A brief review on key technologies in the battery management system of electric vehicles
NASA Astrophysics Data System (ADS)
Liu, Kailong; Li, Kang; Peng, Qiao; Zhang, Cheng
2018-04-01
Batteries have been widely applied in many high-power applications, such as electric vehicles (EVs) and hybrid electric vehicles, where a suitable battery management system (BMS) is vital in ensuring safe and reliable operation of batteries. This paper aims to give a brief review on several key technologies of BMS, including battery modelling, state estimation and battery charging. First, popular battery types used in EVs are surveyed, followed by the introduction of key technologies used in BMS. Various battery models, including the electric model, thermal model and coupled electro-thermal model are reviewed. Then, battery state estimations for the state of charge, state of health and internal temperature are comprehensively surveyed. Finally, several key and traditional battery charging approaches with associated optimization methods are discussed.
Buns, Scissors and Strawberry Laces--A Model of Science Education?
ERIC Educational Resources Information Center
Walsh, Ed; Edwards, Rebecca
2009-01-01
Models are included in the science National Curriculum because modelling is a key tool for scientists and an integral part of how science works. Modelling is explicitly referred to in the Programmes of Study for Science at Key Stage 3 and 4 (age 11-16) and in Assessing Pupil's Progress (APP). Pupils need to learn how to use models because they are…
Summary on several key techniques in 3D geological modeling.
Mei, Gang
2014-01-01
Several key techniques in 3D geological modeling including planar mesh generation, spatial interpolation, and surface intersection are summarized in this paper. Note that these techniques are generic and widely used in various applications but play a key role in 3D geological modeling. There are two essential procedures in 3D geological modeling: the first is the simulation of geological interfaces using geometric surfaces and the second is the building of geological objects by means of various geometric computations such as the intersection of surfaces. Discrete geometric surfaces that represent geological interfaces can be generated by creating planar meshes first and then spatially interpolating; those surfaces intersect and then form volumes that represent three-dimensional geological objects such as rock bodies. In this paper, the most commonly used algorithms of the key techniques in 3D geological modeling are summarized.
Nonmarket economic user values of the Florida Keys/Key West
Vernon R. Leeworthy; J. Michael Bowker
1997-01-01
This report provides estimates of the nonmarket economic user values for recreating visitors to the Florida Keys/Key West that participated in natural resource-based activities. Results from estimated travel cost models are presented, including visitorâs responses to prices and estimated per person-trip user values. Annual user values are also calculated and presented...
A review of international pharmacy-based minor ailment services and proposed service design model.
Aly, Mariyam; García-Cárdenas, Victoria; Williams, Kylie; Benrimoj, Shalom I
2018-01-05
The need to consider sustainable healthcare solutions is essential. An innovative strategy used to promote minor ailment care is the utilisation of community pharmacists to deliver minor ailment services (MASs). Promoting higher levels of self-care can potentially reduce the strain on existing resources. To explore the features of international MASs, including their similarities and differences, and consider the essential elements to design a MAS model. A grey literature search strategy was completed in June 2017 to comply with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses standard. This included (1) Google/Yahoo! search engines, (2) targeted websites, and (3) contact with commissioning organisations. Executive summaries, table of contents and title pages of documents were reviewed. Key characteristics of MASs were extracted and a MAS model was developed. A total of 147 publications were included in the review. Key service elements identified included eligibility, accessibility, staff involvement, reimbursement systems. Several factors need to be considered when designing a MAS model; including contextualisation of MAS to the market. Stakeholder engagement, service planning, governance, implementation and review have emerged as key aspects involved with a design model. MASs differ in their structural parameters. Consideration of these parameters is necessary when devising MAS aims and assessing outcomes to promote sustainability and success of the service. Copyright © 2018 Elsevier Inc. All rights reserved.
Knaak, Stephanie; Modgill, Geeta; Patten, Scott B
2014-10-01
As part of its ongoing effort to combat stigma against mental illness among health care providers, the Mental Health Commission of Canada partnered with organizations conducting anti-stigma interventions. Our objective was to evaluate program effectiveness and to better understand what makes some programs more effective than others. Our paper reports the elements of these programs found to be most strongly associated with favourable outcomes. Our study employed a multi-phased, mixed-methods design. First, a grounded theory qualitative study was undertaken to identify key program elements. Next, each program (n = 22) was coded according to the presence or absence of the identified key program ingredients. Then, random-effects, meta-regression modelling was used to examine the association between program outcomes and the key ingredients. The qualitative analysis led to a 6-ingredient model of key program elements. Results of the quantitative analysis showed that programs that included all 6 of these ingredients performed significantly better than those that did not. Individual analyses of each of the 6 ingredients showed that including multiple forms of social contact and emphasizing recovery were characteristics of the most effective programs. The results provide a validation of a 6-ingredient model of key program elements for anti-stigma programming for health care providers. Emphasizing recovery and including multiple types of social contact are of particular importance for maximizing the effectiveness of anti-stigma programs for health care providers.
ERIC Educational Resources Information Center
Dunst, Carl J.
2015-01-01
A model for designing and implementing evidence-based in-service professional development in early childhood intervention as well as the key features of the model are described. The key features include professional development specialist (PDS) description and demonstration of an intervention practice, active and authentic job-embedded…
Summary on Several Key Techniques in 3D Geological Modeling
2014-01-01
Several key techniques in 3D geological modeling including planar mesh generation, spatial interpolation, and surface intersection are summarized in this paper. Note that these techniques are generic and widely used in various applications but play a key role in 3D geological modeling. There are two essential procedures in 3D geological modeling: the first is the simulation of geological interfaces using geometric surfaces and the second is the building of geological objects by means of various geometric computations such as the intersection of surfaces. Discrete geometric surfaces that represent geological interfaces can be generated by creating planar meshes first and then spatially interpolating; those surfaces intersect and then form volumes that represent three-dimensional geological objects such as rock bodies. In this paper, the most commonly used algorithms of the key techniques in 3D geological modeling are summarized. PMID:24772029
Bone, Anna E; Morgan, Myfanwy; Maddocks, Matthew; Sleeman, Katherine E; Wright, Juliet; Taherzadeh, Shamim; Ellis-Smith, Clare; Higginson, Irene J; Evans, Catherine J
2016-11-01
understanding how best to provide palliative care for frail older people with non-malignant conditions is an international priority. We aimed to develop a community-based episodic model of short-term integrated palliative and supportive care (SIPS) based on the views of service users and other key stakeholders in the United Kingdom. transparent expert consultations with health professionals, voluntary sector and carer representatives including a consensus survey; and focus groups with older people and carers were used to generate recommendations for the SIPS model. Discussions focused on three key components of the model: potential benefit of SIPS, timing of delivery and processes of integrated working between specialist palliative care and generalist practitioners. Content and descriptive analysis was employed and findings were integrated across the data sources. we conducted two expert consultations (n = 63), a consensus survey (n = 42) and three focus groups (n = 17). Potential benefits of SIPS included holistic assessment, opportunity for end of life discussion, symptom management and carer reassurance. Older people and carers advocated early access to SIPS, while other stakeholders proposed delivery based on complex symptom burden. A priority for integrated working was the assignment of a key worker to co-ordinate care, but the assignment criteria remain uncertain. key stakeholders agree that a model of SIPS for frail older people with non-malignant conditions has potential benefits within community settings, but differ in opinion on the optimal timing and indications for this service. Our findings highlight the importance of consulting all key stakeholders in model development prior to feasibility evaluation. © The Author 2016. Published by Oxford University Press on behalf of the British Geriatrics Society.
Which ecological determinants influence Australian children's fruit and vegetable consumption?
Godrich, Stephanie L; Davies, Christina R; Darby, Jill; Devine, Amanda
2018-04-01
This study investigated determinants of fruit and vegetable (F&V) consumption among regional and remote Western Australian (WA) children, using an Ecological Model of Health Behaviour. Semi-structured interviews were conducted with 20 key informants (Health Workers, Food Supply Workers, and School/Youth Workers) purposively sampled from across regional and remote WA. Interviews were transcribed, analysed thematically using QSR-NVivo 10 software, and embedded within an Ecological Model of Health Behaviour to demonstrate the multiple levels of influence on health. Key determinants of F&V consumption at the intrapersonal level included attitude and food literacy among children. Key interpersonal level determinants included role modelling and parental food literacy. Institutional determinants included health service provision, school nutrition education and food skill programs. F&V availability, community networks and health-promoting spaces were key themes affecting families at the community level. The public policy level influencer included implementation of a store policy within local food outlets. Study findings suggested participatory programs with an emphasis on parental involvement and role modelling could increase F&V intake among children living in regional and remote areas; while school curriculum linkages were essential for school-based programs. Policy makers should consider further investment in school food literacy programs and family programs that are delivered collaboratively. Further, support of local food supply options and support for healthy food policies in food outlets are critical next steps. This study contributes new knowledge to build the evidence base and facilitate the development of targeted strategies to increase consumption of F&V among children living in regional and remote areas.
Kim, Hea-Won; Park, Taekyung; Quiring, Stephanie; Barrett, Diana
2018-01-01
A coalition model is often used to serve victims of human trafficking but little is known about whether the model is adequately meeting the needs of the victims. The purpose of this study was to examine anti-human trafficking collaboration model in terms of its impact and the collaborative experience, including challenges and lessons learned from the service providers' perspective. Mixed methods study was conducted to evaluate the impact of a citywide anti-trafficking coalition model from the providers' perspectives. Web-based survey was administered with service providers (n = 32) and focus groups were conducted with Core Group members (n = 10). Providers reported the coalition model has made important impacts in the community by increasing coordination among the key agencies, law enforcement, and service providers and improving quality of service provision. Providers identified the improved and expanded partnerships among coalition members as the key contributing factor to the success of the coalition model. Several key strategies were suggested to improve the coalition model: improved referral tracking, key partner and protocol development, and information sharing.
Qiao, Hong; Li, Yinlin; Li, Fengfu; Xi, Xuanyang; Wu, Wei
2016-10-01
Recently, many biologically inspired visual computational models have been proposed. The design of these models follows the related biological mechanisms and structures, and these models provide new solutions for visual recognition tasks. In this paper, based on the recent biological evidence, we propose a framework to mimic the active and dynamic learning and recognition process of the primate visual cortex. From principle point of view, the main contributions are that the framework can achieve unsupervised learning of episodic features (including key components and their spatial relations) and semantic features (semantic descriptions of the key components), which support higher level cognition of an object. From performance point of view, the advantages of the framework are as follows: 1) learning episodic features without supervision-for a class of objects without a prior knowledge, the key components, their spatial relations and cover regions can be learned automatically through a deep neural network (DNN); 2) learning semantic features based on episodic features-within the cover regions of the key components, the semantic geometrical values of these components can be computed based on contour detection; 3) forming the general knowledge of a class of objects-the general knowledge of a class of objects can be formed, mainly including the key components, their spatial relations and average semantic values, which is a concise description of the class; and 4) achieving higher level cognition and dynamic updating-for a test image, the model can achieve classification and subclass semantic descriptions. And the test samples with high confidence are selected to dynamically update the whole model. Experiments are conducted on face images, and a good performance is achieved in each layer of the DNN and the semantic description learning process. Furthermore, the model can be generalized to recognition tasks of other objects with learning ability.
Key metrics for HFIR HEU and LEU models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ilas, Germina; Betzler, Benjamin R.; Chandler, David
This report compares key metrics for two fuel design models of the High Flux Isotope Reactor (HFIR). The first model represents the highly enriched uranium (HEU) fuel currently in use at HFIR, and the second model considers a low-enriched uranium (LEU) interim design fuel. Except for the fuel region, the two models are consistent, and both include an experiment loading that is representative of HFIR's current operation. The considered key metrics are the neutron flux at the cold source moderator vessel, the mass of 252Cf produced in the flux trap target region as function of cycle time, the fast neutronmore » flux at locations of interest for material irradiation experiments, and the reactor cycle length. These key metrics are a small subset of the overall HFIR performance and safety metrics. They were defined as a means of capturing data essential for HFIR's primary missions, for use in optimization studies assessing the impact of HFIR's conversion from HEU fuel to different types of LEU fuel designs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brooker, A.; Gonder, J.; Lopp, S.
The Automotive Deployment Option Projection Tool (ADOPT) is a light-duty vehicle consumer choice and stock model supported by the U.S. Department of Energy’s Vehicle Technologies Office. It estimates technology improvement impacts on U.S. light-duty vehicles sales, petroleum use, and greenhouse gas emissions. ADOPT uses techniques from the multinomial logit method and the mixed logit method estimate sales. Specifically, it estimates sales based on the weighted value of key attributes including vehicle price, fuel cost, acceleration, range and usable volume. The average importance of several attributes changes nonlinearly across its range and changes with income. For several attributes, a distribution ofmore » importance around the average value is used to represent consumer heterogeneity. The majority of existing vehicle makes, models, and trims are included to fully represent the market. The Corporate Average Fuel Economy regulations are enforced. The sales feed into the ADOPT stock model. It captures key aspects for summing petroleum use and greenhouse gas emissions This includes capturing the change in vehicle miles traveled by vehicle age, the creation of new model options based on the success of existing vehicles, new vehicle option introduction rate limits, and survival rates by vehicle age. ADOPT has been extensively validated with historical sales data. It matches in key dimensions including sales by fuel economy, acceleration, price, vehicle size class, and powertrain across multiple years. A graphical user interface provides easy and efficient use. It manages the inputs, simulation, and results.« less
Building Dynamic Conceptual Physics Understanding
ERIC Educational Resources Information Center
Trout, Charlotte; Sinex, Scott A.; Ragan, Susan
2011-01-01
Models are essential to the learning and doing of science, and systems thinking is key to appreciating many environmental issues. The National Science Education Standards include models and systems in their unifying concepts and processes standard, while the AAAS Benchmarks include them in their common themes chapter. Hyerle and Marzano argue for…
Evidence-based Controls for Epidemics Using Spatio-temporal Stochastic Model as a Bayesian Framwork
USDA-ARS?s Scientific Manuscript database
The control of highly infectious diseases of agricultural and plantation crops and livestock represents a key challenge in epidemiological and ecological modelling, with implemented control strategies often being controversial. Mathematical models, including the spatio-temporal stochastic models con...
ERIC Educational Resources Information Center
Freet, Jane; Porter, Priscilla
This unit focuses on California's growth as an agricultural and industrial power in the 20th century and includes the impact of key people and key historic events. The unit is divided into 4 overlapping topics and should take 10 weeks to implement. Students examine how California became a power by tracing the transformation of the California…
Dynamics of aerospace vehicles
NASA Technical Reports Server (NTRS)
Schmidt, David K.
1991-01-01
The focus of this research was to address the modeling, including model reduction, of flexible aerospace vehicles, with special emphasis on models used in dynamic analysis and/or guidance and control system design. In the modeling, it is critical that the key aspects of the system being modeled be captured in the model. In this work, therefore, aspects of the vehicle dynamics critical to control design were important. In this regard, fundamental contributions were made in the areas of stability robustness analysis techniques, model reduction techniques, and literal approximations for key dynamic characteristics of flexible vehicles. All these areas are related. In the development of a model, approximations are always involved, so control systems designed using these models must be robust against uncertainties in these models.
Key Elements of a Successful Drive toward Marketing Strategy Making
ERIC Educational Resources Information Center
Cann, Cynthia W.; George, Marie A.
2003-01-01
A conceptual model is presented that depicts the relationship between an internal marketing function and an organization's readiness to learn. Learning and marketing orientations are identified as components to marketing strategy making. Key organizational functions, including communication and decision-making, are utilized in a framework for…
Predicting Time to Hospital Discharge for Extremely Preterm Infants
Hintz, Susan R.; Bann, Carla M.; Ambalavanan, Namasivayam; Cotten, C. Michael; Das, Abhik; Higgins, Rosemary D.
2010-01-01
As extremely preterm infant mortality rates have decreased, concerns regarding resource utilization have intensified. Accurate models to predict time to hospital discharge could aid in resource planning, family counseling, and perhaps stimulate quality improvement initiatives. Objectives For infants <27 weeks estimated gestational age (EGA), to develop, validate and compare several models to predict time to hospital discharge based on time-dependent covariates, and based on the presence of 5 key risk factors as predictors. Patients and Methods This was a retrospective analysis of infants <27 weeks EGA, born 7/2002-12/2005 and surviving to discharge from a NICHD Neonatal Research Network site. Time to discharge was modeled as continuous (postmenstrual age at discharge, PMAD), and categorical variables (“Early” and “Late” discharge). Three linear and logistic regression models with time-dependent covariate inclusion were developed (perinatal factors only, perinatal+early neonatal factors, perinatal+early+later factors). Models for Early and Late discharge using the cumulative presence of 5 key risk factors as predictors were also evaluated. Predictive capabilities were compared using coefficient of determination (R2) for linear models, and AUC of ROC curve for logistic models. Results Data from 2254 infants were included. Prediction of PMAD was poor, with only 38% of variation explained by linear models. However, models incorporating later clinical characteristics were more accurate in predicting “Early” or “Late” discharge (full models: AUC 0.76-0.83 vs. perinatal factor models: AUC 0.56-0.69). In simplified key risk factors models, predicted probabilities for Early and Late discharge compared favorably with observed rates. Furthermore, the AUC (0.75-0.77) were similar to those of models including the full factor set. Conclusions Prediction of Early or Late discharge is poor if only perinatal factors are considered, but improves substantially with knowledge of later-occurring morbidities. Prediction using a few key risk factors is comparable to full models, and may offer a clinically applicable strategy. PMID:20008430
Space physiology IV: mathematical modeling of the cardiovascular system in space exploration.
Keith Sharp, M; Batzel, Jerry Joseph; Montani, Jean-Pierre
2013-08-01
Mathematical modeling represents an important tool for analyzing cardiovascular function during spaceflight. This review describes how modeling of the cardiovascular system can contribute to space life science research and illustrates this process via modeling efforts to study postflight orthostatic intolerance (POI), a key issue for spaceflight. Examining this application also provides a context for considering broader applications of modeling techniques to the challenges of bioastronautics. POI, which affects a large fraction of astronauts in stand tests upon return to Earth, presents as dizziness, fainting and other symptoms, which can diminish crew performance and cause safety hazards. POI on the Moon or Mars could be more critical. In the field of bioastronautics, POI has been the dominant application of cardiovascular modeling for more than a decade, and a number of mechanisms for POI have been investigated. Modeling approaches include computational models with a range of incorporated factors and hemodynamic sophistication, and also physical models tested in parabolic and orbital flight. Mathematical methods such as parameter sensitivity analysis can help identify key system mechanisms. In the case of POI, this could lead to more effective countermeasures. Validation is a persistent issue in modeling efforts, and key considerations and needs for experimental data to synergistically improve understanding of cardiovascular responses are outlined. Future directions in cardiovascular modeling include subject-specific assessment of system status, as well as research on integrated physiological responses, leading, for instance, to assessment of subject-specific susceptibility to POI or effects of cardiovascular alterations on muscular, vision and cognitive function.
Common quandaries and their practical solutions in Bayesian network modeling
Bruce G. Marcot
2017-01-01
Use and popularity of Bayesian network (BN) modeling has greatly expanded in recent years, but many common problems remain. Here, I summarize key problems in BN model construction and interpretation,along with suggested practical solutions. Problems in BN model construction include parameterizing probability values, variable definition, complex network structures,...
Community Organizing Practices in Academia: A Model, and Stories of Partnerships
ERIC Educational Resources Information Center
Avila, Maria
2010-01-01
This article describes a model of civic engagement based on four key community organizing practices, created at Occidental College and implemented since 2001. The foundations of this model do not include confrontation, mass mobilization, or demonstrations--tactics commonly associated with the term community organizing. This model, instead,…
A text zero-watermarking method based on keyword dense interval
NASA Astrophysics Data System (ADS)
Yang, Fan; Zhu, Yuesheng; Jiang, Yifeng; Qing, Yin
2017-07-01
Digital watermarking has been recognized as a useful technology for the copyright protection and authentication of digital information. However, rarely did the former methods focus on the key content of digital carrier. The idea based on the protection of key content is more targeted and can be considered in different digital information, including text, image and video. In this paper, we use text as research object and a text zero-watermarking method which uses keyword dense interval (KDI) as the key content is proposed. First, we construct zero-watermarking model by introducing the concept of KDI and giving the method of KDI extraction. Second, we design detection model which includes secondary generation of zero-watermark and the similarity computing method of keyword distribution. Besides, experiments are carried out, and the results show that the proposed method gives better performance than other available methods especially in the attacks of sentence transformation and synonyms substitution.
Economic evaluation in chronic pain: a systematic review and de novo flexible economic model.
Sullivan, W; Hirst, M; Beard, S; Gladwell, D; Fagnani, F; López Bastida, J; Phillips, C; Dunlop, W C N
2016-07-01
There is unmet need in patients suffering from chronic pain, yet innovation may be impeded by the difficulty of justifying economic value in a field beset by data limitations and methodological variability. A systematic review was conducted to identify and summarise the key areas of variability and limitations in modelling approaches in the economic evaluation of treatments for chronic pain. The results of the literature review were then used to support the development of a fully flexible open-source economic model structure, designed to test structural and data assumptions and act as a reference for future modelling practice. The key model design themes identified from the systematic review included: time horizon; titration and stabilisation; number of treatment lines; choice/ordering of treatment; and the impact of parameter uncertainty (given reliance on expert opinion). Exploratory analyses using the model to compare a hypothetical novel therapy versus morphine as first-line treatments showed cost-effectiveness results to be sensitive to structural and data assumptions. Assumptions about the treatment pathway and choice of time horizon were key model drivers. Our results suggest structural model design and data assumptions may have driven previous cost-effectiveness results and ultimately decisions based on economic value. We therefore conclude that it is vital that future economic models in chronic pain are designed to be fully transparent and hope our open-source code is useful in order to aspire to a common approach to modelling pain that includes robust sensitivity analyses to test structural and parameter uncertainty.
ERIC Educational Resources Information Center
Dean, Peter J.
1993-01-01
Provides a review of the key ethical theories and relevant empirical research relating to the practice of human performance technology. Topics addressed include ethics, morals, business ethics, ethics officers, empiricism versus normative ethical theory, consequentialism, utilitarianism, nonconsequentialism, Kohlberg model of cognitive moral…
Creative Thinking Processes: The Past and the Future
ERIC Educational Resources Information Center
Mumford, Michael D.; McIntosh, Tristan
2017-01-01
For more than one hundred years, students of creativity, including seminal efforts published in the "Journal of Creative Behavior," have sought to identify the key processes people must execute to produce creative problem solutions. In recent years, we have seen a consensual model of key creative thinking processes being accepted by the…
Key technique study and application of infrared thermography in hypersonic wind tunnel
NASA Astrophysics Data System (ADS)
LI, Ming; Yang, Yan-guang; Li, Zhi-hui; Zhu, Zhi-wei; Zhou, Jia-sui
2014-11-01
The solutions to some key techniques using infrared thermographic technique in hypersonic wind tunnel, such as temperature measurement under great measurement angle, the corresponding relation between model spatial coordinates and the ones in infrared map, the measurement uncertainty analysis of the test data etc., are studied. The typical results in the hypersonic wind tunnel test are presented, including the comparison of the transfer rates on a thin skin flat plate model with a wedge measured with infrared thermography and thermocouple, the experimental study heating effect on the flat plate model impinged by plume flow and the aerodynamic heating on the lift model.
The UK Earth System Model project
NASA Astrophysics Data System (ADS)
Tang, Yongming
2016-04-01
In this talk we will describe the development and current status of the UK Earth System Model (UKESM). This project is a NERC/Met Office collaboration and has two objectives; to develop and apply a world-leading Earth System Model, and to grow a community of UK Earth System Model scientists. We are building numerical models that include all the key components of the global climate system, and contain the important process interactions between global biogeochemistry, atmospheric chemistry and the physical climate system. UKESM will be used to make key CMIP6 simulations as well as long-time (e.g. millennium) simulations, large ensemble experiments and investigating a range of future carbon emission scenarios.
Including Overweight or Obese Students in Physical Education: A Social Ecological Constraint Model
ERIC Educational Resources Information Center
Li, Weidong; Rukavina, Paul
2012-01-01
In this review, we propose a social ecological constraint model to study inclusion of overweight or obese students in physical education by integrating key concepts and assumptions from ecological constraint theory in motor development and social ecological models in health promotion and behavior. The social ecological constraint model proposes…
Multilevel Modeling in Psychosomatic Medicine Research
Myers, Nicholas D.; Brincks, Ahnalee M.; Ames, Allison J.; Prado, Guillermo J.; Penedo, Frank J.; Benedict, Catherine
2012-01-01
The primary purpose of this manuscript is to provide an overview of multilevel modeling for Psychosomatic Medicine readers and contributors. The manuscript begins with a general introduction to multilevel modeling. Multilevel regression modeling at two-levels is emphasized because of its prevalence in psychosomatic medicine research. Simulated datasets based on some core ideas from the Familias Unidas effectiveness study are used to illustrate key concepts including: communication of model specification, parameter interpretation, sample size and power, and missing data. Input and key output files from Mplus and SAS are provided. A cluster randomized trial with repeated measures (i.e., three-level regression model) is then briefly presented with simulated data based on some core ideas from a cognitive behavioral stress management intervention in prostate cancer. PMID:23107843
Second Generation Models for Strain-Based Design
DOT National Transportation Integrated Search
2011-08-30
This project covers the development of tensile strain design models which form a key part of the strain-based design of pipelines. The strain-based design includes at least two limit states, tensile rupture, and compressive buckling. The tensile stra...
Rodent Models of Nonalcoholic Fatty Liver Disease/Nonalcoholic Steatohepatitis
Imajo, Kento; Yoneda, Masato; Kessoku, Takaomi; Ogawa, Yuji; Maeda, Shin; Sumida, Yoshio; Hyogo, Hideyuki; Eguchi, Yuichiro; Wada, Koichiro; Nakajima, Atsushi
2013-01-01
Research in nonalcoholic fatty liver disease (NAFLD), including nonalcoholic steatohepatitis (NASH), has been limited by the availability of suitable models for this disease. A number of rodent models have been described in which the relevant liver pathology develops in an appropriate metabolic context. These models are promising tools for researchers investigating one of the key issues of NASH: not so much why steatosis occurs, but what causes the transition from simple steatosis to the inflammatory, progressive fibrosing condition of steatohepatitis. The different rodent models can be classified into two large groups. The first includes models in which the disease is acquired after dietary or pharmacological manipulation, and the second, genetically modified models in which liver disease develops spontaneously. To date, no single rodent model has encompassed the full spectrum of human disease progression, but individual models can imitate particular characteristics of human disease. Therefore, it is important that researchers choose the appropriate rodent models. The purpose of the present review is to discuss the metabolic abnormalities present in the currently available rodent models of NAFLD, summarizing the strengths and weaknesses of the established models and the key findings that have furthered our understanding of the disease’s pathogenesis. PMID:24192824
Assumptions to the Annual Energy Outlook
2017-01-01
This report presents the major assumptions of the National Energy Modeling System (NEMS) used to generate the projections in the Annual Energy Outlook, including general features of the model structure, assumptions concerning energy markets, and the key input data and parameters that are the most significant in formulating the model results.
Engine System Model Development for Nuclear Thermal Propulsion
NASA Technical Reports Server (NTRS)
Nelson, Karl W.; Simpson, Steven P.
2006-01-01
In order to design, analyze, and evaluate conceptual Nuclear Thermal Propulsion (NTP) engine systems, an improved NTP design and analysis tool has been developed. The NTP tool utilizes the Rocket Engine Transient Simulation (ROCETS) system tool and many of the routines from the Enabler reactor model found in Nuclear Engine System Simulation (NESS). Improved non-nuclear component models and an external shield model were added to the tool. With the addition of a nearly complete system reliability model, the tool will provide performance, sizing, and reliability data for NERVA-Derived NTP engine systems. A new detailed reactor model is also being developed and will replace Enabler. The new model will allow more flexibility in reactor geometry and include detailed thermal hydraulics and neutronics models. A description of the reactor, component, and reliability models is provided. Another key feature of the modeling process is the use of comprehensive spreadsheets for each engine case. The spreadsheets include individual worksheets for each subsystem with data, plots, and scaled figures, making the output very useful to each engineering discipline. Sample performance and sizing results with the Enabler reactor model are provided including sensitivities. Before selecting an engine design, all figures of merit must be considered including the overall impacts on the vehicle and mission. Evaluations based on key figures of merit of these results and results with the new reactor model will be performed. The impacts of clustering and external shielding will also be addressed. Over time, the reactor model will be upgraded to design and analyze other NTP concepts with CERMET and carbide fuel cores.
AgMIP: Next Generation Models and Assessments
NASA Astrophysics Data System (ADS)
Rosenzweig, C.
2014-12-01
Next steps in developing next-generation crop models fall into several categories: significant improvements in simulation of important crop processes and responses to stress; extension from simplified crop models to complex cropping systems models; and scaling up from site-based models to landscape, national, continental, and global scales. Crop processes that require major leaps in understanding and simulation in order to narrow uncertainties around how crops will respond to changing atmospheric conditions include genetics; carbon, temperature, water, and nitrogen; ozone; and nutrition. The field of crop modeling has been built on a single crop-by-crop approach. It is now time to create a new paradigm, moving from 'crop' to 'cropping system.' A first step is to set up the simulation technology so that modelers can rapidly incorporate multiple crops within fields, and multiple crops over time. Then the response of these more complex cropping systems can be tested under different sustainable intensification management strategies utilizing the updated simulation environments. Model improvements for diseases, pests, and weeds include developing process-based models for important diseases, frameworks for coupling air-borne diseases to crop models, gathering significantly more data on crop impacts, and enabling the evaluation of pest management strategies. Most smallholder farming in the world involves integrated crop-livestock systems that cannot be represented by crop modeling alone. Thus, next-generation cropping system models need to include key linkages to livestock. Livestock linkages to be incorporated include growth and productivity models for grasslands and rangelands as well as the usual annual crops. There are several approaches for scaling up, including use of gridded models and development of simpler quasi-empirical models for landscape-scale analysis. On the assessment side, AgMIP is leading a community process for coordinated contributions to IPCC AR6 that involves the key modeling groups from around the world including North America, Europe, South America, Sub-Saharan Africa, South Asia, East Asia, and Australia and Oceania. This community process will lead to mutually agreed protocols for coordinated global and regional assessments.
[Modeling in value-based medicine].
Neubauer, A S; Hirneiss, C; Kampik, A
2010-03-01
Modeling plays an important role in value-based medicine (VBM). It allows decision support by predicting potential clinical and economic consequences, frequently combining different sources of evidence. Based on relevant publications and examples focusing on ophthalmology the key economic modeling methods are explained and definitions are given. The most frequently applied model types are decision trees, Markov models, and discrete event simulation (DES) models. Model validation includes besides verifying internal validity comparison with other models (external validity) and ideally validation of its predictive properties. The existing uncertainty with any modeling should be clearly stated. This is true for economic modeling in VBM as well as when using disease risk models to support clinical decisions. In economic modeling uni- and multivariate sensitivity analyses are usually applied; the key concepts here are tornado plots and cost-effectiveness acceptability curves. Given the existing uncertainty, modeling helps to make better informed decisions than without this additional information.
The sensitivity of the ESA DELTA model
NASA Astrophysics Data System (ADS)
Martin, C.; Walker, R.; Klinkrad, H.
Long-term debris environment models play a vital role in furthering our understanding of the future debris environment, and in aiding the determination of a strategy to preserve the Earth orbital environment for future use. By their very nature these models have to make certain assumptions to enable informative future projections to be made. Examples of these assumptions include the projection of future traffic, including launch and explosion rates, and the methodology used to simulate break-up events. To ensure a sound basis for future projections, and consequently for assessing the effectiveness of various mitigation measures, it is essential that the sensitivity of these models to variations in key assumptions is examined. The DELTA (Debris Environment Long Term Analysis) model, developed by QinetiQ for the European Space Agency, allows the future projection of the debris environment throughout Earth orbit. Extensive analyses with this model have been performed under the auspices of the ESA Space Debris Mitigation Handbook and following the recent upgrade of the model to DELTA 3.0. This paper draws on these analyses to present the sensitivity of the DELTA model to changes in key model parameters and assumptions. Specifically the paper will address the variation in future traffic rates, including the deployment of satellite constellations, and the variation in the break-up model and criteria used to simulate future explosion and collision events.
Systematic network assessment of the carcinogenic activities of cadmium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Peizhan; Duan, Xiaohua; Li, Mian
Cadmium has been defined as type I carcinogen for humans, but the underlying mechanisms of its carcinogenic activity and its influence on protein-protein interactions in cells are not fully elucidated. The aim of the current study was to evaluate, systematically, the carcinogenic activity of cadmium with systems biology approaches. From a literature search of 209 studies that performed with cellular models, 208 proteins influenced by cadmium exposure were identified. All of these were assessed by Western blotting and were recognized as key nodes in network analyses. The protein-protein functional interaction networks were constructed with NetBox software and visualized with Cytoscapemore » software. These cadmium-rewired genes were used to construct a scale-free, highly connected biological protein interaction network with 850 nodes and 8770 edges. Of the network, nine key modules were identified and 60 key signaling pathways, including the estrogen, RAS, PI3K-Akt, NF-κB, HIF-1α, Jak-STAT, and TGF-β signaling pathways, were significantly enriched. With breast cancer, colorectal and prostate cancer cellular models, we validated the key node genes in the network that had been previously reported or inferred form the network by Western blotting methods, including STAT3, JNK, p38, SMAD2/3, P65, AKT1, and HIF-1α. These results suggested the established network was robust and provided a systematic view of the carcinogenic activities of cadmium in human. - Highlights: • A cadmium-influenced network with 850 nodes and 8770 edges was established. • The cadmium-rewired gene network was scale-free and highly connected. • Nine modules were identified, and 60 key signaling pathways related to cadmium-induced carcinogenesis were found. • Key mediators in the network were validated in multiple cellular models.« less
Toward Best Practice: An Analysis of the Efficacy of Curriculum Models in Gifted Education
ERIC Educational Resources Information Center
VanTassel-Baska, Joyce; Brown, Elissa F.
2007-01-01
This article provides an overview of existing research on 11 curriculum models in the field of gifted education, including the schoolwide enrichment model and the talent search model, and several others that have been used to shape high-level learning experiences for gifted students. The models are critiqued according to the key features they…
What are the Starting Points? Evaluating Base-Year Assumptions in the Asian Modeling Exercise
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chaturvedi, Vaibhav; Waldhoff, Stephanie; Clarke, Leon E.
2012-12-01
A common feature of model inter-comparison efforts is that the base year numbers for important parameters such as population and GDP can differ substantially across models. This paper explores the sources and implications of this variation in Asian countries across the models participating in the Asian Modeling Exercise (AME). Because the models do not all have a common base year, each team was required to provide data for 2005 for comparison purposes. This paper compares the year 2005 information for different models, noting the degree of variation in important parameters, including population, GDP, primary energy, electricity, and CO2 emissions. Itmore » then explores the difference in these key parameters across different sources of base-year information. The analysis confirms that the sources provide different values for many key parameters. This variation across data sources and additional reasons why models might provide different base-year numbers, including differences in regional definitions, differences in model base year, and differences in GDP transformation methodologies, are then discussed in the context of the AME scenarios. Finally, the paper explores the implications of base-year variation on long-term model results.« less
Development of a Stochastically-driven, Forward Predictive Performance Model for PEMFCs
NASA Astrophysics Data System (ADS)
Harvey, David Benjamin Paul
A one-dimensional multi-scale coupled, transient, and mechanistic performance model for a PEMFC membrane electrode assembly has been developed. The model explicitly includes each of the 5 layers within a membrane electrode assembly and solves for the transport of charge, heat, mass, species, dissolved water, and liquid water. Key features of the model include the use of a multi-step implementation of the HOR reaction on the anode, agglomerate catalyst sub-models for both the anode and cathode catalyst layers, a unique approach that links the composition of the catalyst layer to key properties within the agglomerate model and the implementation of a stochastic input-based approach for component material properties. The model employs a new methodology for validation using statistically varying input parameters and statistically-based experimental performance data; this model represents the first stochastic input driven unit cell performance model. The stochastic input driven performance model was used to identify optimal ionomer content within the cathode catalyst layer, demonstrate the role of material variation in potential low performing MEA materials, provide explanation for the performance of low-Pt loaded MEAs, and investigate the validity of transient-sweep experimental diagnostic methods.
NASA Astrophysics Data System (ADS)
Arrigo, J. S.; Famiglietti, J. S.; Murdoch, L. C.; Lakshmi, V.; Hooper, R. P.
2012-12-01
The Consortium of Universities for the Advancement of Hydrologic Science, Inc. (CUAHSI) continues a major effort towards supporting Community Hydrologic Modeling. From 2009 - 2011, the Community Hydrologic Modeling Platform (CHyMP) initiative held three workshops, the ultimate goal of which was to produce recommendations and an implementation plan to establish a community modeling program that enables comprehensive simulation of water anywhere on the North American continent. Such an effort would include connections to and advances in global climate models, biogeochemistry, and efforts of other disciplines that require an understanding of water patterns and processes in the environment. To achieve such a vision will require substantial investment in human and cyber-infrastructure and significant advances in the science of hydrologic modeling and spatial scaling. CHyMP concluded with a final workshop, held March 2011, and produced several recommendations. CUAHSI and the university community continue to advance community modeling and implement these recommendations through several related and follow on efforts. Key results from the final 2011 workshop included agreement among participants that the community is ready to move forward with implementation. It is recognized that initial implementation of this larger effort can begin with simulation capabilities that currently exist, or that can be easily developed. CHyMP identified four key activities in support of community modeling: benchmarking, dataset evaluation and development, platform evaluation, and developing a national water model framework. Key findings included: 1) The community supported the idea of a National Water Model framework; a community effort is needed to explore what the ultimate implementation of a National Water Model is. A true community modeling effort would support the modeling of "water anywhere" and would include all relevant scales and processes. 2) Implementation of a community modeling program could initially focus on continental scale modeling of water quantity (rather than quality). The goal of this initial model is the comprehensive description of water stores and fluxes in such a way to permit linkage to GCM's, biogeochemical, ecological, and geomorphic models. This continental scale focus allows systematic evaluation of our current state of knowledge and data, leverages existing efforts done by large scale modelers, contributes to scientific discovery that informs globally and societal relevant questions, and provides an initial framework to evaluate hydrologic information relevant to other disciplines and a structure into which to incorporate other classes of hydrologic models. 3) Dataset development will be a key aspect of any successful national water model implementation. Our current knowledge of the subsurface is limiting our ability to truly integrate soil and groundwater into large scale models, and to answering critical science questions with societal relevance (i.e. groundwater's influence on climate). 4) The CHyMP workshops and efforts to date have achieved collaboration between university scientists, government agencies and the private sector that must be maintained. Follow on efforts in community modeling should aim at leveraging and maintaining this collaboration for maximum scientific and societal benefit.
Getting governance right for a sustainable regionalised business model.
Laurence, Caroline O; Black, Linda E; Rowe, Mark; Pearce, Rod
2011-06-06
The 1998 Ministerial Review of General Practice Training identified several areas for improvement that led to major changes in the provision of general practice training, including the establishment of General Practice Education and Training (GPET) and the regionalisation of training. The regionalised training business model has been in place for nearly 10 years, and several key organisations have been involved in its evolution, including the Australian Government, speciality colleges, GPET and regionalised training providers. Both the college-focused and regionalised-focused models have had some successes. These include recognition and support of general practice as a vocational specialty, increased numbers of junior doctors undertaking placements in general practice, and increased numbers of registrars training in rural areas. This period has also seen changes in the governance and decision-making processes with creation of a new framework that is inclusive of all the key players in the new regionalised training system. The future holds challenges for the regionalised training business model as the general practice education and training landscape becomes more complex. The framework in the current model will provide a base to help meet these challenges and allow for further sustainable expansion.
What does it mean to "employ" the RE-AIM model?
Kessler, Rodger S; Purcell, E Peyton; Glasgow, Russell E; Klesges, Lisa M; Benkeser, Rachel M; Peek, C J
2013-03-01
Many grant proposals identify the use of a given evaluation model or framework but offer little about how such models are implemented. The authors discuss what it means to employ a specific model, RE-AIM, and key dimensions from this model for program planning, implementation, evaluation, and reporting. The authors report both conceptual and content specifications for the use of the RE-AIM model and a content review of 42 recent dissemination and implementation grant applications to National Institutes of Health that proposed the use of this model. Outcomes include the extent to which proposals addressed the overall RE-AIM model and specific items within the five dimensions in their methods or evaluation plans. The majority of grants used only some elements of the model (less than 10% contained thorough measures across all RE-AIM dimensions). Few met criteria for "fully developed use" of RE-AIM and the percentage of key issues addressed varied from, on average, 45% to 78% across the RE-AIM dimensions. The results and discussion of key criteria should help investigators in their use of RE-AIM and illuminate the broader issue of comprehensive use of evaluation models.
Bonvecchio, Anabelle; Théodore, Florence L; Safdie, Margarita; Duque, Tiffany; Villanueva, María Ángeles; Torres, Catalina; Rivera, Juan
2014-01-01
This paper describes the methods and key findings of formative research conducted to design a school-based program for obesity prevention. Formative research was based on the ecological model and the principles of social marketing. A mixed method approach was used. Qualitative (direct observation, indepth interviews, focus group discussions and photo-voice) and quantitative (closed ended surveys, checklists, anthropometry) methods were employed. Formative research key findings, including barriers by levels of the ecological model, were used for designing a program including environmental strategies to discourage the consumption of energy dense foods and sugar beverages. Formative research was fundamental to developing a context specific obesity prevention program in schools that seeks environment modification and behavior change.
NASA Integrated Model Centric Architecture (NIMA) Model Use and Re-Use
NASA Technical Reports Server (NTRS)
Conroy, Mike; Mazzone, Rebecca; Lin, Wei
2012-01-01
This whitepaper accepts the goals, needs and objectives of NASA's Integrated Model-centric Architecture (NIMA); adds experience and expertise from the Constellation program as well as NASA's architecture development efforts; and provides suggested concepts, practices and norms that nurture and enable model use and re-use across programs, projects and other complex endeavors. Key components include the ability to effectively move relevant information through a large community, process patterns that support model reuse and the identification of the necessary meta-information (ex. history, credibility, and provenance) to safely use and re-use that information. In order to successfully Use and Re-Use Models and Simulations we must define and meet key organizational and structural needs: 1. We must understand and acknowledge all the roles and players involved from the initial need identification through to the final product, as well as how they change across the lifecycle. 2. We must create the necessary structural elements to store and share NIMA-enabled information throughout the Program or Project lifecycle. 3. We must create the necessary organizational processes to stand up and execute a NIMA-enabled Program or Project throughout its lifecycle. NASA must meet all three of these needs to successfully use and re-use models. The ability to Reuse Models a key component of NIMA and the capabilities inherent in NIMA are key to accomplishing NASA's space exploration goals. 11
A STUDY OF GAS-PHASE MERCURY SPECIATION USING DETAILED CHEMICAL KINETICS
Mercury (Hg) speciation in combustion-generated flue gas is modeled using a detailed chemical mechanism consisting of 60 reactions and 21 species. This speciation model accounts for chlorination and oxidation of key flue-gas components, including elemental mercury. Results indica...
Modeling a space-based quantum link that includes an adaptive optics system
NASA Astrophysics Data System (ADS)
Duchane, Alexander W.; Hodson, Douglas D.; Mailloux, Logan O.
2017-10-01
Quantum Key Distribution uses optical pulses to generate shared random bit strings between two locations. If a high percentage of the optical pulses are comprised of single photons, then the statistical nature of light and information theory can be used to generate secure shared random bit strings which can then be converted to keys for encryption systems. When these keys are incorporated along with symmetric encryption techniques such as a one-time pad, then this method of key generation and encryption is resistant to future advances in quantum computing which will significantly degrade the effectiveness of current asymmetric key sharing techniques. This research first reviews the transition of Quantum Key Distribution free-space experiments from the laboratory environment to field experiments, and finally, ongoing space experiments. Next, a propagation model for an optical pulse from low-earth orbit to ground and the effects of turbulence on the transmitted optical pulse is described. An Adaptive Optics system is modeled to correct for the aberrations caused by the atmosphere. The long-term point spread function of the completed low-earth orbit to ground optical system is explored in the results section. Finally, the impact of this optical system and its point spread function on an overall quantum key distribution system as well as the future work necessary to show this impact is described.
Targeted mutant models are common in mechanistic toxicology experiments investigating the absorption, metabolism, distribution, or elimination (ADME) of chemicals from individuals. Key models include those for xenosensing transcription factors and cytochrome P450s (CYP). Here we ...
Learning Goal Orientation, Formal Mentoring, and Leadership Competence in HRD: A Conceptual Model
ERIC Educational Resources Information Center
Kim, Sooyoung
2007-01-01
Purpose: The purpose of this paper is to suggest a conceptual model of formal mentoring as a leadership development initiative including "learning goal orientation", "mentoring functions", and "leadership competencies" as key constructs of the model. Design/methodology/approach: Some empirical studies, though there are not many, will provide…
The TQM "Walk the Talk" Classroom Pilot Program.
ERIC Educational Resources Information Center
Leigh, David
The "Walk the Talk" classroom model was developed at Temple Junior College, in Texas, to help teachers include the principles of total quality management (TQM) in the classroom. This report presents results from a pilot project in which 29 teachers implemented the model. Following a brief summary, key elements of the model and the pilot…
A Model for the Education of Gifted Learners in Lebanon
ERIC Educational Resources Information Center
Sarouphim, Ketty M.
2010-01-01
The purpose of this paper is to present a model for developing a comprehensive system of education for gifted learners in Lebanon. The model consists of three phases and includes key elements for establishing gifted education in the country, such as raising community awareness, adopting valid identification measures, and developing effective…
Designing novel cellulase systems through agent-based modeling and global sensitivity analysis.
Apte, Advait A; Senger, Ryan S; Fong, Stephen S
2014-01-01
Experimental techniques allow engineering of biological systems to modify functionality; however, there still remains a need to develop tools to prioritize targets for modification. In this study, agent-based modeling (ABM) was used to build stochastic models of complexed and non-complexed cellulose hydrolysis, including enzymatic mechanisms for endoglucanase, exoglucanase, and β-glucosidase activity. Modeling results were consistent with experimental observations of higher efficiency in complexed systems than non-complexed systems and established relationships between specific cellulolytic mechanisms and overall efficiency. Global sensitivity analysis (GSA) of model results identified key parameters for improving overall cellulose hydrolysis efficiency including: (1) the cellulase half-life, (2) the exoglucanase activity, and (3) the cellulase composition. Overall, the following parameters were found to significantly influence cellulose consumption in a consolidated bioprocess (CBP): (1) the glucose uptake rate of the culture, (2) the bacterial cell concentration, and (3) the nature of the cellulase enzyme system (complexed or non-complexed). Broadly, these results demonstrate the utility of combining modeling and sensitivity analysis to identify key parameters and/or targets for experimental improvement.
Designing novel cellulase systems through agent-based modeling and global sensitivity analysis
Apte, Advait A; Senger, Ryan S; Fong, Stephen S
2014-01-01
Experimental techniques allow engineering of biological systems to modify functionality; however, there still remains a need to develop tools to prioritize targets for modification. In this study, agent-based modeling (ABM) was used to build stochastic models of complexed and non-complexed cellulose hydrolysis, including enzymatic mechanisms for endoglucanase, exoglucanase, and β-glucosidase activity. Modeling results were consistent with experimental observations of higher efficiency in complexed systems than non-complexed systems and established relationships between specific cellulolytic mechanisms and overall efficiency. Global sensitivity analysis (GSA) of model results identified key parameters for improving overall cellulose hydrolysis efficiency including: (1) the cellulase half-life, (2) the exoglucanase activity, and (3) the cellulase composition. Overall, the following parameters were found to significantly influence cellulose consumption in a consolidated bioprocess (CBP): (1) the glucose uptake rate of the culture, (2) the bacterial cell concentration, and (3) the nature of the cellulase enzyme system (complexed or non-complexed). Broadly, these results demonstrate the utility of combining modeling and sensitivity analysis to identify key parameters and/or targets for experimental improvement. PMID:24830736
Curtis, Gary P.; Kohler, Matthias; Kannappan, Ramakrishnan; Briggs, Martin A.; Day-Lewis, Frederick D.
2015-01-01
Scientifically defensible predictions of field scale U(VI) transport in groundwater requires an understanding of key processes at multiple scales. These scales range from smaller than the sediment grain scale (less than 10 μm) to as large as the field scale which can extend over several kilometers. The key processes that need to be considered include both geochemical reactions in solution and at sediment surfaces as well as physical transport processes including advection, dispersion, and pore-scale diffusion. The research summarized in this report includes both experimental and modeling results in batch, column and tracer tests. The objectives of this research were to: (1) quantify the rates of U(VI) desorption from sediments acquired from a uranium contaminated aquifer in batch experiments;(2) quantify rates of U(VI) desorption in column experiments with variable chemical conditions, and(3) quantify nonreactive tracer and U(VI) transport in field tests.
1992 NASA Life Support Systems Analysis workshop
NASA Technical Reports Server (NTRS)
Evanich, Peggy L.; Crabb, Thomas M.; Gartrell, Charles F.
1992-01-01
The 1992 Life Support Systems Analysis Workshop was sponsored by NASA's Office of Aeronautics and Space Technology (OAST) to integrate the inputs from, disseminate information to, and foster communication among NASA, industry, and academic specialists. The workshop continued discussion and definition of key issues identified in the 1991 workshop, including: (1) modeling and experimental validation; (2) definition of systems analysis evaluation criteria; (3) integration of modeling at multiple levels; and (4) assessment of process control modeling approaches. Through both the 1991 and 1992 workshops, NASA has continued to seek input from industry and university chemical process modeling and analysis experts, and to introduce and apply new systems analysis approaches to life support systems. The workshop included technical presentations, discussions, and interactive planning, with sufficient time allocated for discussion of both technology status and technology development recommendations. Key personnel currently involved with life support technology developments from NASA, industry, and academia provided input to the status and priorities of current and future systems analysis methods and requirements.
Space Shuttle propulsion performance reconstruction from flight data
NASA Technical Reports Server (NTRS)
Rogers, Robert M.
1989-01-01
The aplication of extended Kalman filtering to estimating Space Shuttle Solid Rocket Booster (SRB) performance, specific impulse, from flight data in a post-flight processing computer program. The flight data used includes inertial platform acceleration, SRB head pressure, and ground based radar tracking data. The key feature in this application is the model used for the SRBs, which represents a reference quasi-static internal ballistics model normalized to the propellant burn depth. Dynamic states of mass overboard and propellant burn depth are included in the filter model to account for real-time deviations from the reference model used. Aerodynamic, plume, wind and main engine uncertainties are included.
Configuration Management, Capacity Planning Decision Support, Modeling and Simulation
1988-12-01
flow includes both top-down and bottom-up requirements. The flow also includes hardware, software and transfer acquisition, installation, operation ... management and upgrade as required. Satisfaction of a users needs and requirements is a difficult and detailed process. The key assumptions at this
Fun with maths: exploring implications of mathematical models for malaria eradication.
Eckhoff, Philip A; Bever, Caitlin A; Gerardin, Jaline; Wenger, Edward A
2014-12-11
Mathematical analyses and modelling have an important role informing malaria eradication strategies. Simple mathematical approaches can answer many questions, but it is important to investigate their assumptions and to test whether simple assumptions affect the results. In this note, four examples demonstrate both the effects of model structures and assumptions and also the benefits of using a diversity of model approaches. These examples include the time to eradication, the impact of vaccine efficacy and coverage, drug programs and the effects of duration of infections and delays to treatment, and the influence of seasonality and migration coupling on disease fadeout. An excessively simple structure can miss key results, but simple mathematical approaches can still achieve key results for eradication strategy and define areas for investigation by more complex models.
A new percolation model for composite solid electrolytes and dispersed ionic conductors
NASA Astrophysics Data System (ADS)
Risyad Hasyim, Muhammad; Lanagan, Michael T.
2018-02-01
Composite solid electrolytes (CSEs) including conductor/insulator composites known as dispersed ionic conductors (DICs) have motivated the development of novel percolation models that describe their conductivity. Despite the long history, existing models lack in one or more key areas: (1) rigorous foundation for their physical theory, (2) explanation for non-universal conductor-insulator transition, (3) classification of DICs, and (4) extension to frequency-domain. This work describes a frequency-domain effective medium approximation (EMA) of a bond percolation model for CSEs. The EMA is derived entirely from Maxwell’s equations and contains basic microstructure parameters. The model was applied successfully to several composite systems from literature. Simulations and fitting of literature data address these key areas and illustrate the interplay between space charge layer properties and bulk microstructure.
Simulational nanoengineering: Molecular dynamics implementation of an atomistic Stirling engine.
Rapaport, D C
2009-04-01
A nanoscale-sized Stirling engine with an atomistic working fluid has been modeled using molecular dynamics simulation. The design includes heat exchangers based on thermostats, pistons attached to a flywheel under load, and a regenerator. Key aspects of the behavior, including the time-dependent flows, are described. The model is shown to be capable of stable operation while producing net work at a moderate level of efficiency.
Tian, Zhongyuan; Fauré, Adrien; Mori, Hirotada; Matsuno, Hiroshi
2013-01-01
Glycogen and glucose are two sugar sources available during the lag phase of E. coli, but the mechanism that regulates their utilization is still unclear. Attempting to unveil the relationship between glucose and glycogen, we propose an integrated hybrid functional Petri net (HFPN) model including glycolysis, PTS, glycogen metabolic pathway, and their internal regulatory systems. By comparing known biological results to this model, basic necessary regulatory mechanism for utilizing glucose and glycogen were identified as a feedback circuit in which HPr and EIIAGlc play key roles. Based on this regulatory HFPN model, we discuss the process of glycogen utilization in E. coli in the context of a systematic understanding of carbohydrate metabolism.
A New Model of the Earth System Nitrogen Cycle: How Plates and Life Affect the Atmosphere
NASA Astrophysics Data System (ADS)
Johnson, B. W.; Goldblatt, C.
2017-11-01
We have developed an Earth system N cycle model, including biologic and geologic fluxes and key nutrients such as phosphorus. The atmosphere can change mass significantly over Earth history, and the solid Earth contains most of the planet's N.
Modelling in forest management
Mark J. Twery
2004-01-01
Forest management has traditionally been considered management of trees for timber. It really includes vegetation management and land management and people management as multiple objectives. As such, forest management is intimately linked with other topics in this volume, most especially those chapters on ecological modelling and human dimensions. The key to...
Increasing Free Throw Accuracy through Behavior Modeling and Goal Setting.
ERIC Educational Resources Information Center
Erffmeyer, Elizabeth S.
A two-year behavior-modeling training program focusing on attention processes, retention processes, motor reproduction, and motivation processes was implemented to increase the accuracy of free throw shooting for a varsity intercollegiate women's basketball team. The training included specific learning keys, progressive relaxation, mental…
ERIC Educational Resources Information Center
Zangori, Laura; Vo, Tina; Forbes, Cory T.; Schwarz, Christina V.
2017-01-01
Scientific modelling is a key practice in which K-12 students should engage to begin developing robust conceptual understanding of natural systems, including water. However, little past research has explored primary students' learning about groundwater, engagement in scientific modelling, and/or the ways in which teachers conceptualise and…
B.G. Marcot; J.D. Steventon; G.D. Sutherland; R.K. McCann
2006-01-01
We provide practical guidelines for developing, testing, and revising Bayesian belief networks (BBNs). Primary steps in this process include creating influence diagrams of the hypothesized "causal web" of key factors affecting a species or ecological outcome of interest; developing a first, alpha-level BBN model from the influence diagram; revising the model...
ERIC Educational Resources Information Center
School Science Review, 1973
1973-01-01
Some helpful ideas are proposed for use by biology teachers. Topics included are Food Webs,'' Key to Identification of Families,'' Viruses,'' Sieve Tube,'' Woodlice,'' Ecology of Oak Leaf Roller Moth,'' and Model Making.'' (PS)
Key issues and technical route of cyber physical distribution system
NASA Astrophysics Data System (ADS)
Zheng, P. X.; Chen, B.; Zheng, L. J.; Zhang, G. L.; Fan, Y. L.; Pei, T.
2017-01-01
Relying on the National High Technology Research and Development Program, this paper introduced the key issues in Cyber Physical Distribution System (CPDS), mainly includes: composite modelling method and interaction mechanism, system planning method, security defence technology, distributed control theory. Then on this basis, the corresponding technical route is proposed, and a more detailed research framework along with main schemes to be adopted is also presented.
ERIC Educational Resources Information Center
Lane, Kathleen Lynne; Oakes, Wendy Peia; Magill, Lauren
2014-01-01
In this article, the authors clarify the role of the leadership team, providing a rationale for one integrated team to examine academic, social, and behavioral programming, with careful attention to including all key stakeholders. Next, the authors discuss the procedures for teaching all key stakeholders the comprehensive, integrated, three-tiered…
A Solution to the Cosmic Conundrum including Cosmological Constant and Dark Energy Problems
NASA Astrophysics Data System (ADS)
Singh, A.
2009-12-01
A comprehensive solution to the cosmic conundrum is presented that also resolves key paradoxes of quantum mechanics and relativity. A simple mathematical model, the Gravity Nullification model (GNM), is proposed that integrates the missing physics of the spontaneous relativistic conversion of mass to energy into the existing physics theories, specifically a simplified general theory of relativity. Mechanistic mathematical expressions are derived for a relativistic universe expansion, which predict both the observed linear Hubble expansion in the nearby universe and the accelerating expansion exhibited by the supernova observations. The integrated model addresses the key questions haunting physics and Big Bang cosmology. It also provides a fresh perspective on the misconceived birth and evolution of the universe, especially the creation and dissolution of matter. The proposed model eliminates singularities from existing models and the need for the incredible and unverifiable assumptions including the superluminous inflation scenario, multiple universes, multiple dimensions, Anthropic principle, and quantum gravity. GNM predicts the observed features of the universe without any explicit consideration of time as a governing parameter.
Cognitive Attachment Model of Voices: Evidence Base and Future Implications
Berry, Katherine; Varese, Filippo; Bucci, Sandra
2017-01-01
There is a robust association between hearing voices and exposure to traumatic events. Identifying mediating mechanisms for this relationship is key to theories of voice hearing and the development of therapies for distressing voices. This paper outlines the Cognitive Attachment model of Voices (CAV), a theoretical model to understand the relationship between earlier interpersonal trauma and distressing voice hearing. The model builds on attachment theory and well-established cognitive models of voices and argues that attachment and dissociative processes are key psychological mechanisms that explain how trauma influences voice hearing. Following the presentation of the model, the paper will review the current state of evidence regarding the proposed mechanisms of vulnerability to voice hearing and maintenance of voice-related distress. This review will include evidence from studies supporting associations between dissociation and voices, followed by details of our own research supporting the role of dissociation in mediating the relationship between trauma and voices and evidence supporting the role of adult attachment in influencing beliefs and relationships that voice hearers can develop with voices. The paper concludes by outlining the key questions that future research needs to address to fully test the model and the clinical implications that arise from the work. PMID:28713292
Estimation of Quasi-Stiffness and Propulsive Work of the Human Ankle in the Stance Phase of Walking
Shamaei, Kamran; Sawicki, Gregory S.; Dollar, Aaron M.
2013-01-01
Characterizing the quasi-stiffness and work of lower extremity joints is critical for evaluating human locomotion and designing assistive devices such as prostheses and orthoses intended to emulate the biological behavior of human legs. This work aims to establish statistical models that allow us to predict the ankle quasi-stiffness and net mechanical work for adults walking on level ground. During the stance phase of walking, the ankle joint propels the body through three distinctive phases of nearly constant stiffness known as the quasi-stiffness of each phase. Using a generic equation for the ankle moment obtained through an inverse dynamics analysis, we identify key independent parameters needed to predict ankle quasi-stiffness and propulsive work and also the functional form of each correlation. These parameters include gait speed, ankle excursion, and subject height and weight. Based on the identified form of the correlation and key variables, we applied linear regression on experimental walking data for 216 gait trials across 26 subjects (speeds from 0.75–2.63 m/s) to obtain statistical models of varying complexity. The most general forms of the statistical models include all the key parameters and have an R2 of 75% to 81% in the prediction of the ankle quasi-stiffnesses and propulsive work. The most specific models include only subject height and weight and could predict the ankle quasi-stiffnesses and work for optimal walking speed with average error of 13% to 30%. We discuss how these models provide a useful framework and foundation for designing subject- and gait-specific prosthetic and exoskeletal devices designed to emulate biological ankle function during level ground walking. PMID:23555839
Command Process Modeling & Risk Analysis
NASA Technical Reports Server (NTRS)
Meshkat, Leila
2011-01-01
Commanding Errors may be caused by a variety of root causes. It's important to understand the relative significance of each of these causes for making institutional investment decisions. One of these causes is the lack of standardized processes and procedures for command and control. We mitigate this problem by building periodic tables and models corresponding to key functions within it. These models include simulation analysis and probabilistic risk assessment models.
Recent Developments in Smart Adaptive Structures for Solar Sailcraft
NASA Technical Reports Server (NTRS)
Whorton, M. S.; Kim, Y. K.; Oakley, J.; Adetona, O.; Keel, L. H.
2007-01-01
The "Smart Adaptive Structures for Solar Sailcraft" development activity at MSFC has investigated issues associated with understanding how to model and scale the subsystem and multi-body system dynamics of a gossamer solar sailcraft with the objective of designing sailcraft attitude control systems. This research and development activity addressed three key tasks that leveraged existing facilities and core competencies of MSFC to investigate dynamics and control issues of solar sails. Key aspects of this effort included modeling and testing of a 30 m deployable boom; modeling of the multi-body system dynamics of a gossamer sailcraft; investigation of control-structures interaction for gossamer sailcraft; and development and experimental demonstration of adaptive control technologies to mitigate control-structures interaction.
Suldovsky, Brianne
2016-05-01
Despite mounting criticism, the deficit model remains an integral part of science communication research and practice. In this article, I advance three key factors that contribute to the idea of the public deficit in science communication, including the purpose of science communication, how communication processes and outcomes are conceptualized, and how science and scientific knowledge are defined. Affording science absolute epistemic privilege, I argue, is the most compelling factor contributing to the continued use of the deficit model. In addition, I contend that the deficit model plays a necessary, though not sufficient, role in science communication research and practice. Areas for future research are discussed. © The Author(s) 2016.
Summary of Expansions, Updates, and Results in GREET 2017 Suite of Models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Michael; Elgowainy, Amgad; Han, Jeongwoo
This report provides a technical summary of the expansions and updates to the 2017 release of Argonne National Laboratory’s Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET®) model, including references and links to key technical documents related to these expansions and updates. The GREET 2017 release includes an updated version of the GREET1 (the fuel-cycle GREET model) and GREET2 (the vehicle-cycle GREET model), both in the Microsoft Excel platform and in the GREET.net modeling platform. Figure 1 shows the structure of the GREET Excel modeling platform. The .net platform integrates all GREET modules together seamlessly.
Exposure to contaminants originating in the domestic water supply is influenced by a number of factors, including human activities, water use behavior, and physical and chemical processes. The key role of human activities is very apparent in exposure related to volatile water-...
Oncology Modeling for Fun and Profit! Key Steps for Busy Analysts in Health Technology Assessment.
Beca, Jaclyn; Husereau, Don; Chan, Kelvin K W; Hawkins, Neil; Hoch, Jeffrey S
2018-01-01
In evaluating new oncology medicines, two common modeling approaches are state transition (e.g., Markov and semi-Markov) and partitioned survival. Partitioned survival models have become more prominent in oncology health technology assessment processes in recent years. Our experience in conducting and evaluating models for economic evaluation has highlighted many important and practical pitfalls. As there is little guidance available on best practices for those who wish to conduct them, we provide guidance in the form of 'Key steps for busy analysts,' who may have very little time and require highly favorable results. Our guidance highlights the continued need for rigorous conduct and transparent reporting of economic evaluations regardless of the modeling approach taken, and the importance of modeling that better reflects reality, which includes better approaches to considering plausibility, estimating relative treatment effects, dealing with post-progression effects, and appropriate characterization of the uncertainty from modeling itself.
Kumar, Rajesh; Nguyen, Elizabeth A; Roth, Lindsey A; Oh, Sam S; Gignoux, Christopher R.; Huntsman, Scott; Eng, Celeste; Moreno-Estrada, Andres; Sandoval, Karla; Peñaloza-Espinosa, Rosenda; López-López, Marisol; Avila, Pedro C.; Farber, Harold J.; Tcheurekdjian, Haig; Rodriguez-Cintron, William; Rodriguez-Santana, Jose R; Serebrisky, Denise; Thyne, Shannon M.; Williams, L. Keoki; Winkler, Cheryl; Bustamante, Carlos D.; Pérez-Stable, Eliseo J.; Borrell, Luisa N.; Burchard, Esteban G
2013-01-01
Background Atopy varies by ethnicity even within Latino groups. This variation may be due to environmental, socio-cultural or genetic factors. Objective To examine risk factors for atopy within a nationwide study of U.S. Latino children with and without asthma. Methods Aeroallergen skin test repsonse was analyzed in 1830 US latino subjects. Key determinants of atopy included: country / region of origin, generation in the U.S., acculturation, genetic ancestry and site to which individuals migrated. Serial multivariate zero inflated negative binomial regressions, stratified by asthma status, examined the association of each key determinant variable with the number of positive skin tests. In addition, the independent effect of each key variable was determined by including all key variables in the final models. Results In baseline analyses, African ancestry was associated with 3 times as many positive skin tests in participants with asthma (95% CI:1.62–5.57) and 3.26 times as many positive skin tests in control participants (95% CI: 1.02–10.39). Generation and recruitment site were also associated with atopy in crude models. In final models adjusted for key variables, Puerto Rican [exp(β) (95%CI): 1.31(1.02–1.69)] and mixed ethnicity [exp(β) (95%CI):1.27(1.03–1.56)] asthmatics had a greater probability of positive skin tests compared to Mexican asthmatics. Ancestry associations were abrogated by recruitment site, but not region of origin. Conclusions Puerto Rican ethnicity and mixed origin were associated with degree of atopy within U.S. Latino children with asthma. African ancestry was not associated with degree of atopy after adjusting for recruitment site. Local environment variation, represented by site, was associated with degree of sensitization. PMID:23684070
Nsanzimana, Sabin; Remera, Eric; Ribakare, Muhayimpundu; Burns, Tracy; Dludlu, Sibongile; Mills, Edward J; Condo, Jeanine; Bucher, Heiner C; Ford, Nathan
2017-07-21
In 2016, Rwanda implemented "Treat All," requiring the national HIV programme to increase antiretroviral (ART) treatment coverage to all people living with HIV. Approximately half of the 164,262 patients on ART have been on treatment for more than five years, and long-term retention of patients in care is an increasing concern. To address these challenges, the Ministry of Health has introduced a differentiated service delivery approach to reduce the frequency of clinical visits and medication dispensing for eligible patients. This article draws on key policy documents and the views of technical experts involved in policy development to describe the process of implementation of differentiated service delivery in Rwanda. Implementation of differentiated service delivery followed a phased approach to ensure that all steps are clearly defined and agreed by all partners. Key steps included: definition of scope, including defining which patients were eligible for transition to the new model; definition of the key model components; preparation for patient enrolment; considerations for special patient groups; engagement of implementing partners; securing political and financial support; forecasting drug supply; revision, dissemination and implementation of ART guidelines; and monitoring and evaluation. Based on the outcomes of the evaluation of the new service delivery model, the Ministry of Health will review and strategically reduce costs to the national HIV program and to the patient by exploring and implementing adjustments to the service delivery model.
Implementation of an inter-agency transition model for youth with spina bifida.
Lindsay, S; Cruickshank, H; McPherson, A C; Maxwell, J
2016-03-01
To address gaps in transfer of care and transition support, a paediatric hospital and adult community health care centre partnered to implement an inter-agency transition model for youth with spina bifida. Our objective was to understand the enablers and challenges experienced in the implementation of the model. Using a descriptive, qualitative design, we conducted semi-structured interviews, in-person or over the phone, with 12 clinicians and nine key informants involved in implementing the spina bifida transition model. We recruited all 21 participants from an urban area of Ontario, Canada. Clinicians and key informants experienced several enablers and challenges in implementing the spina bifida transition model. Enablers included dedicated leadership, advocacy, funding, inter-agency partnerships, cross-appointed staff and gaps in co-ordinated care to connect youth to adult services. Challenges included gaps in the availability of adult specialty services, limited geographical catchment of adult services, limited engagement of front-line staff, gaps in communication and role clarity. Although the transition model has realized some initial successes, there are still many challenges to overcome in transferring youth with spina bifida to adult health care and transitioning to adulthood. © 2015 John Wiley & Sons Ltd.
Cybernetics of Brief Family Therapy.
ERIC Educational Resources Information Center
Keeney, Bradford P.; Ross, Jeffrey M.
1983-01-01
Presents a cybernetic view of brief family therapy. Includes a historical discussion of the key ideas underlying brief family therapy, a cybernetic model of therapeutic change, and a clinical case for exemplification. (Author/JAC)
Hass, Joachim; Hertäg, Loreen; Durstewitz, Daniel
2016-01-01
The prefrontal cortex is centrally involved in a wide range of cognitive functions and their impairment in psychiatric disorders. Yet, the computational principles that govern the dynamics of prefrontal neural networks, and link their physiological, biochemical and anatomical properties to cognitive functions, are not well understood. Computational models can help to bridge the gap between these different levels of description, provided they are sufficiently constrained by experimental data and capable of predicting key properties of the intact cortex. Here, we present a detailed network model of the prefrontal cortex, based on a simple computationally efficient single neuron model (simpAdEx), with all parameters derived from in vitro electrophysiological and anatomical data. Without additional tuning, this model could be shown to quantitatively reproduce a wide range of measures from in vivo electrophysiological recordings, to a degree where simulated and experimentally observed activities were statistically indistinguishable. These measures include spike train statistics, membrane potential fluctuations, local field potentials, and the transmission of transient stimulus information across layers. We further demonstrate that model predictions are robust against moderate changes in key parameters, and that synaptic heterogeneity is a crucial ingredient to the quantitative reproduction of in vivo-like electrophysiological behavior. Thus, we have produced a physiologically highly valid, in a quantitative sense, yet computationally efficient PFC network model, which helped to identify key properties underlying spike time dynamics as observed in vivo, and can be harvested for in-depth investigation of the links between physiology and cognition. PMID:27203563
Simulating the Past, Present and Future of the Upper Troposphere and Lower Stratosphere
NASA Astrophysics Data System (ADS)
Gettelman, Andrew; Hegglin, Michaela
2010-05-01
A comprehensive assessment of coupled chemistry climate model (CCM) performance in the upper troposphere and lower stratosphere has been conducted with 18 models. Both qualitative and quantitative comparisons of model representation of UTLS dynamical, radiative and chemical structure have been conducted, using a collection of quantitative grading techniques. The models are able to reproduce the observed climatology of dynamical, radiative and chemical structure in the tropical and extratropical UTLS, despite relatively coarse vertical and horizontal resolution. Diagnostics of the Tropical Tropopause Layer (TTL), Tropopause Inversion Layer (TIL) and Extra-tropical Transition Layer (ExTL) are analyzed. The results provide new insight into the key processes that govern the dynamics and transport in the tropics and extra-tropicsa. The presentation will explain how models are able to reproduce key features of the UTLS, what features they do not reproduce, and why. Model trends over the historical period are also assessed and interannual variability is included in the metrics. Finally, key trends in the UTLS for the future with a given halogen and greenhouse gas scenario are presented, indicating significant changes in tropopause height and temperature, as well as UTLS ozone concentrations in the 21st century due to climate change and ozone recovery.
SeaQuaKE: Sea-optimized Quantum Key Exchange
2014-11-01
ONRBAA13-001). In this technical report, we describe modeling results of an entangled photon - pair source based on spontaneous four-wave mixing for...Distribution Special Notice (13-SN- 0004 under ONRBAA13-001). In this technical report, we describe modeling results of an entangled photon - pair ...areas over the last quarter include (i) development of a wavelength-dependent, entangled photon - pair source model and (ii) end-to-end system modeling
Developing a method for estimating AADT on all Louisiana roads.
DOT National Transportation Integrated Search
2015-07-01
Traffic flow volumes present key information needed for making transportation engineering and planning decisions. : Accurate traffic volume count has many applications including: roadway planning, design, air quality compliance, travel : model valida...
How can mathematical models advance tuberculosis control in high HIV prevalence settings?
Houben, R M G J; Dowdy, D W; Vassall, A; Cohen, T; Nicol, M P; Granich, R M; Shea, J E; Eckhoff, P; Dye, C; Kimerling, M E; White, R G
2014-05-01
Existing approaches to tuberculosis (TB) control have been no more than partially successful in areas with high human immunodeficiency virus (HIV) prevalence. In the context of increasingly constrained resources, mathematical modelling can augment understanding and support policy for implementing those strategies that are most likely to bring public health and economic benefits. In this paper, we present an overview of past and recent contributions of TB modelling in this key area, and suggest a way forward through a modelling research agenda that supports a more effective response to the TB-HIV epidemic, based on expert discussions at a meeting convened by the TB Modelling and Analysis Consortium. The research agenda identified high-priority areas for future modelling efforts, including 1) the difficult diagnosis and high mortality of TB-HIV; 2) the high risk of disease progression; 3) TB health systems in high HIV prevalence settings; 4) uncertainty in the natural progression of TB-HIV; and 5) combined interventions for TB-HIV. Efficient and rapid progress towards completion of this modelling agenda will require co-ordination between the modelling community and key stakeholders, including advocates, health policy makers, donors and national or regional finance officials. A continuing dialogue will ensure that new results are effectively communicated and new policy-relevant questions are addressed swiftly.
Clark, D Angus; Nuttall, Amy K; Bowles, Ryan P
2018-01-01
Latent change score models (LCS) are conceptually powerful tools for analyzing longitudinal data (McArdle & Hamagami, 2001). However, applications of these models typically include constraints on key parameters over time. Although practically useful, strict invariance over time in these parameters is unlikely in real data. This study investigates the robustness of LCS when invariance over time is incorrectly imposed on key change-related parameters. Monte Carlo simulation methods were used to explore the impact of misspecification on parameter estimation, predicted trajectories of change, and model fit in the dual change score model, the foundational LCS. When constraints were incorrectly applied, several parameters, most notably the slope (i.e., constant change) factor mean and autoproportion coefficient, were severely and consistently biased, as were regression paths to the slope factor when external predictors of change were included. Standard fit indices indicated that the misspecified models fit well, partly because mean level trajectories over time were accurately captured. Loosening constraint improved the accuracy of parameter estimates, but estimates were more unstable, and models frequently failed to converge. Results suggest that potentially common sources of misspecification in LCS can produce distorted impressions of developmental processes, and that identifying and rectifying the situation is a challenge.
Scribner, Elizabeth; Fathallah-Shaykh, Hassan M
2017-01-01
Glioblastoma (GBM) is a malignant brain tumor that continues to be associated with neurological morbidity and poor survival times. Brain invasion is a fundamental property of malignant glioma cells. The Go-or-Grow (GoG) phenotype proposes that cancer cell motility and proliferation are mutually exclusive. Here, we construct and apply a single glioma cell mathematical model that includes motility and angiogenesis and lacks the GoG phenotype. Simulations replicate key features of GBM including its multilayer structure (i.e.edema, enhancement, and necrosis), its progression patterns associated with bevacizumab treatment, and replicate the survival times of GBM treated or untreated with bevacizumab. These results suggest that the GoG phenotype is not a necessary property for the formation of the multilayer structure, recurrence patterns, and the poor survival times of patients diagnosed with GBM.
NASA Technical Reports Server (NTRS)
Pagano, Thomas S.
2008-01-01
The Atmospheric Infrared Sounder (AIRS) on the EOS Aqua Spacecraft was launched on May 4, 2002. AIRS acquires hyperspectral infrared radiances in the 3.7-15.4 micrometer spectral region with spectral resolution of better than 1200. Key channels from the AIRS Level 1B calibrated radiance product are currently assimilated into operational weather forecasts at NCEP and other international agencies. Additional Level 2 products for assimilation include the AIRS cloud cleared radiances and the geophysical retrieved temperature and water vapor profiles. The AIRS products are also used to validate climate model vertical and horizontal biases and transport of water vapor and key trace gases including Carbon Dioxide and Ozone. The wide variety of products available from the AIRS make it well suited to study processes affecting the interaction of these products.
Mouse Models of Neurodevelopmental Disease of the Basal Ganglia and Associated Circuits
Pappas, Samuel S.; Leventhal, Daniel K.; Albin, Roger L.; Dauer, William T.
2014-01-01
This chapter focuses on neurodevelopmental diseases that are tightly linked to abnormal function of the striatum and connected structures. We begin with an overview of three representative diseases in which striatal dysfunction plays a key role—Tourette syndrome and obsessive-compulsive disorder, Rett's syndrome, and primary dystonia. These diseases highlight distinct etiologies that disrupt striatal integrity and function during development, and showcase the varied clinical manifestations of striatal dysfunction. We then review striatal organization and function, including evidence for striatal roles in online motor control/action selection, reinforcement learning, habit formation, and action sequencing. A key barrier to progress has been the relative lack of animal models of these diseases, though recently there has been considerable progress. We review these efforts, including their relative merits providing insight into disease pathogenesis, disease symptomatology, and basal ganglia function. PMID:24947237
Thrust Vector Control for Nuclear Thermal Rockets
NASA Technical Reports Server (NTRS)
Ensworth, Clinton B. F.
2013-01-01
Future space missions may use Nuclear Thermal Rocket (NTR) stages for human and cargo missions to Mars and other destinations. The vehicles are likely to require engine thrust vector control (TVC) to maintain desired flight trajectories. This paper explores requirements and concepts for TVC systems for representative NTR missions. Requirements for TVC systems were derived using 6 degree-of-freedom models of NTR vehicles. Various flight scenarios were evaluated to determine vehicle attitude control needs and to determine the applicability of TVC. Outputs from the models yielded key characteristics including engine gimbal angles, gimbal rates and gimbal actuator power. Additional factors such as engine thrust variability and engine thrust alignment errors were examined for impacts to gimbal requirements. Various technologies are surveyed for TVC systems for the NTR applications. A key factor in technology selection is the unique radiation environment present in NTR stages. Other considerations including mission duration and thermal environments influence the selection of optimal TVC technologies. Candidate technologies are compared to see which technologies, or combinations of technologies best fit the requirements for selected NTR missions. Representative TVC systems are proposed and key properties such as mass and power requirements are defined. The outputs from this effort can be used to refine NTR system sizing models, providing higher fidelity definition for TVC systems for future studies.
NASA Astrophysics Data System (ADS)
Silalahi, R. L. R.; Mustaniroh, S. A.; Ikasari, D. M.; Sriulina, R. P.
2018-03-01
UD. Bunda Foods is an SME located in the district of Sidoarjo. UD. Bunda Foods has problems of maintaining its milkfish’s quality assurance and developing marketing strategies. Improving those problems enables UD. Bunda Foods to compete with other similar SMEs and to market its product for further expansion of their business. The objectives of this study were to determine the model of the institutional structure of the milkfish supply chain, to determine the elements, the sub-elements, and the relationship among each element. The method used in this research was Interpretive Structural Modeling (ISM), involving 5 experts as respondents consisting of 1 practitioner, 1 academician, and 3 government organisation employees. The results showed that there were two key elements include requirement and goals elements. Based on the Drive Power-Dependence (DP-D) matrix, the key sub-elements of requirement element, consisted of raw material continuity, appropriate marketing strategy, and production capital, were positioned in the Linkage sector quadrant. The DP-D matrix for the key sub-elements of the goal element also showed a similar position. The findings suggested several managerial implications to be carried out by UD. Bunda Foods include establishing good relationships with all involved institutions, obtaining capital assistance, and attending the marketing training provided by the government.
Nutrition in primary health care: using a Delphi process to design new interdisciplinary services.
Brauer, Paula; Dietrich, Linda; Davidson, Bridget
2006-01-01
A modified Delphi process was used to identify key features of interdisciplinary nutrition services, including provider roles and responsibilities for Ontario Family Health Networks (FHNs), a family physician-based type of primary care. Twenty-three representatives from interested professional organizations, including three FHN demonstration sites, completed a modified Delphi process. Participants reviewed evidence from a systematic literature review, a patient survey, a costing analysis, and key informant interview results before undertaking the Delphi process. Statements describing various options for services were developed at an in-person meeting, which was followed by two rounds of e-mail questionnaires. Teleconference discussions were held between rounds. An interdisciplinary model with differing and complementary roles for health care providers emerged from the process. Additional key features addressing screening for nutrition problems, health promotion and disease prevention, team collaboration, planning and evaluation, administrative support, access to care, and medical directives/delegated acts were identified. Under the proposed model, the registered dietitian is the team member responsible for managing all aspects of nutrition services, from needs assessment to program delivery, as well as for supporting all providers' nutrition services. The proposed interdisciplinary nutrition services model merits evaluation of cost, effectiveness, applicability, and sustainability in team-based primary care service settings.
De Cuyper, Kathleen; Claes, Laurence; Hermans, Dirk; Pieters, Guido; Smits, Dirk
2015-01-01
We administered the Dutch Multidimensional Perfectionism Scale of Hewitt and Flett (1991, 2004) in a large student sample (N = 959) and performed a confirmatory factor analysis to test the factorial structure proposed by the original authors. The existence of a method factor referring to the negatively keyed items in the questionnaire was investigated by including it in the tested models. Next, we investigated how the 3 perfectionism dimensions are associated with the Five-factor model (FFM) of personality. The 3-factor structure originally observed by the authors was confirmed, at least when a method factor that refers to the negatively keyed items was included in the model. Self-oriented and socially prescribed perfectionism were both distinguished by low extraversion and low emotional stability. Self-oriented perfectionism's positive relationship with both conscientiousness and openness to experience differentiated the 2 perfectionism dimensions from each other. Other-oriented perfectionism was not well-characterized by the Big Five personality traits.
Beretta, Edoardo; Capasso, Vincenzo; Garao, Dario G
2018-06-01
In this paper a conceptual mathematical model of malaria transmission proposed in a previous paper has been analyzed in a deeper detail. Among its key epidemiological features of this model, two-age-classes (child and adult) and asymptomatic carriers have been included. The extra mortality of mosquitoes due to the use of long-lasting treated mosquito nets (LLINs) and Indoor Residual Spraying (IRS) has been included too. By taking advantage of the natural double time scale of the parasite and the human populations, it has been possible to provide interesting threshold results. In particular it has been shown that key parameters can be identified such that below a threshold level, built on these parameters, the epidemic tends to extinction, while above another threshold level it tends to a nontrivial endemic state, for which an interval estimate has been provided. Numerical simulations confirm the analytical results. Copyright © 2018 Elsevier Inc. All rights reserved.
Adaptation of Acoustic Model Experiments of STM via Smartphones and Tablets
ERIC Educational Resources Information Center
Thees, Michael; Hochberg, Katrin; Kuhn, Jochen; Aeschlimann, Martin
2017-01-01
The importance of Scanning Tunneling Microscopy (STM) in today's research and industry leads to the question of how to include such a key technology in physics education. Manfred Euler has developed an acoustic model experiment to illustrate the fundamental measuring principles based on an analogy between quantum mechanics and acoustics. Based on…
Early Admissions at Selective Colleges. NBER Working Paper No. 14844
ERIC Educational Resources Information Center
Avery, Christopher; Levin, Jonathan D.
2009-01-01
Early admissions is widely used by selective colleges and universities. We identify some basic facts about early admissions policies, including the admissions advantage enjoyed by early applicants and patterns in application behavior, and propose a game-theoretic model that matches these facts. The key feature of the model is that colleges want to…
ERIC Educational Resources Information Center
Demery, Marie; And Others
Components of an art program that was developed with federal funding are outlined. The model contains information on the grant proposal, including the rationale for funding, implementation strategies, activity timetable, qualifications of key personnel, activity objectives and performance measures, intitutional goals, activity milestones, and…
Ecology of Mind: A Batesonian Systems Thinking Approach to Curriculum Enactment
ERIC Educational Resources Information Center
Bloom, Jeffrey W.
2012-01-01
This article proposes a Batesonian systems thinking and ecology of mind approach to enacting curriculum. The key ideas for the model include ecology of mind, relationships, systems, systems thinking, pattern thinking, abductive thinking, and context. These ideas provide a basis for a recursive, three-part model involving developing (a) depth of…
Beyond Teachers' Sight Lines: Using Video Modeling to Examine Peer Discourse
ERIC Educational Resources Information Center
Kotsopoulos, Donna
2008-01-01
This article introduces readers to various examples of discourse analysis in mathematics education. Highlighted is interactional sociolinguistics, used in a present study to investigate peer discourse in a middle-school setting. Key findings from this study include the benefits of video modeling as a mechanism for fostering inclusive peer group…
Open-Ended Learning Environments: A Theoretical Framework and Model for Design.
ERIC Educational Resources Information Center
Hill, Janette R.; Land, Susan M.
This paper presents a framework and model for design of open-ended learning environments (OELEs). First, an overview is presented that addresses key characteristics of OELEs, including: use of meaningful, complex contexts; provision of tools and resources; learner reflection and self-monitoring; and social, material, or technological scaffolding.…
Recruiting African American Men for Cancer Screening Studies: Applying a Culturally Based Model
ERIC Educational Resources Information Center
Abernethy, Alexis D.; Magat, Maricar M.; Houston, Tina R.; Arnold, Harold L., Jr.; Bjorck, Jeffrey P.; Gorsuch, Richard L.
2005-01-01
In a study of psychosocial factors related to prostate cancer screening (PCS) of African American men, researchers achieved significant success in recruitment. Key strategies included addressing specific barriers to PCS for African American men and placing recruitment efforts in a conceptual framework that addressed cultural issues (PEN-3 model).…
A Model for Effective Implementation of Flexible Programme Delivery
ERIC Educational Resources Information Center
Normand, Carey; Littlejohn, Allison; Falconer, Isobel
2008-01-01
The model developed here is the outcome of a project funded by the Quality Assurance Agency Scotland to support implementation of flexible programme delivery (FPD) in post-compulsory education. We highlight key features of FPD, including explicit and implicit assumptions about why flexibility is needed and the perceived barriers and solutions to…
NASA Astrophysics Data System (ADS)
Hughes, Richard
2004-05-01
Quantum key distribution (QKD) uses single-photon communications to generate the shared, secret random number sequences that are used to encrypt and decrypt secret communications. The unconditional security of QKD is based on the interplay between fundamental principles of quantum physics and information theory. An adversary can neither successfully tap the transmissions, nor evade detection (eavesdropping raises the key error rate above a threshold value). QKD could be particularly attractive for free-space optical communications, both ground-based and for satellites. I will describe a QKD experiment performed over multi-kilometer line-of-sight paths, which serves as a model for a satellite-to-ground key distribution system. The system uses single-photon polarization states, without active polarization switching, and for the first time implements the complete BB84 QKD protocol including, reconciliation, privacy amplification and the all-important authentication stage. It is capable of continuous operation throughout the day and night, achieving the self-sustaining production of error-free, shared, secret bits. I will also report on the results of satellite-to-ground QKD modeling.
The Virginia pharmacy practice transformation conference: outcomes and next steps.
Silvester, Janet A
2012-04-01
Thought leaders in Virginia came together to achieve consensus on the pharmacy practice innovations required to advance the medication-related health outcomes of patients in the Commonwealth. The participants identified key elements and strategies needed for practice transformation and these became the foundation for practice change. The primary key elements included legislation and regulation modifications, payment reform, and business model development. The Virginia Pharmacy Congress, which represents key pharmacy stakeholders in the Commonwealth, became the home for the transformation movement and the development and implementation of a unified action plan for achieving the envisioned practice transformation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Curtis, Gary P.; Kohler, Matthias; Kannappan, Ramakrishnan
2015-02-24
Scientifically defensible predictions of field scale U(VI) transport in groundwater requires an understanding of key processes at multiple scales. These scales range from smaller than the sediment grain scale (less than 10 μm) to as large as the field scale which can extend over several kilometers. The key processes that need to be considered include both geochemical reactions in solution and at sediment surfaces as well as physical transport processes including advection, dispersion, and pore-scale diffusion. The research summarized in this report includes both experimental and modeling results in batch, column and tracer tests. The objectives of this research weremore » to: (1) quantify the rates of U(VI) desorption from sediments acquired from a uranium contaminated aquifer in batch experiments;(2) quantify rates of U(VI) desorption in column experiments with variable chemical conditions, and(3) quantify nonreactive tracer and U(VI) transport in field tests.« less
Access to a Schoolwide Thinking Curriculum: Leadership Challenges and Solutions.
ERIC Educational Resources Information Center
Morocco, Catherine Cobb; Walker, Andrea; Lewis, Leslie R.
2003-01-01
This article discusses how an urban middle school designed to reflect a Schools for Thought model has demonstrated that urban schools can achieve excellent results on statewide testing for all students, including those with disabilities. Key school features are highlighted, including the use of "cross-talk" to stimulate discussion and student…
Zebrafish as tools for drug discovery.
MacRae, Calum A; Peterson, Randall T
2015-10-01
The zebrafish has become a prominent vertebrate model for disease and has already contributed to several examples of successful phenotype-based drug discovery. For the zebrafish to become useful in drug development more broadly, key hurdles must be overcome, including a more comprehensive elucidation of the similarities and differences between human and zebrafish biology. Recent studies have begun to establish the capabilities and limitations of zebrafish for disease modelling, drug screening, target identification, pharmacology, and toxicology. As our understanding increases and as the technologies for manipulating zebrafish improve, it is hoped that the zebrafish will have a key role in accelerating the emergence of precision medicine.
Evaluation of the Navys Sea/Shore Flow Policy
2016-06-01
CNA developed an independent Discrete -Event Simulation model to evaluate and assess the effect of alternative sea/shore flow policies. In this study...remains, even if the system is optimized. In building a Discrete -Event Simulation model, we discovered key factors that should be included in the... Discrete -Event Simulation model to evaluate the impact of sea/shore flow policy (the DES-SSF model) and compared the results with the SSFM for one
Romañach, Stephanie S.; Conzelmann, Craig; Daugherty, Adam; Lorenz, Jerome J.; Hunnicutt, Christina; Mazzotti, Frank J.
2011-01-01
Ecological conditions in the Greater Everglades have changed due to human activities, including the construction of canals to divert water away from the core of the landscape. Current and planned restoration projects are designed to produce a natural sheetflow of water across the landscape. This restoration of water flow should provide an increase in freshwater needed to restore natural salinities to the fringing estuarine ecosystem. In this report, we describe a Landscape Habitat Suitability Index model designed to evaluate alternative restoration plans for the benefit of a key species, the roseate spoonbill (Platalea ajaja). Model output has shown to be a good indicator of areas capable of supporting spoonbills. Use of this model will allow examination of the potential response of this key species to water management proposed through the Greater Everglades restoration process.
Shikata, Masahito; Ezura, Hiroshi
2016-01-01
Tomato is a model plant for fruit development, a unique feature that classical model plants such as Arabidopsis and rice do not have. The tomato genome was sequenced in 2012 and tomato is becoming very popular as an alternative system for plant research. Among many varieties of tomato, Micro-Tom has been recognized as a model cultivar for tomato research because it shares some key advantages with Arabidopsis including its small size, short life cycle, and capacity to grow under fluorescent lights at a high density. Mutants and transgenic plants are essential materials for functional genomics research, and therefore, the availability of mutant resources and methods for genetic transformation are key tools to facilitate tomato research. Here, we introduce the Micro-Tom mutant database "TOMATOMA" and an efficient transformation protocol for Micro-Tom.
NASA Technical Reports Server (NTRS)
Stutzman, Warren L.
1989-01-01
This paper reviews the effects of precipitation on earth-space communication links operating the 10 to 35 GHz frequency range. Emphasis is on the quantitative prediction of rain attenuation and depolarization. Discussions center on the models developed at Virginia Tech. Comments on other models are included as well as literature references to key works. Also included is the system level modeling for dual polarized communication systems with techniques for calculating antenna and propagation medium effects. Simple models for the calculation of average annual attenuation and cross-polarization discrimination (XPD) are presented. Calculation of worst month statistics are also presented.
Warton, David I; Thibaut, Loïc; Wang, Yi Alice
2017-01-01
Bootstrap methods are widely used in statistics, and bootstrapping of residuals can be especially useful in the regression context. However, difficulties are encountered extending residual resampling to regression settings where residuals are not identically distributed (thus not amenable to bootstrapping)-common examples including logistic or Poisson regression and generalizations to handle clustered or multivariate data, such as generalised estimating equations. We propose a bootstrap method based on probability integral transform (PIT-) residuals, which we call the PIT-trap, which assumes data come from some marginal distribution F of known parametric form. This method can be understood as a type of "model-free bootstrap", adapted to the problem of discrete and highly multivariate data. PIT-residuals have the key property that they are (asymptotically) pivotal. The PIT-trap thus inherits the key property, not afforded by any other residual resampling approach, that the marginal distribution of data can be preserved under PIT-trapping. This in turn enables the derivation of some standard bootstrap properties, including second-order correctness of pivotal PIT-trap test statistics. In multivariate data, bootstrapping rows of PIT-residuals affords the property that it preserves correlation in data without the need for it to be modelled, a key point of difference as compared to a parametric bootstrap. The proposed method is illustrated on an example involving multivariate abundance data in ecology, and demonstrated via simulation to have improved properties as compared to competing resampling methods.
Thibaut, Loïc; Wang, Yi Alice
2017-01-01
Bootstrap methods are widely used in statistics, and bootstrapping of residuals can be especially useful in the regression context. However, difficulties are encountered extending residual resampling to regression settings where residuals are not identically distributed (thus not amenable to bootstrapping)—common examples including logistic or Poisson regression and generalizations to handle clustered or multivariate data, such as generalised estimating equations. We propose a bootstrap method based on probability integral transform (PIT-) residuals, which we call the PIT-trap, which assumes data come from some marginal distribution F of known parametric form. This method can be understood as a type of “model-free bootstrap”, adapted to the problem of discrete and highly multivariate data. PIT-residuals have the key property that they are (asymptotically) pivotal. The PIT-trap thus inherits the key property, not afforded by any other residual resampling approach, that the marginal distribution of data can be preserved under PIT-trapping. This in turn enables the derivation of some standard bootstrap properties, including second-order correctness of pivotal PIT-trap test statistics. In multivariate data, bootstrapping rows of PIT-residuals affords the property that it preserves correlation in data without the need for it to be modelled, a key point of difference as compared to a parametric bootstrap. The proposed method is illustrated on an example involving multivariate abundance data in ecology, and demonstrated via simulation to have improved properties as compared to competing resampling methods. PMID:28738071
NASA Astrophysics Data System (ADS)
Tolson, B.; Matott, L. S.; Gaffoor, T. A.; Asadzadeh, M.; Shafii, M.; Pomorski, P.; Xu, X.; Jahanpour, M.; Razavi, S.; Haghnegahdar, A.; Craig, J. R.
2015-12-01
We introduce asynchronous parallel implementations of the Dynamically Dimensioned Search (DDS) family of algorithms including DDS, discrete DDS, PA-DDS and DDS-AU. These parallel algorithms are unique from most existing parallel optimization algorithms in the water resources field in that parallel DDS is asynchronous and does not require an entire population (set of candidate solutions) to be evaluated before generating and then sending a new candidate solution for evaluation. One key advance in this study is developing the first parallel PA-DDS multi-objective optimization algorithm. The other key advance is enhancing the computational efficiency of solving optimization problems (such as model calibration) by combining a parallel optimization algorithm with the deterministic model pre-emption concept. These two efficiency techniques can only be combined because of the asynchronous nature of parallel DDS. Model pre-emption functions to terminate simulation model runs early, prior to completely simulating the model calibration period for example, when intermediate results indicate the candidate solution is so poor that it will definitely have no influence on the generation of further candidate solutions. The computational savings of deterministic model preemption available in serial implementations of population-based algorithms (e.g., PSO) disappear in synchronous parallel implementations as these algorithms. In addition to the key advances above, we implement the algorithms across a range of computation platforms (Windows and Unix-based operating systems from multi-core desktops to a supercomputer system) and package these for future modellers within a model-independent calibration software package called Ostrich as well as MATLAB versions. Results across multiple platforms and multiple case studies (from 4 to 64 processors) demonstrate the vast improvement over serial DDS-based algorithms and highlight the important role model pre-emption plays in the performance of parallel, pre-emptable DDS algorithms. Case studies include single- and multiple-objective optimization problems in water resources model calibration and in many cases linear or near linear speedups are observed.
Teaching Einsteinian Physics at Schools: Part 2, Models and Analogies for Quantum Physics
ERIC Educational Resources Information Center
Kaur, Tejinder; Blair, David; Moschilla, John; Zadnik, Marjan
2017-01-01
The Einstein-First project approaches the teaching of Einsteinian physics through the use of physical models and analogies. This paper presents an approach to the teaching of quantum physics which begins by emphasising the particle-nature of light through the use of toy projectiles to represent photons. This allows key concepts including the…
Map Resource Packet: Course Models for the History-Social Science Framework, Grade Seven.
ERIC Educational Resources Information Center
California State Dept. of Education, Sacramento.
This packet of maps is an auxiliary resource to the "World History and Geography: Medieval and Early Modern Times. Course Models for the History-Social Science Framework, Grade Seven." The set includes: outline, precipitation, and elevation maps; maps for locating key places; landform maps; and historical maps. The list of maps are…
NASA Astrophysics Data System (ADS)
Wu, Gang; Wang, Kehai; Zhang, Panpan; Lu, Guanya
2018-01-01
Laminated elastomeric bearings have been widely used for small-to-medium-span highway bridges in China, in which concrete shear keys are set transversely to prohibit large girder displacement. To evaluate bridge seismic responses more accurately, proper analytical models of bearings and shear keys should be developed. Based on a series of cyclic loading experiments and analyses, rational analytical models of laminated elastomeric bearings and shear keys, which can consider mechanical degradation, were developed. The effect of the mechanical degradation was investigated by examining the seismic response of a small-to-medium-span bridge in the transverse direction under a wide range of peak ground accelerations (PGA). The damage mechanism for small-to-medium-span highway bridges was determined, which can explain the seismic damage investigation during earthquakes in recent years. The experimental results show that the mechanical properties of laminated elastomeric bearings will degrade due to friction sliding, but the degree of decrease is dependent upon the influencing parameters. It can be concluded that the mechanical degradation of laminated elastomeric bearings and shear keys play an important role in the seismic response of bridges. The degradation of mechanical properties of laminated elastomeric bearings and shear keys should be included to evaluate more precise bridge seismic performance.
ERIC Educational Resources Information Center
Lahti, Richard Dennis, II.
2012-01-01
Knowledge of scientific models and their uses is a concept that has become a key benchmark in many of the science standards of the past 30 years, including the proposed Next Generation Science Standards. Knowledge of models is linked to other important nature of science concepts such as theory change which are also rising in prominence in newer…
Notes on a Continuous-Variable Quantum Key Distribution Scheme
NASA Astrophysics Data System (ADS)
Ichikawa, Tsubasa; Hirano, Takuya; Matsubara, Takuto; Ono, Motoharu; Namiki, Ryo
2017-09-01
We develop a physical model to describe the signal transmission for a continuous-variable quantum key distribution scheme and investigate its security against a couple of eavesdropping attacks assuming that the eavesdropper's power is partly restricted owing to today's technological limitations. We consider an eavesdropper performing quantum optical homodyne measurement on the signal obtained by a type of beamsplitting attack. We also consider the case in which the eavesdropper Eve is unable to access a quantum memory and she performs heterodyne measurement on her signal without performing a delayed measurement. Our formulation includes a model in which the receiver's loss and noise are unaccessible by the eavesdropper. This setup enables us to investigate the condition that Eve uses a practical fiber differently from the usual beamsplitting attack where she can deploy a lossless transmission channel. The secret key rates are calculated in both the direct and reverse reconciliation scenarios.
Starting from the bench--prevention and control of foodborne and zoonotic diseases.
Vongkamjan, Kitiya; Wiedmann, Martin
2015-02-01
Foodborne diseases are estimated to cause around 50 million disease cases and 3000 deaths a year in the US. Worldwide, food and waterborne diseases are estimated to cause more than 2 million deaths per year. Lab-based research is a key component of efforts to prevent and control foodborne diseases. Over the last two decades, molecular characterization of pathogen isolates has emerged as a key component of foodborne and zoonotic disease prevention and control. Characterization methods have evolved from banding pattern-based subtyping methods to sequenced-based approaches, including full genome sequencing. Molecular subtyping methods not only play a key role for characterizing pathogen transmission and detection of disease outbreaks, but also allow for identification of clonal pathogen groups that show distinct transmission characteristics. Importantly, the data generated from molecular characterization of foodborne pathogens also represent critical inputs for epidemiological and modeling studies. Continued and enhanced collaborations between infectious disease related laboratory sciences and epidemiologists, modelers, and other quantitative scientists will be critical to a One-Health approach that delivers societal benefits, including improved surveillance systems and prevention approaches for zoonotic and foodborne pathogens. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Wilebore, Beccy; Willis, Kathy
2016-04-01
Landcover conversion is one of the largest anthropogenic threats to ecological services globally; in the EU around 1500 ha of biodiverse land are lost every day to changes in infrastructure and urbanisation. This land conversion directly affects key ecosystem services that support natural infrastructure, including water flow regulation and the mitigation of flood risks. We assess the sensitivity of runoff production to landcover in the UK at a high spatial resolution, using a distributed hydrologic model in the regional land-surface model JULES (Joint UK Land Environment Simulator). This work, as part of the wider initiative 'NaturEtrade', will create a novel suite of easy-to-use tools and mechanisms to allow EU landowners to quickly map and assess the value of their land in providing key ecosystem services.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coleman, C. Norman; Blumenthal, Daniel J.
2013-05-01
Based on experiences in Tokyo responding to the Fukushima Daiichi nuclear power plant crisis, a real-time, medical decision model is presented by which to make key health-related decisions given the central role of health and medical issues in such disasters. Focus is on response and recovery activities that are safe, timely, effective, and well-organized. This approach empowers on-site decision makers to make interim decisions without undue delay using readily available and high-level scientific, medical, communication, and policy expertise. Key features of this approach include ongoing assessment, consultation, information, and adaption to the changing conditions. This medical decision model presented ismore » compatible with the existing US National Response Framework structure.« less
Weston, Dale; Hauck, Katharina; Amlôt, Richard
2018-03-09
Given the importance of person to person transmission in the spread of infectious diseases, it is critically important to ensure that human behaviour with respect to infection prevention is appropriately represented within infectious disease models. This paper presents a large scale scoping review regarding the incorporation of infection prevention behaviour in infectious disease models. The outcomes of this review are contextualised within the psychological literature concerning health behaviour and behaviour change, resulting in a series of key recommendations for the incorporation of human behaviour in future infectious disease models. The search strategy focused on terms relating to behaviour, infectious disease and mathematical modelling. The selection criteria were developed iteratively to focus on original research articles that present an infectious disease model with human-human spread, in which individuals' self-protective health behaviour varied endogenously within the model. Data extracted included: the behaviour that is modelled; how this behaviour is modelled; any theoretical background for the modelling of behaviour, and; any behavioural data used to parameterise the models. Forty-two papers from an initial total of 2987 were retained for inclusion in the final review. All of these papers were published between 2002 and 2015. Many of the included papers employed a multiple, linked models to incorporate infection prevention behaviour. Both cognitive constructs (e.g., perceived risk) and, to a lesser extent, social constructs (e.g., social norms) were identified in the included papers. However, only five papers made explicit reference to psychological health behaviour change theories. Finally, just under half of the included papers incorporated behavioural data in their modelling. By contextualising the review outcomes within the psychological literature on health behaviour and behaviour change, three key recommendations for future behavioural modelling are made. First, modellers should consult with the psychological literature on health behaviour/ behaviour change when developing new models. Second, modellers interested in exploring the relationship between behaviour and disease spread should draw on social psychological literature to increase the complexity of the social world represented within infectious disease models. Finally, greater use of context-specific behavioural data (e.g., survey data, observational data) is recommended to parameterise models.
NASA Astrophysics Data System (ADS)
Way, M. J.; Aleinov, I.; Amundsen, David S.; Chandler, M. A.; Clune, T. L.; Del Genio, A. D.; Fujii, Y.; Kelley, M.; Kiang, N. Y.; Sohl, L.; Tsigaridis, K.
2017-07-01
Resolving Orbital and Climate Keys of Earth and Extraterrestrial Environments with Dynamics (ROCKE-3D) is a three-dimensional General Circulation Model (GCM) developed at the NASA Goddard Institute for Space Studies for the modeling of atmospheres of solar system and exoplanetary terrestrial planets. Its parent model, known as ModelE2, is used to simulate modern Earth and near-term paleo-Earth climates. ROCKE-3D is an ongoing effort to expand the capabilities of ModelE2 to handle a broader range of atmospheric conditions, including higher and lower atmospheric pressures, more diverse chemistries and compositions, larger and smaller planet radii and gravity, different rotation rates (from slower to more rapid than modern Earth’s, including synchronous rotation), diverse ocean and land distributions and topographies, and potential basic biosphere functions. The first aim of ROCKE-3D is to model planetary atmospheres on terrestrial worlds within the solar system such as paleo-Earth, modern and paleo-Mars, paleo-Venus, and Saturn’s moon Titan. By validating the model for a broad range of temperatures, pressures, and atmospheric constituents, we can then further expand its capabilities to those exoplanetary rocky worlds that have been discovered in the past, as well as those to be discovered in the future. We also discuss the current and near-future capabilities of ROCKE-3D as a community model for studying planetary and exoplanetary atmospheres.
An ASM/ADM model interface for dynamic plant-wide simulation.
Nopens, Ingmar; Batstone, Damien J; Copp, John B; Jeppsson, Ulf; Volcke, Eveline; Alex, Jens; Vanrolleghem, Peter A
2009-04-01
Mathematical modelling has proven to be very useful in process design, operation and optimisation. A recent trend in WWTP modelling is to include the different subunits in so-called plant-wide models rather than focusing on parts of the entire process. One example of a typical plant-wide model is the coupling of an upstream activated sludge plant (including primary settler, and secondary clarifier) to an anaerobic digester for sludge digestion. One of the key challenges when coupling these processes has been the definition of an interface between the well accepted activated sludge model (ASM1) and anaerobic digestion model (ADM1). Current characterisation and interface models have key limitations, the most critical of which is the over-use of X(c) (or lumped complex) variable as a main input to the ADM1. Over-use of X(c) does not allow for variation of degradability, carbon oxidation state or nitrogen content. In addition, achieving a target influent pH through the proper definition of the ionic system can be difficult. In this paper, we define an interface and characterisation model that maps degradable components directly to carbohydrates, proteins and lipids (and their soluble analogues), as well as organic acids, rather than using X(c). While this interface has been designed for use with the Benchmark Simulation Model No. 2 (BSM2), it is widely applicable to ADM1 input characterisation in general. We have demonstrated the model both hypothetically (BSM2), and practically on a full-scale anaerobic digester treating sewage sludge.
NASA Technical Reports Server (NTRS)
Way, M. J.; Aleinov, I.; Amundsen, David S.; Chandler, M. A.; Clune, T. L.; Del Genio, A.; Fujii, Y.; Kelley, M.; Kiang, N. Y.; Sohl, L.;
2017-01-01
Resolving Orbital and Climate Keys of Earth and Extraterrestrial Environments with Dynamics (ROCKE-3D) is a three-dimensional General Circulation Model (GCM) developed at the NASA Goddard Institute for Space Studies for the modeling of atmospheres of solar system and exoplanetary terrestrial planets. Its parent model, known as ModelE2, is used to simulate modern Earth and near-term paleo-Earth climates. ROCKE-3D is an ongoing effort to expand the capabilities of ModelE2 to handle a broader range of atmospheric conditions, including higher and lower atmospheric pressures, more diverse chemistries and compositions, larger and smaller planet radii and gravity, different rotation rates (from slower to more rapid than modern Earth's, including synchronous rotation), diverse ocean and land distributions and topographies, and potential basic biosphere functions. The first aim of ROCKE-3D is to model planetary atmospheres on terrestrial worlds within the solar system such as paleo-Earth, modern and paleo-Mars, paleo-Venus, and Saturn's moon Titan. By validating the model for a broad range of temperatures, pressures, and atmospheric constituents, we can then further expand its capabilities to those exoplanetary rocky worlds that have been discovered in the past, as well as those to be discovered in the future. We also discuss the current and near-future capabilities of ROCKE-3D as a community model for studying planetary and exoplanetary atmospheres.
Managing clinical education through understanding key principles.
Cunningham, Joanne; Wright, Caroline; Baird, Marilyn
2015-01-01
Traditionally, a practicum facilitated the integration of on-campus learning and practical workplace training. Over the past 3 decades, an educative practicum has evolved that promotes clinical reasoning, including analytical and evaluative abilities, through reflective practice. Anecdotal evidence indicates that the delivery of clinical education within medical radiation science entry-level programs continues to vacillate between traditional practicums and the new reflective practicums. To review the literature about clinical education within the medical radiation sciences and identify key principles for practitioners seeking to reflect upon and improve their approach to teaching and supporting students in the clinical environment. A search of 3 major journal databases, Internet searches, and hand searches of reference lists were conducted to identify literature about clinical education in the medical radiation sciences from January 1, 2000, to December 31, 2012. Twenty-two studies were included in this review. The 5 key elements associated with clinical education include the clinical support model and quality, overcoming the theory-practice gap, learning outcomes and reliable and valid assessment, preparing and supporting students, and accommodating differing teaching and learning needs. Many factors influence the quality of clinical education, including the culture of the clinical environment and clinical leadership roles. Several approaches can help students bridge the theory-practice gap, including simulators, role-playing activities, and reflective journals. In addition, clinical educators should use assessment strategies that objectively measure student progress, and they should be positive role models for their students. The successful clinical education of students in the medical radiation sciences depends upon the systems, structures, and people in the clinical environment. Clinical education is accomplished through the collaborative efforts of the clinical practitioner, the academic, and the student. Universities should include introductory material on clinical learning and teaching in their radiologic science curriculum.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marutzky, Sam J.; Andrews, Robert
The peer review team commends the Navarro-Intera, LLC (N-I), team for its efforts in using limited data to model the fate of radionuclides in groundwater at Yucca Flat. Recognizing the key uncertainties and related recommendations discussed in Section 6.0 of this report, the peer review team has concluded that U.S. Department of Energy (DOE) is ready for a transition to model evaluation studies in the corrective action decision document (CADD)/corrective action plan (CAP) stage. The DOE, National Nuclear Security Administration Nevada Field Office (NNSA/NFO) clarified the charge to the peer review team in a letter dated October 9, 2014, frommore » Bill R. Wilborn, NNSA/NFO Underground Test Area (UGTA) Activity Lead, to Sam J. Marutzky, N-I UGTA Project Manager: “The model and supporting information should be sufficiently complete that the key uncertainties can be adequately identified such that they can be addressed by appropriate model evaluation studies. The model evaluation studies may include data collection and model refinements conducted during the CADD/CAP stage. One major input to identifying ‘key uncertainties’ is the detailed peer review provided by independent qualified peers.” The key uncertainties that the peer review team recognized and potential concerns associated with each are outlined in Section 6.0, along with recommendations corresponding to each uncertainty. The uncertainties, concerns, and recommendations are summarized in Table ES-1. The number associated with each concern refers to the section in this report where the concern is discussed in detail.« less
NASA Astrophysics Data System (ADS)
Yuen, Anthony C. Y.; Yeoh, Guan H.; Timchenko, Victoria; Cheung, Sherman C. P.; Chan, Qing N.; Chen, Timothy
2017-09-01
An in-house large eddy simulation (LES) based fire field model has been developed for large-scale compartment fire simulations. The model incorporates four major components, including subgrid-scale turbulence, combustion, soot and radiation models which are fully coupled. It is designed to simulate the temporal and fluid dynamical effects of turbulent reaction flow for non-premixed diffusion flame. Parametric studies were performed based on a large-scale fire experiment carried out in a 39-m long test hall facility. Several turbulent Prandtl and Schmidt numbers ranging from 0.2 to 0.5, and Smagorinsky constants ranging from 0.18 to 0.23 were investigated. It was found that the temperature and flow field predictions were most accurate with turbulent Prandtl and Schmidt numbers of 0.3, respectively, and a Smagorinsky constant of 0.2 applied. In addition, by utilising a set of numerically verified key modelling parameters, the smoke filling process was successfully captured by the present LES model.
Medlyn, Belinda E; De Kauwe, Martin G; Zaehle, Sönke; Walker, Anthony P; Duursma, Remko A; Luus, Kristina; Mishurov, Mikhail; Pak, Bernard; Smith, Benjamin; Wang, Ying-Ping; Yang, Xiaojuan; Crous, Kristine Y; Drake, John E; Gimeno, Teresa E; Macdonald, Catriona A; Norby, Richard J; Power, Sally A; Tjoelker, Mark G; Ellsworth, David S
2016-08-01
The response of terrestrial ecosystems to rising atmospheric CO2 concentration (Ca ), particularly under nutrient-limited conditions, is a major uncertainty in Earth System models. The Eucalyptus Free-Air CO2 Enrichment (EucFACE) experiment, recently established in a nutrient- and water-limited woodland presents a unique opportunity to address this uncertainty, but can best do so if key model uncertainties have been identified in advance. We applied seven vegetation models, which have previously been comprehensively assessed against earlier forest FACE experiments, to simulate a priori possible outcomes from EucFACE. Our goals were to provide quantitative projections against which to evaluate data as they are collected, and to identify key measurements that should be made in the experiment to allow discrimination among alternative model assumptions in a postexperiment model intercomparison. Simulated responses of annual net primary productivity (NPP) to elevated Ca ranged from 0.5 to 25% across models. The simulated reduction of NPP during a low-rainfall year also varied widely, from 24 to 70%. Key processes where assumptions caused disagreement among models included nutrient limitations to growth; feedbacks to nutrient uptake; autotrophic respiration; and the impact of low soil moisture availability on plant processes. Knowledge of the causes of variation among models is now guiding data collection in the experiment, with the expectation that the experimental data can optimally inform future model improvements. © 2016 John Wiley & Sons Ltd.
Medlyn, Belinda E.; De Kauwe, Martin G.; Zaehle, Sönke; ...
2016-05-09
One major uncertainty in Earth System models is the response of terrestrial ecosystems to rising atmospheric CO 2 concentration (Ca), particularly under nutrient-lim- ited conditions. The Eucalyptus Free-Air CO 2 Enrichment (EucFACE) experiment, recently established in a nutrient- and water-limited woodlands, presents a unique opportunity to address this uncertainty, but can best do so if key model uncertainties have been identified in advance. Moreover, we applied seven vegetation models, which have previously been comprehensively assessed against earlier forest FACE experi- ments, to simulate a priori possible outcomes from EucFACE. Our goals were to provide quantitative projections against which to evaluatemore » data as they are collected, and to identify key measurements that should be made in the experiment to allow discrimination among alternative model assumptions in a postexperiment model intercompari- son. Simulated responses of annual net primary productivity (NPP) to elevated Ca ranged from 0.5 to 25% across models. The simulated reduction of NPP during a low-rainfall year also varied widely, from 24 to 70%. Key processes where assumptions caused disagreement among models included nutrient limitations to growth; feedbacks to nutri- ent uptake; autotrophic respiration; and the impact of low soil moisture availability on plant processes. Finally, knowledge of the causes of variation among models is now guiding data collection in the experiment, with the expectation that the experimental data can optimally inform future model improvements.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Medlyn, Belinda E.; De Kauwe, Martin G.; Zaehle, Sönke
One major uncertainty in Earth System models is the response of terrestrial ecosystems to rising atmospheric CO 2 concentration (Ca), particularly under nutrient-lim- ited conditions. The Eucalyptus Free-Air CO 2 Enrichment (EucFACE) experiment, recently established in a nutrient- and water-limited woodlands, presents a unique opportunity to address this uncertainty, but can best do so if key model uncertainties have been identified in advance. Moreover, we applied seven vegetation models, which have previously been comprehensively assessed against earlier forest FACE experi- ments, to simulate a priori possible outcomes from EucFACE. Our goals were to provide quantitative projections against which to evaluatemore » data as they are collected, and to identify key measurements that should be made in the experiment to allow discrimination among alternative model assumptions in a postexperiment model intercompari- son. Simulated responses of annual net primary productivity (NPP) to elevated Ca ranged from 0.5 to 25% across models. The simulated reduction of NPP during a low-rainfall year also varied widely, from 24 to 70%. Key processes where assumptions caused disagreement among models included nutrient limitations to growth; feedbacks to nutri- ent uptake; autotrophic respiration; and the impact of low soil moisture availability on plant processes. Finally, knowledge of the causes of variation among models is now guiding data collection in the experiment, with the expectation that the experimental data can optimally inform future model improvements.« less
Zador, Zsolt; Sperrin, Matthew; King, Andrew T
2016-01-01
Traumatic brain injury remains a global health problem. Understanding the relative importance of outcome predictors helps optimize our treatment strategies by informing assessment protocols, clinical decisions and trial designs. In this study we establish importance ranking for outcome predictors based on receiver operating indices to identify key predictors of outcome and create simple predictive models. We then explore the associations between key outcome predictors using Bayesian networks to gain further insight into predictor importance. We analyzed the corticosteroid randomization after significant head injury (CRASH) trial database of 10008 patients and included patients for whom demographics, injury characteristics, computer tomography (CT) findings and Glasgow Outcome Scale (GCS) were recorded (total of 13 predictors, which would be available to clinicians within a few hours following the injury in 6945 patients). Predictions of clinical outcome (death or severe disability at 6 months) were performed using logistic regression models with 5-fold cross validation. Predictive performance was measured using standardized partial area (pAUC) under the receiver operating curve (ROC) and we used Delong test for comparisons. Variable importance ranking was based on pAUC targeted at specificity (pAUCSP) and sensitivity (pAUCSE) intervals of 90-100%. Probabilistic associations were depicted using Bayesian networks. Complete AUC analysis showed very good predictive power (AUC = 0.8237, 95% CI: 0.8138-0.8336) for the complete model. Specificity focused importance ranking highlighted age, pupillary, motor responses, obliteration of basal cisterns/3rd ventricle and midline shift. Interestingly when targeting model sensitivity, the highest-ranking variables were age, severe extracranial injury, verbal response, hematoma on CT and motor response. Simplified models, which included only these key predictors, had similar performance (pAUCSP = 0.6523, 95% CI: 0.6402-0.6641 and pAUCSE = 0.6332, 95% CI: 0.62-0.6477) compared to the complete models (pAUCSP = 0.6664, 95% CI: 0.6543-0.679, pAUCSE = 0.6436, 95% CI: 0.6289-0.6585, de Long p value 0.1165 and 0.3448 respectively). Bayesian networks showed the predictors that did not feature in the simplified models were associated with those that did. We demonstrate that importance based variable selection allows simplified predictive models to be created while maintaining prediction accuracy. Variable selection targeting specificity confirmed key components of clinical assessment in TBI whereas sensitivity based ranking suggested extracranial injury as one of the important predictors. These results help refine our approach to head injury assessment, decision-making and outcome prediction targeted at model sensitivity and specificity. Bayesian networks proved to be a comprehensive tool for depicting probabilistic associations for key predictors giving insight into why the simplified model has maintained accuracy.
Woody-Herbaceous Species Coexistence in Mulga Hillslopes: Modelling Structure and Function
NASA Astrophysics Data System (ADS)
Soltanjalili, M. J.; Saco, P. M.; Willgoose, G. R.
2016-12-01
The fundamental processes underlying the coexistence of woody and herbaceous species in arid and semi-arid areas have been a topic of intense research during the last few decades. Experimental and modelling studies have both supported and disputed alternative hypotheses explaining this phenomenon. Vegetation models including the key processes that drive coexistence can be used to understand vegetation pattern dynamics and structure under current climate conditions, and to predict changes under future conditions. Here we present work done towards linking the observations to modelling. The model captures woody-herbaceous coexistence along a rainfall gradient characteristic of typical conditions on Mulga ecosystems in Australia. The dynamic vegetation model simulates the spatial dynamics of overland flow, soil moisture and vegetation growth of two species. It incorporates key mechanisms for coexistence and pattern formation, including facilitation by evaporation reduction through shading, and infiltration feedbacks, local and non-local seed dispersal, competition for water uptake. Model outcomes, obtained including diflerent mechanisms, are qualitatively compared to typical vegetation cover patterns in the Australian Mulga bioregion where bush fire is very infrequent and the fate of vegetation cover is mostly determined by intra- and interspecies interactions. Through these comparisons, and by drawing on the large number of recent studies that have delivered new insights into the dynamics of such ecosystems, we identify main mechanisms that need an improved representation in the dynamic vegetation models. We show that a realistic parameterization of the model leads to results which are aligned with the observations reported in the literature. At the lower end of the rainfall gradient woody species coexist with herbaceous species within a sparse banded pattern, while at higher rainfall woody species tend to dominate the landscape.
Modeling of ductile fragmentation that includes void interactions
NASA Astrophysics Data System (ADS)
Meulbroek Fick, J. P.; Ramesh, K. T.; Swaminathan, P. K.
2015-12-01
The failure and fragmentation of ductile materials through the nucleation, growth, and coalescence of voids is important to the understanding of key structural materials. In this model of development effort, ductile fragmentation of an elastic-viscoplastic material is studied through a computational approach which couples these key stages of ductile failure with nucleation site distributions and wave propagation, and predicts fragment spacing within a uniaxial strain approximation. This powerful tool is used to investigate the mechanical and thermal response of OFHC copper at a strain rate of 105. Once the response of the material is understood, the fragmentation of this test material is considered. The average fragment size as well as the fragment size distribution is formulated.
Cognitive Abilities Explain Wording Effects in the Rosenberg Self-Esteem Scale.
Gnambs, Timo; Schroeders, Ulrich
2017-12-01
There is consensus that the 10 items of the Rosenberg Self-Esteem Scale (RSES) reflect wording effects resulting from positively and negatively keyed items. The present study examined the effects of cognitive abilities on the factor structure of the RSES with a novel, nonparametric latent variable technique called local structural equation models. In a nationally representative German large-scale assessment including 12,437 students competing measurement models for the RSES were compared: a bifactor model with a common factor and a specific factor for all negatively worded items had an optimal fit. Local structural equation models showed that the unidimensionality of the scale increased with higher levels of reading competence and reasoning, while the proportion of variance attributed to the negatively keyed items declined. Wording effects on the factor structure of the RSES seem to represent a response style artifact associated with cognitive abilities.
A double hit model for the distribution of time to AIDS onset
NASA Astrophysics Data System (ADS)
Chillale, Nagaraja Rao
2013-09-01
Incubation time is a key epidemiologic descriptor of an infectious disease. In the case of HIV infection this is a random variable and is probably the longest one. The probability distribution of incubation time is the major determinant of the relation between the incidences of HIV infection and its manifestation to Aids. This is also one of the key factors used for accurate estimation of AIDS incidence in a region. The present article i) briefly reviews the work done, points out uncertainties in estimation of AIDS onset time and stresses the need for its precise estimation, ii) highlights some of the modelling features of onset distribution including immune failure mechanism, and iii) proposes a 'Double Hit' model for the distribution of time to AIDS onset in the cases of (a) independent and (b) dependent time variables of the two markers and examined the applicability of a few standard probability models.
First-order fire effects on herbs and Shrubs: present knowledge and process modeling needs
Kirsten Stephan; Melanie Miller; Matthew B. Dickinson
2010-01-01
Herbaceous plants and shrubs have received little attention in terms of fire effects modeling despite their critical role in ecosystem integrity and resilience after wildfires and prescribed burns. In this paper, we summarize current knowledge of direct effects of fire on herb and shrub (including cacti) vegetative tissues and seed banks, propose key components for...
Thematic mapper flight model preshipment review data package. Volume 3, part C: System data
NASA Technical Reports Server (NTRS)
1982-01-01
Failure reports for flight model-1 of the thematic mapper are summarized showing the symptom and cause of failure as well as the corrective action taken. Each report is keyed to the major subsystem against which the failure occurred. Requests for deviation/waiver are listed by number, description, and current status. Copies of engineering proposals are included.
ERIC Educational Resources Information Center
Popovics, Alexander J.; Jonas, Peter M.
This paper describes the use of a comprehensive participative planning model for colleges and universities that includes processes of environmental scanning, proposed by J. Morrison and others, and key elements of the Objective-Based Assessment, Planning, and Resource Allocation System (OAPRAS) proposed by M. Capoor. The process is explained…
Santos, Ana Rita; Kanellopoulos, Alexandros K.
2014-01-01
The Fragile X syndrome (FXS) is the most frequent form of inherited mental disability and is considered a monogenic cause of autism spectrum disorder. FXS is caused by a triplet expansion that inhibits the expression of the FMR1 gene. The gene product, the Fragile X Mental Retardation Protein (FMRP), regulates mRNA metabolism in brain and nonneuronal cells. During brain development, FMRP controls the expression of key molecules involved in receptor signaling, cytoskeleton remodeling, protein synthesis and, ultimately, spine morphology. Symptoms associated with FXS include neurodevelopmental delay, cognitive impairment, anxiety, hyperactivity, and autistic-like behavior. Twenty years ago the first Fmr1 KO mouse to study FXS was generated, and several years later other key models including the mutant Drosophila melanogaster, dFmr1, have further helped the understanding of the cellular and molecular causes behind this complex syndrome. Here, we review to which extent these biological models are affected by the absence of FMRP, pointing out the similarities with the observed human dysfunction. Additionally, we discuss several potential treatments under study in animal models that are able to partially revert some of the FXS abnormalities. PMID:25227249
Southern Great Plains Rapid Ecoregional Assessment: pre-assessment report
Assal, Timothy J.; Melcher, Cynthia P.; Carr, Natasha B.
2015-01-01
An overview on the ecology and management issues for each Conservation Element is provided, including distribution and ecology, landscape structure and dynamics, and associated species of management concern affiliated with each Conservation Element. For each Conservation Element, effects of the Change Agents are described. An overview of potential key ecological attributes and potential Change Agents are summarized by conceptual models and tables. The tables provide an organizational framework and background information for evaluating the key ecological attributes and Change Agents in Phase II.
HSCT noise reduction technology development at GE Aircraft Engines
NASA Technical Reports Server (NTRS)
Majjigi, Rudramuni K.
1992-01-01
The topics covered include the following: High Speed Civil Transport (HSCT) exhaust nozzle design approaches; GE aircraft engine (GEAE) HSCT acoustics research; 2DCD non-IVP suppressor ejector; key sensitivities from reference aircraft; acoustic experiments; aero-mixing experimental set-up; fluid shield nozzle; HSCT Mach 2.4 flade nozzle; noise prediction; nozzle concept for GE/Boeing joint test; scale model hot core flow path modified to prevent hub-choking CFL3-D solution; HSCT exhaust nozzle status; and key acoustic technology issues for HSCT's.
HSCT noise reduction technology development at GE Aircraft Engines
NASA Astrophysics Data System (ADS)
Majjigi, Rudramuni K.
1992-04-01
The topics covered include the following: High Speed Civil Transport (HSCT) exhaust nozzle design approaches; GE aircraft engine (GEAE) HSCT acoustics research; 2DCD non-IVP suppressor ejector; key sensitivities from reference aircraft; acoustic experiments; aero-mixing experimental set-up; fluid shield nozzle; HSCT Mach 2.4 flade nozzle; noise prediction; nozzle concept for GE/Boeing joint test; scale model hot core flow path modified to prevent hub-choking CFL3-D solution; HSCT exhaust nozzle status; and key acoustic technology issues for HSCT's.
Test-and-treat approach to HIV/AIDS: a primer for mathematical modeling.
Nah, Kyeongah; Nishiura, Hiroshi; Tsuchiya, Naho; Sun, Xiaodan; Asai, Yusuke; Imamura, Akifumi
2017-09-05
The public benefit of test-and-treat has induced a need to justify goodness for the public, and mathematical modeling studies have played a key role in designing and evaluating the test-and-treat strategy for controlling HIV/AIDS. Here we briefly and comprehensively review the essence of contemporary understanding of the test-and-treat policy through mathematical modeling approaches and identify key pitfalls that have been identified to date. While the decrease in HIV incidence is achieved with certain coverages of diagnosis, care and continued treatment, HIV prevalence is not necessarily decreased and sometimes the test-and-treat is accompanied by increased long-term cost of antiretroviral therapy (ART). To confront with the complexity of assessment on this policy, the elimination threshold or the effective reproduction number has been proposed for its use in determining the overall success to anticipate the eventual elimination. Since the publication of original model in 2009, key issues of test-and-treat modeling studies have been identified, including theoretical problems surrounding the sexual partnership network, heterogeneities in the transmission dynamics, and realistic issues of achieving and maintaining high treatment coverage in the most hard-to-reach populations. To explicitly design country-specific control policy, quantitative modeling approaches to each single setting with differing epidemiological context would require multi-disciplinary collaborations among clinicians, public health practitioners, laboratory technologists, epidemiologists and mathematical modelers.
NASA Astrophysics Data System (ADS)
Sahubawa, L.; Pertiwiningrum, A.; Rahmadian, Y.
2018-03-01
The research objectives were to design, assess the economic value and consumer preference level of stingray leather products. The research method included a product design, analysis of economic value and consumer preferences. Mondol stingray (Himantura gerardi) leather, with a length of 50 cm and width of 30 cm, were processed into ID card wallet, man and women’s wallet and key holder. The number of respondents involved to analyze the preference level is 75 respondents (students, lecturers and employees of Universitas Gadjah Mada). Indicators of consumer preferences were model, color, price and purchasing power. The price of ID card wallet is Rp. 450,000; women wallet is Rp. 650,000 and a key holder is Rp. 300,000. Consumer preferences on ID card wallet were as follow: 84 % stated very interesting model; 83 % stated very interesting color; 61 % stated cheap and 53 % had enough. Consumer preferences of women’s wallet were as follow: 81 % stated very interesting model; 84 % stated very interesting color; 56 % stated cheap and 57 % had enough. Consumer preferences on key holder were as follow: 49 % stated interesting model; 72 % stated very interesting color; 61 % stated cheap and 57 % had enough.
Physical Layer Secret-Key Generation Scheme for Transportation Security Sensor Network
Yang, Bin; Zhang, Jianfeng
2017-01-01
Wireless Sensor Networks (WSNs) are widely used in different disciplines, including transportation systems, agriculture field environment monitoring, healthcare systems, and industrial monitoring. The security challenge of the wireless communication link between sensor nodes is critical in WSNs. In this paper, we propose a new physical layer secret-key generation scheme for transportation security sensor network. The scheme is based on the cooperation of all the sensor nodes, thus avoiding the key distribution process, which increases the security of the system. Different passive and active attack models are analyzed in this paper. We also prove that when the cooperative node number is large enough, even when the eavesdropper is equipped with multiple antennas, the secret-key is still secure. Numerical results are performed to show the efficiency of the proposed scheme. PMID:28657588
Physical Layer Secret-Key Generation Scheme for Transportation Security Sensor Network.
Yang, Bin; Zhang, Jianfeng
2017-06-28
Wireless Sensor Networks (WSNs) are widely used in different disciplines, including transportation systems, agriculture field environment monitoring, healthcare systems, and industrial monitoring. The security challenge of the wireless communication link between sensor nodes is critical in WSNs. In this paper, we propose a new physical layer secret-key generation scheme for transportation security sensor network. The scheme is based on the cooperation of all the sensor nodes, thus avoiding the key distribution process, which increases the security of the system. Different passive and active attack models are analyzed in this paper. We also prove that when the cooperative node number is large enough, even when the eavesdropper is equipped with multiple antennas, the secret-key is still secure. Numerical results are performed to show the efficiency of the proposed scheme.
Preparing Healthy Young Children for Hospitalization: A Rationale and Proposal.
ERIC Educational Resources Information Center
Poster, Elizabeth C.
1984-01-01
Proposes a precrisis curriculum for nursery and elementary schools to prepare healthy young children for hospitalization as an alternative to current preadmission preparation programs. Key elements include such stress-immunization techniques as systematic desensitization, modeling, and rehearsal. (AS)
Sample, Renee Beach; Kinney, Allison L; Jackson, Kurt; Diestelkamp, Wiebke; Bigelow, Kimberly Edginton
2017-09-01
The Timed Up and Go (TUG) has been commonly used for fall risk assessment. The instrumented Timed Up and Go (iTUG) adds wearable sensors to capture sub-movements and may be more sensitive. Posturography assessments have also been used for determining fall risk. This study used stepwise logistic regression models to identify key outcome measures for the iTUG and posturography protocols. The effectiveness of the models containing these measures in differentiating fallers from non-fallers were then compared for each: iTUG total time duration only, iTUG, posturography, and combined iTUG and posturography assessments. One hundred and fifty older adults participated in this study. The iTUG measures were calculated utilizing APDM Inc.'s Mobility Lab software. Traditional and non-linear posturography measures were calculated from center of pressure during quiet-standing. The key outcome measures incorporated in the iTUG assessment model (sit-to-stand lean angle and height) resulted in a model sensitivity of 48.1% and max re-scaled R 2 value of 0.19. This was a higher sensitivity, indicating better differentiation, compared to the model only including total time duration (outcome of the traditional TUG), which had a sensitivity of 18.2%. When the key outcome measures of the iTUG and the posturography assessments were combined into a single model, the sensitivity was approximately the same as the iTUG model alone. Overall the findings of this study support that the iTUG demonstrates greater sensitivity than the total time duration, but that carrying out both iTUG and posturography does not greatly improve sensitivity when used as a fall risk screening tool. Copyright © 2017 Elsevier B.V. All rights reserved.
Modeling the behavior of an earthquake base-isolated building.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coveney, V. A.; Jamil, S.; Johnson, D. E.
1997-11-26
Protecting a structure against earthquake excitation by supporting it on laminated elastomeric bearings has become a widely accepted practice. The ability to perform accurate simulation of the system, including FEA of the bearings, would be desirable--especially for key installations. In this paper attempts to model the behavior of elastomeric earthquake bearings are outlined. Attention is focused on modeling highly-filled, low-modulus, high-damping elastomeric isolator systems; comparisons are made between standard triboelastic solid model predictions and test results.
Progress in Validation of Wind-US for Ramjet/Scramjet Combustion
NASA Technical Reports Server (NTRS)
Engblom, William A.; Frate, Franco C.; Nelson, Chris C.
2005-01-01
Validation of the Wind-US flow solver against two sets of experimental data involving high-speed combustion is attempted. First, the well-known Burrows- Kurkov supersonic hydrogen-air combustion test case is simulated, and the sensitively of ignition location and combustion performance to key parameters is explored. Second, a numerical model is developed for simulation of an X-43B candidate, full-scale, JP-7-fueled, internal flowpath operating in ramjet mode. Numerical results using an ethylene-air chemical kinetics model are directly compared against previously existing pressure-distribution data along the entire flowpath, obtained in direct-connect testing conducted at NASA Langley Research Center. Comparison to derived quantities such as burn efficiency and thermal throat location are also made. Reasonable to excellent agreement with experimental data is demonstrated for key parameters in both simulation efforts. Additional Wind-US feature needed to improve simulation efforts are described herein, including maintaining stagnation conditions at inflow boundaries for multi-species flow. An open issue regarding the sensitivity of isolator unstart to key model parameters is briefly discussed.
Integrated Main Propulsion System Performance Reconstruction Process/Models
NASA Technical Reports Server (NTRS)
Lopez, Eduardo; Elliott, Katie; Snell, Steven; Evans, Michael
2013-01-01
The Integrated Main Propulsion System (MPS) Performance Reconstruction process provides the MPS post-flight data files needed for postflight reporting to the project integration management and key customers to verify flight performance. This process/model was used as the baseline for the currently ongoing Space Launch System (SLS) work. The process utilizes several methodologies, including multiple software programs, to model integrated propulsion system performance through space shuttle ascent. It is used to evaluate integrated propulsion systems, including propellant tanks, feed systems, rocket engine, and pressurization systems performance throughout ascent based on flight pressure and temperature data. The latest revision incorporates new methods based on main engine power balance model updates to model higher mixture ratio operation at lower engine power levels.
A nationwide survey of patient centered medical home demonstration projects.
Bitton, Asaf; Martin, Carina; Landon, Bruce E
2010-06-01
The patient centered medical home has received considerable attention as a potential way to improve primary care quality and limit cost growth. Little information exists that systematically compares PCMH pilot projects across the country. Cross-sectional key-informant interviews. Leaders from existing PCMH demonstration projects with external payment reform. We used a semi-structured interview tool with the following domains: project history, organization and participants, practice requirements and selection process, medical home recognition, payment structure, practice transformation, and evaluation design. A total of 26 demonstrations in 18 states were interviewed. Current demonstrations include over 14,000 physicians caring for nearly 5 million patients. A majority of demonstrations are single payer, and most utilize a three component payment model (traditional fee for service, per person per month fixed payments, and bonus performance payments). The median incremental revenue per physician per year was $22,834 (range $720 to $91,146). Two major practice transformation models were identified--consultative and implementation of the chronic care model. A majority of demonstrations did not have well-developed evaluation plans. Current PCMH demonstration projects with external payment reform include large numbers of patients and physicians as well as a wide spectrum of implementation models. Key questions exist around the adequacy of current payment mechanisms and evaluation plans as public and policy interest in the PCMH model grows.
Decision support systems and the healthcare strategic planning process: a case study.
Lundquist, D L; Norris, R M
1991-01-01
The repertoire of applications that comprises health-care decision support systems (DSS) includes analyses of clinical, financial, and operational activities. As a whole, these applications facilitate developing comprehensive and interrelated business and medical models that support the complex decisions required to successfully manage today's health-care organizations. Kennestone Regional Health Care System's use of DSS to facilitate strategic planning has precipitated marked changes in the organization's method of determining capital allocations. This case study discusses Kennestone's use of DSS in the strategic planning process, including profiles of key DSS modeling components.
Module Degradation Mechanisms Studied by a Multi-Scale Approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnston, Steve; Al-Jassim, Mowafak; Hacke, Peter
2016-11-21
A key pathway to meeting the Department of Energy SunShot 2020 goals is to reduce financing costs by improving investor confidence through improved photovoltaic (PV) module reliability. A comprehensive approach to further understand and improve PV reliability includes characterization techniques and modeling from module to atomic scale. Imaging techniques, which include photoluminescence, electroluminescence, and lock-in thermography, are used to locate localized defects responsible for module degradation. Small area samples containing such defects are prepared using coring techniques and are then suitable and available for microscopic study and specific defect modeling and analysis.
Avanesian, Agnesa; Semnani, Sahar; Jafari, Mahtab
2009-08-01
Once a molecule is identified as a potential drug, the detection of adverse drug reactions is one of the key components of its development and the FDA approval process. We propose using Drosophila melanogaster to screen for reproductive adverse drug reactions in the early stages of drug development. Compared with other non-mammalian models, D. melanogaster has many similarities to the mammalian reproductive system, including putative sex hormones and conserved proteins involved in genitourinary development. Furthermore, the D. melanogaster model would present significant advantages in time efficiency and cost-effectiveness compared with mammalian models. We present data on methotrexate (MTX) reproductive adverse events in multiple animal models, including fruit flies, as proof-of-concept for the use of the D. melanogaster model.
Model of visual contrast gain control and pattern masking
NASA Technical Reports Server (NTRS)
Watson, A. B.; Solomon, J. A.
1997-01-01
We have implemented a model of contrast gain and control in human vision that incorporates a number of key features, including a contrast sensitivity function, multiple oriented bandpass channels, accelerating nonlinearities, and a devisive inhibitory gain control pool. The parameters of this model have been optimized through a fit to the recent data that describe masking of a Gabor function by cosine and Gabor masks [J. M. Foley, "Human luminance pattern mechanisms: masking experiments require a new model," J. Opt. Soc. Am. A 11, 1710 (1994)]. The model achieves a good fit to the data. We also demonstrate how the concept of recruitment may accommodate a variant of this model in which excitatory and inhibitory paths have a common accelerating nonlinearity, but which include multiple channels tuned to different levels of contrast.
An improved network model for railway traffic
NASA Astrophysics Data System (ADS)
Li, Keping; Ma, Xin; Shao, Fubo
In railway traffic, safety analysis is a key issue for controlling train operation. Here, the identification and order of key factors are very important. In this paper, a new network model is constructed for analyzing the railway safety, in which nodes are regarded as causation factors and links represent possible relationships among those factors. Our aim is to give all these nodes an importance order, and to find the in-depth relationship among these nodes including how failures spread among them. Based on the constructed network model, we propose a control method to ensure the safe state by setting each node a threshold. As the results, by protecting the Hub node of the constructed network, the spreading of railway accident can be controlled well. The efficiency of such a method is further tested with the help of numerical example.
Hole, E.; Stubbs, B.; Roskell, C.; Soundy, A.
2014-01-01
Background and Purpose. Patient experience is increasingly being recognised as a key health outcome due to its positive correlation with quality of life and treatment compliance. The aim of this study was to create a model of how patient's experiences of rehabilitation after stroke influence their outcome. Methods. A metaethnography of qualitative articles published since 2000 was undertaken. A systematic search of four databases using the keywords was competed. Original studies were included if at least 50% of their data from results was focused on stroke survivors experiences and if they reflected an overarching experience of stroke rehabilitation. Relevant papers were appraised for quality using the COREQ tool. Pata analysis as undertaken using traditional processes of extracting, interpreting, translating, and synthesizing the included studies. Results. Thirteen studies were included. Two themes (1) evolution of identity and (2) psychosocial constructs that influence experience were identified. A model of recovery was generated. Conclusion. The synthesis model conceptualizes how the recovery of stroke survivors' sense of identity changes during rehabilitation illustrating changes and evolution over time. Positive experiences are shaped by key psychosocial concepts such as hope, social support, and rely on good self-efficacy which is influenced by both clinical staff and external support. PMID:24616623
Rice, Simon M; Purcell, Rosemary; McGorry, Patrick D
2018-03-01
Adolescent and young adult men do poorly on indicators of mental health evidenced by elevated rates of suicide, conduct disorder, substance use, and interpersonal violence relative to their female peers. Data on global health burden clearly demonstrate that young men have a markedly distinct health risk profile from young women, underscoring different prevention and intervention needs. Evidence indicates that boys disconnect from health-care services during adolescence, marking the beginning of a progression of health-care disengagement and associated barriers to care, including presenting to services differently, experiencing an inadequate or poorly attuned clinical response, and needing to overcome pervasive societal attitudes and self-stigma to access available services. This review synthesizes key themes related to mental ill health in adolescent boys and in young adult men. Key social determinants are discussed, including mental health literacy, self-stigma and shame, masculinity, nosology and diagnosis, and service acceptability. A call is made for focused development of policy, theory, and evaluation of targeted interventions for this population, including gender-synchronized service model reform and training of staff, including the e-health domain. Such progress is expected to yield significant social and economic benefits, including reduction to mental ill health and interpersonal violence displayed by adolescent boys and young adult men. Copyright © 2018. Published by Elsevier Inc.
Modeling Exponential Population Growth
ERIC Educational Resources Information Center
McCormick, Bonnie
2009-01-01
The concept of population growth patterns is a key component of understanding evolution by natural selection and population dynamics in ecosystems. The National Science Education Standards (NSES) include standards related to population growth in sections on biological evolution, interdependence of organisms, and science in personal and social…
Caring for Us, Caring about People.
ERIC Educational Resources Information Center
Morris, Robert
1992-01-01
Proposes an alternative conceptual framework for social work practice. Describes the present model as lacking a clear, easily articulated identity. Details social problems, including family structure changes, mental illness, physical disability, delinquency, and poverty. Provides key steps to alleviating these problems, emphasizing more active…
Determinants of Dentists' Geographic Distribution.
ERIC Educational Resources Information Center
Beazoglou, Tryfon J.; And Others
1992-01-01
A model for explaining the geographic distribution of dentists' practice locations is presented and applied to particular market areas in Connecticut. Results show geographic distribution is significantly related to a few key variables, including demography, disposable income, and housing prices. Implications for helping students make practice…
Simulations of Highway Traffic With Various Degrees of Automation
DOT National Transportation Integrated Search
1996-01-01
A traffic simulator to study highway traffic under various degrees of automation is being developed at Argonne National Laboratory. The key components of this simulator include a global and a local Expert Driver Model, a human factor study and a grap...
Persistence: A Key Factor in Human Performance at Work.
ERIC Educational Resources Information Center
Blair, Daniel V.; Price, Donna J.
1998-01-01
Reviews the construct of persistence as it relates to achievement motivation at work. Topics include foundational concepts of persistence; achievement motivation theory; a human motivation model; goal-setting theory; self-efficacy theory; expectancy theory; task assignments; confidence; and perceived value. (LRW)
Small species indicate big changes? Arctic report card
USDA-ARS?s Scientific Manuscript database
As Arctic climate warms, how will terrestrial ecosystems and the communities that they support respond in the coming decades? Small mammals including shrews and their associated parasites can serve as key indicators and proxies of accelerating perturbation, contributing to general models for anticip...
NASA Astrophysics Data System (ADS)
Lv, Zheng; Sui, Haigang; Zhang, Xilin; Huang, Xianfeng
2007-11-01
As one of the most important geo-spatial objects and military establishment, airport is always a key target in fields of transportation and military affairs. Therefore, automatic recognition and extraction of airport from remote sensing images is very important and urgent for updating of civil aviation and military application. In this paper, a new multi-source data fusion approach on automatic airport information extraction, updating and 3D modeling is addressed. Corresponding key technologies including feature extraction of airport information based on a modified Ostu algorithm, automatic change detection based on new parallel lines-based buffer detection algorithm, 3D modeling based on gradual elimination of non-building points algorithm, 3D change detecting between old airport model and LIDAR data, typical CAD models imported and so on are discussed in detail. At last, based on these technologies, we develop a prototype system and the results show our method can achieve good effects.
Recommendations to Support Nurses and Improve the Delivery of Oncology and Palliative Care in India.
LeBaron, Virginia T; Palat, Gayatri; Sinha, Sudha; Chinta, Sanjeeva Kumari; Jamima, Beaulah John Battula; Pilla, Usha Lakshmi; Podduturi, Nireekshana; Shapuram, Yadamma; Vennela, Padma; Rapelli, Vineela; Lalani, Zahra; Beck, Susan L
2017-01-01
Nurses in India often practice in resource-constrained settings and care for cancer patients with high symptom burden yet receive little oncology or palliative care training. The aim of this study is to explore challenges encountered by nurses in India and offer recommendations to improve the delivery of oncology and palliative care. Qualitative ethnography. The study was conducted at a government cancer hospital in urban South India. Thirty-seven oncology/palliative care nurses and 22 others (physicians, social workers, pharmacists, patients/family members) who interact closely with nurses were included in the study. Data were collected over 9 months (September 2011- June 2012). Key data sources included over 400 hours of participant observation and 54 audio-recorded semi-structured interviews. Systematic qualitative analysis of field notes and interview transcripts identified key themes and patterns. Key concerns of nurses included safety related to chemotherapy administration, workload and clerical responsibilities, patients who died on the wards, monitoring family attendants, and lack of supplies. Many participants verbalized distress that they received no formal oncology training. Recommendations to support nurses in India include: prioritize safety, optimize role of the nurse and explore innovative models of care delivery, empower staff nurses, strengthen nurse leadership, offer relevant educational programs, enhance teamwork, improve cancer pain management, and engage in research and quality improvement projects. Strong institutional commitment and leadership are required to implement interventions to support nurses. Successful interventions must account for existing cultural and professional norms and first address safety needs of nurses. Positive aspects from existing models of care delivery can be adapted and integrated into general nursing practice.
Measurement-device-independent entanglement-based quantum key distribution
NASA Astrophysics Data System (ADS)
Yang, Xiuqing; Wei, Kejin; Ma, Haiqiang; Sun, Shihai; Liu, Hongwei; Yin, Zhenqiang; Li, Zuohan; Lian, Shibin; Du, Yungang; Wu, Lingan
2016-05-01
We present a quantum key distribution protocol in a model in which the legitimate users gather statistics as in the measurement-device-independent entanglement witness to certify the sources and the measurement devices. We show that the task of measurement-device-independent quantum communication can be accomplished based on monogamy of entanglement, and it is fairly loss tolerate including source and detector flaws. We derive a tight bound for collective attacks on the Holevo information between the authorized parties and the eavesdropper. Then with this bound, the final secret key rate with the source flaws can be obtained. The results show that long-distance quantum cryptography over 144 km can be made secure using only standard threshold detectors.
ERIC Educational Resources Information Center
Sherow, Sheila M.; Scrimshaw, Roberta
This resource book provides materials and methods for a model Entrepreneurship Training Center (ETC) school-to-work program for rural out-of-school adults. Introductory materials include learning goals within ETC's four curriculum areas, instructional methods, and introduction to key concepts. The remainder of the book is divided into four…
EMDS 3.0: A modeling framework for coping with complexity in environmental assessment and planning.
K.M. Reynolds
2006-01-01
EMDS 3.0 is implemented as an ArcMap® extension and integrates the logic engine of NetWeaver® to perform landscape evaluations, and the decision modeling engine of Criterium DecisionPlus® for evaluating management priorities. Key features of the system's evaluation component include abilities to (1) reason about large, abstract, multifaceted ecosystem management...
ERIC Educational Resources Information Center
Savall-Alemany, Francisco; Domènech-Blanco, Josep Lluís; Guisasola, Jenaro; Martínez-Torregrosa, Joaquín
2016-01-01
Our study sets out to identify the difficulties that high school students, teachers, and university students encounter when trying to explain atomic spectra. To do so, we identify the key concepts that any quantum model for the emission and absorption of electromagnetic radiation must include to account for the gas spectra and we then design two…
Innovation in mental health services: what are the key components of success?
Brooks, Helen; Pilgrim, David; Rogers, Anne
2011-10-26
Service development innovation in health technology and practice is viewed as a pressing need within the field of mental health yet is relatively poorly understood. Macro-level theories have been criticised for their limited explanatory power and they may not be appropriate for understanding local and fine-grained uncertainties of services and barriers to the sustainability of change. This study aimed to identify contextual influences inhibiting or promoting the acceptance and integration of innovations in mental health services in both National Health Service (NHS) and community settings. A comparative study using qualitative and case study data collection methods, including semi-structured interviews with key stakeholders and follow-up telephone interviews over a one-year period. The analysis was informed by learning organisation theory. Drawn from 11 mental health innovation projects within community, voluntary and NHS settings, 65 participants were recruited including service users, commissioners, health and non-health professionals, managers, and caregivers. The methods deployed in this evaluation focused on process-outcome links within and between the 11 projects. Key barriers to innovation included resistance from corporate departments and middle management, complexity of the innovation, and the availability and access to resources on a prospective basis within the host organisation. The results informed the construction of a proposed model of innovation implementation within mental health services. The main components of which are context, process, and outcomes. The study produced a model of conducive and impeding factors drawn from the composite picture of 11 innovative mental health projects, and this is discussed in light of relevant literature. The model provides a rich agenda to consider for services wanting to innovate or adopt innovations from elsewhere. The evaluation suggested the importance of studying innovation with a focus on context, process, and outcomes.
Innovation in mental health services: what are the key components of success?
2011-01-01
Background Service development innovation in health technology and practice is viewed as a pressing need within the field of mental health yet is relatively poorly understood. Macro-level theories have been criticised for their limited explanatory power and they may not be appropriate for understanding local and fine-grained uncertainties of services and barriers to the sustainability of change. This study aimed to identify contextual influences inhibiting or promoting the acceptance and integration of innovations in mental health services in both National Health Service (NHS) and community settings. Methods A comparative study using qualitative and case study data collection methods, including semi-structured interviews with key stakeholders and follow-up telephone interviews over a one-year period. The analysis was informed by learning organisation theory. Drawn from 11 mental health innovation projects within community, voluntary and NHS settings, 65 participants were recruited including service users, commissioners, health and non-health professionals, managers, and caregivers. The methods deployed in this evaluation focused on process-outcome links within and between the 11 projects. Results Key barriers to innovation included resistance from corporate departments and middle management, complexity of the innovation, and the availability and access to resources on a prospective basis within the host organisation. The results informed the construction of a proposed model of innovation implementation within mental health services. The main components of which are context, process, and outcomes. Conclusions The study produced a model of conducive and impeding factors drawn from the composite picture of 11 innovative mental health projects, and this is discussed in light of relevant literature. The model provides a rich agenda to consider for services wanting to innovate or adopt innovations from elsewhere. The evaluation suggested the importance of studying innovation with a focus on context, process, and outcomes. PMID:22029930
Morgan, S; Smedts, A; Campbell, N; Sager, R; Lowe, M; Strasser, S
2009-01-01
The Northern Territory (NT) of Australia is a unique setting for training medical students. This learning environment is characterised by Aboriginal health and an emphasis on rural and remote primary care practice. For over a decade the NT Clinical School (NTCS) of Flinders University has been teaching undergraduate medical students in the NT. Community based medical education (CBME) has been demonstrated to be an effective method of learning medicine, particularly in rural settings. As a result, it is rapidly gaining popularity in Australia and other countries. The NTCS adopted this model some years ago with the implementation of its Rural Clinical School; however, urban models of CBME are much less well developed than those in rural areas. There is considerable pressure to better incorporate CBME into medical student teaching environment, particularly because of the projected massive increase in student numbers over the next few years. To date, the community setting of urban Darwin, the NT capital city, has not been well utilised for medical student training. In 2008, the NTCS enrolled its first cohort of students in a new hybrid CBME program based in urban Darwin. This report describes the process and challenges involved in development of the program, including justification for a hybrid model and the adaptation of a rural model to an urban setting. Relationships were established and formalised with key partners and stakeholders, including GPs and general practices, Aboriginal medical services, community based healthcare providers and other general practice and community organisations. Other significant issues included curriculum development and review, development of learning materials and the establishment of robust evaluation methods. Development of the CBME model in Darwin posed a number of key challenges. Although the experience of past rural programs was useful, a number of distinct differences were evident in the urban setting. Change leadership and inter-professional collaboration were key strengths in the implementation and ongoing evaluation of the program. The program will provide important information about medical student training in urban community settings, and help inform other clinical schools considering the adoption of similar models.
Modeling heart rate variability by stochastic feedback
NASA Technical Reports Server (NTRS)
Amaral, L. A.; Goldberger, A. L.; Stanley, H. E.
1999-01-01
We consider the question of how the cardiac rhythm spontaneously self-regulates and propose a new mechanism as a possible answer. We model the neuroautonomic regulation of the heart rate as a stochastic feedback system and find that the model successfully accounts for key characteristics of cardiac variability, including the 1/f power spectrum, the functional form and scaling of the distribution of variations of the interbeat intervals, and the correlations in the Fourier phases which indicate nonlinear dynamics.
Multi-scale Modeling in Clinical Oncology: Opportunities and Barriers to Success.
Yankeelov, Thomas E; An, Gary; Saut, Oliver; Luebeck, E Georg; Popel, Aleksander S; Ribba, Benjamin; Vicini, Paolo; Zhou, Xiaobo; Weis, Jared A; Ye, Kaiming; Genin, Guy M
2016-09-01
Hierarchical processes spanning several orders of magnitude of both space and time underlie nearly all cancers. Multi-scale statistical, mathematical, and computational modeling methods are central to designing, implementing and assessing treatment strategies that account for these hierarchies. The basic science underlying these modeling efforts is maturing into a new discipline that is close to influencing and facilitating clinical successes. The purpose of this review is to capture the state-of-the-art as well as the key barriers to success for multi-scale modeling in clinical oncology. We begin with a summary of the long-envisioned promise of multi-scale modeling in clinical oncology, including the synthesis of disparate data types into models that reveal underlying mechanisms and allow for experimental testing of hypotheses. We then evaluate the mathematical techniques employed most widely and present several examples illustrating their application as well as the current gap between pre-clinical and clinical applications. We conclude with a discussion of what we view to be the key challenges and opportunities for multi-scale modeling in clinical oncology.
Multi-scale Modeling in Clinical Oncology: Opportunities and Barriers to Success
Yankeelov, Thomas E.; An, Gary; Saut, Oliver; Luebeck, E. Georg; Popel, Aleksander S.; Ribba, Benjamin; Vicini, Paolo; Zhou, Xiaobo; Weis, Jared A.; Ye, Kaiming; Genin, Guy M.
2016-01-01
Hierarchical processes spanning several orders of magnitude of both space and time underlie nearly all cancers. Multi-scale statistical, mathematical, and computational modeling methods are central to designing, implementing and assessing treatment strategies that account for these hierarchies. The basic science underlying these modeling efforts is maturing into a new discipline that is close to influencing and facilitating clinical successes. The purpose of this review is to capture the state-of-the-art as well as the key barriers to success for multi-scale modeling in clinical oncology. We begin with a summary of the long-envisioned promise of multi-scale modeling in clinical oncology, including the synthesis of disparate data types into models that reveal underlying mechanisms and allow for experimental testing of hypotheses. We then evaluate the mathematical techniques employed most widely and present several examples illustrating their application as well as the current gap between pre-clinical and clinical applications. We conclude with a discussion of what we view to be the key challenges and opportunities for multi-scale modeling in clinical oncology. PMID:27384942
DOE Office of Scientific and Technical Information (OSTI.GOV)
Way, M. J.; Aleinov, I.; Amundsen, David S.
Resolving Orbital and Climate Keys of Earth and Extraterrestrial Environments with Dynamics (ROCKE-3D) is a three-dimensional General Circulation Model (GCM) developed at the NASA Goddard Institute for Space Studies for the modeling of atmospheres of solar system and exoplanetary terrestrial planets. Its parent model, known as ModelE2, is used to simulate modern Earth and near-term paleo-Earth climates. ROCKE-3D is an ongoing effort to expand the capabilities of ModelE2 to handle a broader range of atmospheric conditions, including higher and lower atmospheric pressures, more diverse chemistries and compositions, larger and smaller planet radii and gravity, different rotation rates (from slower tomore » more rapid than modern Earth’s, including synchronous rotation), diverse ocean and land distributions and topographies, and potential basic biosphere functions. The first aim of ROCKE-3D is to model planetary atmospheres on terrestrial worlds within the solar system such as paleo-Earth, modern and paleo-Mars, paleo-Venus, and Saturn’s moon Titan. By validating the model for a broad range of temperatures, pressures, and atmospheric constituents, we can then further expand its capabilities to those exoplanetary rocky worlds that have been discovered in the past, as well as those to be discovered in the future. We also discuss the current and near-future capabilities of ROCKE-3D as a community model for studying planetary and exoplanetary atmospheres.« less
NASA Astrophysics Data System (ADS)
Herzfeld, U. C.; Hunke, E. C.; Trantow, T.; Greve, R.; McDonald, B.; Wallin, B.
2014-12-01
Understanding of the state of the cryosphere and its relationship to other components of the Earth system requires both models of geophysical processes and observations of geophysical properties and processes, however linking observations and models is far from trivial. This paper looks at examples from sea ice and land ice model-observation linkages to examine some approaches, challenges and solutions. In a sea-ice example, ice deformation is analyzed as a key process that indicates fundamental changes in the Arctic sea ice cover. Simulation results from the Los Alamos Sea-Ice Model CICE, which is also the sea-ice component of the Community Earth System Model (CESM), are compared to parameters indicative of deformation as derived from mathematical analysis of remote sensing data. Data include altimeter, micro-ASAR and image data from manned and unmanned aircraft campaigns (NASA OIB and Characterization of Arctic Sea Ice Experiment, CASIE). The key problem to linking data and model results is the derivation of matching parameters on both the model and observation side.For terrestrial glaciology, we include an example of a surge process in a glacier system and and example of a dynamic ice sheet model for Greenland. To investigate the surge of the Bering Bagley Glacier System, we use numerical forward modeling experiments and, on the data analysis side, a connectionist approach to analyze crevasse provinces. In the Greenland ice sheet example, we look at the influence of ice surface and bed topography, as derived from remote sensing data, on on results from a dynamic ice sheet model.
Data to DecisionsTerminate, Tolerate, Transfer, or Treat
2016-07-25
and patching, a risk-based cyber - security decision model that enables a pre- dictive capability to respond to impending cyber -attacks is needed...States. This sensitive data includes business proprietary information on key programs of record and infrastructure, including government documents at...leverage nationally. The Institute for Defense Analyses (IDA) assisted the DoD CIO in formalizing a proof of concept for cyber initiatives and
Computational biology for cardiovascular biomarker discovery.
Azuaje, Francisco; Devaux, Yvan; Wagner, Daniel
2009-07-01
Computational biology is essential in the process of translating biological knowledge into clinical practice, as well as in the understanding of biological phenomena based on the resources and technologies originating from the clinical environment. One such key contribution of computational biology is the discovery of biomarkers for predicting clinical outcomes using 'omic' information. This process involves the predictive modelling and integration of different types of data and knowledge for screening, diagnostic or prognostic purposes. Moreover, this requires the design and combination of different methodologies based on statistical analysis and machine learning. This article introduces key computational approaches and applications to biomarker discovery based on different types of 'omic' data. Although we emphasize applications in cardiovascular research, the computational requirements and advances discussed here are also relevant to other domains. We will start by introducing some of the contributions of computational biology to translational research, followed by an overview of methods and technologies used for the identification of biomarkers with predictive or classification value. The main types of 'omic' approaches to biomarker discovery will be presented with specific examples from cardiovascular research. This will include a review of computational methodologies for single-source and integrative data applications. Major computational methods for model evaluation will be described together with recommendations for reporting models and results. We will present recent advances in cardiovascular biomarker discovery based on the combination of gene expression and functional network analyses. The review will conclude with a discussion of key challenges for computational biology, including perspectives from the biosciences and clinical areas.
Cott, Cheryl A; Davis, Aileen M; Badley, Elizabeth M; Wong, Rosalind; Canizares, Mayilee; Li, Linda C; Jones, Allyson; Brooks, Sydney; Ahlwalia, Vandana; Hawker, Gillian; Jaglal, Susan; Landry, Michel; MacKay, Crystal; Mosher, Dianne
2016-08-19
Timely access to effective treatments for arthritis is a priority at national, provincial and regional levels in Canada due to population aging coupled with limited health human resources. Models of care for arthritis are being implemented across the country but mainly in local contexts, not from an evidence-informed policy or framework. The purpose of this study is to examine existing models of care for arthritis in Canada at the local level in order to identify commonalities and differences in their implementation that could point to important considerations for health policy and service delivery. Semi-structured key informant interviews were conducted with 70 program managers and/or care providers in three Canadian provinces identified through purposive and snowball sampling followed by more detailed examination of 6 models of care (two per province). Interviews were transcribed verbatim and analyzed thematically using a qualitative descriptive approach. Two broad models of care were identified for Total Joint Replacement and Inflammatory Arthritis. Commonalities included lack of complete and appropriate referrals from primary care physicians and lack of health human resources to meet local demands. Strategies included standardized referrals and centralized intake and triage using non-specialist health care professionals. Differences included the nature of the care and follow-up, the role of the specialist, and location of service delivery. Current models of care are mainly focused on Total Joint Replacement and Inflammatory Arthritis. Given the increasing prevalence of arthritis and that published data report only a small proportion of current service delivery is specialist care; provision of timely, appropriate care requires development, implementation and evaluation of models of care across the continuum of care.
ERIC Educational Resources Information Center
Cornett-DeVito, Myrna M.; Reeves, Kenna J.
1999-01-01
Summarizes key findings from counseling, advisement, and intercultural communication literature that are associated with multicultural competence, including the academic and modeling role of the advisor. Offers a conceptual framework of standards for developing multicultural communication advisement competence. (Author/DB)
Better Care Teams: A Stepwise Skill Reinforcement Model.
Christopher, Beth-Anne; Grantner, Mary; Coke, Lola A; Wideman, Marilyn; Kwakwa, Francis
2016-06-01
The Building Healthy Urban Communities initiative presents a path for organizations partnering to improve patient outcomes with continuing education (CE) as a key component. Components of the CE initiative included traditional CE delivery formats with an essential element of adaptability and new methods, with rigorous evaluation over time that included evaluation prior to the course, immediately following the CE session, 6 to 8 weeks after the CE session, and then subsequent monthly "testlets." Outcome measures were designed to allow for ongoing adaptation of content, reinforcement of key learning objectives, and use of innovative concordant testing and retrieval practice techniques. The results after 1 year of programming suggest the stepwise skill reinforcement model is effective for learning and is an efficient use of financial and human resources. More important, its design is one that could be adopted at low cost by organizations willing to work in close partnership. J Contin Educ Nurs. 2016;47(6):283-288. Copyright 2016, SLACK Incorporated.
CO{sub 2} Laser Ablation Propulsion Area Scaling With Polyoxymethylene Propellant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sinko, John E.; Ichihashi, Katsuhiro; Ogita, Naoya
The topic of area scaling is of great importance in the laser propulsion field, including applications to removal of space debris and to selection of size ranges for laser propulsion craft in air or vacuum conditions. To address this issue experimentally, a CO{sub 2} laser operating at up to 10 J was used to irradiate targets. Experiments were conducted in air and vacuum conditions over a range of areas from about 0.05-5 cm{sup 2} to ablate flat polyoxymethylene targets at several fluences. Theoretical effects affecting area scaling, such as rarefaction waves, thermal diffusion, and diffraction, are discussed in terms ofmore » the experimental results. Surface profilometry was used to characterize the ablation samples. A CFD model is used to facilitate analysis, and key results are compared between experimental and model considerations. The dependence of key laser propulsion parameters, including the momentum coupling coefficient and specific impulse, are calculated based on experimental data, and results are compared to existing literature data.« less
Schnittger, Rebecca I B; Wherton, Joseph; Prendergast, David; Lawlor, Brian A
2012-01-01
To develop biopsychosocial models of loneliness and social support thereby identifying their key risk factors in an Irish sample of community-dwelling older adults. Additionally, to investigate indirect effects of social support on loneliness through mediating risk factors. A total of 579 participants (400 females; 179 males) were given a battery of biopsychosocial assessments with the primary measures being the De Jong Gierveld Loneliness Scale and the Lubben Social Network Scale along with a broad range of secondary measures. Bivariate correlation analyses identified items to be included in separate psychosocial, cognitive, biological and demographic multiple regression analyses. The resulting model items were then entered into further multiple regression analyses to obtain overall models. Following this, bootstrapping mediation analyses was conducted to examine indirect effects of social support on the subtypes (emotional and social) of loneliness. The overall model for (1) emotional loneliness included depression, neuroticism, perceived stress, living alone and accommodation type, (2) social loneliness included neuroticism, perceived stress, animal naming and number of grandchildren and (3) social support included extraversion, executive functioning (Trail Making Test B-time), history of falls, age and whether the participant drives or not. Social support influenced emotional loneliness predominantly through indirect means, while its effect on social loneliness was more direct. These results characterise the biopsychosocial risk factors of emotional loneliness, social loneliness and social support and identify key pathways by which social support influences emotional and social loneliness. These findings highlight issues with the potential for consideration in the development of targeted interventions.
Soil fauna: key to new carbon models
NASA Astrophysics Data System (ADS)
Filser, Juliane; Faber, Jack H.; Tiunov, Alexei V.; Brussaard, Lijbert; Frouz, Jan; De Deyn, Gerlinde; Uvarov, Alexei V.; Berg, Matty P.; Lavelle, Patrick; Loreau, Michel; Wall, Diana H.; Querner, Pascal; Eijsackers, Herman; José Jiménez, Juan
2016-11-01
Soil organic matter (SOM) is key to maintaining soil fertility, mitigating climate change, combatting land degradation, and conserving above- and below-ground biodiversity and associated soil processes and ecosystem services. In order to derive management options for maintaining these essential services provided by soils, policy makers depend on robust, predictive models identifying key drivers of SOM dynamics. Existing SOM models and suggested guidelines for future SOM modelling are defined mostly in terms of plant residue quality and input and microbial decomposition, overlooking the significant regulation provided by soil fauna. The fauna controls almost any aspect of organic matter turnover, foremost by regulating the activity and functional composition of soil microorganisms and their physical-chemical connectivity with soil organic matter. We demonstrate a very strong impact of soil animals on carbon turnover, increasing or decreasing it by several dozen percent, sometimes even turning C sinks into C sources or vice versa. This is demonstrated not only for earthworms and other larger invertebrates but also for smaller fauna such as Collembola. We suggest that inclusion of soil animal activities (plant residue consumption and bioturbation altering the formation, depth, hydraulic properties and physical heterogeneity of soils) can fundamentally affect the predictive outcome of SOM models. Understanding direct and indirect impacts of soil fauna on nutrient availability, carbon sequestration, greenhouse gas emissions and plant growth is key to the understanding of SOM dynamics in the context of global carbon cycling models. We argue that explicit consideration of soil fauna is essential to make realistic modelling predictions on SOM dynamics and to detect expected non-linear responses of SOM dynamics to global change. We present a decision framework, to be further developed through the activities of KEYSOM, a European COST Action, for when mechanistic SOM models include soil fauna. The research activities of KEYSOM, such as field experiments and literature reviews, together with dialogue between empiricists and modellers, will inform how this is to be done.
NASA Astrophysics Data System (ADS)
Hobbs, J.; Turmon, M.; David, C. H.; Reager, J. T., II; Famiglietti, J. S.
2017-12-01
NASA's Western States Water Mission (WSWM) combines remote sensing of the terrestrial water cycle with hydrological models to provide high-resolution state estimates for multiple variables. The effort includes both land surface and river routing models that are subject to several sources of uncertainty, including errors in the model forcing and model structural uncertainty. Computational and storage constraints prohibit extensive ensemble simulations, so this work outlines efficient but flexible approaches for estimating and reporting uncertainty. Calibrated by remote sensing and in situ data where available, we illustrate the application of these techniques in producing state estimates with associated uncertainties at kilometer-scale resolution for key variables such as soil moisture, groundwater, and streamflow.
Cassel, Jean-Christophe; Mathis, Chantal; Majchrzak, Monique; Moreau, Pierre-Henri; Dalrymple-Alford, John C
2008-01-01
One century after Alzheimer's initial report, a variety of animal models of Alzheimer's disease (AD) are being used to mimic one or more pathological signs viewed as critical for the evolution of cognitive decline in dementia. Among the most common are, (a) traditional lesion models aimed at reproducing the degeneration of one of two key brain regions affected in AD, namely the cholinergic basal forebrain (CBF) and the transentorhinal region, and (b) transgenic mouse models aimed at reproducing AD histopathological hallmarks, namely amyloid plaques and neurofibrillary tangles. These models have provided valuable insights into the development and consequences of the pathology, but they have not consistently reproduced the severity of memory deficits exhibited in AD. The reasons for this lack of correspondence with the severity of expected deficits may include the limited replication of multiple neuropathology in potentially key brain regions. A recent lesion model in the rat found that severe memory impairment was obtained only when the two traditional lesions were combined together (i.e. conjoint CBF and entorhinal cortex lesions), indicative of a dramatic impact on cognitive function when there is coexisting, rather than isolated, damage in these two brain regions. It is proposed that combining AD transgenic mouse models with additional experimental damage to both the CBF and entorhinal regions might provide a unique opportunity to further understand the evolution of the disease and improve treatments of severe cognitive dysfunction in neurodegenerative dementias. (c) 2008 S. Karger AG, Basel
Patient-Centered Appointment Scheduling Using Agent-Based Simulation
Turkcan, Ayten; Toscos, Tammy; Doebbeling, Brad N.
2014-01-01
Enhanced access and continuity are key components of patient-centered care. Existing studies show that several interventions such as providing same day appointments, walk-in services, after-hours care, and group appointments, have been used to redesign the healthcare systems for improved access to primary care. However, an intervention focusing on a single component of care delivery (i.e. improving access to acute care) might have a negative impact other components of the system (i.e. reduced continuity of care for chronic patients). Therefore, primary care clinics should consider implementing multiple interventions tailored for their patient population needs. We collected rapid ethnography and observations to better understand clinic workflow and key constraints. We then developed an agent-based simulation model that includes all access modalities (appointments, walk-ins, and after-hours access), incorporate resources and key constraints and determine the best appointment scheduling method that improves access and continuity of care. This paper demonstrates the value of simulation models to test a variety of alternative strategies to improve access to care through scheduling. PMID:25954423
Literature review of models on tire-pavement interaction noise
NASA Astrophysics Data System (ADS)
Li, Tan; Burdisso, Ricardo; Sandu, Corina
2018-04-01
Tire-pavement interaction noise (TPIN) becomes dominant at speeds above 40 km/h for passenger vehicles and 70 km/h for trucks. Several models have been developed to describe and predict the TPIN. However, these models do not fully reveal the physical mechanisms or predict TPIN accurately. It is well known that all the models have both strengths and weaknesses, and different models fit different investigation purposes or conditions. The numerous papers that present these models are widely scattered among thousands of journals, and it is difficult to get the complete picture of the status of research in this area. This review article aims at presenting the history and current state of TPIN models systematically, making it easier to identify and distribute the key knowledge and opinions, and providing insight into the future research trend in this field. In this work, over 2000 references related to TPIN were collected, and 74 models were reviewed from nearly 200 selected references; these were categorized into deterministic models (37), statistical models (18), and hybrid models (19). The sections explaining the models are self-contained with key principles, equations, and illustrations included. The deterministic models were divided into three sub-categories: conventional physics models, finite element and boundary element models, and computational fluid dynamics models; the statistical models were divided into three sub-categories: traditional regression models, principal component analysis models, and fuzzy curve-fitting models; the hybrid models were divided into three sub-categories: tire-pavement interface models, mechanism separation models, and noise propagation models. At the end of each category of models, a summary table is presented to compare these models with the key information extracted. Readers may refer to these tables to find models of their interest. The strengths and weaknesses of the models in different categories were then analyzed. Finally, the modeling trend and future direction in this area are given.
Frontiers in Ecosystem Science: Energizing the Research Agenda
NASA Astrophysics Data System (ADS)
Weathers, K. C.; Groffman, P. M.; VanDolah, E.
2014-12-01
Ecosystem science has a long history as a core component of the discipline of Ecology, and although topics of research have fluctuated over the years, it retains a clear identity and continues to be a vital field. As science is becoming more interdisciplinary, particularly the science of global environmental change, ecosystem scientists are addressing new and important questions at the interface of multiple disciplines. Over the last two years, we organized a series of workshops and discussion groups at multiple scientific-society meetings, including AGU to identify frontiers in ecosystem research. The workshops featured short "soapbox" presentations where speakers highlighted key questions in ecosystem science. The presentations were recorded (video and audio) and subjected to qualitative text analysis for identification of frontier themes, attendees completed surveys, and a dozen additional "key informants" were interviewed about their views about frontiers of the discipline. Our effort produced 253 survey participants; the two largest groups of participants were full professors (24%) and graduate students (24%); no other specific group was > 10%. Formal text analysis of the soapbox presentations produced three major themes; "frontiers," "capacity building," and "barriers to implementation" with four or five sub-themes within each major theme. Key "frontiers" included; 1) better understanding of the drivers of ecosystem change, 2) better understanding of ecosystem process and function, 3) human dimensions of ecosystem science, and 4) problem-solving/applied research. Under "capacity building," key topics included: holistic approaches, cross-disciplinary collaboration, public support for research, data, training, and technology investment. Under "barriers" key topics included: limitations in theoretical thinking, insufficient funding/support, fragmentation across discipline, data access and data synthesis. In-depth interviews with 13 experts validated findings from analysis of soapbox presentations and surveys and also resulted in a conceptual model for understanding disciplinary frontiers.
Computational Materials: Modeling and Simulation of Nanostructured Materials and Systems
NASA Technical Reports Server (NTRS)
Gates, Thomas S.; Hinkley, Jeffrey A.
2003-01-01
The paper provides details on the structure and implementation of the Computational Materials program at the NASA Langley Research Center. Examples are given that illustrate the suggested approaches to predicting the behavior and influencing the design of nanostructured materials such as high-performance polymers, composites, and nanotube-reinforced polymers. Primary simulation and measurement methods applicable to multi-scale modeling are outlined. Key challenges including verification and validation of models are highlighted and discussed within the context of NASA's broad mission objectives.
Evaluating Ammonium, Nitrate and Sulfate Aerosols in 3-Dimensions
NASA Technical Reports Server (NTRS)
Mezuman, Keren; Bauer, Susanne E.; Tsigaridis, Kostas
2015-01-01
The effect aerosols have on climate and air quality is a func-on of their chemical composi-on, concentra-on and spa-al distribu-on. These parameters are controlled by emissions, heterogeneous and homogeneous chemistry, where thermodynamics plays a key role, transport, which includes stratospheric-- tropospheric exchange, and deposi-onal sinks. In this work we demonstrate the effect of some of these processes on the SO4-NH4-NO3 system using the GISS ModelE2 Global Circula-on Model (GCM).
Properties of inductive reasoning.
Heit, E
2000-12-01
This paper reviews the main psychological phenomena of inductive reasoning, covering 25 years of experimental and model-based research, in particular addressing four questions. First, what makes a case or event generalizable to other cases? Second, what makes a set of cases generalizable? Third, what makes a property or predicate projectable? Fourth, how do psychological models of induction address these results? The key results in inductive reasoning are outlined, and several recent models, including a new Bayesian account, are evaluated with respect to these results. In addition, future directions for experimental and model-based work are proposed.
NASA Technical Reports Server (NTRS)
Justus, C. G.; Alyea, F. N.; Cunnold, D. M.; Jeffries, W. R., III; Johnson, D. L.
1991-01-01
A new (1990) version of the NASA/MSFC Global Reference Atmospheric Model (GRAM-90) was completed and the program and key data base listing are presented. GRAM-90 incorporate extensive new data, mostly collected under the Middle Atmosphere Program, to produce a completely revised middle atmosphere model (20 to 120 km). At altitudes greater than 120 km, GRAM-90 uses the NASA Marshall Engineering Thermosphere model. Complete listings of all program and major data bases are presented. Also, a test case is included.
A tensor approach to modeling of nonhomogeneous nonlinear systems
NASA Technical Reports Server (NTRS)
Yurkovich, S.; Sain, M.
1980-01-01
Model following control methodology plays a key role in numerous application areas. Cases in point include flight control systems and gas turbine engine control systems. Typical uses of such a design strategy involve the determination of nonlinear models which generate requested control and response trajectories for various commands. Linear multivariable techniques provide trim about these motions; and protection logic is added to secure the hardware from excursions beyond the specification range. This paper reports upon experience in developing a general class of such nonlinear models based upon the idea of the algebraic tensor product.
High Throughput Exposure Modeling of Semi-Volatile Chemicals in Articles of Commerce (SOT)
Chemical components of consumer products and articles of commerce such as carpet and clothing are key drivers of exposure in the near-field environment. These chemicals include semi-volatile organic compounds (SVOCs), some of which have been shown to alter endocrine functionality...
"La Clave Profesional": Validation of a Vocational Guidance Instrument
ERIC Educational Resources Information Center
Mudarra, Maria J.; Lázaro Martínez, Ángel
2014-01-01
Introduction: The current study demonstrates empirical and cultural validity of "La Clave Profesional" (Spanish adaptation of Career Key, Jones's test based Holland's RIASEC model). The process of providing validity evidence also includes a reflection on personal and career development and examines the relationahsips between RIASEC…
Teaching Reading Sourcebook, Second Edition
ERIC Educational Resources Information Center
Honig, Bill; Diamond, Linda; Gutlohn, Linda
2008-01-01
The "Teaching Reading Sourcebook, Second Edition" is a comprehensive reference about reading instruction. Organized according to the elements of explicit instruction (what? why? when? and how?), the "Sourcebook" includes both a research-informed knowledge base and practical sample lesson models. It teaches the key elements of an effective reading…
Summaries of "You Do It" Activities Presented at the 1978 SASTA Conference in the Riverland.
ERIC Educational Resources Information Center
Walsh, Terry
1980-01-01
Summarizes "you do it" activities presented at the 1978 South Australian Science Teachers Association Conference. Topics include microscope use and maintenance, chemical slide cells, chemical models, sound waves, microwaves, astronomy, plant keys, reading geological maps, and natural dye processes. (DS)
Participation versus Privacy in the Training of Group Counselors.
ERIC Educational Resources Information Center
Pierce, Keith A.; Baldwin, Cynthia
1990-01-01
Examines the process of requiring and evaluating personal growth group participation for students in counselor education programs. Discusses the key components in the dilemma of protecting privacy while evaluating competencies, including ethical practices and program alternatives to avoid evaluation. Proposes a model that will enable participation…
Using Internet Technologies To Enhance Training.
ERIC Educational Resources Information Center
Pollock, Carl; Masters, Robert
1997-01-01
Describes how to use Internet technologies to create an intranet, or an online training database system, for improving company communications, effectiveness, and job performance. Topics include technology and performance; educating managers and key decision makers; creating a graphic model of the training system; and fitting into the existing…
New methods are needed to screen thousands of environmental chemicals for toxicity, including developmental neurotoxicity. In vitro, cell-based assays that model key cellular events have been proposed for high throughput screening of chemicals for developmental neurotoxicity. Whi...
ARSENIC MODE OF ACTION AND DEVELOPING A BBDR MODEL
The current USEPA cancer risk assessment for inorganic arsenic is based on a linear extrapolation of the epidemiological data from exposed populations in Taiwan. However, proposed key events in the mode of action (MoA) for arsenic-induced cancer (which may include altered DNA me...
How State and Local Interagency Partnerships Work.
ERIC Educational Resources Information Center
Rachal, Patricia, Ed.
1996-01-01
This newsletter theme issue describes a state-local team partnership model for interagency transition efforts for young adults with deaf-blindness. Excepts from a presentation by Jane M. Everson identify key aspects and characteristics of effective state and local interagency partnerships. These include: (1) strategies for initiating and…
CrossTalk. The Journal of Defense Software Engineering. Volume 25, Number 3
2012-06-01
OMG) standard Business Process Modeling and Nota- tion ( BPMN ) [6] graphical notation. I will address each of these: identify and document steps...to a value stream map using BPMN and textual process narratives. The resulting process narratives or process metadata includes key information...objectives. Once the processes are identified we can graphically document them capturing the process using BPMN (see Figure 1). The BPMN models
Modelling the impacts of pests and diseases on agricultural systems.
Donatelli, M; Magarey, R D; Bregaglio, S; Willocquet, L; Whish, J P M; Savary, S
2017-07-01
The improvement and application of pest and disease models to analyse and predict yield losses including those due to climate change is still a challenge for the scientific community. Applied modelling of crop diseases and pests has mostly targeted the development of support capabilities to schedule scouting or pesticide applications. There is a need for research to both broaden the scope and evaluate the capabilities of pest and disease models. Key research questions not only involve the assessment of the potential effects of climate change on known pathosystems, but also on new pathogens which could alter the (still incompletely documented) impacts of pests and diseases on agricultural systems. Yield loss data collected in various current environments may no longer represent a adequate reference to develop tactical, decision-oriented, models for plant diseases and pests and their impacts, because of the ongoing changes in climate patterns. Process-based agricultural simulation modelling, on the other hand, appears to represent a viable methodology to estimate the impacts of these potential effects. A new generation of tools based on state-of-the-art knowledge and technologies is needed to allow systems analysis including key processes and their dynamics over appropriate suitable range of environmental variables. This paper offers a brief overview of the current state of development in coupling pest and disease models to crop models, and discusses technical and scientific challenges. We propose a five-stage roadmap to improve the simulation of the impacts caused by plant diseases and pests; i) improve the quality and availability of data for model inputs; ii) improve the quality and availability of data for model evaluation; iii) improve the integration with crop models; iv) improve the processes for model evaluation; and v) develop a community of plant pest and disease modelers.
Akuna: An Open Source User Environment for Managing Subsurface Simulation Workflows
NASA Astrophysics Data System (ADS)
Freedman, V. L.; Agarwal, D.; Bensema, K.; Finsterle, S.; Gable, C. W.; Keating, E. H.; Krishnan, H.; Lansing, C.; Moeglein, W.; Pau, G. S. H.; Porter, E.; Scheibe, T. D.
2014-12-01
The U.S. Department of Energy (DOE) is investing in development of a numerical modeling toolset called ASCEM (Advanced Simulation Capability for Environmental Management) to support modeling analyses at legacy waste sites. ASCEM is an open source and modular computing framework that incorporates new advances and tools for predicting contaminant fate and transport in natural and engineered systems. The ASCEM toolset includes both a Platform with Integrated Toolsets (called Akuna) and a High-Performance Computing multi-process simulator (called Amanzi). The focus of this presentation is on Akuna, an open-source user environment that manages subsurface simulation workflows and associated data and metadata. In this presentation, key elements of Akuna are demonstrated, which includes toolsets for model setup, database management, sensitivity analysis, parameter estimation, uncertainty quantification, and visualization of both model setup and simulation results. A key component of the workflow is in the automated job launching and monitoring capabilities, which allow a user to submit and monitor simulation runs on high-performance, parallel computers. Visualization of large outputs can also be performed without moving data back to local resources. These capabilities make high-performance computing accessible to the users who might not be familiar with batch queue systems and usage protocols on different supercomputers and clusters.
Guo, Wei-Liang; Du, Yi-Ping; Zhou, Yong-Can; Yang, Shuang; Lu, Jia-Hui; Zhao, Hong-Yu; Wang, Yao; Teng, Li-Rong
2012-03-01
An analytical procedure has been developed for at-line (fast off-line) monitoring of 4 key parameters including nisin titer (NT), the concentration of reducing sugars, cell concentration and pH during a nisin fermentation process. This procedure is based on near infrared (NIR) spectroscopy and Partial Least Squares (PLS). Samples without any preprocessing were collected at intervals of 1 h during fifteen batch of fermentations. These fermentation processes were implemented in 3 different 5 l fermentors at various conditions. NIR spectra of the samples were collected in 10 min. And then, PLS was used for modeling the relationship between NIR spectra and the key parameters which were determined by reference methods. Monte Carlo Partial Least Squares (MCPLS) was applied to identify the outliers and select the most efficacious methods for preprocessing spectra, wavelengths and the suitable number of latent variables (n (LV)). Then, the optimum models for determining NT, concentration of reducing sugars, cell concentration and pH were established. The correlation coefficients of calibration set (R (c)) were 0.8255, 0.9000, 0.9883 and 0.9581, respectively. These results demonstrated that this method can be successfully applied to at-line monitor of NT, concentration of reducing sugars, cell concentration and pH during nisin fermentation processes.
M3FT-15OR0202212: SUBMIT SUMMARY REPORT ON THERMODYNAMIC EXPERIMENT AND MODELING
DOE Office of Scientific and Technical Information (OSTI.GOV)
McMurray, Jake W.; Brese, Robert G.; Silva, Chinthaka M.
2015-09-01
Modeling the behavior of nuclear fuel with a physics-based approach uses thermodynamics for key inputs such as chemical potentials and thermal properties for phase transformation, microstructure evolution, and continuum transport simulations. Many of the lanthanide (Ln) elements and Y are high-yield fission products. The U-Y-O and U-Ln-O ternaries are therefore key subsystems of multi-component high-burnup fuel. These elements dissolve in the dominant urania fluorite phase affecting many of its properties. This work reports on an effort to assess the thermodynamics of the U-Pr-O and U-Y-O systems using the CALPHAD (CALculation of PHase Diagrams) method. The models developed within this frameworkmore » are capable of being combined and extended to include additional actinides and fission products allowing calculation of the phase equilibria, thermochemical and material properties of multicomponent fuel with burnup.« less
Engineering model system study for a regenerative fuel cell: Study report
NASA Technical Reports Server (NTRS)
Chang, B. J.; Schubert, F. H.; Kovach, A. J.; Wynveen, R. A.
1984-01-01
Key design issues of the regenerative fuel cell system concept were studied and a design definition of an alkaline electrolyte based engineering model system or low Earth orbit missions was completed. Definition of key design issues for a regenerative fuel cell system include gaseous reactant storage, shared heat exchangers and high pressure pumps. A power flow diagram for the 75 kW initial space station and the impact of different regenerative fuel cell modular sizes on the total 5 year to orbit weight and volume are determined. System characteristics, an isometric drawing, component sizes and mass and energy balances are determined for the 10 kW engineering model system. An open loop regenerative fuel cell concept is considered for integration of the energy storage system with the life support system of the space station. Technical problems and their solutions, pacing technologies and required developments and demonstrations for the regenerative fuel cell system are defined.
NASA Astrophysics Data System (ADS)
Phillion, A. B.; Cockcroft, S. L.; Lee, P. D.
2009-07-01
The methodology of direct finite element (FE) simulation was used to predict the semi-solid constitutive behavior of an industrially important aluminum-magnesium alloy, AA5182. Model microstructures were generated that detail key features of the as-cast semi-solid: equiaxed-globular grains of random size and shape, interconnected liquid films, and pores at the triple-junctions. Based on the results of over fifty different simulations, a model-based constitutive relationship which includes the effects of the key microstructure features—fraction solid, grain size and fraction porosity—was derived using regression analysis. This novel constitutive equation was then validated via comparison with both the FE simulations and experimental stress/strain data. Such an equation can now be used to incorporate the effects of microstructure on the bulk semi-solid flow stress within a macro- scale process model.
The U.S. Market For Broadband Over Powerline, 3. edition
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
2007-07-15
The report provides a study of the potential market for BPL technology in the U.S. including a look at the past, present, and future state of Broadband Over Powerline (BPL) in the U.S. The Scope of the report includes the following topics: a description of the history of powerline communications (PLC) and broadband over powerline (BPL) technology; an analysis of key drivers of BPL within the electric utility and internet access industries; an overview of BPL technology and architecture; a comparison of BPL with alternative broadband access methods; an analysis of technological, regulatory, and business barriers to BPL's success; identificationmore » of the key applications and markets for BPL; a description of business models for BPL; an analysis of key market trends in broadband internet access; a review of the market development of cable modem broadband access; profiles of major U.S. BPL market participants; and, profiles of major U.S. BPL projects.« less
Scalability Analysis and Use of Compression at the Goddard DAAC and End-to-End MODIS Transfers
NASA Technical Reports Server (NTRS)
Menasce, Daniel A.
1998-01-01
The goal of this task is to analyze the performance of single and multiple FTP transfer between SCF's and the Goddard DAAC. We developed an analytic model to compute the performance of FTP sessions as a function of various key parameters, implemented the model as a program called FTP Analyzer, and carried out validations with real data obtained by running single and multiple FTP transfer between GSFC and the Miami SCF. The input parameters to the model include the mix to FTP sessions (scenario), and for each FTP session, the file size. The network parameters include the round trip time, packet loss rate, the limiting bandwidth of the network connecting the SCF to a DAAC, TCP's basic timeout, TCP's Maximum Segment Size, and TCP's Maximum Receiver's Window Size. The modeling approach used consisted of modeling TCP's overall throughput, computing TCP's delay per FTP transfer, and then solving a queuing network model that includes the FTP clients and servers.
Space shuttle propulsion estimation development verification
NASA Technical Reports Server (NTRS)
Rogers, Robert M.
1989-01-01
The application of extended Kalman filtering to estimating the Space Shuttle Propulsion performance, i.e., specific impulse, from flight data in a post-flight processing computer program is detailed. The flight data used include inertial platform acceleration, SRB head pressure, SSME chamber pressure and flow rates, and ground based radar tracking data. The key feature in this application is the model used for the SRB's, which is a nominal or reference quasi-static internal ballistics model normalized to the propellant burn depth. Dynamic states of mass overboard and propellant burn depth are included in the filter model to account for real-time deviations from the reference model used. Aerodynamic, plume, wind and main engine uncertainties are also included for an integrated system model. Assuming uncertainty within the propulsion system model and attempts to estimate its deviations represent a new application of parameter estimation for rocket powered vehicles. Illustrations from the results of applying this estimation approach to several missions show good quality propulsion estimates.
The Feasibility of Avoiding Future Climate Impacts: Results from the AVOID Programmes
NASA Astrophysics Data System (ADS)
Lowe, J. A.; Warren, R.; Arnell, N.; Buckle, S.
2014-12-01
The AVOID programme and its successor, AVOID2, have focused on answering three core questions: how do we characterise potentially dangerous climate change and impacts, which emissions pathways can avoid at least some of these impacts, and how feasible are the future reductions needed to significantly deviate from a business-as-usual future emissions pathway. The first AVOID project succeeded in providing the UK Government with evidence to inform its position on climate change. A key part of the work involved developing a range of global emissions pathways and estimating and understanding the corresponding global impacts. This made use of a combination of complex general circulation models, simple climate models, pattern-scaling and state-of-the art impacts models. The results characterise the range of avoidable impacts across the globe in several key sectors including river and coastal flooding, cooling and heating energy demand, crop productivity and aspects of biodiversity. The avoided impacts between a scenario compatible with a 4ºC global warming and one with a 2ºC global warming were found to be highly sector dependent and avoided fractions typically ranged between 20% and 70%. A further key aspect was characterising the magnitude of the uncertainty involved, which is found to be very large in some impact sectors although the avoided fraction appears a more robust metric. The AVOID2 programme began in 2014 and will provide results in the run up to the Paris CoP in 2015. This includes new post-IPCC 5th assessment evidence to inform the long-term climate goal, a more comprehensive assessment of the uncertainty ranges of feasible emission pathways compatible with the long-term goal and enhanced estimates of global impacts using the latest generation of impact models and scenarios.
Evaluation of the durability of 3D printed keys produced by computational processing of image data
NASA Astrophysics Data System (ADS)
Straub, Jeremy; Kerlin, Scott
2016-05-01
Possession of a working 3D printed key can, for most practical purposes, convince observers that an illicit attempt to gain premises access is authorized. This paper seeks to assess three things. First, work has been performed to determine how easily the data for making models of keys can be obtained through manual measurement. It then presents work done to create a model of the key and determine how easy key modeling could be (particularly after a first key of a given key `blank' has been made). Finally, it seeks to assess the durability of the keys produced using 3D printing.
NASA Astrophysics Data System (ADS)
Xu, Jinyang; El Mansori, Mohamed
2016-10-01
This paper studied the machinability of hybrid CFRP/Ti stack via the numerical approach. To this aim, an original FE model consisting of three fundamental physical constituents, i.e., CFRP phase, interface and Ti phase, was established in the Abaqus Explicit/code to construct the machining behavior of the composite-to-metal alliance. The CFRP phase was modeled as an equivalent homogeneous material (EHM) by considering its anisotropic behavior relative to the fiber orientation (θ) while the Ti alloy phase was assumed to exhibit isotropic and elastic-plastic behavior. The "interface" linking the "CFRP-to-Ti" contact boundary was physically modeled as an intermediate transition region through the concept of cohesive zone (CZ). Different constitutive laws and damage criteria were implemented to simulate the chip separation process of the bi-material system. The key cutting responses including specific cutting energy consumption, induced subsurface damage, and interface delamination were precisely addressed via the comprehensive FE analyses, and several key conclusions were drawn from this study.
Theoretical models for coronary vascular biomechanics: Progress & challenges
Waters, Sarah L.; Alastruey, Jordi; Beard, Daniel A.; Bovendeerd, Peter H.M.; Davies, Peter F.; Jayaraman, Girija; Jensen, Oliver E.; Lee, Jack; Parker, Kim H.; Popel, Aleksander S.; Secomb, Timothy W.; Siebes, Maria; Sherwin, Spencer J.; Shipley, Rebecca J.; Smith, Nicolas P.; van de Vosse, Frans N.
2013-01-01
A key aim of the cardiac Physiome Project is to develop theoretical models to simulate the functional behaviour of the heart under physiological and pathophysiological conditions. Heart function is critically dependent on the delivery of an adequate blood supply to the myocardium via the coronary vasculature. Key to this critical function of the coronary vasculature is system dynamics that emerge via the interactions of the numerous constituent components at a range of spatial and temporal scales. Here, we focus on several components for which theoretical approaches can be applied, including vascular structure and mechanics, blood flow and mass transport, flow regulation, angiogenesis and vascular remodelling, and vascular cellular mechanics. For each component, we summarise the current state of the art in model development, and discuss areas requiring further research. We highlight the major challenges associated with integrating the component models to develop a computational tool that can ultimately be used to simulate the responses of the coronary vascular system to changing demands and to diseases and therapies. PMID:21040741
Mathematical Modeling of Microbial Community Dynamics: A Methodological Review
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Hyun-Seob; Cannon, William R.; Beliaev, Alex S.
Microorganisms in nature form diverse communities that dynamically change in structure and function in response to environmental variations. As a complex adaptive system, microbial communities show higher-order properties that are not present in individual microbes, but arise from their interactions. Predictive mathematical models not only help to understand the underlying principles of the dynamics and emergent properties of natural and synthetic microbial communities, but also provide key knowledge required for engineering them. In this article, we provide an overview of mathematical tools that include not only current mainstream approaches, but also less traditional approaches that, in our opinion, can bemore » potentially useful. We discuss a broad range of methods ranging from low-resolution supra-organismal to high-resolution individual-based modeling. Particularly, we highlight the integrative approaches that synergistically combine disparate methods. In conclusion, we provide our outlook for the key aspects that should be further developed to move microbial community modeling towards greater predictive power.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morrison-Saunders, Angus, E-mail: a.morrison-saunders@murdoch.edu.au; North-West University; Pope, Jenny, E-mail: jenny@integral-sustainability.net
This paper conceptualises what sustainability assessment follow-up might entail for three models of sustainability assessment: EIA-driven integrated assessment, objectives-led integrated assessment and the contribution to sustainability model. The first two are characterised by proponent monitoring and evaluation of individual impacts and indicators while the latter takes a holistic view based around focused sustainability criteria relevant to the context. The implications of three sustainability challenges on follow-up are also examined: contested time horizons and value changes, trade-offs, and interdisciplinarity. We conclude that in order to meet these challenges some form of adaptive follow-up is necessary and that the contribution to sustainabilitymore » approach is the best approach. -- Highlights: • We explore sustainability follow-up for three different sustainability models. • Long-time frames require adaptive follow-up and are a key follow-up challenge. • Other key challenges include interdisciplinarity, and trade-offs. • Sustainability follow-up should be a direction of travel and not an outcome. • Only the follow-up for contribution to sustainability model addresses sustainability challenges sufficiently.« less
Morphogenesis in Plants: Modeling the Shoot Apical Meristem, and Possible Applications
NASA Technical Reports Server (NTRS)
Mjolsness, Eric; Gor, Victoria; Meyerowitz, Elliot; Mann, Tobias
1998-01-01
A key determinant of overall morphogenesis in flowering plants such as Arabidopsis thaliana is the shoot apical meristem (growing tip of a shoot). Gene regulation networks can be used to model this system. We exhibit a very preliminary two-dimensional model including gene regulation and intercellular signaling, but omitting cell division and dynamical geometry. The model can be trained to have three stable regions of gene expression corresponding to the central zone, peripheral zone, and rib meristem. We also discuss a space-engineering motivation for studying and controlling the morphogenesis of plants using such computational models.
International land Model Benchmarking (ILAMB) Package v002.00
Collier, Nathaniel [Oak Ridge National Laboratory; Hoffman, Forrest M. [Oak Ridge National Laboratory; Mu, Mingquan [University of California, Irvine; Randerson, James T. [University of California, Irvine; Riley, William J. [Lawrence Berkeley National Laboratory
2016-05-09
As a contribution to International Land Model Benchmarking (ILAMB) Project, we are providing new analysis approaches, benchmarking tools, and science leadership. The goal of ILAMB is to assess and improve the performance of land models through international cooperation and to inform the design of new measurement campaigns and field studies to reduce uncertainties associated with key biogeochemical processes and feedbacks. ILAMB is expected to be a primary analysis tool for CMIP6 and future model-data intercomparison experiments. This team has developed initial prototype benchmarking systems for ILAMB, which will be improved and extended to include ocean model metrics and diagnostics.
International land Model Benchmarking (ILAMB) Package v001.00
Mu, Mingquan [University of California, Irvine; Randerson, James T. [University of California, Irvine; Riley, William J. [Lawrence Berkeley National Laboratory; Hoffman, Forrest M. [Oak Ridge National Laboratory
2016-05-02
As a contribution to International Land Model Benchmarking (ILAMB) Project, we are providing new analysis approaches, benchmarking tools, and science leadership. The goal of ILAMB is to assess and improve the performance of land models through international cooperation and to inform the design of new measurement campaigns and field studies to reduce uncertainties associated with key biogeochemical processes and feedbacks. ILAMB is expected to be a primary analysis tool for CMIP6 and future model-data intercomparison experiments. This team has developed initial prototype benchmarking systems for ILAMB, which will be improved and extended to include ocean model metrics and diagnostics.
Drugs for solid cancer: the productivity crisis prompts a rethink
Rösel, Daniel; Brábek, Jan; Veselý, Pavel; Fernandes, Michael
2013-01-01
Despite remarkable progress in cancer-drug discovery, the delivery of novel, safe, and sustainably effective products to the clinic has stalled. Using Src as a model, we examine key steps in drug development. The preclinical evidence on the relationship between Src and solid cancer is in sharp contrast with the modest anticancer effect noted in conventional clinical trials. Here, we consider Src inhibitors as an example of a promising drug class directed to invasion and metastasis and identify roadblocks in translation. We question the assumption that a drug-induced tumor shrinkage in preclinical and clinical studies predicts a successful outcome. Our analysis indicates that the key areas requiring attention are related, and include preclinical models (in vitro and mouse models), meaningful clinical trial end points, and an appreciation of the role of metastasis in morbidity and mortality. Current regulations do not reflect the natural history of the disease, and may be unrelated to the key complications: local invasion, metastasis, and the development of resistance. Alignment of preclinical and clinical studies and regulations based on mechanistic trial end points and platforms may help in overcoming these roadblocks. Viewed kaleidoscopically, most elements necessary and sufficient for a novel translational paradigm are in place. PMID:23836990
Ocean FEST: Families Exploring Science Together
ERIC Educational Resources Information Center
Bruno, Barbara C.; Wiener, Carlie; Kimura, Arthur; Kimura, Rene
2011-01-01
This project engages elementary school students, parents, teachers, and administrators in ocean-themed family science nights based on a proven model. Our key goals are to: (1) educate participants about ocean and earth science issues that are relevant to their communities; and (2) inspire more underrepresented students, including Native Hawaiians,…
ERIC Educational Resources Information Center
Dilmar, Amy D.
2017-01-01
Despite millions of dollars spent on reform efforts, effective and sustainable improvement still eludes schools. The appropriate development of the professional learning community model, including five key dimensions, provides a structure for educational institutions to bring about sustainable improvements in student achievement. If principals do…
The Press and Government Restriction: A Cross-National Study Over Time.
ERIC Educational Resources Information Center
Weaver, David H.
Studies on mass communication and national development and studies of press freedom were reviewed to construct a macro-level theoretical model of press freedom development including seven key concepts: availability of resources, urbanism, educational level, mass media development, accountability of governors, stress on government, and government…
Tourette Syndrome and Tic Disorders: A Decade of Progress
ERIC Educational Resources Information Center
Swain, James E.; Scahill, Lawrence; Lombroso, Paul J.; King, Robert A.; Leckman, James F.
2007-01-01
Objective: This is a review of progress made in the understanding of Tourette syndrome (TS) during the past decade including models of pathogenesis, state-of-the-art assessment techniques, and treatment. Method: Computerized literature searches were conducted under the key words "Tourette syndrome," "Tourette disorder," and "tics." Only references…
Skills for Today: What We Know about Teaching and Assessing Collaboration
ERIC Educational Resources Information Center
Lai, Emily; DiCerbo, Kristen; Foltz, Peter
2017-01-01
Collaboration is increasingly identified as an important educational outcome, and most models of twenty-first-century skills include collaboration as a key skill (e.g., Griffin, McGaw, & Care, 2012; Pellegrino & Hilton, 2012; OECD PISA Collaborative Problem Solving Expert Working Group, 2013; Trilling & Fadel, 2009). Such widespread…
Talent Development Middle Grades Program. What Works Clearinghouse Intervention Report
ERIC Educational Resources Information Center
What Works Clearinghouse, 2013
2013-01-01
The "Talent Development Middle Grades Program" is a comprehensive reform model that transforms the structure and curriculum of large urban middle schools with the aim of improving student achievement and raising teacher and student expectations. Key features of the "Talent Development Middle Grades Program" include small…
ERIC Educational Resources Information Center
Harris, Carolyn DeMeyer, Ed.; McKinney, David D., Ed.
This instructional kit outlines procedures for implementing Project PARTnership, a program for teaching students with disabilities greater self-determination skills through specifically designed arts experiences. An introductory section describes key project activities, including establishing a site steering committee comprised of teachers,…
Analytical simulation of SPS system performance, volume 3, phase 3
NASA Technical Reports Server (NTRS)
Kantak, A. V.; Lindsey, W. C.
1980-01-01
The simulation model for the Solar Power Satellite spaceantenna and the associated system imperfections are described. Overall power transfer efficiency, the key performance issue, is discussed as a function of the system imperfections. Other system performance measures discussed include average power pattern, mean beam gain reduction, and pointing error.
USDA-ARS?s Scientific Manuscript database
Recent years have witnessed a call for evidence-based decisions in conservation and natural resource management, including data-driven decision-making. Adaptive management (AM) is one prevalent model for integrating scientific data into decision-making, yet AM has faced numerous challenges and limit...
There is a need for rapid, efficient and cost effective alternatives to traditional in vivo developmental neurotoxicity testing. In vitro cell culture models can recapitulate many of the key cellular processes of nervous system development, including neurite outgrowth, and may be...
ERIC Educational Resources Information Center
Hagger, Martin S.; Chatzisarantis, Nikos L. D.
2012-01-01
Students' self-determined or autonomous motivation in educational contexts is associated with adaptive educational and behavioural outcomes including persistence on educational tasks and academic performance. A key question for educators is whether promoting autonomous motivation toward activities in an educational context leads to increased…
What Should We Be Teaching in Basic Economics Courses?
ERIC Educational Resources Information Center
Gwartney, James
2012-01-01
Advanced Placement economics leaves thousands of high school students with a misleading impression of modern economics. The courses fail to cover key sources of growth and prosperity, including private ownership, dynamic competition, and entrepreneurship. The tools of public choice economics are totally ignored. Government is modeled as a…
Beyond the rhetoric: what do we mean by a 'model of care'?
Davidson, Patricia; Halcomb, Elizabeth; Hickman, L; Phillips, J; Graham, B
2006-01-01
Contemporary health care systems are constantly challenged to revise traditional methods of health care delivery. These challenges are multifaceted and stem from: (1) novel pharmacological and non-pharmacological treatments; (2) changes in consumer demands and expectations; (3) fiscal and resource constraints; (4) changes in societal demographics in particular the ageing of society; (5) an increasing burden of chronic disease; (6) documentation of limitations in traditional health care delivery; (7) increased emphasis on transparency, accountability, evidence-based practice (EBP) and clinical governance structures; and (8) the increasing cultural diversity of the community. These challenges provoke discussion of potential alternative models of care, with scant reference to defining what constitutes a model of care. This paper aims to define what is meant by the term 'model of care' and document the pragmatic systems and processes necessary to develop, plan, implement and evaluate novel models of care delivery. Searches of electronic databases, the reference lists of published materials, policy documents and the Internet were conducted using key words including 'model*', 'framework*', 'models, theoretical' and 'nursing models, theoretical'. The collated material was then analysed and synthesised into this review. This review determined that in addition to key conceptual and theoretical perspectives, quality improvement theory (eg. collaborative methodology), project management methods and change management theory inform both pragmatic and conceptual elements of a model of care. Crucial elements in changing health care delivery through the development of innovative models of care include the planning, development, implementation, evaluation and assessment of the sustainability of the new model. Regardless of whether change in health care delivery is attempted on a micro basis (eg. ward level) or macro basis (eg. national or state system) in order to achieve sustainable, effective and efficient changes a well-planned, systematic process is essential.
Robertson, Anne L.; Avagyan, Serine; Gansner, John M.; Zon, Leonard I.
2017-01-01
Hematopoietic stem cells (HSCs) give rise to all differentiated blood cells. Understanding the mechanisms that regulate self-renewal and lineage specification of HSCs is key for developing treatments for many human diseases. Zebrafish have emerged as an excellent model for studying vertebrate hematopoiesis. This review will highlight the unique strengths of zebrafish and important findings that have emerged from studies of blood development and disorders using this system. We discuss recent advances in our understanding of hematopoiesis, including the origin of HSCs, molecular control of their development, and key signaling pathways involved in their regulation. We highlight significant findings from zebrafish models of blood disorders, and discuss their application for investigating stem cell dysfunction in disease and for developing new therapeutics. PMID:27616157
Does the context of reinforcement affect resistance to change?
Nevin, J A; Grace, R C
1999-04-01
Eight pigeons were trained on multiple schedules of reinforcement where pairs of components alternated in blocks on different keys to define 2 local contexts. On 1 key, components arranged 160 and 40 reinforcers/hr; on the other, components arranged 40 and 10 reinforcers/hr. Response rates in the 40/hr component were higher in the latter pair. Within pairs, resistance to prefeeding and resistance to extinction were generally greater in the richer component. The two 40/hr components did not differ in resistance to prefeeding, but the 40/hr component that alternated with 10/hr was more resistant to extinction. This discrepancy was interpreted by an algebraic model relating response strength to component reinforcer rate, including generalization decrement. According to this model, strength is independent of context, consistent with research on schedule preference.
GEWEX Cloud Systems Study (GCSS)
NASA Technical Reports Server (NTRS)
Moncrieff, Mitch
1993-01-01
The Global Energy and Water Cycle Experiment (GEWEX) Cloud Systems Study (GCSS) program seeks to improve the physical understanding of sub-grid scale cloud processes and their representation in parameterization schemes. By improving the description and understanding of key cloud system processes, GCSS aims to develop the necessary parameterizations in climate and numerical weather prediction (NWP) models. GCSS will address these issues mainly through the development and use of cloud-resolving or cumulus ensemble models to generate realizations of a set of archetypal cloud systems. The focus of GCSS is on mesoscale cloud systems, including precipitating convectively-driven cloud systems like MCS's and boundary layer clouds, rather than individual clouds, and on their large-scale effects. Some of the key scientific issues confronting GCSS that particularly relate to research activities in the central U.S. are presented.
Lahoti, Krishnakumar; Pathrabe, Anup; Gade, Jaykumar
2016-01-01
The purpose of this research was to compare stress distribution on the bone between single implant-retained and two-implant-retained mandibular overdentures using three-dimensional (3D) finite element analysis. Two 3D finite element models were designed. The first model included single implant-supported mandibular overdenture placed in the midline of the mandible while the second model included two-implant-supported mandibular overdenture placed in the intra-foramen region, retained by ball attachment of the same diameter. The bone was modeled on the D2 bone depending on the classification given by Misch. A computed tomography scan of the mandible was used to model the bone by plotting the key points on the graph and generating the identical key points on the ANSYS Software (ANSYS, Inc., USA). The implant was modeled using appropriate dimensions as provided by the manufacturer. Stresses were calculated based on the von Mises criteria. Stresses produced in the hard bone (HB) and soft bone (SB) were higher in single implant-retained mandibular overdenture while stresses produced around the denture as well as implant were higher in two-implant-retained mandibular overdenture. Within the limitations of the study, it had been seen that stresses produced were the highest on HB and SB in single implant-retained mandibular overdenture while stresses produced across the denture as well as implant were the highest in two-implant-retained mandibular overdenture.
StratBAM: A Discrete-Event Simulation Model to Support Strategic Hospital Bed Capacity Decisions.
Devapriya, Priyantha; Strömblad, Christopher T B; Bailey, Matthew D; Frazier, Seth; Bulger, John; Kemberling, Sharon T; Wood, Kenneth E
2015-10-01
The ability to accurately measure and assess current and potential health care system capacities is an issue of local and national significance. Recent joint statements by the Institute of Medicine and the Agency for Healthcare Research and Quality have emphasized the need to apply industrial and systems engineering principles to improving health care quality and patient safety outcomes. To address this need, a decision support tool was developed for planning and budgeting of current and future bed capacity, and evaluating potential process improvement efforts. The Strategic Bed Analysis Model (StratBAM) is a discrete-event simulation model created after a thorough analysis of patient flow and data from Geisinger Health System's (GHS) electronic health records. Key inputs include: timing, quantity and category of patient arrivals and discharges; unit-level length of care; patient paths; and projected patient volume and length of stay. Key outputs include: admission wait time by arrival source and receiving unit, and occupancy rates. Electronic health records were used to estimate parameters for probability distributions and to build empirical distributions for unit-level length of care and for patient paths. Validation of the simulation model against GHS operational data confirmed its ability to model real-world data consistently and accurately. StratBAM was successfully used to evaluate the system impact of forecasted patient volumes and length of stay in terms of patient wait times, occupancy rates, and cost. The model is generalizable and can be appropriately scaled for larger and smaller health care settings.
NASA Astrophysics Data System (ADS)
Resovsky, A.; Luyssaert, S.; Guenet, B.; Peylin, P.; Lansø, A. S.; Vuichard, N.; Messina, P.; Smith, B.; Ryder, J.; Naudts, K.; Chen, Y.; Otto, J.; McGrath, M.; Valade, A.
2017-12-01
Understanding coupling between carbon (C) and nitrogen (N) cycling in forest ecosystems is key to predicting global change. Numerous experimental studies have demonstrated the positive response of stand-level photosynthesis and net primary production (NPP) to atmospheric CO2 enrichment, while N availability has been shown to exert an important control on the timing and magnitude of such responses. However, several factors complicate efforts to precisely represent ecosystem-level C and N cycling in the current generation of land surface models (LSMs), including sparse in-situ data, uncertainty with regard to key state variables and disregard for the effects of natural and anthropogenic forest management. In this study, we incorporate empirical data from N-fertilization experiments at two long-term manipulation sites in Sweden to improve the representation of C and N interaction in the ORCHIDEE land surface model. Our version of the model represents the union of two existing ORCHIDEE branches: 1) ORCHIDEE-CN, which resolves processes related to terrestrial C and N cycling, and 2) ORCHIDEE-CAN, which integrates a multi-layer canopy structure and includes representation of forest management practices. Using this new model branch (referred to as ORCHIDEE-CN-CAN), we aim to replicate the growth patterns of managed forests both with and without N limitations. Our hope is that the results, in combination with measurements of various ecosystem parameters (such as soil N) will facilitate LSM optimization, inform future model development, and reduce structural uncertainty in global change predictions.
A combined coarse-grained and all-atom simulation of TRPV1 channel gating and heat activation
Qin, Feng
2015-01-01
The transient receptor potential (TRP) channels act as key sensors of various chemical and physical stimuli in eukaryotic cells. Despite years of study, the molecular mechanisms of TRP channel activation remain unclear. To elucidate the structural, dynamic, and energetic basis of gating in TRPV1 (a founding member of the TRPV subfamily), we performed coarse-grained modeling and all-atom molecular dynamics (MD) simulation based on the recently solved high resolution structures of the open and closed form of TRPV1. Our coarse-grained normal mode analysis captures two key modes of collective motions involved in the TRPV1 gating transition, featuring a quaternary twist motion of the transmembrane domains (TMDs) relative to the intracellular domains (ICDs). Our transition pathway modeling predicts a sequence of structural movements that propagate from the ICDs to the TMDs via key interface domains (including the membrane proximal domain and the C-terminal domain), leading to sequential opening of the selectivity filter followed by the lower gate in the channel pore (confirmed by modeling conformational changes induced by the activation of ICDs). The above findings of coarse-grained modeling are robust to perturbation by lipids. Finally, our MD simulation of the ICD identifies key residues that contribute differently to the nonpolar energy of the open and closed state, and these residues are predicted to control the temperature sensitivity of TRPV1 gating. These computational predictions offer new insights to the mechanism for heat activation of TRPV1 gating, and will guide our future electrophysiology and mutagenesis studies. PMID:25918362
Agüera, Antonio; Collard, Marie; Jossart, Quentin; Moreau, Camille; Danis, Bruno
2015-01-01
Marine organisms in Antarctica are adapted to an extreme ecosystem including extremely stable temperatures and strong seasonality due to changes in day length. It is now largely accepted that Southern Ocean organisms are particularly vulnerable to global warming with some regions already being challenged by a rapid increase of temperature. Climate change affects both the physical and biotic components of marine ecosystems and will have an impact on the distribution and population dynamics of Antarctic marine organisms. To predict and assess the effect of climate change on marine ecosystems a more comprehensive knowledge of the life history and physiology of key species is urgently needed. In this study we estimate the Dynamic Energy Budget (DEB) model parameters for key benthic Antarctic species the sea star Odontaster validus using available information from literature and experiments. The DEB theory is unique in capturing the metabolic processes of an organism through its entire life cycle as a function of temperature and food availability. The DEB model allows for the inclusion of the different life history stages, and thus, becomes a tool that can be used to model lifetime feeding, growth, reproduction, and their responses to changes in biotic and abiotic conditions. The DEB model presented here includes the estimation of reproduction handling rules for the development of simultaneous oocyte cohorts within the gonad. Additionally it links the DEB model reserves to the pyloric caeca an organ whose function has long been ascribed to energy storage. Model parameters described a slowed down metabolism of long living animals that mature slowly. O. validus has a large reserve that-matching low maintenance costs- allow withstanding long periods of starvation. Gonad development is continuous and individual cohorts developed within the gonads grow in biomass following a power function of the age of the cohort. The DEB model developed here for O. validus allowed us to increase our knowledge on the ecophysiology of this species, providing new insights on the role of food availability and temperature on its life cycle and reproduction strategy.
Rayleigh-Taylor and Richtmyer-Meshkov instability induced flow, turbulence, and mixing. II
NASA Astrophysics Data System (ADS)
Zhou, Ye
2017-12-01
Rayleigh-Taylor (RT) and Richtmyer-Meshkov(RM) instabilities are well-known pathways towards turbulent mixing layers, in many cases characterized by significant mass and species exchange across the mixing layers (Zhou, 2017. Physics Reports, 720-722, 1-136). Mathematically, the pathway to turbulent mixing requires that the initial interface be multimodal, to permit cross-mode coupling leading to turbulence. Practically speaking, it is difficult to experimentally produce a non-multi-mode initial interface. Numerous methods and approaches have been developed to describe the late, multimodal, turbulent stages of RT and RM mixing layers. This paper first presents the initial condition dependence of RT mixing layers, and introduces parameters that are used to evaluate the level of "mixedness" and "mixed mass" within the layers, as well as the dependence on density differences, as well as the characteristic anisotropy of this acceleration-driven flow, emphasizing some of the key differences between the two-dimensional and three-dimensional RT mixing layers. Next, the RM mixing layers are discussed, and differences with the RT mixing layer are elucidated, including the RM mixing layers dependence on the Mach number of the initiating shock. Another key feature of the RM induced flows is its response to a reshock event, as frequently seen in shock-tube experiments as well as inertial confinement events. A number of approaches to modeling the evolution of these mixing layers are then described, in order of increasing complexity. These include simple buoyancy-drag models, Reynolds-averaged Navier-Stokes models of increased complexity, including K- ε, K-L, and K- L- a models, up to full Reynolds-stress models with more than one length-scale. Multifield models and multiphase models have also been implemented. Additional complexities to these flows are examined as well as modifications to the models to understand the effects of these complexities. These complexities include the presence of magnetic fields, compressibility, rotation, stratification and additional instabilities. The complications induced by the presence of converging geometries are also considered. Finally, the unique problems of astrophysical and high-energy-density applications, and efforts to model these are discussed.
A comprehensive probabilistic analysis model of oil pipelines network based on Bayesian network
NASA Astrophysics Data System (ADS)
Zhang, C.; Qin, T. X.; Jiang, B.; Huang, C.
2018-02-01
Oil pipelines network is one of the most important facilities of energy transportation. But oil pipelines network accident may result in serious disasters. Some analysis models for these accidents have been established mainly based on three methods, including event-tree, accident simulation and Bayesian network. Among these methods, Bayesian network is suitable for probabilistic analysis. But not all the important influencing factors are considered and the deployment rule of the factors has not been established. This paper proposed a probabilistic analysis model of oil pipelines network based on Bayesian network. Most of the important influencing factors, including the key environment condition and emergency response are considered in this model. Moreover, the paper also introduces a deployment rule for these factors. The model can be used in probabilistic analysis and sensitive analysis of oil pipelines network accident.
Selecting among competing models of electro-optic, infrared camera system range performance
Nichols, Jonathan M.; Hines, James E.; Nichols, James D.
2013-01-01
Range performance is often the key requirement around which electro-optical and infrared camera systems are designed. This work presents an objective framework for evaluating competing range performance models. Model selection based on the Akaike’s Information Criterion (AIC) is presented for the type of data collected during a typical human observer and target identification experiment. These methods are then demonstrated on observer responses to both visible and infrared imagery in which one of three maritime targets was placed at various ranges. We compare the performance of a number of different models, including those appearing previously in the literature. We conclude that our model-based approach offers substantial improvements over the traditional approach to inference, including increased precision and the ability to make predictions for some distances other than the specific set for which experimental trials were conducted.
Systems Biology in Immunology – A Computational Modeling Perspective
Germain, Ronald N.; Meier-Schellersheim, Martin; Nita-Lazar, Aleksandra; Fraser, Iain D. C.
2011-01-01
Systems biology is an emerging discipline that combines high-content, multiplexed measurements with informatic and computational modeling methods to better understand biological function at various scales. Here we present a detailed review of the methods used to create computational models and conduct simulations of immune function, We provide descriptions of the key data gathering techniques employed to generate the quantitative and qualitative data required for such modeling and simulation and summarize the progress to date in applying these tools and techniques to questions of immunological interest, including infectious disease. We include comments on what insights modeling can provide that complement information obtained from the more familiar experimental discovery methods used by most investigators and why quantitative methods are needed to eventually produce a better understanding of immune system operation in health and disease. PMID:21219182
Next Generation, 4-D Distributed Modeling and Visualization of Battlefield
2006-07-14
accurate. However, the effectiveness of such a view is determined by its usability. If the picture contained all the information that had been...major key to success in such missions is the ability to model real-world urban areas accurately and effectively , so as to support US military mission...primitives (including the standard CG primitives such as plane, cube, wedge, polyhedron, cylinder and sphere, and high-order surface primitives such as
1980-01-15
Code B364078464 V99QAXNH30303 H2590D. IS KEY WORDS fCo.. e.1 Odn Od It -C.eWV WHO Idnlif b 61-k n 0ber) Strategic Targeting Copper Industry INDATAK 20...develop, debug and test an industrial simulation model (INDATAK) using the LOGATAK model as a point of departure. The copper processing industry is...significant processes in the copper industry, including the transportation network connecting the processing elements, have been formatted for use in
NASA Technical Reports Server (NTRS)
Colle, Brian A.; Molthan, Andrew L.
2013-01-01
The representation of clouds in climate and weather models is a driver in forecast uncertainty. Cloud microphysics parameterizations are challenged by having to represent a diverse range of ice species. Key characteristics of predicted ice species include habit and fall speed, and complex interactions that result from mixed-phased processes like riming. Our proposed activity leverages Global Precipitation Measurement (GPM) Mission ground validation studies to improve parameterizations
Mining key elements for severe convection prediction based on CNN
NASA Astrophysics Data System (ADS)
Liu, Ming; Pan, Ning; Zhang, Changan; Sha, Hongzhou; Zhang, Bolei; Liu, Liang; Zhang, Meng
2017-04-01
Severe convective weather is a kind of weather disasters accompanied by heavy rainfall, gust wind, hail, etc. Along with recent developments on remote sensing and numerical modeling, there are high-volume and long-term observational and modeling data accumulated to capture massive severe convective events over particular areas and time periods. With those high-volume and high-variety weather data, most of the existing studies and methods carry out the dynamical laws, cause analysis, potential rule study, and prediction enhancement by utilizing the governing equations from fluid dynamics and thermodynamics. In this study, a key-element mining method is proposed for severe convection prediction based on convolution neural network (CNN). It aims to identify the key areas and key elements from huge amounts of historical weather data including conventional measurements, weather radar, satellite, so as numerical modeling and/or reanalysis data. Under this manner, the machine-learning based method could help the human forecasters on their decision-making on operational weather forecasts on severe convective weathers by extracting key information from the real-time and historical weather big data. In this paper, it first utilizes computer vision technology to complete the data preprocessing work of the meteorological variables. Then, it utilizes the information such as radar map and expert knowledge to annotate all images automatically. And finally, by using CNN model, it cloud analyze and evaluate each weather elements (e.g., particular variables, patterns, features, etc.), and identify key areas of those critical weather elements, then help forecasters quickly screen out the key elements from huge amounts of observation data by current weather conditions. Based on the rich weather measurement and model data (up to 10 years) over Fujian province in China, where the severe convective weathers are very active during the summer months, experimental tests are conducted with the new machine-learning method via CNN models. Based on the analysis of those experimental results and case studies, the proposed new method have below benefits for the severe convection prediction: (1) helping forecasters to narrow down the scope of analysis and saves lead-time for those high-impact severe convection; (2) performing huge amount of weather big data by machine learning methods rather relying on traditional theory and knowledge, which provide new method to explore and quantify the severe convective weathers; (3) providing machine learning based end-to-end analysis and processing ability with considerable scalability on data volumes, and accomplishing the analysis work without human intervention.
The ties that bind: a network approach to creating a programme in faculty development.
Baker, Lindsay; Reeves, Scott; Egan-Lee, Eileen; Leslie, Karen; Silver, Ivan
2010-02-01
Current trends in medical education reflect the changing health care environment. An increasingly large and diverse student population, a move to more distributed models of education, greater community involvement and an emphasis on social accountability, interprofessional education and student-centred approaches to learning necessitate new approaches to faculty development to help faculty members respond effectively to this rapidly changing landscape. Drawing upon the tenets of network theory and the broader organisational literature, we propose a 'fishhook' model of faculty development programme formation. The model is based on seven key factors which supported the successful formation of a centralised programme for faculty development that addressed many of the contemporary issues in medical education. These factors include: environmental readiness; commitment and vision of a mobiliser; recruitment of key stakeholders and leaders to committees; formation of a collaborative network structure; accumulation of networking capital; legitimacy, and flexibility. Our aim in creating this model is to provide a guide for other medical schools to consider when developing similar programmes. The model can be adapted to reflect the local goals, settings and cultures of other medical education contexts.
Transcendental Political Systems and the Gravity Model
NASA Technical Reports Server (NTRS)
Lock, Connor
2012-01-01
This summer I have been working on an Army Deep Futures Model project named Themis. Themis is a JPL based modeling framework that anticipates possible future states for the world within the next 25 years. The goal of this framework is to determine the likelihood that the US Army will need to intervene on behalf of the US strategic interests. Key elements that are modeled within this tool include the world structure and major decisions that are made by key actors. Each actor makes decisions based on their goals and within the constraints of the structure of the system in which they are located. In my research I have focused primarily on the effects of structures upon the decision-making processes of the actors within them. This research is a natural extension of my major program at Georgetown University, where I am studying the International Political Economy and the structures that make it up. My basic goal for this summer project was to be a helpful asset to the Themis modeling team, with any research done or processes learned constituting a bonus.
NASA Technical Reports Server (NTRS)
Watson, Michael D.; Kelley, Gary W.
2012-01-01
The Department of Defense (DoD) defined System Operational Effectiveness (SOE) model provides an exceptional framework for an affordable approach to the development and operation of space launch vehicles and their supporting infrastructure. The SOE model provides a focal point from which to direct and measure technical effectiveness and process efficiencies of space launch vehicles. The application of the SOE model to a space launch vehicle's development and operation effort leads to very specific approaches and measures that require consideration during the design phase. This paper provides a mapping of the SOE model to the development of space launch vehicles for human exploration by addressing the SOE model key points of measurement including System Performance, System Availability, Technical Effectiveness, Process Efficiency, System Effectiveness, Life Cycle Cost, and Affordable Operational Effectiveness. In addition, the application of the SOE model to the launch vehicle development process is defined providing the unique aspects of space launch vehicle production and operations in lieu of the traditional broader SOE context that examines large quantities of fielded systems. The tailoring and application of the SOE model to space launch vehicles provides some key insights into the operational design drivers, capability phasing, and operational support systems.
NASA Technical Reports Server (NTRS)
Douglass, Anne R.; Stolarski, Richard S.; Steenrod, Steven; Pawson, Steven
2003-01-01
One key application of atmospheric chemistry and transport models is prediction of the response of ozone and other constituents to various natural and anthropogenic perturbations. These include changes in composition, such as the previous rise and recent decline in emission of man-made chlorofluorcarbons, changes in aerosol loading due to volcanic eruption, and changes in solar forcing. Comparisons of hindcast model results for the past few decades with observations are a key element of model evaluation and provide a sense of the reliability of model predictions. The 25 year data set from Total Ozone Mapping Spectrometers is a cornerstone of such model evaluation. Here we report evaluation of three-dimensional multi-decadal simulation of stratospheric composition. Meteorological fields for this off-line calculation are taken from a 50 year simulation of a general circulation model. Model fields are compared with observations from TOMS and also with observations from the Stratospheric Aerosol and Gas Experiment (SAGE), Microwave Limb Sounder (MLS), Cryogenic Limb Array Etalon Spectrometer (CLAES), and the Halogen Occultation Experiment (HALOE). This overall evaluation will emphasize the spatial, seasonal, and interannual variability of the simulation compared with observed atmospheric variability.
System Model for MEMS based Laser Ultrasonic Receiver
NASA Technical Reports Server (NTRS)
Wilson, William C.
2002-01-01
A need has been identified for more advanced nondestructive Evaluation technologies for assuring the integrity of airframe structures, wiring, etc. Laser ultrasonic inspection instruments have been shown to detect flaws in structures. However, these instruments are generally too bulky to be used in the confined spaces that are typical of aerospace vehicles. Microsystems technology is one key to reducing the size of current instruments and enabling increased inspection coverage in areas that were previously inaccessible due to instrument size and weight. This paper investigates the system modeling of a Micro OptoElectroMechanical System (MOEMS) based laser ultrasonic receiver. The system model is constructed in software using MATLAB s dynamical simulator, Simulink. The optical components are modeled using geometrical matrix methods and include some image processing. The system model includes a test bench which simulates input stimuli and models the behavior of the material under test.
Parametric Studies of Flow Separation using Air Injection
NASA Technical Reports Server (NTRS)
Zhang, Wei
2004-01-01
Boundary Layer separation causes the airfoil to stall and therefore imposes dramatic performance degradation on the airfoil. In recent years, flow separation control has been one of the active research areas in the field of aerodynamics due to its promising performance improvements on the lifting device. These active flow separation control techniques include steady and unsteady air injection as well as suction on the airfoil surface etc. This paper will be focusing on the steady and unsteady air injection on the airfoil. Although wind tunnel experiments revealed that the performance improvements on the airfoil using injection techniques, the details of how the key variables such as air injection slot geometry and air injection angle etc impact the effectiveness of flow separation control via air injection has not been studied. A parametric study of both steady and unsteady air injection active flow control will be the main objective for this summer. For steady injection, the key variables include the slot geometry, orientation, spacing, air injection velocity as well as the injection angle. For unsteady injection, the injection frequency will also be investigated. Key metrics such as lift coefficient, drag coefficient, total pressure loss and total injection mass will be used to measure the effectiveness of the control technique. A design of experiments using the Box-Behnken Design is set up in order to determine how each of the variables affects each of the key metrics. Design of experiment is used so that the number of experimental runs will be at minimum and still be able to predict which variables are the key contributors to the responses. The experiments will then be conducted in the 1ft by 1ft wind tunnel according to the design of experiment settings. The data obtained from the experiments will be imported into JMP, statistical software, to generate sets of response surface equations which represent the statistical empirical model for each of the metrics as a function of the key variables. Next, the variables such as the slot geometry can be optimized using the build-in optimizer within JMP. Finally, a wind tunnel testing will be conducted using the optimized slot geometry and other key variables to verify the empirical statistical model. The long term goal for this effort is to assess the impacts of active flow control using air injection at system level as one of the task plan included in the NASAs URETI program with Georgia Institute of Technology.
The CMMI Product Suite and International Standards
2006-07-01
standards: “2.3 Reference Documents 2.3.1 Applicable ISO /IEC documents, including ISO /IEC 12207 and ISO /IEC 15504.” “3.1 Development User Requirements...related international standards such as ISO 9001:2000, 12207 , 15288 © 2006 by Carnegie Mellon University Page 12 Key Supplements Needed...the Measurement Framework in ISO /IEC 15504; and • the Process Reference Model included in ISO /IEC 12207 . A possible approach has been developed for
Simone, Joanne; Hoyt, Mary Jo; Storm, Deborah S; Finocchario-Kessler, Sarah
2018-06-05
Preconception care can improve maternal and infant outcomes by identifying and modifying health risks before pregnancy and reducing unplanned pregnancies. However, information about how preconception care is provided to persons living with HIV (PLWH) is lacking. This study uses qualitative interviews with HIV care providers to describe current models of preconception care and explore factors influencing services. Single, anonymous, telephone interviews were conducted with 92 purposively selected HIV healthcare providers in Atlanta, Baltimore, Houston, Kansas City, Newark, Philadelphia, and San Francisco in 2013-2014. Content analysis and a grounded theory approach were used to analyze data. Participants included 57% physicians with a median of 10 [interquartile range (IQR) = 5-17] years HIV care experience; the mean proportion of female patients was 45%. Participants described Individual Provider (48.9%), Team-based (43.2%), and Referral-only (7.6%) models of preconception care, with 63% incorporating referrals outside their clinics. Thematic analysis identified five key elements influencing the provision of preconception care within and across models: consistency of delivery, knowledge and attitudes, clinic characteristics, coordination of care, and referral accessibility. Described models of preconception care reflect the complexity of our healthcare system. Qualitative analysis offers insights about how HIV clinicians provide preconception care and how key elements influence services. However, additional research about the models and outcomes of preconception care services are needed. To improve preconception care for PLWH, research and quality improvement initiatives must utilize available strengths and tackle existing barriers, identified by our study and others, to define and implement effective models of preconception care services.
An appraisal of the literature on teaching physical examination skills.
Easton, Graham; Stratford-Martin, James; Atherton, Helen
2012-07-01
To discover which models for teaching physical examination skills have been proposed, and to appraise the evidence for each. We conducted a narrative review of relevant literature from 1990-2010. We searched the databases MEDLINE, PsycINFO, and ERIC (The Education Resource Information Centre) for the terms: 'physical examination' AND 'teaching' as both MESH terms and keyword searches. We excluded web-based or video teaching, non-physical examination skills (e.g. communication skills), and articles about simulated patients or models. We identified five relevant articles. These five studies outlined several approaches to teaching physical examination skills, including Peyton's 4-step model, an adaptation of his model to a 6-step model; the silent run through; and collaborative discovery. There was little evidence to support one method over others. One controlled trial suggested that silent run-through could improve performance of complex motor tasks, and another suggested that collaborative discovery improves students' ability to recognise key findings in cardiac examinations. There are several models for teaching physical examinations, but few are designed specifically for that purpose and there is little evidence to back any one model over another. We propose an approach which adopts several key features of these models. Future research could usefully evaluate the effectiveness of the proposed models, or develop innovative practical models for teaching examination skills.
Human Health Effects of Dichloromethane: Key Findings and Scientific Issues
Schlosser, Paul M.; Bale, Ambuja S.; Gibbons, Catherine F.; Wilkins, Amina
2014-01-01
Background: The U.S. EPA’s Integrated Risk Information System (IRIS) completed an updated toxicological review of dichloromethane in November 2011. Objectives: In this commentary we summarize key results and issues of this review, including exposure sources, identification of potential health effects, and updated physiologically based pharmacokinetic (PBPK) modeling. Methods: We performed a comprehensive review of primary research studies and evaluation of PBPK models. Discussion: Hepatotoxicity was observed in oral and inhalation exposure studies in several studies in animals; neurological effects were also identified as a potential area of concern. Dichloromethane was classified as likely to be carcinogenic in humans based primarily on evidence of carcinogenicity at two sites (liver and lung) in male and female B6C3F1 mice (inhalation exposure) and at one site (liver) in male B6C3F1 mice (drinking-water exposure). Recent epidemiologic studies of dichloromethane (seven studies of hematopoietic cancers published since 2000) provide additional data raising concerns about associations with non-Hodgkin lymphoma and multiple myeloma. Although there are gaps in the database for dichloromethane genotoxicity (i.e., DNA adduct formation and gene mutations in target tissues in vivo), the positive DNA damage assays correlated with tissue and/or species availability of functional glutathione S-transferase (GST) metabolic activity, the key activation pathway for dichloromethane-induced cancer. Innovations in the IRIS assessment include estimation of cancer risk specifically for a presumed sensitive genotype (GST-theta-1+/+), and PBPK modeling accounting for human physiological distributions based on the expected distribution for all individuals 6 months to 80 years of age. Conclusion: The 2011 IRIS assessment of dichloromethane provides insights into the toxicity of a commonly used solvent. Citation: Schlosser PM, Bale AS, Gibbons CF, Wilkins A, Cooper GS. 2015. Human health effects of dichloromethane: key findings and scientific issues. Environ Health Perspect 123:114–119; http://dx.doi.org/10.1289/ehp.1308030 PMID:25325283
Generating relevant climate adaptation science tools in concert with local natural resource agencies
NASA Astrophysics Data System (ADS)
Micheli, L.; Flint, L. E.; Veloz, S.; Heller, N. E.
2015-12-01
To create a framework for adapting to climate change, decision makers operating at the urban-wildland interface need to define climate vulnerabilities in the context of site-specific opportunities and constraints relative to water supply, land use suitability, wildfire risks, ecosystem services and quality of life. Pepperwood's TBC3.org is crafting customized climate vulnerability assessments with selected water and natural resource agencies of California's Sonoma, Marin, Napa and Mendocino counties under the auspices of Climate Ready North Bay, a public-private partnership funded by the California Coastal Conservancy. Working directly with managers from the very start of the process to define resource-specific information needs, we are developing high-resolution, spatially-explicit data products to help local governments and agency staff implement informed and effective climate adaptation strategies. Key preliminary findings for the region using the USGS' Basin Characterization Model (at a 270 m spatial resolution) include a unidirectional trend, independent of greater or lesser precipitation, towards increasing climatic water deficits across model scenarios. Therefore a key message is that managers will be facing an increasingly arid environment. Companion models translate the impacts of shifting climate and hydrology on vegetation composition and fire risks. The combination of drought stress on water supplies and native vegetation with an approximate doubling of fire risks may demand new approaches to watershed planning. Working with agencies we are exploring how to build capacity for protection and enhancement of key watershed functions with a focus on groundwater recharge, facilitating greater drought tolerance in forest and rangeland systems, and considering more aggressive approaches to management of fuel loads. Lessons learned about effective engagement include the need for extended in-depth dialog, translation of key climate adaptation questions into deliverable metrics and indicators, and the need to take time to digest and formulate results in terms of adaptive management actions. Agencies also express a benefit in using Climate Ready results to raise public awareness of the resource challenges that may lay ahead.
NASA Astrophysics Data System (ADS)
Osterman, G.; Harper, C.; Estes, M.; Zhao, W.; Bowman, K.; Pierce, B.; Irion, B.; Kahn, B.; Al-Saadi, J.
2008-05-01
The Houston/Galveston/Brazoria (HGB) area of Texas has been classified as in moderate nonattainment of the Environmental Protection Agency (EPA) 8-hour standard for ground level ozone since April 30, 2004. The Texas Commission on Environmental Quality uses photochemical model results as one of its primary tools to develop strategies to bring the HGB area into attainment with the EPA standard. The state of Texas then includes the strategies into a revised version of its State Implementation Plan (SIP). We will discuss efforts that have been or soon will be underway to use satellite data to evaluate and improve the meteorological and photochemical modeling efforts at TCEQ. In particular we will show the use of GOES, AIRS and TES data to improve the ability to model, using the MM5 model, the meteorological conditions over Texas and the Gulf of Mexico. The meteorological fields are then used as one of the inputs to the CAMx air quality model used at TCEQ. We will discuss the use of chemical transport model results as initial and boundary conditions which are a key uncertainty in the modeling of the air above Houston. We will also discuss the use of TES data to assist in the evaluation of preliminary model results generated by TCEQ for time periods in 2005. The satellite data will provide key information on ozone and carbon monoxide concentrations away from surface monitors in the troposphere. We will show how satellite data is becoming a key tool in the effort to improve air quality in the HGB area and one that can easily applied for use in other regions of the country.
NASA Astrophysics Data System (ADS)
Cañón-Tapia, Edgardo
2018-04-01
The development of ideas concerning Continental Flood Basalt Provinces is not new, and many studies were completed on specific provinces before the advent of plate tectonics. The Paraná-Etendeka Province is not an exception, and actually is an example of a province that has been thoroughly studied for > 100 years. In this work, I present a brief summary of various aspects of this province from a rather general point of view, including many references of difficult access to a reader not versed on the Portuguese language. Key features include the presence of alkaline volcanism along the edges of the main basin, before and after a markedly tholeiitic event, the uneven spatial distribution of eruptive products relative to the location of continental rupture, the apparent lack of a pattern of temporal activity across the whole province and the close relationship between the structure of the underlying sedimentary basin and the distribution of volcanic rocks. By bringing together information relevant to all of those key features, an evolutionary model emphasizing the role played by the changing local structure is outlined. This model is an example of how key observations (many of which were overlooked for > 50 years) provide the required impetus for the completion of future research that has the potential to substantially change the form in which this province has been visualized for at least the past 30 years.
Ramsay, Jason T; Smith, Peter; Thompson, Alison; O'Campo, Patricia; Nisenbaum, Rosane; Watson, Priya; Park-Wylie, Laura; Bryant, Toba; Tandon, Reena; Farah, Mohammed
2012-01-01
The objective of this study was to evaluate perceptions of the effectiveness of the community advisory panels (CAPs) at St. Michael's Hospital, in Toronto, Canada. A qualitative design was employed. Participants included hospital staff, patients, Community Advisory Panel chairs, and key informants from community services in the St. Michael's Hospital catchment area. An online survey about awareness of the CAPs and CAP accomplishments; (2) Key informants interviews; and (3) Review of memos and meeting minutes of the CAPs to assess their impact in the hospital and the community. St. Michael's Hospital was the setting of the study. Descriptive statistics were generated for the survey data. Qualitative interview data were coded for major themes. Participants included hospital staff, patients, CAP chairs, and key informants from community services in the St. Michael's Hospital catchment area. Although the CAPs initiated and implemented an array of programs and services at St. Michael's Hospital, the visibility of the CAPs and their service to the hospital and community were very low. Themes that emerged from the semistructured interviews involved the visibility, effectiveness, and role of the CAPs in the hospital. Although the CAPs at St. Michael's Hospital appear to be an effective model for community responsiveness, the visibility of their work in the hospital and community was very low. © 2012 Wiley Periodicals, Inc.
Penas, David R; González, Patricia; Egea, Jose A; Doallo, Ramón; Banga, Julio R
2017-01-21
The development of large-scale kinetic models is one of the current key issues in computational systems biology and bioinformatics. Here we consider the problem of parameter estimation in nonlinear dynamic models. Global optimization methods can be used to solve this type of problems but the associated computational cost is very large. Moreover, many of these methods need the tuning of a number of adjustable search parameters, requiring a number of initial exploratory runs and therefore further increasing the computation times. Here we present a novel parallel method, self-adaptive cooperative enhanced scatter search (saCeSS), to accelerate the solution of this class of problems. The method is based on the scatter search optimization metaheuristic and incorporates several key new mechanisms: (i) asynchronous cooperation between parallel processes, (ii) coarse and fine-grained parallelism, and (iii) self-tuning strategies. The performance and robustness of saCeSS is illustrated by solving a set of challenging parameter estimation problems, including medium and large-scale kinetic models of the bacterium E. coli, bakerés yeast S. cerevisiae, the vinegar fly D. melanogaster, Chinese Hamster Ovary cells, and a generic signal transduction network. The results consistently show that saCeSS is a robust and efficient method, allowing very significant reduction of computation times with respect to several previous state of the art methods (from days to minutes, in several cases) even when only a small number of processors is used. The new parallel cooperative method presented here allows the solution of medium and large scale parameter estimation problems in reasonable computation times and with small hardware requirements. Further, the method includes self-tuning mechanisms which facilitate its use by non-experts. We believe that this new method can play a key role in the development of large-scale and even whole-cell dynamic models.
Virtual Research Environments for Natural Hazard Modelling
NASA Astrophysics Data System (ADS)
Napier, Hazel; Aldridge, Tim
2017-04-01
The Natural Hazards Partnership (NHP) is a group of 17 collaborating public sector organisations providing a mechanism for co-ordinated advice to government and agencies responsible for civil contingency and emergency response during natural hazard events. The NHP has set up a Hazard Impact Model (HIM) group tasked with modelling the impact of a range of UK hazards with the aim of delivery of consistent hazard and impact information. The HIM group consists of 7 partners initially concentrating on modelling the socio-economic impact of 3 key hazards - surface water flooding, land instability and high winds. HIM group partners share scientific expertise and data within their specific areas of interest including hydrological modelling, meteorology, engineering geology, GIS, data delivery, and modelling of socio-economic impacts. Activity within the NHP relies on effective collaboration between partners distributed across the UK. The NHP are acting as a use case study for a new Virtual Research Environment (VRE) being developed by the EVER-EST project (European Virtual Environment for Research - Earth Science Themes: a solution). The VRE is allowing the NHP to explore novel ways of cooperation including improved capabilities for e-collaboration, e-research, automation of processes and e-learning. Collaboration tools are complemented by the adoption of Research Objects, semantically rich aggregations of resources enabling the creation of uniquely identified digital artefacts resulting in reusable science and research. Application of the Research Object concept to HIM development facilitates collaboration, by encapsulating scientific knowledge in a shareable format that can be easily shared and used by partners working on the same model but within their areas of expertise. This paper describes the application of the VRE to the NHP use case study. It outlines the challenges associated with distributed partnership working and how they are being addressed in the VRE. A case study is included focussing on the application of Research Objects to development work for the surface water flooding hazard impact model, a key achievement for the HIM group.
Inverse modeling of geochemical and mechanical compaction in sedimentary basins
NASA Astrophysics Data System (ADS)
Colombo, Ivo; Porta, Giovanni Michele; Guadagnini, Alberto
2015-04-01
We study key phenomena driving the feedback between sediment compaction processes and fluid flow in stratified sedimentary basins formed through lithification of sand and clay sediments after deposition. Processes we consider are mechanic compaction of the host rock and the geochemical compaction due to quartz cementation in sandstones. Key objectives of our study include (i) the quantification of the influence of the uncertainty of the model input parameters on the model output and (ii) the application of an inverse modeling technique to field scale data. Proper accounting of the feedback between sediment compaction processes and fluid flow in the subsurface is key to quantify a wide set of environmentally and industrially relevant phenomena. These include, e.g., compaction-driven brine and/or saltwater flow at deep locations and its influence on (a) tracer concentrations observed in shallow sediments, (b) build up of fluid overpressure, (c) hydrocarbon generation and migration, (d) subsidence due to groundwater and/or hydrocarbons withdrawal, and (e) formation of ore deposits. Main processes driving the diagenesis of sediments after deposition are mechanical compaction due to overburden and precipitation/dissolution associated with reactive transport. The natural evolution of sedimentary basins is characterized by geological time scales, thus preventing direct and exhaustive measurement of the system dynamical changes. The outputs of compaction models are plagued by uncertainty because of the incomplete knowledge of the models and parameters governing diagenesis. Development of robust methodologies for inverse modeling and parameter estimation under uncertainty is therefore crucial to the quantification of natural compaction phenomena. We employ a numerical methodology based on three building blocks: (i) space-time discretization of the compaction process; (ii) representation of target output variables through a Polynomial Chaos Expansion (PCE); and (iii) model inversion (parameter estimation) within a maximum likelihood framework. In this context, the PCE-based surrogate model enables one to (i) minimize the computational cost associated with the (forward and inverse) modeling procedures leading to uncertainty quantification and parameter estimation, and (ii) compute the full set of Sobol indices quantifying the contribution of each uncertain parameter to the variability of target state variables. Results are illustrated through the simulation of one-dimensional test cases. The analyses focuses on the calibration of model parameters through literature field cases. The quality of parameter estimates is then analyzed as a function of number, type and location of data.
How do we make models that are useful in understanding partial epilepsies?
Prince, David A
2014-01-01
The goals of constructing epilepsy models are (1) to develop approaches to prophylaxis of epileptogenesis following cortical injury; (2) to devise selective treatments for established epilepsies based on underlying pathophysiological mechanisms; and (3) use of a disease (epilepsy) model to explore brain molecular, cellular and circuit properties. Modeling a particular epilepsy syndrome requires detailed knowledge of key clinical phenomenology and results of human experiments that can be addressed in critically designed laboratory protocols. Contributions to understanding mechanisms and treatment of neurological disorders has often come from research not focused on a specific disease-relevant issue. Much of the foundation for current research in epilepsy falls into this category. Too strict a definition of the relevance of an experimental model to progress in preventing or curing epilepsy may, in the long run, slow progress. Inadequate exploration of the experimental target and basic laboratory results in a given model can lead to a failed effort and false negative or positive results. Models should be chosen based on the specific issues to be addressed rather than on convenience of use. Multiple variables including maturational age, species and strain, lesion type, severity and location, latency from injury to experiment and genetic background will affect results. A number of key issues in clinical and basic research in partial epilepsies remain to be addressed including the mechanisms active during the latent period following injury, susceptibility factors that predispose to epileptogenesis, injury - induced adaptive versus maladaptive changes, mechanisms of pharmaco-resistance and strategies to deal with multiple pathophysiological processes occurring in parallel.
RIPPLE - A new model for incompressible flows with free surfaces
NASA Technical Reports Server (NTRS)
Kothe, D. B.; Mjolsness, R. C.
1991-01-01
A new free surface flow model, RIPPLE, is summarized. RIPPLE obtains finite difference solutions for incompressible flow problems having strong surface tension forces at free surfaces of arbitrarily complex topology. The key innovation is the continuum surface force model which represents surface tension as a (strongly) localized volume force. Other features include a higher-order momentum advection model, a volume-of-fluid free surface treatment, and an efficient two-step projection solution method. RIPPLE's unique capabilities are illustrated with two example problems: low-gravity jet-induced tank flow, and the collision and coalescence of two cylindrical rods.
Modelling of additive manufacturing processes: a review and classification
NASA Astrophysics Data System (ADS)
Stavropoulos, Panagiotis; Foteinopoulos, Panagis
2018-03-01
Additive manufacturing (AM) is a very promising technology; however, there are a number of open issues related to the different AM processes. The literature on modelling the existing AM processes is reviewed and classified. A categorization of the different AM processes in process groups, according to the process mechanism, has been conducted and the most important issues are stated. Suggestions are made as to which approach is more appropriate according to the key performance indicator desired to be modelled and a discussion is included as to the way that future modelling work can better contribute to improving today's AM process understanding.
An Initial Multi-Domain Modeling of an Actively Cooled Structure
NASA Technical Reports Server (NTRS)
Steinthorsson, Erlendur
1997-01-01
A methodology for the simulation of turbine cooling flows is being developed. The methodology seeks to combine numerical techniques that optimize both accuracy and computational efficiency. Key components of the methodology include the use of multiblock grid systems for modeling complex geometries, and multigrid convergence acceleration for enhancing computational efficiency in highly resolved fluid flow simulations. The use of the methodology has been demonstrated in several turbo machinery flow and heat transfer studies. Ongoing and future work involves implementing additional turbulence models, improving computational efficiency, adding AMR.
A Public-Health-Based Vision for the Management and Regulation of Psychedelics.
Haden, Mark; Emerson, Brian; Tupper, Kenneth W
2016-01-01
The Health Officers Council of British Columbia has proposed post-prohibition regulatory models for currently illegal drugs based on public health principles, and this article continues this work by proposing a model for the regulation and management of psychedelics. This article outlines recent research on psychedelic substances and the key determinants of benefit and harm from their use. It then describes a public-health-based model for the regulation of psychedelics, which includes governance, supervision, set and setting controls, youth access, supply control, demand limitation, and evaluation.
Recent advances in plasma modeling for space applications
NASA Astrophysics Data System (ADS)
Srinivasan, Bhuvana; Scales, Wayne; Cagas, Petr; Glesner, Colin
2017-02-01
This paper presents a brief overview of the application of advanced plasma modeling techniques to several space science and engineering problems currently of significant interest. Recent advances in both kinetic and fluid modeling provide the ability to study a wide variety of problems that may be important to space plasmas including spacecraft-environment interactions, plasma-material interactions for propulsion systems such as Hall thrusters, ionospheric plasma instabilities, plasma separation from magnetic nozzles, active space experiments, and a host of additional problems. Some of the key findings are summarized here.
Risk Adjustment and Primary Health Care in Chile
Vargas, Veronica; Wasem, Juergen
2006-01-01
Aim To offer a capitation formula with greater capacity for guiding resource spending on population with poorer health and lower socioeconomic status in the context of financing and equity in primary health care. Methods We collected two years of data on a sample of 10 000 individuals from a region in Chile, Valdivia and Temuco and evaluated three models to estimate utilization and expenditures per capita. The first model included age and sex; the second one included age, sex, and the presence of two key diagnoses; and the third model included age, sex, and the presence of seven key diagnoses. Regression results were evaluated by R2 and predictive ratios to select the best specifications. Results Per-capita expenditures by age and sex confirmed international trends, where children under five, women, and the elderly were the main users of primary health care services. Women sought health advice twice as much as men. Clear differences by socioeconomic status were observed for the indigent population aged ≥65 years who under-utilized primary health care services. From the three models, major improvement in the predictive power occurred from the demographic (adjusted R2, 9%) to the demographic plus two diagnoses model (adjusted R2, 27%). Improvements were modest when five other diagnoses were added (adjusted R2, 28%). Conclusion The current formula that uses municipality’s financial power and geographic location of health centers to adjust capitation payments provides little incentive to appropriate care for the indigent and people with chronic conditions. A capitation payment that adjusts for age, sex, and the presence of diabetes and hypertension will better guide resource allocation to those with poorer health and lower socioeconomic status. PMID:16758525
NASA Astrophysics Data System (ADS)
Demirel, M. C.; Mai, J.; Stisen, S.; Mendiguren González, G.; Koch, J.; Samaniego, L. E.
2016-12-01
Distributed hydrologic models are traditionally calibrated and evaluated against observations of streamflow. Spatially distributed remote sensing observations offer a great opportunity to enhance spatial model calibration schemes. For that it is important to identify the model parameters that can change spatial patterns before the satellite based hydrologic model calibration. Our study is based on two main pillars: first we use spatial sensitivity analysis to identify the key parameters controlling the spatial distribution of actual evapotranspiration (AET). Second, we investigate the potential benefits of incorporating spatial patterns from MODIS data to calibrate the mesoscale Hydrologic Model (mHM). This distributed model is selected as it allows for a change in the spatial distribution of key soil parameters through the calibration of pedo-transfer function parameters and includes options for using fully distributed daily Leaf Area Index (LAI) directly as input. In addition the simulated AET can be estimated at the spatial resolution suitable for comparison to the spatial patterns observed using MODIS data. We introduce a new dynamic scaling function employing remotely sensed vegetation to downscale coarse reference evapotranspiration. In total, 17 parameters of 47 mHM parameters are identified using both sequential screening and Latin hypercube one-at-a-time sampling methods. The spatial patterns are found to be sensitive to the vegetation parameters whereas streamflow dynamics are sensitive to the PTF parameters. The results of multi-objective model calibration show that calibration of mHM against observed streamflow does not reduce the spatial errors in AET while they improve only the streamflow simulations. We will further examine the results of model calibration using only multi spatial objective functions measuring the association between observed AET and simulated AET maps and another case including spatial and streamflow metrics together.
Quality improvement prototype: Johnson Space Center, National Aeronautics and Space Administration
NASA Technical Reports Server (NTRS)
1990-01-01
The Johnson Space Flight Center was recognized by the Office of Management and Budget as a model for its high standards of quality. Included are an executive summary of the center's activities, an organizational overview, techniques for improving quality, the status of the quality effort and a listing of key personnel.
Predictors of College Readiness: An Analysis of the Student Readiness Inventory
ERIC Educational Resources Information Center
Wilson, James K., III
2012-01-01
The purpose of this study was to better predict how a first semester college freshman becomes prepared for college. The theoretical framework guiding this study is Vrooms' expectancy theory, motivation plays a key role in success. This study used a hierarchical multiple regression model. The independent variables of interest included high school…
Fallon, Nevada FORGE Gravity and Magnetics Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blankenship, Doug; Witter, Jeff; Carpenter, Thomas
This package contains principal facts for new gravity data collected September - November 2017 in support of the Fallon FORGE project. Also included are rock core density and magnetic susceptibility data for key core intervals, used in modeling 2D and 3D gravity inversions. Individual metadata summaries are provided as .pdf within each attached archive.
DEVELOPMENT WORK FOR IMPROVED HEAVY-DUTY VEHICLE MODELING CAPABILITY DATA MINING--FHWA DATASETS
A heavy-duty vehicle can produce 10 to 100 times the emissions (of NOx and PM emissions especially) of a light-duty vehicle, so heavy-duty vehicle activity needs to be well characterized. Key uncertainties with the use of MOBILE6 regarding heavy-duty vehicle emissions include th...
The Place of Autonomy in School Community: Taking a Closer Look at Teacher Collaboration
ERIC Educational Resources Information Center
Gates, Gordon S.; Watkins, Millie
2010-01-01
Teachers hold the key to school reform. Professional learning communities--as well as other related strategies, including collaborative and distributive models of leadership--offer much that is promising. Yet, weaknesses documented in research require attention. We conducted a study of teachers in two elementary schools identified as exemplary…
Five Standards for Effective Teaching: How to Succeed with All Learners, Grades K-8
ERIC Educational Resources Information Center
Dalton, Stephanie Stoll
2007-01-01
Based on a proven instructional model distilled over years of research, this book focuses on five essential pedagogy standards for guiding teaching practice in classrooms with diverse students, including English learners. Providing key indicators for each standard along with the theoretical rationale and "best practice" strategies, the book offers…
ERIC Educational Resources Information Center
Nyaanga, Solomon G.
2012-01-01
This research investigates the impact of telecommuting intensity (hours worked/week from home) on worker perceived outcomes such as job satisfaction, productivity, organizational commitment. Data was collected and analyzed from a large U.S. Federal Department. The conceptual research model and design include three key mediating variables, one…
76 FR 21044 - Notice of Entering Into a Compact With the Republic of Malawi
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-14
...) Operations: MCC funding will support change management efforts, designing human resources strategies... efforts to implement a suitable market model which will include efforts to: (a) Study and design a single... from time to time in accordance with the terms hereof, the ``Program'') to counter a key binding...
NASA Technical Reports Server (NTRS)
Dash, S. M.; Pergament, H. S.
1978-01-01
The basic code structure is discussed, including the overall program flow and a brief description of all subroutines. Instructions on the preparation of input data, definitions of key FORTRAN variables, sample input and output, and a complete listing of the code are presented.
Colin M. Beier; Trista M. Patterson; F. Stuart Chapin III
2008-01-01
Managed ecosystems experience vulnerabilities when ecological resilience declines and key flows of ecosystem services become depleted or lost. Drivers of vulnerability often include local management actions in conjunction with other external, larger scale factors. To translate these concepts to management applications, we developed a conceptual model of feedbacks...
Learning for Keeps: Teaching the Strategies Essential for Creating Independent Learners
ERIC Educational Resources Information Center
Koenig, Rhoda
2010-01-01
How can teachers ensure instruction is aligned with 21st century demands for self-directed, collaborative problem solvers? Practice exercises are not the answer. Instead, here's a book that explains why the key is to use explicit instruction that includes proficient models, specific feedback, and supportive coaching. Rhoda Koenig gives you insight…
ERIC Educational Resources Information Center
Williams, Michelle; DeBarger, Angela Haydel; Montgomery, Beronda L.; Zhou, Xuechun; Tate, Erika
2012-01-01
This study examines students' understanding of the normative connections between key concepts of cell division, including both mitosis and meiosis, and underlying biological principles that are critical for an in-depth understanding of genetic inheritance. Using a structural equation modeling method, we examine middle school students'…
Beyond meaningful use: getting meaningful value from IT.
Fortin, Jason; Zywiak, Walt
2010-02-01
The HITECH provisions of ARRA include financial incentives for providers to demonstrate meaningful use of certified EHR technology. However, to maximize the value of IT under new payment models, provider organizations will need to go beyond meaningful use criteria in three key areas: Delivering high-quality care. Ensuring coordinated care. Integrating financial systems.
Public Elementary and Secondary Education in the '80s.
ERIC Educational Resources Information Center
Broudy, H. S.
Privatism, vouchers, too many pressure groups, and a deemphasis of citizenship present the worst stumbling blocks to education. A five-point curriculum model includes: (1) the symbolics of information--the skills of language and computation; (2) the key concepts of a selected set of the physical sciences and mathematics; (3) developmental studies…
Part C Service Coordination: State Policies and Models. Synthesis Brief.
ERIC Educational Resources Information Center
Markowitz, Joy
This brief paper summarizes data from a survey of state coordinators of Part C of the Individuals with Disabilities Education Act concerning service coordination to infants and toddlers with disabilities. The survey examined variations in service coordination at the state level including roles of parents, values of key stakeholders, sources of…
Dynamic Regulation of FoxA1 by Steroid Receptors | Center for Cancer Research
The estrogen receptor (ER) is a key regulator in breast cancer initiation and progression. A widely discussed model proposes that forkhead box protein A1 (FoxA1) acts as a pioneer factor in cancer by binding and penetrating closed chromatin to allow access by transcription factors (TFs), including ER.
Lessons Learned from the Whole Child and Coordinated School Health Approaches
ERIC Educational Resources Information Center
Rasberry, Catherine N.; Slade, Sean; Lohrmann, David K.; Valois, Robert F.
2015-01-01
Background: The new Whole School, Whole Community, Whole Child (WSCC) model, designed to depict links between health and learning, is founded on concepts of coordinated school health (CSH) and a whole child approach to education. Methods: The existing literature, including scientific articles and key publications from national agencies and…
Compact fusion energy based on the spherical tokamak
NASA Astrophysics Data System (ADS)
Sykes, A.; Costley, A. E.; Windsor, C. G.; Asunta, O.; Brittles, G.; Buxton, P.; Chuyanov, V.; Connor, J. W.; Gryaznevich, M. P.; Huang, B.; Hugill, J.; Kukushkin, A.; Kingham, D.; Langtry, A. V.; McNamara, S.; Morgan, J. G.; Noonan, P.; Ross, J. S. H.; Shevchenko, V.; Slade, R.; Smith, G.
2018-01-01
Tokamak Energy Ltd, UK, is developing spherical tokamaks using high temperature superconductor magnets as a possible route to fusion power using relatively small devices. We present an overview of the development programme including details of the enabling technologies, the key modelling methods and results, and the remaining challenges on the path to compact fusion.
Internally electrodynamic particle model: Its experimental basis and its predictions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng-Johansson, J. X., E-mail: jxzj@iofpr.or
2010-03-15
The internally electrodynamic (IED) particle model was derived based on overall experimental observations, with the IED process itself being built directly on three experimental facts: (a) electric charges present with all material particles, (b) an accelerated charge generates electromagnetic waves according to Maxwell's equations and Planck energy equation, and (c) source motion produces Doppler effect. A set of well-known basic particle equations and properties become predictable based on first principles solutions for the IED process; several key solutions achieved are outlined, including the de Broglie phase wave, de Broglie relations, Schroedinger equation, mass, Einstein mass-energy relation, Newton's law of gravity,more » single particle self interference, and electromagnetic radiation and absorption; these equations and properties have long been broadly experimentally validated or demonstrated. A conditioned solution also predicts the Doebner-Goldin equation which emerges to represent a form of long-sought quantum wave equation including gravity. A critical review of the key experiments is given which suggests that the IED process underlies the basic particle equations and properties not just sufficiently but also necessarily.« less
Internally electrodynamic particle model: Its experimental basis and its predictions
NASA Astrophysics Data System (ADS)
Zheng-Johansson, J. X.
2010-03-01
The internally electrodynamic (IED) particle model was derived based on overall experimental observations, with the IED process itself being built directly on three experimental facts: (a) electric charges present with all material particles, (b) an accelerated charge generates electromagnetic waves according to Maxwell’s equations and Planck energy equation, and (c) source motion produces Doppler effect. A set of well-known basic particle equations and properties become predictable based on first principles solutions for the IED process; several key solutions achieved are outlined, including the de Broglie phase wave, de Broglie relations, Schrödinger equation, mass, Einstein mass-energy relation, Newton’s law of gravity, single particle self interference, and electromagnetic radiation and absorption; these equations and properties have long been broadly experimentally validated or demonstrated. A conditioned solution also predicts the Doebner-Goldin equation which emerges to represent a form of long-sought quantum wave equation including gravity. A critical review of the key experiments is given which suggests that the IED process underlies the basic particle equations and properties not just sufficiently but also necessarily.
Randhawa, Gurprit K
2017-01-01
A conceptual model for exploring the relationship between end-user support (EUS) and electronic medical record (EMR) use by primary care physicians is presented. The model was developed following a review of conceptual and theoretical frameworks related to technology adoption/use and EUS. The model includes (a) one core construct (facilitating conditions), (b) four antecedents and one postcedent of facilitating conditions, and (c) four moderators. EMR use behaviour is the key outcome of the model. The proposed conceptual model should be tested. The model may be used to inform planning and decision-making for EMR implementations to increase EMR use for benefits realization.
Can Microbial Ecology and Mycorrhizal Functioning Inform Climate Change Models?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hofmockel, Kirsten; Hobbie, Erik
Our funded research focused on soil organic matter dynamics and plant-microbe interactions by examining the role of belowground processes and mechanisms across scales, including decomposition of organic molecules, microbial interactions, and plant-microbe interactions associated with a changing climate. Research foci included mycorrhizal mediated priming of soil carbon turnover, organic N use and depolymerization by free-living microbes and mycorrhizal fungi, and the use of isotopes as additional constraints for improved modeling of belowground processes. This work complemented the DOE’s mandate to understand both the consequences of atmospheric and climatic change for key ecosystems and the feedbacks on C cycling.
Model-free adaptive control of supercritical circulating fluidized-bed boilers
Cheng, George Shu-Xing; Mulkey, Steven L
2014-12-16
A novel 3-Input-3-Output (3.times.3) Fuel-Air Ratio Model-Free Adaptive (MFA) controller is introduced, which can effectively control key process variables including Bed Temperature, Excess O2, and Furnace Negative Pressure of combustion processes of advanced boilers. A novel 7-input-7-output (7.times.7) MFA control system is also described for controlling a combined 3-Input-3-Output (3.times.3) process of Boiler-Turbine-Generator (BTG) units and a 5.times.5 CFB combustion process of advanced boilers. Those boilers include Circulating Fluidized-Bed (CFB) Boilers and Once-Through Supercritical Circulating Fluidized-Bed (OTSC CFB) Boilers.
MENOMINEE PERSPECTIVES ON COMMERCIAL AND SACRED TOBACCO USE
Rouse Arndt, Leah M.; Caskey, Mark; Fossum, Jodi; Schmitt, Natasha; Davis, Amileah R.; Smith, Stevens S.; Kenote, Benjamin; Strickland, Rick; Waukau, Jerry
2015-01-01
The Menominee Indian Tribe of Wisconsin has the highest smoking rate in the state. To address the resultant health disparities, the tribe conducted a qualitative pilot project to examine tobacco use. The findings indicated mainstream models of addiction did not capture the tribe’s context well; the Indigenist Stress-Coping Model was most applicable. Participants suggested that Menominee-centric ways of knowing related to commercial and sacred tobacco use should be included in all levels of prevention as a key strategy. Recommendations include primary prevention targeted specifi ally to youth, pregnant women, and adults who care for children, as well as access to commercial tobacco products. PMID:24352817
Source term model evaluations for the low-level waste facility performance assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yim, M.S.; Su, S.I.
1995-12-31
The estimation of release of radionuclides from various waste forms to the bottom boundary of the waste disposal facility (source term) is one of the most important aspects of LLW facility performance assessment. In this work, several currently used source term models are comparatively evaluated for the release of carbon-14 based on a test case problem. The models compared include PRESTO-EPA-CPG, IMPACTS, DUST and NEFTRAN-II. Major differences in assumptions and approaches between the models are described and key parameters are identified through sensitivity analysis. The source term results from different models are compared and other concerns or suggestions are discussed.
The Blazar 3C 66A in 2003-2004: hadronic versus leptonic model fits
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reimer, A.; Joshi, M.; Boettcher, M.
2008-12-24
The low-frequency peaked BL Lac object 3C 66A was the subject of an extensive multi-wavelength campaign from July 2003 till April 2004, which included quasi-simultaneous observations at optical, X-rays and very high energy gamma-rays. Here we apply the hadronic Synchrotron-Proton Blazar (SPB) model to the observed spectral energy distribution time-averaged over a flaring state, and compare the resulting model fits to those obtained from the application of the leptonic Synchrotron-Self-Compton (SSC) model. The results are used to identify diagnostic key predictions of the two blazar models for future multi-wavelength observations.
Conditional Random Fields for Activity Recognition
2008-04-01
final match. The final is never used as a training or hold out set. Table 4.1 lists the roles of the CMDragons’07 robot soccer team. The role of Goalie ...is not included because the goalie never changes roles. The classification task, which we formalize below, is to recognize robot roles from the avail...process and pull out the key information from the sensor data. Furthermore, as conditional models, CRFs do not waste modeling effort on the observations
1985-07-01
utilization of organizational assets. The marketing mix model consisting of the four key vari- ables of price, promotion, product, and place, is commonly...minimal marketing efforts may bring significant increases in useage. The author included some specific recommendations for marketing the Wellness Clinic. 12...care This five factor model indicates that the two major approa- ches to analyzing preventive health care consumer decisionmaking, marketing and health
Satellite freeze forecast system
NASA Technical Reports Server (NTRS)
Martsolf, J. D. (Principal Investigator)
1983-01-01
Provisions for back-up operations for the satellite freeze forecast system are discussed including software and hardware maintenance and DS/1000-1V linkage; troubleshooting; and digitized radar usage. The documentation developed; dissemination of data products via television and the IFAS computer network; data base management; predictive models; the installation of and progress towards the operational status of key stations; and digital data acquisition are also considered. The d addition of dew point temperature into the P-model is outlined.
Early years neurosurgical training in the era of the European Working Time Directive.
Kirkman, Matthew A; Watkins, Laurence D; Kitchen, Neil D; Sethi, Huma
2013-10-01
The past decade has seen significant changes to the face of neurosurgical training in the United Kingdom, driven in part by an increasing focus on patient safety and the introduction of Modernising Medical Careers and the European Working Time Directive (EWTD). Recent reforms to neurosurgical training over the past few years have resulted in creation of an 8-year 'run-through' training programme. In this programme, early years (ST1 and ST2) trainees often lack dedicated time for elective theatre lists and outpatient clinics. Further, any time spent in theatre and clinics is often with different teams. Here we describe a training model for early years trainees at the National Hospital for Neurology and Neurosurgery, who are given the responsibilities traditionally associated with a more senior trainee including dedicated weekly theatre and clinic time under the supervision of a single consultant, in addition to out of hours experience. The advantages and considerations for implementing this model are discussed, including the benefit of guidance under a single consultant in the early stages of training, along with key educational concepts necessary for understanding its utility. We feel that this is an effective model for junior neurosurgical training in the EWTD era, expediting the trainee's development of key technical and non-technical skills, with potentially significant rewards for patient, trainee and trainer. National implementation of this model should be considered.
Antioch, K M; Walsh, M K; Anderson, D; Wilson, R; Chambers, C; Willmer, P
1998-01-01
The Victorian Department of Human Services has developed a classification and funding model for non-admitted radiation oncology patients. Agencies were previously funded on an historical cost input basis. For 1996-97, payments were made according to the new Non-admitted Radiation Oncology Classification System and include four key components. Fixed grants are based on Weighted Radiation Therapy Services targets for megavoltage courses, planning procedures (dosimetry and simulation) and consultations. The additional throughput pool covers additional Weighted Radiation Therapy Services once targets are reached, with access conditional on the utilisation of a minimum number of megavoltage fields by each hospital. Block grants cover specialised treatments, such as brachytherapy, allied health payments and other support services. Compensation grants were available to bring payments up to the level of the previous year. There is potential to provide incentives to promote best practice in Australia through linking appropriate practice to funding models. Key Australian and international developments should be monitored, including economic evaluation studies, classification and funding models, and the deliberations of the American College of Radiology, the American Society for Therapeutic Radiology and Oncology, the Trans-Tasman Radiation Oncology Group and the Council of Oncology Societies of Australia. National impact on clinical practice guidelines in Australia can be achieved through the Quality of Care and Health Outcomes Committee of the National Health and Medical Research Council.
Enhancing and Adapting Treatment Foster Care: Lessons Learned in Trying to Change Practice.
Murray, Maureen M; Southerland, Dannia; Farmer, Elizabeth M; Ballentine, Kess
2010-01-01
Evidence-based practices to improve outcomes for children with severe behavioral and emotional problems have received a great deal of attention in children's mental health. Therapeutic Foster Care (TFC), a residential intervention for youth with emotional or behavioral problems, is one of the few community-based programs that is considered to be evidence-based. However, as for most treatment approaches, the vast majority of existing programs do not deliver the evidence-based version. In an attempt to fill this gap and improve practice across a wide range of TFC agencies, we developed an enhanced model of TFC based on input from both practice and research. It includes elements associated with improved outcomes for youth in "usual care" TFC agencies as well as key elements from Chamberlain's evidence-based model. The current manuscript describes this "hybrid" intervention - Together Facing the Challenge - and discusses key issues in implementation. We describe the sample and settings, highlight key implementation strategies, and provide "lessons learned" to help guide others who may wish to change practice in existing agencies.
Requirements' Role in Mobilizing and Enabling Design Conversation
NASA Astrophysics Data System (ADS)
Bergman, Mark
Requirements play a critical role in a design conversation of systems and products. Product and system design exists at the crossroads of problems, solutions and requirements. Requirements contextualize problems and solutions, pointing the way to feasible outcomes. These are captured with models and detailed specifications. Still, stakeholders need to be able to understand one-another using shared design representations in order to mobilize bias and transform knowledge towards legitimized, desired results. Many modern modeling languages, including UML, as well as detailed, logic-based specifications are beyond the comprehension of key stakeholders. Hence, they inhibit, rather than promote design conversation. Improved design boundary objects (DBO), especially design requirements boundary objects (DRBO), need to be created and refined to improve the communications between principals. Four key features of design boundary objects that improve and promote design conversation are discussed in detail. A systems analysis and design case study is presented which demonstrates these features in action. It describes how a small team of analysts worked with key stakeholders to mobilize and guide a complex system design discussion towards an unexpected, yet desired outcome within a short time frame.
Identifying key genes in glaucoma based on a benchmarked dataset and the gene regulatory network.
Chen, Xi; Wang, Qiao-Ling; Zhang, Meng-Hui
2017-10-01
The current study aimed to identify key genes in glaucoma based on a benchmarked dataset and gene regulatory network (GRN). Local and global noise was added to the gene expression dataset to produce a benchmarked dataset. Differentially-expressed genes (DEGs) between patients with glaucoma and normal controls were identified utilizing the Linear Models for Microarray Data (Limma) package based on benchmarked dataset. A total of 5 GRN inference methods, including Zscore, GeneNet, context likelihood of relatedness (CLR) algorithm, Partial Correlation coefficient with Information Theory (PCIT) and GEne Network Inference with Ensemble of Trees (Genie3) were evaluated using receiver operating characteristic (ROC) and precision and recall (PR) curves. The interference method with the best performance was selected to construct the GRN. Subsequently, topological centrality (degree, closeness and betweenness) was conducted to identify key genes in the GRN of glaucoma. Finally, the key genes were validated by performing reverse transcription-quantitative polymerase chain reaction (RT-qPCR). A total of 176 DEGs were detected from the benchmarked dataset. The ROC and PR curves of the 5 methods were analyzed and it was determined that Genie3 had a clear advantage over the other methods; thus, Genie3 was used to construct the GRN. Following topological centrality analysis, 14 key genes for glaucoma were identified, including IL6 , EPHA2 and GSTT1 and 5 of these 14 key genes were validated by RT-qPCR. Therefore, the current study identified 14 key genes in glaucoma, which may be potential biomarkers to use in the diagnosis of glaucoma and aid in identifying the molecular mechanism of this disease.
Hou, Xiang-Mei; Zhang, Lei; Yue, Hong-Shui; Ju, Ai-Chun; Ye, Zheng-Liang
2016-07-01
To study and establish a monitoring method for macroporous resin column chromatography process of salvianolic acids by using near infrared spectroscopy (NIR) as a process analytical technology (PAT).The multivariate statistical process control (MSPC) model was developed based on 7 normal operation batches, and 2 test batches (including one normal operation batch and one abnormal operation batch) were used to verify the monitoring performance of this model. The results showed that MSPC model had a good monitoring ability for the column chromatography process. Meanwhile, NIR quantitative calibration model was established for three key quality indexes (rosmarinic acid, lithospermic acid and salvianolic acid B) by using partial least squares (PLS) algorithm. The verification results demonstrated that this model had satisfactory prediction performance. The combined application of the above two models could effectively achieve real-time monitoring for macroporous resin column chromatography process of salvianolic acids, and can be used to conduct on-line analysis of key quality indexes. This established process monitoring method could provide reference for the development of process analytical technology for traditional Chinese medicines manufacturing. Copyright© by the Chinese Pharmaceutical Association.
Generation and use of human 3D-CAD models
NASA Astrophysics Data System (ADS)
Grotepass, Juergen; Speyer, Hartmut; Kaiser, Ralf
2002-05-01
Individualized Products are one of the ten mega trends of the 21st Century with human modeling as the key issue for tomorrow's design and product development. The use of human modeling software for computer based ergonomic simulations within the production process increases quality while reducing costs by 30- 50 percent and shortening production time. This presentation focuses on the use of human 3D-CAD models for both, the ergonomic design of working environments and made to measure garment production. Today, the entire production chain can be designed, individualized models generated and analyzed in 3D computer environments. Anthropometric design for ergonomics is matched to human needs, thus preserving health. Ergonomic simulation includes topics as human vision, reachability, kinematics, force and comfort analysis and international design capabilities. In German more than 17 billions of Mark are moved to other industries, because clothes do not fit. Individual clothing tailored to the customer's preference means surplus value, pleasure and perfect fit. The body scanning technology is the key to generation and use of human 3D-CAD models for both, the ergonomic design of working environments and made to measure garment production.
The role of technology and engineering models in transforming healthcare.
Pavel, Misha; Jimison, Holly Brugge; Wactlar, Howard D; Hayes, Tamara L; Barkis, Will; Skapik, Julia; Kaye, Jeffrey
2013-01-01
The healthcare system is in crisis due to challenges including escalating costs, the inconsistent provision of care, an aging population, and high burden of chronic disease related to health behaviors. Mitigating this crisis will require a major transformation of healthcare to be proactive, preventive, patient-centered, and evidence-based with a focus on improving quality-of-life. Information technology, networking, and biomedical engineering are likely to be essential in making this transformation possible with the help of advances, such as sensor technology, mobile computing, machine learning, etc. This paper has three themes: 1) motivation for a transformation of healthcare; 2) description of how information technology and engineering can support this transformation with the help of computational models; and 3) a technical overview of several research areas that illustrate the need for mathematical modeling approaches, ranging from sparse sampling to behavioral phenotyping and early detection. A key tenet of this paper concerns complementing prior work on patient-specific modeling and simulation by modeling neuropsychological, behavioral, and social phenomena. The resulting models, in combination with frequent or continuous measurements, are likely to be key components of health interventions to enhance health and wellbeing and the provision of healthcare.
Kravitz, Benjamin S.; Robock, Alan; Tilmes, S.; ...
2015-10-27
We present a suite of new climate model experiment designs for the Geoengineering Model Intercomparison Project (GeoMIP). This set of experiments, named GeoMIP6 (to be consistent with the Coupled Model Intercomparison Project Phase 6), builds on the previous GeoMIP project simulations, and has been expanded to address several further important topics, including key uncertainties in extreme events, the use of geoengineering as part of a portfolio of responses to climate change, and the relatively new idea of cirrus cloud thinning to allow more long wave radiation to escape to space. We discuss experiment designs, as well as the rationale formore » those designs, showing preliminary results from individual models when available. We also introduce a new feature, called the GeoMIP Testbed, which provides a platform for simulations that will be performed with a few models and subsequently assessed to determine whether the proposed experiment designs will be adopted as core (Tier 1) GeoMIP experiments. In conclusion, this is meant to encourage various stakeholders to propose new targeted experiments that address their key open science questions, with the goal of making GeoMIP more relevant to a broader set of communities.« less
CRYSTAL-FACE Analysis and Simulations of the July 23rd Extended Anvil Case
NASA Technical Reports Server (NTRS)
Starr, David
2003-01-01
A key focus of CRYSTAL-FACE (Cirrus Regional Study of Tropical Anvils and cirrus Layers - Florida Area Cirrus Experiment) was the generation and subsequent evolution of cirrus outflow from deep convective cloud systems. Present theoretical background and motivations will be discussed. An integrated look at the observations of an extended cirrus anvil cloud system observed on 23 July 2002 will be presented, including lidar and millimeter radar observation; from NASA s ER-2 and in-situ observations from NASA s WB-57 and University of North Dakota Citation. The observations will be compared to results of simulations using 1-D and 2-D high-resolution (100 meter) cloud resolving models. The CRMs explicitly account for cirrus microphysical development by resolving the evolving ice crystal size distribution (bin model) in time and space. Both homogeneous and heterogeneous nucleation are allowed in the model. The CRM simulations are driven using the output of regional simulations using MM5 that produces deep convection similar to what was observed. The MM5 model employs a 2 km inner grid (32 layers) over a 360 km domain, nested within a 6-km grid over a 600-km domain. Initial and boundary conditions for the 36-hour MM5 simulation are taken from NCEP Eta model analysis at 32 km resolution. Key issues to be explored are the settling of the observed anvil versus the model simulations, and comparisons of dynamical properties, such as vertical motions, occurring in the observations and models. The former provides an integrated measure of the validity of the model microphysics (fallspeed) while the latter is the key factor in forcing continued ice generation.
Why is metal bioaccumulation so variable? Biodynamics as a unifying concept
Luoma, Samuel N.; Rainbow, Philip S.
2005-01-01
Ecological risks from metal contaminants are difficult to document because responses differ among species, threats differ among metals, and environmental influences are complex. Unifying concepts are needed to better tie together such complexities. Here we suggest that a biologically based conceptualization, the biodynamic model, provides the necessary unification for a key aspect in risk: metal bioaccumulation (internal exposure). The model is mechanistically based, but empirically considers geochemical influences, biological differences, and differences among metals. Forecasts from the model agree closely with observations from nature, validating its basic assumptions. The biodynamic metal bioaccumulation model combines targeted, high-quality geochemical analyses from a site of interest with parametrization of key physiological constants for a species from that site. The physiological parameters include metal influx rates from water, influx rates from food, rate constants of loss, and growth rates (when high). We compiled results from 15 publications that forecast species-specific bioaccumulation, and compare the forecasts to bioaccumulation data from the field. These data consider concentrations that cover 7 orders of magnitude. They include 7 metals and 14 species of animals from 3 phyla and 11 marine, estuarine, and freshwater environments. The coefficient of determination (R2) between forecasts and independently observed bioaccumulation from the field was 0.98. Most forecasts agreed with observations within 2-fold. The agreement suggests that the basic assumptions of the biodynamic model are tenable. A unified explanation of metal bioaccumulation sets the stage for a realistic understanding of toxicity and ecological effects of metals in nature.
Link, William A; Barker, Richard J
2005-03-01
We present a hierarchical extension of the Cormack-Jolly-Seber (CJS) model for open population capture-recapture data. In addition to recaptures of marked animals, we model first captures of animals and losses on capture. The parameter set includes capture probabilities, survival rates, and birth rates. The survival rates and birth rates are treated as a random sample from a bivariate distribution, thus the model explicitly incorporates correlation in these demographic rates. A key feature of the model is that the likelihood function, which includes a CJS model factor, is expressed entirely in terms of identifiable parameters; losses on capture can be factored out of the model. Since the computational complexity of classical likelihood methods is prohibitive, we use Markov chain Monte Carlo in a Bayesian analysis. We describe an efficient candidate-generation scheme for Metropolis-Hastings sampling of CJS models and extensions. The procedure is illustrated using mark-recapture data for the moth Gonodontis bidentata.
Link, William A.; Barker, Richard J.
2005-01-01
We present a hierarchical extension of the Cormack–Jolly–Seber (CJS) model for open population capture–recapture data. In addition to recaptures of marked animals, we model first captures of animals and losses on capture. The parameter set includes capture probabilities, survival rates, and birth rates. The survival rates and birth rates are treated as a random sample from a bivariate distribution, thus the model explicitly incorporates correlation in these demographic rates. A key feature of the model is that the likelihood function, which includes a CJS model factor, is expressed entirely in terms of identifiable parameters; losses on capture can be factored out of the model. Since the computational complexity of classical likelihood methods is prohibitive, we use Markov chain Monte Carlo in a Bayesian analysis. We describe an efficient candidate-generation scheme for Metropolis–Hastings sampling of CJS models and extensions. The procedure is illustrated using mark-recapture data for the moth Gonodontis bidentata.
2012-12-01
of MARSEC 2 13 Causing a fire or explosion, conducting blasting or setting off fireworks , including setting a flare or other signalling device...or explosion, conducting blasting or setting off fireworks , including setting a flare or other signalling device without port approval X X X X X X...explosion, conducting blasting or setting off fireworks , including setting a flare or other signalling device without port approval X X X X X X X Non
Factors in adoption of a fire department wellness program: champ-and-chief model.
Kuehl, Hannah; Mabry, Linda; Elliot, Diane L; Kuehl, Kerry S; Favorite, Kim C
2013-04-01
To identify and evaluate determinants of fire departments' wellness program adoption. The Promoting Healthy Lifestyles: Alternative Models' Effects fire service wellness program was offered for free to all medium-sized fire departments in Oregon and Washington. An invitation to participate was mailed to key fire department decision makers (chief, union president, and wellness officer). These key decision makers from 12 sites that adopted the program and 24 matched nonadopting sites were interviewed and results were analyzed to define adoption determinants. Three adoption requirements were identified: (1) mailer connection, (2) local firefighter wellness champion, and (3) willing fire chief, whereas a fourth set of organizational factors had little or no impact on adoption including previous and ongoing wellness activities, financial pressures, and resistance to change. Findings identified determinants of medium-sized fire service wellness program adoption.
Fungal model systems and the elucidation of pathogenicity determinants
Perez-Nadales, Elena; Almeida Nogueira, Maria Filomena; Baldin, Clara; Castanheira, Sónia; El Ghalid, Mennat; Grund, Elisabeth; Lengeler, Klaus; Marchegiani, Elisabetta; Mehrotra, Pankaj Vinod; Moretti, Marino; Naik, Vikram; Oses-Ruiz, Miriam; Oskarsson, Therese; Schäfer, Katja; Wasserstrom, Lisa; Brakhage, Axel A.; Gow, Neil A.R.; Kahmann, Regine; Lebrun, Marc-Henri; Perez-Martin, José; Di Pietro, Antonio; Talbot, Nicholas J.; Toquin, Valerie; Walther, Andrea; Wendland, Jürgen
2014-01-01
Fungi have the capacity to cause devastating diseases of both plants and animals, causing significant harvest losses that threaten food security and human mycoses with high mortality rates. As a consequence, there is a critical need to promote development of new antifungal drugs, which requires a comprehensive molecular knowledge of fungal pathogenesis. In this review, we critically evaluate current knowledge of seven fungal organisms used as major research models for fungal pathogenesis. These include pathogens of both animals and plants; Ashbya gossypii, Aspergillus fumigatus, Candida albicans, Fusarium oxysporum, Magnaporthe oryzae, Ustilago maydis and Zymoseptoria tritici. We present key insights into the virulence mechanisms deployed by each species and a comparative overview of key insights obtained from genomic analysis. We then consider current trends and future challenges associated with the study of fungal pathogenicity. PMID:25011008
Structural analysis of a Petri net model of oxidative stress in atherosclerosis.
Kozak, Adam; Formanowicz, Dorota; Formanowicz, Piotr
2018-06-01
Atherosclerosis is a complex process of gathering sub-endothelial plaques decreasing lumen of the blood vessels. This disorder affects people of all ages, but its progression is asymptomatic for many years. It is regulated by many typical and atypical factors including the immune system response, a chronic kidney disease, a diet rich in lipids, a local inflammatory process and a local oxidative stress that is here one of the key factors. In this study, a Petri net model of atherosclerosis regulation is presented. This model includes also some information about stoichiometric relationships between its components and covers all mentioned factors. For the model, a structural analysis based on invariants was made and biological conclusions are presented. Since the model contains inhibitor arcs, a heuristic method for analysis of such cases is presented. This method can be used to extend the concept of feasible t -invariants.
Colloidal models. A bit of history.
Lyklema, Johannes
2015-05-15
This paper offers an anthology on developments in colloid and interface science emphasizing themes that may be of direct or indirect interest to Interfaces Against Pollution. Topics include the determination of Avogadro's number, development in the insight into driving forces for double layer formation, colloid stability, thin films, and thermodynamic approaches in interfacial electrochemistry. Some personal reminiscences of key players in the field are included, partly to illustrate historical developments. Copyright © 2014 Elsevier Inc. All rights reserved.
Entrepreneurship for Physicists; A practical guide to move inventions from university to market
NASA Astrophysics Data System (ADS)
Iannuzzi, Davide
2017-10-01
This book offers a concise analysis of the key ingredients that enable physicists to successfully move their idea from university to market, bringing added value to their customers. It dives into a set of theories, models, and tools that play fundamental roles in technology transfer including topics often neglected by other books including trust, communication, and persuasion. It also explains how most of the topics discussed are applicable to careers in a broader sense.
Drozda, Joseph P; Roach, James; Forsyth, Thomas; Helmering, Paul; Dummitt, Benjamin; Tcheng, James E
2018-02-01
The US Food and Drug Administration (FDA) has recognized the need to improve the tracking of medical device safety and performance, with implementation of Unique Device Identifiers (UDIs) in electronic health information as a key strategy. The FDA funded a demonstration by Mercy Health wherein prototype UDIs were incorporated into its electronic information systems. This report describes the demonstration's informatics architecture. Prototype UDIs for coronary stents were created and implemented across a series of information systems, resulting in UDI-associated data flow from manufacture through point of use to long-term follow-up, with barcode scanning linking clinical data with UDI-associated device attributes. A reference database containing device attributes and the UDI Research and Surveillance Database (UDIR) containing the linked clinical and device information were created, enabling longitudinal assessment of device performance. The demonstration included many stakeholders: multiple Mercy departments, manufacturers, health system partners, the FDA, professional societies, the National Cardiovascular Data Registry, and information system vendors. The resulting system of systems is described in detail, including entities, functions, linkage between the UDIR and proprietary systems using UDIs as the index key, data flow, roles and responsibilities of actors, and the UDIR data model. The demonstration provided proof of concept that UDIs can be incorporated into provider and enterprise electronic information systems and used as the index key to combine device and clinical data in a database useful for device evaluation. Keys to success and challenges to achieving this goal were identified. Fundamental informatics principles were central to accomplishing the system of systems model. © The Author 2017. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com
NASA Astrophysics Data System (ADS)
Ashworth, K.; Chung, S. H.; Griffin, R. J.; Chen, J.; Forkel, R.; Bryan, A. M.; Steiner, A. L.
2015-07-01
Biosphere-atmosphere interactions play a critical role in governing atmospheric composition, mediating the concentration of key species such as ozone and aerosol, thereby influencing air quality and climate. The exchange of reactive trace gases and their oxidation products (both gas and particle phase) is of particular importance in this process. The FORCAsT (FORest Canopy AtmoSphere Transfer) one-dimensional model is developed to study the emission, deposition, chemistry and transport of volatile organic compounds (VOCs) and their oxidation products in the atmosphere within and above the forest canopy. We include an equilibrium partitioning scheme, making FORCAsT one of the few canopy models currently capable of simulating the formation of secondary organic aerosols (SOA) from VOC oxidation in a forest environment. We evaluate the capability of FORCAsT to reproduce observed concentrations of key gas-phase species and report modeled SOA concentrations within and above a mixed forest at the University of Michigan Biological Station (UMBS) during the Community Atmosphere-Biosphere Interactions Experiment (CABINEX) field campaign in summer 2009. We examine the impact of two different gas-phase chemical mechanisms on modelled concentrations of short-lived primary emissions, such as isoprene and monoterpenes, and their oxidation products. While the two chemistry schemes perform similarly under high-NOx conditions, they diverge at the low levels of NOx at UMBS. We identify peroxy radical and alkyl nitrate chemistry as the key causes of the differences, highlighting the importance of this chemistry in understanding the fate of biogenic VOCs (bVOCs) for both the modelling and measurement communities.
NASA Astrophysics Data System (ADS)
Ashworth, K.; Chung, S. H.; Griffin, R. J.; Chen, J.; Forkel, R.; Bryan, A. M.; Steiner, A. L.
2015-11-01
Biosphere-atmosphere interactions play a critical role in governing atmospheric composition, mediating the concentrations of key species such as ozone and aerosol, thereby influencing air quality and climate. The exchange of reactive trace gases and their oxidation products (both gas and particle phase) is of particular importance in this process. The FORCAsT (FORest Canopy Atmosphere Transfer) 1-D model is developed to study the emission, deposition, chemistry and transport of volatile organic compounds (VOCs) and their oxidation products in the atmosphere within and above the forest canopy. We include an equilibrium partitioning scheme, making FORCAsT one of the few canopy models currently capable of simulating the formation of secondary organic aerosols (SOAs) from VOC oxidation in a forest environment. We evaluate the capability of FORCAsT to reproduce observed concentrations of key gas-phase species and report modeled SOA concentrations within and above a mixed forest at the University of Michigan Biological Station (UMBS) during the Community Atmosphere-Biosphere Interactions Experiment (CABINEX) field campaign in the summer of 2009. We examine the impact of two different gas-phase chemical mechanisms on modelled concentrations of short-lived primary emissions, such as isoprene and monoterpenes, and their oxidation products. While the two chemistry schemes perform similarly under high-NOx conditions, they diverge at the low levels of NOx at UMBS. We identify peroxy radical and alkyl nitrate chemistry as the key causes of the differences, highlighting the importance of this chemistry in understanding the fate of biogenic VOCs (bVOCs) for both the modelling and measurement communities.
Wu, Alex Chi; Morell, Matthew K.; Gilbert, Robert G.
2013-01-01
A core set of genes involved in starch synthesis has been defined by genetic studies, but the complexity of starch biosynthesis has frustrated attempts to elucidate the precise functional roles of the enzymes encoded. The chain-length distribution (CLD) of amylopectin in cereal endosperm is modeled here on the basis that the CLD is produced by concerted actions of three enzyme types: starch synthases, branching and debranching enzymes, including their respective isoforms. The model, together with fitting to experiment, provides four key insights. (1) To generate crystalline starch, defined restrictions on particular ratios of enzymatic activities apply. (2) An independent confirmation of the conclusion, previously reached solely from genetic studies, of the absolute requirement for debranching enzyme in crystalline amylopectin synthesis. (3) The model provides a mechanistic basis for understanding how successive arrays of crystalline lamellae are formed, based on the identification of two independent types of long amylopectin chains, one type remaining in the amorphous lamella, while the other propagates into, and is integral to the formation of, an adjacent crystalline lamella. (4) The model provides a means by which a small number of key parameters defining the core enzymatic activities can be derived from the amylopectin CLD, providing the basis for focusing studies on the enzymatic requirements for generating starches of a particular structure. The modeling approach provides both a new tool to accelerate efforts to understand granular starch biosynthesis and a basis for focusing efforts to manipulate starch structure and functionality using a series of testable predictions based on a robust mechanistic framework. PMID:23762422
Finding simplicity in complexity: modelling post-fire hydrogeomorphic processes and risks
NASA Astrophysics Data System (ADS)
Sheridan, Gary; Langhans, Christoph; Lane, Patrick; Nyman, Petter
2017-04-01
Post-fire runoff and erosion can shape landscapes, destroy infrastructure, and result in the loss of human life. However even within seemingly similar geographic regions post-fire hydro-geomorphic responses vary from almost no response through to catastrophic flash floods and debris flows. Why is there so much variability, and how can we predict areas at risk? This presentation describes the research journey taken by the post-fire research group at The University of Melbourne to answer this question for the se Australian uplands. Key steps along the way have included identifying the dominant erosion processes (and their forcings), and the key system properties controlling the rates of these dominant processes. The high degree of complexity in the interactions between the forcings, the system properties, and the erosion processes, necessitated the development of a simplified conceptual representation of post-fire hydrogeomorphic system that was conducive to modelling and simulation. Spatially mappable metrics (and proxies) for key system forcings and properties were then required to parameterize and drive the model. Each step in this journey has depended on new research, as well as ongoing feedback from land and water management agencies tasked with implementing these risk models and interpreting the results. These models are now imbedded within agencies and used for strategic risk assessments, for tactical response during fires, and for post-fire remediation and risk planning. Reflecting on the successes and failures along the way provides for some more general insights into the process of developing research-based models for operational use by land and water management agencies.
Regression Models for Identifying Noise Sources in Magnetic Resonance Images
Zhu, Hongtu; Li, Yimei; Ibrahim, Joseph G.; Shi, Xiaoyan; An, Hongyu; Chen, Yashen; Gao, Wei; Lin, Weili; Rowe, Daniel B.; Peterson, Bradley S.
2009-01-01
Stochastic noise, susceptibility artifacts, magnetic field and radiofrequency inhomogeneities, and other noise components in magnetic resonance images (MRIs) can introduce serious bias into any measurements made with those images. We formally introduce three regression models including a Rician regression model and two associated normal models to characterize stochastic noise in various magnetic resonance imaging modalities, including diffusion-weighted imaging (DWI) and functional MRI (fMRI). Estimation algorithms are introduced to maximize the likelihood function of the three regression models. We also develop a diagnostic procedure for systematically exploring MR images to identify noise components other than simple stochastic noise, and to detect discrepancies between the fitted regression models and MRI data. The diagnostic procedure includes goodness-of-fit statistics, measures of influence, and tools for graphical display. The goodness-of-fit statistics can assess the key assumptions of the three regression models, whereas measures of influence can isolate outliers caused by certain noise components, including motion artifacts. The tools for graphical display permit graphical visualization of the values for the goodness-of-fit statistic and influence measures. Finally, we conduct simulation studies to evaluate performance of these methods, and we analyze a real dataset to illustrate how our diagnostic procedure localizes subtle image artifacts by detecting intravoxel variability that is not captured by the regression models. PMID:19890478
NASA Technical Reports Server (NTRS)
Kvaternik, Raymond G.
1992-01-01
An overview is presented of government contributions to the program called Design Analysis Methods for Vibrations (DAMV) which attempted to develop finite-element-based analyses of rotorcraft vibrations. NASA initiated the program with a finite-element modeling program for the CH-47D tandem-rotor helicopter. The DAMV program emphasized four areas including: airframe finite-element modeling, difficult components studies, coupled rotor-airframe vibrations, and airframe structural optimization. Key accomplishments of the program include industrywide standards for modeling metal and composite airframes, improved industrial designs for vibrations, and the identification of critical structural contributors to airframe vibratory responses. The program also demonstrated the value of incorporating secondary modeling details to improving correlation, and the findings provide the basis for an improved finite-element-based dynamics design-analysis capability.
Cascade phenomenon against subsequent failures in complex networks
NASA Astrophysics Data System (ADS)
Jiang, Zhong-Yuan; Liu, Zhi-Quan; He, Xuan; Ma, Jian-Feng
2018-06-01
Cascade phenomenon may lead to catastrophic disasters which extremely imperil the network safety or security in various complex systems such as communication networks, power grids, social networks and so on. In some flow-based networks, the load of failed nodes can be redistributed locally to their neighboring nodes to maximally preserve the traffic oscillations or large-scale cascading failures. However, in such local flow redistribution model, a small set of key nodes attacked subsequently can result in network collapse. Then it is a critical problem to effectively find the set of key nodes in the network. To our best knowledge, this work is the first to study this problem comprehensively. We first introduce the extra capacity for every node to put up with flow fluctuations from neighbors, and two extra capacity distributions including degree based distribution and average distribution are employed. Four heuristic key nodes discovering methods including High-Degree-First (HDF), Low-Degree-First (LDF), Random and Greedy Algorithms (GA) are presented. Extensive simulations are realized in both scale-free networks and random networks. The results show that the greedy algorithm can efficiently find the set of key nodes in both scale-free and random networks. Our work studies network robustness against cascading failures from a very novel perspective, and methods and results are very useful for network robustness evaluations and protections.
NASA Astrophysics Data System (ADS)
Benaben, Frederick; Mu, Wenxin; Boissel-Dallier, Nicolas; Barthe-Delanoe, Anne-Marie; Zribi, Sarah; Pingaud, Herve
2015-08-01
The Mediation Information System Engineering project is currently finishing its second iteration (MISE 2.0). The main objective of this scientific project is to provide any emerging collaborative situation with methods and tools to deploy a Mediation Information System (MIS). MISE 2.0 aims at defining and designing a service-based platform, dedicated to initiating and supporting the interoperability of collaborative situations among potential partners. This MISE 2.0 platform implements a model-driven engineering approach to the design of a service-oriented MIS dedicated to supporting the collaborative situation. This approach is structured in three layers, each providing their own key innovative points: (i) the gathering of individual and collaborative knowledge to provide appropriate collaborative business behaviour (key point: knowledge management, including semantics, exploitation and capitalisation), (ii) deployment of a mediation information system able to computerise the previously deduced collaborative processes (key point: the automatic generation of collaborative workflows, including connection with existing devices or services) (iii) the management of the agility of the obtained collaborative network of organisations (key point: supervision of collaborative situations and relevant exploitation of the gathered data). MISE covers business issues (through BPM), technical issues (through an SOA) and agility issues of collaborative situations (through EDA).
NASA Astrophysics Data System (ADS)
Huang, Jinhui Jeanne; Chan, Han
2017-04-01
ABSTRACT Evapotranspiration (ET) has long been regarded as a very important component in energy and mass exchange between hydrosphere, atmosphere and biosphere. It is estimated that about 70% annual precipitation goes back to atmosphere through the process of ET, ET thus plays a significant role in modeling regional and global climate and assessing stresses on natural and agricultural ecosystems. The variation of ET is affected by many processes including hydrological, metrological as well as biological processes. Water used in Agriculture Sector is normally accounted for about 70% of total water consumption. ET may also be enhanced by agriculture practices as it is the key component of water consumption in agriculture practices. A two-year continuous in-situ ET measurement (in half minute time scale) by eddy covariance method (using EC-QCL analyzer and three-dimensional ultrasonic anemometer) was conducted in a large vegetable farmland in the suburb of Yueyang City, Hunan Province. EddyPro software was employed to calculate the actual evapotranspiration, water vapor flux, latent heat flux (LE) and analysis the trend of actual evapotranspiration in different time scales. A RZWQM2 (Root Zone Water Quality Model) model was also developed based on the local metrological data and agriculture practices including planting, harvesting, irrigation practices and fertilization etc., The field observations including in-situ ET measurement are used to calibrate the RZWQM2 model. The calibrated model was further used to study the effects of various agriculture activates on ET. The study shows that the crop density has the greatest effects on the variation of plant transpiration following by irrigation and fertilization. This study provides some scientific basis for the optimization and improvement of agricultural activities in the future. Key words: ET; Agricultural Practices; Eddy Covariance Method; RZWQM2 model
Modeling and projection of dengue fever cases in Guangzhou based on variation of weather factors.
Li, Chenlu; Wang, Xiaofeng; Wu, Xiaoxu; Liu, Jianing; Ji, Duoying; Du, Juan
2017-12-15
Dengue fever is one of the most serious vector-borne infectious diseases, especially in Guangzhou, China. Dengue viruses and their vectors Aedes albopictus are sensitive to climate change primarily in relation to weather factors. Previous research has mainly focused on identifying the relationship between climate factors and dengue cases, or developing dengue case models with some non-climate factors. However, there has been little research addressing the modeling and projection of dengue cases only from the perspective of climate change. This study considered this topic using long time series data (1998-2014). First, sensitive weather factors were identified through meta-analysis that included literature review screening, lagged analysis, and collinear analysis. Then, key factors that included monthly average temperature at a lag of two months, and monthly average relative humidity and monthly average precipitation at lags of three months were determined. Second, time series Poisson analysis was used with the generalized additive model approach to develop a dengue model based on key weather factors for January 1998 to December 2012. Data from January 2013 to July 2014 were used to validate that the model was reliable and reasonable. Finally, future weather data (January 2020 to December 2070) were input into the model to project the occurrence of dengue cases under different climate scenarios (RCP 2.6 and RCP 8.5). Longer time series analysis and scientifically selected weather variables were used to develop a dengue model to ensure reliability. The projections suggested that seasonal disease control (especially in summer and fall) and mitigation of greenhouse gas emissions could help reduce the incidence of dengue fever. The results of this study hope to provide a scientifically theoretical basis for the prevention and control of dengue fever in Guangzhou. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Weintraub, S. R.; Stanish, L.; Ayers, E.
2017-12-01
Recent conceptual and numerical models have proposed new mechanisms that underpin key biogeochemical phenomena, including soil organic matter storage and ecosystem response to nitrogen deposition. These models seek to explicitly capture the ecological links among biota, especially microbes, and their physical and chemical environment to represent belowground pools and fluxes and how they respond to perturbation. While these models put forth exciting new concepts, their broad predictive abilities are unclear as some have been developed and tested against only small or regional datasets. The National Ecological Observatory Network (NEON) presents new opportunities to test and validate these models with multi-site data that span wide climatic, edaphic, and ecological gradients. NEON is measuring surface soil biogeochemical pools and fluxes along with diversity, abundance, and functional potential of soil microbiota at 47 sites distributed across the United States. This includes co-located measurements of soil carbon and nitrogen concentrations and stable isotopes, net nitrogen mineralization and nitrification rates, soil moisture, pH, microbial biomass, and community composition via 16S and ITS rRNA sequencing and shotgun metagenomic analyses. Early NEON data demonstrates that these wide edaphic and climatic gradients are related to changes in microbial community structure and functional potential, as well as element pools and process rates. Going forward, NEON's suite of standardized soil data has the potential to advance our understanding of soil communities and processes by allowing us to test the predictions of new soil biogeochemical frameworks and models. Here, we highlight several recently developed models that are ripe for this kind of data validation, and discuss key insights that may result. Further, we explore synergies with other networks, such as (i)LTER and (i)CZO, which may increase our ability to advance the frontiers of soil biogeochemical modeling.
NASA Technical Reports Server (NTRS)
Piepmeier, Jeffrey; Mohammed, Priscilla; De Amici, Giovanni; Kim, Edward; Peng, Jinzheng; Ruf, Christopher; Hanna, Maher; Yueh, Simon; Entekhabi, Dara
2016-01-01
The purpose of the Soil Moisture Active Passive (SMAP) radiometer calibration algorithm is to convert Level 0 (L0) radiometer digital counts data into calibrated estimates of brightness temperatures referenced to the Earth's surface within the main beam. The algorithm theory in most respects is similar to what has been developed and implemented for decades for other satellite radiometers; however, SMAP includes two key features heretofore absent from most satellite borne radiometers: radio frequency interference (RFI) detection and mitigation, and measurement of the third and fourth Stokes parameters using digital correlation. The purpose of this document is to describe the SMAP radiometer and forward model, explain the SMAP calibration algorithm, including approximations, errors, and biases, provide all necessary equations for implementing the calibration algorithm and detail the RFI detection and mitigation process. Section 2 provides a summary of algorithm objectives and driving requirements. Section 3 is a description of the instrument and Section 4 covers the forward models, upon which the algorithm is based. Section 5 gives the retrieval algorithm and theory. Section 6 describes the orbit simulator, which implements the forward model and is the key for deriving antenna pattern correction coefficients and testing the overall algorithm.
Bauer, Amy M; Thielke, Stephen M; Katon, Wayne; Unützer, Jürgen; Areán, Patricia
2014-09-01
Healthcare reforms in the United States, including the Affordable Care and HITECH Acts, and the NCQA criteria for the Patient Centered Medical Home have promoted health information technology (HIT) and the integration of general medical and mental health services. These developments, which aim to improve chronic disease care, have largely occurred in parallel, with little attention to the need for coordination. In this article, the fundamental connections between HIT and improvements in chronic disease management are explored. We use the evidence-based collaborative care model as an example, with attention to health literacy improvement for supporting patient engagement in care. A review of the literature was conducted to identify how HIT and collaborative care, an evidence-based model of chronic disease care, support each other. Five key principles of effective collaborative care are outlined: care is patient-centered, evidence-based, measurement-based, population-based, and accountable. The potential role of HIT in implementing each principle is discussed. Key features of the mobile health paradigm are described, including how they can extend evidence-based treatment beyond traditional clinical settings. HIT, and particularly mobile health, can enhance collaborative care interventions, and thus improve the health of individuals and populations when deployed in integrated delivery systems. Copyright © 2014 Elsevier Inc. All rights reserved.
Fang, Hui; Zhang, Yang; Li, Ning; Wang, Gang; Liu, Zhi
2018-01-01
Bullous pemphigoid (BP) is an autoimmune and inflammatory skin disease associated with subepidermal blistering and autoantibodies directed against the hemidesmosomal components BP180 and BP230. Animal models of BP were developed by passively transferring anti-BP180 IgG into mice, which recapitulates the key features of human BP. By using these in vivo model systems, key cellular and molecular events leading to the BP disease phenotype are identified, including binding of pathogenic IgG to its target, complement activation of the classical pathway, mast cell degranulation, and infiltration and activation of neutrophils. Proteinases released by infiltrating neutrophils cleave BP180 and other hemidesmosome-associated proteins, causing DEJ separation. Mast cells and mast cell-derived mediators including inflammatory cytokines and proteases are increased in lesional skin and blister fluids of BP. BP animal model evidence also implicates mast cells in the pathogenesis of BP. However, recent studies questioned the pathogenic role of mast cells in autoimmune diseases such as multiple sclerosis, rheumatoid arthritis, and epidermolysis bullosa acquisita. This review highlights the current knowledge on BP pathophysiology with a focus on a potential role for mast cells in BP and mast cell-related critical issues needing to be addressed in the future. PMID:29545809
Bauer, Amy M.; Thielke, Stephen M.; Katon, Wayne; Unützer, Jürgen; Areán, Patricia
2014-01-01
Objective Healthcare reforms in the United States, including the Affordable Care and HITECH Acts, and the NCQA criteria for the Patient Centered Medical Home have promoted health information technology (HIT) and the integration of general medical and mental health services. These developments, which aim to improve chronic disease care have largely occurred in parallel, with little attention to the need for coordination. In this article, the fundamental connections between HIT and improvements in chronic disease management are explored. We use the evidence-based collaborative care model as an example, with attention to health literacy improvement for supporting patient engagement in care. Method A review of the literature was conducted to identify how HIT and collaborative care, an evidence-based model of chronic disease care, support each other. Results Five key principles of effective collaborative care are outlined: care is patient-centered, evidence-based, measurement-based, population-based, and accountable. The potential role of HIT in implementing each principle is discussed. Key features of the mobile health paradigm are described, including how they can extend evidence-based treatment beyond traditional clinical settings. Conclusion HIT, and particularly mobile health, can enhance collaborative care interventions, and thus improve the health of individuals and populations when deployed in integrated delivery systems. PMID:24963895
BAYESIAN PROTEIN STRUCTURE ALIGNMENT.
Rodriguez, Abel; Schmidler, Scott C
The analysis of the three-dimensional structure of proteins is an important topic in molecular biochemistry. Structure plays a critical role in defining the function of proteins and is more strongly conserved than amino acid sequence over evolutionary timescales. A key challenge is the identification and evaluation of structural similarity between proteins; such analysis can aid in understanding the role of newly discovered proteins and help elucidate evolutionary relationships between organisms. Computational biologists have developed many clever algorithmic techniques for comparing protein structures, however, all are based on heuristic optimization criteria, making statistical interpretation somewhat difficult. Here we present a fully probabilistic framework for pairwise structural alignment of proteins. Our approach has several advantages, including the ability to capture alignment uncertainty and to estimate key "gap" parameters which critically affect the quality of the alignment. We show that several existing alignment methods arise as maximum a posteriori estimates under specific choices of prior distributions and error models. Our probabilistic framework is also easily extended to incorporate additional information, which we demonstrate by including primary sequence information to generate simultaneous sequence-structure alignments that can resolve ambiguities obtained using structure alone. This combined model also provides a natural approach for the difficult task of estimating evolutionary distance based on structural alignments. The model is illustrated by comparison with well-established methods on several challenging protein alignment examples.
Psychological factors mediate key symptoms of fibromyalgia through their influence on stress.
Malin, Katrina; Littlejohn, Geoffrey Owen
2016-09-01
The clinical features of fibromyalgia are associated with various psychological factors, including stress. We examined the hypothesis that the path that psychological factors follow in influencing fibromyalgia symptoms is through their direct effect on stress. Ninety-eight females with ACR 1990 classified fibromyalgia completed the following questionnaires: The Big 5 Personality Inventory, Fibromyalgia Impact Questionnaire, Perceived Stress Scale, Profile of Mood States, Mastery Scale, and Perceived Control of Internal States Scale. SPSS (PASW version 22) was used to perform basic t tests, means, and standard deviations to show difference between symptom characteristics. Pathway analysis using structural equation modelling (Laavan) examined the effect of stress on the relationships between psychological factors and the elements that define the fibromyalgia phenotype. The preferred model showed that the identified path clearly linked the psychological variables of anxiety, neuroticism and mastery, but not internal control, to the three key elements of fibromyalgia, namely pain, fatigue and sleep (p < 0.001), via the person's perceived stress. Confusion, however, did not fit the preferred model. This study confirms that stress is a necessary link in the pathway between certain identified, established and significant psychological factors and key fibromyalgia symptoms. This has implications for the understanding of contributing mechanisms and the clinical care of patients with fibromyalgia.
Digital Architecture Planning Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oxstrand, Johanna Helene; Al Rashdan, Ahmad Yahya Mohammad; Bly, Aaron Douglas
As part of the U.S. Department of Energy’s Light Water Reactor Sustainability Program, the Digital Architecture (DA) Project focuses on providing a model that nuclear utilities can refer to when planning deployment of advanced technologies. The digital architecture planning model (DAPM) is the methodology for mapping power plant operational and support activities into a DA that unifies all data sources needed by the utilities to operate their plants. The DA is defined as a collection of information technology capabilities needed to support and integrate a wide spectrum of real-time digital capabilities for performance improvements of nuclear power plants. DA canmore » be thought of as integration of the separate instrumentation and control and information systems already in place in nuclear power plants, which are brought together for the purpose of creating new levels of automation in plant work activities. A major objective in DAPM development was to survey all key areas that needed to be reviewed in order for a utility to make knowledgeable decisions regarding needs and plans to implement a DA at the plant. The development was done in two steps. First, researchers surveyed the nuclear industry in order to learn their near-term plans for adopting new advanced capabilities and implementing a network (i.e., wireless and wire) infrastructure throughout the plant, including the power block. Secondly, a literature review covering regulatory documents, industry standards, and technical research reports and articles was conducted. The objective of the review was to identify key areas to be covered by the DAPM, which included the following: 1. The need for a DA and its benefits to the plant 2. Resources required to implement the DA 3. Challenges that need to be addressed and resolved to implement the DA 4. Roles and responsibilities of the DA implementation plan. The DAPM was developed based on results from the survey and the literature review. Model development, including the survey results and conclusions made about the key areas during the literature review, are described in this report.« less
Lesaint, Florian; Sigaud, Olivier; Khamassi, Mehdi
2014-01-01
Animals, including Humans, are prone to develop persistent maladaptive and suboptimal behaviours. Some of these behaviours have been suggested to arise from interactions between brain systems of Pavlovian conditioning, the acquisition of responses to initially neutral stimuli previously paired with rewards, and instrumental conditioning, the acquisition of active behaviours leading to rewards. However the mechanics of these systems and their interactions are still unclear. While extensively studied independently, few models have been developed to account for these interactions. On some experiment, pigeons have been observed to display a maladaptive behaviour that some suggest to involve conflicts between Pavlovian and instrumental conditioning. In a procedure referred as negative automaintenance, a key light is paired with the subsequent delivery of food, however any peck towards the key light results in the omission of the reward. Studies showed that in such procedure some pigeons persisted in pecking to a substantial level despite its negative consequence, while others learned to refrain from pecking and maximized their cumulative rewards. Furthermore, the pigeons that were unable to refrain from pecking could nevertheless shift their pecks towards a harmless alternative key light. We confronted a computational model that combines dual-learning systems and factored representations, recently developed to account for sign-tracking and goal-tracking behaviours in rats, to these negative automaintenance experimental data. We show that it can explain the variability of the observed behaviours and the capacity of alternative key lights to distract pigeons from their detrimental behaviours. These results confirm the proposed model as an interesting tool to reproduce experiments that could involve interactions between Pavlovian and instrumental conditioning. The model allows us to draw predictions that may be experimentally verified, which could help further investigate the neural mechanisms underlying theses interactions. PMID:25347531
Pawar, Rajesh; Bromhal, Grant; Carroll, Susan; ...
2014-12-31
Risk assessment for geologic CO₂ storage including quantification of risks is an area of active investigation. The National Risk Assessment Partnership (NRAP) is a US-Department of Energy (US-DOE) effort focused on developing a defensible, science-based methodology and platform for quantifying risk profiles at geologic CO₂ sequestration sites. NRAP has been developing a methodology that centers round development of an integrated assessment model (IAM) using system modeling approach to quantify risks and risk profiles. The IAM has been used to calculate risk profiles with a few key potential impacts due to potential CO₂ and brine leakage. The simulation results are alsomore » used to determine long-term storage security relationships and compare the long-term storage effectiveness to IPCC storage permanence goal. Additionally, we also demonstrate application of IAM for uncertainty quantification in order to determine parameters to which the uncertainty in model results is most sensitive.« less
A new method for teaching physical examination to junior medical students.
Sayma, Meelad; Williams, Hywel Rhys
2016-01-01
Teaching effective physical examination is a key component in the education of medical students. Preclinical medical students often have insufficient clinical knowledge to apply to physical examination recall, which may hinder their learning when taught through certain understanding-based models. This pilot project aimed to develop a method to teach physical examination to preclinical medical students using "core clinical cases", overcoming the need for "rote" learning. This project was developed utilizing three cycles of planning, action, and reflection. Thematic analysis of feedback was used to improve this model, and ensure it met student expectations. A model core clinical case developed in this project is described, with gout as the basis for a "foot and ankle" examination. Key limitations and difficulties encountered on implementation of this pilot are discussed for future users, including the difficulty encountered in "content overload". This approach aims to teach junior medical students physical examination through understanding, using a simulated patient environment. Robust research is now required to demonstrate efficacy and repeatability in the physical examination of other systems.
Paige, Sharon L.; Thomas, Sean; Stoick-Cooper, Cristi L.; Wang, Hao; Maves, Lisa; Sandstrom, Richard; Pabon, Lil; Reinecke, Hans; Pratt, Gabriel; Keller, Gordon; Moon, Randall T.; Stamatoyannopoulos, John; Murry, Charles E.
2012-01-01
Summary Directed differentiation of human embryonic stem cells (ESCs) into cardiovascular cells provides a model for studying molecular mechanisms of human cardiovascular development. Though it is known that chromatin modification patterns in ESCs differ markedly from those in lineage-committed progenitors and differentiated cells, the temporal dynamics of chromatin alterations during differentiation along a defined lineage have not been studied. We show that differentiation of human ESCs into cardiovascular cells is accompanied by programmed temporal alterations in chromatin structure that distinguish key regulators of cardiovascular development from other genes. We used this temporal chromatin signature to identify regulators of cardiac development, including the homeobox gene MEIS2. We demonstrate using the zebrafish model that MEIS2 is critical for proper heart tube formation and subsequent cardiac looping. Temporal chromatin signatures should be broadly applicable to other models of stem cell differentiation to identify regulators and provide key insights into major developmental decisions. PMID:22981225
Reisner, Sari L; Perez-Brumer, Amaya G; McLean, Sarah A; Lama, Javier R; Silva-Santisteban, Alfonso; Huerta, Leyla; Sanchez, Jorge; Clark, Jesse L; Mimiaga, Matthew J; Mayer, Kenneth H
2017-12-01
Transgender women (TW) represent a vulnerable population at increased risk for HIV infection in Peru. A mixed-methods study with 48 TW and 19 healthcare professionals was conducted between January and February 2015 to explore barriers and facilitators to implementing a model of care that integrates HIV services with gender-affirmative medical care (i.e., hormone therapy) in Lima, Peru. Perceived acceptability of the integrated care model was high among TW and healthcare professionals alike. Barriers included stigma, lack of provider training or Peruvian guidelines regarding optimal TW care, and service delivery obstacles (e.g., legal documents, spatial placement of clinics, hours of operation). The hiring of TW staff was identified as a key facilitator for engagement in health care. Working in partnership with local TW and healthcare provider organizations is critical to overcoming existing barriers to successful implementation of an integrated HIV services and gender-affirmative medical care model for this key population in Peru.
NASA Astrophysics Data System (ADS)
Kohn, Matthew J.; McKay, Moriah
2010-11-01
Oxygen isotope data provide a key test of general circulation models (GCMs) for the Last Glacial Maximum (LGM) in North America, which have otherwise proved difficult to validate. High δ18O pedogenic carbonates in central Wyoming have been interpreted to indicate increased summer precipitation sourced from the Gulf of Mexico. Here we show that tooth enamel δ18O of large mammals, which is strongly correlated with local water and precipitation δ18O, is lower during the LGM in Wyoming, not higher. Similar data from Texas, California, Florida and Arizona indicate higher δ18O values than in the Holocene, which is also predicted by GCMs. Tooth enamel data closely validate some recent models of atmospheric circulation and precipitation δ18O, including an increase in the proportion of winter precipitation for central North America, and summer precipitation in the southern US, but suggest aridity can bias pedogenic carbonate δ18O values significantly.
Fuel properties to enable lifted-flame combustion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurtz, Eric
The Fuel Properties to Enable Lifted-Flame Combustion project responded directly to solicitation DE-FOA-0000239 AOI 1A, Fuels and Lubricants for Advanced Combustion Regimes. This subtopic was intended to encompass clean and highly-efficient, liquid-fueled combustion engines to achieve extremely low engine-out nitrogen oxides (NOx) and particulate matter (PM) as a target and similar efficiency as state-of-the-art direct injection diesel engines. The intent of this project was to identify how fuel properties can be used to achieve controllable Leaner Lifted Flame Combustion (LLFC) with low NOx and PM emissions. Specifically, this project was expected to identify and test key fuel properties to enablemore » LLFC and their compatibility with current fuel systems and to enhance combustion models to capture the effect of fuel properties on advanced combustion. Successful demonstration of LLFC may reduce the need for after treatment devices, thereby reducing costs and improving thermal efficiency. The project team consisted of key technical personnel from Ford Motor Company (FMC), the University of Wisconsin-Madison (UW), Sandia National Laboratories (SNL) and Lawrence Livermore National Laboratories (LLNL). Each partner had key roles in achieving project objectives. FMC investigated fuel properties relating to LLFC and sooting tendency. Together, FMC and UW developed and integrated 3D combustion models to capture fuel property combustion effects. FMC used these modeling results to develop a combustion system and define fuel properties to support a single-cylinder demonstration of fuel-enabled LLFC. UW investigated modeling the flame characteristics and emissions behavior of different fuels, including those with different cetane number and oxygen content. SNL led spray combustion experiments to quantify the effect of key fuel properties on combustion characteristics critical for LLFC, as well as single cylinder optical engine experiments to improve fundamental understanding of flame lift-off, generate model validation data, and demonstrate LLFC concurrent with FMC efforts. Additionally, LLNL was added to the project during the second year to develop a detailed kinetic mechanism for a key oxygenate to support CFD modeling. Successful completion of this project allowed the team to enhance fundamental understanding of LLFC, improve the state of current combustion models and increase understanding of desired fuel properties. This knowledge also improves our knowledge of how cost effective and environmentally friendly renewable fuels can assist in helping meet future emission and greenhouse gas regulations.« less
Consensus building for interlaboratory studies, key comparisons, and meta-analysis
NASA Astrophysics Data System (ADS)
Koepke, Amanda; Lafarge, Thomas; Possolo, Antonio; Toman, Blaza
2017-06-01
Interlaboratory studies in measurement science, including key comparisons, and meta-analyses in several fields, including medicine, serve to intercompare measurement results obtained independently, and typically produce a consensus value for the common measurand that blends the values measured by the participants. Since interlaboratory studies and meta-analyses reveal and quantify differences between measured values, regardless of the underlying causes for such differences, they also provide so-called ‘top-down’ evaluations of measurement uncertainty. Measured values are often substantially over-dispersed by comparison with their individual, stated uncertainties, thus suggesting the existence of yet unrecognized sources of uncertainty (dark uncertainty). We contrast two different approaches to take dark uncertainty into account both in the computation of consensus values and in the evaluation of the associated uncertainty, which have traditionally been preferred by different scientific communities. One inflates the stated uncertainties by a multiplicative factor. The other adds laboratory-specific ‘effects’ to the value of the measurand. After distinguishing what we call recipe-based and model-based approaches to data reductions in interlaboratory studies, we state six guiding principles that should inform such reductions. These principles favor model-based approaches that expose and facilitate the critical assessment of validating assumptions, and give preeminence to substantive criteria to determine which measurement results to include, and which to exclude, as opposed to purely statistical considerations, and also how to weigh them. Following an overview of maximum likelihood methods, three general purpose procedures for data reduction are described in detail, including explanations of how the consensus value and degrees of equivalence are computed, and the associated uncertainty evaluated: the DerSimonian-Laird procedure; a hierarchical Bayesian procedure; and the Linear Pool. These three procedures have been implemented and made widely accessible in a Web-based application (NIST Consensus Builder). We illustrate principles, statistical models, and data reduction procedures in four examples: (i) the measurement of the Newtonian constant of gravitation; (ii) the measurement of the half-lives of radioactive isotopes of caesium and strontium; (iii) the comparison of two alternative treatments for carotid artery stenosis; and (iv) a key comparison where the measurand was the calibration factor of a radio-frequency power sensor.
Cell-type-specific modelling of intracellular calcium signalling: a urothelial cell model.
Appleby, Peter A; Shabir, Saqib; Southgate, Jennifer; Walker, Dawn
2013-09-06
Calcium signalling plays a central role in regulating a wide variety of cell processes. A number of calcium signalling models exist in the literature that are capable of reproducing a variety of experimentally observed calcium transients. These models have been used to examine in more detail the mechanisms underlying calcium transients, but very rarely has a model been directly linked to a particular cell type and experimentally verified. It is important to show that this can be achieved within the general theoretical framework adopted by these models. Here, we develop a framework designed specifically for modelling cytosolic calcium transients in urothelial cells. Where possible, we draw upon existing calcium signalling models, integrating descriptions of components known to be important in this cell type from a number of studies in the literature. We then add descriptions of several additional pathways that play a specific role in urothelial cell signalling, including an explicit ionic influx term and an active pumping mechanism that drives the cytosolic calcium concentration to a target equilibrium. The resulting one-pool model of endoplasmic reticulum (ER)-dependent calcium signalling relates the cytosolic, extracellular and ER calcium concentrations and can generate a wide range of calcium transients, including spikes, bursts, oscillations and sustained elevations in the cytosolic calcium concentration. Using single-variate robustness and multivariate sensitivity analyses, we quantify how varying each of the parameters of the model leads to changes in key features of the calcium transient, such as initial peak amplitude and the frequency of bursting or spiking, and in the transitions between bursting- and plateau-dominated modes. We also show that, novel to our urothelial cell model, the ionic and purinergic P2Y pathways make distinct contributions to the calcium transient. We then validate the model using human bladder epithelial cells grown in monolayer cell culture and show that the model robustly captures the key features of the experimental data in a way that is not possible using more generic calcium models from the literature.
NASA Astrophysics Data System (ADS)
Fenicia, Fabrizio; Kavetski, Dmitri; Savenije, Hubert H. G.; Pfister, Laurent
2016-02-01
This paper explores the development and application of distributed hydrological models, focusing on the key decisions of how to discretize the landscape, which model structures to use in each landscape element, and how to link model parameters across multiple landscape elements. The case study considers the Attert catchment in Luxembourg—a 300 km2 mesoscale catchment with 10 nested subcatchments that exhibit clearly different streamflow dynamics. The research questions are investigated using conceptual models applied at hydrologic response unit (HRU) scales (1-4 HRUs) on 6 hourly time steps. Multiple model structures are hypothesized and implemented using the SUPERFLEX framework. Following calibration, space/time model transferability is tested using a split-sample approach, with evaluation criteria including streamflow prediction error metrics and hydrological signatures. Our results suggest that: (1) models using geology-based HRUs are more robust and capture the spatial variability of streamflow time series and signatures better than models using topography-based HRUs; this finding supports the hypothesis that, in the Attert, geology exerts a stronger control than topography on streamflow generation, (2) streamflow dynamics of different HRUs can be represented using distinct and remarkably simple model structures, which can be interpreted in terms of the perceived dominant hydrologic processes in each geology type, and (3) the same maximum root zone storage can be used across the three dominant geological units with no loss in model transferability; this finding suggests that the partitioning of water between streamflow and evaporation in the study area is largely independent of geology and can be used to improve model parsimony. The modeling methodology introduced in this study is general and can be used to advance our broader understanding and prediction of hydrological behavior, including the landscape characteristics that control hydrologic response, the dominant processes associated with different landscape types, and the spatial relations of catchment processes. This article was corrected on 14 MAR 2016. See the end of the full text for details.
Balancing the Roles of a Family Medicine Residency Faculty: A Grounded Theory Study.
Reitz, Randall; Sudano, Laura; Siler, Anne; Trimble, Kristopher
2016-05-01
Great variety exists in the roles that family medicine residency faculty fill in the lives of their residents. A family medicine-specific model has never been created to describe and promote effective training relationships. This research aims to create a consensus model for faculty development, ethics education, and policy creation. Using a modified grounded theory methods, researchers conducted phone interviews with 22 key informants from US family medicine residencies. Data were analyzed to delineate faculty roles, common role conflicts, and ethical principles for avoiding and managing role conflicts. Key informants were asked to apply their experience and preferences to adapt an existing model to fit with family medicine residency settings. The primary result of this research is the creation of a family medicine-specific model that describes faculty roles and provides insight into how to manage role conflicts with residents. Primary faculty roles include Role Model, Advisor, Teacher, Supervisor, and Evaluator. Secondary faculty roles include Friendly Colleague, Wellness Supporter, and Helping Hand. The secondary roles exist on a continuum from disengaged to enmeshed. When not balanced, the secondary roles can detract from the primary roles. Differences were found between role expectations of physician versus behavioral science faculty and larger/university/urban residencies versus smaller/community/rural residencies. Diversity of opinion exists related to the types of roles that are appropriate for family medicine faculty to maintain with residents. This new model is a first attempt to build consensus in the field and has application to faculty development, ethics education, and policy creation.
An Animal Model of Trichloroethylene-Induced Skin Sensitization in BALB/c Mice.
Wang, Hui; Zhang, Jia-xiang; Li, Shu-long; Wang, Feng; Zha, Wan-sheng; Shen, Tong; Wu, Changhao; Zhu, Qi-xing
2015-01-01
Trichloroethylene (TCE) is a major occupational hazard and environmental contaminant that can cause multisystem disorders in the form of occupational medicamentosa-like dermatitis. Development of dermatitis involves several proinflammatory cytokines, but their role in TCE-mediated dermatitis has not been examined in a well-defined experimental model. In addition, few animal models of TCE sensitization are available, and the current guinea pig model has apparent limitations. This study aimed to establish a model of TCE-induced skin sensitization in BALB/c mice and to examine the role of several key inflammatory cytokines on TCE sensitization. The sensitization rate of dorsal painted group was 38.3%. Skin edema and erythema occurred in TCE-sensitized groups, as seen in 2,4-dinitrochlorobenzene (DNCB) positive control. Trichloroethylene sensitization-positive (dermatitis [+]) group exhibited increased thickness of epidermis, inflammatory cell infiltration, swelling, and necrosis in dermis and around hair follicle, but ear painted group did not show these histological changes. The concentrations of serum proinflammatory cytokines including tumor necrosis factor (TNF)-α, interferon (IFN)-γ, and interleukin (IL)-2 were significantly increased in 24, 48, and 72 hours dermatitis [+] groups treated with TCE and peaked at 72 hours. Deposition of TNF-α, IFN-γ, and IL-2 into the skin tissue was also revealed by immunohistochemistry. We have established a new animal model of skin sensitization induced by repeated TCE stimulations, and we provide the first evidence that key proinflammatory cytokines including TNF-α, IFN-γ, and IL-2 play an important role in the process of TCE sensitization. © The Author(s) 2015.
Modeling of crude oil biodegradation using two phase partitioning bioreactor.
Fakhru'l-Razi, A; Peyda, Mazyar; Ab Karim Ghani, Wan Azlina Wan; Abidin, Zurina Zainal; Zakaria, Mohamad Pauzi; Moeini, Hassan
2014-01-01
In this work, crude oil biodegradation has been optimized in a solid-liquid two phase partitioning bioreactor (TPPB) by applying a response surface methodology based d-optimal design. Three key factors including phase ratio, substrate concentration in solid organic phase, and sodium chloride concentration in aqueous phase were taken as independent variables, while the efficiency of the biodegradation of absorbed crude oil on polymer beads was considered to be the dependent variable. Commercial thermoplastic polyurethane (Desmopan®) was used as the solid phase in the TPPB. The designed experiments were carried out batch wise using a mixed acclimatized bacterial consortium. Optimum combinations of key factors with a statistically significant cubic model were used to maximize biodegradation in the TPPB. The validity of the model was successfully verified by the good agreement between the model-predicted and experimental results. When applying the optimum parameters, gas chromatography-mass spectrometry showed a significant reduction in n-alkanes and low molecular weight polycyclic aromatic hydrocarbons. This consequently highlights the practical applicability of TPPB in crude oil biodegradation. © 2014 American Institute of Chemical Engineers.
A high-frequency warm shallow water acoustic communications channel model and measurements.
Chitre, Mandar
2007-11-01
Underwater acoustic communication is a core enabling technology with applications in ocean monitoring using remote sensors and autonomous underwater vehicles. One of the more challenging underwater acoustic communication channels is the medium-range very shallow warm-water channel, common in tropical coastal regions. This channel exhibits two key features-extensive time-varying multipath and high levels of non-Gaussian ambient noise due to snapping shrimp-both of which limit the performance of traditional communication techniques. A good understanding of the communications channel is key to the design of communication systems. It aids in the development of signal processing techniques as well as in the testing of the techniques via simulation. In this article, a physics-based channel model for the very shallow warm-water acoustic channel at high frequencies is developed, which are of interest to medium-range communication system developers. The model is based on ray acoustics and includes time-varying statistical effects as well as non-Gaussian ambient noise statistics observed during channel studies. The model is calibrated and its accuracy validated using measurements made at sea.
Automated Generation of Tabular Equations of State with Uncertainty Information
NASA Astrophysics Data System (ADS)
Carpenter, John H.; Robinson, Allen C.; Debusschere, Bert J.; Mattsson, Ann E.
2015-06-01
As computational science pushes toward higher fidelity prediction, understanding the uncertainty associated with closure models, such as the equation of state (EOS), has become a key focus. Traditional EOS development often involves a fair amount of art, where expert modelers may appear as magicians, providing what is felt to be the closest possible representation of the truth. Automation of the development process gives a means by which one may demystify the art of EOS, while simultaneously obtaining uncertainty information in a manner that is both quantifiable and reproducible. We describe our progress on the implementation of such a system to provide tabular EOS tables with uncertainty information to hydrocodes. Key challenges include encoding the artistic expert opinion into an algorithmic form and preserving the analytic models and uncertainty information in a manner that is both accurate and computationally efficient. Results are demonstrated on a multi-phase aluminum model. *Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Application of Computational Intelligence to Improve Education in Smart Cities.
Gomede, Everton; Gaffo, Fernando Henrique; Briganó, Gabriel Ulian; de Barros, Rodolfo Miranda; Mendes, Leonardo de Souza
2018-01-18
According to UNESCO, education is a fundamental human right and every nation's citizens should be granted universal access with equal quality to it. Because this goal is yet to be achieved in most countries, in particular in the developing and underdeveloped countries, it is extremely important to find more effective ways to improve education. This paper presents a model based on the application of computational intelligence (data mining and data science) that leads to the development of the student's knowledge profile and that can help educators in their decision making for best orienting their students. This model also tries to establish key performance indicators to monitor objectives' achievement within individual strategic planning assembled for each student. The model uses random forest for classification and prediction, graph description for data structure visualization and recommendation systems to present relevant information to stakeholders. The results presented were built based on the real dataset obtained from a Brazilian private k-9 (elementary school). The obtained results include correlations among key data, a model to predict student performance and recommendations that were generated for the stakeholders.
Improving Control of Tuberculosis in Low-Burden Countries: Insights from Mathematical Modeling
White, Peter J.; Abubakar, Ibrahim
2016-01-01
Tuberculosis control and elimination remains a challenge for public health even in low-burden countries. New technology and novel approaches to case-finding, diagnosis, and treatment are causes for optimism but they need to be used cost-effectively. This in turn requires improved understanding of the epidemiology of TB and analysis of the effectiveness and cost-effectiveness of different interventions. We describe the contribution that mathematical modeling can make to understanding epidemiology and control of TB in different groups, guiding improved approaches to public health interventions. We emphasize that modeling is not a substitute for collecting data but rather is complementary to empirical research, helping determine what are the key questions to address to maximize the public-health impact of research, helping to plan studies, and making maximal use of available data, particularly from surveillance, and observational studies. We provide examples of how modeling and related empirical research inform policy and discuss how a combination of these approaches can be used to address current questions of key importance, including use of whole-genome sequencing, screening and treatment for latent infection, and combating drug resistance. PMID:27199896
Application of Computational Intelligence to Improve Education in Smart Cities
Gaffo, Fernando Henrique; de Barros, Rodolfo Miranda; Mendes, Leonardo de Souza
2018-01-01
According to UNESCO, education is a fundamental human right and every nation’s citizens should be granted universal access with equal quality to it. Because this goal is yet to be achieved in most countries, in particular in the developing and underdeveloped countries, it is extremely important to find more effective ways to improve education. This paper presents a model based on the application of computational intelligence (data mining and data science) that leads to the development of the student’s knowledge profile and that can help educators in their decision making for best orienting their students. This model also tries to establish key performance indicators to monitor objectives’ achievement within individual strategic planning assembled for each student. The model uses random forest for classification and prediction, graph description for data structure visualization and recommendation systems to present relevant information to stakeholders. The results presented were built based on the real dataset obtained from a Brazilian private k-9 (elementary school). The obtained results include correlations among key data, a model to predict student performance and recommendations that were generated for the stakeholders. PMID:29346288
Formal Analysis of Key Integrity in PKCS#11
NASA Astrophysics Data System (ADS)
Falcone, Andrea; Focardi, Riccardo
PKCS#11 is a standard API to cryptographic devices such as smarcards, hardware security modules and usb crypto-tokens. Though widely adopted, this API has been shown to be prone to attacks in which a malicious user gains access to the sensitive keys stored in the devices. In 2008, Delaune, Kremer and Steel proposed a model to formally reason on this kind of attacks. We extend this model to also describe flaws that are based on integrity violations of the stored keys. In particular, we consider scenarios in which a malicious overwriting of keys might fool honest users into using attacker's own keys, while performing sensitive operations. We further enrich the model with a trusted key mechanism ensuring that only controlled, non-tampered keys are used in cryptographic operations, and we show how this modified API prevents the above mentioned key-replacement attacks.
Prevention through Design Adoption Readiness Model (PtD ARM): An integrated conceptual model.
Weidman, Justin; Dickerson, Deborah E; Koebel, Charles T
2015-01-01
Prevention through Design (PtD), eliminating hazards at the design-stage of tools and systems, is the optimal method of mitigating occupational health and safety risks. A recent National Institute of Safety and Health initiative has established a goal to increase adoption of PtD innovation in industry. The construction industry has traditionally lagged behind other sectors in the adoption of innovation, in general; and of safety and health prevention innovation, in particular. Therefore, as a first step toward improving adoption trends in this sector, a conceptual model was developed to describe the parameters and causal relationships that influence and predict construction stakeholder "adoption readiness" for PtD technology innovation. This model was built upon three well-established theoretical frameworks: the Health Belief Model, the Diffusion of Innovation Model, and the Technology Acceptance Model. Earp and Ennett's model development methodology was employed to build a depiction of the key constructs and directionality and magnitude of relationships among them. Key constructs were identified from the literature associated with the three theoretical frameworks, with special emphasis given to studies related to construction or OHS technology adoption. A conceptual model is presented. Recommendations for future research are described and include confirmatory structural equation modeling of model parameters and relationships, additional descriptive investigation of barriers to adoption in some trade sectors, and design and evaluation of an intervention strategy.
Design and Analysis Tools for Supersonic Inlets
NASA Technical Reports Server (NTRS)
Slater, John W.; Folk, Thomas C.
2009-01-01
Computational tools are being developed for the design and analysis of supersonic inlets. The objective is to update existing tools and provide design and low-order aerodynamic analysis capability for advanced inlet concepts. The Inlet Tools effort includes aspects of creating an electronic database of inlet design information, a document describing inlet design and analysis methods, a geometry model for describing the shape of inlets, and computer tools that implement the geometry model and methods. The geometry model has a set of basic inlet shapes that include pitot, two-dimensional, axisymmetric, and stream-traced inlet shapes. The inlet model divides the inlet flow field into parts that facilitate the design and analysis methods. The inlet geometry model constructs the inlet surfaces through the generation and transformation of planar entities based on key inlet design factors. Future efforts will focus on developing the inlet geometry model, the inlet design and analysis methods, a Fortran 95 code to implement the model and methods. Other computational platforms, such as Java, will also be explored.
Marine mammals' influence on ecosystem processes affecting fisheries in the Barents Sea is trivial.
Corkeron, Peter J
2009-04-23
Some interpretations of ecosystem-based fishery management include culling marine mammals as an integral component. The current Norwegian policy on marine mammal management is one example. Scientific support for this policy includes the Scenario Barents Sea (SBS) models. These modelled interactions between cod, Gadus morhua, herring, Clupea harengus, capelin, Mallotus villosus and northern minke whales, Balaenoptera acutorostrata. Adding harp seals Phoca groenlandica into this top-down modelling approach resulted in unrealistic model outputs. Another set of models of the Barents Sea fish-fisheries system focused on interactions within and between the three fish populations, fisheries and climate. These model key processes of the system successfully. Continuing calls to support the SBS models despite their failure suggest a belief that marine mammal predation must be a problem for fisheries. The best available scientific evidence provides no justification for marine mammal culls as a primary component of an ecosystem-based approach to managing the fisheries of the Barents Sea.
Dockrell, Julie E; Lindsay, Geoff; Letchford, Becky; Mackie, Clare
2006-01-01
Children with specific speech and language difficulties (SSLD) pose a challenge to the education system, and to speech and language therapists who support them, as a result of their language needs and associated educational and social-behavioural difficulties. The development of inclusion raises questions regarding appropriate provision, whether the tradition of language units or full inclusion into mainstream schools. To gather the views of speech and language therapy service managers in England and Wales regarding approaches to service delivery, terminology and decision-making for educational provision, and the use of direct and indirect (consultancy) models of intervention. The study reports on a national survey of speech and language therapy (SLT) services in England and Wales (129 respondents, 72.1% response rate) and interviews with 39 SLT service managers. Provision varied by age group with support to children in the mainstream common from pre-school to the end of Key Stage 2 (up to 11 years), and to those in designated specialist provision, common at Key Stages 1/2 (ages 5-11 years), but less prevalent at Key Stages 3/4 (11-16 years). Decision-making regarding provision was influenced by the lack of common terminology, with SSLD and specific language impairment (SLI) the most common, and criteria, including the use of the discrepancy model for defining SSLD. Practice was influenced by the difficulties in distinguishing children with SSLD from those with autistic spectrum disorder, and difficulties translating policies into practice. The implications of the study are discussed with reference to SLT practice, including consultancy models, and the increasingly prevalent policy in local education authorities of inclusion of children with special educational needs.
Human health effects of dichloromethane: key findings and scientific issues.
Schlosser, Paul M; Bale, Ambuja S; Gibbons, Catherine F; Wilkins, Amina; Cooper, Glinda S
2015-02-01
The U.S. EPA's Integrated Risk Information System (IRIS) completed an updated toxicological review of dichloromethane in November 2011. In this commentary we summarize key results and issues of this review, including exposure sources, identification of potential health effects, and updated physiologically based pharmacokinetic (PBPK) modeling. We performed a comprehensive review of primary research studies and evaluation of PBPK models. Hepatotoxicity was observed in oral and inhalation exposure studies in several studies in animals; neurological effects were also identified as a potential area of concern. Dichloromethane was classified as likely to be carcinogenic in humans based primarily on evidence of carcinogenicity at two sites (liver and lung) in male and female B6C3F1 mice (inhalation exposure) and at one site (liver) in male B6C3F1 mice (drinking-water exposure). Recent epidemiologic studies of dichloromethane (seven studies of hematopoietic cancers published since 2000) provide additional data raising concerns about associations with non-Hodgkin lymphoma and multiple myeloma. Although there are gaps in the database for dichloromethane genotoxicity (i.e., DNA adduct formation and gene mutations in target tissues in vivo), the positive DNA damage assays correlated with tissue and/or species availability of functional glutathione S-transferase (GST) metabolic activity, the key activation pathway for dichloromethane-induced cancer. Innovations in the IRIS assessment include estimation of cancer risk specifically for a presumed sensitive genotype (GST-theta-1+/+), and PBPK modeling accounting for human physiological distributions based on the expected distribution for all individuals 6 months to 80 years of age. The 2011 IRIS assessment of dichloromethane provides insights into the toxicity of a commonly used solvent.
Bidirectional RNN for Medical Event Detection in Electronic Health Records.
Jagannatha, Abhyuday N; Yu, Hong
2016-06-01
Sequence labeling for extraction of medical events and their attributes from unstructured text in Electronic Health Record (EHR) notes is a key step towards semantic understanding of EHRs. It has important applications in health informatics including pharmacovigilance and drug surveillance. The state of the art supervised machine learning models in this domain are based on Conditional Random Fields (CRFs) with features calculated from fixed context windows. In this application, we explored recurrent neural network frameworks and show that they significantly out-performed the CRF models.
2013-09-30
GEWEX GASS MJO Diabatic Heating Experiment, 2) Intraseasonal Variability Hindcast Experiment (ISVHE) C. Conduct more comprehensive analysis on the...since her Ph.D. study. Key partners include M. Zhao (GFDL) and J. Ridout (NRL). Both Zhao and Ridout are contributors to the MJO multi-model diabatic ...a paper and submitted to the Journal of the Atmospheric Sciences (Guo et al. 2013). We have also begun acquiring model data from the MJO Diabatic
pytc: Open-Source Python Software for Global Analyses of Isothermal Titration Calorimetry Data.
Duvvuri, Hiranmayi; Wheeler, Lucas C; Harms, Michael J
2018-05-08
Here we describe pytc, an open-source Python package for global fits of thermodynamic models to multiple isothermal titration calorimetry experiments. Key features include simplicity, the ability to implement new thermodynamic models, a robust maximum likelihood fitter, a fast Bayesian Markov-Chain Monte Carlo sampler, rigorous implementation, extensive documentation, and full cross-platform compatibility. pytc fitting can be done using an application program interface or via a graphical user interface. It is available for download at https://github.com/harmslab/pytc .
Economic feasibility of alternative practitioners for provision of dental care to the underserved.
Matthiesen, Anne
2012-01-01
This study assesses the viability of three alternative practitioner types for provision of dental care to the underserved. Key factors modeled include compensation, training and practice costs, productivity, and payer mix scenarios. Utilizing dental therapists or dental health aide therapists is cost-effective for enhancing access. However, to be sustainable, the practices will require a subsidy or a better reimbursement than modeled. Without tuition support, the debt burden will deter applicants mostlikely to treat the underserved.
Tool Efficiency Analysis model research in SEMI industry
NASA Astrophysics Data System (ADS)
Lei, Ma; Nana, Zhang; Zhongqiu, Zhang
2018-06-01
One of the key goals in SEMI industry is to improve equipment through put and ensure equipment production efficiency maximization. This paper is based on SEMI standards in semiconductor equipment control, defines the transaction rules between different tool states, and presents a TEA system model which is to analysis tool performance automatically based on finite state machine. The system was applied to fab tools and verified its effectiveness successfully, and obtained the parameter values used to measure the equipment performance, also including the advices of improvement.
MODELING MICROBUBBLE DYNAMICS IN BIOMEDICAL APPLICATIONS*
CHAHINE, Georges L.; HSIAO, Chao-Tsung
2012-01-01
Controlling microbubble dynamics to produce desirable biomedical outcomes when and where necessary and avoid deleterious effects requires advanced knowledge, which can be achieved only through a combination of experimental and numerical/analytical techniques. The present communication presents a multi-physics approach to study the dynamics combining viscous- in-viscid effects, liquid and structure dynamics, and multi bubble interaction. While complex numerical tools are developed and used, the study aims at identifying the key parameters influencing the dynamics, which need to be included in simpler models. PMID:22833696
ERIC Educational Resources Information Center
Erden, Ali
2017-01-01
Lifelong education is a process including positive and negative experiences at the same time. Negative experiences mostly appear as impediments to the overseas students. They need to overcome impediments they experience throughout their education. The paper discussed the key findings of a two-year research project for identifying the impediments…
Thirty Years of Evolution in Instructional Technology, as Reflected in a Textbook
ERIC Educational Resources Information Center
Smaldino, Sharon E.; Lowther, Deborah L.; Russell, James D.
2011-01-01
This article describes how a textbook has traced 30 years of evolution in instructional technology. One of the book's key continuing features is the ASSURE Model. To connect technology to learning, the Classroom Link was developed. As standards were formulated for teachers and students, they were included in the textbook. Other evolutionary…
Online Survey, Enrollment, and Examination: Special Internet Applications in Teacher Education.
ERIC Educational Resources Information Center
Tu, Jho-Ju; Babione, Carolyn; Chen, Hsin-Chu
The Teachers College at Emporia State University in Kansas is now utilizing World Wide Web technology for automating the application procedure for student teaching. The general concepts and some of the key terms that are important for understanding the process involved in this project include: a client-server model, HyperText Markup Language,…
ERIC Educational Resources Information Center
Dariotis, Jacinda K.; Bumbarger, Brian K.; Duncan, Larissa G.; Greenberg, Mark T.
2008-01-01
Widespread replications of evidence-based prevention programs (EBPPs) prompt prevention scientists to examine program implementation adherence in real world settings. Based on Chen's model (1990), we identified five key factors of the implementation system and assessed which characteristics related to program adherence. The sample included 32…
Challenges and Opportunities for School Improvement: Recommendations for Urban School Principals
ERIC Educational Resources Information Center
Dolph, David
2017-01-01
Insofar as urban school systems that are often identified as ineffective include such a large segment of U.S. P-12 students, it is vital to improve academic success. To provide context, the article first discusses key challenges facing urban schools. Second, the article identifies and briefly reviews a variety of approaches to reform models often…
North Carolina Community College System Economic & Workforce Development Annual Report, 1999-2000.
ERIC Educational Resources Information Center
Lancaster, H. Martin
During the 1999-2000 program year, the Division of Economic and Workforce Development attempted to further the North Carolina Community College System's (NCCCS) tradition of excellence by modeling key strategies of the business sector. These strategies included: (1) Economies of scale, a term that refers to unit cost decreasing as number of units…
NASA Astrophysics Data System (ADS)
Lee, Cheol-Ju; Lee, SuKap; Jhon, Myung S.; Shin, Juneseuk
2013-02-01
Nanotechnology is a representative emerging technology in an embryonic stage. Due to the continuous support provided by both the public and private sectors of many countries, nanotechnologies have increasingly been commercialized in a wide array of industries, but also produce many commercialization failures. Tackling this problem, we investigate key factors affecting the commercialization of nanotechnologies. Identifying key factors of nanotechnology commercialization through literature review and interview with CEOs, we collected data of 206 Korean nanotechnology-based companies, and analyzed the causal relationship between key factors and financial performance. Logistic and Tobit regression models are used. Overall, companies achieving successful commercialization hold some common characteristics including consistent exploratory R&D, governmental funding, and nano-instrument/energy/environment-related products. Also, the use of potentially toxic materials makes commercialization difficult even if the products are not toxic.
Nutraceuticals in rodent models as potential treatments for human Inflammatory Bowel Disease.
Ghattamaneni, Naga K R; Panchal, Sunil K; Brown, Lindsay
2018-04-20
Inflammatory Bowel Disease (IBD) is characterized by chronic inflammation of all or part of the digestive tract. Nutraceuticals include bioactive compounds such as polyphenols with anti-inflammatory activities, thus these products have the potential to treat chronic inflammatory diseases. We have emphasized the role of nutraceuticals in ameliorating the symptoms of IBD in rodent models of human IBD through modulation of key pathogenic mechanisms including dysbiosis, oxidative stress, increased inflammatory cytokines, immune system dysregulation, and inflammatory cell signaling pathways. Nutraceuticals have an important role in IBD patients as a preventive approach to extend remission phases and as a therapeutic intervention to suppress active IBD. Further clinical trials on nutraceuticals with positive results in rodent models are warranted. Copyright © 2018. Published by Elsevier Ltd.
The relative abundance of ethane to acetylene in the Jovian stratosphere
NASA Technical Reports Server (NTRS)
Allen, Mark; Yung, Yuk L.; Gladstone, G. R.
1992-01-01
The inclusion of the results of laboratory kinetics studies on the reaction of C2H3 and H2 to yield C2H4, which is suggestive of an efficient chemical mechanism for the hydrogenation of C2H2 to C2H6, can be included in a comprehensive model of the Jupiter atmosphere hydrocarbon photochemistry to explain the observed altitude variation of the C2H6/C2H2 ratio. The sensitivity of these results to uncertainties in key low-temperature rate constants is demonstrated. These key reaction-rate constants decrease with falling temperature.
Health promotion communications system: a model for a dispersed population.
Foran, M; Campanelli, L C
1995-11-01
1. Corporations with geographically dispersed populations need to provide flexible health promotion programs tailored to meet specific employee interests and needs. 2. Bell Atlantic developed a dispersed model approach based on the transtheoretical model of behavior change. The key to this model is to identify at which stage the individual is operating and provide appropriate information and behavior change programs. 3. Components of the program include: health risk appraisal; exercise/activity tracking system; on line nurse health information service; network of fitness facilities; employee assistance programs; health library available by fax; health film library; network of health promotion volunteers; and targeted health and marketing messaged via corporate media.
Implementing effective and sustainable multidisciplinary clinical thoracic oncology programs
Freeman, Richard K.; Krasna, Mark J.
2015-01-01
Three models of care are described, including two models of multidisciplinary care for thoracic malignancies. The pros and cons of each model are discussed, the evidence supporting each is reviewed, and the need for more (and better) research into care delivery models is highlighted. Key stakeholders in thoracic oncology care delivery outcomes are identified, and the need to consider stakeholder perspectives in designing, validating and implementing multidisciplinary programs as a vehicle for quality improvement in thoracic oncology is emphasized. The importance of reconciling stakeholder perspectives, and identify meaningful stakeholder-relevant benchmarks is also emphasized. Metrics for measuring program implementation and overall success are proposed. PMID:26380186
Implementing effective and sustainable multidisciplinary clinical thoracic oncology programs.
Osarogiagbon, Raymond U; Freeman, Richard K; Krasna, Mark J
2015-08-01
Three models of care are described, including two models of multidisciplinary care for thoracic malignancies. The pros and cons of each model are discussed, the evidence supporting each is reviewed, and the need for more (and better) research into care delivery models is highlighted. Key stakeholders in thoracic oncology care delivery outcomes are identified, and the need to consider stakeholder perspectives in designing, validating and implementing multidisciplinary programs as a vehicle for quality improvement in thoracic oncology is emphasized. The importance of reconciling stakeholder perspectives, and identify meaningful stakeholder-relevant benchmarks is also emphasized. Metrics for measuring program implementation and overall success are proposed.
Springer, Janice; Casey-Lockyer, Mary
2016-12-01
From the time of Clara Barton, Red Cross nursing has had a key role in the care and support of persons affected by disasters in the United States. Hurricane Katrina and other events brought to light the need for a shelter model that was inclusive of the whole community, including persons with disabilities, at-risk and vulnerable populations, and children. From an intake process to a nursing model for assessment, an evidence-guided process informed a systematic approach for a registered nurse-led model of care. Copyright © 2016 Elsevier Inc. All rights reserved.
A bio-psycho-social model of violence related to mental health problems.
Steinert, Tilman; Whittington, Richard
2013-01-01
Psychiatry is characterised by bio-psycho-social approaches and therapies. Thus there should be an interest in comprehensive theoretical models for didactic purposes. A narrative synthesis of key themes in the current literature on psychiatric aspects of violence was conducted with the aim of integrating biological, psychological and sociological ideas in this area. Two didactical models are proposed for 1) individual disposition and for 2) acting in specific situations, each including available evidence-based knowledge. The proposed models may be helpful for a comprehensive understanding of all relevant influencing factors in violent mentally ill people and for didactical purposes. Copyright © 2013 Elsevier Ltd. All rights reserved.
A quantitative test of population genetics using spatiogenetic patterns in bacterial colonies.
Korolev, Kirill S; Xavier, João B; Nelson, David R; Foster, Kevin R
2011-10-01
It is widely accepted that population-genetics theory is the cornerstone of evolutionary analyses. Empirical tests of the theory, however, are challenging because of the complex relationships between space, dispersal, and evolution. Critically, we lack quantitative validation of the spatial models of population genetics. Here we combine analytics, on- and off-lattice simulations, and experiments with bacteria to perform quantitative tests of the theory. We study two bacterial species, the gut microbe Escherichia coli and the opportunistic pathogen Pseudomonas aeruginosa, and show that spatiogenetic patterns in colony biofilms of both species are accurately described by an extension of the one-dimensional stepping-stone model. We use one empirical measure, genetic diversity at the colony periphery, to parameterize our models and show that we can then accurately predict another key variable: the degree of short-range cell migration along an edge. Moreover, the model allows us to estimate other key parameters, including effective population size (density) at the expansion frontier. While our experimental system is a simplification of natural microbial community, we argue that it constitutes proof of principle that the spatial models of population genetics can quantitatively capture organismal evolution.
Theory of the development of alternans in the heart during controlled diastolic interval pacing
NASA Astrophysics Data System (ADS)
Otani, Niels F.
2017-09-01
The beat-to-beat alternation in action potential durations (APDs) in the heart, called APD alternans, has been linked to the development of serious cardiac rhythm disorders, including ventricular tachycardia and fibrillation. The length of the period between action potentials, called the diastolic interval (DI), is a key dynamical variable in the standard theory of alternans development. Thus, methods that control the DI may be useful in preventing dangerous cardiac rhythms. In this study, we examine the dynamics of alternans during controlled-DI pacing using a series of single-cell and one-dimensional (1D) fiber models of alternans dynamics. We find that a model that combines a so-called memory model with a calcium cycling model can reasonably explain two key experimental results: the possibility of alternans during constant-DI pacing and the phase lag of APDs behind DIs during sinusoidal-DI pacing. We also find that these results can be replicated by incorporating the memory model into an amplitude equation description of a 1D fiber. The 1D fiber result is potentially concerning because it seems to suggest that constant-DI control of alternans can only be effective over only a limited region in space.
Interactions of social, terrestrial, and marine sub-systems in the Galapagos Islands, Ecuador.
Walsh, Stephen J; Mena, Carlos F
2016-12-20
Galapagos is often cited as an example of the conflicts that are emerging between resource conservation and economic development in island ecosystems, as the pressures associated with tourism threaten nature, including the iconic and emblematic species, unique terrestrial landscapes, and special marine environments. In this paper, two projects are described that rely upon dynamic systems models and agent-based models to examine human-environment interactions. We use a theoretical context rooted in complexity theory to guide the development of our models that are linked to social-ecological dynamics. The goal of this paper is to describe key elements, relationships, and processes to inform and enhance our understanding of human-environment interactions in the Galapagos Islands of Ecuador. By formalizing our knowledge of how systems operate and the manner in which key elements are linked in coupled human-natural systems, we specify rules, relationships, and rates of exchange between social and ecological features derived through statistical functions and/or functions specified in theory or practice. The processes described in our models also have practical applications in that they emphasize how political policies generate different human responses and model outcomes, many detrimental to the social-ecological sustainability of the Galapagos Islands.
Khan, Md Mohib-Ul-Haque; Jain, Siddharth; Vaezi, Mahdi; Kumar, Amit
2016-02-01
Economic competitiveness is one of the key factors in making decisions towards the development of waste conversion facilities and devising a sustainable waste management strategy. The goal of this study is to develop a framework, as well as to develop and demonstrate a comprehensive techno-economic model to help county and municipal decision makers in establishing waste conversion facilities. The user-friendly data-intensive model, called the FUNdamental ENgineering PrinciplEs-based ModeL for Estimation of Cost of Energy and Fuels from MSW (FUNNEL-Cost-MSW), compares nine different waste management scenarios, including landfilling and composting, in terms of economic parameters such as gate fees and return on investment. In addition, a geographic information system (GIS) model was developed to determine suitable locations for waste conversion facilities and landfill sites based on integration of environmental, social, and economic factors. Finally, a case study on Parkland County and its surrounding counties in the province of Alberta, Canada, was conducted and a sensitivity analysis was performed to assess the influence of the key technical and economic parameters on the calculated results. Copyright © 2015 Elsevier Ltd. All rights reserved.
Interactions of social, terrestrial, and marine sub-systems in the Galapagos Islands, Ecuador
Walsh, Stephen J.; Mena, Carlos F.
2016-01-01
Galapagos is often cited as an example of the conflicts that are emerging between resource conservation and economic development in island ecosystems, as the pressures associated with tourism threaten nature, including the iconic and emblematic species, unique terrestrial landscapes, and special marine environments. In this paper, two projects are described that rely upon dynamic systems models and agent-based models to examine human–environment interactions. We use a theoretical context rooted in complexity theory to guide the development of our models that are linked to social–ecological dynamics. The goal of this paper is to describe key elements, relationships, and processes to inform and enhance our understanding of human–environment interactions in the Galapagos Islands of Ecuador. By formalizing our knowledge of how systems operate and the manner in which key elements are linked in coupled human–natural systems, we specify rules, relationships, and rates of exchange between social and ecological features derived through statistical functions and/or functions specified in theory or practice. The processes described in our models also have practical applications in that they emphasize how political policies generate different human responses and model outcomes, many detrimental to the social–ecological sustainability of the Galapagos Islands. PMID:27791072
Sensitivity and uncertainty analysis for Abreu & Johnson numerical vapor intrusion model.
Ma, Jie; Yan, Guangxu; Li, Haiyan; Guo, Shaohui
2016-03-05
This study conducted one-at-a-time (OAT) sensitivity and uncertainty analysis for a numerical vapor intrusion model for nine input parameters, including soil porosity, soil moisture, soil air permeability, aerobic biodegradation rate, building depressurization, crack width, floor thickness, building volume, and indoor air exchange rate. Simulations were performed for three soil types (clay, silt, and sand), two source depths (3 and 8m), and two source concentrations (1 and 400 g/m(3)). Model sensitivity and uncertainty for shallow and high-concentration vapor sources (3m and 400 g/m(3)) are much smaller than for deep and low-concentration sources (8m and 1g/m(3)). For high-concentration sources, soil air permeability, indoor air exchange rate, and building depressurization (for high permeable soil like sand) are key contributors to model output uncertainty. For low-concentration sources, soil porosity, soil moisture, aerobic biodegradation rate and soil gas permeability are key contributors to model output uncertainty. Another important finding is that impacts of aerobic biodegradation on vapor intrusion potential of petroleum hydrocarbons are negligible when vapor source concentration is high, because of insufficient oxygen supply that limits aerobic biodegradation activities. Copyright © 2015 Elsevier B.V. All rights reserved.
Toward Reducing Ageism: PEACE (Positive Education about Aging and Contact Experiences) Model.
Levy, Sheri R
2018-03-19
The population of older adults is growing worldwide. Negative ageism (negative attitudes and behavior toward older adults) is a serious international concern that negatively influences not only older adults but also individuals across the age continuum. This article proposes and examines the application of an integrative theoretical model across empirical evidence in the literature on ageism in psychology, medicine, social work, and sociology. The proposed Positive Education about Aging and Contact Experiences (PEACE) model focuses on 2 key contributing factors expected to reduce negative ageism: (a) education about aging including facts on aging along with positive older role models that dispel negative and inaccurate images of older adulthood; and (b) positive contact experiences with older adults that are individualized, provide or promote equal status, are cooperative, involve sharing of personal information, and are sanctioned within the setting. These 2 key contributing factors have the potential to be interconnected and work together to reduce negative stereotypes, aging anxiety, prejudice, and discrimination associated with older adults and aging. This model has implications for policies and programs that can improve the health and well-being of individuals, as well as expand the residential, educational, and career options of individuals across the age continuum.
NASA/Howard University Large Space Structures Institute
NASA Technical Reports Server (NTRS)
Broome, T. H., Jr.
1984-01-01
Basic research on the engineering behavior of large space structures is presented. Methods of structural analysis, control, and optimization of large flexible systems are examined. Topics of investigation include the Load Correction Method (LCM) modeling technique, stabilization of flexible bodies by feedback control, mathematical refinement of analysis equations, optimization of the design of structural components, deployment dynamics, and the use of microprocessors in attitude and shape control of large space structures. Information on key personnel, budgeting, support plans and conferences is included.
1983-08-01
o Environmental System Applications o Enviromental System Support and User Staff TABLE C-14l. KEY USER-SELECTED USAF ENVIRONMENTAL ISSUES. Importance...general analysis procedure. Please note that in this section the word "environment" includes both the natural and the cultural environment. Socio -economic...YOUR GROUP *(INCLUDES CULTURAL AND SOCIO -ECONOMIC SCIENCE) ~~.| ,. -* . ’ . *" . . . . " . " ".t " . -’ . . , " • - ". " . . ". - 3.7 ENVIRONMENTAL
A Variable Input-Output Model for Inflation, Growth, and Energy for the Korean Economy.
1983-12-01
and the sales price of cukput as determinan -s of the technical coefficients were suggested by Walras [Ref. 4] and many other eco.cmis.s. (Ref. 5] Arrow...34included in manufacturing and construction secter. The other industries include the social and government services. 32 Ii. * 1.’ *. - .-- :~ ~~\\ ~~ v...e3lectricity, government enterprise, and other social commercial industries. The rate of growth of the money suiply and interest ratqs on loans are the key
1978-07-24
will include an implicit air function that will perform the air planning and requesting associated with the various headquarters. The decision structure...air headquarters (The ATAF/TAA) will be included in the CIC to perform the implementation of the decisions /goals of the C21 elements, 1-4...realistic fashion. Once the AMPs have been formed, the operational process of launching, mission implementation etc. is no longer keyed to the decision cycle
Applying business management models in health care.
Trisolini, Michael G
2002-01-01
Most health care management training programmes and textbooks focus on only one or two models or conceptual frameworks, but the increasing complexity of health care organizations and their environments worldwide means that a broader perspective is needed. This paper reviews five management models developed for business organizations and analyses issues related to their application in health care. Three older, more 'traditional' models are first presented. These include the functional areas model, the tasks model and the roles model. Each is shown to provide a valuable perspective, but to have limitations if used in isolation. Two newer, more 'innovative' models are next discussed. These include total quality management (TQM) and reengineering. They have shown potential for enabling dramatic improvements in quality and cost, but have also been found to be more difficult to implement. A series of 'lessons learned' are presented to illustrate key success factors for applying them in health care organizations. In sum, each of the five models is shown to provide a useful perspective for health care management. Health care managers should gain experience and training with a broader set of business management models.
The secondary drying and the fate of organic solvents for spray dried dispersion drug product.
Hsieh, Daniel S; Yue, Hongfei; Nicholson, Sarah J; Roberts, Daniel; Schild, Richard; Gamble, John F; Lindrud, Mark
2015-05-01
To understand the mechanisms of secondary drying of spray-dried dispersion (SDD) drug product and establish a model to describe the fate of organic solvents in such a product. The experimental approach includes characterization of the SDD particles, drying studies of SDD using an integrated weighing balance and mass spectrometer, and the subsequent generation of the drying curve. The theoretical approach includes the establishment of a Fickian diffusion model. The kinetics of solvent removal during secondary drying from the lab scale to a bench scale follows Fickian diffusion model. Excellent agreement is obtained between the experimental data and the prediction from the modeling. The diffusion process is dependent upon temperature. The key to a successful scale up of the secondary drying is to control the drying temperature. The fate of primary solvents including methanol and acetone, and their potential impurity such as benzene can be described by the Fickian diffusion model. A mathematical relationship based upon the ratio of diffusion coefficient was established to predict the benzene concentration from the fate of the primary solvent during the secondary drying process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blair, N.; Dobos, S.; Janzou, S.
2013-08-01
The System Advisor Model (SAM) is a broad and robust set of models and frameworks for analyzing both system performance and system financing. It does this across a range of technologies dominated by solar technologies including photovoltaics (PV) and concentrated solar power (CSP). The U.S. Department of Energy (DOE) Solar Energy Technology Program requested the SAM development team to review the photovoltaic performance modeling with the development community and specifically, with the independent engineering community. The report summarizes the major effort for this technical review committee (TRC).
Final Report: System Reliability Model for Solid-State Lighting (SSL) Luminaires
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, J. Lynn
2017-05-31
The primary objectives of this project was to develop and validate reliability models and accelerated stress testing (AST) methodologies for predicting the lifetime of integrated SSL luminaires. This study examined the likely failure modes for SSL luminaires including abrupt failure, excessive lumen depreciation, unacceptable color shifts, and increased power consumption. Data on the relative distribution of these failure modes were acquired through extensive accelerated stress tests and combined with industry data and other source of information on LED lighting. This data was compiled and utilized to build models of the aging behavior of key luminaire optical and electrical components.
Stressed Oxidation Life Prediction for C/SiC Composites
NASA Technical Reports Server (NTRS)
Levine, Stanley R.
2004-01-01
The residual strength and life of C/SiC is dominated by carbon interface and fiber oxidation if seal coat and matrix cracks are open to allow oxygen ingress. Crack opening is determined by the combination of thermal, mechanical and thermal expansion mismatch induced stresses. When cracks are open, life can be predicted by simple oxidation based models with reaction controlled kinetics at low temperature, and by gas phase diffusion controlled kinetics at high temperatures. Key life governing variables in these models include temperature, stress, initial strength, oxygen partial pressure, and total pressure. These models are described in this paper.
Post-cracking characteristics of high performance fiber reinforced cementitious composites
NASA Astrophysics Data System (ADS)
Suwannakarn, Supat W.
The application of high performance fiber reinforced cement composites (HPFRCC) in structural systems depends primarily on the material's tensile response, which is a direct function of fiber and matrix characteristics, the bond between them, and the fiber content or volume fraction. The objective of this dissertation is to evaluate and model the post-cracking behavior of HPFRCC. In particular, it focused on the influential parameters controlling tensile behavior and the variability associated with them. The key parameters considered include: the stress and strain at first cracking, the stress and strain at maximum post-cracking, the shape of the stress-strain or stress-elongation response, the multiple cracking process, the shape of the resistance curve after crack localization, the energy associated with the multiple cracking process, and the stress versus crack opening response of a single crack. Both steel fibers and polymeric fibers, perceived to have the greatest potential for current commercial applications, are considered. The main variables covered include fiber type (Torex, Hooked, PVA, and Spectra) and fiber volume fraction (ranging from 0.75% to 2.0%). An extensive experimental program is carried out using direct tensile tests and stress-versus crack opening displacement tests on notched tensile prisms. The key experimental results were analysed and modeled using simple prediction equations which, combined with a composite mechanics approach, allowed for predicting schematic simplified stress-strain and stress-displacement response curves for use in structural modeling. The experimental data show that specimens reinforced with Torex fibers performs best, follows by Hooked and Spectra fibers, then PVA fibers. Significant variability in key parameters was observed througout suggesting that variability must be studied further. The new information obtained can be used as input for material models for finite element analysis and can provide greater confidence in using the HPFRC composites in structural applications. It also provides a good foundation to integrate these composites in conventional structural analysis and design.
Rademacher, Kate H; Solomon, Marsden; Brett, Tracey; Bratt, John H; Pascual, Claire; Njunguru, Jesse; Steiner, Markus J
2016-08-11
The levonorgestrel intrauterine system (LNG IUS) is one of the most effective forms of contraception and offers important non-contraceptive health benefits. However, it is not widely available in developing countries, largely due to the high price of existing products. Medicines360 plans to introduce its new, more affordable LNG IUS in Kenya. The public-sector transfer price will vary by volume between US$12 to US$16 per unit; for an order of 100,000 units, the public-sector transfer price will be approximately US$15 per unit. We calculated the direct service delivery cost per couple-years of protection (CYP) of various family planning methods. The model includes the costs of contraceptive commodities, consumable supplies, instruments per client visit, and direct labor for counseling, insertion, removal, and resupply, if required. The model does not include costs of demand creation or training. We conducted interviews with key opinion leaders in Kenya to identify considerations for scale-up of a new LNG IUS, including strategies to overcome barriers that have contributed to low uptake of the copper intrauterine device. The direct service delivery cost of Medicines360's LNG IUS per CYP compares favorably with other contraceptive methods commonly procured for public-sector distribution in Kenya. The cost is slightly lower than that of the 3-month contraceptive injectable, which is currently the most popular method in Kenya. Almost all key opinion leaders agreed that introducing a more affordable LNG IUS could increase demand and uptake of the method. They thought that women seeking the product's non-contraceptive health benefits would be a key market segment, and most agreed that the reduced menstrual bleeding associated with the method would likely be viewed as an advantage. The key opinion leaders indicated that myths and misconceptions among providers and clients about IUDs must be addressed, and that demand creation and provider training should be prioritized. Introducing a new, more affordable LNG IUS product could help expand choice for women in Kenya and increase use of long-acting reversible contraception. Further evaluation is needed to identify the full costs required for introduction-including the cost of demand creation-as well as research among potential and actual LNG IUS users, their partners, and health care providers to help inform scale-up of the method. © Rademacher et al.
Rademacher, Kate H; Solomon, Marsden; Brett, Tracey; Bratt, John H; Pascual, Claire; Njunguru, Jesse; Steiner, Markus J
2016-01-01
ABSTRACT Background: The levonorgestrel intrauterine system (LNG IUS) is one of the most effective forms of contraception and offers important non-contraceptive health benefits. However, it is not widely available in developing countries, largely due to the high price of existing products. Medicines360 plans to introduce its new, more affordable LNG IUS in Kenya. The public‐sector transfer price will vary by volume between US$12 to US$16 per unit; for an order of 100,000 units, the public-sector transfer price will be approximately US$15 per unit. Methods: We calculated the direct service delivery cost per couple-years of protection (CYP) of various family planning methods. The model includes the costs of contraceptive commodities, consumable supplies, instruments per client visit, and direct labor for counseling, insertion, removal, and resupply, if required. The model does not include costs of demand creation or training. We conducted interviews with key opinion leaders in Kenya to identify considerations for scale-up of a new LNG IUS, including strategies to overcome barriers that have contributed to low uptake of the copper intrauterine device. Results: The direct service delivery cost of Medicines360’s LNG IUS per CYP compares favorably with other contraceptive methods commonly procured for public-sector distribution in Kenya. The cost is slightly lower than that of the 3-month contraceptive injectable, which is currently the most popular method in Kenya. Almost all key opinion leaders agreed that introducing a more affordable LNG IUS could increase demand and uptake of the method. They thought that women seeking the product’s non-contraceptive health benefits would be a key market segment, and most agreed that the reduced menstrual bleeding associated with the method would likely be viewed as an advantage. The key opinion leaders indicated that myths and misconceptions among providers and clients about IUDs must be addressed, and that demand creation and provider training should be prioritized. Conclusion: Introducing a new, more affordable LNG IUS product could help expand choice for women in Kenya and increase use of long-acting reversible contraception. Further evaluation is needed to identify the full costs required for introduction—including the cost of demand creation—as well as research among potential and actual LNG IUS users, their partners, and health care providers to help inform scale-up of the method. PMID:27540128
Gray, Doug; Dawson, Kristin L; Grey, Todd C; McMahon, William M
2011-12-01
Utah is among a group of Western Mountain states in which suicide rates among youths are consistently high. The Utah Youth Suicide Study incorporated data from every government agency in Utah, utilizing a statewide Office of the Medical Examiner. A key finding was that 63% of suicide decedents had contact with the juvenile courts. The group developed a best practices model within the juvenile court system for early mental health intervention. Significant cost savings were demonstrated. The model includes screening at-risk teenagers with the Youth Outcome Questionnaire. Treatment includes both psychiatric care and in-home behavioral intervention. Services were effectively delivered on a large scale.
Behaviour change for better health: nutrition, hygiene and sustainability.
Newson, Rachel S; Lion, Rene; Crawford, Robert J; Curtis, Valerie; Elmadfa, Ibrahim; Feunekes, Gerda I J; Hicks, Cheryl; van Liere, Marti; Lowe, C Fergus; Meijer, Gert W; Pradeep, B V; Reddy, K Srinath; Sidibe, Myriam; Uauy, Ricardo
2013-01-01
As the global population grows there is a clear challenge to address the needs of consumers, without depleting natural resources and whilst helping to improve nutrition and hygiene to reduce the growth of noncommunicable diseases. For fast-moving consumer goods companies, like Unilever, this challenge provides a clear opportunity to reshape its business to a model that decouples growth from a negative impact on natural resources and health. However, this change in the business model also requires a change in consumer behaviour. In acknowledgement of this challenge Unilever organised a symposium entitled 'Behaviour Change for Better Health: Nutrition, Hygiene and Sustainability'. The intention was to discuss how consumers can be motivated to live a more healthy and sustainable lifestlye in today's environment. This article summarises the main conclusions of the presentations given at the symposium. Three main topics were discussed. In the first session, key experts discussed how demographic changes - particularly in developing and emerging countries - imply the need for consumer behaviour change. The second session focused on the use of behaviour change theory to design, implement and evaluate interventions, and the potential role of (new or reformulated) products as agents of change. In the final session, key issues were discussed regarding the use of collaborations to increase the impact and reach, and to decrease the costs, of interventions. The symposium highlighted a number of key scientific challenges for Unilever and other parties that have set nutrition, hygiene and sustainability as key priorities. The key challenges include: adapting behaviour change approaches to cultures in developing and emerging economies; designing evidence-based behaviour change interventions, in which products can play a key role as agents of change; and scaling up behaviour change activities in cost-effective ways, which requires a new mindset involving public-private partnerships.
Behaviour change for better health: nutrition, hygiene and sustainability
2013-01-01
As the global population grows there is a clear challenge to address the needs of consumers, without depleting natural resources and whilst helping to improve nutrition and hygiene to reduce the growth of noncommunicable diseases. For fast-moving consumer goods companies, like Unilever, this challenge provides a clear opportunity to reshape its business to a model that decouples growth from a negative impact on natural resources and health. However, this change in the business model also requires a change in consumer behaviour. In acknowledgement of this challenge Unilever organised a symposium entitled ‘Behaviour Change for Better Health: Nutrition, Hygiene and Sustainability’. The intention was to discuss how consumers can be motivated to live a more healthy and sustainable lifestlye in today’s environment. This article summarises the main conclusions of the presentations given at the symposium. Three main topics were discussed. In the first session, key experts discussed how demographic changes – particularly in developing and emerging countries – imply the need for consumer behaviour change. The second session focused on the use of behaviour change theory to design, implement and evaluate interventions, and the potential role of (new or reformulated) products as agents of change. In the final session, key issues were discussed regarding the use of collaborations to increase the impact and reach, and to decrease the costs, of interventions. The symposium highlighted a number of key scientific challenges for Unilever and other parties that have set nutrition, hygiene and sustainability as key priorities. The key challenges include: adapting behaviour change approaches to cultures in developing and emerging economies; designing evidence-based behaviour change interventions, in which products can play a key role as agents of change; and scaling up behaviour change activities in cost-effective ways, which requires a new mindset involving public–private partnerships. PMID:23530770
International Space Station Passive Thermal Control System Analysis, Top Ten Lessons-Learned
NASA Technical Reports Server (NTRS)
Iovine, John
2011-01-01
The International Space Station (ISS) has been on-orbit for over 10 years, and there have been numerous technical challenges along the way from design to assembly to on-orbit anomalies and repairs. The Passive Thermal Control System (PTCS) management team has been a key player in successfully dealing with these challenges. The PTCS team performs thermal analysis in support of design and verification, launch and assembly constraints, integration, sustaining engineering, failure response, and model validation. This analysis is a significant body of work and provides a unique opportunity to compile a wealth of real world engineering and analysis knowledge and the corresponding lessons-learned. The analysis lessons encompass the full life cycle of flight hardware from design to on-orbit performance and sustaining engineering. These lessons can provide significant insight for new projects and programs. Key areas to be presented include thermal model fidelity, verification methods, analysis uncertainty, and operations support.
Prefrontal cortical BDNF: A regulatory key in cocaine- and food-reinforced behaviors
Pitts, Elizabeth G.; Taylor, Jane R.; Gourley, Shannon L.
2016-01-01
Brain-derived neurotrophic factor (BDNF) affects synaptic plasticity and neural structure and plays key roles in learning and memory processes. Recent evidence also points to important, yet complex, roles for BDNF in rodent models of cocaine abuse and addiction. Here we examine the role of prefrontal cortical (PFC) BDNF in reward-related decision making and behavioral sensitivity to, and responding for, cocaine. We focus on BDNF within the medial and orbital PFC, its regulation by cocaine during early postnatal development and in adulthood, and how BDNF in turn influences responding for drug reinforcement, including in reinstatement models. When relevant, we draw comparisons and contrasts with experiments using natural (food) reinforcers. We also summarize findings supporting, or refuting, the possibility that BDNF in the medial and orbital PFC regulate the development and maintenance of stimulus-response habits. Further investigation could assist in the development of novel treatment approaches for cocaine use disorders. PMID:26923993
Delivering proportionate governance in the era of eHealth
Sethi, Nayha; Laurie, Graeme T.
2013-01-01
This article advances a principled proportionate governance model (PPGM) that overcomes key impediments to using health records for research. Despite increasing initiatives for maximising benefits of data linkage, significant challenges remain, including a culture of caution around data sharing and linkage, failure to make use of flexibilities within the law and failure to incorporate intelligent iterative design. The article identifies key issues for consideration and posits a flexible and accessible governance model that provides a robust and efficient means of paying due regard to both privacy and the public interests in research. We argue that proportionate governance based on clear guiding principles accurately gauges risks associated with data uses and assigns safeguards accordingly. This requires a clear articulation of roles and responsibilities at all levels of decision-making and effective training for researchers and data custodians. Accordingly, the PPGM encourages and supports defensible judgements about data linkage in the public interest. PMID:24634569
Stochastic Time Models of Syllable Structure
Shaw, Jason A.; Gafos, Adamantios I.
2015-01-01
Drawing on phonology research within the generative linguistics tradition, stochastic methods, and notions from complex systems, we develop a modelling paradigm linking phonological structure, expressed in terms of syllables, to speech movement data acquired with 3D electromagnetic articulography and X-ray microbeam methods. The essential variable in the models is syllable structure. When mapped to discrete coordination topologies, syllabic organization imposes systematic patterns of variability on the temporal dynamics of speech articulation. We simulated these dynamics under different syllabic parses and evaluated simulations against experimental data from Arabic and English, two languages claimed to parse similar strings of segments into different syllabic structures. Model simulations replicated several key experimental results, including the fallibility of past phonetic heuristics for syllable structure, and exposed the range of conditions under which such heuristics remain valid. More importantly, the modelling approach consistently diagnosed syllable structure proving resilient to multiple sources of variability in experimental data including measurement variability, speaker variability, and contextual variability. Prospects for extensions of our modelling paradigm to acoustic data are also discussed. PMID:25996153
Nanoscale content-addressable memory
NASA Technical Reports Server (NTRS)
Davis, Bryan (Inventor); Principe, Jose C. (Inventor); Fortes, Jose (Inventor)
2009-01-01
A combined content addressable memory device and memory interface is provided. The combined device and interface includes one or more one molecular wire crossbar memories having spaced-apart key nanowires, spaced-apart value nanowires adjacent to the key nanowires, and configurable switches between the key nanowires and the value nanowires. The combination further includes a key microwire-nanowire grid (key MNG) electrically connected to the spaced-apart key nanowires, and a value microwire-nanowire grid (value MNG) electrically connected to the spaced-apart value nanowires. A key or value MNGs selects multiple nanowires for a given key or value.
A design space exploration for control of Critical Quality Attributes of mAb.
Bhatia, Hemlata; Read, Erik; Agarabi, Cyrus; Brorson, Kurt; Lute, Scott; Yoon, Seongkyu
2016-10-15
A unique "design space (DSp) exploration strategy," defined as a function of four key scenarios, was successfully integrated and validated to enhance the DSp building exercise, by increasing the accuracy of analyses and interpretation of processed data. The four key scenarios, defining the strategy, were based on cumulative analyses of individual models developed for the Critical Quality Attributes (23 Glycan Profiles) considered for the study. The analyses of the CQA estimates and model performances were interpreted as (1) Inside Specification/Significant Model (2) Inside Specification/Non-significant Model (3) Outside Specification/Significant Model (4) Outside Specification/Non-significant Model. Each scenario was defined and illustrated through individual models of CQA aligning the description. The R(2), Q(2), Model Validity and Model Reproducibility estimates of G2, G2FaGbGN, G0 and G2FaG2, respectively, signified the four scenarios stated above. Through further optimizations, including the estimation of Edge of Failure and Set Point Analysis, wider and accurate DSps were created for each scenario, establishing critical functional relationship between Critical Process Parameters (CPPs) and Critical Quality Attributes (CQAs). A DSp provides the optimal region for systematic evaluation, mechanistic understanding and refining of a QbD approach. DSp exploration strategy will aid the critical process of consistently and reproducibly achieving predefined quality of a product throughout its lifecycle. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Cowles, G. W.; Hakim, A.; Churchill, J. H.
2016-02-01
Tidal in-stream energy conversion (TISEC) facilities provide a highly predictable and dependable source of energy. Given the economic and social incentives to migrate towards renewable energy sources there has been tremendous interest in the technology. Key challenges to the design process stem from the wide range of problem scales extending from device to array. In the present approach we apply a multi-model approach to bridge the scales of interest and select optimal device geometries to estimate the technical resource for several realistic sites in the coastal waters of Massachusetts, USA. The approach links two computational models. To establish flow conditions at site scales ( 10m), a barotropic setup of the unstructured grid ocean model FVCOM is employed. The model is validated using shipboard and fixed ADCP as well as pressure data. For device scale, the structured multiblock flow solver SUmb is selected. A large ensemble of simulations of 2D cross-flow tidal turbines is used to construct a surrogate design model. The surrogate model is then queried using velocity profiles extracted from the tidal model to determine the optimal geometry for the conditions at each site. After device selection, the annual technical yield of the array is evaluated with FVCOM using a linear momentum actuator disk approach to model the turbines. Results for several key Massachusetts sites including comparison with theoretical approaches will be presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacobs, A. M.; Zingale, M.; Nonaka, A.
2016-08-10
The dynamics of helium shell convection driven by nuclear burning establish the conditions for runaway in the sub-Chandrasekhar-mass, double-detonation model for SNe Ia, as well as for a variety of other explosive phenomena. We explore these convection dynamics for a range of white dwarf core and helium shell masses in three dimensions using the low Mach number hydrodynamics code MAESTRO. We present calculations of the bulk properties of this evolution, including time-series evolution of global diagnostics, lateral averages of the 3D state, and the global 3D state. We find a variety of outcomes, including quasi-equilibrium, localized runaway, and convective runaway.more » Our results suggest that the double-detonation progenitor model is promising and that 3D dynamic convection plays a key role.« less
Peer-to-peer communication, cancer prevention, and the internet
Ancker, Jessica S.; Carpenter, Kristen M.; Greene, Paul; Hoffmann, Randi; Kukafka, Rita; Marlow, Laura A.V.; Prigerson, Holly G.; Quillin, John M.
2013-01-01
Online communication among patients and consumers through support groups, discussion boards, and knowledge resources is becoming more common. In this paper, we discuss key methods through which such web-based peer-to-peer communication may affect health promotion and disease prevention behavior (exchanges of information, emotional and instrumental support, and establishment of group norms and models). We also discuss several theoretical models for studying online peer communication, including social theory, health communication models, and health behavior models. Although online peer communication about health and disease is very common, research evaluating effects on health behaviors, mediators, and outcomes is still relatively sparse. We suggest that future research in this field should include formative evaluation and studies of effects on mediators of behavior change, behaviors, and outcomes. It will also be important to examine spontaneously emerging peer communication efforts to see how they can be integrated with theory-based efforts initiated by researchers. PMID:19449267
Jacobs, A. M.; Zingale, M.; Nonaka, A.; ...
2016-08-10
The dynamics of helium shell convection driven by nuclear burning establish the conditions for runaway in the sub-Chandrasekhar-mass, double-detonation model for SNe Ia, as well as for a variety of other explosive phenomena. In this paper, we explore these convection dynamics for a range of white dwarf core and helium shell masses in three dimensions using the low Mach number hydrodynamics code MAESTRO. We present calculations of the bulk properties of this evolution, including time-series evolution of global diagnostics, lateral averages of the 3D state, and the global 3D state. We find a variety of outcomes, including quasi-equilibrium, localized runaway,more » and convective runaway. Finally, our results suggest that the double-detonation progenitor model is promising and that 3D dynamic convection plays a key role.« less
NASA Astrophysics Data System (ADS)
Peng, Xiang; Zhang, Peng; Cai, Lilong
In this paper, we present a virtual-optical based information security system model with the aid of public-key-infrastructure (PKI) techniques. The proposed model employs a hybrid architecture in which our previously published encryption algorithm based on virtual-optics imaging methodology (VOIM) can be used to encipher and decipher data while an asymmetric algorithm, for example RSA, is applied for enciphering and deciphering the session key(s). For an asymmetric system, given an encryption key, it is computationally infeasible to determine the decryption key and vice versa. The whole information security model is run under the framework of PKI, which is on basis of public-key cryptography and digital signatures. This PKI-based VOIM security approach has additional features like confidentiality, authentication, and integrity for the purpose of data encryption under the environment of network.
3D Reconstruction and Approximation of Vegetation Geometry for Modeling of Within-canopy Flows
NASA Astrophysics Data System (ADS)
Henderson, S. M.; Lynn, K.; Lienard, J.; Strigul, N.; Mullarney, J. C.; Norris, B. K.; Bryan, K. R.
2016-02-01
Aquatic vegetation can shelter coastlines from waves and currents, sometimes resulting in accretion of fine sediments. We developed a photogrammetric technique for estimating the key geometric vegetation parameters that are required for modeling of within-canopy flows. Accurate estimates of vegetation geometry and density are essential to refine hydrodynamic models, but accurate, convenient, and time-efficient methodologies for measuring complex canopy geometries have been lacking. The novel approach presented here builds on recent progress in photogrammetry and computer vision. We analyzed the geometry of aerial mangrove roots, called pneumatophores, in Vietnam's Mekong River Delta. Although comparatively thin, pneumatophores are more numerous than mangrove trunks, and thus influence near bed flow and sediment transport. Quadrats (1 m2) were placed at low tide among pneumatophores. Roots were counted and measured for height and diameter. Photos were taken from multiple angles around each quadrat. Relative camera locations and orientations were estimated from key features identified in multiple images using open-source software (VisualSfM). Next, a dense 3D point cloud was produced. Finally, algorithms were developed for automated estimation of pneumatophore geometry from the 3D point cloud. We found good agreement between hand-measured and photogrammetric estimates of key geometric parameters, including mean stem diameter, total number of stems, and frontal area density. These methods can reduce time spent measuring in the field, thereby enabling future studies to refine models of water flows and sediment transport within heterogenous vegetation canopies.
Computational neurorehabilitation: modeling plasticity and learning to predict recovery.
Reinkensmeyer, David J; Burdet, Etienne; Casadio, Maura; Krakauer, John W; Kwakkel, Gert; Lang, Catherine E; Swinnen, Stephan P; Ward, Nick S; Schweighofer, Nicolas
2016-04-30
Despite progress in using computational approaches to inform medicine and neuroscience in the last 30 years, there have been few attempts to model the mechanisms underlying sensorimotor rehabilitation. We argue that a fundamental understanding of neurologic recovery, and as a result accurate predictions at the individual level, will be facilitated by developing computational models of the salient neural processes, including plasticity and learning systems of the brain, and integrating them into a context specific to rehabilitation. Here, we therefore discuss Computational Neurorehabilitation, a newly emerging field aimed at modeling plasticity and motor learning to understand and improve movement recovery of individuals with neurologic impairment. We first explain how the emergence of robotics and wearable sensors for rehabilitation is providing data that make development and testing of such models increasingly feasible. We then review key aspects of plasticity and motor learning that such models will incorporate. We proceed by discussing how computational neurorehabilitation models relate to the current benchmark in rehabilitation modeling - regression-based, prognostic modeling. We then critically discuss the first computational neurorehabilitation models, which have primarily focused on modeling rehabilitation of the upper extremity after stroke, and show how even simple models have produced novel ideas for future investigation. Finally, we conclude with key directions for future research, anticipating that soon we will see the emergence of mechanistic models of motor recovery that are informed by clinical imaging results and driven by the actual movement content of rehabilitation therapy as well as wearable sensor-based records of daily activity.
Colvin, Christopher J.; Konopka, Sarah; Chalker, John C.; Jonas, Edna; Albertini, Jennifer; Amzel, Anouk; Fogg, Karen
2014-01-01
Background Despite global progress in the fight to reduce maternal mortality, HIV-related maternal deaths remain persistently high, particularly in much of Africa. Lifelong antiretroviral therapy (ART) appears to be the most effective way to prevent these deaths, but the rates of three key outcomes—ART initiation, retention in care, and long-term ART adherence—remain low. This systematic review synthesized evidence on health systems factors affecting these outcomes in pregnant and postpartum women living with HIV. Methods Searches were conducted for studies addressing the population of interest (HIV-infected pregnant and postpartum women), the intervention of interest (ART), and the outcomes of interest (initiation, adherence, and retention). Quantitative and qualitative studies published in English since January 2008 were included. A four-stage narrative synthesis design was used to analyze findings. Review findings from 42 included studies were categorized according to five themes: 1) models of care, 2) service delivery, 3) resource constraints and governance challenges, 4) patient-health system engagement, and 5) maternal ART interventions. Results Low prioritization of maternal ART and persistent dropout along the maternal ART cascade were key findings. Service delivery barriers included poor communication and coordination among health system actors, poor clinical practices, and gaps in provider training. The few studies that assessed maternal ART interventions demonstrated the importance of multi-pronged, multi-leveled interventions. Conclusions There has been a lack of emphasis on the experiences, needs and vulnerabilities particular to HIV-infected pregnant and postpartum women. Supporting these women to successfully traverse the maternal ART cascade requires carefully designed and targeted interventions throughout the steps. Careful design of integrated service delivery models is of critical importance in this effort. Key knowledge gaps and research priorities were also identified, including definitions and indicators of adherence rates, and the importance of cumulative measures of dropout along the maternal ART cascade. PMID:25303241
Per Aspera ad Astra: Through Complex Population Modeling to Predictive Theory.
Topping, Christopher J; Alrøe, Hugo Fjelsted; Farrell, Katharine N; Grimm, Volker
2015-11-01
Population models in ecology are often not good at predictions, even if they are complex and seem to be realistic enough. The reason for this might be that Occam's razor, which is key for minimal models exploring ideas and concepts, has been too uncritically adopted for more realistic models of systems. This can tie models too closely to certain situations, thereby preventing them from predicting the response to new conditions. We therefore advocate a new kind of parsimony to improve the application of Occam's razor. This new parsimony balances two contrasting strategies for avoiding errors in modeling: avoiding inclusion of nonessential factors (false inclusions) and avoiding exclusion of sometimes-important factors (false exclusions). It involves a synthesis of traditional modeling and analysis, used to describe the essentials of mechanistic relationships, with elements that are included in a model because they have been reported to be or can arguably be assumed to be important under certain conditions. The resulting models should be able to reflect how the internal organization of populations change and thereby generate representations of the novel behavior necessary for complex predictions, including regime shifts.
Vertex Models of Epithelial Morphogenesis
Fletcher, Alexander G.; Osterfield, Miriam; Baker, Ruth E.; Shvartsman, Stanislav Y.
2014-01-01
The dynamic behavior of epithelial cell sheets plays a central role during numerous developmental processes. Genetic and imaging studies of epithelial morphogenesis in a wide range of organisms have led to increasingly detailed mechanisms of cell sheet dynamics. Computational models offer a useful means by which to investigate and test these mechanisms, and have played a key role in the study of cell-cell interactions. A variety of modeling approaches can be used to simulate the balance of forces within an epithelial sheet. Vertex models are a class of such models that consider cells as individual objects, approximated by two-dimensional polygons representing cellular interfaces, in which each vertex moves in response to forces due to growth, interfacial tension, and pressure within each cell. Vertex models are used to study cellular processes within epithelia, including cell motility, adhesion, mitosis, and delamination. This review summarizes how vertex models have been used to provide insight into developmental processes and highlights current challenges in this area, including progressing these models from two to three dimensions and developing new tools for model validation. PMID:24896108
A Reduced Order Model for Whole-Chip Thermal Analysis of Microfluidic Lab-on-a-Chip Systems
Wang, Yi; Song, Hongjun; Pant, Kapil
2013-01-01
This paper presents a Krylov subspace projection-based Reduced Order Model (ROM) for whole microfluidic chip thermal analysis, including conjugate heat transfer. Two key steps in the reduced order modeling procedure are described in detail, including (1) the acquisition of a 3D full-scale computational model in the state-space form to capture the dynamic thermal behavior of the entire microfluidic chip; and (2) the model order reduction using the Block Arnoldi algorithm to markedly lower the dimension of the full-scale model. Case studies using practically relevant thermal microfluidic chip are undertaken to establish the capability and to evaluate the computational performance of the reduced order modeling technique. The ROM is compared against the full-scale model and exhibits good agreement in spatiotemporal thermal profiles (<0.5% relative error in pertinent time scales) and over three orders-of-magnitude acceleration in computational speed. The salient model reusability and real-time simulation capability renders it amenable for operational optimization and in-line thermal control and management of microfluidic systems and devices. PMID:24443647
Rose, Susannah L; Krzyzanowska, Monika K; Joffe, Steven
2010-03-10
PURPOSE To test the hypothesis that authors who play key scientific roles in oncology clinical trials, and who therefore have increased influence over the design, analysis, interpretation or reporting of trials, are more likely than those who do not play such roles to have financial ties to industry. METHODS Data were abstracted from all trials (n = 235) of drugs or biologic agents published in the Journal of Clinical Oncology between January 1, 2006 and June 30, 2007. Article-level data included sponsorship, age group (adult v pediatric), phase, single versus multicenter, country (United States v other), and number of authors. Author-level data (n = 2,927) included financial ties (eg, employment, consulting) and performance of key scientific roles (ie, conception/design, analysis/interpretation, or manuscript writing). Associations between performance of key roles and financial ties, adjusting for article-level covariates, were examined using generalized linear mixed models. Results One thousand eight hundred eighty-one authors (64%) reported performing at least one key role, and 842 authors (29%) reported at least one financial tie. Authors who reported performing a key role were more likely than other authors to report financial ties to industry (adjusted odds ratio [OR], 4.3; 99% CI, 3.0 to 6.0; P < .0001). The association was stronger among trials with, compared with those without, industry funding (OR, 5.0 [99% CI, 3.4 to 7.5] v OR, 2.5 [99% CI, 1.3 to 4.8]), but was present regardless of sponsorship. CONCLUSION Authors who perform key roles in the conception and design, analysis, and interpretation, or reporting of oncology clinical trials are more likely than authors who do not perform such roles to have financial ties to industry.
Rose, Susannah L.; Krzyzanowska, Monika K.; Joffe, Steven
2010-01-01
Purpose To test the hypothesis that authors who play key scientific roles in oncology clinical trials, and who therefore have increased influence over the design, analysis, interpretation or reporting of trials, are more likely than those who do not play such roles to have financial ties to industry. Methods Data were abstracted from all trials (n = 235) of drugs or biologic agents published in the Journal of Clinical Oncology between January 1, 2006 and June 30, 2007. Article-level data included sponsorship, age group (adult v pediatric), phase, single versus multicenter, country (United States v other), and number of authors. Author-level data (n = 2,927) included financial ties (eg, employment, consulting) and performance of key scientific roles (ie, conception/design, analysis/interpretation, or manuscript writing). Associations between performance of key roles and financial ties, adjusting for article-level covariates, were examined using generalized linear mixed models. Results One thousand eight hundred eighty-one authors (64%) reported performing at least one key role, and 842 authors (29%) reported at least one financial tie. Authors who reported performing a key role were more likely than other authors to report financial ties to industry (adjusted odds ratio [OR], 4.3; 99% CI, 3.0 to 6.0; P < .0001). The association was stronger among trials with, compared with those without, industry funding (OR, 5.0 [99% CI, 3.4 to 7.5] v OR, 2.5 [99% CI, 1.3 to 4.8]), but was present regardless of sponsorship. Conclusion Authors who perform key roles in the conception and design, analysis, and interpretation, or reporting of oncology clinical trials are more likely than authors who do not perform such roles to have financial ties to industry. PMID:20065190
Felton, Adam; Ranius, Thomas; Roberge, Jean-Michel; Öhman, Karin; Lämås, Tomas; Hynynen, Jari; Juutinen, Artti; Mönkkönen, Mikko; Nilsson, Urban; Lundmark, Tomas; Nordin, Annika
2017-07-15
A variety of modeling approaches can be used to project the future development of forest systems, and help to assess the implications of different management alternatives for biodiversity and ecosystem services. This diversity of approaches does however present both an opportunity and an obstacle for those trying to decide which modeling technique to apply, and interpreting the management implications of model output. Furthermore, the breadth of issues relevant to addressing key questions related to forest ecology, conservation biology, silviculture, economics, requires insights stemming from a number of distinct scientific disciplines. As forest planners, conservation ecologists, ecological economists and silviculturalists, experienced with modeling trade-offs and synergies between biodiversity and wood biomass production, we identified fifteen key considerations relevant to assessing the pros and cons of alternative modeling approaches. Specifically we identified key considerations linked to study question formulation, modeling forest dynamics, forest processes, study landscapes, spatial and temporal aspects, and the key response metrics - biodiversity and wood biomass production, as well as dealing with trade-offs and uncertainties. We also provide illustrative examples from the modeling literature stemming from the key considerations assessed. We use our findings to reiterate the need for explicitly addressing and conveying the limitations and uncertainties of any modeling approach taken, and the need for interdisciplinary research efforts when addressing the conservation of biodiversity and sustainable use of environmental resources. Copyright © 2017 Elsevier Ltd. All rights reserved.
Rehm, Jürgen
2008-06-01
In summarizing the key themes and results of the second meeting of the German Addiction Research Network 'Understanding Addiction: Mediators and Moderators of Behaviour Change Process', the following concrete steps forward were laid out to improve knowledge. The steps included pleas to (1) redefine substance abuse disorders, especially redefine the concept of abuse and harmful use; (2) increase the use of longitudinal and life-course studies with more adequate statistical methods such as latent growth modelling; (3) empirically test more specific and theoretically derived common factors and mechanisms of behavioural change processes; (4) better exploit cross-regional and cross-cultural differences.Funding agencies are urged to support these developments by specifically supporting interdisciplinary research along the lines specified above. This may include improved forms of international funding of groups of researchers from different countries, where each national group conducts a specific part of an integrated proposal. 2008 John Wiley & Sons, Ltd
The quality of mental disorder information websites: a review.
Reavley, Nicola J; Jorm, Anthony F
2011-11-01
This paper reviews studies assessing the quality of websites providing information about mental disorders. The review included 31 articles identified by searching research databases in March 2010. Topics covered included affective disorders, anxiety disorders, eating disorders, substance use disorders and schizophrenia/psychosis. The largest number of articles (13) reported studies assessing affective disorder information quality. Methodologies varied in site selection and rating methods, with some of limited validity. Most concluded that quality was poor, although quality of affective disorder sites may be improving. There is currently very little understanding of the influence of website quality on user behaviour. Future quality assessments might use the criteria informed by key behaviour change theories. A possible approach to research on websites and user behaviour might be to develop an evaluation framework incorporating strategies from behaviour change models, key mental health literacy elements and health outcomes relevant to mental health promotion. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
User manual of the CATSS system (version 1.0) communication analysis tool for space station
NASA Technical Reports Server (NTRS)
Tsang, C. S.; Su, Y. T.; Lindsey, W. C.
1983-01-01
The Communication Analysis Tool for the Space Station (CATSS) is a FORTRAN language software package capable of predicting the communications links performance for the Space Station (SS) communication and tracking (C & T) system. An interactive software package was currently developed to run on the DEC/VAX computers. The CATSS models and evaluates the various C & T links of the SS, which includes the modulation schemes such as Binary-Phase-Shift-Keying (BPSK), BPSK with Direct Sequence Spread Spectrum (PN/BPSK), and M-ary Frequency-Shift-Keying with Frequency Hopping (FH/MFSK). Optical Space Communication link is also included. CATSS is a C & T system engineering tool used to predict and analyze the system performance for different link environment. Identification of system weaknesses is achieved through evaluation of performance with varying system parameters. System tradeoff for different values of system parameters are made based on the performance prediction.
The Main Belt Comets and ice in the Solar System
NASA Astrophysics Data System (ADS)
Snodgrass, Colin; Agarwal, Jessica; Combi, Michael; Fitzsimmons, Alan; Guilbert-Lepoutre, Aurelie; Hsieh, Henry H.; Hui, Man-To; Jehin, Emmanuel; Kelley, Michael S. P.; Knight, Matthew M.; Opitom, Cyrielle; Orosei, Roberto; de Val-Borro, Miguel; Yang, Bin
2017-11-01
We review the evidence for buried ice in the asteroid belt; specifically the questions around the so-called Main Belt Comets (MBCs). We summarise the evidence for water throughout the Solar System, and describe the various methods for detecting it, including remote sensing from ultraviolet to radio wavelengths. We review progress in the first decade of study of MBCs, including observations, modelling of ice survival, and discussion on their origins. We then look at which methods will likely be most effective for further progress, including the key challenge of direct detection of (escaping) water in these bodies.
Roles and responsibilities of the nursing scholar.
Conard, Patricia L; Pape, Tess Theresa
2014-01-01
Scholarship is an important facet of the nursing profession. There are many components, virtues, and roles and responsibilities of a nursing scholar practicing in today's ever-changing health care environment. Scholarship was redefined by Boyer to include scholarly activities in addition to research. Boyer's Model of Scholarship includes four interrelated and overlapping domains of discovery, integration, application, and teaching. Each domain is explained with examples for the pediatric nurse scholar, which includes roles in academia as well as in the practice setting. Pediatric nurses are key to scholarship in nursing because they work to improve the care of children.
Laboratory verification respiratory measurements. IMBLMS phase B.4, appendix C, section 13
NASA Technical Reports Server (NTRS)
1970-01-01
The B-4 IMBLMS preliminary design of the respiratory measurement element includes certain techniques and apparatus which are quite different from those included in the B-3 version previously delivered to NASA-MSC. A working model was constructed in the laboratory to prove the feasibility of certain key features. The most critical of these is the capability of switching sample gases into the mass spectrometer from two different sources during a single breath cycle. Results proved the feasibility of all of the concepts which were tested, and certain refinements and improvements were included, as well.
A Nationwide Survey of Patient Centered Medical Home Demonstration Projects
Bitton, Asaf; Martin, Carina
2010-01-01
Background The patient centered medical home has received considerable attention as a potential way to improve primary care quality and limit cost growth. Little information exists that systematically compares PCMH pilot projects across the country. Design Cross-sectional key-informant interviews. Participants Leaders from existing PCMH demonstration projects with external payment reform. Measurements We used a semi-structured interview tool with the following domains: project history, organization and participants, practice requirements and selection process, medical home recognition, payment structure, practice transformation, and evaluation design. Results A total of 26 demonstrations in 18 states were interviewed. Current demonstrations include over 14,000 physicians caring for nearly 5 million patients. A majority of demonstrations are single payer, and most utilize a three component payment model (traditional fee for service, per person per month fixed payments, and bonus performance payments). The median incremental revenue per physician per year was $22,834 (range $720 to $91,146). Two major practice transformation models were identified—consultative and implementation of the chronic care model. A majority of demonstrations did not have well-developed evaluation plans. Conclusion Current PCMH demonstration projects with external payment reform include large numbers of patients and physicians as well as a wide spectrum of implementation models. Key questions exist around the adequacy of current payment mechanisms and evaluation plans as public and policy interest in the PCMH model grows. Electronic supplementary material The online version of this article (doi:10.1007/s11606-010-1262-8) contains supplementary material, which is available to authorized users. PMID:20467907
Javitt, Daniel C.
2012-01-01
Over the last 20 years, glutamatergic models of schizophrenia have become increasingly accepted as etiopathological models of schizophrenia, based on the observation that phencyclidine (PCP) induces a schizophrenia-like psychosis by blocking neurotransmission at N-methyl-D-aspartate (NMDA)-type glutamate receptors. This article reviews developments in two key predictions of the model: first, that neurocognitive deficits in schizophrenia should follow the pattern of deficit predicted based on underlying NMDAR dysfunction and, second, that agents that stimulate NMDAR function should be therapeutically beneficial. As opposed to dopamine receptors, NMDAR are widely distributed throughout the brain, including subcortical as well as cortical brain regions, and sensory as well as association cortex. Studies over the past 20 years have documented severe sensory dysfunction in schizophrenia using behavioral, neurophysiological, and functional brain imaging approaches, including impaired generation of key sensory-related potentials such as mismatch negativity and visual P1 potentials. Similar deficits are observed in humans following administration of NMDAR antagonists such as ketamine in either humans or animal models. Sensory dysfunction, in turn, predicts impairments in higher order cognitive functions such as auditory or visual emotion recognition. Treatment studies have been performed with compounds acting directly at the NMDAR glycine site, such as glycine, D-serine, or D-cycloserine, and, more recently, with high-affinity glycine transport inhibitors such as RG1678 (Roche). More limited studies have been performed with compounds targeting the redox site. Overall, these compounds have been found to induce significant beneficial effects on persistent symptoms, suggesting novel approaches for treatment and prevention of schizophrenia. PMID:22987851
NASA Astrophysics Data System (ADS)
Xu, R.; Tian, H.; Pan, S.; Yang, J.; Lu, C.; Zhang, B.
2016-12-01
Human activities have caused significant perturbations of the nitrogen (N) cycle, resulting in about 21% increase of atmospheric N2O concentration since the pre-industrial era. This large increase is mainly caused by intensive agricultural activities including the application of nitrogen fertilizer and the expansion of leguminous crops. Substantial efforts have been made to quantify the global and regional N2O emission from agricultural soils in the last several decades using a wide variety of approaches, such as ground-based observation, atmospheric inversion, and process-based model. However, large uncertainties exist in those estimates as well as methods themselves. In this study, we used a coupled biogeochemical model (DLEM) to estimate magnitude, spatial, and temporal patterns of N2O emissions from global croplands in the past five decades (1961-2012). To estimate uncertainties associated with input data and model parameters, we have implemented a number of simulation experiments with DLEM, accounting for key parameter values that affect calculation of N2O fluxes (i.e., maximum nitrification and denitrification rates, N fixation rate, and the adsorption coefficient for soil ammonium and nitrate), different sets of input data including climate, land management practices (i.e., nitrogen fertilizer types, application rates and timings, with/without irrigation), N deposition, and land use and land cover change. This work provides a robust estimate of global N2O emissions from agricultural soils as well as identifies key gaps and limitations in the existing model and data that need to be investigated in the future.
Peterson, Lauren; Comfort, Alison; Hatt, Laurel; van Bastelaer, Thierry
2018-04-15
As a growing number of low- and middle-income countries commit to achieving universal health coverage, one key challenge is how to extend coverage to informal sector workers. Micro health insurance (MHI) provides a potential model to finance health services for this population. This study presents lessons from a pilot study of a mandatory MHI plan offered by a private insurance company and distributed through a microfinance bank to urban, informal sector workers in Lagos, Nigeria. Study methods included a survey of microfinance clients, key informant interviews, and a review of administrative records. Demographic, health care seeking, and willingness-to-pay data suggested that microfinance clients, particularly women, could benefit from a comprehensive MHI plan that improved access to health care and reduced out-of-pocket spending on health services. However, administrative data revealed declining enrollment, and key informant interviews further suggested low use of the health insurance plan. Key implementation challenges, including changes to mandatory enrollment requirements, insufficient client education and marketing, misaligned incentives, and weak back-office systems, undermined enrollment and use of the plan. Mandatory MHI plans, intended to mitigate adverse selection and facilitate private insurers' entry into new markets, present challenges for covering informal sector workers, including when distributed through agents such as a microfinance bank. Properly aligning the incentives of the insurer and the agent are critical to effectively distribute and service insurance. Further, an urban environment presents unique challenges for distributing MHI, addressing client perceptions of health insurance, and meeting their health care needs. Copyright © 2018 John Wiley & Sons, Ltd.
Orthognathic model surgery with LEGO key-spacer.
Tsang, Alfred Chee-Ching; Lee, Alfred Siu Hong; Li, Wai Keung
2013-12-01
A new technique of model surgery using LEGO plates as key-spacers is described. This technique requires less time to set up compared with the conventional plaster model method. It also retains the preoperative setup with the same set of models. Movement of the segments can be measured and examined in detail with LEGO key-spacers. Copyright © 2013 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.
A simple, semi-prescriptive self-assessment model for TQM.
Warwood, Stephen; Antony, Jiju
2003-01-01
This article presents a simple, semi-prescriptive self-assessment model for use in industry as part of a continuous improvement program such as Total Quality Management (TQM). The process by which the model was constructed started with a review of the available literature in order to research TQM success factors. Next, postal surveys were conducted by sending questionnaires to the winning organisations of the Baldrige and European Quality Awards and to a preselected group of enterprising UK organisations. From the analysis of this data, the self-assessment model was constructed to help organisations in their quest for excellence. This work confirmed the findings from the literature, that there are key factors that contribute to the successful implementation of TQM and these have different levels of importance. These key factors, in order of importance, are: effective leadership, the impact of other quality-related programs, measurement systems, organisational culture, education and training, the use of teams, efficient communications, active empowerment of the workforce, and a systems infrastructure to support the business and customer-focused processes. This analysis, in turn, enabled the design of a self-assessment model that can be applied within any business setting. Further work should include the testing and review of this model to ascertain its suitability and effectiveness within industry today.
Three-Dimensional Modeling of Flow and Thermochemical Behavior in a Blast Furnace
NASA Astrophysics Data System (ADS)
Shen, Yansong; Guo, Baoyu; Chew, Sheng; Austin, Peter; Yu, Aibing
2015-02-01
An ironmaking blast furnace (BF) is a complex high-temperature moving bed reactor involving counter-, co- and cross-current flows of gas, liquid and solid, coupled with heat and mass exchange and chemical reactions. Two-dimensional (2D) models were widely used for understanding its internal state in the past. In this paper, a three-dimensional (3D) CFX-based mathematical model is developed for describing the internal state of a BF in terms of multiphase flow and the related thermochemical behavior, as well as process indicators. This model considers the intense interactions between gas, solid and liquid phases, and also their competition for the space. The model is applied to a BF covering from the burden surface at the top to the liquid surface in the hearth, where the raceway cavity is considered explicitly. The results show that the key in-furnace phenomena such as flow/temperature patterns and component distributions of solid, gas and liquid phases can be described and characterized in different regions inside the BF, including the gas and liquids flow circumferentially over the 3D raceway surface. The in-furnace distributions of key performance indicators such as reduction degree and gas utilization can also be predicted. This model offers a cost-effective tool to understand and control the complex BF flow and performance.
Community Crowd-Funded Solar Finance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jagerson, Gordon "Ty"
The award supported the demonstration and development of the Village Power Platform, which enables community organizations to more readily develop, finance and operate solar installations on local community organizations. The platform enables partial or complete local ownership of the solar installation. The award specifically supported key features including financial modeling tools, community communications tools, crowdfunding mechanisms, a mobile app, and other critical features.
ERIC Educational Resources Information Center
Palacios, Angélica M. G.; Alvarez, Rafael D.
2016-01-01
Drawing upon the Community College Socio-Ecological Outcomes model, this study is among the first to have addressed the outcomes of nonfirst-generation community college men of color. The purpose of this study was to investigate differences across ethnicities for key factors in two socioecological domains, including noncognitive and campus ethos…
ERIC Educational Resources Information Center
Brown, David R.; Brewster, Cheryl D.; Karides, Marina; Lukas, Lou A.
2011-01-01
Collaboration is essential to manage complex real world problems. We used phenomenologic methods to elaborate a description of collaboration between two departments at an academic medical center who considered their relationship to represent a model of effective collaboration. Key collaborative structures included a shared vision and commitment by…
ERIC Educational Resources Information Center
Paredes-Chi, Arely Anahy; Viga-de Alva, María Dolores
2018-01-01
In Mexico a reformed curriculum is being implemented at the national primary level focused on the competence model and incorporating EE as a key element. This article reports our analyses of what theories, policies and/or EE related-contents were included in the documents that integrated this curriculum: general study plan, study programs of…
Central States forest management guides as applied in STEMS.
Nancy R. Walters
1988-01-01
Describes a management prescription system for Central States cover types developed for use in the Central States Stand and Tree Evaluation and Modeling System (STEMS). It includes one management guide for each of the six major cover types in the region. Each guide consists of a decision key that prescribes management, based on stand characteristics and a set of...
NASA Technical Reports Server (NTRS)
Dunbar, D. N.; Tunnah, B. G.
1979-01-01
Program predicts production volumes of petroleum refinery products, with particular emphasis on aircraft-turbine fuel blends and their key properties. It calculates capital and operating costs for refinery and its margin of profitability. Program also includes provisions for processing of synthetic crude oils from oil shale and coal liquefaction processes and contains highly-detailed blending computations for alternative jet-fuel blends of varying endpoint specifications.
Timothy G.F. Kittel; Nan. A. Rosenbloom; J.A. Royle; C. Daly; W.P. Gibson; H.H. Fisher; P. Thornton; D.N. Yates; S. Aulenbach; C. Kaufman; R. McKeown; Dominque Bachelet; David S. Schimel
2004-01-01
Analysis and simulation of biospheric responses to historical forcing require surface climate data that capture those aspects of climate that control ecological processes, including key spatial gradients and modes of temporal variability. We developed a multivariate, gridded historical climate dataset for the conterminous USA as a common input database for the...
Linking ecosystems, food webs, and fish production: subsidies in salmonid watersheds
Wipfli, Mark S.; Baxter, Colden V.
2010-01-01
Physical characteristics of riverine habitats, such as large wood abundance, pool geometry and abundance, riparian vegetation cover, and surface flow conditions, have traditionally been thought to constrain fish production in these ecosystems. Conversely, the role of food resources (quantity and quality) in controlling fish production has received far less attention and consideration, though they can also be key productivity drivers. Traditional freshwater food web illustrations have typically conveyed the notion that most fish food is produced within the local aquatic habitat itself, but the concepts and model we synthesize in this article show that most fish food comes from external or very distant sources—including subsidies from marine systems borne from adult returns of anadromous fishes, from fishless headwater tributaries that transport prey to downstream fish, and from adjacent streamside vegetation and associated habitats. The model we propose further illustrates how key trophic pathways and food sources vary through time and space throughout watersheds. Insights into how food supplies affect fishes can help guide how we view riverine ecosystems, their structure and function, their interactions with marine and terrestrial systems, and how we manage natural resources, including fish, riparian habitats, and forests.
The unseen iceberg: Plant roots in arctic tundra
Iverson, Colleen M.; Sloan, Victoria L.; Sullivan, Patrick F.; Euskirchen, E.S.; McGuire, A. David; Norby, Richard J.; Walker, Anthony P.; Warren, Jeffrey M.; Wullschleger, Stan D.
2015-01-01
Plant roots play a critical role in ecosystem function in arctic tundra, but root dynamics in these ecosystems are poorly understood. To address this knowledge gap, we synthesized available literature on tundra roots, including their distribution, dynamics and contribution to ecosystem carbon and nutrient fluxes, and highlighted key aspects of their representation in terrestrial biosphere models. Across all tundra ecosystems, belowground plant biomass exceeded aboveground biomass, with the exception of polar desert tundra. Roots were shallowly distributed in the thin layer of soil that thaws annually, and were often found in surface organic soil horizons. Root traits – including distribution, chemistry, anatomy and resource partitioning – play an important role in controlling plant species competition, and therefore ecosystem carbon and nutrient fluxes, under changing climatic conditions, but have only been quantified for a small fraction of tundra plants. Further, the annual production and mortality of fine roots are key components of ecosystem processes in tundra, but extant data are sparse. Tundra root traits and dynamics should be the focus of future research efforts. Better representation of the dynamics and characteristics of tundra roots will improve the utility of models for the evaluation of the responses of tundra ecosystems to changing environmental conditions.
Ocean modelling for aquaculture and fisheries in Irish waters
NASA Astrophysics Data System (ADS)
Dabrowski, T.; Lyons, K.; Cusack, C.; Casal, G.; Berry, A.; Nolan, G. D.
2015-06-01
The Marine Institute, Ireland, runs a suite of operational regional and coastal ocean models. Recent developments include several tailored products that focus on the key needs of the Irish aquaculture sector. In this article, an overview of the products and services derived from the models are presented. A shellfish model that includes growth and physiological interactions of mussels with the ecosystem and is fully embedded in the 3-D numerical modelling framework has been developed at the Marine Institute. This shellfish model has a microbial module designed to predict levels of coliform contamination in mussels. This model can also be used to estimate the carrying capacity of embayments, assess impacts of pollution on aquaculture grounds and help to classify shellfish waters. The physical coastal model of southwest Ireland provides a three day forecast of shelf water movement in the region. This is assimilated into a new harmful algal bloom alert system used to inform end-users of potential toxic shellfish events and high biomass blooms that include fish killing species. Further services include the use of models to identify potential sites for offshore aquaculture, to inform studies of potential cross-contamination in farms from the dispersal of planktonic sea lice larvae and other pathogens that can infect finfish and to provide modelled products that underpin the assessment and advisory services on the sustainable exploitation of the marine fisheries resources. This paper demonstrates that ocean models can provide an invaluable contribution to the sustainable blue growth of aquaculture and fisheries.
Facilitators to promoting health in schools: is school health climate the key?
Lucarelli, Jennifer F; Alaimo, Katherine; Mang, Ellen; Martin, Caroline; Miles, Richard; Bailey, Deborah; Kelleher, Deanne K; Drzal, Nicholas B; Liu, Hui
2014-02-01
Schools can promote healthy eating in adolescents. This study used a qualitative approach to examine barriers and facilitators to healthy eating in schools. Case studies were conducted with 8 low-income Michigan middle schools. Interviews were conducted with 1 administrator, the food service director, and 1 member of the coordinated school health team at each school. Barriers included budgetary constraints leading to low prioritization of health initiatives; availability of unhealthy competitive foods; and perceptions that students would not eat healthy foods. Schools had made improvements to foods and increased nutrition education. Support from administrators, teamwork among staff, and acknowledging student preferences facilitated positive changes. Schools with a key set of characteristics, (presence of a coordinated school health team, nutrition policies, and a school health champion) made more improvements. The set of key characteristics identified in successful schools may represent a school's health climate. While models of school climate have been utilized in the educational field in relation to academic outcomes, a health-specific model of school climate would be useful in guiding school health practitioners and researchers and may improve the effectiveness of interventions aimed at improving student dietary intake and other health behaviors. © 2014, American School Health Association.
Facilitators to Promoting Health in Schools: Is School Health Climate the Key?*
Lucarelli, Jennifer F.; Alaimo, Katherine; Mang, Ellen; Martin, Caroline; Miles, Richard; Bailey, Deborah; Kelleher, Deanne K.; Drzal, Nicholas B.; Liu, Hui
2017-01-01
BACKGROUND Schools can promote healthy eating in adolescents. This study used a qualitative approach to examine barriers and facilitators to healthy eating in schools. METHODS Case studies were conducted with 8 low-income Michigan middle schools. Interviews were conducted with 1 administrator, the food service director, and 1 member of the coordinated school health team at each school. RESULTS Barriers included budgetary constraints leading to low prioritization of health initiatives; availability of unhealthy competitive foods; and perceptions that students would not eat healthy foods. Schools had made improvements to foods and increased nutrition education. Support from administrators, teamwork among staff, and acknowledging student preferences facilitated positive changes. Schools with a key set of characteristics, (presence of a coordinated school health team, nutrition policies, and a school health champion) made more improvements. CONCLUSIONS The set of key characteristics identified in successful schools may represent a school’s health climate. While models of school climate have been utilized in the educational field in relation to academic outcomes, a health-specific model of school climate would be useful in guiding school health practitioners and researchers and may improve the effectiveness of interventions aimed at improving student dietary intake and other health behaviors. PMID:25099428
Key Response Planning Factors for the Aftermath of Nuclear Terrorism
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buddemeier, B R; Dillon, M B
Despite hundreds of above-ground nuclear tests and data gathered from Hiroshima and Nagasaki, the effects of a ground-level, low-yield nuclear detonation in a modern urban environment are still the subject of considerable scientific debate. Extensive review of nuclear weapon effects studies and discussions with nuclear weapon effects experts from various federal agencies, national laboratories, and technical organizations have identified key issues and bounded some of the unknowns required to support response planning for a low-yield, ground-level nuclear detonation in a modern U.S. city. This study, which is focused primarily upon the hazards posed by radioactive fallout, used detailed fallout predictionsmore » from the advanced suite of three-dimensional (3-D) meteorology and plume/fallout models developed at Lawrence Livermore National Laboratory (LLNL), including extensive global Key Response Planning Factors for the Aftermath of Nuclear Terrorism geographical and real-time meteorological databases to support model calculations. This 3-D modeling system provides detailed simulations that account for complex meteorology and terrain effects. The results of initial modeling and analysis were presented to federal, state, and local working groups to obtain critical, broad-based review and feedback on strategy and messaging. This effort involved a diverse set of communities, including New York City, National Capitol Regions, Charlotte, Houston, Portland, and Los Angeles. The largest potential for reducing casualties during the post-detonation response phase comes from reducing exposure to fallout radiation. This can be accomplished through early, adequate sheltering followed by informed, delayed evacuation.B The response challenges to a nuclear detonation must be solved through multiple approaches of public education, planning, and rapid response actions. Because the successful response will require extensive coordination of a large number of organizations, supplemented by appropriate responses by local responders and the general population within the hazard zones, regional planning is essential to success. The remainder of this Executive Summary provides summary guidance for response planning in three areas: (1) Public Protection Strategy details the importance of early, adequate shelter followed by informed evacuation. (2) Responder Priorities identify how to protect response personnel, perform regional situational assessment, and support public safety. (3) Key Planning Considerations refute common myths and provide important information on planning how to respond in the aftermath of nuclear terrorism.« less
Overview of the Special Issue: A Multi-Model Framework to ...
The Climate Change Impacts and Risk Analysis (CIRA) project establishes a new multi-model framework to systematically assess the impacts, economic damages, and risks from climate change in the United States. The primary goal of this framework to estimate how climate change impacts and damages in the United States are avoided or reduced due to global greenhouse gas (GHG) emissions mitigation scenarios. Scenarios are designed to explore key uncertainties around the measurement of these changes. The modeling exercise presented in this Special Issue includes two integrated assessment models and 15 sectoral models encompassing six broad impacts sectors - water resources, electric power, infrastructure, human health, ecosystems, and forests. Three consistent emissions scenarios are used to analyze the benefits of global GHG mitigation targets: a reference and two policy scenarios, with total radiative forcing in 2100 of 10.0W/m2, 4.5W/m2, and 3.7W/m2. A range of climate sensitivities, climate models, natural variability measures, and structural uncertainties of sectoral models are examined to explore the implications of key uncertainties. This overview paper describes the motivations, goals, design, and academic contribution of the CIRA modeling exercise and briefly summarizes the subsequent papers in this Special Issue. A summary of results across impact sectors is provided showing that: GHG mitigation provides benefits to the United States that increase over
NASA Astrophysics Data System (ADS)
Masri, Shahir; Li, Lianfa; Dang, Andy; Chung, Judith H.; Chen, Jiu-Chiuan; Fan, Zhi-Hua (Tina); Wu, Jun
2018-03-01
Airborne exposures to polycyclic aromatic hydrocarbons (PAHs) are associated with adverse health outcomes. Because personal air measurements of PAHs are labor intensive and costly, spatial PAH exposure models are useful for epidemiological studies. However, few studies provide adequate spatial coverage to reflect intra-urban variability of ambient PAHs. In this study, we collected 39-40 weekly gas-phase PAH samples in southern California twice in summer and twice in winter, 2009, in order to characterize PAH source contributions and develop spatial models that can estimate gas-phase PAH concentrations at a high resolution. A spatial mixed regression model was constructed, including such variables as roadway, traffic, land-use, vegetation index, commercial cooking facilities, meteorology, and population density. Cross validation of the model resulted in an R2 of 0.66 for summer and 0.77 for winter. Results showed higher total PAH concentrations in winter. Pyrogenic sources, such as fossil fuels and diesel exhaust, were the most dominant contributors to total PAHs. PAH sources varied by season, with a higher fossil fuel and wood burning contribution in winter. Spatial autocorrelation accounted for a substantial amount of the variance in total PAH concentrations for both winter (56%) and summer (19%). In summer, other key variables explaining the variance included meteorological factors (9%), population density (15%), and roadway length (21%). In winter, the variance was also explained by traffic density (16%). In this study, source characterization confirmed the dominance of traffic and other fossil fuel sources to total measured gas-phase PAH concentrations while a spatial exposure model identified key predictors of PAH concentrations. Gas-phase PAH source characterization and exposure estimation is of high utility to epidemiologist and policy makers interested in understanding the health impacts of gas-phase PAHs and strategies to reduce emissions.
Balabanov, Stefan; Wilhelm, Thomas; Venz, Simone; Keller, Gunhild; Scharf, Christian; Pospisil, Heike; Braig, Melanie; Barett, Christine; Bokemeyer, Carsten; Walther, Reinhard; Brümmendorf, Tim H; Schuppert, Andreas
2013-01-01
In drug discovery, the characterisation of the precise modes of action (MoA) and of unwanted off-target effects of novel molecularly targeted compounds is of highest relevance. Recent approaches for identification of MoA have employed various techniques for modeling of well defined signaling pathways including structural information, changes in phenotypic behavior of cells and gene expression patterns after drug treatment. However, efficient approaches focusing on proteome wide data for the identification of MoA including interference with mutations are underrepresented. As mutations are key drivers of drug resistance in molecularly targeted tumor therapies, efficient analysis and modeling of downstream effects of mutations on drug MoA is a key to efficient development of improved targeted anti-cancer drugs. Here we present a combination of a global proteome analysis, reengineering of network models and integration of apoptosis data used to infer the mode-of-action of various tyrosine kinase inhibitors (TKIs) in chronic myeloid leukemia (CML) cell lines expressing wild type as well as TKI resistance conferring mutants of BCR-ABL. The inferred network models provide a tool to predict the main MoA of drugs as well as to grouping of drugs with known similar kinase inhibitory activity patterns in comparison to drugs with an additional MoA. We believe that our direct network reconstruction approach, demonstrated on proteomics data, can provide a complementary method to the established network reconstruction approaches for the preclinical modeling of the MoA of various types of targeted drugs in cancer treatment. Hence it may contribute to the more precise prediction of clinically relevant on- and off-target effects of TKIs.
Balabanov, Stefan; Wilhelm, Thomas; Venz, Simone; Keller, Gunhild; Scharf, Christian; Pospisil, Heike; Braig, Melanie; Barett, Christine; Bokemeyer, Carsten; Walther, Reinhard
2013-01-01
In drug discovery, the characterisation of the precise modes of action (MoA) and of unwanted off-target effects of novel molecularly targeted compounds is of highest relevance. Recent approaches for identification of MoA have employed various techniques for modeling of well defined signaling pathways including structural information, changes in phenotypic behavior of cells and gene expression patterns after drug treatment. However, efficient approaches focusing on proteome wide data for the identification of MoA including interference with mutations are underrepresented. As mutations are key drivers of drug resistance in molecularly targeted tumor therapies, efficient analysis and modeling of downstream effects of mutations on drug MoA is a key to efficient development of improved targeted anti-cancer drugs. Here we present a combination of a global proteome analysis, reengineering of network models and integration of apoptosis data used to infer the mode-of-action of various tyrosine kinase inhibitors (TKIs) in chronic myeloid leukemia (CML) cell lines expressing wild type as well as TKI resistance conferring mutants of BCR-ABL. The inferred network models provide a tool to predict the main MoA of drugs as well as to grouping of drugs with known similar kinase inhibitory activity patterns in comparison to drugs with an additional MoA. We believe that our direct network reconstruction approach, demonstrated on proteomics data, can provide a complementary method to the established network reconstruction approaches for the preclinical modeling of the MoA of various types of targeted drugs in cancer treatment. Hence it may contribute to the more precise prediction of clinically relevant on- and off-target effects of TKIs. PMID:23326482
Masri, Shahir; Li, Lianfa; Dang, Andy; Chung, Judith H; Chen, Jiu-Chiuan; Fan, Zhi-Hua Tina; Wu, Jun
2018-03-01
Airborne exposures to polycyclic aromatic hydrocarbons (PAHs) are associated with adverse health outcomes. Because personal air measurements of PAHs are labor intensive and costly, spatial PAH exposure models are useful for epidemiological studies. However, few studies provide adequate spatial coverage to reflect intra-urban variability of ambient PAHs. In this study, we collected 39-40 weekly gas-phase PAH samples in southern California twice in summer and twice in winter, 2009, in order to characterize PAH source contributions and develop spatial models that can estimate gas-phase PAH concentrations at a high resolution. A spatial mixed regression model was constructed, including such variables as roadway, traffic, land-use, vegetation index, commercial cooking facilities, meteorology, and population density. Cross validation of the model resulted in an R 2 of 0.66 for summer and 0.77 for winter. Results showed higher total PAH concentrations in winter. Pyrogenic sources, such as fossil fuels and diesel exhaust, were the most dominant contributors to total PAHs. PAH sources varied by season, with a higher fossil fuel and wood burning contribution in winter. Spatial autocorrelation accounted for a substantial amount of the variance in total PAH concentrations for both winter (56%) and summer (19%). In summer, other key variables explaining the variance included meteorological factors (9%), population density (15%), and roadway length (21%). In winter, the variance was also explained by traffic density (16%). In this study, source characterization confirmed the dominance of traffic and other fossil fuel sources to total measured gas-phase PAH concentrations while a spatial exposure model identified key predictors of PAH concentrations. Gas-phase PAH source characterization and exposure estimation is of high utility to epidemiologist and policy makers interested in understanding the health impacts of gas-phase PAHs and strategies to reduce emissions.
NASA Astrophysics Data System (ADS)
Xiao, D.; Shi, Y.; Li, L.
2016-12-01
Field measurements are important to understand the fluxes of water, energy, sediment, and solute in the Critical Zone however are expensive in time, money, and labor. This study aims to assess the model predictability of hydrological processes in a watershed using information from another intensively-measured watershed. We compare two watersheds of different lithology using national datasets, field measurements, and physics-based model, Flux-PIHM. We focus on two monolithological, forested watersheds under the same climate in the Shale Hills Susquehanna CZO in central Pennsylvania: the Shale-based Shale Hills (SSH, 0.08 km2) and the sandstone-based Garner Run (GR, 1.34 km2). We firstly tested the transferability of calibration coefficients from SSH to GR. We found that without any calibration the model can successfully predict seasonal average soil moisture and discharge which shows the advantage of a physics-based model, however, cannot precisely capture some peaks or the runoff in summer. The model reproduces the GR field data better after calibrating the soil hydrology parameters. In particular, the percentage of sand turns out to be a critical parameter in reproducing data. With sandstone being the dominant lithology, GR has much higher sand percentage than SSH (48.02% vs. 29.01%), leading to higher hydraulic conductivity, lower overall water storage capacity, and in general lower soil moisture. This is consistent with area averaged soil moisture observations using the cosmic-ray soil moisture observing system (COSMOS) at the two sites. This work indicates that some parameters, including evapotranspiration parameters, are transferrable due to similar climatic and land cover conditions. However, the key parameters that control soil moisture, including the sand percentage, need to be recalibrated, reflecting the key role of soil hydrological properties.
NASA Astrophysics Data System (ADS)
Raffray, A. René; Federici, Gianfranco
1997-04-01
RACLETTE (Rate Analysis Code for pLasma Energy Transfer Transient Evaluation), a comprehensive but relatively simple and versatile model, was developed to help in the design analysis of plasma facing components (PFCs) under 'slow' high power transients, such as those associated with plasma vertical displacement events. The model includes all the key surface heat transfer processes such as evaporation, melting, and radiation, and their interaction with the PFC block thermal response and the coolant behaviour. This paper represents part I of two sister and complementary papers. It covers the model description, calibration and validation, and presents a number of parametric analyses shedding light on and identifying trends in the PFC armour block response to high plasma energy deposition transients. Parameters investigated include the plasma energy density and deposition time, the armour thickness and the presence of vapour shielding effects. Part II of the paper focuses on specific design analyses of ITER plasma facing components (divertor, limiter, primary first wall and baffle), including improvements in the thermal-hydraulic modeling required for better understanding the consequences of high energy deposition transients in particular for the ITER limiter case.
Numerical modeling of laser assisted tape winding process
NASA Astrophysics Data System (ADS)
Zaami, Amin; Baran, Ismet; Akkerman, Remko
2017-10-01
Laser assisted tape winding (LATW) has become more and more popular way of producing new thermoplastic products such as ultra-deep sea water riser, gas tanks, structural parts for aerospace applications. Predicting the temperature in LATW has been a source of great interest since the temperature at nip-point plays a key role for mechanical interface performance. Modeling the LATW process includes several challenges such as the interaction of optics and heat transfer. In the current study, numerical modeling of the optical behavior of laser radiation on circular surfaces is investigated based on a ray tracing and non-specular reflection model. The non-specular reflection is implemented considering the anisotropic reflective behavior of the fiber-reinforced thermoplastic tape using a bidirectional reflectance distribution function (BRDF). The proposed model in the present paper includes a three-dimensional circular geometry, in which the effects of reflection from different ranges of the circular surface as well as effect of process parameters on temperature distribution are studied. The heat transfer model is constructed using a fully implicit method. The effect of process parameters on the nip-point temperature is examined. Furthermore, several laser distributions including Gaussian and linear are examined which has not been considered in literature up to now.
Agriculture and Climate Change in Global Scenarios: Why Don't the Models Agree
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, Gerald; van der Mensbrugghe, Dominique; Ahammad, Helal
Agriculture is unique among economic sectors in the nature of impacts from climate change. The production activity that transforms inputs into agricultural outputs makes direct use of weather inputs. Previous studies of the impacts of climate change on agriculture have reported substantial differences in outcomes of key variables such as prices, production, and trade. These divergent outcomes arise from differences in model inputs and model specification. The goal of this paper is to review climate change results and underlying determinants from a model comparison exercise with 10 of the leading global economic models that include significant representation of agriculture. Bymore » providing common productivity drivers that include climate change effects, differences in model outcomes are reduced. All models show higher prices in 2050 because of negative productivity shocks from climate change. The magnitude of the price increases, and the adaptation responses, differ significantly across the various models. Substantial differences exist in the structural parameters affecting demand, area, and yield, and should be a topic for future research.« less
CDP++.Italian: Modelling Sublexical and Supralexical Inconsistency in a Shallow Orthography
Perry, Conrad; Ziegler, Johannes C.; Zorzi, Marco
2014-01-01
Most models of reading aloud have been constructed to explain data in relatively complex orthographies like English and French. Here, we created an Italian version of the Connectionist Dual Process Model of Reading Aloud (CDP++) to examine the extent to which the model could predict data in a language which has relatively simple orthography-phonology relationships but is relatively complex at a suprasegmental (word stress) level. We show that the model exhibits good quantitative performance and accounts for key phenomena observed in naming studies, including some apparently contradictory findings. These effects include stress regularity and stress consistency, both of which have been especially important in studies of word recognition and reading aloud in Italian. Overall, the results of the model compare favourably to an alternative connectionist model that can learn non-linear spelling-to-sound mappings. This suggests that CDP++ is currently the leading computational model of reading aloud in Italian, and that its simple linear learning mechanism adequately captures the statistical regularities of the spelling-to-sound mapping both at the segmental and supra-segmental levels. PMID:24740261
SIMPL Systems, or: Can We Design Cryptographic Hardware without Secret Key Information?
NASA Astrophysics Data System (ADS)
Rührmair, Ulrich
This paper discusses a new cryptographic primitive termed SIMPL system. Roughly speaking, a SIMPL system is a special type of Physical Unclonable Function (PUF) which possesses a binary description that allows its (slow) public simulation and prediction. Besides this public key like functionality, SIMPL systems have another advantage: No secret information is, or needs to be, contained in SIMPL systems in order to enable cryptographic protocols - neither in the form of a standard binary key, nor as secret information hidden in random, analog features, as it is the case for PUFs. The cryptographic security of SIMPLs instead rests on (i) a physical assumption on their unclonability, and (ii) a computational assumption regarding the complexity of simulating their output. This novel property makes SIMPL systems potentially immune against many known hardware and software attacks, including malware, side channel, invasive, or modeling attacks.
Skill shortages in health: innovative solutions using vocational education and training.
Kilpatrick, S I; Johns, S S; Millar, P; Le, Q; Routley, G
2007-01-01
This article reports findings of a project funded by the Australian National Council for Vocational Education Research. The project explores solutions to current and projected skills shortages within the health and community services sector, from a vocational education and training perspective. Its purpose is to locate, analyse and disseminate information about innovative models of health training and service delivery that have been developed in response to skill shortages. The article begins with a brief overview of Australian statistics and literature on the structure of the national health workforce and perceived skill shortages. The impact of location (state and rurality), demographics of the workforce, and other relevant factors, on health skill shortages is examined. Drawing on a synthesis of the Australian and international literature on innovative and effective models for addressing health skill shortages and nominations by key stakeholders within the health sector, over 70 models were identified. The models represent a mixture of innovative service delivery models and training solutions from Australia, as well as international examples that could be transposed to the Australian context. They include the skill ecosystem approach facilitated by the Australian National Training Authority Skill Ecosystem Project. Models were selected to represent diversity in terms of the nature of skill shortage addressed, barriers overcome in development of the model, healthcare specialisations, and different customer groups. Key barriers to the development of innovative solutions to skills shortages identified were: policy that is not sufficiently flexible to accommodate changing workplace needs; unwillingness to risk take in order to develop new models; delays in gaining endorsement/accreditation; current vocational education and training (VET) monitoring and reporting systems; issues related to working in partnership, including different cultures, ways of operating, priorities and timelines; workplace culture that is resistant to change; and organisational boundaries. For training-only models, additional barriers were: technology; low educational levels of trainees; lack of health professionals to provide training and/or supervision; and cost of training. Key enhancers for the development of models were identified as: commitment by all partners and co-location of partners; or effective communication channels. Key enhancers for model effectiveness were: first considering work tasks, competencies and job (re)design; high profile of the model within the community; community-based models; cultural fit; and evidence of direct link between skills development and employment, for example VET trained aged care workers upskilling for other health jobs. For training only models, additional enhancers were flexibility of partners in accommodating needs of trainees; low training costs; experienced clinical supervisors; and the provision of professional development to trainers. There needs to be a balance between short-term solutions to current skill shortages (training only), and medium to longer term solutions (job redesign, holistic approaches) that also address projected skills shortages. Models that focus on addressing skills shortages in aged care can provide a broad pathway to careers in health. Characteristics of models likely to be effective in addressing skill shortages are: responsibility for addressing skills shortage is shared between the health sector, education and training organisations and government, with employers taking a proactive role; the training component is complemented by a focus on retention of workers; models are either targeted at existing employees or identify a target group(s) who may not otherwise have considered a career in health.
Key properties of expert movement systems in sport : an ecological dynamics perspective.
Seifert, Ludovic; Button, Chris; Davids, Keith
2013-03-01
This paper identifies key properties of expertise in sport predicated on the performer-environment relationship. Weaknesses of traditional approaches to expert performance, which uniquely focus on the performer and the environment separately, are highlighted by an ecological dynamics perspective. Key properties of expert movement systems include 'multi- and meta-stability', 'adaptive variability', 'redundancy', 'degeneracy' and the 'attunement to affordances'. Empirical research on these expert system properties indicates that skill acquisition does not emerge from the internal representation of declarative and procedural knowledge, or the imitation of expert behaviours to linearly reduce a perceived 'gap' separating movements of beginners and a putative expert model. Rather, expert performance corresponds with the ongoing co-adaptation of an individual's behaviours to dynamically changing, interacting constraints, individually perceived and encountered. The functional role of adaptive movement variability is essential to expert performance in many different sports (involving individuals and teams; ball games and outdoor activities; land and aquatic environments). These key properties signify that, in sport performance, although basic movement patterns need to be acquired by developing athletes, there exists no ideal movement template towards which all learners should aspire, since relatively unique functional movement solutions emerge from the interaction of key constraints.
Li, Haojie; Graham, Daniel J
2016-08-01
This paper estimates the causal effect of 20mph zones on road casualties in London. Potential confounders in the key relationship of interest are included within outcome regression and propensity score models, and the models are then combined to form a doubly robust estimator. A total of 234 treated zones and 2844 potential control zones are included in the data sample. The propensity score model is used to select a viable control group which has common support in the covariate distributions. We compare the doubly robust estimates with those obtained using three other methods: inverse probability weighting, regression adjustment, and propensity score matching. The results indicate that 20mph zones have had a significant causal impact on road casualty reduction in both absolute and proportional terms. Copyright © 2016 Elsevier Ltd. All rights reserved.
Integrative analysis of the Caenorhabditis elegans genome by the modENCODE project.
Gerstein, Mark B; Lu, Zhi John; Van Nostrand, Eric L; Cheng, Chao; Arshinoff, Bradley I; Liu, Tao; Yip, Kevin Y; Robilotto, Rebecca; Rechtsteiner, Andreas; Ikegami, Kohta; Alves, Pedro; Chateigner, Aurelien; Perry, Marc; Morris, Mitzi; Auerbach, Raymond K; Feng, Xin; Leng, Jing; Vielle, Anne; Niu, Wei; Rhrissorrakrai, Kahn; Agarwal, Ashish; Alexander, Roger P; Barber, Galt; Brdlik, Cathleen M; Brennan, Jennifer; Brouillet, Jeremy Jean; Carr, Adrian; Cheung, Ming-Sin; Clawson, Hiram; Contrino, Sergio; Dannenberg, Luke O; Dernburg, Abby F; Desai, Arshad; Dick, Lindsay; Dosé, Andréa C; Du, Jiang; Egelhofer, Thea; Ercan, Sevinc; Euskirchen, Ghia; Ewing, Brent; Feingold, Elise A; Gassmann, Reto; Good, Peter J; Green, Phil; Gullier, Francois; Gutwein, Michelle; Guyer, Mark S; Habegger, Lukas; Han, Ting; Henikoff, Jorja G; Henz, Stefan R; Hinrichs, Angie; Holster, Heather; Hyman, Tony; Iniguez, A Leo; Janette, Judith; Jensen, Morten; Kato, Masaomi; Kent, W James; Kephart, Ellen; Khivansara, Vishal; Khurana, Ekta; Kim, John K; Kolasinska-Zwierz, Paulina; Lai, Eric C; Latorre, Isabel; Leahey, Amber; Lewis, Suzanna; Lloyd, Paul; Lochovsky, Lucas; Lowdon, Rebecca F; Lubling, Yaniv; Lyne, Rachel; MacCoss, Michael; Mackowiak, Sebastian D; Mangone, Marco; McKay, Sheldon; Mecenas, Desirea; Merrihew, Gennifer; Miller, David M; Muroyama, Andrew; Murray, John I; Ooi, Siew-Loon; Pham, Hoang; Phippen, Taryn; Preston, Elicia A; Rajewsky, Nikolaus; Rätsch, Gunnar; Rosenbaum, Heidi; Rozowsky, Joel; Rutherford, Kim; Ruzanov, Peter; Sarov, Mihail; Sasidharan, Rajkumar; Sboner, Andrea; Scheid, Paul; Segal, Eran; Shin, Hyunjin; Shou, Chong; Slack, Frank J; Slightam, Cindie; Smith, Richard; Spencer, William C; Stinson, E O; Taing, Scott; Takasaki, Teruaki; Vafeados, Dionne; Voronina, Ksenia; Wang, Guilin; Washington, Nicole L; Whittle, Christina M; Wu, Beijing; Yan, Koon-Kiu; Zeller, Georg; Zha, Zheng; Zhong, Mei; Zhou, Xingliang; Ahringer, Julie; Strome, Susan; Gunsalus, Kristin C; Micklem, Gos; Liu, X Shirley; Reinke, Valerie; Kim, Stuart K; Hillier, LaDeana W; Henikoff, Steven; Piano, Fabio; Snyder, Michael; Stein, Lincoln; Lieb, Jason D; Waterston, Robert H
2010-12-24
We systematically generated large-scale data sets to improve genome annotation for the nematode Caenorhabditis elegans, a key model organism. These data sets include transcriptome profiling across a developmental time course, genome-wide identification of transcription factor-binding sites, and maps of chromatin organization. From this, we created more complete and accurate gene models, including alternative splice forms and candidate noncoding RNAs. We constructed hierarchical networks of transcription factor-binding and microRNA interactions and discovered chromosomal locations bound by an unusually large number of transcription factors. Different patterns of chromatin composition and histone modification were revealed between chromosome arms and centers, with similarly prominent differences between autosomes and the X chromosome. Integrating data types, we built statistical models relating chromatin, transcription factor binding, and gene expression. Overall, our analyses ascribed putative functions to most of the conserved genome.
NASA Astrophysics Data System (ADS)
Lusty, P. A. J.; McDonnell, P. M.; Gunn, A. G.; Chacksfield, B. C.; Cooper, M.
2009-04-01
Geographic Information Systems (GIS) are essential tools for the management and integration of the large amounts of multivariate spatial data used in mineral exploration. Prospectivity analysis combines these datasets, in the context of a mineral deposit model, to produce a map showing the distribution of potential for a particular type of mineral deposit. In this example Arc-Spatial Data Modeller software has been used to analyse the prospectivity for orogenic vein gold mineralisation in the Dalradian rocks of north-western Northern Ireland. A knowledge-driven (fuzzy logic) approach was used because of the small number of gold deposits within the area. Fuzzy logic is used in situations where information is inexact and the use of classical set theory is inappropriate. Fuzzy logic allows assignment of weightings to exploration data on a continuous scale from 1 (full membership) to 0 (full non-membership). This allows a level of uncertainty or 'fuzziness' to be incorporated into the modelling. The key stages of prospectivity analysis are: (1) analysis of the deposit model to determine key exploration indicators; (2) data processing, interpretation and analysis to extract key indicators; (3) assignment of weightings, zones and styles of influence to key indicators; and (4) calculation of prospectivity. This research is based largely on new geochemical and geophysical data resulting from the Tellus Project in Northern Ireland. The Tellus Project involved geochemical and airborne geophysical surveys over the whole of Northern Ireland carried out between 2004-6 with funding from the Government of Northern Ireland. The study area (3074 km2) is underlain mainly by Neoproterozoic rocks of the Dalradian Supergroup (ca. 590 Ma) which form part of the Caledonide orogenic belt. The Dalradian Supergroup comprises a thick succession of semi-pelites, psammites and pelites, with graphitic pelite horizons that host much of the known gold mineralisation. In the Sperrin Mountains two advanced gold projects, Curraghinalt and Golan Burn, and an operating mine, Omagh (Cavanacaw), are hosted by Dalradian rocks. The Dalradian rocks of Northern Ireland were extensively deformed during the Grampian Orogeny and at least four phases of deformation are recognised. On a deposit scale distinct differences are observed between Curraghinalt and Cavanacaw including orientation of principal structures, mineralogy and geochemistry. The mineral prospectivity analysis integrated a range of datasets including: 1:250 000 scale geological mapping, mineral occurrences, fault vectors, Tellus drainage geochemistry and geophysics. In order to assess the differences between the Curraghinalt and Cavanacaw mineral deposit models separate prospectivity models were parameterised. The key differences between the two models relate to the weightings attached to the structural vectors and the significance given to particular chemical elements in the drainage geochemical dataset. The prospectivity analysis identified several areas prospective for orogenic-style gold mineralisation. Many of the prospective zones either coincide with known occurrences of orogenic gold mineralisation or areas considered highly prospective based upon previous work, validating the process and the model results. The use of specific models for the Curraghinalt and Cavanacaw deposits has produced significant differences in the location and extent of the target areas which provide a basis for focusing exploration for orogenic gold deposits in this region. Detailed examination of all available data and ground truthing is required in order to validate these targets. In addition to delineating new areas favourable for gold mineralisation the prospectivity mapping has provided new insight into possible regional controls on the location of mineralisation and into the geology of this area. Please fill in your abstract text.
New Roles for Medical Assistants in Innovative Primary Care Practices.
Chapman, Susan A; Blash, Lisel K
2017-02-01
To identify and describe new roles for medical assistants (MAs) in innovative care models that improve care while providing training and career advancement opportunities for MAs. Primary data collected at 15 case study sites; 173 key informant interviews and de-identified secondary data on staffing, wages, patient satisfaction, and health outcomes. Researchers used snowball sampling and screening calls to identify 15 organizations using MAs in new roles. Conducted site visits from 2010 to 2012 and updated information in 2014. Thematic analysis explored key topics: factors driving MA role innovation, role description, training required, and wage gains. Categorized outcome data in patient and staff satisfaction, quality of care, and efficiency. New MA roles included health coach, medical scribe, dual role translator, health navigator, panel manager, cross-trained flexible role, and supervisor. Implementation of new roles required extensive training. MA incentives and enhanced compensation varied by role type. New MA roles are part of a larger attempt to reform workflow and relieve primary care providers. Despite some evidence of success, spread has been limited. Key challenges to adoption included leadership and provider resistance to change, cost of additional MA training, and lack of reimbursement for nonbillable services. © Health Research and Educational Trust.
High Performance Input/Output for Parallel Computer Systems
NASA Technical Reports Server (NTRS)
Ligon, W. B.
1996-01-01
The goal of our project is to study the I/O characteristics of parallel applications used in Earth Science data processing systems such as Regional Data Centers (RDCs) or EOSDIS. Our approach is to study the runtime behavior of typical programs and the effect of key parameters of the I/O subsystem both under simulation and with direct experimentation on parallel systems. Our three year activity has focused on two items: developing a test bed that facilitates experimentation with parallel I/O, and studying representative programs from the Earth science data processing application domain. The Parallel Virtual File System (PVFS) has been developed for use on a number of platforms including the Tiger Parallel Architecture Workbench (TPAW) simulator, The Intel Paragon, a cluster of DEC Alpha workstations, and the Beowulf system (at CESDIS). PVFS provides considerable flexibility in configuring I/O in a UNIX- like environment. Access to key performance parameters facilitates experimentation. We have studied several key applications fiom levels 1,2 and 3 of the typical RDC processing scenario including instrument calibration and navigation, image classification, and numerical modeling codes. We have also considered large-scale scientific database codes used to organize image data.
The Planetary Data System Information Model for Geometry Metadata
NASA Astrophysics Data System (ADS)
Guinness, E. A.; Gordon, M. K.
2014-12-01
The NASA Planetary Data System (PDS) has recently developed a new set of archiving standards based on a rigorously defined information model. An important part of the new PDS information model is the model for geometry metadata, which includes, for example, attributes of the lighting and viewing angles of observations, position and velocity vectors of a spacecraft relative to Sun and observing body at the time of observation and the location and orientation of an observation on the target. The PDS geometry model is based on requirements gathered from the planetary research community, data producers, and software engineers who build search tools. A key requirement for the model is that it fully supports the breadth of PDS archives that include a wide range of data types from missions and instruments observing many types of solar system bodies such as planets, ring systems, and smaller bodies (moons, comets, and asteroids). Thus, important design aspects of the geometry model are that it standardizes the definition of the geometry attributes and provides consistency of geometry metadata across planetary science disciplines. The model specification also includes parameters so that the context of values can be unambiguously interpreted. For example, the reference frame used for specifying geographic locations on a planetary body is explicitly included with the other geometry metadata parameters. The structure and content of the new PDS geometry model is designed to enable both science analysis and efficient development of search tools. The geometry model is implemented in XML, as is the main PDS information model, and uses XML schema for validation. The initial version of the geometry model is focused on geometry for remote sensing observations conducted by flyby and orbiting spacecraft. Future releases of the PDS geometry model will be expanded to include metadata for landed and rover spacecraft.
Mushkudiani, Nino A; Hukkelhoven, Chantal W P M; Hernández, Adrián V; Murray, Gordon D; Choi, Sung C; Maas, Andrew I R; Steyerberg, Ewout W
2008-04-01
To describe the modeling techniques used for early prediction of outcome in traumatic brain injury (TBI) and to identify aspects for potential improvements. We reviewed key methodological aspects of studies published between 1970 and 2005 that proposed a prognostic model for the Glasgow Outcome Scale of TBI based on admission data. We included 31 papers. Twenty-four were single-center studies, and 22 reported on fewer than 500 patients. The median of the number of initially considered predictors was eight, and on average five of these were selected for the prognostic model, generally including age, Glasgow Coma Score (or only motor score), and pupillary reactivity. The most common statistical technique was logistic regression with stepwise selection of predictors. Model performance was often quantified by accuracy rate rather than by more appropriate measures such as the area under the receiver-operating characteristic curve. Model validity was addressed in 15 studies, but mostly used a simple split-sample approach, and external validation was performed in only four studies. Although most models agree on the three most important predictors, many were developed on small sample sizes within single centers and hence lack generalizability. Modeling strategies have to be improved, and include external validation.
Common world model for unmanned systems
NASA Astrophysics Data System (ADS)
Dean, Robert Michael S.
2013-05-01
The Robotic Collaborative Technology Alliance (RCTA) seeks to provide adaptive robot capabilities which move beyond traditional metric algorithms to include cognitive capabilities. Key to this effort is the Common World Model, which moves beyond the state-of-the-art by representing the world using metric, semantic, and symbolic information. It joins these layers of information to define objects in the world. These objects may be reasoned upon jointly using traditional geometric, symbolic cognitive algorithms and new computational nodes formed by the combination of these disciplines. The Common World Model must understand how these objects relate to each other. Our world model includes the concept of Self-Information about the robot. By encoding current capability, component status, task execution state, and histories we track information which enables the robot to reason and adapt its performance using Meta-Cognition and Machine Learning principles. The world model includes models of how aspects of the environment behave, which enable prediction of future world states. To manage complexity, we adopted a phased implementation approach to the world model. We discuss the design of "Phase 1" of this world model, and interfaces by tracing perception data through the system from the source to the meta-cognitive layers provided by ACT-R and SS-RICS. We close with lessons learned from implementation and how the design relates to Open Architecture.
Narrative review of frameworks for translating research evidence into policy and practice.
Milat, Andrew J; Li, Ben
2017-02-15
A significant challenge in research translation is that interested parties interpret and apply the associated terms and conceptual frameworks in different ways. The purpose of this review was to: a) examine different research translation frameworks; b) examine the similarities and differences between the frameworks; and c) identify key strengths and weaknesses of the models when they are applied in practice. The review involved a keyword search of PubMed. The search string was (translational research OR knowledge translation OR evidence to practice) AND (framework OR model OR theory) AND (public health OR health promotion OR medicine). Included studies were published in English between January 1990 and December 2014, and described frameworks, models or theories associated with research translation. The final review included 98 papers, and 41 different frameworks and models were identified. The most frequently applied knowledge translation framework in the literature was RE-AIM, followed by the knowledge translation continuum or 'T' models, the Knowledge to Action framework, the PARiHS framework, evidence based public health models, and the stages of research and evaluation model. The models identified in this review stem from different fields, including implementation science, basic and medical sciences, health services research and public health, and propose different but related pathways to closing the research-practice gap.
On call at the mall: a mixed methods study of U.S. medical malls
2013-01-01
Background The decline of the traditional U.S. shopping mall and a focus on more consumer- centered care have created an opportunity for “medical malls”. Medical malls are defined as former retail spaces repurposed for healthcare tenants or mixed-use medical/retail facilities. We aimed to describe the current reach of healthcare services in U.S. malls, characterize the medical mall model and emerging trends, and assess the potential of these facilities to serve low-income populations. Methods We used a mixed methods approach which included a comprehensive literature review, key informant interviews, and a descriptive analysis of the Directory of Major Malls, an online retail database. Results Six percent (n = 89) of large, enclosed shopping malls in the U.S. include at least one non-optometry or dental healthcare tenant. We identified a total of 28 medical malls across the U.S., the majority of which opened in the past five years and serve middle or high income populations. Stakeholders felt the key strengths of medical malls were more convenient access including public transportation, greater familiarity for patients, and “one stop shopping” for primary care and specialty services as well as retail needs. Conclusions While medical malls currently account for a small fraction of malls in the US, they are a new model for healthcare with significant potential for growth. PMID:24209495
On call at the mall: a mixed methods study of U.S. medical malls.
Uscher-Pines, Lori; Mehrotra, Ateev; Chari, Ramya
2013-11-09
The decline of the traditional U.S. shopping mall and a focus on more consumer- centered care have created an opportunity for "medical malls". Medical malls are defined as former retail spaces repurposed for healthcare tenants or mixed-use medical/retail facilities.We aimed to describe the current reach of healthcare services in U.S. malls, characterize the medical mall model and emerging trends, and assess the potential of these facilities to serve low-income populations. We used a mixed methods approach which included a comprehensive literature review, key informant interviews, and a descriptive analysis of the Directory of Major Malls, an online retail database. Six percent (n = 89) of large, enclosed shopping malls in the U.S. include at least one non-optometry or dental healthcare tenant. We identified a total of 28 medical malls across the U.S., the majority of which opened in the past five years and serve middle or high income populations. Stakeholders felt the key strengths of medical malls were more convenient access including public transportation, greater familiarity for patients, and "one stop shopping" for primary care and specialty services as well as retail needs. While medical malls currently account for a small fraction of malls in the US, they are a new model for healthcare with significant potential for growth.
Prefrontal Cortex and Social Cognition in Mouse and Man
Bicks, Lucy K.; Koike, Hiroyuki; Akbarian, Schahram; Morishita, Hirofumi
2015-01-01
Social cognition is a complex process that requires the integration of a wide variety of behaviors, including salience, reward-seeking, motivation, knowledge of self and others, and flexibly adjusting behavior in social groups. Not surprisingly, social cognition represents a sensitive domain commonly disrupted in the pathology of a variety of psychiatric disorders including Autism Spectrum Disorder (ASD) and Schizophrenia (SCZ). Here, we discuss convergent research from animal models to human disease that implicates the prefrontal cortex (PFC) as a key regulator in social cognition, suggesting that disruptions in prefrontal microcircuitry play an essential role in the pathophysiology of psychiatric disorders with shared social deficits. We take a translational perspective of social cognition, and review three key behaviors that are essential to normal social processing in rodents and humans, including social motivation, social recognition, and dominance hierarchy. A shared prefrontal circuitry may underlie these behaviors. Social cognition deficits in animal models of neurodevelopmental disorders like ASD and SCZ have been linked to an altered balance of excitation and inhibition (E/I ratio) within the cortex generally, and PFC specifically. A clear picture of the mechanisms by which altered E/I ratio in the PFC might lead to disruptions of social cognition across a variety of behaviors is not well understood. Future studies should explore how disrupted developmental trajectory of prefrontal microcircuitry could lead to altered E/I balance and subsequent deficits in the social domain. PMID:26635701
Advances in the Study of Heart Development and Disease Using Zebrafish
Brown, Daniel R.; Samsa, Leigh Ann; Qian, Li; Liu, Jiandong
2016-01-01
Animal models of cardiovascular disease are key players in the translational medicine pipeline used to define the conserved genetic and molecular basis of disease. Congenital heart diseases (CHDs) are the most common type of human birth defect and feature structural abnormalities that arise during cardiac development and maturation. The zebrafish, Danio rerio, is a valuable vertebrate model organism, offering advantages over traditional mammalian models. These advantages include the rapid, stereotyped and external development of transparent embryos produced in large numbers from inexpensively housed adults, vast capacity for genetic manipulation, and amenability to high-throughput screening. With the help of modern genetics and a sequenced genome, zebrafish have led to insights in cardiovascular diseases ranging from CHDs to arrhythmia and cardiomyopathy. Here, we discuss the utility of zebrafish as a model system and summarize zebrafish cardiac morphogenesis with emphasis on parallels to human heart diseases. Additionally, we discuss the specific tools and experimental platforms utilized in the zebrafish model including forward screens, functional characterization of candidate genes, and high throughput applications. PMID:27335817
Vantourout, Julien C; Miras, Haralampos N; Isidro-Llobet, Albert; Sproules, Stephen; Watson, Allan J B
2017-04-05
We report an investigation of the Chan-Lam amination reaction. A combination of spectroscopy, computational modeling, and crystallography has identified the structures of key intermediates and allowed a complete mechanistic description to be presented, including off-cycle inhibitory processes, the source of amine and organoboron reactivity issues, and the origin of competing oxidation/protodeboronation side reactions. Identification of key mechanistic events has allowed the development of a simple solution to these issues: manipulating Cu(I) → Cu(II) oxidation and exploiting three synergistic roles of boric acid has allowed the development of a general catalytic Chan-Lam amination, overcoming long-standing and unsolved amine and organoboron limitations of this valuable transformation.
NASA's Space Launch System: Systems Engineering Approach for Affordability and Mission Success
NASA Technical Reports Server (NTRS)
Hutt, John J.; Whitehead, Josh; Hanson, John
2017-01-01
NASA is working toward the first launch of the Space Launch System, a new, unmatched capability for deep space exploration with launch readiness planned for 2019. Since program start in 2011, SLS has passed several major formal design milestones, and every major element of the vehicle has produced test and flight hardware. The SLS approach to systems engineering has been key to the program's success. Key aspects of the SLS SE&I approach include: 1) minimizing the number of requirements, 2) elimination of explicit verification requirements, 3) use of certified models of subsystem capability in lieu of requirements when appropriate and 4) certification of capability beyond minimum required capability.
Cho, Jaehee; Park, Dong Jin; Ordonez, Zoa
2013-11-01
The main goal of this study was to assess how the millennial generation perceives companies that have different social media policies and how such perception influences key variables for job-seeking behaviors, including perceived person-organization fit (POF), organizational attraction, and job pursuit intention. Results from a univariate general linear model and path analysis supported all of the established hypotheses. In particular, the results revealed that millennials perceived higher POF for a company with organizational policies supporting employees' social media use. Further, organizational attractiveness significantly mediated the relationship between communication-oriented POF and job pursuit intention.
On recent advances and future research directions for computational fluid dynamics
NASA Technical Reports Server (NTRS)
Baker, A. J.; Soliman, M. O.; Manhardt, P. D.
1986-01-01
This paper highlights some recent accomplishments regarding CFD numerical algorithm constructions for generation of discrete approximate solutions to classes of Reynolds-averaged Navier-Stokes equations. Following an overview of turbulent closure modeling, and development of appropriate conservation law systems, a Taylor weak-statement semi-discrete approximate solution algorithm is developed. Various forms for completion to the final linear algebra statement are cited, as are a range of candidate numerical linear algebra solution procedures. This development sequence emphasizes the key building blocks of a CFD RNS algorithm, including solution trial and test spaces, integration procedure and added numerical stability mechanisms. A range of numerical results are discussed focusing on key topics guiding future research directions.
Fassett, William E
2011-10-10
As colleges and schools of pharmacy develop core courses related to patient safety, course-level outcomes will need to include both knowledge and performance measures. Three key performance outcomes for patient safety coursework, measured at the course level, are the ability to perform root cause analyses and healthcare failure mode effects analyses, and the ability to generate effective safety communications using structured formats such as the Situation-Background-Assessment-Recommendation (SBAR) situational briefing model. Each of these skills is widely used in patient safety work and competence in their use is essential for a pharmacist's ability to contribute as a member of a patient safety team.
The Fifth Calibration/Data Product Validation Panel Meeting
NASA Technical Reports Server (NTRS)
1992-01-01
The minutes and associated documents prepared from presentations and meetings at the Fifth Calibration/Data Product Validation Panel meeting in Boulder, Colorado, April 8 - 10, 1992, are presented. Key issues include (1) statistical characterization of data sets: finding statistics that characterize key attributes of the data sets, and defining ways to characterize the comparisons among data sets; (2) selection of specific intercomparison exercises: selecting characteristic spatial and temporal regions for intercomparisons, and impact of validation exercises on the logistics of current and planned field campaigns and model runs; and (3) preparation of data sets for intercomparisons: characterization of assumptions, transportable data formats, labeling data files, content of data sets, and data storage and distribution (EOSDIS interface).
Genetic mouse models relevant to schizophrenia: taking stock and looking forward.
Harrison, Paul J; Pritchett, David; Stumpenhorst, Katharina; Betts, Jill F; Nissen, Wiebke; Schweimer, Judith; Lane, Tracy; Burnet, Philip W J; Lamsa, Karri P; Sharp, Trevor; Bannerman, David M; Tunbridge, Elizabeth M
2012-03-01
Genetic mouse models relevant to schizophrenia complement, and have to a large extent supplanted, pharmacological and lesion-based rat models. The main attraction is that they potentially have greater construct validity; however, they share the fundamental limitations of all animal models of psychiatric disorder, and must also be viewed in the context of the uncertain and complex genetic architecture of psychosis. Some of the key issues, including the choice of gene to target, the manner of its manipulation, gene-gene and gene-environment interactions, and phenotypic characterization, are briefly considered in this commentary, illustrated by the relevant papers reported in this special issue. Copyright © 2011 Elsevier Ltd. All rights reserved.
Mathematical and Computational Modeling for Tumor Virotherapy with Mediated Immunity.
Timalsina, Asim; Tian, Jianjun Paul; Wang, Jin
2017-08-01
We propose a new mathematical modeling framework based on partial differential equations to study tumor virotherapy with mediated immunity. The model incorporates both innate and adaptive immune responses and represents the complex interaction among tumor cells, oncolytic viruses, and immune systems on a domain with a moving boundary. Using carefully designed computational methods, we conduct extensive numerical simulation to the model. The results allow us to examine tumor development under a wide range of settings and provide insight into several important aspects of the virotherapy, including the dependence of the efficacy on a few key parameters and the delay in the adaptive immunity. Our findings also suggest possible ways to improve the virotherapy for tumor treatment.
Dimensional Reduction for the General Markov Model on Phylogenetic Trees.
Sumner, Jeremy G
2017-03-01
We present a method of dimensional reduction for the general Markov model of sequence evolution on a phylogenetic tree. We show that taking certain linear combinations of the associated random variables (site pattern counts) reduces the dimensionality of the model from exponential in the number of extant taxa, to quadratic in the number of taxa, while retaining the ability to statistically identify phylogenetic divergence events. A key feature is the identification of an invariant subspace which depends only bilinearly on the model parameters, in contrast to the usual multi-linear dependence in the full space. We discuss potential applications including the computation of split (edge) weights on phylogenetic trees from observed sequence data.