble of land models to an atmospheric model has a very minor impact on the improvement of precipitation climatology and variability, but a simple ensemble average of the precipitation from three individually coupled land-atmosphere models produces better results, especially for precipitation variability. The generally weak impact of land processes on precipitation should be the main reason that the land model ensembles do not improve precipitation simulation. However, if there are big biases in the land surface model or land surface data set, correcting them could improve the simulated climate, especially for well-constrained regional climate simulations.
A Framework for the Optimization of Discrete-Event Simulation Models
NASA Technical Reports Server (NTRS)
Joshi, B. D.; Unal, R.; White, N. H.; Morris, W. D.
1996-01-01
With the growing use of computer modeling and simulation, in all aspects of engineering, the scope of traditional optimization has to be extended to include simulation models. Some unique aspects have to be addressed while optimizing via stochastic simulation models. The optimization procedure has to explicitly account for the randomness inherent in the stochastic measures predicted by the model. This paper outlines a general purpose framework for optimization of terminating discrete-event simulation models. The methodology combines a chance constraint approach for problem formulation, together with standard statistical estimation and analyses techniques. The applicability of the optimization framework is illustrated by minimizing the operation and support resources of a launch vehicle, through a simulation model.
A program code generator for multiphysics biological simulation using markup languages.
Amano, Akira; Kawabata, Masanari; Yamashita, Yoshiharu; Rusty Punzalan, Florencio; Shimayoshi, Takao; Kuwabara, Hiroaki; Kunieda, Yoshitoshi
2012-01-01
To cope with the complexity of the biological function simulation models, model representation with description language is becoming popular. However, simulation software itself becomes complex in these environment, thus, it is difficult to modify the simulation conditions, target computation resources or calculation methods. In the complex biological function simulation software, there are 1) model equations, 2) boundary conditions and 3) calculation schemes. Use of description model file is useful for first point and partly second point, however, third point is difficult to handle for various calculation schemes which is required for simulation models constructed from two or more elementary models. We introduce a simulation software generation system which use description language based description of coupling calculation scheme together with cell model description file. By using this software, we can easily generate biological simulation code with variety of coupling calculation schemes. To show the efficiency of our system, example of coupling calculation scheme with three elementary models are shown.
Flight simulator fidelity assessment in a rotorcraft lateral translation maneuver
NASA Technical Reports Server (NTRS)
Hess, R. A.; Malsbury, T.; Atencio, A., Jr.
1992-01-01
A model-based methodology for assessing flight simulator fidelity in closed-loop fashion is exercised in analyzing a rotorcraft low-altitude maneuver for which flight test and simulation results were available. The addition of a handling qualities sensitivity function to a previously developed model-based assessment criteria allows an analytical comparison of both performance and handling qualities between simulation and flight test. Model predictions regarding the existence of simulator fidelity problems are corroborated by experiment. The modeling approach is used to assess analytically the effects of modifying simulator characteristics on simulator fidelity.
NASA Technical Reports Server (NTRS)
Spinks, Debra (Compiler)
1997-01-01
This report contains the 1997 annual progress reports of the research fellows and students supported by the Center for Turbulence Research (CTR). Titles include: Invariant modeling in large-eddy simulation of turbulence; Validation of large-eddy simulation in a plain asymmetric diffuser; Progress in large-eddy simulation of trailing-edge turbulence and aeronautics; Resolution requirements in large-eddy simulations of shear flows; A general theory of discrete filtering for LES in complex geometry; On the use of discrete filters for large eddy simulation; Wall models in large eddy simulation of separated flow; Perspectives for ensemble average LES; Anisotropic grid-based formulas for subgrid-scale models; Some modeling requirements for wall models in large eddy simulation; Numerical simulation of 3D turbulent boundary layers using the V2F model; Accurate modeling of impinging jet heat transfer; Application of turbulence models to high-lift airfoils; Advances in structure-based turbulence modeling; Incorporating realistic chemistry into direct numerical simulations of turbulent non-premixed combustion; Effects of small-scale structure on turbulent mixing; Turbulent premixed combustion in the laminar flamelet and the thin reaction zone regime; Large eddy simulation of combustion instabilities in turbulent premixed burners; On the generation of vorticity at a free-surface; Active control of turbulent channel flow; A generalized framework for robust control in fluid mechanics; Combined immersed-boundary/B-spline methods for simulations of flow in complex geometries; and DNS of shock boundary-layer interaction - preliminary results for compression ramp flow.
Advanced simulation model for IPM motor drive with considering phase voltage and stator inductance
NASA Astrophysics Data System (ADS)
Lee, Dong-Myung; Park, Hyun-Jong; Lee, Ju
2016-10-01
This paper proposes an advanced simulation model of driving system for Interior Permanent Magnet (IPM) BrushLess Direct Current (BLDC) motors driven by 120-degree conduction method (two-phase conduction method, TPCM) that is widely used for sensorless control of BLDC motors. BLDC motors can be classified as SPM (Surface mounted Permanent Magnet) and IPM motors. Simulation model of driving system with SPM motors is simple due to the constant stator inductance regardless of the rotor position. Simulation models of SPM motor driving system have been proposed in many researches. On the other hand, simulation models for IPM driving system by graphic-based simulation tool such as Matlab/Simulink have not been proposed. Simulation study about driving system of IPMs with TPCM is complex because stator inductances of IPM vary with the rotor position, as permanent magnets are embedded in the rotor. To develop sensorless scheme or improve control performance, development of control algorithm through simulation study is essential, and the simulation model that accurately reflects the characteristic of IPM is required. Therefore, this paper presents the advanced simulation model of IPM driving system, which takes into account the unique characteristic of IPM due to the position-dependent inductances. The validity of the proposed simulation model is validated by comparison to experimental and simulation results using IPM with TPCM control scheme.
Simulation of South-Asian Summer Monsoon in a GCM
NASA Astrophysics Data System (ADS)
Ajayamohan, R. S.
2007-10-01
Major characteristics of Indian summer monsoon climate are analyzed using simulations from the upgraded version of Florida State University Global Spectral Model (FSUGSM). The Indian monsoon has been studied in terms of mean precipitation and low-level and upper-level circulation patterns and compared with observations. In addition, the model's fidelity in simulating observed monsoon intraseasonal variability, interannual variability and teleconnection patterns is examined. The model is successful in simulating the major rainbelts over the Indian monsoon region. However, the model exhibits bias in simulating the precipitation bands over the South China Sea and the West Pacific region. Seasonal mean circulation patterns of low-level and upper-level winds are consistent with the model's precipitation pattern. Basic features like onset and peak phase of monsoon are realistically simulated. However, model simulation indicates an early withdrawal of monsoon. Northward propagation of rainbelts over the Indian continent is simulated fairly well, but the propagation is weak over the ocean. The model simulates the meridional dipole structure associated with the monsoon intraseasonal variability realistically. The model is unable to capture the observed interannual variability of monsoon and its teleconnection patterns. Estimate of potential predictability of the model reveals the dominating influence of internal variability over the Indian monsoon region.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Zhaoqing; Taraphdar, Sourav; Wang, Taiping
This paper presents a modeling study conducted to evaluate the uncertainty of a regional model in simulating hurricane wind and pressure fields, and the feasibility of driving coastal storm surge simulation using an ensemble of region model outputs produced by 18 combinations of three convection schemes and six microphysics parameterizations, using Hurricane Katrina as a test case. Simulated wind and pressure fields were compared to observed H*Wind data for Hurricane Katrina and simulated storm surge was compared to observed high-water marks on the northern coast of the Gulf of Mexico. The ensemble modeling analysis demonstrated that the regional model wasmore » able to reproduce the characteristics of Hurricane Katrina with reasonable accuracy and can be used to drive the coastal ocean model for simulating coastal storm surge. Results indicated that the regional model is sensitive to both convection and microphysics parameterizations that simulate moist processes closely linked to the tropical cyclone dynamics that influence hurricane development and intensification. The Zhang and McFarlane (ZM) convection scheme and the Lim and Hong (WDM6) microphysics parameterization are the most skillful in simulating Hurricane Katrina maximum wind speed and central pressure, among the three convection and the six microphysics parameterizations. Error statistics of simulated maximum water levels were calculated for a baseline simulation with H*Wind forcing and the 18 ensemble simulations driven by the regional model outputs. The storm surge model produced the overall best results in simulating the maximum water levels using wind and pressure fields generated with the ZM convection scheme and the WDM6 microphysics parameterization.« less
Reusable Component Model Development Approach for Parallel and Distributed Simulation
Zhu, Feng; Yao, Yiping; Chen, Huilong; Yao, Feng
2014-01-01
Model reuse is a key issue to be resolved in parallel and distributed simulation at present. However, component models built by different domain experts usually have diversiform interfaces, couple tightly, and bind with simulation platforms closely. As a result, they are difficult to be reused across different simulation platforms and applications. To address the problem, this paper first proposed a reusable component model framework. Based on this framework, then our reusable model development approach is elaborated, which contains two phases: (1) domain experts create simulation computational modules observing three principles to achieve their independence; (2) model developer encapsulates these simulation computational modules with six standard service interfaces to improve their reusability. The case study of a radar model indicates that the model developed using our approach has good reusability and it is easy to be used in different simulation platforms and applications. PMID:24729751
Marshall, Deborah A; Burgos-Liz, Lina; IJzerman, Maarten J; Crown, William; Padula, William V; Wong, Peter K; Pasupathy, Kalyan S; Higashi, Mitchell K; Osgood, Nathaniel D
2015-03-01
In a previous report, the ISPOR Task Force on Dynamic Simulation Modeling Applications in Health Care Delivery Research Emerging Good Practices introduced the fundamentals of dynamic simulation modeling and identified the types of health care delivery problems for which dynamic simulation modeling can be used more effectively than other modeling methods. The hierarchical relationship between the health care delivery system, providers, patients, and other stakeholders exhibits a level of complexity that ought to be captured using dynamic simulation modeling methods. As a tool to help researchers decide whether dynamic simulation modeling is an appropriate method for modeling the effects of an intervention on a health care system, we presented the System, Interactions, Multilevel, Understanding, Loops, Agents, Time, Emergence (SIMULATE) checklist consisting of eight elements. This report builds on the previous work, systematically comparing each of the three most commonly used dynamic simulation modeling methods-system dynamics, discrete-event simulation, and agent-based modeling. We review criteria for selecting the most suitable method depending on 1) the purpose-type of problem and research questions being investigated, 2) the object-scope of the model, and 3) the method to model the object to achieve the purpose. Finally, we provide guidance for emerging good practices for dynamic simulation modeling in the health sector, covering all aspects, from the engagement of decision makers in the model design through model maintenance and upkeep. We conclude by providing some recommendations about the application of these methods to add value to informed decision making, with an emphasis on stakeholder engagement, starting with the problem definition. Finally, we identify areas in which further methodological development will likely occur given the growing "volume, velocity and variety" and availability of "big data" to provide empirical evidence and techniques such as machine learning for parameter estimation in dynamic simulation models. Upon reviewing this report in addition to using the SIMULATE checklist, the readers should be able to identify whether dynamic simulation modeling methods are appropriate to address the problem at hand and to recognize the differences of these methods from those of other, more traditional modeling approaches such as Markov models and decision trees. This report provides an overview of these modeling methods and examples of health care system problems in which such methods have been useful. The primary aim of the report was to aid decisions as to whether these simulation methods are appropriate to address specific health systems problems. The report directs readers to other resources for further education on these individual modeling methods for system interventions in the emerging field of health care delivery science and implementation. Copyright © 2015. Published by Elsevier Inc.
System Simulation Modeling: A Case Study Illustration of the Model Development Life Cycle
Janice K. Wiedenbeck; D. Earl Kline
1994-01-01
Systems simulation modeling techniques offer a method of representing the individual elements of a manufacturing system and their interactions. By developing and experimenting with simulation models, one can obtain a better understanding of the overall physical system. Forest products industries are beginning to understand the importance of simulation modeling to help...
Saho, Tatsunori; Onishi, Hideo
2015-07-01
In this study, we evaluated hemodynamics using simulated models and determined how cerebral aneurysms develop in simulated and patient-specific models based on medical images. Computational fluid dynamics (CFD) was analyzed by use of OpenFOAM software. Flow velocity, stream line, and wall shear stress (WSS) were evaluated in a simulated model aneurysm with known geometry and in a three-dimensional angiographic model. The ratio of WSS at the aneurysm compared with that at the basilar artery was 1:10 in simulated model aneurysms with a diameter of 10 mm and 1:18 in the angiographic model, indicating similar tendencies. Vortex flow occurred in both model aneurysms, and the WSS decreased in larger model aneurysms. The angiographic model provided accurate CFD information, and the tendencies of simulated and angiographic models were similar. These findings indicate that hemodynamic effects are involved in the development of aneurysms.
Simulated Students and Classroom Use of Model-Based Intelligent Tutoring
NASA Technical Reports Server (NTRS)
Koedinger, Kenneth R.
2008-01-01
Two educational uses of models and simulations: 1) Students create models and use simulations ; and 2) Researchers create models of learners to guide development of reliably effective materials. Cognitive tutors simulate and support tutoring - data is crucial to create effective model. Pittsburgh Science of Learning Center: Resources for modeling, authoring, experimentation. Repository of data and theory. Examples of advanced modeling efforts: SimStudent learns rule-based model. Help-seeking model: Tutors metacognition. Scooter uses machine learning detectors of student engagement.
NASA Astrophysics Data System (ADS)
da Silva, Felipe das Neves Roque; Alves, José Luis Drummond; Cataldi, Marcio
2018-03-01
This paper aims to validate inflow simulations concerning the present-day climate at Água Vermelha Hydroelectric Plant (AVHP—located on the Grande River Basin) based on the Soil Moisture Accounting Procedure (SMAP) hydrological model. In order to provide rainfall data to the SMAP model, the RegCM regional climate model was also used working with boundary conditions from the MIROC model. Initially, present-day climate simulation performed by RegCM model was analyzed. It was found that, in terms of rainfall, the model was able to simulate the main patterns observed over South America. A bias correction technique was also used and it was essential to reduce mistakes related to rainfall simulation. Comparison between rainfall simulations from RegCM and MIROC showed improvements when the dynamical downscaling was performed. Then, SMAP, a rainfall-runoff hydrological model, was used to simulate inflows at Água Vermelha Hydroelectric Plant. After calibration with observed rainfall, SMAP simulations were evaluated in two different periods from the one used in calibration. During calibration, SMAP captures the inflow variability observed at AVHP. During validation periods, the hydrological model obtained better results and statistics with observed rainfall. However, in spite of some discrepancies, the use of simulated rainfall without bias correction captured the interannual flow variability. However, the use of bias removal in the simulated rainfall performed by RegCM brought significant improvements to the simulation of natural inflows performed by SMAP. Not only the curve of simulated inflow became more similar to the observed inflow, but also the statistics improved their values. Improvements were also noticed in the inflow simulation when the rainfall was provided by the regional climate model compared to the global model. In general, results obtained so far prove that there was an added value in rainfall when regional climate model was compared to global climate model and that data from regional models must be bias-corrected so as to improve their results.
NASA Technical Reports Server (NTRS)
Baurle, R. A.
2015-01-01
Steady-state and scale-resolving simulations have been performed for flow in and around a model scramjet combustor flameholder. The cases simulated corresponded to those used to examine this flowfield experimentally using particle image velocimetry. A variety of turbulence models were used for the steady-state Reynolds-averaged simulations which included both linear and non-linear eddy viscosity models. The scale-resolving simulations used a hybrid Reynolds-averaged / large eddy simulation strategy that is designed to be a large eddy simulation everywhere except in the inner portion (log layer and below) of the boundary layer. Hence, this formulation can be regarded as a wall-modeled large eddy simulation. This effort was undertaken to formally assess the performance of the hybrid Reynolds-averaged / large eddy simulation modeling approach in a flowfield of interest to the scramjet research community. The numerical errors were quantified for both the steady-state and scale-resolving simulations prior to making any claims of predictive accuracy relative to the measurements. The steady-state Reynolds-averaged results showed a high degree of variability when comparing the predictions obtained from each turbulence model, with the non-linear eddy viscosity model (an explicit algebraic stress model) providing the most accurate prediction of the measured values. The hybrid Reynolds-averaged/large eddy simulation results were carefully scrutinized to ensure that even the coarsest grid had an acceptable level of resolution for large eddy simulation, and that the time-averaged statistics were acceptably accurate. The autocorrelation and its Fourier transform were the primary tools used for this assessment. The statistics extracted from the hybrid simulation strategy proved to be more accurate than the Reynolds-averaged results obtained using the linear eddy viscosity models. However, there was no predictive improvement noted over the results obtained from the explicit Reynolds stress model. Fortunately, the numerical error assessment at most of the axial stations used to compare with measurements clearly indicated that the scale-resolving simulations were improving (i.e. approaching the measured values) as the grid was refined. Hence, unlike a Reynolds-averaged simulation, the hybrid approach provides a mechanism to the end-user for reducing model-form errors.
NASA Astrophysics Data System (ADS)
Prasad, K.
2017-12-01
Atmospheric transport is usually performed with weather models, e.g., the Weather Research and Forecasting (WRF) model that employs a parameterized turbulence model and does not resolve the fine scale dynamics generated by the flow around buildings and features comprising a large city. The NIST Fire Dynamics Simulator (FDS) is a computational fluid dynamics model that utilizes large eddy simulation methods to model flow around buildings at length scales much smaller than is practical with models like WRF. FDS has the potential to evaluate the impact of complex topography on near-field dispersion and mixing that is difficult to simulate with a mesoscale atmospheric model. A methodology has been developed to couple the FDS model with WRF mesoscale transport models. The coupling is based on nudging the FDS flow field towards that computed by WRF, and is currently limited to one way coupling performed in an off-line mode. This approach allows the FDS model to operate as a sub-grid scale model with in a WRF simulation. To test and validate the coupled FDS - WRF model, the methane leak from the Aliso Canyon underground storage facility was simulated. Large eddy simulations were performed over the complex topography of various natural gas storage facilities including Aliso Canyon, Honor Rancho and MacDonald Island at 10 m horizontal and vertical resolution. The goal of these simulations included improving and validating transport models as well as testing leak hypotheses. Forward simulation results were compared with aircraft and tower based in-situ measurements as well as methane plumes observed using the NASA Airborne Visible InfraRed Imaging Spectrometer (AVIRIS) and the next generation instrument AVIRIS-NG. Comparison of simulation results with measurement data demonstrate the capability of the coupled FDS-WRF models to accurately simulate the transport and dispersion of methane plumes over urban domains. Simulated integrated methane enhancements will be presented and compared with results obtained from spectrometer data to estimate the temporally evolving methane flux during the Aliso Canyon blowout.
Li, Chen; Nagasaki, Masao; Koh, Chuan Hock; Miyano, Satoru
2011-05-01
Mathematical modeling and simulation studies are playing an increasingly important role in helping researchers elucidate how living organisms function in cells. In systems biology, researchers typically tune many parameters manually to achieve simulation results that are consistent with biological knowledge. This severely limits the size and complexity of simulation models built. In order to break this limitation, we propose a computational framework to automatically estimate kinetic parameters for a given network structure. We utilized an online (on-the-fly) model checking technique (which saves resources compared to the offline approach), with a quantitative modeling and simulation architecture named hybrid functional Petri net with extension (HFPNe). We demonstrate the applicability of this framework by the analysis of the underlying model for the neuronal cell fate decision model (ASE fate model) in Caenorhabditis elegans. First, we built a quantitative ASE fate model containing 3327 components emulating nine genetic conditions. Then, using our developed efficient online model checker, MIRACH 1.0, together with parameter estimation, we ran 20-million simulation runs, and were able to locate 57 parameter sets for 23 parameters in the model that are consistent with 45 biological rules extracted from published biological articles without much manual intervention. To evaluate the robustness of these 57 parameter sets, we run another 20 million simulation runs using different magnitudes of noise. Our simulation results concluded that among these models, one model is the most reasonable and robust simulation model owing to the high stability against these stochastic noises. Our simulation results provide interesting biological findings which could be used for future wet-lab experiments.
Muhlbauer, A.; Ackerman, T. P.; Lawson, R. P.; ...
2015-07-14
Cirrus clouds are ubiquitous in the upper troposphere and still constitute one of the largest uncertainties in climate predictions. Our paper evaluates cloud-resolving model (CRM) and cloud system-resolving model (CSRM) simulations of a midlatitude cirrus case with comprehensive observations collected under the auspices of the Atmospheric Radiation Measurements (ARM) program and with spaceborne observations from the National Aeronautics and Space Administration A-train satellites. The CRM simulations are driven with periodic boundary conditions and ARM forcing data, whereas the CSRM simulations are driven by the ERA-Interim product. Vertical profiles of temperature, relative humidity, and wind speeds are reasonably well simulated bymore » the CSRM and CRM, but there are remaining biases in the temperature, wind speeds, and relative humidity, which can be mitigated through nudging the model simulations toward the observed radiosonde profiles. Simulated vertical velocities are underestimated in all simulations except in the CRM simulations with grid spacings of 500 m or finer, which suggests that turbulent vertical air motions in cirrus clouds need to be parameterized in general circulation models and in CSRM simulations with horizontal grid spacings on the order of 1 km. The simulated ice water content and ice number concentrations agree with the observations in the CSRM but are underestimated in the CRM simulations. The underestimation of ice number concentrations is consistent with the overestimation of radar reflectivity in the CRM simulations and suggests that the model produces too many large ice particles especially toward the cloud base. Simulated cloud profiles are rather insensitive to perturbations in the initial conditions or the dimensionality of the model domain, but the treatment of the forcing data has a considerable effect on the outcome of the model simulations. Despite considerable progress in observations and microphysical parameterizations, simulating the microphysical, macrophysical, and radiative properties of cirrus remains challenging. Comparing model simulations with observations from multiple instruments and observational platforms is important for revealing model deficiencies and for providing rigorous benchmarks. But, there still is considerable need for reducing observational uncertainties and providing better observations especially for relative humidity and for the size distribution and chemical composition of aerosols in the upper troposphere.« less
Collaborative modeling: the missing piece of distributed simulation
NASA Astrophysics Data System (ADS)
Sarjoughian, Hessam S.; Zeigler, Bernard P.
1999-06-01
The Department of Defense overarching goal of performing distributed simulation by overcoming geographic and time constraints has brought the problem of distributed modeling to the forefront. The High Level Architecture standard is primarily intended for simulation interoperability. However, as indicated, the existence of a distributed modeling infrastructure plays a fundamental and central role in supporting the development of distributed simulations. In this paper, we describe some fundamental distributed modeling concepts and their implications for constructing successful distributed simulations. In addition, we discuss the Collaborative DEVS Modeling environment that has been devised to enable graphically dispersed modelers to collaborate and synthesize modular and hierarchical models. We provide an actual example of the use of Collaborative DEVS Modeler in application to a project involving corporate partners developing an HLA-compliant distributed simulation exercise.
The Effects of Time Advance Mechanism on Simple Agent Behaviors in Combat Simulations
2011-12-01
modeling packages that illustrate the differences between discrete-time simulation (DTS) and discrete-event simulation ( DES ) methodologies. Many combat... DES ) models , often referred to as “next-event” (Law and Kelton 2000) or discrete time simulation (DTS), commonly referred to as “time-step.” DTS...discrete-time simulation (DTS) and discrete-event simulation ( DES ) methodologies. Many combat models use DTS as their simulation time advance mechanism
Hot-bench simulation of the active flexible wing wind-tunnel model
NASA Technical Reports Server (NTRS)
Buttrill, Carey S.; Houck, Jacob A.
1990-01-01
Two simulations, one batch and one real-time, of an aeroelastically-scaled wind-tunnel model were developed. The wind-tunnel model was a full-span, free-to-roll model of an advanced fighter concept. The batch simulation was used to generate and verify the real-time simulation and to test candidate control laws prior to implementation. The real-time simulation supported hot-bench testing of a digital controller, which was developed to actively control the elastic deformation of the wind-tunnel model. Time scaling was required for hot-bench testing. The wind-tunnel model, the mathematical models for the simulations, the techniques employed to reduce the hot-bench time-scale factors, and the verification procedures are described.
Modeling and simulating industrial land-use evolution in Shanghai, China
NASA Astrophysics Data System (ADS)
Qiu, Rongxu; Xu, Wei; Zhang, John; Staenz, Karl
2018-01-01
This study proposes a cellular automata-based Industrial and Residential Land Use Competition Model to simulate the dynamic spatial transformation of industrial land use in Shanghai, China. In the proposed model, land development activities in a city are delineated as competitions among different land-use types. The Hedonic Land Pricing Model is adopted to implement the competition framework. To improve simulation results, the Land Price Agglomeration Model was devised to simulate and adjust classic land price theory. A new evolutionary algorithm-based parameter estimation method was devised in place of traditional methods. Simulation results show that the proposed model closely resembles actual land transformation patterns and the model can not only simulate land development, but also redevelopment processes in metropolitan areas.
Coon, William F.
2011-01-01
Simulation of streamflows in small subbasins was improved by adjusting model parameter values to match base flows, storm peaks, and storm recessions more precisely than had been done with the original model. Simulated recessional and low flows were either increased or decreased as appropriate for a given stream, and simulated peak flows generally were lowered in the revised model. The use of suspended-sediment concentrations rather than concentrations of the surrogate constituent, total suspended solids, resulted in increases in the simulated low-flow sediment concentrations and, in most cases, decreases in the simulated peak-flow sediment concentrations. Simulated orthophosphate concentrations in base flows generally increased but decreased for peak flows in selected headwater subbasins in the revised model. Compared with the original model, phosphorus concentrations simulated by the revised model were comparable in forested subbasins, generally decreased in developed and wetland-dominated subbasins, and increased in agricultural subbasins. A final revision to the model was made by the addition of the simulation of chloride (salt) concentrations in the Onondaga Creek Basin to help water-resource managers better understand the relative contributions of salt from multiple sources in this particular tributary. The calibrated revised model was used to (1) compute loading rates for the various land types that were simulated in the model, (2) conduct a watershed-management analysis that estimated the portion of the total load that was likely to be transported to Onondaga Lake from each of the modeled subbasins, (3) compute and assess chloride loads to Onondaga Lake from the Onondaga Creek Basin, and (4) simulate precolonization (forested) conditions in the basin to estimate the probable minimum phosphorus loads to the lake.
Research on modeling and conduction disturbance simulation of secondary power system in a device
NASA Astrophysics Data System (ADS)
Ding, Xu; Yu, Zhi-Yong; Jin, Rui
2017-06-01
To find electromagnetic interference (EMI) and other problems in the secondary power supply system design quickly and effectively, simulations are carried out under the Saber simulation software platform. The DC/DC converter model with complete performance and electromagnetic characteristics is established by combining parametric modeling with Mast language. By using the method of macro modeling, the hall current sensor and power supply filter model are established respectively based on the function, schematic diagram of the components. Also the simulation of the component model and the whole secondary power supply system are carried out. The simulation results show that the proposed model satisfies the functional requirements of the system and has high accuracy. At the same time, due to the ripple characteristics in the DC/DC converter modeling, it can be used as a conducted interference model to simulate the power bus conducted emission CE102 project under the condition that the simulated load is full, which provides a useful reference for the electromagnetic interference suppression of the system.
Annular mode changes in the CMIP5 simulations
NASA Astrophysics Data System (ADS)
Gillett, N. P.; Fyfe, J. C.
2013-03-01
We investigate simulated changes in the annular modes in historical and RCP 4.5 scenario simulations of 37 models from the fifth Coupled Model Intercomparison Project (CMIP5), a much larger ensemble of models than has previously been used to investigate annular mode trends, with improved resolution and forcings. The CMIP5 models on average simulate increases in the Northern Annular Mode (NAM) and Southern Annular Mode (SAM) in every season by 2100, and no CMIP5 model simulates a significant decrease in either the NAM or SAM in any season. No significant increase in the NAM or North Atlantic Oscillation (NAO) is simulated in response to volcanic aerosol, and no significant NAM or NAO response to solar irradiance variations is simulated. The CMIP5 models simulate a significant negative SAM response to volcanic aerosol in MAM and JJA, and a significant positive SAM response to solar irradiance variations in MAM, JJA and DJF.
Introduction of a simulation model for choledocho- and pancreaticojejunostomy.
Narumi, Shunji; Toyoki, Yoshikazu; Ishido, Keinosuke; Kudo, Daisuke; Umehara, Minoru; Kimura, Norihisa; Miura, Takuya; Muroya, Takahiro; Hakamada, Kenichi
2012-10-01
Pancreaticoduodenectomy includes choledochojejunostomy and pancreaticojejunostomy, which require hand-sewn anastomoses. Educational simulation models for choledochojejunostomy and pancreaticojejunostomy have not been designed. We introduce a simulation model for choledochojejunostomy and pancreaticojejunostomy created with a skin closure pad and a vascular model. A wound closure pad and a vein model (4 mm diameter) were used as a stump model of the pancreas. Pancreaticojejunostomy was simulated with a stump model of the pancreas and a double layer bowel model; these models were stabilized in an end-to-side fashion on a magnetic board using magnetic clips. In addition, vein (6 or 8 mm diameter) and bowel models were used to simulate choledochojejunostomy. Pancreatic and hepatobiliary surgery are relatively rare, particularly in a community hospital although surgical residents wish to practice these procedures. Our simulator enables surgeons and surgical residents to practice choledocho- and pancreaticojejunostomy through open or laparoscopic approaches.
Li, Jiajia; Deng, Baoqing; Zhang, Bing; Shen, Xiuzhong; Kim, Chang Nyung
2015-01-01
A simulation of an unbaffled stirred tank reactor driven by a magnetic stirring rod was carried out in a moving reference frame. The free surface of unbaffled stirred tank was captured by Euler-Euler model coupled with the volume of fluid (VOF) method. The re-normalization group (RNG) k-ɛ model, large eddy simulation (LES) model and detached eddy simulation (DES) model were evaluated for simulating the flow field in the stirred tank. All turbulence models can reproduce the tangential velocity in an unbaffled stirred tank with a rotational speed of 150 rpm, 250 rpm and 400 rpm, respectively. Radial velocity is underpredicted by the three models. LES model and RNG k-ɛ model predict the better tangential velocity and axial velocity, respectively. RNG k-ɛ model is recommended for the simulation of the flow in an unbaffled stirred tank with magnetic rod due to its computational effort.
Li, Min; Zhang, John Z H
2017-03-08
The development of polarizable water models at coarse-grained (CG) levels is of much importance to CG molecular dynamics simulations of large biomolecular systems. In this work, we combined the newly developed two-bead multipole force field (TMFF) for proteins with the two-bead polarizable water models to carry out CG molecular dynamics simulations for benchmark proteins. In our simulations, two different two-bead polarizable water models are employed, the RTPW model representing five water molecules by Riniker et al. and the LTPW model representing four water molecules. The LTPW model is developed in this study based on the Martini three-bead polarizable water model. Our simulation results showed that the combination of TMFF with the LTPW model significantly stabilizes the protein's native structure in CG simulations, while the use of the RTPW model gives better agreement with all-atom simulations in predicting the residue-level fluctuation dynamics. Overall, the TMFF coupled with the two-bead polarizable water models enables one to perform an efficient and reliable CG dynamics study of the structural and functional properties of large biomolecules.
[Low Fidelity Simulation of a Zero-Y Robot
NASA Technical Reports Server (NTRS)
Sweet, Adam
2001-01-01
The item to be cleared is a low-fidelity software simulation model of a hypothetical freeflying robot designed for use in zero gravity environments. This simulation model works with the HCC simulation system that was developed by Xerox PARC and NASA Ames Research Center. HCC has been previously cleared for distribution. When used with the HCC software, the model computes the location and orientation of the simulated robot over time. Failures (such as a broken motor) can be injected into the simulation to produce simulated behavior corresponding to the failure. Release of this simulation will allow researchers to test their software diagnosis systems by attempting to diagnose the simulated failure from the simulated behavior. This model does not contain any encryption software nor can it perform any control tasks that might be export controlled.
Concurrent heterogeneous neural model simulation on real-time neuromimetic hardware.
Rast, Alexander; Galluppi, Francesco; Davies, Sergio; Plana, Luis; Patterson, Cameron; Sharp, Thomas; Lester, David; Furber, Steve
2011-11-01
Dedicated hardware is becoming increasingly essential to simulate emerging very-large-scale neural models. Equally, however, it needs to be able to support multiple models of the neural dynamics, possibly operating simultaneously within the same system. This may be necessary either to simulate large models with heterogeneous neural types, or to simplify simulation and analysis of detailed, complex models in a large simulation by isolating the new model to a small subpopulation of a larger overall network. The SpiNNaker neuromimetic chip is a dedicated neural processor able to support such heterogeneous simulations. Implementing these models on-chip uses an integrated library-based tool chain incorporating the emerging PyNN interface that allows a modeller to input a high-level description and use an automated process to generate an on-chip simulation. Simulations using both LIF and Izhikevich models demonstrate the ability of the SpiNNaker system to generate and simulate heterogeneous networks on-chip, while illustrating, through the network-scale effects of wavefront synchronisation and burst gating, methods that can provide effective behavioural abstractions for large-scale hardware modelling. SpiNNaker's asynchronous virtual architecture permits greater scope for model exploration, with scalable levels of functional and temporal abstraction, than conventional (or neuromorphic) computing platforms. The complete system illustrates a potential path to understanding the neural model of computation, by building (and breaking) neural models at various scales, connecting the blocks, then comparing them against the biology: computational cognitive neuroscience. Copyright © 2011 Elsevier Ltd. All rights reserved.
A real time Pegasus propulsion system model for VSTOL piloted simulation evaluation
NASA Technical Reports Server (NTRS)
Mihaloew, J. R.; Roth, S. P.; Creekmore, R.
1981-01-01
A real time propulsion system modeling technique suitable for use in man-in-the-loop simulator studies was developd. This technique provides the system accuracy, stability, and transient response required for integrated aircraft and propulsion control system studies. A Pegasus-Harrier propulsion system was selected as a baseline for developing mathematical modeling and simulation techniques for VSTOL. Initially, static and dynamic propulsion system characteristics were modeled in detail to form a nonlinear aerothermodynamic digital computer simulation of a Pegasus engine. From this high fidelity simulation, a real time propulsion model was formulated by applying a piece-wise linear state variable methodology. A hydromechanical and water injection control system was also simulated. The real time dynamic model includes the detail and flexibility required for the evaluation of critical control parameters and propulsion component limits over a limited flight envelope. The model was programmed for interfacing with a Harrier aircraft simulation. Typical propulsion system simulation results are presented.
Integration of Continuous-Time Dynamics in a Spiking Neural Network Simulator.
Hahne, Jan; Dahmen, David; Schuecker, Jannis; Frommer, Andreas; Bolten, Matthias; Helias, Moritz; Diesmann, Markus
2017-01-01
Contemporary modeling approaches to the dynamics of neural networks include two important classes of models: biologically grounded spiking neuron models and functionally inspired rate-based units. We present a unified simulation framework that supports the combination of the two for multi-scale modeling, enables the quantitative validation of mean-field approaches by spiking network simulations, and provides an increase in reliability by usage of the same simulation code and the same network model specifications for both model classes. While most spiking simulations rely on the communication of discrete events, rate models require time-continuous interactions between neurons. Exploiting the conceptual similarity to the inclusion of gap junctions in spiking network simulations, we arrive at a reference implementation of instantaneous and delayed interactions between rate-based models in a spiking network simulator. The separation of rate dynamics from the general connection and communication infrastructure ensures flexibility of the framework. In addition to the standard implementation we present an iterative approach based on waveform-relaxation techniques to reduce communication and increase performance for large-scale simulations of rate-based models with instantaneous interactions. Finally we demonstrate the broad applicability of the framework by considering various examples from the literature, ranging from random networks to neural-field models. The study provides the prerequisite for interactions between rate-based and spiking models in a joint simulation.
Integration of Continuous-Time Dynamics in a Spiking Neural Network Simulator
Hahne, Jan; Dahmen, David; Schuecker, Jannis; Frommer, Andreas; Bolten, Matthias; Helias, Moritz; Diesmann, Markus
2017-01-01
Contemporary modeling approaches to the dynamics of neural networks include two important classes of models: biologically grounded spiking neuron models and functionally inspired rate-based units. We present a unified simulation framework that supports the combination of the two for multi-scale modeling, enables the quantitative validation of mean-field approaches by spiking network simulations, and provides an increase in reliability by usage of the same simulation code and the same network model specifications for both model classes. While most spiking simulations rely on the communication of discrete events, rate models require time-continuous interactions between neurons. Exploiting the conceptual similarity to the inclusion of gap junctions in spiking network simulations, we arrive at a reference implementation of instantaneous and delayed interactions between rate-based models in a spiking network simulator. The separation of rate dynamics from the general connection and communication infrastructure ensures flexibility of the framework. In addition to the standard implementation we present an iterative approach based on waveform-relaxation techniques to reduce communication and increase performance for large-scale simulations of rate-based models with instantaneous interactions. Finally we demonstrate the broad applicability of the framework by considering various examples from the literature, ranging from random networks to neural-field models. The study provides the prerequisite for interactions between rate-based and spiking models in a joint simulation. PMID:28596730
Locating Anomalies in Complex Data Sets Using Visualization and Simulation
NASA Technical Reports Server (NTRS)
Panetta, Karen
2001-01-01
The research goals are to create a simulation framework that can accept any combination of models written at the gate or behavioral level. The framework provides the ability to fault simulate and create scenarios of experiments using concurrent simulation. In order to meet these goals we have had to fulfill the following requirements. The ability to accept models written in VHDL, Verilog or the C languages. The ability to propagate faults through any model type. The ability to create experiment scenarios efficiently without generating every possible combination of variables. The ability to accept adversity of fault models beyond the single stuck-at model. Major development has been done to develop a parser that can accept models written in various languages. This work has generated considerable attention from other universities and industry for its flexibility and usefulness. The parser uses LEXX and YACC to parse Verilog and C. We have also utilized our industrial partnership with Alternative System's Inc. to import vhdl into our simulator. For multilevel simulation, we needed to modify the simulator architecture to accept models that contained multiple outputs. This enabled us to accept behavioral components. The next major accomplishment was the addition of "functional fault models". Functional fault models change the behavior of a gate or model. For example, a bridging fault can make an OR gate behave like an AND gate. This has applications beyond fault simulation. This modeling flexibility will make the simulator more useful for doing verification and model comparison. For instance, two or more versions of an ALU can be comparatively simulated in a single execution. The results will show where and how the models differed so that the performance and correctness of the models may be evaluated. A considerable amount of time has been dedicated to validating the simulator performance on larger models provided by industry and other universities.
MOSES: A Matlab-based open-source stochastic epidemic simulator.
Varol, Huseyin Atakan
2016-08-01
This paper presents an open-source stochastic epidemic simulator. Discrete Time Markov Chain based simulator is implemented in Matlab. The simulator capable of simulating SEQIJR (susceptible, exposed, quarantined, infected, isolated and recovered) model can be reduced to simpler models by setting some of the parameters (transition probabilities) to zero. Similarly, it can be extended to more complicated models by editing the source code. It is designed to be used for testing different control algorithms to contain epidemics. The simulator is also designed to be compatible with a network based epidemic simulator and can be used in the network based scheme for the simulation of a node. Simulations show the capability of reproducing different epidemic model behaviors successfully in a computationally efficient manner.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hillman, Benjamin R.; Marchand, Roger T.; Ackerman, Thomas P.
Satellite simulators are often used to account for limitations in satellite retrievals of cloud properties in comparisons between models and satellite observations. The purpose of the simulator framework is to enable more robust evaluation of model cloud properties, so that di erences between models and observations can more con dently be attributed to model errors. However, these simulators are subject to uncertainties themselves. A fundamental uncertainty exists in connecting the spatial scales at which cloud properties are retrieved with those at which clouds are simulated in global models. In this study, we create a series of sensitivity tests using 4more » km global model output from the Multiscale Modeling Framework to evaluate the sensitivity of simulated satellite retrievals when applied to climate models whose grid spacing is many tens to hundreds of kilometers. In particular, we examine the impact of cloud and precipitation overlap and of condensate spatial variability. We find the simulated retrievals are sensitive to these assumptions. Specifically, using maximum-random overlap with homogeneous cloud and precipitation condensate, which is often used in global climate models, leads to large errors in MISR and ISCCP-simulated cloud cover and in CloudSat-simulated radar reflectivity. To correct for these errors, an improved treatment of unresolved clouds and precipitation is implemented for use with the simulator framework and is shown to substantially reduce the identified errors.« less
Modeling and simulation of satellite subsystems for end-to-end spacecraft modeling
NASA Astrophysics Data System (ADS)
Schum, William K.; Doolittle, Christina M.; Boyarko, George A.
2006-05-01
During the past ten years, the Air Force Research Laboratory (AFRL) has been simultaneously developing high-fidelity spacecraft payload models as well as a robust distributed simulation environment for modeling spacecraft subsystems. Much of this research has occurred in the Distributed Architecture Simulation Laboratory (DASL). AFRL developers working in the DASL have effectively combined satellite power, attitude pointing, and communication link analysis subsystem models with robust satellite sensor models to create a first-order end-to-end satellite simulation capability. The merging of these two simulation areas has advanced the field of spacecraft simulation, design, and analysis, and enabled more in-depth mission and satellite utility analyses. A core capability of the DASL is the support of a variety of modeling and analysis efforts, ranging from physics and engineering-level modeling to mission and campaign-level analysis. The flexibility and agility of this simulation architecture will be used to support space mission analysis, military utility analysis, and various integrated exercises with other military and space organizations via direct integration, or through DOD standards such as Distributed Interaction Simulation. This paper discusses the results and lessons learned in modeling satellite communication link analysis, power, and attitude control subsystems for an end-to-end satellite simulation. It also discusses how these spacecraft subsystem simulations feed into and support military utility and space mission analyses.
Uses of Computer Simulation Models in Ag-Research and Everyday Life
USDA-ARS?s Scientific Manuscript database
When the news media talks about models they could be talking about role models, fashion models, conceptual models like the auto industry uses, or computer simulation models. A computer simulation model is a computer code that attempts to imitate the processes and functions of certain systems. There ...
NASA Technical Reports Server (NTRS)
Jones, Lisa E. (Technical Monitor); Stockwell, Alan E.
2005-01-01
LS-DYNA simulations were conducted to study the influence of model complexity on the response of a typical Reinforced Carbon-Carbon (RCC) panel to a foam impact at a location approximately midway between the ribs. A structural model comprised of Panels 10, 11, and TSeal 11 was chosen as the baseline model for the study. A simulation was conducted with foam striking Panel 10 at Location 4 at an alpha angle of 10 degrees, with an impact velocity of 1000 ft/sec. A second simulation was conducted after removing Panel 11 from the model, and a third simulation was conducted after removing both Panel 11 and T-Seal 11. All three simulations showed approximately the same response for Panel 10, and the simplified simulation model containing only Panel 10 was shown to be significantly less expensive to execute than the other two more complex models.
ERIC Educational Resources Information Center
Zillesen, Pieter G. van Schaick
This paper introduces a hardware and software independent model for producing educational computer simulation environments. The model, which is based on the results of 32 studies of educational computer simulations program production, implies that educational computer simulation environments are specified, constructed, tested, implemented, and…
An Interactive Teaching System for Bond Graph Modeling and Simulation in Bioengineering
ERIC Educational Resources Information Center
Roman, Monica; Popescu, Dorin; Selisteanu, Dan
2013-01-01
The objective of the present work was to implement a teaching system useful in modeling and simulation of biotechnological processes. The interactive system is based on applications developed using 20-sim modeling and simulation software environment. A procedure for the simulation of bioprocesses modeled by bond graphs is proposed and simulators…
Semantic World Modelling and Data Management in a 4d Forest Simulation and Information System
NASA Astrophysics Data System (ADS)
Roßmann, J.; Hoppen, M.; Bücken, A.
2013-08-01
Various types of 3D simulation applications benefit from realistic forest models. They range from flight simulators for entertainment to harvester simulators for training and tree growth simulations for research and planning. Our 4D forest simulation and information system integrates the necessary methods for data extraction, modelling and management. Using modern methods of semantic world modelling, tree data can efficiently be extracted from remote sensing data. The derived forest models contain position, height, crown volume, type and diameter of each tree. This data is modelled using GML-based data models to assure compatibility and exchangeability. A flexible approach for database synchronization is used to manage the data and provide caching, persistence, a central communication hub for change distribution, and a versioning mechanism. Combining various simulation techniques and data versioning, the 4D forest simulation and information system can provide applications with "both directions" of the fourth dimension. Our paper outlines the current state, new developments, and integration of tree extraction, data modelling, and data management. It also shows several applications realized with the system.
A simple analytical infiltration model for short-duration rainfall
NASA Astrophysics Data System (ADS)
Wang, Kaiwen; Yang, Xiaohua; Liu, Xiaomang; Liu, Changming
2017-12-01
Many infiltration models have been proposed to simulate infiltration process. Different initial soil conditions and non-uniform initial water content can lead to infiltration simulation errors, especially for short-duration rainfall (SHR). Few infiltration models are specifically derived to eliminate the errors caused by the complex initial soil conditions. We present a simple analytical infiltration model for SHR infiltration simulation, i.e., Short-duration Infiltration Process model (SHIP model). The infiltration simulated by 5 models (i.e., SHIP (high) model, SHIP (middle) model, SHIP (low) model, Philip model and Parlange model) were compared based on numerical experiments and soil column experiments. In numerical experiments, SHIP (middle) and Parlange models had robust solutions for SHR infiltration simulation of 12 typical soils under different initial soil conditions. The absolute values of percent bias were less than 12% and the values of Nash and Sutcliffe efficiency were greater than 0.83. Additionally, in soil column experiments, infiltration rate fluctuated in a range because of non-uniform initial water content. SHIP (high) and SHIP (low) models can simulate an infiltration range, which successfully covered the fluctuation range of the observed infiltration rate. According to the robustness of solutions and the coverage of fluctuation range of infiltration rate, SHIP model can be integrated into hydrologic models to simulate SHR infiltration process and benefit the flood forecast.
Agent-based modeling: Methods and techniques for simulating human systems
Bonabeau, Eric
2002-01-01
Agent-based modeling is a powerful simulation modeling technique that has seen a number of applications in the last few years, including applications to real-world business problems. After the basic principles of agent-based simulation are briefly introduced, its four areas of application are discussed by using real-world applications: flow simulation, organizational simulation, market simulation, and diffusion simulation. For each category, one or several business applications are described and analyzed. PMID:12011407
Michel, Miriam; Egender, Friedemann; Heßling, Vera; Dähnert, Ingo; Gebauer, Roman
2016-01-01
Background Postoperative junctional ectopic tachycardia (JET) occurs frequently after pediatric cardiac surgery. R-wave synchronized atrial (AVT) pacing is used to re-establish atrioventricular synchrony. AVT pacing is complex, with technical pitfalls. We sought to establish and to test a low-cost simulation model suitable for training and analysis in AVT pacing. Methods A simulation model was developed based on a JET simulator, a simulation doll, a cardiac monitor, and a pacemaker. A computer program simulated electrocardiograms. Ten experienced pediatric cardiologists tested the model. Their performance was analyzed using a testing protocol with 10 working steps. Results Four testers found the simulation model realistic; 6 found it very realistic. Nine claimed that the trial had improved their skills. All testers considered the model useful in teaching AVT pacing. The simulation test identified 5 working steps in which major mistakes in performance test may impede safe and effective AVT pacing and thus permitted specific training. The components of the model (exclusive monitor and pacemaker) cost less than $50. Assembly and training-session expenses were trivial. Conclusions A realistic, low-cost simulation model of AVT pacing is described. The model is suitable for teaching and analyzing AVT pacing technique. PMID:26943363
A CONTINUUM HARD-SPHERE MODEL OF PROTEIN ADSORPTION
Finch, Craig; Clarke, Thomas; Hickman, James J.
2012-01-01
Protein adsorption plays a significant role in biological phenomena such as cell-surface interactions and the coagulation of blood. Two-dimensional random sequential adsorption (RSA) models are widely used to model the adsorption of proteins on solid surfaces. Continuum equations have been developed so that the results of RSA simulations can be used to predict the kinetics of adsorption. Recently, Brownian dynamics simulations have become popular for modeling protein adsorption. In this work a continuum model was developed to allow the results from a Brownian dynamics simulation to be used as the boundary condition in a computational fluid dynamics (CFD) simulation. Brownian dynamics simulations were used to model the diffusive transport of hard-sphere particles in a liquid and the adsorption of the particles onto a solid surface. The configuration of the adsorbed particles was analyzed to quantify the chemical potential near the surface, which was found to be a function of the distance from the surface and the fractional surface coverage. The near-surface chemical potential was used to derive a continuum model of adsorption that incorporates the results from the Brownian dynamics simulations. The equations of the continuum model were discretized and coupled to a CFD simulation of diffusive transport to the surface. The kinetics of adsorption predicted by the continuum model closely matched the results from the Brownian dynamics simulation. This new model allows the results from mesoscale simulations to be incorporated into micro- or macro-scale CFD transport simulations of protein adsorption in practical devices. PMID:23729843
Developing Cognitive Models for Social Simulation from Survey Data
NASA Astrophysics Data System (ADS)
Alt, Jonathan K.; Lieberman, Stephen
The representation of human behavior and cognition continues to challenge the modeling and simulation community. The use of survey and polling instruments to inform belief states, issue stances and action choice models provides a compelling means of developing models and simulations with empirical data. Using these types of data to population social simulations can greatly enhance the feasibility of validation efforts, the reusability of social and behavioral modeling frameworks, and the testable reliability of simulations. We provide a case study demonstrating these effects, document the use of survey data to develop cognitive models, and suggest future paths forward for social and behavioral modeling.
A mathematical simulation model of the CH-47B helicopter, volume 2
NASA Technical Reports Server (NTRS)
Weber, J. M.; Liu, T. Y.; Chung, W.
1984-01-01
A nonlinear simulation model of the CH-47B helicopter, was adapted for use in a simulation facility. The model represents the specific configuration of the variable stability CH-47B helicopter. Modeling of the helicopter uses a total force approach in six rigid body degrees of freedom. Rotor dynamics are simulated using the Wheatley-Bailey equations, steady state flapping dynamics and included in the model of the option for simulation of external suspension, slung load equations of motion. Validation of the model was accomplished by static and dynamic data from the original Boeing Vertol mathematical model and flight test data. The model is appropriate for use in real time piloted simulation and is implemented on the ARC Sigma IX computer where it may be operated with a digital cycle time of 0.03 sec.
An efficient surrogate-based simulation-optimization method for calibrating a regional MODFLOW model
NASA Astrophysics Data System (ADS)
Chen, Mingjie; Izady, Azizallah; Abdalla, Osman A.
2017-01-01
Simulation-optimization method entails a large number of model simulations, which is computationally intensive or even prohibitive if the model simulation is extremely time-consuming. Statistical models have been examined as a surrogate of the high-fidelity physical model during simulation-optimization process to tackle this problem. Among them, Multivariate Adaptive Regression Splines (MARS), a non-parametric adaptive regression method, is superior in overcoming problems of high-dimensions and discontinuities of the data. Furthermore, the stability and accuracy of MARS model can be improved by bootstrap aggregating methods, namely, bagging. In this paper, Bagging MARS (BMARS) method is integrated to a surrogate-based simulation-optimization framework to calibrate a three-dimensional MODFLOW model, which is developed to simulate the groundwater flow in an arid hardrock-alluvium region in northwestern Oman. The physical MODFLOW model is surrogated by the statistical model developed using BMARS algorithm. The surrogate model, which is fitted and validated using training dataset generated by the physical model, can approximate solutions rapidly. An efficient Sobol' method is employed to calculate global sensitivities of head outputs to input parameters, which are used to analyze their importance for the model outputs spatiotemporally. Only sensitive parameters are included in the calibration process to further improve the computational efficiency. Normalized root mean square error (NRMSE) between measured and simulated heads at observation wells is used as the objective function to be minimized during optimization. The reasonable history match between the simulated and observed heads demonstrated feasibility of this high-efficient calibration framework.
Modeling the long-term evolution of space debris
Nikolaev, Sergei; De Vries, Willem H.; Henderson, John R.; Horsley, Matthew A.; Jiang, Ming; Levatin, Joanne L.; Olivier, Scot S.; Pertica, Alexander J.; Phillion, Donald W.; Springer, Harry K.
2017-03-07
A space object modeling system that models the evolution of space debris is provided. The modeling system simulates interaction of space objects at simulation times throughout a simulation period. The modeling system includes a propagator that calculates the position of each object at each simulation time based on orbital parameters. The modeling system also includes a collision detector that, for each pair of objects at each simulation time, performs a collision analysis. When the distance between objects satisfies a conjunction criterion, the modeling system calculates a local minimum distance between the pair of objects based on a curve fitting to identify a time of closest approach at the simulation times and calculating the position of the objects at the identified time. When the local minimum distance satisfies a collision criterion, the modeling system models the debris created by the collision of the pair of objects.
Shi, Kuangyu; Bayer, Christine; Gaertner, Florian C; Astner, Sabrina T; Wilkens, Jan J; Nüsslin, Fridtjof; Vaupel, Peter; Ziegler, Sibylle I
2017-02-01
Positron-emission tomography (PET) with hypoxia specific tracers provides a noninvasive method to assess the tumor oxygenation status. Reaction-diffusion models have advantages in revealing the quantitative relation between in vivo imaging and the tumor microenvironment. However, there is no quantitative comparison of the simulation results with the real PET measurements yet. The lack of experimental support hampers further applications of computational simulation models. This study aims to compare the simulation results with a preclinical [ 18 F]FMISO PET study and to optimize the reaction-diffusion model accordingly. Nude mice with xenografted human squamous cell carcinomas (CAL33) were investigated with a 2 h dynamic [ 18 F]FMISO PET followed by immunofluorescence staining using the hypoxia marker pimonidazole and the endothelium marker CD 31. A large data pool of tumor time-activity curves (TAC) was simulated for each mouse by feeding the arterial input function (AIF) extracted from experiments into the model with different configurations of the tumor microenvironment. A measured TAC was considered to match a simulated TAC when the difference metric was below a certain, noise-dependent threshold. As an extension to the well-established Kelly model, a flow-limited oxygen-dependent (FLOD) model was developed to improve the matching between measurements and simulations. The matching rate between the simulated TACs of the Kelly model and the mouse PET data ranged from 0 to 28.1% (on average 9.8%). By modifying the Kelly model to an FLOD model, the matching rate between the simulation and the PET measurements could be improved to 41.2-84.8% (on average 64.4%). Using a simulation data pool and a matching strategy, we were able to compare the simulated temporal course of dynamic PET with in vivo measurements. By modifying the Kelly model to a FLOD model, the computational simulation was able to approach the dynamic [ 18 F]FMISO measurements in the investigated tumors.
Application of simulation models for the optimization of business processes
NASA Astrophysics Data System (ADS)
Jašek, Roman; Sedláček, Michal; Chramcov, Bronislav; Dvořák, Jiří
2016-06-01
The paper deals with the applications of modeling and simulation tools in the optimization of business processes, especially in solving an optimization of signal flow in security company. As a modeling tool was selected Simul8 software that is used to process modeling based on discrete event simulation and which enables the creation of a visual model of production and distribution processes.
Validation of Potential Models for Li2O in Classical Molecular Dynamics Simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oda, Takuji; Oya, Yasuhisa; Tanaka, Satoru
2007-08-01
Four Buckingham-type pairwise potential models for Li2O were assessed by molecular static and dynamics simulations. In the static simulation, all models afforded acceptable agreement with experimental values and ab initio calculation results for the crystalline properties. Moreover, the superionic phase transition was realized in the dynamics simulation. However, the Li diffusivity and the lattice expansion were not adequately reproduced at the same time by any model. When using these models in future radiation simulation, these features should be taken into account, in order to reduce the model dependency of the results.
A Comparison of Three Approaches to Model Human Behavior
NASA Astrophysics Data System (ADS)
Palmius, Joel; Persson-Slumpi, Thomas
2010-11-01
One way of studying social processes is through the use of simulations. The use of simulations for this purpose has been established as its own field, social simulations, and has been used for studying a variety of phenomena. A simulation of a social setting can serve as an aid for thinking about that social setting, and for experimenting with different parameters and studying the outcomes caused by them. When using the simulation as an aid for thinking and experimenting, the chosen simulation approach will implicitly steer the simulationist towards thinking in a certain fashion in order to fit the model. To study the implications of model choice on the understanding of a setting where human anticipation comes into play, a simulation scenario of a coffee room was constructed using three different simulation approaches: Cellular Automata, Systems Dynamics and Agent-based modeling. The practical implementations of the models were done in three different simulation packages: Stella for Systems Dynamic, CaFun for Cellular automata and SesAM for Agent-based modeling. The models were evaluated both using Randers' criteria for model evaluation, and through introspection where the authors reflected upon how their understanding of the scenario was steered through the model choice. Further the software used for implementing the simulation models was evaluated, and practical considerations for the choice of software package are listed. It is concluded that the models have very different strengths. The Agent-based modeling approach offers the most intuitive support for thinking about and modeling a social setting where the behavior of the individual is in focus. The Systems Dynamics model would be preferable in situations where populations and large groups would be studied as wholes, but where individual behavior is of less concern. The Cellular Automata models would be preferable where processes need to be studied from the basis of a small set of very simple rules. It is further concluded that in most social simulation settings the Agent-based modeling approach would be the probable choice. This since the other models does not offer much in the way of supporting the modeling of the anticipatory behavior of humans acting in an organization.
Shuttle operations simulation model programmers'/users' manual
NASA Technical Reports Server (NTRS)
Porter, D. G.
1972-01-01
The prospective user of the shuttle operations simulation (SOS) model is given sufficient information to enable him to perform simulation studies of the space shuttle launch-to-launch operations cycle. The procedures used for modifying the SOS model to meet user requirements are described. The various control card sequences required to execute the SOS model are given. The report is written for users with varying computer simulation experience. A description of the components of the SOS model is included that presents both an explanation of the logic involved in the simulation of the shuttle operations cycle and a description of the routines used to support the actual simulation.
A mathematical simulation model of the CH-47B helicopter, volume 1
NASA Technical Reports Server (NTRS)
Weber, J. M.; Liu, T. Y.; Chung, W.
1984-01-01
A nonlinear simulation model of the CH-47B helicopter was adapted for use in the NASA Ames Research Center (ARC) simulation facility. The model represents the specific configuration of the ARC variable stability CH-47B helicopter and will be used in ground simulation research and to expedite and verify flight experiment design. Modeling of the helicopter uses a total force approach in six rigid body degrees of freedom. Rotor dynamics are simulated using the Wheatlely-Bailey equations including steady-state flapping dynamics. Also included in the model is the option for simulation of external suspension, slung-load equations of motion.
NASA Technical Reports Server (NTRS)
Fortenbaugh, R. L.
1980-01-01
A mathematical model of a high performance airplane capable of vertical attitude takeoff and landing (VATOL) was developed. An off line digital simulation program incorporating this model was developed to provide trim conditions and dynamic check runs for the piloted simulation studies and support dynamic analyses of proposed VATOL configuration and flight control concepts. Development details for the various simulation component models and the application of the off line simulation program, Vertical Attitude Take-Off and Landing Simulation (VATLAS), to develop a baseline control system for the Vought SF-121 VATOL airplane concept are described.
Sun, Mingzhu; Xu, Hui; Zeng, Xingjuan; Zhao, Xin
2017-01-01
There are various fantastic biological phenomena in biological pattern formation. Mathematical modeling using reaction-diffusion partial differential equation systems is employed to study the mechanism of pattern formation. However, model parameter selection is both difficult and time consuming. In this paper, a visual feedback simulation framework is proposed to calculate the parameters of a mathematical model automatically based on the basic principle of feedback control. In the simulation framework, the simulation results are visualized, and the image features are extracted as the system feedback. Then, the unknown model parameters are obtained by comparing the image features of the simulation image and the target biological pattern. Considering two typical applications, the visual feedback simulation framework is applied to fulfill pattern formation simulations for vascular mesenchymal cells and lung development. In the simulation framework, the spot, stripe, labyrinthine patterns of vascular mesenchymal cells, the normal branching pattern and the branching pattern lacking side branching for lung branching are obtained in a finite number of iterations. The simulation results indicate that it is easy to achieve the simulation targets, especially when the simulation patterns are sensitive to the model parameters. Moreover, this simulation framework can expand to other types of biological pattern formation. PMID:28225811
Sun, Mingzhu; Xu, Hui; Zeng, Xingjuan; Zhao, Xin
2017-01-01
There are various fantastic biological phenomena in biological pattern formation. Mathematical modeling using reaction-diffusion partial differential equation systems is employed to study the mechanism of pattern formation. However, model parameter selection is both difficult and time consuming. In this paper, a visual feedback simulation framework is proposed to calculate the parameters of a mathematical model automatically based on the basic principle of feedback control. In the simulation framework, the simulation results are visualized, and the image features are extracted as the system feedback. Then, the unknown model parameters are obtained by comparing the image features of the simulation image and the target biological pattern. Considering two typical applications, the visual feedback simulation framework is applied to fulfill pattern formation simulations for vascular mesenchymal cells and lung development. In the simulation framework, the spot, stripe, labyrinthine patterns of vascular mesenchymal cells, the normal branching pattern and the branching pattern lacking side branching for lung branching are obtained in a finite number of iterations. The simulation results indicate that it is easy to achieve the simulation targets, especially when the simulation patterns are sensitive to the model parameters. Moreover, this simulation framework can expand to other types of biological pattern formation.
Simulation Experiment Description Markup Language (SED-ML) Level 1 Version 3 (L1V3).
Bergmann, Frank T; Cooper, Jonathan; König, Matthias; Moraru, Ion; Nickerson, David; Le Novère, Nicolas; Olivier, Brett G; Sahle, Sven; Smith, Lucian; Waltemath, Dagmar
2018-03-19
The creation of computational simulation experiments to inform modern biological research poses challenges to reproduce, annotate, archive, and share such experiments. Efforts such as SBML or CellML standardize the formal representation of computational models in various areas of biology. The Simulation Experiment Description Markup Language (SED-ML) describes what procedures the models are subjected to, and the details of those procedures. These standards, together with further COMBINE standards, describe models sufficiently well for the reproduction of simulation studies among users and software tools. The Simulation Experiment Description Markup Language (SED-ML) is an XML-based format that encodes, for a given simulation experiment, (i) which models to use; (ii) which modifications to apply to models before simulation; (iii) which simulation procedures to run on each model; (iv) how to post-process the data; and (v) how these results should be plotted and reported. SED-ML Level 1 Version 1 (L1V1) implemented support for the encoding of basic time course simulations. SED-ML L1V2 added support for more complex types of simulations, specifically repeated tasks and chained simulation procedures. SED-ML L1V3 extends L1V2 by means to describe which datasets and subsets thereof to use within a simulation experiment.
Reactive transport of metal contaminants in alluvium - Model comparison and column simulation
Brown, J.G.; Bassett, R.L.; Glynn, P.D.
2000-01-01
A comparative assessment of two reactive-transport models, PHREEQC and HYDROGEOCHEM (HGC), was done to determine the suitability of each for simulating the movement of acidic contamination in alluvium. For simulations that accounted for aqueous complexation, precipitation and dissolution, the breakthrough and rinseout curves generated by each model were similar. The differences in simulated equilibrium concentrations between models were minor and were related to (1) different units in model output, (2) different activity coefficients, and (3) ionic-strength calculations. When adsorption processes were added to the models, the rinseout pH simulated by PHREEQC using the diffuse double-layer adsorption model rose to a pH of 6 after pore volume 15, about 1 pore volume later than the pH simulated by HGC using the constant-capacitance model. In PHREEQC simulation of a laboratory column experiment, the inability of the model to match measured outflow concentrations of selected constituents was related to the evident lack of local geochemical equilibrium in the column. The difference in timing and size of measured and simulated breakthrough of selected constituents indicated that the redox and adsorption reactions in the column occurred slowly when compared with the modeled reactions. MINTEQA2 and PHREEQC simulations of the column experiment indicated that the number of surface sites that took part in adsorption reactions was less than that estimated from the measured concentration of Fe hydroxide in the alluvium.
Virtual Observation System for Earth System Model: An Application to ACME Land Model Simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Dali; Yuan, Fengming; Hernandez, Benjamin
Investigating and evaluating physical-chemical-biological processes within an Earth system model (EMS) can be very challenging due to the complexity of both model design and software implementation. A virtual observation system (VOS) is presented to enable interactive observation of these processes during system simulation. Based on advance computing technologies, such as compiler-based software analysis, automatic code instrumentation, and high-performance data transport, the VOS provides run-time observation capability, in-situ data analytics for Earth system model simulation, model behavior adjustment opportunities through simulation steering. A VOS for a terrestrial land model simulation within the Accelerated Climate Modeling for Energy model is also presentedmore » to demonstrate the implementation details and system innovations.« less
Virtual Observation System for Earth System Model: An Application to ACME Land Model Simulations
Wang, Dali; Yuan, Fengming; Hernandez, Benjamin; ...
2017-01-01
Investigating and evaluating physical-chemical-biological processes within an Earth system model (EMS) can be very challenging due to the complexity of both model design and software implementation. A virtual observation system (VOS) is presented to enable interactive observation of these processes during system simulation. Based on advance computing technologies, such as compiler-based software analysis, automatic code instrumentation, and high-performance data transport, the VOS provides run-time observation capability, in-situ data analytics for Earth system model simulation, model behavior adjustment opportunities through simulation steering. A VOS for a terrestrial land model simulation within the Accelerated Climate Modeling for Energy model is also presentedmore » to demonstrate the implementation details and system innovations.« less
Simulation Framework for Teaching in Modeling and Simulation Areas
ERIC Educational Resources Information Center
De Giusti, Marisa Raquel; Lira, Ariel Jorge; Villarreal, Gonzalo Lujan
2008-01-01
Simulation is the process of executing a model that describes a system with enough detail; this model has its entities, an internal state, some input and output variables and a list of processes bound to these variables. Teaching a simulation language such as general purpose simulation system (GPSS) is always a challenge, because of the way it…
NASA Astrophysics Data System (ADS)
Hoepfer, Matthias
Over the last two decades, computer modeling and simulation have evolved as the tools of choice for the design and engineering of dynamic systems. With increased system complexities, modeling and simulation become essential enablers for the design of new systems. Some of the advantages that modeling and simulation-based system design allows for are the replacement of physical tests to ensure product performance, reliability and quality, the shortening of design cycles due to the reduced need for physical prototyping, the design for mission scenarios, the invoking of currently nonexisting technologies, and the reduction of technological and financial risks. Traditionally, dynamic systems are modeled in a monolithic way. Such monolithic models include all the data, relations and equations necessary to represent the underlying system. With increased complexity of these models, the monolithic model approach reaches certain limits regarding for example, model handling and maintenance. Furthermore, while the available computer power has been steadily increasing according to Moore's Law (a doubling in computational power every 10 years), the ever-increasing complexities of new models have negated the increased resources available. Lastly, modern systems and design processes are interdisciplinary, enforcing the necessity to make models more flexible to be able to incorporate different modeling and design approaches. The solution to bypassing the shortcomings of monolithic models is cosimulation. In a very general sense, co-simulation addresses the issue of linking together different dynamic sub-models to a model which represents the overall, integrated dynamic system. It is therefore an important enabler for the design of interdisciplinary, interconnected, highly complex dynamic systems. While a basic co-simulation setup can be very easy, complications can arise when sub-models display behaviors such as algebraic loops, singularities, or constraints. This work frames the co-simulation approach to modeling and simulation. It lays out the general approach to dynamic system co-simulation, and gives a comprehensive overview of what co-simulation is and what it is not. It creates a taxonomy of the requirements and limits of co-simulation, and the issues arising with co-simulating sub-models. Possible solutions towards resolving the stated problems are investigated to a certain depth. A particular focus is given to the issue of time stepping. It will be shown that for dynamic models, the selection of the simulation time step is a crucial issue with respect to computational expense, simulation accuracy, and error control. The reasons for this are discussed in depth, and a time stepping algorithm for co-simulation with unknown dynamic sub-models is proposed. Motivations and suggestions for the further treatment of selected issues are presented.
Advanced Modeling, Simulation and Analysis (AMSA) Capability Roadmap Progress Review
NASA Technical Reports Server (NTRS)
Antonsson, Erik; Gombosi, Tamas
2005-01-01
Contents include the following: NASA capability roadmap activity. Advanced modeling, simulation, and analysis overview. Scientific modeling and simulation. Operations modeling. Multi-special sensing (UV-gamma). System integration. M and S Environments and Infrastructure.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-30
... remain subject to USML control are modeling or simulation tools that model or simulate the environments... USML revision process, the public is asked to provide specific examples of nuclear-related items whose...) Modeling or simulation tools that model or simulate the environments generated by nuclear detonations or...
Detonation initiation in a model of explosive: Comparative atomistic and hydrodynamics simulations
NASA Astrophysics Data System (ADS)
Murzov, S. A.; Sergeev, O. V.; Dyachkov, S. A.; Egorova, M. S.; Parshikov, A. N.; Zhakhovsky, V. V.
2016-11-01
Here we extend consistent simulations to reactive materials by the example of AB model explosive. The kinetic model of chemical reactions observed in a molecular dynamics (MD) simulation of self-sustained detonation wave can be used in hydrodynamic simulation of detonation initiation. Kinetic coefficients are obtained by minimization of difference between profiles of species calculated from the kinetic model and observed in MD simulations of isochoric thermal decomposition with a help of downhill simplex method combined with random walk in multidimensional space of fitting kinetic model parameters.
Modeling and Simulation of U-tube Steam Generator
NASA Astrophysics Data System (ADS)
Zhang, Mingming; Fu, Zhongguang; Li, Jinyao; Wang, Mingfei
2018-03-01
The U-tube natural circulation steam generator was mainly researched with modeling and simulation in this article. The research is based on simuworks system simulation software platform. By analyzing the structural characteristics and the operating principle of U-tube steam generator, there are 14 control volumes in the model, including primary side, secondary side, down channel and steam plenum, etc. The model depends completely on conservation laws, and it is applied to make some simulation tests. The results show that the model is capable of simulating properly the dynamic response of U-tube steam generator.
Wong, William W L; Feng, Zeny Z; Thein, Hla-Hla
2016-11-01
Agent-based models (ABMs) are computer simulation models that define interactions among agents and simulate emergent behaviors that arise from the ensemble of local decisions. ABMs have been increasingly used to examine trends in infectious disease epidemiology. However, the main limitation of ABMs is the high computational cost for a large-scale simulation. To improve the computational efficiency for large-scale ABM simulations, we built a parallelizable sliding region algorithm (SRA) for ABM and compared it to a nonparallelizable ABM. We developed a complex agent network and performed two simulations to model hepatitis C epidemics based on the real demographic data from Saskatchewan, Canada. The first simulation used the SRA that processed on each postal code subregion subsequently. The second simulation processed the entire population simultaneously. It was concluded that the parallelizable SRA showed computational time saving with comparable results in a province-wide simulation. Using the same method, SRA can be generalized for performing a country-wide simulation. Thus, this parallel algorithm enables the possibility of using ABM for large-scale simulation with limited computational resources.
1D-3D hybrid modeling-from multi-compartment models to full resolution models in space and time.
Grein, Stephan; Stepniewski, Martin; Reiter, Sebastian; Knodel, Markus M; Queisser, Gillian
2014-01-01
Investigation of cellular and network dynamics in the brain by means of modeling and simulation has evolved into a highly interdisciplinary field, that uses sophisticated modeling and simulation approaches to understand distinct areas of brain function. Depending on the underlying complexity, these models vary in their level of detail, in order to cope with the attached computational cost. Hence for large network simulations, single neurons are typically reduced to time-dependent signal processors, dismissing the spatial aspect of each cell. For single cell or networks with relatively small numbers of neurons, general purpose simulators allow for space and time-dependent simulations of electrical signal processing, based on the cable equation theory. An emerging field in Computational Neuroscience encompasses a new level of detail by incorporating the full three-dimensional morphology of cells and organelles into three-dimensional, space and time-dependent, simulations. While every approach has its advantages and limitations, such as computational cost, integrated and methods-spanning simulation approaches, depending on the network size could establish new ways to investigate the brain. In this paper we present a hybrid simulation approach, that makes use of reduced 1D-models using e.g., the NEURON simulator-which couples to fully resolved models for simulating cellular and sub-cellular dynamics, including the detailed three-dimensional morphology of neurons and organelles. In order to couple 1D- and 3D-simulations, we present a geometry-, membrane potential- and intracellular concentration mapping framework, with which graph- based morphologies, e.g., in the swc- or hoc-format, are mapped to full surface and volume representations of the neuron and computational data from 1D-simulations can be used as boundary conditions for full 3D simulations and vice versa. Thus, established models and data, based on general purpose 1D-simulators, can be directly coupled to the emerging field of fully resolved, highly detailed 3D-modeling approaches. We present the developed general framework for 1D/3D hybrid modeling and apply it to investigate electrically active neurons and their intracellular spatio-temporal calcium dynamics.
Performance evaluation of an agent-based occupancy simulation model
Luo, Xuan; Lam, Khee Poh; Chen, Yixing; ...
2017-01-17
Occupancy is an important factor driving building performance. Static and homogeneous occupant schedules, commonly used in building performance simulation, contribute to issues such as performance gaps between simulated and measured energy use in buildings. Stochastic occupancy models have been recently developed and applied to better represent spatial and temporal diversity of occupants in buildings. However, there is very limited evaluation of the usability and accuracy of these models. This study used measured occupancy data from a real office building to evaluate the performance of an agent-based occupancy simulation model: the Occupancy Simulator. The occupancy patterns of various occupant types weremore » first derived from the measured occupant schedule data using statistical analysis. Then the performance of the simulation model was evaluated and verified based on (1) whether the distribution of observed occupancy behavior patterns follows the theoretical ones included in the Occupancy Simulator, and (2) whether the simulator can reproduce a variety of occupancy patterns accurately. Results demonstrated the feasibility of applying the Occupancy Simulator to simulate a range of occupancy presence and movement behaviors for regular types of occupants in office buildings, and to generate stochastic occupant schedules at the room and individual occupant levels for building performance simulation. For future work, model validation is recommended, which includes collecting and using detailed interval occupancy data of all spaces in an office building to validate the simulated occupant schedules from the Occupancy Simulator.« less
Performance evaluation of an agent-based occupancy simulation model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Xuan; Lam, Khee Poh; Chen, Yixing
Occupancy is an important factor driving building performance. Static and homogeneous occupant schedules, commonly used in building performance simulation, contribute to issues such as performance gaps between simulated and measured energy use in buildings. Stochastic occupancy models have been recently developed and applied to better represent spatial and temporal diversity of occupants in buildings. However, there is very limited evaluation of the usability and accuracy of these models. This study used measured occupancy data from a real office building to evaluate the performance of an agent-based occupancy simulation model: the Occupancy Simulator. The occupancy patterns of various occupant types weremore » first derived from the measured occupant schedule data using statistical analysis. Then the performance of the simulation model was evaluated and verified based on (1) whether the distribution of observed occupancy behavior patterns follows the theoretical ones included in the Occupancy Simulator, and (2) whether the simulator can reproduce a variety of occupancy patterns accurately. Results demonstrated the feasibility of applying the Occupancy Simulator to simulate a range of occupancy presence and movement behaviors for regular types of occupants in office buildings, and to generate stochastic occupant schedules at the room and individual occupant levels for building performance simulation. For future work, model validation is recommended, which includes collecting and using detailed interval occupancy data of all spaces in an office building to validate the simulated occupant schedules from the Occupancy Simulator.« less
Validation of the SimSET simulation package for modeling the Siemens Biograph mCT PET scanner
NASA Astrophysics Data System (ADS)
Poon, Jonathan K.; Dahlbom, Magnus L.; Casey, Michael E.; Qi, Jinyi; Cherry, Simon R.; Badawi, Ramsey D.
2015-02-01
Monte Carlo simulation provides a valuable tool in performance assessment and optimization of system design parameters for PET scanners. SimSET is a popular Monte Carlo simulation toolkit that features fast simulation time, as well as variance reduction tools to further enhance computational efficiency. However, SimSET has lacked the ability to simulate block detectors until its most recent release. Our goal is to validate new features of SimSET by developing a simulation model of the Siemens Biograph mCT PET scanner and comparing the results to a simulation model developed in the GATE simulation suite and to experimental results. We used the NEMA NU-2 2007 scatter fraction, count rates, and spatial resolution protocols to validate the SimSET simulation model and its new features. The SimSET model overestimated the experimental results of the count rate tests by 11-23% and the spatial resolution test by 13-28%, which is comparable to previous validation studies of other PET scanners in the literature. The difference between the SimSET and GATE simulation was approximately 4-8% for the count rate test and approximately 3-11% for the spatial resolution test. In terms of computational time, SimSET performed simulations approximately 11 times faster than GATE simulations. The new block detector model in SimSET offers a fast and reasonably accurate simulation toolkit for PET imaging applications.
Spin-up simulation behaviors in a climate model to build a basement of long-time simulation
NASA Astrophysics Data System (ADS)
Lee, J.; Xue, Y.; De Sales, F.
2015-12-01
It is essential to develop start-up information when conducting long-time climate simulation. In case that the initial condition is already available from the previous simulation of same type model this does not necessary; however, if not, model needs spin-up simulation to have adjusted and balanced initial condition with the model climatology. Otherwise, a severe spin may take several years. Some of model variables such as deep soil temperature fields and temperature in ocean deep layers in initial fields would affect model's further long-time simulation due to their long residual memories. To investigate the important factor for spin-up simulation in producing an atmospheric initial condition, we had conducted two different spin-up simulations when no atmospheric condition is available from exist datasets. One simulation employed atmospheric global circulation model (AGCM), namely Global Forecast System (GFS) of National Center for Environmental Prediction (NCEP), while the other employed atmosphere-ocean coupled global circulation model (CGCM), namely Climate Forecast System (CFS) of NCEP. Both models share the atmospheric modeling part and only difference is in applying of ocean model coupling, which is conducted by Modular Ocean Model version 4 (MOM4) of Geophysical Fluid Dynamics Laboratory (GFDL) in CFS. During a decade of spin-up simulation, prescribed sea-surface temperature (SST) fields of target year is forced to the GFS daily basis, while CFS digested only first time step ocean condition and freely iterated for the rest of the period. Both models were forced by CO2 condition and solar constant given from the target year. Our analyses of spin-up simulation results indicate that freely conducted interaction between the ocean and the atmosphere is more helpful to produce the initial condition for the target year rather than produced by fixed SST forcing. Since the GFS used prescribed forcing exactly given from the target year, this result is unexpected. The detail analysis will be discussed in this presentation.
NASA Astrophysics Data System (ADS)
Lee, Hoon Hee; Koo, Cheol Hea; Moon, Sung Tae; Han, Sang Hyuck; Ju, Gwang Hyeok
2013-08-01
The conceptual study for Korean lunar orbiter/lander prototype has been performed in Korea Aerospace Research Institute (KARI). Across diverse space programs around European countries, a variety of simulation application has been developed using SMP2 (Simulation Modelling Platform) standard related to portability and reuse of simulation models by various model users. KARI has not only first-hand experience of a development of SMP compatible simulation environment but also an ongoing study to apply the SMP2 development process of simulation model to a simulator development project for lunar missions. KARI has tried to extend the coverage of the development domain based on SMP2 standard across the whole simulation model life-cycle from software design to its validation through a lunar exploration project. Figure. 1 shows a snapshot from a visualization tool for the simulation of lunar lander motion. In reality, a demonstrator prototype on the right-hand side of image was made and tested in 2012. In an early phase of simulator development prior to a kick-off start in the near future, targeted hardware to be modelled has been investigated and indentified at the end of 2012. The architectural breakdown of the lunar simulator at system level was performed and the architecture with a hierarchical tree of models from the system to parts at lower level has been established. Finally, SMP Documents such as Catalogue, Assembly, Schedule and so on were converted using a XML(eXtensible Mark-up Language) converter. To obtain benefits of the suggested approaches and design mechanisms in SMP2 standard as far as possible, the object-oriented and component-based design concepts were strictly chosen throughout a whole model development process.
Evaluation of Three Models for Simulating Pesticide Runoff from Irrigated Agricultural Fields.
Zhang, Xuyang; Goh, Kean S
2015-11-01
Three models were evaluated for their accuracy in simulating pesticide runoff at the edge of agricultural fields: Pesticide Root Zone Model (PRZM), Root Zone Water Quality Model (RZWQM), and OpusCZ. Modeling results on runoff volume, sediment erosion, and pesticide loss were compared with measurements taken from field studies. Models were also compared on their theoretical foundations and ease of use. For runoff events generated by sprinkler irrigation and rainfall, all models performed equally well with small errors in simulating water, sediment, and pesticide runoff. The mean absolute percentage errors (MAPEs) were between 3 and 161%. For flood irrigation, OpusCZ simulated runoff and pesticide mass with the highest accuracy, followed by RZWQM and PRZM, likely owning to its unique hydrological algorithm for runoff simulations during flood irrigation. Simulation results from cold model runs by OpusCZ and RZWQM using measured values for model inputs matched closely to the observed values. The MAPE ranged from 28 to 384 and 42 to 168% for OpusCZ and RZWQM, respectively. These satisfactory model outputs showed the models' abilities in mimicking reality. Theoretical evaluations indicated that OpusCZ and RZWQM use mechanistic approaches for hydrology simulation, output data on a subdaily time-step, and were able to simulate management practices and subsurface flow via tile drainage. In contrast, PRZM operates at daily time-step and simulates surface runoff using the USDA Soil Conservation Service's curve number method. Among the three models, OpusCZ and RZWQM were suitable for simulating pesticide runoff in semiarid areas where agriculture is heavily dependent on irrigation. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Simulations and Evaluation of Mesoscale Convective Systems in a Multi-scale Modeling Framework (MMF)
NASA Astrophysics Data System (ADS)
Chern, J. D.; Tao, W. K.
2017-12-01
It is well known that the mesoscale convective systems (MCS) produce more than 50% of rainfall in most tropical regions and play important roles in regional and global water cycles. Simulation of MCSs in global and climate models is a very challenging problem. Typical MCSs have horizontal scale of a few hundred kilometers. Models with a domain of several hundred kilometers and fine enough resolution to properly simulate individual clouds are required to realistically simulate MCSs. The multiscale modeling framework (MMF), which replaces traditional cloud parameterizations with cloud-resolving models (CRMs) within a host atmospheric general circulation model (GCM), has shown some capabilities of simulating organized MCS-like storm signals and propagations. However, its embedded CRMs typically have small domain (less than 128 km) and coarse resolution ( 4 km) that cannot realistically simulate MCSs and individual clouds. In this study, a series of simulations were performed using the Goddard MMF. The impacts of the domain size and model grid resolution of the embedded CRMs on simulating MCSs are examined. The changes of cloud structure, occurrence, and properties such as cloud types, updraft and downdraft, latent heating profile, and cold pool strength in the embedded CRMs are examined in details. The simulated MCS characteristics are evaluated against satellite measurements using the Goddard Satellite Data Simulator Unit. The results indicate that embedded CRMs with large domain and fine resolution tend to produce better simulations compared to those simulations with typical MMF configuration (128 km domain size and 4 km model grid spacing).
Simulating the IPOD, East Asian summer monsoon, and their relationships in CMIP5
NASA Astrophysics Data System (ADS)
Yu, Miao; Li, Jianping; Zheng, Fei; Wang, Xiaofan; Zheng, Jiayu
2018-03-01
This paper evaluates the simulation performance of the 37 coupled models from the Coupled Model Intercomparison Project Phase 5 (CMIP5) with respect to the East Asian summer monsoon (EASM) and the Indo-Pacific warm pool and North Pacific Ocean dipole (IPOD) and also the interrelationships between them. The results show that the majority of the models are unable to accurately simulate the interannual variability and long-term trends of the EASM, and their simulations of the temporal and spatial variations of the IPOD are also limited. Further analysis showed that the correlation coefficients between the simulated and observed EASM index (EASMI) is proportional to those between the simulated and observed IPOD index (IPODI); that is, if the models have skills to simulate one of them then they will likely generate good simulations of another. Based on the above relationship, this paper proposes a conditional multi-model ensemble method (CMME) that eliminates those models without capability to simulate the IPOD and EASM when calculating the multi-model ensemble (MME). The analysis shows that, compared with the MME, this CMME method can significantly improve the simulations of the spatial and temporal variations of both the IPOD and EASM as well as their interrelationship, suggesting the potential for the CMME approach to be used in place of the MME method.
An ocular biomechanic model for dynamic simulation of different eye movements.
Iskander, J; Hossny, M; Nahavandi, S; Del Porto, L
2018-04-11
Simulating and analysing eye movement is useful for assessing visual system contribution to discomfort with respect to body movements, especially in virtual environments where simulation sickness might occur. It can also be used in the design of eye prosthesis or humanoid robot eye. In this paper, we present two biomechanic ocular models that are easily integrated into the available musculoskeletal models. The model was previously used to simulate eye-head coordination. The models are used to simulate and analyse eye movements. The proposed models are based on physiological and kinematic properties of the human eye. They incorporate an eye-globe, orbital suspension tissues and six muscles with their connective tissues (pulleys). Pulleys were incorporated in rectus and inferior oblique muscles. The two proposed models are the passive pulleys and the active pulleys models. Dynamic simulations of different eye movements, including fixation, saccade and smooth pursuit, are performed to validate both models. The resultant force-length curves of the models were similar to the experimental data. The simulation results show that the proposed models are suitable to generate eye movement simulations with results comparable to other musculoskeletal models. The maximum kinematic root mean square error (RMSE) is 5.68° and 4.35° for the passive and active pulley models, respectively. The analysis of the muscle forces showed realistic muscle activation with increased muscle synergy in the active pulley model. Copyright © 2018 Elsevier Ltd. All rights reserved.
Hybrid Reynolds-Averaged/Large Eddy Simulation of the Flow in a Model SCRamjet Cavity Flameholder
NASA Technical Reports Server (NTRS)
Baurle, R. A.
2016-01-01
Steady-state and scale-resolving simulations have been performed for flow in and around a model scramjet combustor flameholder. Experimental data available for this configuration include velocity statistics obtained from particle image velocimetry. Several turbulence models were used for the steady-state Reynolds-averaged simulations which included both linear and non-linear eddy viscosity models. The scale-resolving simulations used a hybrid Reynolds-averaged/large eddy simulation strategy that is designed to be a large eddy simulation everywhere except in the inner portion (log layer and below) of the boundary layer. Hence, this formulation can be regarded as a wall-modeled large eddy simulation. This e ort was undertaken to not only assess the performance of the hybrid Reynolds-averaged / large eddy simulation modeling approach in a flowfield of interest to the scramjet research community, but to also begin to understand how this capability can best be used to augment standard Reynolds-averaged simulations. The numerical errors were quantified for the steady-state simulations, and at least qualitatively assessed for the scale-resolving simulations prior to making any claims of predictive accuracy relative to the measurements. The steady-state Reynolds-averaged results displayed a high degree of variability when comparing the flameholder fuel distributions obtained from each turbulence model. This prompted the consideration of applying the higher-fidelity scale-resolving simulations as a surrogate "truth" model to calibrate the Reynolds-averaged closures in a non-reacting setting prior to their use for the combusting simulations. In general, the Reynolds-averaged velocity profile predictions at the lowest fueling level matched the particle imaging measurements almost as well as was observed for the non-reacting condition. However, the velocity field predictions proved to be more sensitive to the flameholder fueling rate than was indicated in the measurements.
Longitudinal train dynamics model for a rail transit simulation system
Wang, Jinghui; Rakha, Hesham A.
2018-01-01
The paper develops a longitudinal train dynamics model in support of microscopic railway transportation simulation. The model can be calibrated without any mechanical data making it ideal for implementation in transportation simulators. The calibration and validation work is based on data collected from the Portland light rail train fleet. The calibration procedure is mathematically formulated as a constrained non-linear optimization problem. The validity of the model is assessed by comparing instantaneous model predictions against field observations, and also evaluated in the domains of acceleration/deceleration versus speed and acceleration/deceleration versus distance. A test is conducted to investigate the adequacy of themore » model in simulation implementation. The results demonstrate that the proposed model can adequately capture instantaneous train dynamics, and provides good performance in the simulation test. Thus, the model provides a simple theoretical foundation for microscopic simulators and will significantly support the planning, management and control of railway transportation systems.« less
Longitudinal train dynamics model for a rail transit simulation system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jinghui; Rakha, Hesham A.
The paper develops a longitudinal train dynamics model in support of microscopic railway transportation simulation. The model can be calibrated without any mechanical data making it ideal for implementation in transportation simulators. The calibration and validation work is based on data collected from the Portland light rail train fleet. The calibration procedure is mathematically formulated as a constrained non-linear optimization problem. The validity of the model is assessed by comparing instantaneous model predictions against field observations, and also evaluated in the domains of acceleration/deceleration versus speed and acceleration/deceleration versus distance. A test is conducted to investigate the adequacy of themore » model in simulation implementation. The results demonstrate that the proposed model can adequately capture instantaneous train dynamics, and provides good performance in the simulation test. Thus, the model provides a simple theoretical foundation for microscopic simulators and will significantly support the planning, management and control of railway transportation systems.« less
Extended behavioural device modelling and circuit simulation with Qucs-S
NASA Astrophysics Data System (ADS)
Brinson, M. E.; Kuznetsov, V.
2018-03-01
Current trends in circuit simulation suggest a growing interest in open source software that allows access to more than one simulation engine while simultaneously supporting schematic drawing tools, behavioural Verilog-A and XSPICE component modelling, and output data post-processing. This article introduces a number of new features recently implemented in the 'Quite universal circuit simulator - SPICE variant' (Qucs-S), including structure and fundamental schematic capture algorithms, at the same time highlighting their use in behavioural semiconductor device modelling. Particular importance is placed on the interaction between Qucs-S schematics, equation-defined devices, SPICE B behavioural sources and hardware description language (HDL) scripts. The multi-simulator version of Qucs is a freely available tool that offers extended modelling and simulation features compared to those provided by legacy circuit simulators. The performance of a number of Qucs-S modelling extensions are demonstrated with a GaN HEMT compact device model and data obtained from tests using the Qucs-S/Ngspice/Xyce ©/SPICE OPUS multi-engine circuit simulator.
InterSpread Plus: a spatial and stochastic simulation model of disease in animal populations.
Stevenson, M A; Sanson, R L; Stern, M W; O'Leary, B D; Sujau, M; Moles-Benfell, N; Morris, R S
2013-04-01
We describe the spatially explicit, stochastic simulation model of disease spread, InterSpread Plus, in terms of its epidemiological framework, operation, and mode of use. The input data required by the model, the method for simulating contact and infection spread, and methods for simulating disease control measures are described. Data and parameters that are essential for disease simulation modelling using InterSpread Plus are distinguished from those that are non-essential, and it is suggested that a rational approach to simulating disease epidemics using this tool is to start with core data and parameters, adding additional layers of complexity if and when the specific requirements of the simulation exercise require it. We recommend that simulation models of disease are best developed as part of epidemic contingency planning so decision makers are familiar with model outputs and assumptions and are well-positioned to evaluate their strengths and weaknesses to make informed decisions in times of crisis. Copyright © 2012 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gigley, H.M.
1982-01-01
An artificial intelligence approach to the simulation of neurolinguistically constrained processes in sentence comprehension is developed using control strategies for simulation of cooperative computation in associative networks. The desirability of this control strategy in contrast to ATN and production system strategies is explained. A first pass implementation of HOPE, an artificial intelligence simulation model of sentence comprehension, constrained by studies of aphasic performance, psycholinguistics, neurolinguistics, and linguistic theory is described. Claims that the model could serve as a basis for sentence production simulation and for a model of language acquisition as associative learning are discussed. HOPE is a model thatmore » performs in a normal state and includes a lesion simulation facility. HOPE is also a research tool. Its modifiability and use as a tool to investigate hypothesized causes of degradation in comprehension performance by aphasic patients are described. Issues of using behavioral constraints in modelling and obtaining appropriate data for simulated process modelling are discussed. Finally, problems of validation of the simulation results are raised; and issues of how to interpret clinical results to define the evolution of the model are discussed. Conclusions with respect to the feasibility of artificial intelligence simulation process modelling are discussed based on the current state of research.« less
Effects of water-management alternatives on streamflow in the Ipswich River basin, Massachusetts
Zarriello, Philip J.
2001-01-01
Management alternatives that could help mitigate the effects of water withdrawals on streamflow in the Ipswich River Basin were evaluated by simulation with a calibrated Hydrologic Simulation Program--Fortran (HSPF) model. The effects of management alternatives on streamflow were simulated for a 35-year period (196195). Most alternatives examined increased low flows compared to the base simulation of average 1989-93 withdrawals. Only the simulation of no septic-effluent inflow, and the simulation of a 20-percent increase in withdrawals, further lowered flows or caused the river to stop flowing for longer periods of time than the simulation of average 198993 withdrawals. Simulations of reduced seasonal withdrawals by 20 percent, and by 50 percent, resulted in a modest increase in low flow in a critical habitat reach (model reach 8 near the Reading town well field); log-Pearson Type III analysis of simulated daily-mean flow indicated that under these reduced withdrawals, model reach 8 would stop flowing for a period of seven consecutive days about every other year, whereas under average 198993 withdrawals this reach would stop flowing for a seven consecutive day period almost every year. Simulations of no seasonal withdrawals, and simulations that stopped streamflow depletion when flow in model reach 19 was below 22 cubic feet per second, indicated flow would be maintained in model reach 8 at all times. Simulations indicated wastewater-return flows would augment low flow in proportion to the rate of return flow. Simulations of a 1.5 million gallons per day return flow rate indicated model reach 8 would stop flowing for a period of seven consecutive days about once every 5 years; simulated return flow rates of 1.1 million gallons per day indicated that model reach 8 would stop flowing for a period of seven consecutive days about every other year. Simulation of reduced seasonal withdrawals, combined with no septic effluent return flow, indicated only a slight increase in low flow compared to low flows simulated under average 198993 withdrawals. Simulation of reduced seasonal withdrawal, combined with 2.6 million gallons per day wastewater-return flows, provided more flow in model reach 8 than that simulated under no withdrawals.
Li, Min; Zhang, John Z H
2017-02-14
A recently developed two-bead multipole force field (TMFF) is employed in coarse-grained (CG) molecular dynamics (MD) simulation of proteins in combination with polarizable CG water models, the Martini polarizable water model, and modified big multipole water model. Significant improvement in simulated structures and dynamics of proteins is observed in terms of both the root-mean-square deviations (RMSDs) of the structures and residue root-mean-square fluctuations (RMSFs) from the native ones in the present simulation compared with the simulation result with Martini's non-polarizable water model. Our result shows that TMFF simulation using CG water models gives much stable secondary structures of proteins without the need for adding extra interaction potentials to constrain the secondary structures. Our result also shows that by increasing the MD time step from 2 fs to 6 fs, the RMSD and RMSF results are still in excellent agreement with those from all-atom simulations. The current study demonstrated clearly that the application of TMFF together with a polarizable CG water model significantly improves the accuracy and efficiency for CG simulation of proteins.
Protein simulation using coarse-grained two-bead multipole force field with polarizable water models
NASA Astrophysics Data System (ADS)
Li, Min; Zhang, John Z. H.
2017-02-01
A recently developed two-bead multipole force field (TMFF) is employed in coarse-grained (CG) molecular dynamics (MD) simulation of proteins in combination with polarizable CG water models, the Martini polarizable water model, and modified big multipole water model. Significant improvement in simulated structures and dynamics of proteins is observed in terms of both the root-mean-square deviations (RMSDs) of the structures and residue root-mean-square fluctuations (RMSFs) from the native ones in the present simulation compared with the simulation result with Martini's non-polarizable water model. Our result shows that TMFF simulation using CG water models gives much stable secondary structures of proteins without the need for adding extra interaction potentials to constrain the secondary structures. Our result also shows that by increasing the MD time step from 2 fs to 6 fs, the RMSD and RMSF results are still in excellent agreement with those from all-atom simulations. The current study demonstrated clearly that the application of TMFF together with a polarizable CG water model significantly improves the accuracy and efficiency for CG simulation of proteins.
NASA Astrophysics Data System (ADS)
Pearl, Thomas; Mantooth, Brent; Varady, Mark; Willis, Matthew
2014-03-01
Chemical warfare agent simulants are often used for environmental testing in place of highly toxic agents. This work sets the foundation for modeling decontamination of absorbing polymeric materials with the focus on determining relationships between agents and simulants. The correlations of agents to simulants must consider the three way interactions in the chemical-material-decontaminant system where transport and reaction occur in polymer materials. To this end, diffusion modeling of the subsurface transport of simulants and live chemical warfare agents was conducted for various polymer systems (e.g., paint coatings) with and without reaction pathways with applied decontamination. The models utilized 1D and 2D finite difference diffusion and reaction models to simulate absorption and reaction in the polymers, and subsequent flux of the chemicals out of the polymers. Experimental data including vapor flux measurements and dynamic contact angle measurements were used to determine model input parameters. Through modeling, an understanding of the relationship of simulant to live chemical warfare agent was established, focusing on vapor emission of agents and simulants from materials.
An agent-based stochastic Occupancy Simulator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Yixing; Hong, Tianzhen; Luo, Xuan
Occupancy has significant impacts on building performance. However, in current building performance simulation programs, occupancy inputs are static and lack diversity, contributing to discrepancies between the simulated and actual building performance. This work presents an Occupancy Simulator that simulates the stochastic behavior of occupant presence and movement in buildings, capturing the spatial and temporal occupancy diversity. Each occupant and each space in the building are explicitly simulated as an agent with their profiles of stochastic behaviors. The occupancy behaviors are represented with three types of models: (1) the status transition events (e.g., first arrival in office) simulated with probability distributionmore » model, (2) the random moving events (e.g., from one office to another) simulated with a homogeneous Markov chain model, and (3) the meeting events simulated with a new stochastic model. A hierarchical data model was developed for the Occupancy Simulator, which reduces the amount of data input by using the concepts of occupant types and space types. Finally, a case study of a small office building is presented to demonstrate the use of the Simulator to generate detailed annual sub-hourly occupant schedules for individual spaces and the whole building. The Simulator is a web application freely available to the public and capable of performing a detailed stochastic simulation of occupant presence and movement in buildings. Future work includes enhancements in the meeting event model, consideration of personal absent days, verification and validation of the simulated occupancy results, and expansion for use with residential buildings.« less
An agent-based stochastic Occupancy Simulator
Chen, Yixing; Hong, Tianzhen; Luo, Xuan
2017-06-01
Occupancy has significant impacts on building performance. However, in current building performance simulation programs, occupancy inputs are static and lack diversity, contributing to discrepancies between the simulated and actual building performance. This work presents an Occupancy Simulator that simulates the stochastic behavior of occupant presence and movement in buildings, capturing the spatial and temporal occupancy diversity. Each occupant and each space in the building are explicitly simulated as an agent with their profiles of stochastic behaviors. The occupancy behaviors are represented with three types of models: (1) the status transition events (e.g., first arrival in office) simulated with probability distributionmore » model, (2) the random moving events (e.g., from one office to another) simulated with a homogeneous Markov chain model, and (3) the meeting events simulated with a new stochastic model. A hierarchical data model was developed for the Occupancy Simulator, which reduces the amount of data input by using the concepts of occupant types and space types. Finally, a case study of a small office building is presented to demonstrate the use of the Simulator to generate detailed annual sub-hourly occupant schedules for individual spaces and the whole building. The Simulator is a web application freely available to the public and capable of performing a detailed stochastic simulation of occupant presence and movement in buildings. Future work includes enhancements in the meeting event model, consideration of personal absent days, verification and validation of the simulated occupancy results, and expansion for use with residential buildings.« less
NASA Technical Reports Server (NTRS)
Chapman, Jeffryes W.; Lavelle, Thomas M.; May, Ryan D.; Litt, Jonathan S.; Guo, Ten-Huei
2014-01-01
A simulation toolbox has been developed for the creation of both steady-state and dynamic thermodynamic software models. This paper describes the Toolbox for the Modeling and Analysis of Thermodynamic Systems (T-MATS), which combines generic thermodynamic and controls modeling libraries with a numerical iterative solver to create a framework for the development of thermodynamic system simulations, such as gas turbine engines. The objective of this paper is to present an overview of T-MATS, the theory used in the creation of the module sets, and a possible propulsion simulation architecture. A model comparison was conducted by matching steady-state performance results from a T-MATS developed gas turbine simulation to a well-documented steady-state simulation. Transient modeling capabilities are then demonstrated when the steady-state T-MATS model is updated to run dynamically.
NASA Technical Reports Server (NTRS)
Chapman, Jeffryes W.; Lavelle, Thomas M.; May, Ryan D.; Litt, Jonathan S.; Guo, Ten-Huei
2014-01-01
A simulation toolbox has been developed for the creation of both steady-state and dynamic thermodynamic software models. This paper describes the Toolbox for the Modeling and Analysis of Thermodynamic Systems (T-MATS), which combines generic thermodynamic and controls modeling libraries with a numerical iterative solver to create a framework for the development of thermodynamic system simulations, such as gas turbine engines. The objective of this paper is to present an overview of T-MATS, the theory used in the creation of the module sets, and a possible propulsion simulation architecture. A model comparison was conducted by matching steady-state performance results from a T-MATS developed gas turbine simulation to a well-documented steady-state simulation. Transient modeling capabilities are then demonstrated when the steady-state T-MATS model is updated to run dynamically.
Road simulation for four-wheel vehicle whole input power spectral density
NASA Astrophysics Data System (ADS)
Wang, Jiangbo; Qiang, Baomin
2017-05-01
As the vibration of running vehicle mainly comes from road and influence vehicle ride performance. So the road roughness power spectral density simulation has great significance to analyze automobile suspension vibration system parameters and evaluate ride comfort. Firstly, this paper based on the mathematical model of road roughness power spectral density, established the integral white noise road random method. Then in the MATLAB/Simulink environment, according to the research method of automobile suspension frame from simple two degree of freedom single-wheel vehicle model to complex multiple degrees of freedom vehicle model, this paper built the simple single incentive input simulation model. Finally the spectrum matrix was used to build whole vehicle incentive input simulation model. This simulation method based on reliable and accurate mathematical theory and can be applied to the random road simulation of any specified spectral which provides pavement incentive model and foundation to vehicle ride performance research and vibration simulation.
Simulating the flow of entangled polymers.
Masubuchi, Yuichi
2014-01-01
To optimize automation for polymer processing, attempts have been made to simulate the flow of entangled polymers. In industry, fluid dynamics simulations with phenomenological constitutive equations have been practically established. However, to account for molecular characteristics, a method to obtain the constitutive relationship from the molecular structure is required. Molecular dynamics simulations with atomic description are not practical for this purpose; accordingly, coarse-grained models with reduced degrees of freedom have been developed. Although the modeling of entanglement is still a challenge, mesoscopic models with a priori settings to reproduce entangled polymer dynamics, such as tube models, have achieved remarkable success. To use the mesoscopic models as staging posts between atomistic and fluid dynamics simulations, studies have been undertaken to establish links from the coarse-grained model to the atomistic and macroscopic simulations. Consequently, integrated simulations from materials chemistry to predict the macroscopic flow in polymer processing are forthcoming.
ARM Cloud Radar Simulator Package for Global Climate Models Value-Added Product
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yuying; Xie, Shaocheng
It has been challenging to directly compare U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility ground-based cloud radar measurements with climate model output because of limitations or features of the observing processes and the spatial gap between model and the single-point measurements. To facilitate the use of ARM radar data in numerical models, an ARM cloud radar simulator was developed to converts model data into pseudo-ARM cloud radar observations that mimic the instrument view of a narrow atmospheric column (as compared to a large global climate model [GCM] grid-cell), thus allowing meaningful comparison between model outputmore » and ARM cloud observations. The ARM cloud radar simulator value-added product (VAP) was developed based on the CloudSat simulator contained in the community satellite simulator package, the Cloud Feedback Model Intercomparison Project (CFMIP) Observation Simulator Package (COSP) (Bodas-Salcedo et al., 2011), which has been widely used in climate model evaluation with satellite data (Klein et al., 2013, Zhang et al., 2010). The essential part of the CloudSat simulator is the QuickBeam radar simulator that is used to produce CloudSat-like radar reflectivity, but is capable of simulating reflectivity for other radars (Marchand et al., 2009; Haynes et al., 2007). Adapting QuickBeam to the ARM cloud radar simulator within COSP required two primary changes: one was to set the frequency to 35 GHz for the ARM Ka-band cloud radar, as opposed to 94 GHz used for the CloudSat W-band radar, and the second was to invert the view from the ground to space so as to attenuate the beam correctly. In addition, the ARM cloud radar simulator uses a finer vertical resolution (100 m compared to 500 m for CloudSat) to resolve the more detailed structure of clouds captured by the ARM radars. The ARM simulator has been developed following the COSP workflow (Figure 1) and using the capabilities available in COSP wherever possible. The ARM simulator is written in Fortran 90, just as is the COSP. It is incorporated into COSP to facilitate use by the climate modeling community. In order to evaluate simulator output, the observational counterpart of the simulator output, radar reflectivity-height histograms (CFAD) is also generated from the ARM observations. This report includes an overview of the ARM cloud radar simulator VAP and the required simulator-oriented ARM radar data product (radarCFAD) for validating simulator output, as well as a user guide for operating the ARM radar simulator VAP.« less
Medium Fidelity Simulation of Oxygen Tank Venting
NASA Technical Reports Server (NTRS)
Sweet, Adam; Kurien, James; Lau, Sonie (Technical Monitor)
2001-01-01
The item to he cleared is a medium-fidelity software simulation model of a vented cryogenic tank. Such tanks are commonly used to transport cryogenic liquids such as liquid oxygen via truck, and have appeared on liquid-fueled rockets for decades. This simulation model works with the HCC simulation system that was developed by Xerox PARC and NASA Ames Research Center. HCC has been previously cleared for distribution. When used with the HCC software, the model generates simulated readings for the tank pressure and temperature as the simulated cryogenic liquid boils off and is vented. Failures (such as a broken vent valve) can be injected into the simulation to produce readings corresponding to the failure. Release of this simulation will allow researchers to test their software diagnosis systems by attempting to diagnose the simulated failure from the simulated readings. This model does not contain any encryption software nor can it perform any control tasks that might be export controlled.
Simulated impacts of climate on hydrology can vary greatly as a function of the scale of the input data, model assumptions, and model structure. Four models are commonly used to simulate streamflow in model assumptions, and model structure. Four models are commonly used to simu...
Lichtenberger, John P; Tatum, Peter S; Gada, Satyen; Wyn, Mark; Ho, Vincent B; Liacouras, Peter
2018-03-01
This work describes customized, task-specific simulation models derived from 3D printing in clinical settings and medical professional training programs. Simulation models/task trainers have an array of purposes and desired achievements for the trainee, defining that these are the first step in the production process. After this purpose is defined, computer-aided design and 3D printing (additive manufacturing) are used to create a customized anatomical model. Simulation models then undergo initial in-house testing by medical specialists followed by a larger scale beta testing. Feedback is acquired, via surveys, to validate effectiveness and to guide or determine if any future modifications and/or improvements are necessary. Numerous custom simulation models have been successfully completed with resulting task trainers designed for procedures, including removal of ocular foreign bodies, ultrasound-guided joint injections, nerve block injections, and various suturing and reconstruction procedures. These task trainers have been frequently utilized in the delivery of simulation-based training with increasing demand. 3D printing has been integral to the production of limited-quantity, low-cost simulation models across a variety of medical specialties. In general, production cost is a small fraction of a commercial, generic simulation model, if available. These simulation and training models are customized to the educational need and serve an integral role in the education of our military health professionals.
A simulation model for probabilistic analysis of Space Shuttle abort modes
NASA Technical Reports Server (NTRS)
Hage, R. T.
1993-01-01
A simulation model which was developed to provide a probabilistic analysis tool to study the various space transportation system abort mode situations is presented. The simulation model is based on Monte Carlo simulation of an event-tree diagram which accounts for events during the space transportation system's ascent and its abort modes. The simulation model considers just the propulsion elements of the shuttle system (i.e., external tank, main engines, and solid boosters). The model was developed to provide a better understanding of the probability of occurrence and successful completion of abort modes during the vehicle's ascent. The results of the simulation runs discussed are for demonstration purposes only, they are not official NASA probability estimates.
NASA Astrophysics Data System (ADS)
Li, Zhanjie; Yu, Jingshan; Xu, Xinyi; Sun, Wenchao; Pang, Bo; Yue, Jiajia
2018-06-01
Hydrological models are important and effective tools for detecting complex hydrological processes. Different models have different strengths when capturing the various aspects of hydrological processes. Relying on a single model usually leads to simulation uncertainties. Ensemble approaches, based on multi-model hydrological simulations, can improve application performance over single models. In this study, the upper Yalongjiang River Basin was selected for a case study. Three commonly used hydrological models (SWAT, VIC, and BTOPMC) were selected and used for independent simulations with the same input and initial values. Then, the BP neural network method was employed to combine the results from the three models. The results show that the accuracy of BP ensemble simulation is better than that of the single models.
Development of full regeneration establishment models for the forest vegetation simulator
John D. Shaw
2015-01-01
For most simulation modeling efforts, the goal of model developers is to produce simulations that are the best representations of realism as possible. Achieving this goal commonly requires a considerable amount of data to set the initial parameters, followed by validation and model improvement â both of which require even more data. The Forest Vegetation Simulator (FVS...
Kevin Schaefer; Christopher R. Schwalm; Chris Williams; M. Altaf Arain; Alan Barr; Jing M. Chen; Kenneth J. Davis; Dimitre Dimitrov; Timothy W. Hilton; David Y. Hollinger; Elyn Humphreys; Benjamin Poulter; Brett M. Raczka; Andrew D. Richardson; Alok Sahoo; Peter Thornton; Rodrigo Vargas; Hans Verbeeck; Ryan Anderson; Ian Baker; T. Andrew Black; Paul Bolstad; Jiquan Chen; Peter S. Curtis; Ankur R. Desai; Michael Dietze; Danilo Dragoni; Christopher Gough; Robert F. Grant; Lianhong Gu; Atul Jain; Chris Kucharik; Beverly Law; Shuguang Liu; Erandathie Lokipitiya; Hank A. Margolis; Roser Matamala; J. Harry McCaughey; Russ Monson; J. William Munger; Walter Oechel; Changhui Peng; David T. Price; Dan Ricciuto; William J. Riley; Nigel Roulet; Hanqin Tian; Christina Tonitto; Margaret Torn; Ensheng Weng; Xiaolu Zhou
2012-01-01
Accurately simulating gross primary productivity (GPP) in terrestrial ecosystem models is critical because errors in simulated GPP propagate through the model to introduce additional errors in simulated biomass and other fluxes. We evaluated simulated, daily average GPP from 26 models against estimated GPP at 39 eddy covariance flux tower sites across the United States...
Two Models of Adhesive Debonding of Sylgard
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stevens, Ralph Robert
This report begins with a brief summary of the range of modeling methods used to simulate adhesive debonding. Then the mechanical simulation of the blister debonding test, and the thermomechanical simulation of the potted hemisphere problem are described. For both simulations, details of the chosen modeling techniques, and the reasons for choosing them (and rejecting alternate modeling approaches) will be discussed.
Notes on modeling and simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Redondo, Antonio
These notes present a high-level overview of how modeling and simulation are carried out by practitioners. The discussion is of a general nature; no specific techniques are examined but the activities associated with all modeling and simulation approaches are briefly addressed. There is also a discussion of validation and verification and, at the end, a section on why modeling and simulation are useful.
Neuronvisio: A Graphical User Interface with 3D Capabilities for NEURON.
Mattioni, Michele; Cohen, Uri; Le Novère, Nicolas
2012-01-01
The NEURON simulation environment is a commonly used tool to perform electrical simulation of neurons and neuronal networks. The NEURON User Interface, based on the now discontinued InterViews library, provides some limited facilities to explore models and to plot their simulation results. Other limitations include the inability to generate a three-dimensional visualization, no standard mean to save the results of simulations, or to store the model geometry within the results. Neuronvisio (http://neuronvisio.org) aims to address these deficiencies through a set of well designed python APIs and provides an improved UI, allowing users to explore and interact with the model. Neuronvisio also facilitates access to previously published models, allowing users to browse, download, and locally run NEURON models stored in ModelDB. Neuronvisio uses the matplotlib library to plot simulation results and uses the HDF standard format to store simulation results. Neuronvisio can be viewed as an extension of NEURON, facilitating typical user workflows such as model browsing, selection, download, compilation, and simulation. The 3D viewer simplifies the exploration of complex model structure, while matplotlib permits the plotting of high-quality graphs. The newly introduced ability of saving numerical results allows users to perform additional analysis on their previous simulations.
Modeling human response errors in synthetic flight simulator domain
NASA Technical Reports Server (NTRS)
Ntuen, Celestine A.
1992-01-01
This paper presents a control theoretic approach to modeling human response errors (HRE) in the flight simulation domain. The human pilot is modeled as a supervisor of a highly automated system. The synthesis uses the theory of optimal control pilot modeling for integrating the pilot's observation error and the error due to the simulation model (experimental error). Methods for solving the HRE problem are suggested. Experimental verification of the models will be tested in a flight quality handling simulation.
Cognitive Modeling for Agent-Based Simulation of Child Maltreatment
NASA Astrophysics Data System (ADS)
Hu, Xiaolin; Puddy, Richard
This paper extends previous work to develop cognitive modeling for agent-based simulation of child maltreatment (CM). The developed model is inspired from parental efficacy, parenting stress, and the theory of planned behavior. It provides an explanatory, process-oriented model of CM and incorporates causality relationship and feedback loops from different factors in the social ecology in order for simulating the dynamics of CM. We describe the model and present simulation results to demonstrate the features of this model.
NON-SPATIAL CALIBRATIONS OF A GENERAL UNIT MODEL FOR ECOSYSTEM SIMULATIONS. (R825792)
General Unit Models simulate system interactions aggregated within one spatial unit of resolution. For unit models to be applicable to spatial computer simulations, they must be formulated generally enough to simulate all habitat elements within the landscape. We present the d...
NON-SPATIAL CALIBRATIONS OF A GENERAL UNIT MODEL FOR ECOSYSTEM SIMULATIONS. (R827169)
General Unit Models simulate system interactions aggregated within one spatial unit of resolution. For unit models to be applicable to spatial computer simulations, they must be formulated generally enough to simulate all habitat elements within the landscape. We present the d...
Modelling and Manufacturing of a 3D Printed Trachea for Cricothyroidotomy Simulation.
Doucet, Gregory; Ryan, Stephen; Bartellas, Michael; Parsons, Michael; Dubrowski, Adam; Renouf, Tia
2017-08-18
Cricothyroidotomy is a life-saving medical procedure that allows for tracheal intubation. Most current cricothyroidotomy simulation models are either expensive or not anatomically accurate and provide the learner with an unrealistic simulation experience. The goal of this project is to improve current simulation techniques by utilizing rapid prototyping using 3D printing technology and expert opinions to develop inexpensive and anatomically accurate trachea simulators. In doing so, emergency cricothyroidotomy simulation can be made accessible, accurate, cost-effective and reproducible. Three-dimensional modelling software was used in conjunction with a desktop three-dimensional (3D) printer to design and manufacture an anatomically accurate model of the cartilage within the trachea (thyroid cartilage, cricoid cartilage, and the tracheal rings). The initial design was based on dimensions found in studies of tracheal anatomical configuration. This ensured that the landmarking necessary for emergency cricothyroidotomies was designed appropriately. Several revisions of the original model were made based on informal opinion from medical professionals to establish appropriate anatomical accuracy of the model for use in rural/remote cricothyroidotomy simulation. Using an entry-level desktop 3D printer, a low cost tracheal model was successfully designed that can be printed in less than three hours for only $1.70 Canadian dollars (CAD). Due to its anatomical accuracy, flexibility and durability, this model is great for use in emergency medicine simulation training. Additionally, the model can be assembled in conjunction with a membrane to simulate tracheal ligaments. Skin has been simulated as well to enhance the realism of the model. The result is an accurate simulation that will provide users with an anatomically correct model to practice important skills used in emergency airway surgery, specifically landmarking, incision and intubation. This design is a novel and easy to manufacture and reproduce, high fidelity trachea model that can be used by educators with limited resources.
Global SWOT Data Assimilation of River Hydrodynamic Model; the Twin Simulation Test of CaMa-Flood
NASA Astrophysics Data System (ADS)
Ikeshima, D.; Yamazaki, D.; Kanae, S.
2016-12-01
CaMa-Flood is a global scale model for simulating hydrodynamics in large scale rivers. It can simulate river hydrodynamics such as river discharge, flooded area, water depth and so on by inputting water runoff derived from land surface model. Recently many improvements at parameters or terrestrial data are under process to enhance the reproducibility of true natural phenomena. However, there are still some errors between nature and simulated result due to uncertainties in each model. SWOT (Surface water and Ocean Topography) is a satellite, which is going to be launched in 2021, can measure open water surface elevation. SWOT observed data can be used to calibrate hydrodynamics model at river flow forecasting and is expected to improve model's accuracy. Combining observation data into model to calibrate is called data assimilation. In this research, we developed data-assimilated river flow simulation system in global scale, using CaMa-Flood as river hydrodynamics model and simulated SWOT as observation data. Generally at data assimilation, calibrating "model value" with "observation value" makes "assimilated value". However, the observed data of SWOT satellite will not be available until its launch in 2021. Instead, we simulated the SWOT observed data using CaMa-Flood. Putting "pure input" into CaMa-Flood produce "true water storage". Extracting actual daily swath of SWOT from "true water storage" made simulated observation. For "model value", we made "disturbed water storage" by putting "noise disturbed input" to CaMa-Flood. Since both "model value" and "observation value" are made by same model, we named this twin simulation. At twin simulation, simulated observation of "true water storage" is combined with "disturbed water storage" to make "assimilated value". As the data assimilation method, we used ensemble Kalman filter. If "assimilated value" is closer to "true water storage" than "disturbed water storage", the data assimilation can be marked effective. Also by changing the input disturbance of "disturbed water storage", acceptable rate of uncertainty at the input may be discussed.
Modelling and Manufacturing of a 3D Printed Trachea for Cricothyroidotomy Simulation
Ryan, Stephen; Bartellas, Michael; Parsons, Michael; Dubrowski, Adam; Renouf, Tia
2017-01-01
Cricothyroidotomy is a life-saving medical procedure that allows for tracheal intubation. Most current cricothyroidotomy simulation models are either expensive or not anatomically accurate and provide the learner with an unrealistic simulation experience. The goal of this project is to improve current simulation techniques by utilizing rapid prototyping using 3D printing technology and expert opinions to develop inexpensive and anatomically accurate trachea simulators. In doing so, emergency cricothyroidotomy simulation can be made accessible, accurate, cost-effective and reproducible. Three-dimensional modelling software was used in conjunction with a desktop three-dimensional (3D) printer to design and manufacture an anatomically accurate model of the cartilage within the trachea (thyroid cartilage, cricoid cartilage, and the tracheal rings). The initial design was based on dimensions found in studies of tracheal anatomical configuration. This ensured that the landmarking necessary for emergency cricothyroidotomies was designed appropriately. Several revisions of the original model were made based on informal opinion from medical professionals to establish appropriate anatomical accuracy of the model for use in rural/remote cricothyroidotomy simulation. Using an entry-level desktop 3D printer, a low cost tracheal model was successfully designed that can be printed in less than three hours for only $1.70 Canadian dollars (CAD). Due to its anatomical accuracy, flexibility and durability, this model is great for use in emergency medicine simulation training. Additionally, the model can be assembled in conjunction with a membrane to simulate tracheal ligaments. Skin has been simulated as well to enhance the realism of the model. The result is an accurate simulation that will provide users with an anatomically correct model to practice important skills used in emergency airway surgery, specifically landmarking, incision and intubation. This design is a novel and easy to manufacture and reproduce, high fidelity trachea model that can be used by educators with limited resources. PMID:29057187
Comparison of simulator fidelity model predictions with in-simulator evaluation data
NASA Technical Reports Server (NTRS)
Parrish, R. V.; Mckissick, B. T.; Ashworth, B. R.
1983-01-01
A full factorial in simulator experiment of a single axis, multiloop, compensatory pitch tracking task is described. The experiment was conducted to provide data to validate extensions to an analytic, closed loop model of a real time digital simulation facility. The results of the experiment encompassing various simulation fidelity factors, such as visual delay, digital integration algorithms, computer iteration rates, control loading bandwidths and proprioceptive cues, and g-seat kinesthetic cues, are compared with predictions obtained from the analytic model incorporating an optimal control model of the human pilot. The in-simulator results demonstrate more sensitivity to the g-seat and to the control loader conditions than were predicted by the model. However, the model predictions are generally upheld, although the predicted magnitudes of the states and of the error terms are sometimes off considerably. Of particular concern is the large sensitivity difference for one control loader condition, as well as the model/in-simulator mismatch in the magnitude of the plant states when the other states match.
Evaluation of Subgrid-Scale Models for Large Eddy Simulation of Compressible Flows
NASA Technical Reports Server (NTRS)
Blaisdell, Gregory A.
1996-01-01
The objective of this project was to evaluate and develop subgrid-scale (SGS) turbulence models for large eddy simulations (LES) of compressible flows. During the first phase of the project results from LES using the dynamic SGS model were compared to those of direct numerical simulations (DNS) of compressible homogeneous turbulence. The second phase of the project involved implementing the dynamic SGS model in a NASA code for simulating supersonic flow over a flat-plate. The model has been successfully coded and a series of simulations has been completed. One of the major findings of the work is that numerical errors associated with the finite differencing scheme used in the code can overwhelm the SGS model and adversely affect the LES results. Attached to this overview are three submitted papers: 'Evaluation of the Dynamic Model for Simulations of Compressible Decaying Isotropic Turbulence'; 'The effect of the formulation of nonlinear terms on aliasing errors in spectral methods'; and 'Large-Eddy Simulation of a Spatially Evolving Compressible Boundary Layer Flow'.
Parachute Models Used in the Mars Science Laboratory Entry, Descent, and Landing Simulation
NASA Technical Reports Server (NTRS)
Cruz, Juan R.; Way, David W.; Shidner, Jeremy D.; Davis, Jody L.; Powell, Richard W.; Kipp, Devin M.; Adams, Douglas S.; Witkowski, Al; Kandis, Mike
2013-01-01
An end-to-end simulation of the Mars Science Laboratory (MSL) entry, descent, and landing (EDL) sequence was created at the NASA Langley Research Center using the Program to Optimize Simulated Trajectories II (POST2). This simulation is capable of providing numerous MSL system and flight software responses, including Monte Carlo-derived statistics of these responses. The MSL POST2 simulation includes models of EDL system elements, including those related to the parachute system. Among these there are models for the parachute geometry, mass properties, deployment, inflation, opening force, area oscillations, aerodynamic coefficients, apparent mass, interaction with the main landing engines, and off-loading. These models were kept as simple as possible, considering the overall objectives of the simulation. The main purpose of this paper is to describe these parachute system models to the extent necessary to understand how they work and some of their limitations. A list of lessons learned during the development of the models and simulation is provided. Future improvements to the parachute system models are proposed.
A Systems Approach to Scalable Transportation Network Modeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perumalla, Kalyan S
2006-01-01
Emerging needs in transportation network modeling and simulation are raising new challenges with respect to scal-ability of network size and vehicular traffic intensity, speed of simulation for simulation-based optimization, and fidel-ity of vehicular behavior for accurate capture of event phe-nomena. Parallel execution is warranted to sustain the re-quired detail, size and speed. However, few parallel simulators exist for such applications, partly due to the challenges underlying their development. Moreover, many simulators are based on time-stepped models, which can be computationally inefficient for the purposes of modeling evacuation traffic. Here an approach is presented to de-signing a simulator with memory andmore » speed efficiency as the goals from the outset, and, specifically, scalability via parallel execution. The design makes use of discrete event modeling techniques as well as parallel simulation meth-ods. Our simulator, called SCATTER, is being developed, incorporating such design considerations. Preliminary per-formance results are presented on benchmark road net-works, showing scalability to one million vehicles simu-lated on one processor.« less
Simulating human behavior for national security human interactions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernard, Michael Lewis; Hart, Dereck H.; Verzi, Stephen J.
2007-01-01
This 3-year research and development effort focused on what we believe is a significant technical gap in existing modeling and simulation capabilities: the representation of plausible human cognition and behaviors within a dynamic, simulated environment. Specifically, the intent of the ''Simulating Human Behavior for National Security Human Interactions'' project was to demonstrate initial simulated human modeling capability that realistically represents intra- and inter-group interaction behaviors between simulated humans and human-controlled avatars as they respond to their environment. Significant process was made towards simulating human behaviors through the development of a framework that produces realistic characteristics and movement. The simulated humansmore » were created from models designed to be psychologically plausible by being based on robust psychological research and theory. Progress was also made towards enhancing Sandia National Laboratories existing cognitive models to support culturally plausible behaviors that are important in representing group interactions. These models were implemented in the modular, interoperable, and commercially supported Umbra{reg_sign} simulation framework.« less
Aviation Safety Simulation Model
NASA Technical Reports Server (NTRS)
Houser, Scott; Yackovetsky, Robert (Technical Monitor)
2001-01-01
The Aviation Safety Simulation Model is a software tool that enables users to configure a terrain, a flight path, and an aircraft and simulate the aircraft's flight along the path. The simulation monitors the aircraft's proximity to terrain obstructions, and reports when the aircraft violates accepted minimum distances from an obstruction. This model design facilitates future enhancements to address other flight safety issues, particularly air and runway traffic scenarios. This report shows the user how to build a simulation scenario and run it. It also explains the model's output.
Breimer, Gerben E; Haji, Faizal A; Bodani, Vivek; Cunningham, Melissa S; Lopez-Rios, Adriana-Lucia; Okrainec, Allan; Drake, James M
2017-02-01
The relative educational benefits of virtual reality (VR) and physical simulation models for endoscopic third ventriculostomy (ETV) have not been evaluated "head to head." To compare and identify the relative utility of a physical and VR ETV simulation model for use in neurosurgical training. Twenty-three neurosurgical residents and 3 fellows performed an ETV on both a physical and VR simulation model. Trainees rated the models using 5-point Likert scales evaluating the domains of anatomy, instrument handling, procedural content, and the overall fidelity of the simulation. Paired t tests were performed for each domain's mean overall score and individual items. The VR model has relative benefits compared with the physical model with respect to realistic representation of intraventricular anatomy at the foramen of Monro (4.5, standard deviation [SD] = 0.7 vs 4.1, SD = 0.6; P = .04) and the third ventricle floor (4.4, SD = 0.6 vs 4.0, SD = 0.9; P = .03), although the overall anatomy score was similar (4.2, SD = 0.6 vs 4.0, SD = 0.6; P = .11). For overall instrument handling and procedural content, the physical simulator outperformed the VR model (3.7, SD = 0.8 vs 4.5; SD = 0.5, P < .001 and 3.9; SD = 0.8 vs 4.2, SD = 0.6; P = .02, respectively). Overall task fidelity across the 2 simulators was not perceived as significantly different. Simulation model selection should be based on educational objectives. Training focused on learning anatomy or decision-making for anatomic cues may be aided with the VR simulation model. A focus on developing manual dexterity and technical skills using endoscopic equipment in the operating room may be better learned on the physical simulation model. Copyright © 2016 by the Congress of Neurological Surgeons
Use case driven approach to develop simulation model for PCS of APR1400 simulator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong Wook, Kim; Hong Soo, Kim; Hyeon Tae, Kang
2006-07-01
The full-scope simulator is being developed to evaluate specific design feature and to support the iterative design and validation in the Man-Machine Interface System (MMIS) design of Advanced Power Reactor (APR) 1400. The simulator consists of process model, control logic model, and MMI for the APR1400 as well as the Power Control System (PCS). In this paper, a use case driven approach is proposed to develop a simulation model for PCS. In this approach, a system is considered from the point of view of its users. User's view of the system is based on interactions with the system and themore » resultant responses. In use case driven approach, we initially consider the system as a black box and look at its interactions with the users. From these interactions, use cases of the system are identified. Then the system is modeled using these use cases as functions. Lower levels expand the functionalities of each of these use cases. Hence, starting from the topmost level view of the system, we proceeded down to the lowest level (the internal view of the system). The model of the system thus developed is use case driven. This paper will introduce the functionality of the PCS simulation model, including a requirement analysis based on use case and the validation result of development of PCS model. The PCS simulation model using use case will be first used during the full-scope simulator development for nuclear power plant and will be supplied to Shin-Kori 3 and 4 plant. The use case based simulation model development can be useful for the design and implementation of simulation models. (authors)« less
Strategic Mobility 21: Modeling, Simulation, and Analysis
2010-04-14
using AnyLogic , which is a Java programmed, multi-method simulation modeling tool developed by XJ Technologies. The last section examines the academic... simulation model from an Arena platform to an AnyLogic based Web Service. MATLAB is useful for small problems with few nodes, but GAMS/CPLEX is better... Transportation Modeling Studio TM . The SCASN modeling and simulation program was designed to be generic in nature to allow for use by both commercial and
NASA Technical Reports Server (NTRS)
Harman, R.; Blejer, D.
1990-01-01
The requirements and mathematical specifications for the Gamma Ray Observatory (GRO) Dynamics Simulator are presented. The complete simulator system, which consists of the profie subsystem, simulation control and input/output subsystem, truth model subsystem, onboard computer model subsystem, and postprocessor, is described. The simulator will be used to evaluate and test the attitude determination and control models to be used on board GRO under conditions that simulate the expected in-flight environment.
Development of automation and robotics for space via computer graphic simulation methods
NASA Technical Reports Server (NTRS)
Fernandez, Ken
1988-01-01
A robot simulation system, has been developed to perform automation and robotics system design studies. The system uses a procedure-oriented solid modeling language to produce a model of the robotic mechanism. The simulator generates the kinematics, inverse kinematics, dynamics, control, and real-time graphic simulations needed to evaluate the performance of the model. Simulation examples are presented, including simulation of the Space Station and the design of telerobotics for the Orbital Maneuvering Vehicle.
Computer simulation of on-orbit manned maneuvering unit operations
NASA Technical Reports Server (NTRS)
Stuart, G. M.; Garcia, K. D.
1986-01-01
Simulation of spacecraft on-orbit operations is discussed in reference to Martin Marietta's Space Operations Simulation laboratory's use of computer software models to drive a six-degree-of-freedom moving base carriage and two target gimbal systems. In particular, key simulation issues and related computer software models associated with providing real-time, man-in-the-loop simulations of the Manned Maneuvering Unit (MMU) are addressed with special attention given to how effectively these models and motion systems simulate the MMU's actual on-orbit operations. The weightless effects of the space environment require the development of entirely new devices for locomotion. Since the access to space is very limited, it is necessary to design, build, and test these new devices within the physical constraints of earth using simulators. The simulation method that is discussed here is the technique of using computer software models to drive a Moving Base Carriage (MBC) that is capable of providing simultaneous six-degree-of-freedom motions. This method, utilized at Martin Marietta's Space Operations Simulation (SOS) laboratory, provides the ability to simulate the operation of manned spacecraft, provides the pilot with proper three-dimensional visual cues, and allows training of on-orbit operations. The purpose here is to discuss significant MMU simulation issues, the related models that were developed in response to these issues and how effectively these models simulate the MMU's actual on-orbiter operations.
Urbanowicz, Ryan J; Kiralis, Jeff; Sinnott-Armstrong, Nicholas A; Heberling, Tamra; Fisher, Jonathan M; Moore, Jason H
2012-10-01
Geneticists who look beyond single locus disease associations require additional strategies for the detection of complex multi-locus effects. Epistasis, a multi-locus masking effect, presents a particular challenge, and has been the target of bioinformatic development. Thorough evaluation of new algorithms calls for simulation studies in which known disease models are sought. To date, the best methods for generating simulated multi-locus epistatic models rely on genetic algorithms. However, such methods are computationally expensive, difficult to adapt to multiple objectives, and unlikely to yield models with a precise form of epistasis which we refer to as pure and strict. Purely and strictly epistatic models constitute the worst-case in terms of detecting disease associations, since such associations may only be observed if all n-loci are included in the disease model. This makes them an attractive gold standard for simulation studies considering complex multi-locus effects. We introduce GAMETES, a user-friendly software package and algorithm which generates complex biallelic single nucleotide polymorphism (SNP) disease models for simulation studies. GAMETES rapidly and precisely generates random, pure, strict n-locus models with specified genetic constraints. These constraints include heritability, minor allele frequencies of the SNPs, and population prevalence. GAMETES also includes a simple dataset simulation strategy which may be utilized to rapidly generate an archive of simulated datasets for given genetic models. We highlight the utility and limitations of GAMETES with an example simulation study using MDR, an algorithm designed to detect epistasis. GAMETES is a fast, flexible, and precise tool for generating complex n-locus models with random architectures. While GAMETES has a limited ability to generate models with higher heritabilities, it is proficient at generating the lower heritability models typically used in simulation studies evaluating new algorithms. In addition, the GAMETES modeling strategy may be flexibly combined with any dataset simulation strategy. Beyond dataset simulation, GAMETES could be employed to pursue theoretical characterization of genetic models and epistasis.
NASA Astrophysics Data System (ADS)
Mohrfeld-Halterman, J. A.; Uddin, M.
2016-07-01
We described in this paper the development of a high fidelity vehicle aerodynamic model to fit wind tunnel test data over a wide range of vehicle orientations. We also present a comparison between the effects of this proposed model and a conventional quasi steady-state aerodynamic model on race vehicle simulation results. This is done by implementing both of these models independently in multi-body quasi steady-state simulations to determine the effects of the high fidelity aerodynamic model on race vehicle performance metrics. The quasi steady state vehicle simulation is developed with a multi-body NASCAR Truck vehicle model, and simulations are conducted for three different types of NASCAR race tracks, a short track, a one and a half mile intermediate track, and a higher speed, two mile intermediate race track. For each track simulation, the effects of the aerodynamic model on handling, maximum corner speed, and drive force metrics are analysed. The accuracy of the high-fidelity model is shown to reduce the aerodynamic model error relative to the conventional aerodynamic model, and the increased accuracy of the high fidelity aerodynamic model is found to have realisable effects on the performance metric predictions on the intermediate tracks resulting from the quasi steady-state simulation.
Traffic and Driving Simulator Based on Architecture of Interactive Motion.
Paz, Alexander; Veeramisti, Naveen; Khaddar, Romesh; de la Fuente-Mella, Hanns; Modorcea, Luiza
2015-01-01
This study proposes an architecture for an interactive motion-based traffic simulation environment. In order to enhance modeling realism involving actual human beings, the proposed architecture integrates multiple types of simulation, including: (i) motion-based driving simulation, (ii) pedestrian simulation, (iii) motorcycling and bicycling simulation, and (iv) traffic flow simulation. The architecture has been designed to enable the simulation of the entire network; as a result, the actual driver, pedestrian, and bike rider can navigate anywhere in the system. In addition, the background traffic interacts with the actual human beings. This is accomplished by using a hybrid mesomicroscopic traffic flow simulation modeling approach. The mesoscopic traffic flow simulation model loads the results of a user equilibrium traffic assignment solution and propagates the corresponding traffic through the entire system. The microscopic traffic flow simulation model provides background traffic around the vicinities where actual human beings are navigating the system. The two traffic flow simulation models interact continuously to update system conditions based on the interactions between actual humans and the fully simulated entities. Implementation efforts are currently in progress and some preliminary tests of individual components have been conducted. The implementation of the proposed architecture faces significant challenges ranging from multiplatform and multilanguage integration to multievent communication and coordination.
Traffic and Driving Simulator Based on Architecture of Interactive Motion
Paz, Alexander; Veeramisti, Naveen; Khaddar, Romesh; de la Fuente-Mella, Hanns; Modorcea, Luiza
2015-01-01
This study proposes an architecture for an interactive motion-based traffic simulation environment. In order to enhance modeling realism involving actual human beings, the proposed architecture integrates multiple types of simulation, including: (i) motion-based driving simulation, (ii) pedestrian simulation, (iii) motorcycling and bicycling simulation, and (iv) traffic flow simulation. The architecture has been designed to enable the simulation of the entire network; as a result, the actual driver, pedestrian, and bike rider can navigate anywhere in the system. In addition, the background traffic interacts with the actual human beings. This is accomplished by using a hybrid mesomicroscopic traffic flow simulation modeling approach. The mesoscopic traffic flow simulation model loads the results of a user equilibrium traffic assignment solution and propagates the corresponding traffic through the entire system. The microscopic traffic flow simulation model provides background traffic around the vicinities where actual human beings are navigating the system. The two traffic flow simulation models interact continuously to update system conditions based on the interactions between actual humans and the fully simulated entities. Implementation efforts are currently in progress and some preliminary tests of individual components have been conducted. The implementation of the proposed architecture faces significant challenges ranging from multiplatform and multilanguage integration to multievent communication and coordination. PMID:26491711
An electrical circuit model for simulation of indoor radon concentration.
Musavi Nasab, S M; Negarestani, A
2013-01-01
In this study, a new model based on electric circuit theory was introduced to simulate the behaviour of indoor radon concentration. In this model, a voltage source simulates radon generation in walls, conductivity simulates migration through walls and voltage across a capacitor simulates radon concentration in a room. This simulation considers migration of radon through walls by diffusion mechanism in one-dimensional geometry. Data reported in a typical Greek house were employed to examine the application of this technique of simulation to the behaviour of radon.
Simulation's Ensemble is Better Than Ensemble Simulation
NASA Astrophysics Data System (ADS)
Yan, X.
2017-12-01
Simulation's ensemble is better than ensemble simulation Yan Xiaodong State Key Laboratory of Earth Surface Processes and Resource Ecology (ESPRE) Beijing Normal University,19 Xinjiekouwai Street, Haidian District, Beijing 100875, China Email: yxd@bnu.edu.cnDynamical system is simulated from initial state. However initial state data is of great uncertainty, which leads to uncertainty of simulation. Therefore, multiple possible initial states based simulation has been used widely in atmospheric science, which has indeed been proved to be able to lower the uncertainty, that was named simulation's ensemble because multiple simulation results would be fused . In ecological field, individual based model simulation (forest gap models for example) can be regarded as simulation's ensemble compared with community based simulation (most ecosystem models). In this talk, we will address the advantage of individual based simulation and even their ensembles.
Planetary Boundary Layer Simulation Using TASS
NASA Technical Reports Server (NTRS)
Schowalter, David G.; DeCroix, David S.; Lin, Yuh-Lang; Arya, S. Pal; Kaplan, Michael
1996-01-01
Boundary conditions to an existing large-eddy simulation model have been changed in order to simulate turbulence in the atmospheric boundary layer. Several options are now available, including the use of a surface energy balance. In addition, we compare convective boundary layer simulations with the Wangara and Minnesota field experiments as well as with other model results. We find excellent agreement of modelled mean profiles of wind and temperature with observations and good agreement for velocity variances. Neutral boundary simulation results are compared with theory and with previously used models. Agreement with theory is reasonable, while agreement with previous models is excellent.
NASA Astrophysics Data System (ADS)
Juhui, Chen; Yanjia, Tang; Dan, Li; Pengfei, Xu; Huilin, Lu
2013-07-01
Flow behavior of gas and particles is predicted by the large eddy simulation of gas-second order moment of solid model (LES-SOM model) in the simulation of flow behavior in CFB. This study shows that the simulated solid volume fractions along height using a two-dimensional model are in agreement with experiments. The velocity, volume fraction and second-order moments of particles are computed. The second-order moments of clusters are calculated. The solid volume fraction, velocity and second order moments are compared at the three different model constants.
Su, Peiran; Eri, Qitai; Wang, Qiang
2014-04-10
Optical roughness was introduced into the bidirectional reflectance distribution function (BRDF) model to simulate the reflectance characteristics of thermal radiation. The optical roughness BRDF model stemmed from the influence of surface roughness and wavelength on the ray reflectance calculation. This model was adopted to simulate real metal emissivity. The reverse Monte Carlo method was used to display the distribution of reflectance rays. The numerical simulations showed that the optical roughness BRDF model can calculate the wavelength effect on emissivity and simulate the real metal emissivity variance with incidence angles.
Towards Application of NASA Standard for Models and Simulations in Aeronautical Design Process
NASA Astrophysics Data System (ADS)
Vincent, Luc; Dunyach, Jean-Claude; Huet, Sandrine; Pelissier, Guillaume; Merlet, Joseph
2012-08-01
Even powerful computational techniques like simulation endure limitations in their validity domain. Consequently using simulation models requires cautions to avoid making biased design decisions for new aeronautical products on the basis of inadequate simulation results. Thus the fidelity, accuracy and validity of simulation models shall be monitored in context all along the design phases to build confidence in achievement of the goals of modelling and simulation.In the CRESCENDO project, we adapt the Credibility Assessment Scale method from NASA standard for models and simulations from space programme to the aircraft design in order to assess the quality of simulations. The proposed eight quality assurance metrics aggregate information to indicate the levels of confidence in results. They are displayed in management dashboard and can secure design trade-off decisions at programme milestones.The application of this technique is illustrated in aircraft design context with specific thermal Finite Elements Analysis. This use case shows how to judge the fitness- for-purpose of simulation as Virtual testing means and then green-light the continuation of Simulation Lifecycle Management (SLM) process.
A Teaching Aid for Physiologists--Simulation of Kidney Function
ERIC Educational Resources Information Center
Packer, J. S.; Packer, J. E.
1977-01-01
Presented is the development of a simulation model of the facultative water transfer mechanism of the mammalian kidney. Discussion topics include simulation philosophy, simulation facilities, the model, and programming the model as a teaching aid. Graphs illustrate typical program displays. A listing of references concludes the article. (MA)
Abaqus Simulations of Rock Response to Dynamic Loading
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steedman, David W.; Coblentz, David
The LANL Geodynamics Team has been applying Abaqus modeling to achieve increasingly complex simulations. Advancements in Abaqus model building and simulation tools allows this progress. We use Lab-developed constitutive models, the fully coupled CEL Abaqus and general contact to simulate response of realistic sites to explosively driven shock.
DOT National Transportation Integrated Search
1980-03-01
This volume is the technical manual for the general simulation. Mathematical modelling of the vehicle and of the human driver is presented in detail, as are differences between the APL simulation and the current one. Information on model validation a...
Exact Hybrid Particle/Population Simulation of Rule-Based Models of Biochemical Systems
Stover, Lori J.; Nair, Niketh S.; Faeder, James R.
2014-01-01
Detailed modeling and simulation of biochemical systems is complicated by the problem of combinatorial complexity, an explosion in the number of species and reactions due to myriad protein-protein interactions and post-translational modifications. Rule-based modeling overcomes this problem by representing molecules as structured objects and encoding their interactions as pattern-based rules. This greatly simplifies the process of model specification, avoiding the tedious and error prone task of manually enumerating all species and reactions that can potentially exist in a system. From a simulation perspective, rule-based models can be expanded algorithmically into fully-enumerated reaction networks and simulated using a variety of network-based simulation methods, such as ordinary differential equations or Gillespie's algorithm, provided that the network is not exceedingly large. Alternatively, rule-based models can be simulated directly using particle-based kinetic Monte Carlo methods. This “network-free” approach produces exact stochastic trajectories with a computational cost that is independent of network size. However, memory and run time costs increase with the number of particles, limiting the size of system that can be feasibly simulated. Here, we present a hybrid particle/population simulation method that combines the best attributes of both the network-based and network-free approaches. The method takes as input a rule-based model and a user-specified subset of species to treat as population variables rather than as particles. The model is then transformed by a process of “partial network expansion” into a dynamically equivalent form that can be simulated using a population-adapted network-free simulator. The transformation method has been implemented within the open-source rule-based modeling platform BioNetGen, and resulting hybrid models can be simulated using the particle-based simulator NFsim. Performance tests show that significant memory savings can be achieved using the new approach and a monetary cost analysis provides a practical measure of its utility. PMID:24699269
Exact hybrid particle/population simulation of rule-based models of biochemical systems.
Hogg, Justin S; Harris, Leonard A; Stover, Lori J; Nair, Niketh S; Faeder, James R
2014-04-01
Detailed modeling and simulation of biochemical systems is complicated by the problem of combinatorial complexity, an explosion in the number of species and reactions due to myriad protein-protein interactions and post-translational modifications. Rule-based modeling overcomes this problem by representing molecules as structured objects and encoding their interactions as pattern-based rules. This greatly simplifies the process of model specification, avoiding the tedious and error prone task of manually enumerating all species and reactions that can potentially exist in a system. From a simulation perspective, rule-based models can be expanded algorithmically into fully-enumerated reaction networks and simulated using a variety of network-based simulation methods, such as ordinary differential equations or Gillespie's algorithm, provided that the network is not exceedingly large. Alternatively, rule-based models can be simulated directly using particle-based kinetic Monte Carlo methods. This "network-free" approach produces exact stochastic trajectories with a computational cost that is independent of network size. However, memory and run time costs increase with the number of particles, limiting the size of system that can be feasibly simulated. Here, we present a hybrid particle/population simulation method that combines the best attributes of both the network-based and network-free approaches. The method takes as input a rule-based model and a user-specified subset of species to treat as population variables rather than as particles. The model is then transformed by a process of "partial network expansion" into a dynamically equivalent form that can be simulated using a population-adapted network-free simulator. The transformation method has been implemented within the open-source rule-based modeling platform BioNetGen, and resulting hybrid models can be simulated using the particle-based simulator NFsim. Performance tests show that significant memory savings can be achieved using the new approach and a monetary cost analysis provides a practical measure of its utility.
FARSITE: Fire Area Simulator-model development and evaluation
Mark A. Finney
1998-01-01
A computer simulation model, FARSITE, includes existing fire behavior models for surface, crown, spotting, point-source fire acceleration, and fuel moisture. The model's components and assumptions are documented. Simulations were run for simple conditions that illustrate the effect of individual fire behavior models on two-dimensional fire growth.
Macro Level Simulation Model Of Space Shuttle Processing
NASA Technical Reports Server (NTRS)
2000-01-01
The contents include: 1) Space Shuttle Processing Simulation Model; 2) Knowledge Acquisition; 3) Simulation Input Analysis; 4) Model Applications in Current Shuttle Environment; and 5) Model Applications for Future Reusable Launch Vehicles (RLV's). This paper is presented in viewgraph form.
Status of the AIAA Modeling and Simulation Format Standard
NASA Technical Reports Server (NTRS)
Jackson, E. Bruce; Hildreth, Bruce L.
2008-01-01
The current draft AIAA Standard for flight simulation models represents an on-going effort to improve the productivity of practitioners of the art of digital flight simulation (one of the original digital computer applications). This initial release provides the capability for the efficient representation and exchange of an aerodynamic model in full fidelity; the DAVE-ML format can be easily imported (with development of site-specific import tools) in an unambiguous way with automatic verification. An attractive feature of the standard is the ability to coexist with existing legacy software or tools. The draft Standard is currently limited in scope to static elements of dynamic flight simulations; however, these static elements represent the bulk of typical flight simulation mathematical models. It is already seeing application within U.S. and Australian government agencies in an effort to improve productivity and reduce model rehosting overhead. An existing tool allows import of DAVE-ML models into a popular simulation modeling and analysis tool, and other community-contributed tools and libraries can simplify the use of DAVE-ML compliant models at compile- or run-time of high-fidelity flight simulation.
Fall, Mamadou Lamine; Van der Heyden, Hervé; Carisse, Odile
2016-01-01
Lettuce downy mildew, caused by the oomycete Bremia lactucae Regel, is a major threat to lettuce production worldwide. Lettuce downy mildew is a polycyclic disease driven by airborne spores. A weather-based dynamic simulation model for B. lactucae airborne spores was developed to simulate the aerobiological characteristics of the pathogen. The model was built using the STELLA platform by following the system dynamics methodology. The model was developed using published equations describing disease subprocesses (e.g., sporulation) and assembled knowledge of the interactions among pathogen, host, and weather. The model was evaluated with four years of independent data by comparing model simulations with observations of hourly and daily airborne spore concentrations. The results show an accurate simulation of the trend and shape of B. lactucae temporal dynamics of airborne spore concentration. The model simulated hourly and daily peaks in airborne spore concentrations. More than 95% of the simulation runs, the daily-simulated airborne conidia concentration was 0 when airborne conidia were not observed. Also, the relationship between the simulated and the observed airborne spores was linear. In more than 94% of the simulation runs, the proportion of the linear variation in the hourly-observed values explained by the variation in the hourly-simulated values was greater than 0.7 in all years except one. Most of the errors came from the deviation from the 1:1 line, and the proportion of errors due to the model bias was low. This model is the only dynamic model developed to mimic the dynamics of airborne inoculum and represents an initial step towards improved lettuce downy mildew understanding, forecasting and management.
Fall, Mamadou Lamine; Van der Heyden, Hervé; Carisse, Odile
2016-01-01
Lettuce downy mildew, caused by the oomycete Bremia lactucae Regel, is a major threat to lettuce production worldwide. Lettuce downy mildew is a polycyclic disease driven by airborne spores. A weather-based dynamic simulation model for B. lactucae airborne spores was developed to simulate the aerobiological characteristics of the pathogen. The model was built using the STELLA platform by following the system dynamics methodology. The model was developed using published equations describing disease subprocesses (e.g., sporulation) and assembled knowledge of the interactions among pathogen, host, and weather. The model was evaluated with four years of independent data by comparing model simulations with observations of hourly and daily airborne spore concentrations. The results show an accurate simulation of the trend and shape of B. lactucae temporal dynamics of airborne spore concentration. The model simulated hourly and daily peaks in airborne spore concentrations. More than 95% of the simulation runs, the daily-simulated airborne conidia concentration was 0 when airborne conidia were not observed. Also, the relationship between the simulated and the observed airborne spores was linear. In more than 94% of the simulation runs, the proportion of the linear variation in the hourly-observed values explained by the variation in the hourly-simulated values was greater than 0.7 in all years except one. Most of the errors came from the deviation from the 1:1 line, and the proportion of errors due to the model bias was low. This model is the only dynamic model developed to mimic the dynamics of airborne inoculum and represents an initial step towards improved lettuce downy mildew understanding, forecasting and management. PMID:26953691
Multimodel comparison of the ionosphere variability during the 2009 sudden stratosphere warming
NASA Astrophysics Data System (ADS)
Pedatella, N. M.; Fang, T.-W.; Jin, H.; Sassi, F.; Schmidt, H.; Chau, J. L.; Siddiqui, T. A.; Goncharenko, L.
2016-07-01
A comparison of different model simulations of the ionosphere variability during the 2009 sudden stratosphere warming (SSW) is presented. The focus is on the equatorial and low-latitude ionosphere simulated by the Ground-to-topside model of the Atmosphere and Ionosphere for Aeronomy (GAIA), Whole Atmosphere Model plus Global Ionosphere Plasmasphere (WAM+GIP), and Whole Atmosphere Community Climate Model eXtended version plus Thermosphere-Ionosphere-Mesosphere-Electrodynamics General Circulation Model (WACCMX+TIMEGCM). The simulations are compared with observations of the equatorial vertical plasma drift in the American and Indian longitude sectors, zonal mean F region peak density (NmF2) from the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) satellites, and ground-based Global Positioning System (GPS) total electron content (TEC) at 75°W. The model simulations all reproduce the observed morning enhancement and afternoon decrease in the vertical plasma drift, as well as the progression of the anomalies toward later local times over the course of several days. However, notable discrepancies among the simulations are seen in terms of the magnitude of the drift perturbations, and rate of the local time shift. Comparison of the electron densities further reveals that although many of the broad features of the ionosphere variability are captured by the simulations, there are significant differences among the different model simulations, as well as between the simulations and observations. Additional simulations are performed where the neutral atmospheres from four different whole atmosphere models (GAIA, HAMMONIA (Hamburg Model of the Neutral and Ionized Atmosphere), WAM, and WACCMX) provide the lower atmospheric forcing in the TIME-GCM. These simulations demonstrate that different neutral atmospheres, in particular, differences in the solar migrating semidiurnal tide, are partly responsible for the differences in the simulated ionosphere variability in GAIA, WAM+GIP, and WACCMX+TIMEGCM.
Waltemath, Dagmar; Adams, Richard; Bergmann, Frank T; Hucka, Michael; Kolpakov, Fedor; Miller, Andrew K; Moraru, Ion I; Nickerson, David; Sahle, Sven; Snoep, Jacky L; Le Novère, Nicolas
2011-12-15
The increasing use of computational simulation experiments to inform modern biological research creates new challenges to annotate, archive, share and reproduce such experiments. The recently published Minimum Information About a Simulation Experiment (MIASE) proposes a minimal set of information that should be provided to allow the reproduction of simulation experiments among users and software tools. In this article, we present the Simulation Experiment Description Markup Language (SED-ML). SED-ML encodes in a computer-readable exchange format the information required by MIASE to enable reproduction of simulation experiments. It has been developed as a community project and it is defined in a detailed technical specification and additionally provides an XML schema. The version of SED-ML described in this publication is Level 1 Version 1. It covers the description of the most frequent type of simulation experiments in the area, namely time course simulations. SED-ML documents specify which models to use in an experiment, modifications to apply on the models before using them, which simulation procedures to run on each model, what analysis results to output, and how the results should be presented. These descriptions are independent of the underlying model implementation. SED-ML is a software-independent format for encoding the description of simulation experiments; it is not specific to particular simulation tools. Here, we demonstrate that with the growing software support for SED-ML we can effectively exchange executable simulation descriptions. With SED-ML, software can exchange simulation experiment descriptions, enabling the validation and reuse of simulation experiments in different tools. Authors of papers reporting simulation experiments can make their simulation protocols available for other scientists to reproduce the results. Because SED-ML is agnostic about exact modeling language(s) used, experiments covering models from different fields of research can be accurately described and combined.
Model-based surgical planning and simulation of cranial base surgery.
Abe, M; Tabuchi, K; Goto, M; Uchino, A
1998-11-01
Plastic skull models of seven individual patients were fabricated by stereolithography from three-dimensional data based on computed tomography bone images. Skull models were utilized for neurosurgical planning and simulation in the seven patients with cranial base lesions that were difficult to remove. Surgical approaches and areas of craniotomy were evaluated using the fabricated skull models. In preoperative simulations, hand-made models of the tumors, major vessels and nerves were placed in the skull models. Step-by-step simulation of surgical procedures was performed using actual surgical tools. The advantages of using skull models to plan and simulate cranial base surgery include a better understanding of anatomic relationships, preoperative evaluation of the proposed procedure, increased understanding by the patient and family, and improved educational experiences for residents and other medical staff. The disadvantages of using skull models include the time and cost of making the models. The skull models provide a more realistic tool that is easier to handle than computer-graphic images. Surgical simulation using models facilitates difficult cranial base surgery and may help reduce surgical complications.
Assessment of CMIP5 historical simulations of rainfall over Southeast Asia
NASA Astrophysics Data System (ADS)
Raghavan, Srivatsan V.; Liu, Jiandong; Nguyen, Ngoc Son; Vu, Minh Tue; Liong, Shie-Yui
2018-05-01
We present preliminary analyses of the historical (1986-2005) climate simulations of a ten-member subset of the Coupled Model Inter-comparison Project Phase 5 (CMIP5) global climate models over Southeast Asia. The objective of this study was to evaluate the general circulation models' performance in simulating the mean state of climate over this less-studied climate vulnerable region, with a focus on precipitation. Results indicate that most of the models are unable to reproduce the observed state of climate over Southeast Asia. Though the multi-model ensemble mean is a better representation of the observations, the uncertainties in the individual models are far high. There is no particular model that performed well in simulating the historical climate of Southeast Asia. There seems to be no significant influence of the spatial resolutions of the models on the quality of simulation, despite the view that higher resolution models fare better. The study results emphasize on careful consideration of models for impact studies and the need to improve the next generation of models in their ability to simulate regional climates better.
NASA Astrophysics Data System (ADS)
Othman, M. F.; Kurniawan, R.; Schramm, D.; Ariffin, A. K.
2018-05-01
Modeling a cable model in multibody dynamics simulation tool which dynamically varies in length, mass and stiffness is a challenging task. Simulation of cable-driven parallel robots (CDPR) for instance requires a cable model that can dynamically change in length for every desired pose of the platform. Thus, in this paper, a detailed procedure for modeling and simulation of a dynamic cable model in Dymola is proposed. The approach is also applicable for other types of Modelica simulation environments. The cable is modeled using standard mechanical elements like mass, spring, damper and joint. The parameters of the cable model are based on the factsheet of the manufacturer and experimental results. Its dynamic ability is tested by applying it on a complete planar CDPR model in which the parameters are based on a prototype named CABLAR, which is developed in Chair of Mechatronics, University of Duisburg-Essen. The prototype has been developed to demonstrate an application of CDPR as a goods storage and retrieval machine. The performance of the cable model during the simulation is analyzed and discussed.
Intercomparison of Operational Ocean Forecasting Systems in the framework of GODAE
NASA Astrophysics Data System (ADS)
Hernandez, F.
2009-04-01
One of the main benefits of the GODAE 10-year activity is the implementation of ocean forecasting systems in several countries. In 2008, several systems are operated routinely, at global or basin scale. Among them, the BLUElink (Australia), HYCOM (USA), MOVE/MRI.COM (Japan), Mercator (France), FOAM (United Kingdom), TOPAZ (Norway) and C-NOOFS (Canada) systems offered to demonstrate their operational feasibility by performing an intercomparison exercise during a three months period (February to April 2008). The objectives were: a) to show that operational ocean forecasting systems are operated routinely in different countries, and that they can interact; b) to perform in a similar way a scientific validation aimed to assess the quality of the ocean estimates, the performance, and forecasting capabilities of each system; and c) to learn from this intercomparison exercise to increase inter-operability and collaboration in real time. The intercomparison relies on the assessment strategy developed for the EU MERSEA project, where diagnostics over the global ocean have been revisited by the GODAE contributors. This approach, based on metrics, allow for each system: a) to verify if ocean estimates are consistent with the current general knowledge of the dynamics; and b) to evaluate the accuracy of delivered products, compared to space and in-situ observations. Using the same diagnostics also allows one to intercompare the results from each system consistently. Water masses and general circulation description by the different systems are consistent with WOA05 Levitus climatology. The large scale dynamics (tropical, subtropical and subpolar gyres ) are also correctly reproduced. At short scales, benefit of high resolution systems can be evidenced on the turbulent eddy field, in particular when compared to eddy kinetic energy deduced from satellite altimetry of drifter observations. Comparisons to high resolution SST products show some discrepancies on ocean surface representation, either due to model and forcing fields errors, or assimilation scheme efficiency. Comparisons to sea-ice satellite products also evidence discrepancies linked to model, forcing and assimilation strategies of each forecasting system. Key words: Intercomparison, ocean analysis, operational oceanography, system assessment, metrics, validation GODAE Intercomparison Team: L. Bertino (NERSC/Norway), G. Brassington (BMRC/Australia), E. Chassignet (FSU/USA), J. Cummings (NRL/USA), F. Davidson (DFO/Canda), M. Drévillon (CERFACS/France), P. Hacker (IPRC/USA), M. Kamachi (MRI/Japan), J.-M. Lellouche (CERFACS/France), K. A. Lisæter (NERSC/Norway), R. Mahdon (UKMO/UK), M. Martin (UKMO/UK), A. Ratsimandresy (DFO/Canada), and C. Regnier (Mercator Ocean/France)
Chonggang Xu; Hong S. He; Yuanman Hu; Yu Chang; Xiuzhen Li; Rencang Bu
2005-01-01
Geostatistical stochastic simulation is always combined with Monte Carlo method to quantify the uncertainty in spatial model simulations. However, due to the relatively long running time of spatially explicit forest models as a result of their complexity, it is always infeasible to generate hundreds or thousands of Monte Carlo simulations. Thus, it is of great...
An Integrated Modeling and Simulation Methodology for Intelligent Systems Design and Testing
2002-08-01
simulation and actual execution. KEYWORDS: Model Continuity, Modeling, Simulation, Experimental Frame, Real Time Systems , Intelligent Systems...the methodology for a stand-alone real time system. Then it will scale up to distributed real time systems . For both systems, step-wise simulation...MODEL CONTINUITY Intelligent real time systems monitor, respond to, or control, an external environment. This environment is connected to the digital
Assessing Model Data Fit of Unidimensional Item Response Theory Models in Simulated Data
ERIC Educational Resources Information Center
Kose, Ibrahim Alper
2014-01-01
The purpose of this paper is to give an example of how to assess the model-data fit of unidimensional IRT models in simulated data. Also, the present research aims to explain the importance of fit and the consequences of misfit by using simulated data sets. Responses of 1000 examinees to a dichotomously scoring 20 item test were simulated with 25…
Towards Automatic Processing of Virtual City Models for Simulations
NASA Astrophysics Data System (ADS)
Piepereit, R.; Schilling, A.; Alam, N.; Wewetzer, M.; Pries, M.; Coors, V.
2016-10-01
Especially in the field of numerical simulations, such as flow and acoustic simulations, the interest in using virtual 3D models to optimize urban systems is increasing. The few instances in which simulations were already carried out in practice have been associated with an extremely high manual and therefore uneconomical effort for the processing of models. Using different ways of capturing models in Geographic Information System (GIS) and Computer Aided Engineering (CAE), increases the already very high complexity of the processing. To obtain virtual 3D models suitable for simulation, we developed a tool for automatic processing with the goal to establish ties between the world of GIS and CAE. In this paper we introduce a way to use Coons surfaces for the automatic processing of building models in LoD2, and investigate ways to simplify LoD3 models in order to reduce unnecessary information for a numerical simulation.
NASA Astrophysics Data System (ADS)
Shirley, Rachel Elizabeth
Nuclear power plant (NPP) simulators are proliferating in academic research institutions and national laboratories in response to the availability of affordable, digital simulator platforms. Accompanying the new research facilities is a renewed interest in using data collected in NPP simulators for Human Reliability Analysis (HRA) research. An experiment conducted in The Ohio State University (OSU) NPP Simulator Facility develops data collection methods and analytical tools to improve use of simulator data in HRA. In the pilot experiment, student operators respond to design basis accidents in the OSU NPP Simulator Facility. Thirty-three undergraduate and graduate engineering students participated in the research. Following each accident scenario, student operators completed a survey about perceived simulator biases and watched a video of the scenario. During the video, they periodically recorded their perceived strength of significant Performance Shaping Factors (PSFs) such as Stress. This dissertation reviews three aspects of simulator-based research using the data collected in the OSU NPP Simulator Facility: First, a qualitative comparison of student operator performance to computer simulations of expected operator performance generated by the Information Decision Action Crew (IDAC) HRA method. Areas of comparison include procedure steps, timing of operator actions, and PSFs. Second, development of a quantitative model of the simulator bias introduced by the simulator environment. Two types of bias are defined: Environmental Bias and Motivational Bias. This research examines Motivational Bias--that is, the effect of the simulator environment on an operator's motivations, goals, and priorities. A bias causal map is introduced to model motivational bias interactions in the OSU experiment. Data collected in the OSU NPP Simulator Facility are analyzed using Structural Equation Modeling (SEM). Data include crew characteristics, operator surveys, and time to recognize and diagnose the accident in the scenario. These models estimate how the effects of the scenario conditions are mediated by simulator bias, and demonstrate how to quantify the strength of the simulator bias. Third, development of a quantitative model of subjective PSFs based on objective data (plant parameters, alarms, etc.) and PSF values reported by student operators. The objective PSF model is based on the PSF network in the IDAC HRA method. The final model is a mixed effects Bayesian hierarchical linear regression model. The subjective PSF model includes three factors: The Environmental PSF, the simulator Bias, and the Context. The Environmental Bias is mediated by an operator sensitivity coefficient that captures the variation in operator reactions to plant conditions. The data collected in the pilot experiments are not expected to reflect professional NPP operator performance, because the students are still novice operators. However, the models used in this research and the methods developed to analyze them demonstrate how to consider simulator bias in experiment design and how to use simulator data to enhance the technical basis of a complex HRA method. The contributions of the research include a framework for discussing simulator bias, a quantitative method for estimating simulator bias, a method for obtaining operator-reported PSF values, and a quantitative method for incorporating the variability in operator perception into PSF models. The research demonstrates applications of Structural Equation Modeling and hierarchical Bayesian linear regression models in HRA. Finally, the research demonstrates the benefits of using student operators as a test platform for HRA research.
The Emergence of Simulation and Gaming.
ERIC Educational Resources Information Center
Becker, Henk A.
1980-01-01
Describes the historical and international development of simulation and gaming in terms of simulation as analytical models, and games as communicative models; and forecasts possible futures of simulation and gaming. (CMV)
A data-driven dynamics simulation framework for railway vehicles
NASA Astrophysics Data System (ADS)
Nie, Yinyu; Tang, Zhao; Liu, Fengjia; Chang, Jian; Zhang, Jianjun
2018-03-01
The finite element (FE) method is essential for simulating vehicle dynamics with fine details, especially for train crash simulations. However, factors such as the complexity of meshes and the distortion involved in a large deformation would undermine its calculation efficiency. An alternative method, the multi-body (MB) dynamics simulation provides satisfying time efficiency but limited accuracy when highly nonlinear dynamic process is involved. To maintain the advantages of both methods, this paper proposes a data-driven simulation framework for dynamics simulation of railway vehicles. This framework uses machine learning techniques to extract nonlinear features from training data generated by FE simulations so that specific mesh structures can be formulated by a surrogate element (or surrogate elements) to replace the original mechanical elements, and the dynamics simulation can be implemented by co-simulation with the surrogate element(s) embedded into a MB model. This framework consists of a series of techniques including data collection, feature extraction, training data sampling, surrogate element building, and model evaluation and selection. To verify the feasibility of this framework, we present two case studies, a vertical dynamics simulation and a longitudinal dynamics simulation, based on co-simulation with MATLAB/Simulink and Simpack, and a further comparison with a popular data-driven model (the Kriging model) is provided. The simulation result shows that using the legendre polynomial regression model in building surrogate elements can largely cut down the simulation time without sacrifice in accuracy.
Notional Scoring for Technical Review Weighting As Applied to Simulation Credibility Assessment
NASA Technical Reports Server (NTRS)
Hale, Joseph Peter; Hartway, Bobby; Thomas, Danny
2008-01-01
NASA's Modeling and Simulation Standard requires a credibility assessment for critical engineering data produced by models and simulations. Credibility assessment is thus a "qualifyingfactor" in reporting results from simulation-based analysis. The degree to which assessors should be independent of the simulation developers, users and decision makers is a recurring question. This paper provides alternative "weighting algorithms" for calculating the value-added for independence of the levels of technical review defined for the NASA Modeling and Simulation Standard.
Advanced EUV mask and imaging modeling
NASA Astrophysics Data System (ADS)
Evanschitzky, Peter; Erdmann, Andreas
2017-10-01
The exploration and optimization of image formation in partially coherent EUV projection systems with complex source shapes requires flexible, accurate, and efficient simulation models. This paper reviews advanced mask diffraction and imaging models for the highly accurate and fast simulation of EUV lithography systems, addressing important aspects of the current technical developments. The simulation of light diffraction from the mask employs an extended rigorous coupled wave analysis (RCWA) approach, which is optimized for EUV applications. In order to be able to deal with current EUV simulation requirements, several additional models are included in the extended RCWA approach: a field decomposition and a field stitching technique enable the simulation of larger complex structured mask areas. An EUV multilayer defect model including a database approach makes the fast and fully rigorous defect simulation and defect repair simulation possible. A hybrid mask simulation approach combining real and ideal mask parts allows the detailed investigation of the origin of different mask 3-D effects. The image computation is done with a fully vectorial Abbe-based approach. Arbitrary illumination and polarization schemes and adapted rigorous mask simulations guarantee a high accuracy. A fully vectorial sampling-free description of the pupil with Zernikes and Jones pupils and an optimized representation of the diffraction spectrum enable the computation of high-resolution images with high accuracy and short simulation times. A new pellicle model supports the simulation of arbitrary membrane stacks, pellicle distortions, and particles/defects on top of the pellicle. Finally, an extension for highly accurate anamorphic imaging simulations is included. The application of the models is demonstrated by typical use cases.
Medicanes in an ocean-atmosphere coupled regional climate model
NASA Astrophysics Data System (ADS)
Akhtar, Naveed; Brauch, Jennifer; Ahrens, Bodo
2014-05-01
So-called medicanes (Mediterranean hurricanes) are meso-scale, marine and warm core Mediterranean cyclones which exhibit some similarities with tropical cyclones. The strong cyclonic winds associated with them are a potential thread for highly populated coastal areas around the Mediterranean basin. In this study we employ an atmospheric limited-area model (COSMO-CLM) coupled with a one-dimensional ocean model (NEMO-1d) to simulate medicanes. The goal of this study is to assess the robustness of the coupled model to simulate these extreme events. For this purpose 11 historical medicane events are simulated by the atmosphere-only and the coupled models using different set-ups (horizontal grid-spacings: 0.44o, 0.22o, 0.088o; with/with-out spectral nudging). The results show that at high resolution the coupled model is not only able to simulate all medicane events but also improves the simulated track length, warm core, and wind speed of simulated medicanes compared to atmosphere-only simulations. In most of the cases the medicanes trajectories and structures are better represented in coupled simulations compared to atmosphere-only simulations. We conclude that the coupled model is a suitable tool for systemic and detailed study of historical medicane events and also for future projections.
Simulation-Based Training for Colonoscopy
Preisler, Louise; Svendsen, Morten Bo Søndergaard; Nerup, Nikolaj; Svendsen, Lars Bo; Konge, Lars
2015-01-01
Abstract The aim of this study was to create simulation-based tests with credible pass/fail standards for 2 different fidelities of colonoscopy models. Only competent practitioners should perform colonoscopy. Reliable and valid simulation-based tests could be used to establish basic competency in colonoscopy before practicing on patients. Twenty-five physicians (10 consultants with endoscopic experience and 15 fellows with very little endoscopic experience) were tested on 2 different simulator models: a virtual-reality simulator and a physical model. Tests were repeated twice on each simulator model. Metrics with discriminatory ability were identified for both modalities and reliability was determined. The contrasting-groups method was used to create pass/fail standards and the consequences of these were explored. The consultants significantly performed faster and scored higher than the fellows on both the models (P < 0.001). Reliability analysis showed Cronbach α = 0.80 and 0.87 for the virtual-reality and the physical model, respectively. The established pass/fail standards failed one of the consultants (virtual-reality simulator) and allowed one fellow to pass (physical model). The 2 tested simulations-based modalities provided reliable and valid assessments of competence in colonoscopy and credible pass/fail standards were established for both the tests. We propose to use these standards in simulation-based training programs before proceeding to supervised training on patients. PMID:25634177
LeBlanc, Fabien; Champagne, Bradley J; Augestad, Knut M; Neary, Paul C; Senagore, Anthony J; Ellis, Clyde N; Delaney, Conor P
2010-08-01
The aim of this study was to compare the human cadaver model with an augmented reality simulator for straight laparoscopic colorectal skills acquisition. Thirty-five sigmoid colectomies were performed on a cadaver (n = 7) or an augmented reality simulator (n = 28) during a laparoscopic training course. Prior laparoscopic colorectal experience was assessed. Objective structured technical skills assessment forms were completed by trainers and trainees independently. Groups were compared according to technical skills and events scores and satisfaction with training model. Prior laparoscopic experience was similar in both groups. For trainers and trainees, technical skills scores were considerably better on the simulator than on the cadaver. For trainers, generic events score was also considerably better on the simulator than on the cadaver. The main generic event occurring on both models was errors in the use of retraction. The main specific event occurring on both models was bowel perforation. Global satisfaction was better for the cadaver than for the simulator model (p < 0.001). The human cadaver model was more difficult but better appreciated than the simulator for laparoscopic sigmoid colectomy training. Simulator training followed by cadaver training can appropriately integrate simulators into the learning curve and maintain the benefits of both training methodologies. Published by Elsevier Inc.
Davis, Kyle W.; Putnam, Larry D.
2013-01-01
The Ogallala aquifer is an important water resource for the Rosebud Sioux Tribe in Gregory and Tripp Counties in south-central South Dakota and is used for irrigation, public supply, domestic, and stock water supplies. To better understand groundwater flow in the Ogallala aquifer, conceptual and numerical models of groundwater flow were developed for the aquifer. A conceptual model of the Ogallala aquifer was used to analyze groundwater flow and develop a numerical model to simulate groundwater flow in the aquifer. The MODFLOW–NWT model was used to simulate transient groundwater conditions for water years 1985–2009. The model was calibrated using statistical parameter estimation techniques. Potential future scenarios were simulated using the input parameters from the calibrated model for simulations of potential future drought and future increased pumping. Transient simulations were completed with the numerical model. A 200-year transient initialization period was used to establish starting conditions for the subsequent 25-year simulation of water years 1985–2009. The 25-year simulation was discretized into three seasonal stress periods per year and used to simulate transient conditions. A single-layer model was used to simulate flow and mass balance in the Ogallala aquifer with a grid of 133 rows and 282 columns and a uniform spacing of 500 meters (1,640 feet). Regional inflow and outflow were simulated along the western and southern boundaries using specified-head cells. All other boundaries were simulated using no-flow cells. Recharge to the aquifer occurs through precipitation on the outcrop area. Model calibration was accomplished using the Parameter Estimation (PEST) program that adjusted individual model input parameters and assessed the difference between estimated and model-simulated values of hydraulic head and base flow. This program was designed to estimate parameter values that are statistically the most likely set of values to result in the smallest differences between simulated and observed values, within a given set of constraints. The potentiometric surface of the aquifer calculated during the 200-year initialization period established initial conditions for the transient simulation. Water levels for 38 observation wells were used to calibrate the 25-year simulation. Simulated hydraulic heads for the transient simulation were within plus or minus 20 feet of observed values for 95 percent of observation wells, and the mean absolute difference was 5.1 feet. Calibrated hydraulic conductivity ranged from 0.9 to 227 feet per day (ft/d). The annual recharge rates for the transient simulation (water years 1985–2009) ranged from 0.60 to 6.96 inches, with a mean of 3.68 inches for the Ogallala aquifer. This represents a mean recharge rate of 280.5 ft3/s for the model area. Discharge from the aquifer occurs through evapotranspiration, discharge to streams through river leakage and flow from springs and seeps, and well withdrawals. Water is withdrawn from wells for irrigation, public supply, domestic, and stock uses. Simulated mean discharge rates for water years 1985–2009 were about 185 cubic feet per second (ft3/s) for evapotranspiration, 66.7 ft3/s for discharge to streams, and 5.48 ft3/s for well withdrawals. Simulated annual evapotranspiration rates ranged from about 128 to 254 ft3/s, and outflow to streams ranged from 52.2 to 79.9 ft3/s. A sensitivity analysis was used to examine the response of the calibrated model to changes in model parameters for horizontal hydraulic conductivity, recharge, evapotranspiration, and spring and riverbed conductance. The model was most sensitive to recharge and maximum potential evapotranspiration and least sensitive to riverbed and spring conductances. Two potential future scenarios were simulated: a potential drought scenario and a potential increased pumping scenario. To simulate a potential drought scenario, a synthetic drought record was created, the mean of which was equal to 60 percent of the mean estimated recharge rate for the 25-year simulation period. Compared with the results of the calibrated model (non-drought simulation), the simulation representing a potential drought scenario resulted in water-level decreases of as much as 30 feet for the Ogallala aquifer. To simulate the effects of potential future increases in pumping, well withdrawal rates were increased by 50 percent from those estimated for the 25-year simulation period. Compared with the results of the calibrated model, the simulation representing an increased pumping scenario resulted in water-level decreases of as much as 26 feet for the Ogallala aquifer. Groundwater budgets for the potential future scenario simulations were compared with the transient simulation representing water years 1985–2009. The simulation representing a potential drought scenario resulted in lower aquifer recharge from precipitation and decreased discharge from streams, springs, seeps, and evapotranspiration. The simulation representing a potential increased pumping scenario was similar to results from the transient simulation, with a slight increase in well withdrawals and a slight decrease in discharge from river leakage and evapotranspiration. This numerical model is suitable as a tool that could be used to better understand the flow system of the Ogallala aquifer, to approximate hydraulic heads in the aquifer, and to estimate discharge to rivers, springs, and seeps in the study area. The model also is useful to help assess the response of the aquifer to additional stresses, including potential drought conditions and increased well withdrawals.
Flight Testing an Iced Business Jet for Flight Simulation Model Validation
NASA Technical Reports Server (NTRS)
Ratvasky, Thomas P.; Barnhart, Billy P.; Lee, Sam; Cooper, Jon
2007-01-01
A flight test of a business jet aircraft with various ice accretions was performed to obtain data to validate flight simulation models developed through wind tunnel tests. Three types of ice accretions were tested: pre-activation roughness, runback shapes that form downstream of the thermal wing ice protection system, and a wing ice protection system failure shape. The high fidelity flight simulation models of this business jet aircraft were validated using a software tool called "Overdrive." Through comparisons of flight-extracted aerodynamic forces and moments to simulation-predicted forces and moments, the simulation models were successfully validated. Only minor adjustments in the simulation database were required to obtain adequate match, signifying the process used to develop the simulation models was successful. The simulation models were implemented in the NASA Ice Contamination Effects Flight Training Device (ICEFTD) to enable company pilots to evaluate flight characteristics of the simulation models. By and large, the pilots confirmed good similarities in the flight characteristics when compared to the real airplane. However, pilots noted pitch up tendencies at stall with the flaps extended that were not representative of the airplane and identified some differences in pilot forces. The elevator hinge moment model and implementation of the control forces on the ICEFTD were identified as a driver in the pitch ups and control force issues, and will be an area for future work.
Erdemir, Ahmet; Guess, Trent M.; Halloran, Jason P.; Modenese, Luca; Reinbolt, Jeffrey A.; Thelen, Darryl G.; Umberger, Brian R.
2016-01-01
Objective The overall goal of this document is to demonstrate that dissemination of models and analyses for assessing the reproducibility of simulation results can be incorporated in the scientific review process in biomechanics. Methods As part of a special issue on model sharing and reproducibility in IEEE Transactions on Biomedical Engineering, two manuscripts on computational biomechanics were submitted: A. Rajagopal et al., IEEE Trans. Biomed. Eng., 2016 and A. Schmitz and D. Piovesan, IEEE Trans. Biomed. Eng., 2016. Models used in these studies were shared with the scientific reviewers and the public. In addition to the standard review of the manuscripts, the reviewers downloaded the models and performed simulations that reproduced results reported in the studies. Results There was general agreement between simulation results of the authors and those of the reviewers. Discrepancies were resolved during the necessary revisions. The manuscripts and instructions for download and simulation were updated in response to the reviewers’ feedback; changes that may otherwise have been missed if explicit model sharing and simulation reproducibility analysis were not conducted in the review process. Increased burden on the authors and the reviewers, to facilitate model sharing and to repeat simulations, were noted. Conclusion When the authors of computational biomechanics studies provide access to models and data, the scientific reviewers can download and thoroughly explore the model, perform simulations, and evaluate simulation reproducibility beyond the traditional manuscript-only review process. Significance Model sharing and reproducibility analysis in scholarly publishing will result in a more rigorous review process, which will enhance the quality of modeling and simulation studies and inform future users of computational models. PMID:28072567
Rainfall runoff modelling of the Upper Ganga and Brahmaputra basins using PERSiST.
Futter, M N; Whitehead, P G; Sarkar, S; Rodda, H; Crossman, J
2015-06-01
There are ongoing discussions about the appropriate level of complexity and sources of uncertainty in rainfall runoff models. Simulations for operational hydrology, flood forecasting or nutrient transport all warrant different levels of complexity in the modelling approach. More complex model structures are appropriate for simulations of land-cover dependent nutrient transport while more parsimonious model structures may be adequate for runoff simulation. The appropriate level of complexity is also dependent on data availability. Here, we use PERSiST; a simple, semi-distributed dynamic rainfall-runoff modelling toolkit to simulate flows in the Upper Ganges and Brahmaputra rivers. We present two sets of simulations driven by single time series of daily precipitation and temperature using simple (A) and complex (B) model structures based on uniform and hydrochemically relevant land covers respectively. Models were compared based on ensembles of Bayesian Information Criterion (BIC) statistics. Equifinality was observed for parameters but not for model structures. Model performance was better for the more complex (B) structural representations than for parsimonious model structures. The results show that structural uncertainty is more important than parameter uncertainty. The ensembles of BIC statistics suggested that neither structural representation was preferable in a statistical sense. Simulations presented here confirm that relatively simple models with limited data requirements can be used to credibly simulate flows and water balance components needed for nutrient flux modelling in large, data-poor basins.
Research of laser echo signal simulator
NASA Astrophysics Data System (ADS)
Xu, Rui; Shi, Rui; Wang, Xin; Li, Zhou
2015-11-01
Laser echo signal simulator is one of the most significant components of hardware-in-the-loop (HWIL) simulation systems for LADAR. System model and time series model of laser echo signal simulator are established. Some influential factors which could induce fixed error and random error on the simulated return signals are analyzed, and then these system insertion errors are analyzed quantitatively. Using this theoretical model, the simulation system is investigated experimentally. The results corrected by subtracting fixed error indicate that the range error of the simulated laser return signal is less than 0.25m, and the distance range that the system can simulate is from 50m to 20km.
Simulation and analysis of a model dinoflagellate predator-prey system
NASA Astrophysics Data System (ADS)
Mazzoleni, M. J.; Antonelli, T.; Coyne, K. J.; Rossi, L. F.
2015-12-01
This paper analyzes the dynamics of a model dinoflagellate predator-prey system and uses simulations to validate theoretical and experimental studies. A simple model for predator-prey interactions is derived by drawing upon analogies from chemical kinetics. This model is then modified to account for inefficiencies in predation. Simulation results are shown to closely match the model predictions. Additional simulations are then run which are based on experimental observations of predatory dinoflagellate behavior, and this study specifically investigates how the predatory dinoflagellate Karlodinium veneficum uses toxins to immobilize its prey and increase its feeding rate. These simulations account for complex dynamics that were not included in the basic models, and the results from these computational simulations closely match the experimentally observed predatory behavior of K. veneficum and reinforce the notion that predatory dinoflagellates utilize toxins to increase their feeding rate.
Influence of World and Gravity Model Selection on Surface Interacting Vehicle Simulations
NASA Technical Reports Server (NTRS)
Madden, Michael M.
2007-01-01
A vehicle simulation is surface-interacting if the state of the vehicle (position, velocity, and acceleration) relative to the surface is important. Surface-interacting simulations perform ascent, entry, descent, landing, surface travel, or atmospheric flight. Modeling of gravity is an influential environmental factor for surface-interacting simulations. Gravity is the free-fall acceleration observed from a world-fixed frame that rotates with the world. Thus, gravity is the sum of gravitation and the centrifugal acceleration due to the world s rotation. In surface-interacting simulations, the fidelity of gravity at heights above the surface is more significant than gravity fidelity at locations in inertial space. A surface-interacting simulation cannot treat the gravity model separately from the world model, which simulates the motion and shape of the world. The world model's simulation of the world's rotation, or lack thereof, produces the centrifugal acceleration component of gravity. The world model s reproduction of the world's shape will produce different positions relative to the world center for a given height above the surface. These differences produce variations in the gravitation component of gravity. This paper examines the actual performance of world and gravity/gravitation pairs in a simulation using the Earth.
La Licata, Ivana; Langevin, Christian D.; Dausman, Alyssa M.; Alberti, Luca
2011-01-01
Variable-density groundwater models require extensive computational resources, particularly for simulations representing short-term hydrologic variability such as tidal fluctuations. Saltwater-intrusion models usually neglect tidal fluctuations and this may introduce errors in simulated concentrations. The effects of tides on simulated concentrations in a coastal aquifer were assessed. Three analyses are reported: in the first, simulations with and without tides were compared for three different dispersivity values. Tides do not significantly affect the transfer of a hypothetical contaminant into the ocean; however, the concentration difference between tidal and non-tidal simulations could be as much as 15%. In the second analysis, the dispersivity value for the model without tides was increased in a zone near the ocean boundary. By slightly increasing dispersivity in this zone, the maximum concentration difference between the simulations with and without tides was reduced to as low as 7%. In the last analysis, an apparent dispersivity value was calculated for each model cell using the simulated velocity variations from the model with tides. Use of apparent dispersivity values in models with a constant ocean boundary seems to provide a reasonable approach for approximating tidal effects in simulations where explicit representation of tidal fluctuations is not feasible.
La Licata, Ivana; Langevin, Christian D.; Dausman, Alyssa M.; Alberti, Luca
2013-01-01
Variable-density groundwater models require extensive computational resources, particularly for simulations representing short-term hydrologic variability such as tidal fluctuations. Saltwater-intrusion models usually neglect tidal fluctuations and this may introduce errors in simulated concentrations. The effects of tides on simulated concentrations in a coastal aquifer were assessed. Three analyses are reported: in the first, simulations with and without tides were compared for three different dispersivity values. Tides do not significantly affect the transfer of a hypothetical contaminant into the ocean; however, the concentration difference between tidal and non-tidal simulations could be as much as 15%. In the second analysis, the dispersivity value for the model without tides was increased in a zone near the ocean boundary. By slightly increasing dispersivity in this zone, the maximum concentration difference between the simulations with and without tides was reduced to as low as 7%. In the last analysis, an apparent dispersivity value was calculated for each model cell using the simulated velocity variations from the model with tides. Use of apparent dispersivity values in models with a constant ocean boundary seems to provide a reasonable approach for approximating tidal effects in simulations where explicit representation of tidal fluctuations is not feasible.
Spectrum simulation in DTSA-II.
Ritchie, Nicholas W M
2009-10-01
Spectrum simulation is a useful practical and pedagogical tool. Particularly with complex samples or trace constituents, a simulation can help to understand the limits of the technique and the instrument parameters for the optimal measurement. DTSA-II, software for electron probe microanalysis, provides both easy to use and flexible tools for simulating common and less common sample geometries and materials. Analytical models based on (rhoz) curves provide quick simulations of simple samples. Monte Carlo models based on electron and X-ray transport provide more sophisticated models of arbitrarily complex samples. DTSA-II provides a broad range of simulation tools in a framework with many different interchangeable physical models. In addition, DTSA-II provides tools for visualizing, comparing, manipulating, and quantifying simulated and measured spectra.
An epidemiological modeling and data integration framework.
Pfeifer, B; Wurz, M; Hanser, F; Seger, M; Netzer, M; Osl, M; Modre-Osprian, R; Schreier, G; Baumgartner, C
2010-01-01
In this work, a cellular automaton software package for simulating different infectious diseases, storing the simulation results in a data warehouse system and analyzing the obtained results to generate prediction models as well as contingency plans, is proposed. The Brisbane H3N2 flu virus, which has been spreading during the winter season 2009, was used for simulation in the federal state of Tyrol, Austria. The simulation-modeling framework consists of an underlying cellular automaton. The cellular automaton model is parameterized by known disease parameters and geographical as well as demographical conditions are included for simulating the spreading. The data generated by simulation are stored in the back room of the data warehouse using the Talend Open Studio software package, and subsequent statistical and data mining tasks are performed using the tool, termed Knowledge Discovery in Database Designer (KD3). The obtained simulation results were used for generating prediction models for all nine federal states of Austria. The proposed framework provides a powerful and easy to handle interface for parameterizing and simulating different infectious diseases in order to generate prediction models and improve contingency plans for future events.
Nakayama, Yumiko; Kishida, Fumio; Nakatsuka, Iwao; Matsuo, Masatoshi
2005-01-01
The toxicokinetics/toxicodynamics (TKTD) model simulates the toxicokinetics of a chemical based on physiological data such as blood flow, tissue partition coefficients and metabolism. In this study, Andersen and Clewell's TKTD model was used with seven compartments and ten differential equations for calculating chemical balances in the compartments (Andersen and Clewell 1996, Workshop on physiologically-based pharmacokinetic/pharmacodynamic modeling and risk assessment, Aug. 5-16 at Colorado State University, U.S.A) . Using this model, the authors attempted to simulate the behavior of four chemicals: trichloroethylene, methylene chloride, styrene and n-hexane, and the results were evaluated. Simulations of the behavior of trichloroethylene taken in via inhalation and oral exposure routes were also done. The differences between simulations and measurements are due to the differences between the absorption rates of the exposure routes. By changing the absorption rates, the simulation showed agreement with the measured values. The simulations of the other three chemicals showed good results. Thus, this model is useful for simulating the behavior of chemicals for preliminary toxicity assessment.
Reliable results from stochastic simulation models
Donald L., Jr. Gochenour; Leonard R. Johnson
1973-01-01
Development of a computer simulation model is usually done without fully considering how long the model should run (e.g. computer time) before the results are reliable. However construction of confidence intervals (CI) about critical output parameters from the simulation model makes it possible to determine the point where model results are reliable. If the results are...
Combining Simulation and Optimization Models for Hardwood Lumber Production
G.A. Mendoza; R.J. Meimban; W.G. Luppold; Philip A. Araman
1991-01-01
Published literature contains a number of optimization and simulation models dealing with the primary processing of hardwood and softwood logs. Simulation models have been developed primarily as descriptive models for characterizing the general operations and performance of a sawmill. Optimization models, on the other hand, were developed mainly as analytical tools for...
Integrated modeling and heat treatment simulation of austempered ductile iron
NASA Astrophysics Data System (ADS)
Hepp, E.; Hurevich, V.; Schäfer, W.
2012-07-01
The integrated modeling and simulation of the casting and heat treatment processes for producing austempered ductile iron (ADI) castings is presented. The focus is on describing different models to simulate the austenitization, quenching and austempering steps during ADI heat treatment. The starting point for the heat treatment simulation is the simulated microstructure after solidification and cooling. The austenitization model considers the transformation of the initial ferrite-pearlite matrix into austenite as well as the dissolution of graphite in austenite to attain a uniform carbon distribution. The quenching model is based on measured CCT diagrams. Measurements have been carried out to obtain these diagrams for different alloys with varying Cu, Ni and Mo contents. The austempering model includes nucleation and growth kinetics of the ADI matrix. The model of ADI nucleation is based on experimental measurements made for varied Cu, Ni, Mo contents and austempering temperatures. The ADI kinetic model uses a diffusion controlled approach to model the growth. The models have been integrated in a tool for casting process simulation. Results are shown for the optimization of the heat treatment process of a planetary carrier casting.
1D-3D hybrid modeling—from multi-compartment models to full resolution models in space and time
Grein, Stephan; Stepniewski, Martin; Reiter, Sebastian; Knodel, Markus M.; Queisser, Gillian
2014-01-01
Investigation of cellular and network dynamics in the brain by means of modeling and simulation has evolved into a highly interdisciplinary field, that uses sophisticated modeling and simulation approaches to understand distinct areas of brain function. Depending on the underlying complexity, these models vary in their level of detail, in order to cope with the attached computational cost. Hence for large network simulations, single neurons are typically reduced to time-dependent signal processors, dismissing the spatial aspect of each cell. For single cell or networks with relatively small numbers of neurons, general purpose simulators allow for space and time-dependent simulations of electrical signal processing, based on the cable equation theory. An emerging field in Computational Neuroscience encompasses a new level of detail by incorporating the full three-dimensional morphology of cells and organelles into three-dimensional, space and time-dependent, simulations. While every approach has its advantages and limitations, such as computational cost, integrated and methods-spanning simulation approaches, depending on the network size could establish new ways to investigate the brain. In this paper we present a hybrid simulation approach, that makes use of reduced 1D-models using e.g., the NEURON simulator—which couples to fully resolved models for simulating cellular and sub-cellular dynamics, including the detailed three-dimensional morphology of neurons and organelles. In order to couple 1D- and 3D-simulations, we present a geometry-, membrane potential- and intracellular concentration mapping framework, with which graph- based morphologies, e.g., in the swc- or hoc-format, are mapped to full surface and volume representations of the neuron and computational data from 1D-simulations can be used as boundary conditions for full 3D simulations and vice versa. Thus, established models and data, based on general purpose 1D-simulators, can be directly coupled to the emerging field of fully resolved, highly detailed 3D-modeling approaches. We present the developed general framework for 1D/3D hybrid modeling and apply it to investigate electrically active neurons and their intracellular spatio-temporal calcium dynamics. PMID:25120463
NASA Astrophysics Data System (ADS)
Colombant, Denis; Manheimer, Wallace
2008-11-01
The Krook model described in the previous talk has been incorporated into a fluid simulation. These fluid simulations are then compared with Fokker Planck simulations and also with a recent NRL Nike experiment. We also examine several other models for electron energy transport that have been used in laser fusion research. As regards comparison with Fokker Planck simulation, the Krook model gives better agreement than the other models, especially in the time asymptotic limit. As regards the NRL experiment, all models except one give reasonable agreement.
Code modernization and modularization of APEX and SWAT watershed simulation models
USDA-ARS?s Scientific Manuscript database
SWAT (Soil and Water Assessment Tool) and APEX (Agricultural Policy / Environmental eXtender) are respectively large and small watershed simulation models derived from EPIC Environmental Policy Integrated Climate), a field-scale agroecology simulation model. All three models are coded in FORTRAN an...
USDA-ARS?s Scientific Manuscript database
Simulation modelers increasingly require greater flexibility for model implementation on diverse operating systems, and they demand high computational speed for efficient iterative simulations. Additionally, model users may differ in preference for proprietary versus open-source software environment...
[Application of ordinary Kriging method in entomologic ecology].
Zhang, Runjie; Zhou, Qiang; Chen, Cuixian; Wang, Shousong
2003-01-01
Geostatistics is a statistic method based on regional variables and using the tool of variogram to analyze the spatial structure and the patterns of organism. In simulating the variogram within a great range, though optimal simulation cannot be obtained, the simulation method of a dialogue between human and computer can be used to optimize the parameters of the spherical models. In this paper, the method mentioned above and the weighted polynomial regression were utilized to simulate the one-step spherical model, the two-step spherical model and linear function model, and the available nearby samples were used to draw on the ordinary Kriging procedure, which provided a best linear unbiased estimate of the constraint of the unbiased estimation. The sum of square deviation between the estimating and measuring values of varying theory models were figured out, and the relative graphs were shown. It was showed that the simulation based on the two-step spherical model was the best simulation, and the one-step spherical model was better than the linear function model.
Models and Simulations as a Service: Exploring the Use of Galaxy for Delivering Computational Models
Walker, Mark A.; Madduri, Ravi; Rodriguez, Alex; Greenstein, Joseph L.; Winslow, Raimond L.
2016-01-01
We describe the ways in which Galaxy, a web-based reproducible research platform, can be used for web-based sharing of complex computational models. Galaxy allows users to seamlessly customize and run simulations on cloud computing resources, a concept we refer to as Models and Simulations as a Service (MaSS). To illustrate this application of Galaxy, we have developed a tool suite for simulating a high spatial-resolution model of the cardiac Ca2+ spark that requires supercomputing resources for execution. We also present tools for simulating models encoded in the SBML and CellML model description languages, thus demonstrating how Galaxy’s reproducible research features can be leveraged by existing technologies. Finally, we demonstrate how the Galaxy workflow editor can be used to compose integrative models from constituent submodules. This work represents an important novel approach, to our knowledge, to making computational simulations more accessible to the broader scientific community. PMID:26958881
Analog quantum simulation of generalized Dicke models in trapped ions
NASA Astrophysics Data System (ADS)
Aedo, Ibai; Lamata, Lucas
2018-04-01
We propose the analog quantum simulation of generalized Dicke models in trapped ions. By combining bicromatic laser interactions on multiple ions we can generate all regimes of light-matter coupling in these models, where here the light mode is mimicked by a motional mode. We present numerical simulations of the three-qubit Dicke model both in the weak field (WF) regime, where the Jaynes-Cummings behavior arises, and the ultrastrong coupling (USC) regime, where a rotating-wave approximation cannot be considered. We also simulate the two-qubit biased Dicke model in the WF and USC regimes and the two-qubit anisotropic Dicke model in the USC regime and the deep-strong coupling regime. The agreement between the mathematical models and the ion system convinces us that these quantum simulations can be implemented in the laboratory with current or near-future technology. This formalism establishes an avenue for the quantum simulation of many-spin Dicke models in trapped ions.
VHDL simulation with access to transistor models
NASA Technical Reports Server (NTRS)
Gibson, J.
1991-01-01
Hardware description languages such as VHDL have evolved to aid in the design of systems with large numbers of elements and a wide range of electronic and logical abstractions. For high performance circuits, behavioral models may not be able to efficiently include enough detail to give designers confidence in a simulation's accuracy. One option is to provide a link between the VHDL environment and a transistor level simulation environment. The coupling of the Vantage Analysis Systems VHDL simulator and the NOVA simulator provides the combination of VHDL modeling and transistor modeling.
Seasonal changes in the atmospheric heat balance simulated by the GISS general circulation model
NASA Technical Reports Server (NTRS)
Stone, P. H.; Chow, S.; Helfand, H. M.; Quirk, W. J.; Somerville, R. C. J.
1975-01-01
Tests of the ability of numerical general circulation models to simulate the atmosphere have focussed so far on simulations of the January climatology. These models generally present boundary conditions such as sea surface temperature, but this does not prevent testing their ability to simulate seasonal changes in atmospheric processes that accompany presented seasonal changes in boundary conditions. Experiments to simulate changes in the zonally averaged heat balance are discussed since many simplified models of climatic processes are based solely on this balance.
NASA Technical Reports Server (NTRS)
Levison, William H.
1988-01-01
This study explored application of a closed loop pilot/simulator model to the analysis of some simulator fidelity issues. The model was applied to two data bases: (1) a NASA ground based simulation of an air-to-air tracking task in which nonvisual cueing devices were explored, and (2) a ground based and inflight study performed by the Calspan Corporation to explore the effects of simulator delay on attitude tracking performance. The model predicted the major performance trends obtained in both studies. A combined analytical and experimental procedure for exploring simulator fidelity issues is outlined.
ERIC Educational Resources Information Center
Nordmark, Staffan
1984-01-01
This report contains a theoretical model for describing the motion of a passenger car. The simulation program based on this model is used in conjunction with an advanced driving simulator and run in real time. The mathematical model is complete in the sense that the dynamics of the engine, transmission and steering system is described in some…
The two types of ENSO in CMIP5 models
NASA Astrophysics Data System (ADS)
Kim, Seon Tae; Yu, Jin-Yi
2012-06-01
In this study, we evaluate the intensity of the Central-Pacific (CP) and Eastern-Pacific (EP) types of El Niño-Southern Oscillation (ENSO) simulated in the pre-industrial, historical, and the Representative Concentration Pathways (RCP) 4.5 experiments of the Coupled Model Intercomparison Project Phase 5 (CMIP5). Compared to the CMIP3 models, the pre-industrial simulations of the CMIP5 models are found to (1) better simulate the observed spatial patterns of the two types of ENSO and (2) have a significantly smaller inter-model diversity in ENSO intensities. The decrease in the CMIP5 model discrepancies is particularly obvious in the simulation of the EP ENSO intensity, although it is still more difficult for the models to reproduce the observed EP ENSO intensity than the observed CP ENSO intensity. Ensemble means of the CMIP5 models indicate that the intensity of the CP ENSO increases steadily from the pre-industrial to the historical and the RCP4.5 simulations, but the intensity of the EP ENSO increases from the pre-industrial to the historical simulations and then decreases in the RCP4.5 projections. The CP-to-EP ENSO intensity ratio, as a result, is almost the same in the pre-industrial and historical simulations but increases in the RCP4.5 simulation.
Detached-Eddy Simulation Based on the v2-f Model
NASA Technical Reports Server (NTRS)
Jee, Sol Keun; Shariff, Karim
2012-01-01
Detached eddy simulation (DES) based on the v2-f RANS model is proposed. This RANS model incorporates the anisotropy of near-wall turbulence which is absent in other RANS models commonly used in the DES community. In LES mode, the proposed DES formulation reduces to a transport equation for the subgrid-scale kinetic energy. The constant, CDES, required by this model was calibrated by simulating isotropic turbulence. In the final paper, DES simulations of canonical separated flows will be presented.
Variance in binary stellar population synthesis
NASA Astrophysics Data System (ADS)
Breivik, Katelyn; Larson, Shane L.
2016-03-01
In the years preceding LISA, Milky Way compact binary population simulations can be used to inform the science capabilities of the mission. Galactic population simulation efforts generally focus on high fidelity models that require extensive computational power to produce a single simulated population for each model. Each simulated population represents an incomplete sample of the functions governing compact binary evolution, thus introducing variance from one simulation to another. We present a rapid Monte Carlo population simulation technique that can simulate thousands of populations in less than a week, thus allowing a full exploration of the variance associated with a binary stellar evolution model.
Studying Variance in the Galactic Ultra-compact Binary Population
NASA Astrophysics Data System (ADS)
Larson, Shane L.; Breivik, Katelyn
2017-01-01
In the years preceding LISA, Milky Way compact binary population simulations can be used to inform the science capabilities of the mission. Galactic population simulation efforts generally focus on high fidelity models that require extensive computational power to produce a single simulated population for each model. Each simulated population represents an incomplete sample of the functions governing compact binary evolution, thus introducing variance from one simulation to another. We present a rapid Monte Carlo population simulation technique that can simulate thousands of populations on week-long timescales, thus allowing a full exploration of the variance associated with a binary stellar evolution model.
NASA Astrophysics Data System (ADS)
Berger, M.; Brandefelt, J.; Nilsson, J.
2013-04-01
In the present work the Arctic sea ice in the mid-Holocene and the pre-industrial climates are analysed and compared on the basis of climate-model results from the Paleoclimate Modelling Intercomparison Project phase 2 (PMIP2) and phase 3 (PMIP3). The PMIP3 models generally simulate smaller and thinner sea-ice extents than the PMIP2 models both for the pre-industrial and the mid-Holocene climate. Further, the PMIP2 and PMIP3 models all simulate a smaller and thinner Arctic summer sea-ice cover in the mid-Holocene than in the pre-industrial control climate. The PMIP3 models also simulate thinner winter sea ice than the PMIP2 models. The winter sea-ice extent response, i.e. the difference between the mid-Holocene and the pre-industrial climate, varies among both PMIP2 and PMIP3 models. Approximately one half of the models simulate a decrease in winter sea-ice extent and one half simulates an increase. The model-mean summer sea-ice extent is 11 % (21 %) smaller in the mid-Holocene than in the pre-industrial climate simulations in the PMIP2 (PMIP3). In accordance with the simple model of Thorndike (1992), the sea-ice thickness response to the insolation change from the pre-industrial to the mid-Holocene is stronger in models with thicker ice in the pre-industrial climate simulation. Further, the analyses show that climate models for which the Arctic sea-ice responses to increasing atmospheric CO2 concentrations are similar may simulate rather different sea-ice responses to the change in solar forcing between the mid-Holocene and the pre-industrial. For two specific models, which are analysed in detail, this difference is found to be associated with differences in the simulated cloud fractions in the summer Arctic; in the model with a larger cloud fraction the effect of insolation change is muted. A sub-set of the mid-Holocene simulations in the PMIP ensemble exhibit open water off the north-eastern coast of Greenland in summer, which can provide a fetch for surface waves. This is in broad agreement with recent analyses of sea-ice proxies, indicating that beach-ridges formed on the north-eastern coast of Greenland during the early- to mid-Holocene.
NASA Technical Reports Server (NTRS)
Furukawa, S.
1975-01-01
Current applications of simulation models for clinical research described included tilt model simulation of orthostatic intolerance with hemorrhage, and modeling long term circulatory circulation. Current capabilities include: (1) simulation of analogous pathological states and effects of abnormal environmental stressors by the manipulation of system variables and changing inputs in various sequences; (2) simulation of time courses of responses of controlled variables by the altered inputs and their relationships; (3) simulation of physiological responses of treatment such as isotonic saline transfusion; (4) simulation of the effectiveness of a treatment as well as the effects of complication superimposed on an existing pathological state; and (5) comparison of the effectiveness of various treatments/countermeasures for a given pathological state. The feasibility of applying simulation models to diagnostic and therapeutic research problems is assessed.
NASA Technical Reports Server (NTRS)
Uschold, Michael
1992-01-01
We are concerned with two important issues in simulation modelling: model comprehension and model construction. Model comprehension is limited because many important choices taken during the modelling process are not documented. This makes it difficult for models to be modified or used by others. A key factor hindering model construction is the vast modelling search space which must be navigated. This is exacerbated by the fact that many modellers are unfamiliar with the terms and concepts catered to by current tools. The root of both problems is the lack of facilities for representing or reasoning about domain concepts in current simulation technology. The basis for our achievements in both of these areas is the development of a language with two distinct levels; one for representing domain information, and the other for representing the simulation model. Of equal importance, is the fact that we make formal connections between these two levels. The domain we are concerned with is ecological modelling. This language, called Elklogic, is based on the typed lambda calculus. Important features include a rich type structure, the use of various higher order functions, and semantics. This enables complex expressions to be constructed from relatively few primitives. The meaning of each expression can be determined in terms of the domain, the simulation model, or the relationship between the two. We describe a novel representation for sets and substructure, and a variety of other general concepts that are especially useful in the ecological domain. We use the type structure in a novel way: for controlling the modelling search space, rather than a proof search space. We facilitate model comprehension by representing modelling decisions that are embodied in the simulation model. We represent the simulation model separately from, but in terms of a domain mode. The explicit links between the two models constitute the modelling decisions. The semantics of Elklogic enables English text to be generated to explain the simulation model in domain terms.
Self-adaptive Fault-Tolerance of HLA-Based Simulations in the Grid Environment
NASA Astrophysics Data System (ADS)
Huang, Jijie; Chai, Xudong; Zhang, Lin; Li, Bo Hu
The objects of a HLA-based simulation can access model services to update their attributes. However, the grid server may be overloaded and refuse the model service to handle objects accesses. Because these objects have been accessed this model service during last simulation loop and their medium state are stored in this server, this may terminate the simulation. A fault-tolerance mechanism must be introduced into simulations. But the traditional fault-tolerance methods cannot meet the above needs because the transmission latency between a federate and the RTI in grid environment varies from several hundred milliseconds to several seconds. By adding model service URLs to the OMT and expanding the HLA services and model services with some interfaces, this paper proposes a self-adaptive fault-tolerance mechanism of simulations according to the characteristics of federates accessing model services. Benchmark experiments indicate that the expanded HLA/RTI can make simulations self-adaptively run in the grid environment.
Non-steady state simulation of BOM removal in drinking water biofilters: model development.
Hozalski, R M; Bouwer, E J
2001-01-01
A numerical model was developed to simulate the non-steady-state behavior of biologically-active filters used for drinking water treatment. The biofilter simulation model called "BIOFILT" simulates the substrate (biodegradable organic matter or BOM) and biomass (both attached and suspended) profiles in a biofilter as a function of time. One of the innovative features of BIOFILT compared to previous biofilm models is the ability to simulate the effects of a sudden loss in attached biomass or biofilm due to filter backwash on substrate removal performance. A sensitivity analysis of the model input parameters indicated that the model simulations were most sensitive to the values of parameters that controlled substrate degradation and biofilm growth and accumulation including the substrate diffusion coefficient, the maximum rate of substrate degradation, the microbial yield coefficient, and a dimensionless shear loss coefficient. Variation of the hydraulic loading rate or other parameters that controlled the deposition of biomass via filtration did not significantly impact the simulation results.
Influence of plasticity models upon the outcome of simulated hypervelocity impacts
NASA Astrophysics Data System (ADS)
Thomas, John N.
1994-07-01
This paper describes the results of numerical simulations of aluminum upon aluminum impacts which were performed with the CTH hydrocode to determine the effect plasticity formulations upon the final perforation size in the targets. The targets were 1 mm and 5 mm thick plates and the projectiles were 10 mm by 10 mm right circular cylinders. Both targets and projectiles were represented as 2024 aluminium alloy. The hydrocode simulations were run in a two-dimensional cylindrical geometry. Normal impacts at velocites between 5 and 15 km/s were simulated. Three isotropic yield stress models were explored in the simulations: an elastic-perfectly plastic model and the Johnson-Cook and Steinberg-Guinan-Lund viscoplastic models. The fracture behavior was modeled by a simple tensile pressure criterion. The simulations show that using the three strength models resulted in only minor differences in the final perforation diameter. The simulation results were used to construct an equation to predict the final hole size resulting from impacts on thin targets.
NASA Astrophysics Data System (ADS)
Junk, S.
2016-08-01
Today the methods of numerical simulation of sheet metal forming offer a great diversity of possibilities for optimization in product development and in process design. However, the results from simulation are only available as virtual models. Because there are any forming tools available during the early stages of product development, physical models that could serve to represent the virtual results are therefore lacking. Physical 3D-models can be created using 3D-printing and serve as an illustration and present a better understanding of the simulation results. In this way, the results from the simulation can be made more “comprehensible” within a development team. This paper presents the possibilities of 3D-colour printing with particular consideration of the requirements regarding the implementation of sheet metal forming simulation. Using concrete examples of sheet metal forming, the manufacturing of 3D colour models will be expounded upon on the basis of simulation results.
NASA Astrophysics Data System (ADS)
van Walsum, P. E. V.; Supit, I.
2012-06-01
Hydrologic climate change modelling is hampered by climate-dependent model parameterizations. To reduce this dependency, we extended the regional hydrologic modelling framework SIMGRO to host a two-way coupling between the soil moisture model MetaSWAP and the crop growth simulation model WOFOST, accounting for ecohydrologic feedbacks in terms of radiation fraction that reaches the soil, crop coefficient, interception fraction of rainfall, interception storage capacity, and root zone depth. Except for the last, these feedbacks are dependent on the leaf area index (LAI). The influence of regional groundwater on crop growth is included via a coupling to MODFLOW. Two versions of the MetaSWAP-WOFOST coupling were set up: one with exogenous vegetation parameters, the "static" model, and one with endogenous crop growth simulation, the "dynamic" model. Parameterization of the static and dynamic models ensured that for the current climate the simulated long-term averages of actual evapotranspiration are the same for both models. Simulations were made for two climate scenarios and two crops: grass and potato. In the dynamic model, higher temperatures in a warm year under the current climate resulted in accelerated crop development, and in the case of potato a shorter growing season, thus partly avoiding the late summer heat. The static model has a higher potential transpiration; depending on the available soil moisture, this translates to a higher actual transpiration. This difference between static and dynamic models is enlarged by climate change in combination with higher CO2 concentrations. Including the dynamic crop simulation gives for potato (and other annual arable land crops) systematically higher effects on the predicted recharge change due to climate change. Crop yields from soils with poor water retention capacities strongly depend on capillary rise if moisture supply from other sources is limited. Thus, including a crop simulation model in an integrated hydrologic simulation provides a valuable addition for hydrologic modelling as well as for crop modelling.
NASA Astrophysics Data System (ADS)
Kempka, T.; Norden, B.; Tillner, E.; Nakaten, B.; Kühn, M.
2012-04-01
Geological modelling and dynamic flow simulations were conducted at the Ketzin pilot site showing a good agreement of history matched geological models with CO2 arrival times in both observation wells and timely development of reservoir pressure determined in the injection well. Recently, a re-evaluation of the seismic 3D data enabled a refinement of the structural site model and the implementation of the fault system present at the top of the Ketzin anticline. The updated geological model (model size: 5 km x 5 km) shows a horizontal discretization of 5 x 5 m and consists of three vertical zones, with the finest discretization at the top (0.5 m). According to the revised seismic analysis, the facies modelling to simulate the channel and floodplain facies distribution at Ketzin was updated. Using a sequential Gaussian simulator for the distribution of total and effective porosities and an empiric porosity-permeability relationship based on site and literature data available, the structural model was parameterized. Based on this revised reservoir model of the Stuttgart formation, numerical simulations using the TOUGH2-MP/ECO2N and Schlumberger Information Services (SIS) ECLIPSE 100 black-oil simulators were undertaken in order to evaluate the long-term (up to 10,000 years) migration of the injected CO2 (about 57,000 t at the end of 2011) and the development of reservoir pressure over time. The simulation results enabled us to quantitatively compare both reservoir simulators based on current operational data considering the long-term effects of CO2 storage including CO2 dissolution in the formation fluid. While the integration of the static geological model developed in the SIS Petrel modelling package into the ECLIPSE simulator is relatively flawless, a work-flow allowing for the export of Petrel models into the TOUGH2-MP input file format had to be implemented within the scope of this study. The challenge in this task was mainly determined by the presence of a complex faulted system in the revised reservoir model demanding for an integrated concept to deal with connections between the elements aligned to faults in the TOUGH2-MP simulator. Furthermore, we developed a methodology to visualize and compare the TOUGH2-MP simulation results with those of the Eclipse simulator using the Petrel software package. The long-term simulation results of both simulators are generally in good agreement. Spatial and timely migration of the CO2 plume as well as residual gas saturation are almost identical for both simulators, even though a time-dependent approach of CO2 dissolution in the formation fluid was chosen in the ECLIPSE simulator. Our results confirmed that a scientific open-source simulator as the TOUGH2-MP software package is capable to provide the same accuracy as the industrial standard simulator ECLIPSE 100. However, the computational time and additional efforts to implement a suitable workflow for using the TOUGH2-MP simulator are significantly higher, while the open-source concept of TOUGH2 provides more flexibility regarding process adaptation.
Comparison of thunderstorm simulations from WRF-NMM and WRF-ARW models over East Indian Region.
Litta, A J; Mary Ididcula, Sumam; Mohanty, U C; Kiran Prasad, S
2012-01-01
The thunderstorms are typical mesoscale systems dominated by intense convection. Mesoscale models are essential for the accurate prediction of such high-impact weather events. In the present study, an attempt has been made to compare the simulated results of three thunderstorm events using NMM and ARW model core of WRF system and validated the model results with observations. Both models performed well in capturing stability indices which are indicators of severe convective activity. Comparison of model-simulated radar reflectivity imageries with observations revealed that NMM model has simulated well the propagation of the squall line, while the squall line movement was slow in ARW. From the model-simulated spatial plots of cloud top temperature, we can see that NMM model has better captured the genesis, intensification, and propagation of thunder squall than ARW model. The statistical analysis of rainfall indicates the better performance of NMM than ARW. Comparison of model-simulated thunderstorm affected parameters with that of the observed showed that NMM has performed better than ARW in capturing the sharp rise in humidity and drop in temperature. This suggests that NMM model has the potential to provide unique and valuable information for severe thunderstorm forecasters over east Indian region.
Simulation modeling of route guidance concept
DOT National Transportation Integrated Search
1997-01-01
The methodology of a simulation model developed at the University of New South Wales, Australia, for the evaluation of performance of Dynamic Route Guidance Systems (DRGS) is described. The microscopic simulation model adopts the event update simulat...
Evaluation of air traffic control models and simulations.
DOT National Transportation Integrated Search
1971-06-01
Approximately two hundred reports were identified as describing Air Traffic Control (ATC) modeling and simulation efforts. Of these, about ninety analytical and simulation models dealing with virtually all aspects of ATC were formally evaluated. The ...
Leskens, J G; Brugnach, M; Hoekstra, A Y
2014-01-01
Water simulation models are available to support decision-makers in urban water management. To use current water simulation models, special expertise is required. Therefore, model information is prepared prior to work sessions, in which decision-makers weigh different solutions. However, this model information quickly becomes outdated when new suggestions for solutions arise and are therefore limited in use. We suggest that new model techniques, i.e. fast and flexible computation algorithms and realistic visualizations, allow this problem to be solved by using simulation models during work sessions. A new Interactive Water Simulation Model was applied for two case study areas in Amsterdam and was used in two workshops. In these workshops, the Interactive Water Simulation Model was positively received. It included non-specialist participants in the process of suggesting and selecting possible solutions and made them part of the accompanying discussions and negotiations. It also provided the opportunity to evaluate and enhance possible solutions more often within the time horizon of a decision-making process. Several preconditions proved to be important for successfully applying the Interactive Water Simulation Model, such as the willingness of the stakeholders to participate and the preparation of different general main solutions that can be used for further iterations during a work session.
NASA Technical Reports Server (NTRS)
Stankovic, Ana V.
2003-01-01
Professor Stankovic will be developing and refining Simulink based models of the PM alternator and comparing the simulation results with experimental measurements taken from the unit. Her first task is to validate the models using the experimental data. Her next task is to develop alternative control techniques for the application of the Brayton Cycle PM Alternator in a nuclear electric propulsion vehicle. The control techniques will be first simulated using the validated models then tried experimentally with hardware available at NASA. Testing and simulation of a 2KW PM synchronous generator with diode bridge output is described. The parameters of a synchronous PM generator have been measured and used in simulation. Test procedures have been developed to verify the PM generator model with diode bridge output. Experimental and simulation results are in excellent agreement.
Modeling and Simulation at NASA
NASA Technical Reports Server (NTRS)
Steele, Martin J.
2009-01-01
This slide presentation is composed of two topics. The first reviews the use of modeling and simulation (M&S) particularly as it relates to the Constellation program and discrete event simulation (DES). DES is defined as a process and system analysis, through time-based and resource constrained probabilistic simulation models, that provide insight into operation system performance. The DES shows that the cycles for a launch from manufacturing and assembly to launch and recovery is about 45 days and that approximately 4 launches per year are practicable. The second topic reviews a NASA Standard for Modeling and Simulation. The Columbia Accident Investigation Board made some recommendations related to models and simulations. Some of the ideas inherent in the new standard are the documentation of M&S activities, an assessment of the credibility, and reporting to decision makers, which should include the analysis of the results, a statement as to the uncertainty in the results,and the credibility of the results. There is also discussion about verification and validation (V&V) of models. There is also discussion about the different types of models and simulation.
The Role of Simulation in Microsurgical Training.
Evgeniou, Evgenios; Walker, Harriet; Gujral, Sameer
Simulation has been established as an integral part of microsurgical training. The aim of this study was to assess and categorize the various simulation models in relation to the complexity of the microsurgical skill being taught and analyze the assessment methods commonly employed in microsurgical simulation training. Numerous courses have been established using simulation models. These models can be categorized, according to the level of complexity of the skill being taught, into basic, intermediate, and advanced. Microsurgical simulation training should be assessed using validated assessment methods. Assessment methods vary significantly from subjective expert opinions to self-assessment questionnaires and validated global rating scales. The appropriate assessment method should carefully be chosen based on the simulation modality. Simulation models should be validated, and a model with appropriate fidelity should be chosen according to the microsurgical skill being taught. Assessment should move from traditional simple subjective evaluations of trainee performance to validated tools. Future studies should assess the transferability of skills gained during simulation training to the real-life setting. Copyright © 2018 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.
Scanlan, Adam B; Nguyen, Alex V; Ilina, Anna; Lasso, Andras; Cripe, Linnea; Jegatheeswaran, Anusha; Silvestro, Elizabeth; McGowan, Francis X; Mascio, Christopher E; Fuller, Stephanie; Spray, Thomas L; Cohen, Meryl S; Fichtinger, Gabor; Jolley, Matthew A
2018-03-01
Mastering the technical skills required to perform pediatric cardiac valve surgery is challenging in part due to limited opportunity for practice. Transformation of 3D echocardiographic (echo) images of congenitally abnormal heart valves to realistic physical models could allow patient-specific simulation of surgical valve repair. We compared materials, processes, and costs for 3D printing and molding of patient-specific models for visualization and surgical simulation of congenitally abnormal heart valves. Pediatric atrioventricular valves (mitral, tricuspid, and common atrioventricular valve) were modeled from transthoracic 3D echo images using semi-automated methods implemented as custom modules in 3D Slicer. Valve models were then both 3D printed in soft materials and molded in silicone using 3D printed "negative" molds. Using pre-defined assessment criteria, valve models were evaluated by congenital cardiac surgeons to determine suitability for simulation. Surgeon assessment indicated that the molded valves had superior material properties for the purposes of simulation compared to directly printed valves (p < 0.01). Patient-specific, 3D echo-derived molded valves are a step toward realistic simulation of complex valve repairs but require more time and labor to create than directly printed models. Patient-specific simulation of valve repair in children using such models may be useful for surgical training and simulation of complex congenital cases.
Impact of lakes and wetlands on present and future boreal climate
NASA Astrophysics Data System (ADS)
Poutou, E.; Krinner, G.; Genthon, C.
2002-12-01
Impact of lakes and wetlands on present and future boreal climate The role of lakes and wetlands in present-day high latitude climate is quantified using a general circulation model of the atmosphere. The atmospheric model includes a lake module which is presented and validated. Seasonal and spatial wetland distribution is calculated as a function of the hydrological budget of the wetlands themselves and of continental soil whose runoff feeds them. Wetland extent is simulated and discussed both in simulations forced by observed climate and in general circulation model simulations. In off-line simulations, forced by ECMWF reanalyses, the lake model simulates correctly observed lake ice durations, while the wetland extent is somewhat underestimated in the boreal regions. Coupled to the general circulation model, the lake model yields satisfying ice durations, although the climate model biases have impacts on the modeled lake ice conditions. Boreal wetland extents are overestimated in the general circulation model as simulated precipitation is too high. The impact of inundated surfaces on the simulated climate is strongest in summer when these surfaces are ice-free. Wetlands seem to play a more important role than lakes in cooling the boreal regions in summer and in humidifying the atmosphere. The role of lakes and wetlands in future climate change is evaluated by analyzing simulations of present and future climate with and without prescribed inland water bodies.
Evaluation of simulation training in cardiothoracic surgery: the Senior Tour perspective.
Fann, James I; Feins, Richard H; Hicks, George L; Nesbitt, Jonathan C; Hammon, John W; Crawford, Fred A
2012-02-01
The study objective was to introduce senior surgeons, referred to as members of the "Senior Tour," to simulation-based learning and evaluate ongoing simulation efforts in cardiothoracic surgery. Thirteen senior cardiothoracic surgeons participated in a 2½-day Senior Tour Meeting. Of 12 simulators, each participant focused on 6 cardiac (small vessel anastomosis, aortic cannulation, cardiopulmonary bypass, aortic valve replacement, mitral valve repair, and aortic root replacement) or 6 thoracic surgical simulators (hilar dissection, esophageal anastomosis, rigid bronchoscopy, video-assisted thoracoscopic surgery lobectomy, tracheal resection, and sleeve resection). The participants provided critical feedback regarding the realism and utility of the simulators, which served as the basis for a composite assessment of the simulators. All participants acknowledged that simulation may not provide a wholly immersive experience. For small vessel anastomosis, the portable chest model is less realistic compared with the porcine model, but is valuable in teaching anastomosis mechanics. The aortic cannulation model allows multiple cannulations and can serve as a thoracic aortic surgery model. The cardiopulmonary bypass simulator provides crisis management experience. The porcine aortic valve replacement, mitral valve annuloplasty, and aortic root models are realistic and permit standardized training. The hilar dissection model is subject to variability of porcine anatomy and fragility of the vascular structures. The realistic esophageal anastomosis simulator presents various approaches to esophageal anastomosis. The exercise associated with the rigid bronchoscopy model is brief, and adding additional procedures should be considered. The tracheal resection, sleeve resection, and video-assisted thoracoscopic surgery lobectomy models are highly realistic and simulate advanced maneuvers. By providing the necessary tools, such as task trainers and assessment instruments, the Senior Tour may be one means to enhance simulation-based learning in cardiothoracic surgery. The Senior Tour members can provide regular programmatic evaluation and critical analyses to ensure that proposed simulators are of educational value. Published by Mosby, Inc.
Quantifying Uncertainty in Model Predictions for the Pliocene (Plio-QUMP): Initial results
Pope, J.O.; Collins, M.; Haywood, A.M.; Dowsett, H.J.; Hunter, S.J.; Lunt, D.J.; Pickering, S.J.; Pound, M.J.
2011-01-01
Examination of the mid-Pliocene Warm Period (mPWP; ~. 3.3 to 3.0. Ma BP) provides an excellent opportunity to test the ability of climate models to reproduce warm climate states, thereby assessing our confidence in model predictions. To do this it is necessary to relate the uncertainty in model simulations of mPWP climate to uncertainties in projections of future climate change. The uncertainties introduced by the model can be estimated through the use of a Perturbed Physics Ensemble (PPE). Developing on the UK Met Office Quantifying Uncertainty in Model Predictions (QUMP) Project, this paper presents the results from an initial investigation using the end members of a PPE in a fully coupled atmosphere-ocean model (HadCM3) running with appropriate mPWP boundary conditions. Prior work has shown that the unperturbed version of HadCM3 may underestimate mPWP sea surface temperatures at higher latitudes. Initial results indicate that neither the low sensitivity nor the high sensitivity simulations produce unequivocally improved mPWP climatology relative to the standard. Whilst the high sensitivity simulation was able to reconcile up to 6 ??C of the data/model mismatch in sea surface temperatures in the high latitudes of the Northern Hemisphere (relative to the standard simulation), it did not produce a better prediction of global vegetation than the standard simulation. Overall the low sensitivity simulation was degraded compared to the standard and high sensitivity simulations in all aspects of the data/model comparison. The results have shown that a PPE has the potential to explore weaknesses in mPWP modelling simulations which have been identified by geological proxies, but that a 'best fit' simulation will more likely come from a full ensemble in which simulations that contain the strengths of the two end member simulations shown here are combined. ?? 2011 Elsevier B.V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perigaud C.; Dewitte, B.
The Zebiak and Cane model is used in its {open_quotes}uncoupled mode,{close_quotes} meaning that the oceanic model component is driven by the Florida State University (FSU) wind stress anomalies over 1980-93 to simulate sea surface temperature anomalies, and these are used in the atmospheric model component to generate wind anomalies. Simulations are compared with data derived from FSU winds, International Satellite Cloud Climatology Project cloud convection, Advanced Very High Resolution Radiometer SST, Geosat sea level, 20{degrees}C isotherm depth derived from an expendable bathythermograph, and current velocities estimated from drifters or current-meter moorings. Forced by the simulated SST, the atmospheric model ismore » fairly successful in reproducing the observed westerlies during El Nino events. The model fails to simulate the easterlies during La Nina 1988. The simulated forcing of the atmosphere is in very poor agreement with the heating derived from cloud convection data. Similarly, the model is fairly successful in reproducing the warm anomalies during El Nino events. However, it fails to simulate the observed cold anomalies. Simulated variations of thermocline depth agree reasonably well with observations. The model simulates zonal current anomalies that are reversing at a dominant 9-month frequency. Projecting altimetric observations on Kelvin and Rossby waves provides an estimate of zonal current anomalies, which is consistent with the ones derived from drifters or from current meter moorings. Unlike the simulated ones, the observed zonal current anomalies reverse from eastward during El Nino events to westward during La Nina events. The simulated 9-month oscillations correspond to a resonant mode of the basin. They can be suppressed by cancelling the wave reflection at the boundaries, or they can be attenuated by increasing the friction in the ocean model. 58 refs., 14 figs., 6 tabs.« less
Qualitative, semi-quantitative, and quantitative simulation of the osmoregulation system in yeast
Pang, Wei; Coghill, George M.
2015-01-01
In this paper we demonstrate how Morven, a computational framework which can perform qualitative, semi-quantitative, and quantitative simulation of dynamical systems using the same model formalism, is applied to study the osmotic stress response pathway in yeast. First the Morven framework itself is briefly introduced in terms of the model formalism employed and output format. We then built a qualitative model for the biophysical process of the osmoregulation in yeast, and a global qualitative-level picture was obtained through qualitative simulation of this model. Furthermore, we constructed a Morven model based on existing quantitative model of the osmoregulation system. This model was then simulated qualitatively, semi-quantitatively, and quantitatively. The obtained simulation results are presented with an analysis. Finally the future development of the Morven framework for modelling the dynamic biological systems is discussed. PMID:25864377
An AD100 implementation of a real-time STOVL aircraft propulsion system
NASA Technical Reports Server (NTRS)
Ouzts, Peter J.; Drummond, Colin K.
1990-01-01
A real-time dynamic model of the propulsion system for a Short Take-Off and Vertical Landing (STOVL) aircraft was developed for the AD100 simulation environment. The dynamic model was adapted from a FORTRAN based simulation using the dynamic programming capabilities of the AD100 ADSIM simulation language. The dynamic model includes an aerothermal representation of a turbofan jet engine, actuator and sensor models, and a multivariable control system. The AD100 model was tested for agreement with the FORTRAN model and real-time execution performance. The propulsion system model was also linked to an airframe dynamic model to provide an overall STOVL aircraft simulation for the purposes of integrated flight and propulsion control studies. An evaluation of the AD100 system for use as an aircraft simulation environment is included.
Project Shuttle simulation math model coordination catalog, revision 1
NASA Technical Reports Server (NTRS)
1974-01-01
A catalog is presented of subsystem and environment math models used or planned for space shuttle simulations. The purpose is to facilitate sharing of similar math models between shuttle simulations. It provides information on mach model requirements, formulations, schedules, and contact persons for further information.
Extended frequency turbofan model
NASA Technical Reports Server (NTRS)
Mason, J. R.; Park, J. W.; Jaekel, R. F.
1980-01-01
The fan model was developed using two dimensional modeling techniques to add dynamic radial coupling between the core stream and the bypass stream of the fan. When incorporated into a complete TF-30 engine simulation, the fan model greatly improved compression system frequency response to planar inlet pressure disturbances up to 100 Hz. The improved simulation also matched engine stability limits at 15 Hz, whereas the one dimensional fan model required twice the inlet pressure amplitude to stall the simulation. With verification of the two dimensional fan model, this program formulated a high frequency F-100(3) engine simulation using row by row compression system characteristics. In addition to the F-100(3) remote splitter fan, the program modified the model fan characteristics to simulate a proximate splitter version of the F-100(3) engine.
NASA Technical Reports Server (NTRS)
Chang, Chia-Bo
1994-01-01
This study is intended to examine the impact of the synthetic relative humidity on the model simulation of mesoscale convective storm environment. The synthetic relative humidity is derived from the National Weather Services surface observations, and non-conventional sources including aircraft, radar, and satellite observations. The latter sources provide the mesoscale data of very high spatial and temporal resolution. The synthetic humidity data is used to complement the National Weather Services rawinsonde observations. It is believed that a realistic representation of initial moisture field in a mesoscale model is critical for the model simulation of thunderstorm development, and the formation of non-convective clouds as well as their effects on the surface energy budget. The impact will be investigated based on a real-data case study using the mesoscale atmospheric simulation system developed by Mesoscale Environmental Simulations Operations, Inc. The mesoscale atmospheric simulation system consists of objective analysis and initialization codes, and the coarse-mesh and fine-mesh dynamic prediction models. Both models are a three dimensional, primitive equation model containing the essential moist physics for simulating and forecasting mesoscale convective processes in the atmosphere. The modeling system is currently implemented at the Applied Meteorology Unit, Kennedy Space Center. Two procedures involving the synthetic relative humidity to define the model initial moisture fields are considered. It is proposed to perform several short-range (approximately 6 hours) comparative coarse-mesh simulation experiments with and without the synthetic data. They are aimed at revealing the model sensitivities should allow us both to refine the specification of the observational requirements, and to develop more accurate and efficient objective analysis schemes. The goal is to advance the MASS (Mesoscal Atmospheric Simulation System) modeling expertise so that the model output can provide reliable guidance for thunderstorm forecasting.
Evaluation of regional climate simulations for air quality modelling purposes
NASA Astrophysics Data System (ADS)
Menut, Laurent; Tripathi, Om P.; Colette, Augustin; Vautard, Robert; Flaounas, Emmanouil; Bessagnet, Bertrand
2013-05-01
In order to evaluate the future potential benefits of emission regulation on regional air quality, while taking into account the effects of climate change, off-line air quality projection simulations are driven using weather forcing taken from regional climate models. These regional models are themselves driven by simulations carried out using global climate models (GCM) and economical scenarios. Uncertainties and biases in climate models introduce an additional "climate modeling" source of uncertainty that is to be added to all other types of uncertainties in air quality modeling for policy evaluation. In this article we evaluate the changes in air quality-related weather variables induced by replacing reanalyses-forced by GCM-forced regional climate simulations. As an example we use GCM simulations carried out in the framework of the ERA-interim programme and of the CMIP5 project using the Institut Pierre-Simon Laplace climate model (IPSLcm), driving regional simulations performed in the framework of the EURO-CORDEX programme. In summer, we found compensating deficiencies acting on photochemistry: an overestimation by GCM-driven weather due to a positive bias in short-wave radiation, a negative bias in wind speed, too many stagnant episodes, and a negative temperature bias. In winter, air quality is mostly driven by dispersion, and we could not identify significant differences in either wind or planetary boundary layer height statistics between GCM-driven and reanalyses-driven regional simulations. However, precipitation appears largely overestimated in GCM-driven simulations, which could significantly affect the simulation of aerosol concentrations. The identification of these biases will help interpreting results of future air quality simulations using these data. Despite these, we conclude that the identified differences should not lead to major difficulties in using GCM-driven regional climate simulations for air quality projections.
NASA Technical Reports Server (NTRS)
Ackerman, Steven A.; Hemler, Richard S.; Hofman, Robert J. Patrick; Pincus, Robert; Platnick, Steven
2011-01-01
The properties of clouds that may be observed by satellite instruments, such as optical depth and cloud top pressure, are only loosely related to the way clouds m-e represented in models of the atmosphere. One way to bridge this gap is through "instrument simulators," diagnostic tools that map the model representation to synthetic observations so that differences between simulator output and observations can be interpreted unambiguously as model error. But simulators may themselves be restricted by limited information available from the host model or by internal assumptions. This paper considers the extent to which instrument simulators are able to capture essential differences between MODIS and ISCCP, two similar but independent estimates of cloud properties. The authors review the measurements and algorithms underlying these two cloud climatologies, introduce a MODIS simulator, and detail data sets developed for comparison with global models using ISCCP and MODIS simulators, In nature MODIS observes less mid-level doudines!> than ISCCP, consistent with the different methods used to determine cloud top pressure; aspects of this difference are reproduced by the simulators running in a climate modeL But stark differences between MODIS and ISCCP observations of total cloudiness and the distribution of cloud optical thickness can be traced to different approaches to marginal pixels, which MODIS excludes and ISCCP treats as homogeneous. These pixels, which likely contain broken clouds, cover about 15 k of the planet and contain almost all of the optically thinnest clouds observed by either instrument. Instrument simulators can not reproduce these differences because the host model does not consider unresolved spatial scales and so can not produce broken pixels. Nonetheless, MODIS and ISCCP observation are consistent for all but the optically-thinnest clouds, and models can be robustly evaluated using instrument simulators by excluding ambiguous observations.
Higher-level simulations of turbulent flows
NASA Technical Reports Server (NTRS)
Ferziger, J. H.
1981-01-01
The fundamentals of large eddy simulation are considered and the approaches to it are compared. Subgrid scale models and the development of models for the Reynolds-averaged equations are discussed as well as the use of full simulation in testing these models. Numerical methods used in simulating large eddies, the simulation of homogeneous flows, and results from full and large scale eddy simulations of such flows are examined. Free shear flows are considered with emphasis on the mixing layer and wake simulation. Wall-bounded flow (channel flow) and recent work on the boundary layer are also discussed. Applications of large eddy simulation and full simulation in meteorological and environmental contexts are included along with a look at the direction in which work is proceeding and what can be expected from higher-level simulation in the future.
Multimodel ensembles of wheat growth: many models are better than one.
Martre, Pierre; Wallach, Daniel; Asseng, Senthold; Ewert, Frank; Jones, James W; Rötter, Reimund P; Boote, Kenneth J; Ruane, Alex C; Thorburn, Peter J; Cammarano, Davide; Hatfield, Jerry L; Rosenzweig, Cynthia; Aggarwal, Pramod K; Angulo, Carlos; Basso, Bruno; Bertuzzi, Patrick; Biernath, Christian; Brisson, Nadine; Challinor, Andrew J; Doltra, Jordi; Gayler, Sebastian; Goldberg, Richie; Grant, Robert F; Heng, Lee; Hooker, Josh; Hunt, Leslie A; Ingwersen, Joachim; Izaurralde, Roberto C; Kersebaum, Kurt Christian; Müller, Christoph; Kumar, Soora Naresh; Nendel, Claas; O'leary, Garry; Olesen, Jørgen E; Osborne, Tom M; Palosuo, Taru; Priesack, Eckart; Ripoche, Dominique; Semenov, Mikhail A; Shcherbak, Iurii; Steduto, Pasquale; Stöckle, Claudio O; Stratonovitch, Pierre; Streck, Thilo; Supit, Iwan; Tao, Fulu; Travasso, Maria; Waha, Katharina; White, Jeffrey W; Wolf, Joost
2015-02-01
Crop models of crop growth are increasingly used to quantify the impact of global changes due to climate or crop management. Therefore, accuracy of simulation results is a major concern. Studies with ensembles of crop models can give valuable information about model accuracy and uncertainty, but such studies are difficult to organize and have only recently begun. We report on the largest ensemble study to date, of 27 wheat models tested in four contrasting locations for their accuracy in simulating multiple crop growth and yield variables. The relative error averaged over models was 24-38% for the different end-of-season variables including grain yield (GY) and grain protein concentration (GPC). There was little relation between error of a model for GY or GPC and error for in-season variables. Thus, most models did not arrive at accurate simulations of GY and GPC by accurately simulating preceding growth dynamics. Ensemble simulations, taking either the mean (e-mean) or median (e-median) of simulated values, gave better estimates than any individual model when all variables were considered. Compared to individual models, e-median ranked first in simulating measured GY and third in GPC. The error of e-mean and e-median declined with an increasing number of ensemble members, with little decrease beyond 10 models. We conclude that multimodel ensembles can be used to create new estimators with improved accuracy and consistency in simulating growth dynamics. We argue that these results are applicable to other crop species, and hypothesize that they apply more generally to ecological system models. © 2014 John Wiley & Sons Ltd.
Multimodel Ensembles of Wheat Growth: More Models are Better than One
NASA Technical Reports Server (NTRS)
Martre, Pierre; Wallach, Daniel; Asseng, Senthold; Ewert, Frank; Jones, James W.; Rotter, Reimund P.; Boote, Kenneth J.; Ruane, Alex C.; Thorburn, Peter J.; Cammarano, Davide;
2015-01-01
Crop models of crop growth are increasingly used to quantify the impact of global changes due to climate or crop management. Therefore, accuracy of simulation results is a major concern. Studies with ensembles of crop models can give valuable information about model accuracy and uncertainty, but such studies are difficult to organize and have only recently begun. We report on the largest ensemble study to date, of 27 wheat models tested in four contrasting locations for their accuracy in simulating multiple crop growth and yield variables. The relative error averaged over models was 24-38% for the different end-of-season variables including grain yield (GY) and grain protein concentration (GPC). There was little relation between error of a model for GY or GPC and error for in-season variables. Thus, most models did not arrive at accurate simulations of GY and GPC by accurately simulating preceding growth dynamics. Ensemble simulations, taking either the mean (e-mean) or median (e-median) of simulated values, gave better estimates than any individual model when all variables were considered. Compared to individual models, e-median ranked first in simulating measured GY and third in GPC. The error of e-mean and e-median declined with an increasing number of ensemble members, with little decrease beyond 10 models. We conclude that multimodel ensembles can be used to create new estimators with improved accuracy and consistency in simulating growth dynamics. We argue that these results are applicable to other crop species, and hypothesize that they apply more generally to ecological system models.
Multimodel Ensembles of Wheat Growth: Many Models are Better than One
NASA Technical Reports Server (NTRS)
Martre, Pierre; Wallach, Daniel; Asseng, Senthold; Ewert, Frank; Jones, James W.; Rotter, Reimund P.; Boote, Kenneth J.; Ruane, Alexander C.; Thorburn, Peter J.; Cammarano, Davide;
2015-01-01
Crop models of crop growth are increasingly used to quantify the impact of global changes due to climate or crop management. Therefore, accuracy of simulation results is a major concern. Studies with ensembles of crop model scan give valuable information about model accuracy and uncertainty, but such studies are difficult to organize and have only recently begun. We report on the largest ensemble study to date, of 27 wheat models tested in four contrasting locations for their accuracy in simulating multiple crop growth and yield variables. The relative error averaged over models was 2438 for the different end-of-season variables including grain yield (GY) and grain protein concentration (GPC). There was little relation between error of a model for GY or GPC and error for in-season variables. Thus, most models did not arrive at accurate simulations of GY and GPC by accurately simulating preceding growth dynamics. Ensemble simulations, taking either the mean (e-mean) or median (e-median) of simulated values, gave better estimates than any individual model when all variables were considered. Compared to individual models, e-median ranked first in simulating measured GY and third in GPC. The error of e-mean and e-median declined with an increasing number of ensemble members, with little decrease beyond 10 models. We conclude that multimodel ensembles can be used to create new estimators with improved accuracy and consistency in simulating growth dynamics. We argue that these results are applicable to other crop species, and hypothesize that they apply more generally to ecological system models.
2016-11-01
ER D C/ G SL T R- 16 -3 1 Modeling the Blast Load Simulator Airblast Environment Using First Principles Codes Report 1, Blast Load...Simulator Airblast Environment using First Principles Codes Report 1, Blast Load Simulator Environment Gregory C. Bessette, James L. O’Daniel...evaluate several first principles codes (FPCs) for modeling airblast environments typical of those encountered in the BLS. The FPCs considered were
Future Modelling and Simulation Challenges (Defis futurs pour la modelisation et la simulation)
2002-11-01
Language School Figure 2: Location of the simulation center within the MEC Military operations research section - simulation lab Military operations... language . This logic can be probabilistic (branching is randomised, which is useful for modelling error), tactical (a branch goes to the task with the... language and a collection of simulation tools that can be used to create human and team behaviour models to meet users’ needs. Hence, different ways of
Intermediate Fidelity Closed Brayton Cycle Power Conversion Model
NASA Technical Reports Server (NTRS)
Lavelle, Thomas M.; Khandelwal, Suresh; Owen, Albert K.
2006-01-01
This paper describes the implementation of an intermediate fidelity model of a closed Brayton Cycle power conversion system (Closed Cycle System Simulation). The simulation is developed within the Numerical Propulsion Simulation System architecture using component elements from earlier models. Of particular interest, and power, is the ability of this new simulation system to initiate a more detailed analysis of compressor and turbine components automatically and to incorporate the overall results into the general system simulation.
Simulation of the National Aerospace System for Safety Analysis
NASA Technical Reports Server (NTRS)
Pritchett, Amy; Goldsman, Dave; Statler, Irv (Technical Monitor)
2002-01-01
Work started on this project on January 1, 1999, the first year of the grant. Following the outline of the grant proposal, a simulator architecture has been established which can incorporate the variety of types of models needed to accurately simulate national airspace dynamics. For the sake of efficiency, this architecture was based on an established single-aircraft flight simulator, the Reconfigurable Flight Simulator (RFS), already developed at Georgia Tech. Likewise, in the first year substantive changes and additions were made to the RFS to convert it into a simulation of the National Airspace System, with the flexibility to incorporate many types of models: aircraft models; controller models; airspace configuration generators; discrete event generators; embedded statistical functions; and display and data outputs. The architecture has been developed with the capability to accept any models of these types; due to its object-oriented structure, individual simulator components can be added and removed during run-time, and can be compiled separately. Simulation objects from other projects should be easy to convert to meet architecture requirements, with the intent that both this project may now be able to incorporate established simulation components from other projects, and that other projects may easily use this simulation without significant time investment.
NASA Astrophysics Data System (ADS)
Hogrefe, Christian; Liu, Peng; Pouliot, George; Mathur, Rohit; Roselle, Shawn; Flemming, Johannes; Lin, Meiyun; Park, Rokjin J.
2018-03-01
This study analyzes simulated regional-scale ozone burdens both near the surface and aloft, estimates process contributions to these burdens, and calculates the sensitivity of the simulated regional-scale ozone burden to several key model inputs with a particular emphasis on boundary conditions derived from hemispheric or global-scale models. The Community Multiscale Air Quality (CMAQ) model simulations supporting this analysis were performed over the continental US for the year 2010 within the context of the Air Quality Model Evaluation International Initiative (AQMEII) and Task Force on Hemispheric Transport of Air Pollution (TF-HTAP) activities. CMAQ process analysis (PA) results highlight the dominant role of horizontal and vertical advection on the ozone burden in the mid-to-upper troposphere and lower stratosphere. Vertical mixing, including mixing by convective clouds, couples fluctuations in free-tropospheric ozone to ozone in lower layers. Hypothetical bounding scenarios were performed to quantify the effects of emissions, boundary conditions, and ozone dry deposition on the simulated ozone burden. Analysis of these simulations confirms that the characterization of ozone outside the regional-scale modeling domain can have a profound impact on simulated regional-scale ozone. This was further investigated by using data from four hemispheric or global modeling systems (Chemistry - Integrated Forecasting Model (C-IFS), CMAQ extended for hemispheric applications (H-CMAQ), the Goddard Earth Observing System model coupled to chemistry (GEOS-Chem), and AM3) to derive alternate boundary conditions for the regional-scale CMAQ simulations. The regional-scale CMAQ simulations using these four different boundary conditions showed that the largest ozone abundance in the upper layers was simulated when using boundary conditions from GEOS-Chem, followed by the simulations using C-IFS, AM3, and H-CMAQ boundary conditions, consistent with the analysis of the ozone fields from the global models along the CMAQ boundaries. Using boundary conditions from AM3 yielded higher springtime ozone columns burdens in the middle and lower troposphere compared to boundary conditions from the other models. For surface ozone, the differences between the AM3-driven CMAQ simulations and the CMAQ simulations driven by other large-scale models are especially pronounced during spring and winter where they can reach more than 10 ppb for seasonal mean ozone mixing ratios and as much as 15 ppb for domain-averaged daily maximum 8 h average ozone on individual days. In contrast, the differences between the C-IFS-, GEOS-Chem-, and H-CMAQ-driven regional-scale CMAQ simulations are typically smaller. Comparing simulated surface ozone mixing ratios to observations and computing seasonal and regional model performance statistics revealed that boundary conditions can have a substantial impact on model performance. Further analysis showed that boundary conditions can affect model performance across the entire range of the observed distribution, although the impacts tend to be lower during summer and for the very highest observed percentiles. The results are discussed in the context of future model development and analysis opportunities.
Methodology of modeling and measuring computer architectures for plasma simulations
NASA Technical Reports Server (NTRS)
Wang, L. P. T.
1977-01-01
A brief introduction to plasma simulation using computers and the difficulties on currently available computers is given. Through the use of an analyzing and measuring methodology - SARA, the control flow and data flow of a particle simulation model REM2-1/2D are exemplified. After recursive refinements the total execution time may be greatly shortened and a fully parallel data flow can be obtained. From this data flow, a matched computer architecture or organization could be configured to achieve the computation bound of an application problem. A sequential type simulation model, an array/pipeline type simulation model, and a fully parallel simulation model of a code REM2-1/2D are proposed and analyzed. This methodology can be applied to other application problems which have implicitly parallel nature.
Hydrological and water quality processes simulation by the integrated MOHID model
NASA Astrophysics Data System (ADS)
Epelde, Ane; Antiguedad, Iñaki; Brito, David; Eduardo, Jauch; Neves, Ramiro; Sauvage, Sabine; Sánchez-Pérez, José Miguel
2016-04-01
Different modelling approaches have been used in recent decades to study the water quality degradation caused by non-point source pollution. In this study, the MOHID fully distributed and physics-based model has been employed to simulate hydrological processes and nitrogen dynamics in a nitrate vulnerable zone: the Alegria River watershed (Basque Country, Northern Spain). The results of this study indicate that the MOHID code is suitable for hydrological processes simulation at the watershed scale, as the model shows satisfactory performance at simulating the discharge (with NSE: 0.74 and 0.76 during calibration and validation periods, respectively). The agronomical component of the code, allowed the simulation of agricultural practices, which lead to adequate crop yield simulation in the model. Furthermore, the nitrogen exportation also shows satisfactory performance (with NSE: 0.64 and 0.69 during calibration and validation periods, respectively). While the lack of field measurements do not allow to evaluate the nutrient cycling processes in depth, it has been observed that the MOHID model simulates the annual denitrification according to general ranges established for agricultural watersheds (in this study, 9 kg N ha-1 year-1). In addition, the model has simulated coherently the spatial distribution of the denitrification process, which is directly linked to the simulated hydrological conditions. Thus, the model has localized the highest rates nearby the discharge zone of the aquifer and also where the aquifer thickness is low. These results evidence the strength of this model to simulate watershed scale hydrological processes as well as the crop production and the agricultural activity derived water quality degradation (considering both nutrient exportation and nutrient cycling processes).
NASA Astrophysics Data System (ADS)
Niazi, A.; Bentley, L. R.; Hayashi, M.
2016-12-01
Geostatistical simulations are used to construct heterogeneous aquifer models. Optimally, such simulations should be conditioned with both lithologic and hydraulic data. We introduce an approach to condition lithologic geostatistical simulations of a paleo-fluvial bedrock aquifer consisting of relatively high permeable sandstone channels embedded in relatively low permeable mudstone using hydraulic data. The hydraulic data consist of two-hour single well pumping tests extracted from the public water well database for a 250-km2 watershed in Alberta, Canada. First, lithologic models of the entire watershed are simulated and conditioned with hard lithological data using transition probability - Markov chain geostatistics (TPROGS). Then, a segment of the simulation around a pumping well is used to populate a flow model (FEFLOW) with either sand or mudstone. The values of the hydraulic conductivity and specific storage of sand and mudstone are then adjusted to minimize the difference between simulated and actual pumping test data using the parameter estimation program PEST. If the simulated pumping test data do not adequately match the measured data, the lithologic model is updated by locally deforming the lithology distribution using the probability perturbation method and the model parameters are again updated with PEST. This procedure is repeated until the simulated and measured data agree within a pre-determined tolerance. The procedure is repeated for each well that has pumping test data. The method creates a local groundwater model that honors both the lithologic model and pumping test data and provides estimates of hydraulic conductivity and specific storage. Eventually, the simulations will be integrated into a watershed-scale groundwater model.
A three-dimensional transport model for the middle atmosphere
NASA Technical Reports Server (NTRS)
Rasch, Philip J.; Tie, Xuexi; Boville, Byron A.; Williamson, David L.
1994-01-01
In this paper we describe fundamental properties of an 'off-line' three-dimensional transport model, that is, a model which uses prescribed rather than predicted winds. The model is currently used primarily for studying problems of the middle atmosphere because we have not (yet) incorporated a formulation for the convective transport of trace species, a prerequisite for many tropospheric problems. The off-line model is simpler and less expensive than a model which predicts the wind and mass evolution (an 'on-line' model), but it is more complex than the two-dimensional (2-D) zonally averaged transport models often used in the study of chemistry and transport in the middle atmosphere. It thus serves as a model of intermediate complexity and can fill a useful niche for the study of transport and chemistry. We compare simulations of four tracers, released in the lower stratosphere, in both the on- and off-line models to document the difference resulting from differences in modeling the same problem with this intermediate model. These differences identify the price to be paid in going to a cheaper and simpler calculation. The off-line model transports a tracer in three dimensions. For this reason, it requires fewer approximations than 2-D transport model, which must parameterize the effects of mixing by transient and zonally asymmetric wind features. We compare simulations of the off-line model with simulations of a 2-D model for two problems. First, we compare 2-D and three-dimensional (3-D) models by simulating the emission of an NO(x)-like tracer by a fleet of high-speed aircraft. The off-line model is then used to simulate the transport of C-14 and to contrast its simulation properties to that of the host of 2-D models which participated in an identical simulation in a recent NASA model intercomparison. The off-line model is shown to be somewhat sensitive to the sampling strategy for off-line winds. Simulations with daily averaged winds are in very good qualitative agreement but are less diffusive than when driven with instantaneous winds sampled at half-hour intervals. Simulations with the off-line and 2-D models are quite similar in the middle and upper stratosphere but behave quite differently in the lower stratosphere, where the 3-D model has a substantially more vigorous circulation. The off-line model is quite realistic in its simulation of C-14. While there are still systematic differences between the 3-D calculation and the observations, the differences seem to be substantially reduced when compared with the body of 2-D simulations documented in the above mentioned NASA intercomparison, particularly at 31 deg N.
Using Computational Simulations to Confront Students' Mental Models
ERIC Educational Resources Information Center
Rodrigues, R.; Carvalho, P. Simeão
2014-01-01
In this paper we show an example of how to use a computational simulation to obtain visual feedback for students' mental models, and compare their predictions with the simulated system's behaviour. Additionally, we use the computational simulation to incrementally modify the students' mental models in order to accommodate new data,…
Capabilities of stochastic rainfall models as data providers for urban hydrology
NASA Astrophysics Data System (ADS)
Haberlandt, Uwe
2017-04-01
For planning of urban drainage systems using hydrological models, long, continuous precipitation series with high temporal resolution are needed. Since observed time series are often too short or not available everywhere, the use of synthetic precipitation is a common alternative. This contribution compares three precipitation models regarding their suitability to provide 5 minute continuous rainfall time series for a) sizing of drainage networks for urban flood protection and b) dimensioning of combined sewage systems for pollution reduction. The rainfall models are a parametric stochastic model (Haberlandt et al., 2008), a non-parametric probabilistic approach (Bárdossy, 1998) and a stochastic downscaling of dynamically simulated rainfall (Berg et al., 2013); all models are operated both as single site and multi-site generators. The models are applied with regionalised parameters assuming that there is no station at the target location. Rainfall and discharge characteristics are utilised for evaluation of the model performance. The simulation results are compared against results obtained from reference rainfall stations not used for parameter estimation. The rainfall simulations are carried out for the federal states of Baden-Württemberg and Lower Saxony in Germany and the discharge simulations for the drainage networks of the cities of Hamburg, Brunswick and Freiburg. Altogether, the results show comparable simulation performance for the three models, good capabilities for single site simulations but low skills for multi-site simulations. Remarkably, there is no significant difference in simulation performance comparing the tasks flood protection with pollution reduction, so the models are finally able to simulate both the extremes and the long term characteristics of rainfall equally well. Bárdossy, A., 1998. Generating precipitation time series using simulated annealing. Wat. Resour. Res., 34(7): 1737-1744. Berg, P., Wagner, S., Kunstmann, H., Schädler, G., 2013. High resolution regional climate model simulations for Germany: part I — validation. Climate Dynamics, 40(1): 401-414. Haberlandt, U., Ebner von Eschenbach, A.-D., Buchwald, I., 2008. A space-time hybrid hourly rainfall model for derived flood frequency analysis. Hydrol. Earth Syst. Sci., 12: 1353-1367.
A Geostationary Earth Orbit Satellite Model Using Easy Java Simulation
ERIC Educational Resources Information Center
Wee, Loo Kang; Goh, Giam Hwee
2013-01-01
We develop an Easy Java Simulation (EJS) model for students to visualize geostationary orbits near Earth, modelled using a Java 3D implementation of the EJS 3D library. The simplified physics model is described and simulated using a simple constant angular velocity equation. We discuss four computer model design ideas: (1) a simple and realistic…
2001-07-01
hardware - in - loop (HWL) simulation is also developed...Firings / Engine Tests Structure Test Hardware In - Loop Simulation Subsystem Test Lab Tests Seeker Actuators Sensors Electronics Propulsion Model Aero Model...Structure Test Hardware In - Loop Simulation Subsystem Test Lab Tests Seeker Actuators Sensors Electronics Propulsion Model Aero Model Model
Hsieh, Chih-Chen; Jain, Semant; Larson, Ronald G
2006-01-28
A very stiff finitely extensible nonlinear elastic (FENE)-Fraenkel spring is proposed to replace the rigid rod in the bead-rod model. This allows the adoption of a fast predictor-corrector method so that large time steps can be taken in Brownian dynamics (BD) simulations without over- or understretching the stiff springs. In contrast to the simple bead-rod model, BD simulations with beads and FENE-Fraenkel (FF) springs yield a random-walk configuration at equilibrium. We compare the simulation results of the free-draining bead-FF-spring model with those for the bead-rod model in relaxation, start-up of uniaxial extensional, and simple shear flows, and find that both methods generate nearly identical results. The computational cost per time step for a free-draining BD simulation with the proposed bead-FF-spring model is about twice as high as the traditional bead-rod model with the midpoint algorithm of Liu [J. Chem. Phys. 90, 5826 (1989)]. Nevertheless, computations with the bead-FF-spring model are as efficient as those with the bead-rod model in extensional flow because the former allows larger time steps. Moreover, the Brownian contribution to the stress for the bead-FF-spring model is isotropic and therefore simplifies the calculation of the polymer stresses. In addition, hydrodynamic interaction can more easily be incorporated into the bead-FF-spring model than into the bead-rod model since the metric force arising from the non-Cartesian coordinates used in bead-rod simulations is absent from bead-spring simulations. Finally, with our newly developed bead-FF-spring model, existing computer codes for the bead-spring models can trivially be converted to ones for effective bead-rod simulations merely by replacing the usual FENE or Cohen spring law with a FENE-Fraenkel law, and this convertibility provides a very convenient way to perform multiscale BD simulations.
NASA Astrophysics Data System (ADS)
Hsieh, Chih-Chen; Jain, Semant; Larson, Ronald G.
2006-01-01
A very stiff finitely extensible nonlinear elastic (FENE)-Fraenkel spring is proposed to replace the rigid rod in the bead-rod model. This allows the adoption of a fast predictor-corrector method so that large time steps can be taken in Brownian dynamics (BD) simulations without over- or understretching the stiff springs. In contrast to the simple bead-rod model, BD simulations with beads and FENE-Fraenkel (FF) springs yield a random-walk configuration at equilibrium. We compare the simulation results of the free-draining bead-FF-spring model with those for the bead-rod model in relaxation, start-up of uniaxial extensional, and simple shear flows, and find that both methods generate nearly identical results. The computational cost per time step for a free-draining BD simulation with the proposed bead-FF-spring model is about twice as high as the traditional bead-rod model with the midpoint algorithm of Liu [J. Chem. Phys. 90, 5826 (1989)]. Nevertheless, computations with the bead-FF-spring model are as efficient as those with the bead-rod model in extensional flow because the former allows larger time steps. Moreover, the Brownian contribution to the stress for the bead-FF-spring model is isotropic and therefore simplifies the calculation of the polymer stresses. In addition, hydrodynamic interaction can more easily be incorporated into the bead-FF-spring model than into the bead-rod model since the metric force arising from the non-Cartesian coordinates used in bead-rod simulations is absent from bead-spring simulations. Finally, with our newly developed bead-FF-spring model, existing computer codes for the bead-spring models can trivially be converted to ones for effective bead-rod simulations merely by replacing the usual FENE or Cohen spring law with a FENE-Fraenkel law, and this convertibility provides a very convenient way to perform multiscale BD simulations.
PSPICE Hybrid Modeling and Simulation of Capacitive Micro-Gyroscopes
Su, Yan; Tong, Xin; Liu, Nan; Han, Guowei; Si, Chaowei; Ning, Jin; Li, Zhaofeng; Yang, Fuhua
2018-01-01
With an aim to reduce the cost of prototype development, this paper establishes a PSPICE hybrid model for the simulation of capacitive microelectromechanical systems (MEMS) gyroscopes. This is achieved by modeling gyroscopes in different modules, then connecting them in accordance with the corresponding principle diagram. Systematic simulations of this model are implemented along with a consideration of details of MEMS gyroscopes, including a capacitance model without approximation, mechanical thermal noise, and the effect of ambient temperature. The temperature compensation scheme and optimization of interface circuits are achieved based on the hybrid closed-loop simulation of MEMS gyroscopes. The simulation results show that the final output voltage is proportional to the angular rate input, which verifies the validity of this model. PMID:29597284
Architectural Improvements and New Processing Tools for the Open XAL Online Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allen, Christopher K; Pelaia II, Tom; Freed, Jonathan M
The online model is the component of Open XAL providing accelerator modeling, simulation, and dynamic synchronization to live hardware. Significant architectural changes and feature additions have been recently made in two separate areas: 1) the managing and processing of simulation data, and 2) the modeling of RF cavities. Simulation data and data processing have been completely decoupled. A single class manages all simulation data while standard tools were developed for processing the simulation results. RF accelerating cavities are now modeled as composite structures where parameter and dynamics computations are distributed. The beam and hardware models both maintain their relative phasemore » information, which allows for dynamic phase slip and elapsed time computation.« less
On extending parallelism to serial simulators
NASA Technical Reports Server (NTRS)
Nicol, David; Heidelberger, Philip
1994-01-01
This paper describes an approach to discrete event simulation modeling that appears to be effective for developing portable and efficient parallel execution of models of large distributed systems and communication networks. In this approach, the modeler develops submodels using an existing sequential simulation modeling tool, using the full expressive power of the tool. A set of modeling language extensions permit automatically synchronized communication between submodels; however, the automation requires that any such communication must take a nonzero amount off simulation time. Within this modeling paradigm, a variety of conservative synchronization protocols can transparently support conservative execution of submodels on potentially different processors. A specific implementation of this approach, U.P.S. (Utilitarian Parallel Simulator), is described, along with performance results on the Intel Paragon.
Abdominal surgery process modeling framework for simulation using spreadsheets.
Boshkoska, Biljana Mileva; Damij, Talib; Jelenc, Franc; Damij, Nadja
2015-08-01
We provide a continuation of the existing Activity Table Modeling methodology with a modular spreadsheets simulation. The simulation model developed is comprised of 28 modeling elements for the abdominal surgery cycle process. The simulation of a two-week patient flow in an abdominal clinic with 75 beds demonstrates the applicability of the methodology. The simulation does not include macros, thus programming experience is not essential for replication or upgrading the model. Unlike the existing methods, the proposed solution employs a modular approach for modeling the activities that ensures better readability, the possibility of easily upgrading the model with other activities, and its easy extension and connectives with other similar models. We propose a first-in-first-served approach for simulation of servicing multiple patients. The uncertain time duration of the activities is modeled using the function "rand()". The patients movements from one activity to the next one is tracked with nested "if()" functions, thus allowing easy re-creation of the process without the need of complex programming. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.
Nishihara, Yuichi; Isobe, Yoh; Kitagawa, Yuko
2017-12-01
A realistic simulator for transabdominal preperitoneal (TAPP) inguinal hernia repair would enhance surgeons' training experience before they enter the operating theater. The purpose of this study was to create a novel physical simulator for TAPP inguinal hernia repair and obtain surgeons' opinions regarding its efficacy. Our novel TAPP inguinal hernia repair simulator consists of a physical laparoscopy simulator and a handmade organ replica model. The physical laparoscopy simulator was created by three-dimensional (3D) printing technology, and it represents the trunk of the human body and the bendability of the abdominal wall under pneumoperitoneal pressure. The organ replica model was manually created by assembling materials. The TAPP inguinal hernia repair simulator allows for the performance of all procedures required in TAPP inguinal hernia repair. Fifteen general surgeons performed TAPP inguinal hernia repair using our simulator. Their opinions were scored on a 5-point Likert scale. All participants strongly agreed that the 3D-printed physical simulator and organ replica model were highly useful for TAPP inguinal hernia repair training (median, 5 points) and TAPP inguinal hernia repair education (median, 5 points). They felt that the simulator would be effective for TAPP inguinal hernia repair training before entering the operating theater. All surgeons considered that this simulator should be introduced in the residency curriculum. We successfully created a physical simulator for TAPP inguinal hernia repair training using 3D printing technology and a handmade organ replica model created with inexpensive, readily accessible materials. Preoperative TAPP inguinal hernia repair training using this simulator and organ replica model may be of benefit in the training of all surgeons. All general surgeons involved in the present study felt that this simulator and organ replica model should be used in their residency curriculum.
Model improvements to simulate charging in SEM
NASA Astrophysics Data System (ADS)
Arat, K. T.; Klimpel, T.; Hagen, C. W.
2018-03-01
Charging of insulators is a complex phenomenon to simulate since the accuracy of the simulations is very sensitive to the interaction of electrons with matter and electric fields. In this study, we report model improvements for a previously developed Monte-Carlo simulator to more accurately simulate samples that charge. The improvements include both modelling of low energy electron scattering and charging of insulators. The new first-principle scattering models provide a more realistic charge distribution cloud in the material, and a better match between non-charging simulations and experimental results. Improvements on charging models mainly focus on redistribution of the charge carriers in the material with an induced conductivity (EBIC) and a breakdown model, leading to a smoother distribution of the charges. Combined with a more accurate tracing of low energy electrons in the electric field, we managed to reproduce the dynamically changing charging contrast due to an induced positive surface potential.
Improvements in simulation of multiple scattering effects in ATLAS fast simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Basalaev, A. E., E-mail: artem.basalaev@cern.ch
Fast ATLAS Tracking Simulation (Fatras) package was verified on single layer geometry with respect to full simulation with GEANT4. Fatras hadronic interactions and multiple scattering simulation were studied in comparison with GEANT4. Disagreement was found in multiple scattering distributions of primary charged particles (μ, π, e). A new model for multiple scattering simulation was implemented in Fatras. The model was based on R. Frühwirth’s mixture models. New model was tested on single layer geometry and a good agreement with GEANT4 was achieved. Also a comparison of reconstructed tracks’ parameters was performed for Inner Detector geometry, and Fatras with new multiplemore » scattering model proved to have better agreement with GEANT4. New model of multiple scattering was added as a part of Fatras package in the development release of ATLAS software—ATHENA.« less
NASA Technical Reports Server (NTRS)
Fisher, Jody l.; Striepe, Scott A.
2007-01-01
The Program to Optimize Simulated Trajectories II (POST2) is used as a basis for an end-to-end descent and landing trajectory simulation that is essential in determining the design and performance capability of lunar descent and landing system models and lunar environment models for the Autonomous Landing and Hazard Avoidance Technology (ALHAT) project. This POST2-based ALHAT simulation provides descent and landing simulation capability by integrating lunar environment and lander system models (including terrain, sensor, guidance, navigation, and control models), along with the data necessary to design and operate a landing system for robotic, human, and cargo lunar-landing success. This paper presents the current and planned development and model validation of the POST2-based end-to-end trajectory simulation used for the testing, performance and evaluation of ALHAT project system and models.
SEIR model simulation for Hepatitis B
NASA Astrophysics Data System (ADS)
Side, Syafruddin; Irwan, Mulbar, Usman; Sanusi, Wahidah
2017-09-01
Mathematical modelling and simulation for Hepatitis B discuss in this paper. Population devided by four variables, namely: Susceptible, Exposed, Infected and Recovered (SEIR). Several factors affect the population in this model is vaccination, immigration and emigration that occurred in the population. SEIR Model obtained Ordinary Differential Equation (ODE) non-linear System 4-D which then reduces to 3-D. SEIR model simulation undertaken to predict the number of Hepatitis B cases. The results of the simulation indicates the number of Hepatitis B cases will increase and then decrease for several months. The result of simulation using the number of case in Makassar also found the basic reproduction number less than one, that means, Makassar city is not an endemic area of Hepatitis B. With approval from the proceedings editor article 020185 titled, "SEIR model simulation for Hepatitis B," is retracted from the public record, as it is a duplication of article 020198 published in the same volume.
The role of simulation in neurosurgery.
Rehder, Roberta; Abd-El-Barr, Muhammad; Hooten, Kristopher; Weinstock, Peter; Madsen, Joseph R; Cohen, Alan R
2016-01-01
In an era of residency duty-hour restrictions, there has been a recent effort to implement simulation-based training methods in neurosurgery teaching institutions. Several surgical simulators have been developed, ranging from physical models to sophisticated virtual reality systems. To date, there is a paucity of information describing the clinical benefits of existing simulators and the assessment strategies to help implement them into neurosurgical curricula. Here, we present a systematic review of the current models of simulation and discuss the state-of-the-art and future directions for simulation in neurosurgery. Retrospective literature review. Multiple simulators have been developed for neurosurgical training, including those for minimally invasive procedures, vascular, skull base, pediatric, tumor resection, functional neurosurgery, and spine surgery. The pros and cons of existing systems are reviewed. Advances in imaging and computer technology have led to the development of different simulation models to complement traditional surgical training. Sophisticated virtual reality (VR) simulators with haptic feedback and impressive imaging technology have provided novel options for training in neurosurgery. Breakthrough training simulation using 3D printing technology holds promise for future simulation practice, proving high-fidelity patient-specific models to complement residency surgical learning.
Simulation Model of A Ferroelectric Field Effect Transistor
NASA Technical Reports Server (NTRS)
MacLeod, Todd C.; Ho, Fat Duen; Russell, Larry W. (Technical Monitor)
2002-01-01
An electronic simulation model has been developed of a ferroelectric field effect transistor (FFET). This model can be used in standard electrical circuit simulation programs to simulate the main characteristics of the FFET. The model uses a previously developed algorithm that incorporates partial polarization as a basis for the design. The model has the main characteristics of the FFET, which are the current hysterisis with different gate voltages and decay of the drain current when the gate voltage is off. The drain current has values matching actual FFET's, which were measured experimentally. The input and output resistance in the model is similar to that of the FFET. The model is valid for all frequencies below RF levels. A variety of different ferroelectric material characteristics can be modeled. The model can be used to design circuits using FFET'S with standard electrical simulation packages. The circuit can be used in designing non-volatile memory circuits and logic circuits and is compatible with all SPICE based circuit analysis programs. The model is a drop in library that integrates seamlessly into a SPICE simulation. A comparison is made between the model and experimental data measured from an actual FFET.
Rapid methods for radionuclide contaminant transport in nuclear fuel cycle simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huff, Kathryn
Here, nuclear fuel cycle and nuclear waste disposal decisions are technologically coupled. However, current nuclear fuel cycle simulators lack dynamic repository performance analysis due to the computational burden of high-fidelity hydrolgic contaminant transport models. The Cyder disposal environment and repository module was developed to fill this gap. It implements medium-fidelity hydrologic radionuclide transport models to support assessment appropriate for fuel cycle simulation in the Cyclus fuel cycle simulator. Rapid modeling of hundreds of discrete waste packages in a geologic environment is enabled within this module by a suite of four closed form models for advective, dispersive, coupled, and idealized con-more » taminant transport: a Degradation Rate model, a Mixed Cell model, a Lumped Parameter model, and a 1-D Permeable Porous Medium model. A summary of the Cyder module, its timestepping algorithm, and the mathematical models implemented within it are presented. Additionally, parametric demonstrations simulations performed with Cyder are presented and shown to demonstrate functional agreement with parametric simulations conducted in a standalone hydrologic transport model, the Clay Generic Disposal System Model developed by the Used Fuel Disposition Campaign Department of Energy Office of Nuclear Energy.« less
NASA Technical Reports Server (NTRS)
Yanosy, James L.
1988-01-01
A Model Description Document for the Emulation Simulation Computer Model was already published. The model consisted of a detailed model (emulation) of a SAWD CO2 removal subsystem which operated with much less detailed (simulation) models of a cabin, crew, and condensing and sensible heat exchangers. The purpose was to explore the utility of such an emulation simulation combination in the design, development, and test of a piece of ARS hardware, SAWD. Extensions to this original effort are presented. The first extension is an update of the model to reflect changes in the SAWD control logic which resulted from test. Also, slight changes were also made to the SAWD model to permit restarting and to improve the iteration technique. The second extension is the development of simulation models for more pieces of air and water processing equipment. Models are presented for: EDC, Molecular Sieve, Bosch, Sabatier, a new condensing heat exchanger, SPE, SFWES, Catalytic Oxidizer, and multifiltration. The third extension is to create two system simulations using these models. The first system presented consists of one air and one water processing system. The second consists of a potential air revitalization system.
Rapid methods for radionuclide contaminant transport in nuclear fuel cycle simulation
Huff, Kathryn
2017-08-01
Here, nuclear fuel cycle and nuclear waste disposal decisions are technologically coupled. However, current nuclear fuel cycle simulators lack dynamic repository performance analysis due to the computational burden of high-fidelity hydrolgic contaminant transport models. The Cyder disposal environment and repository module was developed to fill this gap. It implements medium-fidelity hydrologic radionuclide transport models to support assessment appropriate for fuel cycle simulation in the Cyclus fuel cycle simulator. Rapid modeling of hundreds of discrete waste packages in a geologic environment is enabled within this module by a suite of four closed form models for advective, dispersive, coupled, and idealized con-more » taminant transport: a Degradation Rate model, a Mixed Cell model, a Lumped Parameter model, and a 1-D Permeable Porous Medium model. A summary of the Cyder module, its timestepping algorithm, and the mathematical models implemented within it are presented. Additionally, parametric demonstrations simulations performed with Cyder are presented and shown to demonstrate functional agreement with parametric simulations conducted in a standalone hydrologic transport model, the Clay Generic Disposal System Model developed by the Used Fuel Disposition Campaign Department of Energy Office of Nuclear Energy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vance, B.; Mendillo, M.
1981-04-30
A three-dimensional model of the ionosphere was developed including chemical reactions and neutral and plasma transport. The model uses Finite Element Simulation to simulate ionospheric modification rather than solving a set of differential equations. The initial conditions of the Los Alamos Scientific Laboratory experiments, Lagopedo Uno and Dos, were input to the model, and these events were simulated. Simulation results were compared to ground and rocketborne electron-content measurements. A simulation of the transport of released SF6 was also made.
A Generic Multibody Parachute Simulation Model
NASA Technical Reports Server (NTRS)
Neuhaus, Jason Richard; Kenney, Patrick Sean
2006-01-01
Flight simulation of dynamic atmospheric vehicles with parachute systems is a complex task that is not easily modeled in many simulation frameworks. In the past, the performance of vehicles with parachutes was analyzed by simulations dedicated to parachute operations and were generally not used for any other portion of the vehicle flight trajectory. This approach required multiple simulation resources to completely analyze the performance of the vehicle. Recently, improved software engineering practices and increased computational power have allowed a single simulation to model the entire flight profile of a vehicle employing a parachute.
Laser Altimeter for Flight Simulator
NASA Technical Reports Server (NTRS)
Webster, L. D.
1986-01-01
Height of flight-simulator probe above model of terrain measured by automatic laser triangulation system. Airplane simulated by probe that moves over model of terrain. Altitude of airplane scaled from height of probe above model. Height measured by triangulation of laser beam aimed at intersection of model surface with plumb line of probe.
Modeling ground-based timber harvesting systems using computer simulation
Jingxin Wang; Chris B. LeDoux
2001-01-01
Modeling ground-based timber harvesting systems with an object-oriented methodology was investigated. Object-oriented modeling and design promote a better understanding of requirements, cleaner designs, and better maintainability of the harvesting simulation system. The model developed simulates chainsaw felling, drive-to-tree feller-buncher, swing-to-tree single-grip...
The Effect of Lateral Boundary Values on Atmospheric Mercury Simulations with the CMAQ Model
Simulation results from three global-scale models of atmospheric mercury have been used to define three sets of initial condition and boundary condition (IC/BC) data for regional-scale model simulations over North America using the Community Multi-scale Air Quality (CMAQ) model. ...
Simulation Modeling of a Facility Layout in Operations Management Classes
ERIC Educational Resources Information Center
Yazici, Hulya Julie
2006-01-01
Teaching quantitative courses can be challenging. Similarly, layout modeling and lean production concepts can be difficult to grasp in an introductory OM (operations management) class. This article describes a simulation model developed in PROMODEL to facilitate the learning of layout modeling and lean manufacturing. Simulation allows for the…
Historical Development of Simulation Models of Recreation Use
Jan W. van Wagtendonk; David N. Cole
2005-01-01
The potential utility of modeling as a park and wilderness management tool has been recognized for decades. Romesburg (1974) explored how mathematical decision modeling could be used to improve decisions about regulation of wilderness use. Cesario (1975) described a computer simulation modeling approach that utilized GPSS (General Purpose Systems Simulator), a...
RuleMonkey: software for stochastic simulation of rule-based models
2010-01-01
Background The system-level dynamics of many molecular interactions, particularly protein-protein interactions, can be conveniently represented using reaction rules, which can be specified using model-specification languages, such as the BioNetGen language (BNGL). A set of rules implicitly defines a (bio)chemical reaction network. The reaction network implied by a set of rules is often very large, and as a result, generation of the network implied by rules tends to be computationally expensive. Moreover, the cost of many commonly used methods for simulating network dynamics is a function of network size. Together these factors have limited application of the rule-based modeling approach. Recently, several methods for simulating rule-based models have been developed that avoid the expensive step of network generation. The cost of these "network-free" simulation methods is independent of the number of reactions implied by rules. Software implementing such methods is now needed for the simulation and analysis of rule-based models of biochemical systems. Results Here, we present a software tool called RuleMonkey, which implements a network-free method for simulation of rule-based models that is similar to Gillespie's method. The method is suitable for rule-based models that can be encoded in BNGL, including models with rules that have global application conditions, such as rules for intramolecular association reactions. In addition, the method is rejection free, unlike other network-free methods that introduce null events, i.e., steps in the simulation procedure that do not change the state of the reaction system being simulated. We verify that RuleMonkey produces correct simulation results, and we compare its performance against DYNSTOC, another BNGL-compliant tool for network-free simulation of rule-based models. We also compare RuleMonkey against problem-specific codes implementing network-free simulation methods. Conclusions RuleMonkey enables the simulation of rule-based models for which the underlying reaction networks are large. It is typically faster than DYNSTOC for benchmark problems that we have examined. RuleMonkey is freely available as a stand-alone application http://public.tgen.org/rulemonkey. It is also available as a simulation engine within GetBonNie, a web-based environment for building, analyzing and sharing rule-based models. PMID:20673321
Verification technology of remote sensing camera satellite imaging simulation based on ray tracing
NASA Astrophysics Data System (ADS)
Gu, Qiongqiong; Chen, Xiaomei; Yang, Deyun
2017-08-01
Remote sensing satellite camera imaging simulation technology is broadly used to evaluate the satellite imaging quality and to test the data application system. But the simulation precision is hard to examine. In this paper, we propose an experimental simulation verification method, which is based on the test parameter variation comparison. According to the simulation model based on ray-tracing, the experiment is to verify the model precision by changing the types of devices, which are corresponding the parameters of the model. The experimental results show that the similarity between the imaging model based on ray tracing and the experimental image is 91.4%, which can simulate the remote sensing satellite imaging system very well.
NASA Technical Reports Server (NTRS)
Majumdar, Alok
2013-01-01
The purpose of the paper is to present the analytical capability developed to model no vent chill and fill of cryogenic tank to support CPST (Cryogenic Propellant Storage and Transfer) program. Generalized Fluid System Simulation Program (GFSSP) was adapted to simulate charge-holdvent method of Tank Chilldown. GFSSP models were developed to simulate chilldown of LH2 tank in K-site Test Facility and numerical predictions were compared with test data. The report also describes the modeling technique of simulating the chilldown of a cryogenic transfer line and GFSSP models were developed to simulate the chilldown of a long transfer line and compared with test data.
STEPS: Modeling and Simulating Complex Reaction-Diffusion Systems with Python
Wils, Stefan; Schutter, Erik De
2008-01-01
We describe how the use of the Python language improved the user interface of the program STEPS. STEPS is a simulation platform for modeling and stochastic simulation of coupled reaction-diffusion systems with complex 3-dimensional boundary conditions. Setting up such models is a complicated process that consists of many phases. Initial versions of STEPS relied on a static input format that did not cleanly separate these phases, limiting modelers in how they could control the simulation and becoming increasingly complex as new features and new simulation algorithms were added. We solved all of these problems by tightly integrating STEPS with Python, using SWIG to expose our existing simulation code. PMID:19623245
Zhang, Yuying; Xie, Shaocheng; Klein, Stephen A.; ...
2017-08-11
Clouds play an important role in Earth’s radiation budget and hydrological cycle. However, current global climate models (GCMs) have difficulties in accurately simulating clouds and precipitation. To improve the representation of clouds in climate models, it is crucial to identify where simulated clouds differ from real world observations of them. This can be difficult, since significant differences exist between how a climate model represents clouds and what instruments observe, both in terms of spatial scale and the properties of the hydrometeors which are either modeled or observed. To address these issues and minimize impacts of instrument limitations, the concept ofmore » instrument “simulators”, which convert model variables into pseudo-instrument observations, has evolved with the goal to facilitate and to improve the comparison of modeled clouds with observations. Many simulators have been (and continue to be) developed for a variety of instruments and purposes. Finally, a community satellite simulator package, the Cloud Feedback Model Intercomparison Project (CFMIP) Observation Simulator Package (COSP; Bodas-Salcedo et al. 2011), contains several independent satellite simulators and is being widely used in the global climate modeling community to exploit satellite observations for model cloud evaluation (e.g., Kay et al. 2012; Klein et al. 2013; Suzuki et al. 2013; Zhang et al. 2010).« less
Evaluation of the new EMAC-SWIFT chemistry climate model
NASA Astrophysics Data System (ADS)
Scheffler, Janice; Langematz, Ulrike; Wohltmann, Ingo; Rex, Markus
2016-04-01
It is well known that the representation of atmospheric ozone chemistry in weather and climate models is essential for a realistic simulation of the atmospheric state. Including atmospheric ozone chemistry into climate simulations is usually done by prescribing a climatological ozone field, by including a fast linear ozone scheme into the model or by using a climate model with complex interactive chemistry. While prescribed climatological ozone fields are often not aligned with the modelled dynamics, a linear ozone scheme may not be applicable for a wide range of climatological conditions. Although interactive chemistry provides a realistic representation of atmospheric chemistry such model simulations are computationally very expensive and hence not suitable for ensemble simulations or simulations with multiple climate change scenarios. A new approach to represent atmospheric chemistry in climate models which can cope with non-linearities in ozone chemistry and is applicable to a wide range of climatic states is the Semi-empirical Weighted Iterative Fit Technique (SWIFT) that is driven by reanalysis data and has been validated against observational satellite data and runs of a full Chemistry and Transport Model. SWIFT has recently been implemented into the ECHAM/MESSy (EMAC) chemistry climate model that uses a modular approach to climate modelling where individual model components can be switched on and off. Here, we show first results of EMAC-SWIFT simulations and validate these against EMAC simulations using the complex interactive chemistry scheme MECCA, and against observations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yuying; Xie, Shaocheng; Klein, Stephen A.
Clouds play an important role in Earth’s radiation budget and hydrological cycle. However, current global climate models (GCMs) have difficulties in accurately simulating clouds and precipitation. To improve the representation of clouds in climate models, it is crucial to identify where simulated clouds differ from real world observations of them. This can be difficult, since significant differences exist between how a climate model represents clouds and what instruments observe, both in terms of spatial scale and the properties of the hydrometeors which are either modeled or observed. To address these issues and minimize impacts of instrument limitations, the concept ofmore » instrument “simulators”, which convert model variables into pseudo-instrument observations, has evolved with the goal to facilitate and to improve the comparison of modeled clouds with observations. Many simulators have been (and continue to be) developed for a variety of instruments and purposes. Finally, a community satellite simulator package, the Cloud Feedback Model Intercomparison Project (CFMIP) Observation Simulator Package (COSP; Bodas-Salcedo et al. 2011), contains several independent satellite simulators and is being widely used in the global climate modeling community to exploit satellite observations for model cloud evaluation (e.g., Kay et al. 2012; Klein et al. 2013; Suzuki et al. 2013; Zhang et al. 2010).« less
NASA Astrophysics Data System (ADS)
Anderson, Brian J.; Korth, Haje; Welling, Daniel T.; Merkin, Viacheslav G.; Wiltberger, Michael J.; Raeder, Joachim; Barnes, Robin J.; Waters, Colin L.; Pulkkinen, Antti A.; Rastaetter, Lutz
2017-02-01
Two of the geomagnetic storms for the Space Weather Prediction Center Geospace Environment Modeling challenge occurred after data were first acquired by the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE). We compare Birkeland currents from AMPERE with predictions from four models for the 4-5 April 2010 and 5-6 August 2011 storms. The four models are the Weimer (2005b) field-aligned current statistical model, the Lyon-Fedder-Mobarry magnetohydrodynamic (MHD) simulation, the Open Global Geospace Circulation Model MHD simulation, and the Space Weather Modeling Framework MHD simulation. The MHD simulations were run as described in Pulkkinen et al. (2013) and the results obtained from the Community Coordinated Modeling Center. The total radial Birkeland current, ITotal, and the distribution of radial current density, Jr, for all models are compared with AMPERE results. While the total currents are well correlated, the quantitative agreement varies considerably. The Jr distributions reveal discrepancies between the models and observations related to the latitude distribution, morphologies, and lack of nightside current systems in the models. The results motivate enhancing the simulations first by increasing the simulation resolution and then by examining the relative merits of implementing more sophisticated ionospheric conductance models, including ionospheric outflows or other omitted physical processes. Some aspects of the system, including substorm timing and location, may remain challenging to simulate, implying a continuing need for real-time specification.
Modelling and simulation of a heat exchanger
NASA Technical Reports Server (NTRS)
Xia, Lei; Deabreu-Garcia, J. Alex; Hartley, Tom T.
1991-01-01
Two models for two different control systems are developed for a parallel heat exchanger. First by spatially lumping a heat exchanger model, a good approximate model which has a high system order is produced. Model reduction techniques are applied to these to obtain low order models that are suitable for dynamic analysis and control design. The simulation method is discussed to ensure a valid simulation result.
Juckem, Paul F.; Clark, Brian R.; Feinstein, Daniel T.
2017-05-04
The U.S. Geological Survey, National Water-Quality Assessment seeks to map estimated intrinsic susceptibility of the glacial aquifer system of the conterminous United States. Improved understanding of the hydrogeologic characteristics that explain spatial patterns of intrinsic susceptibility, commonly inferred from estimates of groundwater age distributions, is sought so that methods used for the estimation process are properly equipped. An important step beyond identifying relevant hydrogeologic datasets, such as glacial geology maps, is to evaluate how incorporation of these resources into process-based models using differing levels of detail could affect resulting simulations of groundwater age distributions and, thus, estimates of intrinsic susceptibility.This report describes the construction and calibration of three groundwater-flow models of northeastern Wisconsin that were developed with differing levels of complexity to provide a framework for subsequent evaluations of the effects of process-based model complexity on estimations of groundwater age distributions for withdrawal wells and streams. Preliminary assessments, which focused on the effects of model complexity on simulated water levels and base flows in the glacial aquifer system, illustrate that simulation of vertical gradients using multiple model layers improves simulated heads more in low-permeability units than in high-permeability units. Moreover, simulation of heterogeneous hydraulic conductivity fields in coarse-grained and some fine-grained glacial materials produced a larger improvement in simulated water levels in the glacial aquifer system compared with simulation of uniform hydraulic conductivity within zones. The relation between base flows and model complexity was less clear; however, the relation generally seemed to follow a similar pattern as water levels. Although increased model complexity resulted in improved calibrations, future application of the models using simulated particle tracking is anticipated to evaluate if these model design considerations are similarly important for understanding the primary modeling objective - to simulate reasonable groundwater age distributions.
A Data Stream Model For Runoff Simulation In A Changing Environment
NASA Astrophysics Data System (ADS)
Yang, Q.; Shao, J.; Zhang, H.; Wang, G.
2017-12-01
Runoff simulation is of great significance for water engineering design, water disaster control, water resources planning and management in a catchment or region. A large number of methods including concept-based process-driven models and statistic-based data-driven models, have been proposed and widely used in worldwide during past decades. Most existing models assume that the relationship among runoff and its impacting factors is stationary. However, in the changing environment (e.g., climate change, human disturbance), their relationship usually evolves over time. In this study, we propose a data stream model for runoff simulation in a changing environment. Specifically, the proposed model works in three steps: learning a rule set, expansion of a rule, and simulation. The first step is to initialize a rule set. When a new observation arrives, the model will check which rule covers it and then use the rule for simulation. Meanwhile, Page-Hinckley (PH) change detection test is used to monitor the online simulation error of each rule. If a change is detected, the corresponding rule is removed from the rule set. In the second step, for each rule, if it covers more than a given number of instance, the rule is expected to expand. In the third step, a simulation model of each leaf node is learnt with a perceptron without activation function, and is updated with adding a newly incoming observation. Taking Fuxi River catchment as a case study, we applied the model to simulate the monthly runoff in the catchment. Results show that abrupt change is detected in the year of 1997 by using the Page-Hinckley change detection test method, which is consistent with the historic record of flooding. In addition, the model achieves good simulation results with the RMSE of 13.326, and outperforms many established methods. The findings demonstrated that the proposed data stream model provides a promising way to simulate runoff in a changing environment.
C/sup 3/ and combat simulation - a survey
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erickson, S.A. Jr.
1983-01-04
This article looks at the overlap between C/sup 3/ and combat simulation, from the point of view of the developer of combat simulations and models. In this context, there are two different questions. The first is: How and to what extent should specific models of the C/sup 3/ processes be incorporated in simulations of combat. Here the key point is the assessment of impact. In which types or levels of combat does C/sup 3/ play a role sufficiently intricate and closely coupled with combat performance that it would significantly affect combat results. Conversely, when is C/sup 3/ a known factormore » or modifier which can be simply accommodated without a specific detailed model being made for it. The second question is the inverse one. In the development of future C/sup 3/ systems, what rule should combat simulation play. Obviously, simulation of the operation of the hardware, software and other parts of the C/sup 3/ system would be useful in its design and specification, but this is not combat simulation. When is it necessary to encase the C/sup 3/ simulation model in a combat model which has enough detail to be considered a simulation itself. How should this outer combat model be scoped out as to the components needed. In order to build a background for answering these questions a two-pronged approach will be taken. First a framework for C/sup 3/ modeling will be developed, in which the various types of modeling which can be done to include or encase C/sup 3/ in a combat model are organized. This framework will hopefully be useful in describing the particular assumptions made in specific models in terms of what could be done in a more general way. Then a few specific models will be described, concentrating on the C/sup 3/ portion of the simulations, or what could be interpreted as the C/sup 3/ assumptions.« less
NASA Astrophysics Data System (ADS)
Virtanen, I. O. I.; Virtanen, I. I.; Pevtsov, A. A.; Yeates, A.; Mursula, K.
2017-07-01
Aims: We aim to use the surface flux transport model to simulate the long-term evolution of the photospheric magnetic field from historical observations. In this work we study the accuracy of the model and its sensitivity to uncertainties in its main parameters and the input data. Methods: We tested the model by running simulations with different values of meridional circulation and supergranular diffusion parameters, and studied how the flux distribution inside active regions and the initial magnetic field affected the simulation. We compared the results to assess how sensitive the simulation is to uncertainties in meridional circulation speed, supergranular diffusion, and input data. We also compared the simulated magnetic field with observations. Results: We find that there is generally good agreement between simulations and observations. Although the model is not capable of replicating fine details of the magnetic field, the long-term evolution of the polar field is very similar in simulations and observations. Simulations typically yield a smoother evolution of polar fields than observations, which often include artificial variations due to observational limitations. We also find that the simulated field is fairly insensitive to uncertainties in model parameters or the input data. Due to the decay term included in the model the effects of the uncertainties are somewhat minor or temporary, lasting typically one solar cycle.
Stenemo, Fredrik; Jørgensen, Peter R; Jarvis, Nicholas
2005-09-01
The one-dimensional pesticide fate model MACRO was loose-linked to the three-dimensional discrete fracture/matrix diffusion model FRAC3DVS to describe transport of the pesticide mecoprop in a fractured moraine till and local sand aquifer (5-5.5 m depth) overlying a regional limestone aquifer (16 m depth) at Havdrup, Denmark. Alternative approaches to describe the upper boundary in the groundwater model were examined. Field-scale simulations were run to compare a uniform upper boundary condition with a spatially variable upper boundary derived from Monte-Carlo simulations with MACRO. Plot-scale simulations were run to investigate the influence of the temporal resolution of the upper boundary conditions for fluxes in the groundwater model and the effects of different assumptions concerning the macropore/fracture connectivity between the two models. The influence of within-field variability of leaching on simulated mecoprop concentrations in the local aquifer was relatively small. A fully transient simulation with FRAC3DVS gave 20 times larger leaching to the regional aquifer compared to the case with steady-state water flow, assuming full connectivity with respect to macropores/fractures across the boundary between the two models. For fully transient simulations 'disconnecting' the macropores/fractures at the interface between the two models reduced leaching by a factor 24. A fully connected, transient simulation with FRAC3DVS, with spatially uniform upper boundary fluxes derived from a MACRO simulation with 'effective' parameters is therefore recommended for assessing leaching risks to the regional aquifer, at this, and similar sites.
How much rainfall sustained a Green Sahara during the mid-Holocene?
NASA Astrophysics Data System (ADS)
Hopcroft, Peter; Valdes, Paul; Harper, Anna
2016-04-01
The present-day Sahara desert has periodically transformed to an area of lakes and vegetation during the Quaternary in response to orbitally-induced changes in the monsoon circulation. Coupled atmosphere-ocean general circulation model simulations of the mid-Holocene generally underestimate the required monsoon shift, casting doubt on the fidelity of these models. However, the climatic regime that characterised this period remains unclear. To address this, we applied an ensemble of dynamic vegetation model simulations using two different models: JULES (Joint UK Land Environment Simulator) a comprehensive land surface model, and LPJ (Lund-Potsdam-Jena model) a widely used dynamic vegetation model. The simulations are forced with a number of idealized climate scenarios, in which an observational climatology is progressively altered with imposed anomalies of precipitation and other related variables, including cloud cover and humidity. The applied anomalies are based on an ensemble of general circulation model simulations, and include seasonal variations but are spatially uniform across the region. When perturbing precipitation alone, a significant increase of at least 700mm/year is required to produce model simulations with non-negligible vegetation coverage in the Sahara region. Changes in related variables including cloud cover, surface radiation fluxes and humidity are found to be important in the models, as they modify the water balance and so affect plant growth. Including anomalies in all of these variables together reduces the precipitation change required for a Green Sahara compared to the case of increasing precipitation alone. We assess whether the precipitation changes implied by these vegetation model simulations are consistent with reconstructions for the mid-Holocene from pollen samples. Further, Earth System models predict precipitation increases that are significantly smaller than that inferred from these vegetation model simulations. Understanding this difference presents an ongoing challenge.
LISP based simulation generators for modeling complex space processes
NASA Technical Reports Server (NTRS)
Tseng, Fan T.; Schroer, Bernard J.; Dwan, Wen-Shing
1987-01-01
The development of a simulation assistant for modeling discrete event processes is presented. Included are an overview of the system, a description of the simulation generators, and a sample process generated using the simulation assistant.
NASA Astrophysics Data System (ADS)
Barnes, Brian C.; Leiter, Kenneth W.; Becker, Richard; Knap, Jaroslaw; Brennan, John K.
2017-07-01
We describe the development, accuracy, and efficiency of an automation package for molecular simulation, the large-scale atomic/molecular massively parallel simulator (LAMMPS) integrated materials engine (LIME). Heuristics and algorithms employed for equation of state (EOS) calculation using a particle-based model of a molecular crystal, hexahydro-1,3,5-trinitro-s-triazine (RDX), are described in detail. The simulation method for the particle-based model is energy-conserving dissipative particle dynamics, but the techniques used in LIME are generally applicable to molecular dynamics simulations with a variety of particle-based models. The newly created tool set is tested through use of its EOS data in plate impact and Taylor anvil impact continuum simulations of solid RDX. The coarse-grain model results from LIME provide an approach to bridge the scales from atomistic simulations to continuum simulations.
Liu, Shuguang; Tan, Zhengxi; Chen, Mingshi; Liu, Jinxun; Wein, Anne; Li, Zhengpeng; Huang, Shengli; Oeding, Jennifer; Young, Claudia; Verma, Shashi B.; Suyker, Andrew E.; Faulkner, Stephen P.
2012-01-01
The General Ensemble Biogeochemical Modeling System (GEMS) was es in individual models, it uses multiple site-scale biogeochemical models to perform model simulations. Second, it adopts Monte Carlo ensemble simulations of each simulation unit (one site/pixel or group of sites/pixels with similar biophysical conditions) to incorporate uncertainties and variability (as measured by variances and covariance) of input variables into model simulations. In this chapter, we illustrate the applications of GEMS at the site and regional scales with an emphasis on incorporating agricultural practices. Challenges in modeling soil carbon dynamics and greenhouse emissions are also discussed.
Mesoscale acid deposition modeling studies
NASA Technical Reports Server (NTRS)
Kaplan, Michael L.; Proctor, F. H.; Zack, John W.; Karyampudi, V. Mohan; Price, P. E.; Bousquet, M. D.; Coats, G. D.
1989-01-01
The work performed in support of the EPA/DOE MADS (Mesoscale Acid Deposition) Project included the development of meteorological data bases for the initialization of chemistry models, the testing and implementation of new planetary boundary layer parameterization schemes in the MASS model, the simulation of transport and precipitation for MADS case studies employing the MASS model, and the use of the TASS model in the simulation of cloud statistics and the complex transport of conservative tracers within simulated cumuloform clouds. The work performed in support of the NASA/FAA Wind Shear Program included the use of the TASS model in the simulation of the dynamical processes within convective cloud systems, the analyses of the sensitivity of microburst intensity and general characteristics as a function of the atmospheric environment within which they are formed, comparisons of TASS model microburst simulation results to observed data sets, and the generation of simulated wind shear data bases for use by the aviation meteorological community in the evaluation of flight hazards caused by microbursts.
Effects of linking a soil-water-balance model with a groundwater-flow model
Stanton, Jennifer S.; Ryter, Derek W.; Peterson, Steven M.
2013-01-01
A previously published regional groundwater-flow model in north-central Nebraska was sequentially linked with the recently developed soil-water-balance (SWB) model to analyze effects to groundwater-flow model parameters and calibration results. The linked models provided a more detailed spatial and temporal distribution of simulated recharge based on hydrologic processes, improvement of simulated groundwater-level changes and base flows at specific sites in agricultural areas, and a physically based assessment of the relative magnitude of recharge for grassland, nonirrigated cropland, and irrigated cropland areas. Root-mean-squared (RMS) differences between the simulated and estimated or measured target values for the previously published model and linked models were relatively similar and did not improve for all types of calibration targets. However, without any adjustment to the SWB-generated recharge, the RMS difference between simulated and estimated base-flow target values for the groundwater-flow model was slightly smaller than for the previously published model, possibly indicating that the volume of recharge simulated by the SWB code was closer to actual hydrogeologic conditions than the previously published model provided. Groundwater-level and base-flow hydrographs showed that temporal patterns of simulated groundwater levels and base flows were more accurate for the linked models than for the previously published model at several sites, particularly in agricultural areas.
Software for Brain Network Simulations: A Comparative Study
Tikidji-Hamburyan, Ruben A.; Narayana, Vikram; Bozkus, Zeki; El-Ghazawi, Tarek A.
2017-01-01
Numerical simulations of brain networks are a critical part of our efforts in understanding brain functions under pathological and normal conditions. For several decades, the community has developed many software packages and simulators to accelerate research in computational neuroscience. In this article, we select the three most popular simulators, as determined by the number of models in the ModelDB database, such as NEURON, GENESIS, and BRIAN, and perform an independent evaluation of these simulators. In addition, we study NEST, one of the lead simulators of the Human Brain Project. First, we study them based on one of the most important characteristics, the range of supported models. Our investigation reveals that brain network simulators may be biased toward supporting a specific set of models. However, all simulators tend to expand the supported range of models by providing a universal environment for the computational study of individual neurons and brain networks. Next, our investigations on the characteristics of computational architecture and efficiency indicate that all simulators compile the most computationally intensive procedures into binary code, with the aim of maximizing their computational performance. However, not all simulators provide the simplest method for module development and/or guarantee efficient binary code. Third, a study of their amenability for high-performance computing reveals that NEST can almost transparently map an existing model on a cluster or multicore computer, while NEURON requires code modification if the model developed for a single computer has to be mapped on a computational cluster. Interestingly, parallelization is the weakest characteristic of BRIAN, which provides no support for cluster computations and limited support for multicore computers. Fourth, we identify the level of user support and frequency of usage for all simulators. Finally, we carry out an evaluation using two case studies: a large network with simplified neural and synaptic models and a small network with detailed models. These two case studies allow us to avoid any bias toward a particular software package. The results indicate that BRIAN provides the most concise language for both cases considered. Furthermore, as expected, NEST mostly favors large network models, while NEURON is better suited for detailed models. Overall, the case studies reinforce our general observation that simulators have a bias in the computational performance toward specific types of the brain network models. PMID:28775687
Discrete event simulation modelling of patient service management with Arena
NASA Astrophysics Data System (ADS)
Guseva, Elena; Varfolomeyeva, Tatyana; Efimova, Irina; Movchan, Irina
2018-05-01
This paper describes the simulation modeling methodology aimed to aid in solving the practical problems of the research and analysing the complex systems. The paper gives the review of a simulation platform sand example of simulation model development with Arena 15.0 (Rockwell Automation).The provided example of the simulation model for the patient service management helps to evaluate the workload of the clinic doctors, determine the number of the general practitioners, surgeons, traumatologists and other specialized doctors required for the patient service and develop recommendations to ensure timely delivery of medical care and improve the efficiency of the clinic operation.
Reverse logistics system planning for recycling computers hardware: A case study
NASA Astrophysics Data System (ADS)
Januri, Siti Sarah; Zulkipli, Faridah; Zahari, Siti Meriam; Shamsuri, Siti Hajar
2014-09-01
This paper describes modeling and simulation of reverse logistics networks for collection of used computers in one of the company in Selangor. The study focuses on design of reverse logistics network for used computers recycling operation. Simulation modeling, presented in this work allows the user to analyze the future performance of the network and to understand the complex relationship between the parties involved. The findings from the simulation suggest that the model calculates processing time and resource utilization in a predictable manner. In this study, the simulation model was developed by using Arena simulation package.
Integrated Modeling, Mapping, and Simulation (IMMS) framework for planning exercises.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Friedman-Hill, Ernest J.; Plantenga, Todd D.
2010-06-01
The Integrated Modeling, Mapping, and Simulation (IMMS) program is designing and prototyping a simulation and collaboration environment for linking together existing and future modeling and simulation tools to enable analysts, emergency planners, and incident managers to more effectively, economically, and rapidly prepare, analyze, train, and respond to real or potential incidents. When complete, the IMMS program will demonstrate an integrated modeling and simulation capability that supports emergency managers and responders with (1) conducting 'what-if' analyses and exercises to address preparedness, analysis, training, operations, and lessons learned, and (2) effectively, economically, and rapidly verifying response tactics, plans and procedures.
Development of an Implantable WBAN Path-Loss Model for Capsule Endoscopy
NASA Astrophysics Data System (ADS)
Aoyagi, Takahiro; Takizawa, Kenichi; Kobayashi, Takehiko; Takada, Jun-Ichi; Hamaguchi, Kiyoshi; Kohno, Ryuji
An implantable WBAN path-loss model for a capsule endoscopy which is used for examining digestive organs, is developed by conducting simulations and experiments. First, we performed FDTD simulations on implant WBAN propagation by using a numerical human model. Second, we performed FDTD simulations on a vessel that represents the human body. Third, we performed experiments using a vessel of the same dimensions as that used in the simulations. On the basis of the results of these simulations and experiments, we proposed the gradient and intercept parameters of the simple path-loss in-body propagation model.
Simulation Platform: a cloud-based online simulation environment.
Yamazaki, Tadashi; Ikeno, Hidetoshi; Okumura, Yoshihiro; Satoh, Shunji; Kamiyama, Yoshimi; Hirata, Yutaka; Inagaki, Keiichiro; Ishihara, Akito; Kannon, Takayuki; Usui, Shiro
2011-09-01
For multi-scale and multi-modal neural modeling, it is needed to handle multiple neural models described at different levels seamlessly. Database technology will become more important for these studies, specifically for downloading and handling the neural models seamlessly and effortlessly. To date, conventional neuroinformatics databases have solely been designed to archive model files, but the databases should provide a chance for users to validate the models before downloading them. In this paper, we report our on-going project to develop a cloud-based web service for online simulation called "Simulation Platform". Simulation Platform is a cloud of virtual machines running GNU/Linux. On a virtual machine, various software including developer tools such as compilers and libraries, popular neural simulators such as GENESIS, NEURON and NEST, and scientific software such as Gnuplot, R and Octave, are pre-installed. When a user posts a request, a virtual machine is assigned to the user, and the simulation starts on that machine. The user remotely accesses to the machine through a web browser and carries out the simulation, without the need to install any software but a web browser on the user's own computer. Therefore, Simulation Platform is expected to eliminate impediments to handle multiple neural models that require multiple software. Copyright © 2011 Elsevier Ltd. All rights reserved.
Reprint of: Simulation Platform: a cloud-based online simulation environment.
Yamazaki, Tadashi; Ikeno, Hidetoshi; Okumura, Yoshihiro; Satoh, Shunji; Kamiyama, Yoshimi; Hirata, Yutaka; Inagaki, Keiichiro; Ishihara, Akito; Kannon, Takayuki; Usui, Shiro
2011-11-01
For multi-scale and multi-modal neural modeling, it is needed to handle multiple neural models described at different levels seamlessly. Database technology will become more important for these studies, specifically for downloading and handling the neural models seamlessly and effortlessly. To date, conventional neuroinformatics databases have solely been designed to archive model files, but the databases should provide a chance for users to validate the models before downloading them. In this paper, we report our on-going project to develop a cloud-based web service for online simulation called "Simulation Platform". Simulation Platform is a cloud of virtual machines running GNU/Linux. On a virtual machine, various software including developer tools such as compilers and libraries, popular neural simulators such as GENESIS, NEURON and NEST, and scientific software such as Gnuplot, R and Octave, are pre-installed. When a user posts a request, a virtual machine is assigned to the user, and the simulation starts on that machine. The user remotely accesses to the machine through a web browser and carries out the simulation, without the need to install any software but a web browser on the user's own computer. Therefore, Simulation Platform is expected to eliminate impediments to handle multiple neural models that require multiple software. Copyright © 2011 Elsevier Ltd. All rights reserved.
A Global System for Transportation Simulation and Visualization in Emergency Evacuation Scenarios
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Wei; Liu, Cheng; Thomas, Neil
2015-01-01
Simulation-based studies are frequently used for evacuation planning and decision making processes. Given the transportation systems complexity and data availability, most evacuation simulation models focus on certain geographic areas. With routine improvement of OpenStreetMap road networks and LandScanTM global population distribution data, we present WWEE, a uniform system for world-wide emergency evacuation simulations. WWEE uses unified data structure for simulation inputs. It also integrates a super-node trip distribution model as the default simulation parameter to improve the system computational performance. Two levels of visualization tools are implemented for evacuation performance analysis, including link-based macroscopic visualization and vehicle-based microscopic visualization. Formore » left-hand and right-hand traffic patterns in different countries, the authors propose a mirror technique to experiment with both scenarios without significantly changing traffic simulation models. Ten cities in US, Europe, Middle East, and Asia are modeled for demonstration. With default traffic simulation models for fast and easy-to-use evacuation estimation and visualization, WWEE also retains the capability of interactive operation for users to adopt customized traffic simulation models. For the first time, WWEE provides a unified platform for global evacuation researchers to estimate and visualize their strategies performance of transportation systems under evacuation scenarios.« less
Evaluating Vertical Moisture Structure of the Madden-Julian Oscillation in Contemporary GCMs
NASA Astrophysics Data System (ADS)
Guan, B.; Jiang, X.; Waliser, D. E.
2013-12-01
The Madden-Julian Oscillation (MJO) remains a major challenge in our understanding and modeling of the tropical convection and circulation. Many models have troubles in realistically simulating key characteristics of the MJO, such as the strength, period, and eastward propagation. For models that do simulate aspects of the MJO, it remains to be understood what parameters and processes are the most critical in determining the quality of the simulations. This study focuses on the vertical structure of moisture in MJO simulations, with the aim to identify and understand the relationship between MJO simulation qualities and key parameters related to moisture. A series of 20-year simulations conducted by 26 GCMs are analyzed, including four that are coupled to ocean models and two that have a two-dimensional cloud resolving model embedded (i.e., superparameterized). TRMM precipitation and ERA-Interim reanalysis are used to evaluate the model simulations. MJO simulation qualities are evaluated based on pattern correlations of lead/lag regressions of precipitation - a measure of the model representation of the eastward propagating MJO convection. Models with strongest and weakest MJOs (top and bottom quartiles) are compared in terms of differences in moisture content, moisture convergence, moistening rate, and moist static energy. It is found that models with strongest MJOs have better representations of the observed vertical tilt of moisture. Relative importance of convection, advection, boundary layer, and large scale convection/precipitation are discussed in terms of their contribution to the moistening process. The results highlight the overall importance of vertical moisture structure in MJO simulations. The work contributes to the climatological component of the joint WCRP-WWRP/THORPEX YOTC MJO Task Force and the GEWEX Atmosphere System Study (GASS) global model evaluation project focused on the vertical structure and diabatic processes of the MJO.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Udhay Ravishankar; Milos manic
2013-08-01
This paper presents a micro-grid simulator tool useful for implementing and testing multi-agent controllers (SGridSim). As a common engineering practice it is important to have a tool that simplifies the modeling of the salient features of a desired system. In electric micro-grids, these salient features are the voltage and power distributions within the micro-grid. Current simplified electric power grid simulator tools such as PowerWorld, PowerSim, Gridlab, etc, model only the power distribution features of a desired micro-grid. Other power grid simulators such as Simulink, Modelica, etc, use detailed modeling to accommodate the voltage distribution features. This paper presents a SGridSimmore » micro-grid simulator tool that simplifies the modeling of both the voltage and power distribution features in a desired micro-grid. The SGridSim tool accomplishes this simplified modeling by using Effective Node-to-Node Complex Impedance (EN2NCI) models of components that typically make-up a micro-grid. The term EN2NCI models means that the impedance based components of a micro-grid are modeled as single impedances tied between their respective voltage nodes on the micro-grid. Hence the benefit of the presented SGridSim tool are 1) simulation of a micro-grid is performed strictly in the complex-domain; 2) faster simulation of a micro-grid by avoiding the simulation of detailed transients. An example micro-grid model was built using the SGridSim tool and tested to simulate both the voltage and power distribution features with a total absolute relative error of less than 6%.« less
Evolution Model and Simulation of Profit Model of Agricultural Products Logistics Financing
NASA Astrophysics Data System (ADS)
Yang, Bo; Wu, Yan
2018-03-01
Agricultural products logistics financial warehousing business mainly involves agricultural production and processing enterprises, third-party logistics enterprises and financial institutions tripartite, to enable the three parties to achieve win-win situation, the article first gives the replication dynamics and evolutionary stability strategy between the three parties in business participation, and then use NetLogo simulation platform, using the overall modeling and simulation method of Multi-Agent, established the evolutionary game simulation model, and run the model under different revenue parameters, finally, analyzed the simulation results. To achieve the agricultural products logistics financial financing warehouse business to participate in tripartite mutually beneficial win-win situation, thus promoting the smooth flow of agricultural products logistics business.
Qualitative, semi-quantitative, and quantitative simulation of the osmoregulation system in yeast.
Pang, Wei; Coghill, George M
2015-05-01
In this paper we demonstrate how Morven, a computational framework which can perform qualitative, semi-quantitative, and quantitative simulation of dynamical systems using the same model formalism, is applied to study the osmotic stress response pathway in yeast. First the Morven framework itself is briefly introduced in terms of the model formalism employed and output format. We then built a qualitative model for the biophysical process of the osmoregulation in yeast, and a global qualitative-level picture was obtained through qualitative simulation of this model. Furthermore, we constructed a Morven model based on existing quantitative model of the osmoregulation system. This model was then simulated qualitatively, semi-quantitatively, and quantitatively. The obtained simulation results are presented with an analysis. Finally the future development of the Morven framework for modelling the dynamic biological systems is discussed. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.
Filters for Improvement of Multiscale Data from Atomistic Simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gardner, David J.; Reynolds, Daniel R.
Multiscale computational models strive to produce accurate and efficient numerical simulations of systems involving interactions across multiple spatial and temporal scales that typically differ by several orders of magnitude. Some such models utilize a hybrid continuum-atomistic approach combining continuum approximations with first-principles-based atomistic models to capture multiscale behavior. By following the heterogeneous multiscale method framework for developing multiscale computational models, unknown continuum scale data can be computed from an atomistic model. Concurrently coupling the two models requires performing numerous atomistic simulations which can dominate the computational cost of the method. Furthermore, when the resulting continuum data is noisy due tomore » sampling error, stochasticity in the model, or randomness in the initial conditions, filtering can result in significant accuracy gains in the computed multiscale data without increasing the size or duration of the atomistic simulations. In this work, we demonstrate the effectiveness of spectral filtering for increasing the accuracy of noisy multiscale data obtained from atomistic simulations. Moreover, we present a robust and automatic method for closely approximating the optimum level of filtering in the case of additive white noise. By improving the accuracy of this filtered simulation data, it leads to a dramatic computational savings by allowing for shorter and smaller atomistic simulations to achieve the same desired multiscale simulation precision.« less
Filters for Improvement of Multiscale Data from Atomistic Simulations
Gardner, David J.; Reynolds, Daniel R.
2017-01-05
Multiscale computational models strive to produce accurate and efficient numerical simulations of systems involving interactions across multiple spatial and temporal scales that typically differ by several orders of magnitude. Some such models utilize a hybrid continuum-atomistic approach combining continuum approximations with first-principles-based atomistic models to capture multiscale behavior. By following the heterogeneous multiscale method framework for developing multiscale computational models, unknown continuum scale data can be computed from an atomistic model. Concurrently coupling the two models requires performing numerous atomistic simulations which can dominate the computational cost of the method. Furthermore, when the resulting continuum data is noisy due tomore » sampling error, stochasticity in the model, or randomness in the initial conditions, filtering can result in significant accuracy gains in the computed multiscale data without increasing the size or duration of the atomistic simulations. In this work, we demonstrate the effectiveness of spectral filtering for increasing the accuracy of noisy multiscale data obtained from atomistic simulations. Moreover, we present a robust and automatic method for closely approximating the optimum level of filtering in the case of additive white noise. By improving the accuracy of this filtered simulation data, it leads to a dramatic computational savings by allowing for shorter and smaller atomistic simulations to achieve the same desired multiscale simulation precision.« less
Interpreting Space-Based Trends in Carbon Monoxide with Multiple Models
NASA Technical Reports Server (NTRS)
Strode, Sarah A.; Worden, Helen M.; Damon, Megan; Douglass, Anne R.; Duncan, Bryan N.; Emmons, Louisa K.; Lamarque, Jean-Francois; Manyin, Michael; Oman, Luke D.; Rodriguez, Jose M.;
2016-01-01
We use a series of chemical transport model and chemistry climate model simulations to investigate the observed negative trends in MOPITT CO over several regions of the world, and to examine the consistency of timedependent emission inventories with observations. We find that simulations driven by the MACCity inventory, used for the Chemistry Climate Modeling Initiative (CCMI), reproduce the negative trends in the CO column observed by MOPITT for 2000-2010 over the eastern United States and Europe. However, the simulations have positive trends over eastern China, in contrast to the negative trends observed by MOPITT. The model bias in CO, after applying MOPITT averaging kernels, contributes to the model-observation discrepancy in the trend over eastern China. This demonstrates that biases in a model's average concentrations can influence the interpretation of the temporal trend compared to satellite observations. The total ozone column plays a role in determining the simulated tropospheric CO trends. A large positive anomaly in the simulated total ozone column in 2010 leads to a negative anomaly in OH and hence a positive anomaly in CO, contributing to the positive trend in simulated CO. These results demonstrate that accurately simulating variability in the ozone column is important for simulating and interpreting trends in CO.