Sample records for model input variables

  1. Input variable selection for data-driven models of Coriolis flowmeters for two-phase flow measurement

    NASA Astrophysics Data System (ADS)

    Wang, Lijuan; Yan, Yong; Wang, Xue; Wang, Tao

    2017-03-01

    Input variable selection is an essential step in the development of data-driven models for environmental, biological and industrial applications. Through input variable selection to eliminate the irrelevant or redundant variables, a suitable subset of variables is identified as the input of a model. Meanwhile, through input variable selection the complexity of the model structure is simplified and the computational efficiency is improved. This paper describes the procedures of the input variable selection for the data-driven models for the measurement of liquid mass flowrate and gas volume fraction under two-phase flow conditions using Coriolis flowmeters. Three advanced input variable selection methods, including partial mutual information (PMI), genetic algorithm-artificial neural network (GA-ANN) and tree-based iterative input selection (IIS) are applied in this study. Typical data-driven models incorporating support vector machine (SVM) are established individually based on the input candidates resulting from the selection methods. The validity of the selection outcomes is assessed through an output performance comparison of the SVM based data-driven models and sensitivity analysis. The validation and analysis results suggest that the input variables selected from the PMI algorithm provide more effective information for the models to measure liquid mass flowrate while the IIS algorithm provides a fewer but more effective variables for the models to predict gas volume fraction.

  2. Attributing uncertainty in streamflow simulations due to variable inputs via the Quantile Flow Deviation metric

    NASA Astrophysics Data System (ADS)

    Shoaib, Syed Abu; Marshall, Lucy; Sharma, Ashish

    2018-06-01

    Every model to characterise a real world process is affected by uncertainty. Selecting a suitable model is a vital aspect of engineering planning and design. Observation or input errors make the prediction of modelled responses more uncertain. By way of a recently developed attribution metric, this study is aimed at developing a method for analysing variability in model inputs together with model structure variability to quantify their relative contributions in typical hydrological modelling applications. The Quantile Flow Deviation (QFD) metric is used to assess these alternate sources of uncertainty. The Australian Water Availability Project (AWAP) precipitation data for four different Australian catchments is used to analyse the impact of spatial rainfall variability on simulated streamflow variability via the QFD. The QFD metric attributes the variability in flow ensembles to uncertainty associated with the selection of a model structure and input time series. For the case study catchments, the relative contribution of input uncertainty due to rainfall is higher than that due to potential evapotranspiration, and overall input uncertainty is significant compared to model structure and parameter uncertainty. Overall, this study investigates the propagation of input uncertainty in a daily streamflow modelling scenario and demonstrates how input errors manifest across different streamflow magnitudes.

  3. An analysis of input errors in precipitation-runoff models using regression with errors in the independent variables

    USGS Publications Warehouse

    Troutman, Brent M.

    1982-01-01

    Errors in runoff prediction caused by input data errors are analyzed by treating precipitation-runoff models as regression (conditional expectation) models. Independent variables of the regression consist of precipitation and other input measurements; the dependent variable is runoff. In models using erroneous input data, prediction errors are inflated and estimates of expected storm runoff for given observed input variables are biased. This bias in expected runoff estimation results in biased parameter estimates if these parameter estimates are obtained by a least squares fit of predicted to observed runoff values. The problems of error inflation and bias are examined in detail for a simple linear regression of runoff on rainfall and for a nonlinear U.S. Geological Survey precipitation-runoff model. Some implications for flood frequency analysis are considered. A case study using a set of data from Turtle Creek near Dallas, Texas illustrates the problems of model input errors.

  4. Analytic uncertainty and sensitivity analysis of models with input correlations

    NASA Astrophysics Data System (ADS)

    Zhu, Yueying; Wang, Qiuping A.; Li, Wei; Cai, Xu

    2018-03-01

    Probabilistic uncertainty analysis is a common means of evaluating mathematical models. In mathematical modeling, the uncertainty in input variables is specified through distribution laws. Its contribution to the uncertainty in model response is usually analyzed by assuming that input variables are independent of each other. However, correlated parameters are often happened in practical applications. In the present paper, an analytic method is built for the uncertainty and sensitivity analysis of models in the presence of input correlations. With the method, it is straightforward to identify the importance of the independence and correlations of input variables in determining the model response. This allows one to decide whether or not the input correlations should be considered in practice. Numerical examples suggest the effectiveness and validation of our analytic method in the analysis of general models. A practical application of the method is also proposed to the uncertainty and sensitivity analysis of a deterministic HIV model.

  5. Influential input classification in probabilistic multimedia models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maddalena, Randy L.; McKone, Thomas E.; Hsieh, Dennis P.H.

    1999-05-01

    Monte Carlo analysis is a statistical simulation method that is often used to assess and quantify the outcome variance in complex environmental fate and effects models. Total outcome variance of these models is a function of (1) the uncertainty and/or variability associated with each model input and (2) the sensitivity of the model outcome to changes in the inputs. To propagate variance through a model using Monte Carlo techniques, each variable must be assigned a probability distribution. The validity of these distributions directly influences the accuracy and reliability of the model outcome. To efficiently allocate resources for constructing distributions onemore » should first identify the most influential set of variables in the model. Although existing sensitivity and uncertainty analysis methods can provide a relative ranking of the importance of model inputs, they fail to identify the minimum set of stochastic inputs necessary to sufficiently characterize the outcome variance. In this paper, we describe and demonstrate a novel sensitivity/uncertainty analysis method for assessing the importance of each variable in a multimedia environmental fate model. Our analyses show that for a given scenario, a relatively small number of input variables influence the central tendency of the model and an even smaller set determines the shape of the outcome distribution. For each input, the level of influence depends on the scenario under consideration. This information is useful for developing site specific models and improving our understanding of the processes that have the greatest influence on the variance in outcomes from multimedia models.« less

  6. Input variable selection and calibration data selection for storm water quality regression models.

    PubMed

    Sun, Siao; Bertrand-Krajewski, Jean-Luc

    2013-01-01

    Storm water quality models are useful tools in storm water management. Interest has been growing in analyzing existing data for developing models for urban storm water quality evaluations. It is important to select appropriate model inputs when many candidate explanatory variables are available. Model calibration and verification are essential steps in any storm water quality modeling. This study investigates input variable selection and calibration data selection in storm water quality regression models. The two selection problems are mutually interacted. A procedure is developed in order to fulfil the two selection tasks in order. The procedure firstly selects model input variables using a cross validation method. An appropriate number of variables are identified as model inputs to ensure that a model is neither overfitted nor underfitted. Based on the model input selection results, calibration data selection is studied. Uncertainty of model performances due to calibration data selection is investigated with a random selection method. An approach using the cluster method is applied in order to enhance model calibration practice based on the principle of selecting representative data for calibration. The comparison between results from the cluster selection method and random selection shows that the former can significantly improve performances of calibrated models. It is found that the information content in calibration data is important in addition to the size of calibration data.

  7. Including long-range dependence in integrate-and-fire models of the high interspike-interval variability of cortical neurons.

    PubMed

    Jackson, B Scott

    2004-10-01

    Many different types of integrate-and-fire models have been designed in order to explain how it is possible for a cortical neuron to integrate over many independent inputs while still producing highly variable spike trains. Within this context, the variability of spike trains has been almost exclusively measured using the coefficient of variation of interspike intervals. However, another important statistical property that has been found in cortical spike trains and is closely associated with their high firing variability is long-range dependence. We investigate the conditions, if any, under which such models produce output spike trains with both interspike-interval variability and long-range dependence similar to those that have previously been measured from actual cortical neurons. We first show analytically that a large class of high-variability integrate-and-fire models is incapable of producing such outputs based on the fact that their output spike trains are always mathematically equivalent to renewal processes. This class of models subsumes a majority of previously published models, including those that use excitation-inhibition balance, correlated inputs, partial reset, or nonlinear leakage to produce outputs with high variability. Next, we study integrate-and-fire models that have (nonPoissonian) renewal point process inputs instead of the Poisson point process inputs used in the preceding class of models. The confluence of our analytical and simulation results implies that the renewal-input model is capable of producing high variability and long-range dependence comparable to that seen in spike trains recorded from cortical neurons, but only if the interspike intervals of the inputs have infinite variance, a physiologically unrealistic condition. Finally, we suggest a new integrate-and-fire model that does not suffer any of the previously mentioned shortcomings. By analyzing simulation results for this model, we show that it is capable of producing output spike trains with interspike-interval variability and long-range dependence that match empirical data from cortical spike trains. This model is similar to the other models in this study, except that its inputs are fractional-gaussian-noise-driven Poisson processes rather than renewal point processes. In addition to this model's success in producing realistic output spike trains, its inputs have long-range dependence similar to that found in most subcortical neurons in sensory pathways, including the inputs to cortex. Analysis of output spike trains from simulations of this model also shows that a tight balance between the amounts of excitation and inhibition at the inputs to cortical neurons is not necessary for high interspike-interval variability at their outputs. Furthermore, in our analysis of this model, we show that the superposition of many fractional-gaussian-noise-driven Poisson processes does not approximate a Poisson process, which challenges the common assumption that the total effect of a large number of inputs on a neuron is well represented by a Poisson process.

  8. Artificial neural network model for ozone concentration estimation and Monte Carlo analysis

    NASA Astrophysics Data System (ADS)

    Gao, Meng; Yin, Liting; Ning, Jicai

    2018-07-01

    Air pollution in urban atmosphere directly affects public-health; therefore, it is very essential to predict air pollutant concentrations. Air quality is a complex function of emissions, meteorology and topography, and artificial neural networks (ANNs) provide a sound framework for relating these variables. In this study, we investigated the feasibility of using ANN model with meteorological parameters as input variables to predict ozone concentration in the urban area of Jinan, a metropolis in Northern China. We firstly found that the architecture of network of neurons had little effect on the predicting capability of ANN model. A parsimonious ANN model with 6 routinely monitored meteorological parameters and one temporal covariate (the category of day, i.e. working day, legal holiday and regular weekend) as input variables was identified, where the 7 input variables were selected following the forward selection procedure. Compared with the benchmarking ANN model with 9 meteorological and photochemical parameters as input variables, the predicting capability of the parsimonious ANN model was acceptable. Its predicting capability was also verified in term of warming success ratio during the pollution episodes. Finally, uncertainty and sensitivity analysis were also performed based on Monte Carlo simulations (MCS). It was concluded that the ANN could properly predict the ambient ozone level. Maximum temperature, atmospheric pressure, sunshine duration and maximum wind speed were identified as the predominate input variables significantly influencing the prediction of ambient ozone concentrations.

  9. Effects of input uncertainty on cross-scale crop modeling

    NASA Astrophysics Data System (ADS)

    Waha, Katharina; Huth, Neil; Carberry, Peter

    2014-05-01

    The quality of data on climate, soils and agricultural management in the tropics is in general low or data is scarce leading to uncertainty in process-based modeling of cropping systems. Process-based crop models are common tools for simulating crop yields and crop production in climate change impact studies, studies on mitigation and adaptation options or food security studies. Crop modelers are concerned about input data accuracy as this, together with an adequate representation of plant physiology processes and choice of model parameters, are the key factors for a reliable simulation. For example, assuming an error in measurements of air temperature, radiation and precipitation of ± 0.2°C, ± 2 % and ± 3 % respectively, Fodor & Kovacs (2005) estimate that this translates into an uncertainty of 5-7 % in yield and biomass simulations. In our study we seek to answer the following questions: (1) are there important uncertainties in the spatial variability of simulated crop yields on the grid-cell level displayed on maps, (2) are there important uncertainties in the temporal variability of simulated crop yields on the aggregated, national level displayed in time-series, and (3) how does the accuracy of different soil, climate and management information influence the simulated crop yields in two crop models designed for use at different spatial scales? The study will help to determine whether more detailed information improves the simulations and to advise model users on the uncertainty related to input data. We analyse the performance of the point-scale crop model APSIM (Keating et al., 2003) and the global scale crop model LPJmL (Bondeau et al., 2007) with different climate information (monthly and daily) and soil conditions (global soil map and African soil map) under different agricultural management (uniform and variable sowing dates) for the low-input maize-growing areas in Burkina Faso/West Africa. We test the models' response to different levels of input data from very little to very detailed information, and compare the models' abilities to represent the spatial variability and temporal variability in crop yields. We display the uncertainty in crop yield simulations from different input data and crop models in Taylor diagrams which are a graphical summary of the similarity between simulations and observations (Taylor, 2001). The observed spatial variability can be represented well from both models (R=0.6-0.8) but APSIM predicts higher spatial variability than LPJmL due to its sensitivity to soil parameters. Simulations with the same crop model, climate and sowing dates have similar statistics and therefore similar skill to reproduce the observed spatial variability. Soil data is less important for the skill of a crop model to reproduce the observed spatial variability. However, the uncertainty in simulated spatial variability from the two crop models is larger than from input data settings and APSIM is more sensitive to input data then LPJmL. Even with a detailed, point-scale crop model and detailed input data it is difficult to capture the complexity and diversity in maize cropping systems.

  10. Applications of information theory, genetic algorithms, and neural models to predict oil flow

    NASA Astrophysics Data System (ADS)

    Ludwig, Oswaldo; Nunes, Urbano; Araújo, Rui; Schnitman, Leizer; Lepikson, Herman Augusto

    2009-07-01

    This work introduces a new information-theoretic methodology for choosing variables and their time lags in a prediction setting, particularly when neural networks are used in non-linear modeling. The first contribution of this work is the Cross Entropy Function (XEF) proposed to select input variables and their lags in order to compose the input vector of black-box prediction models. The proposed XEF method is more appropriate than the usually applied Cross Correlation Function (XCF) when the relationship among the input and output signals comes from a non-linear dynamic system. The second contribution is a method that minimizes the Joint Conditional Entropy (JCE) between the input and output variables by means of a Genetic Algorithm (GA). The aim is to take into account the dependence among the input variables when selecting the most appropriate set of inputs for a prediction problem. In short, theses methods can be used to assist the selection of input training data that have the necessary information to predict the target data. The proposed methods are applied to a petroleum engineering problem; predicting oil production. Experimental results obtained with a real-world dataset are presented demonstrating the feasibility and effectiveness of the method.

  11. Neural Network Machine Learning and Dimension Reduction for Data Visualization

    NASA Technical Reports Server (NTRS)

    Liles, Charles A.

    2014-01-01

    Neural network machine learning in computer science is a continuously developing field of study. Although neural network models have been developed which can accurately predict a numeric value or nominal classification, a general purpose method for constructing neural network architecture has yet to be developed. Computer scientists are often forced to rely on a trial-and-error process of developing and improving accurate neural network models. In many cases, models are constructed from a large number of input parameters. Understanding which input parameters have the greatest impact on the prediction of the model is often difficult to surmise, especially when the number of input variables is very high. This challenge is often labeled the "curse of dimensionality" in scientific fields. However, techniques exist for reducing the dimensionality of problems to just two dimensions. Once a problem's dimensions have been mapped to two dimensions, it can be easily plotted and understood by humans. The ability to visualize a multi-dimensional dataset can provide a means of identifying which input variables have the highest effect on determining a nominal or numeric output. Identifying these variables can provide a better means of training neural network models; models can be more easily and quickly trained using only input variables which appear to affect the outcome variable. The purpose of this project is to explore varying means of training neural networks and to utilize dimensional reduction for visualizing and understanding complex datasets.

  12. Selection of relevant input variables in storm water quality modeling by multiobjective evolutionary polynomial regression paradigm

    NASA Astrophysics Data System (ADS)

    Creaco, E.; Berardi, L.; Sun, Siao; Giustolisi, O.; Savic, D.

    2016-04-01

    The growing availability of field data, from information and communication technologies (ICTs) in "smart" urban infrastructures, allows data modeling to understand complex phenomena and to support management decisions. Among the analyzed phenomena, those related to storm water quality modeling have recently been gaining interest in the scientific literature. Nonetheless, the large amount of available data poses the problem of selecting relevant variables to describe a phenomenon and enable robust data modeling. This paper presents a procedure for the selection of relevant input variables using the multiobjective evolutionary polynomial regression (EPR-MOGA) paradigm. The procedure is based on scrutinizing the explanatory variables that appear inside the set of EPR-MOGA symbolic model expressions of increasing complexity and goodness of fit to target output. The strategy also enables the selection to be validated by engineering judgement. In such context, the multiple case study extension of EPR-MOGA, called MCS-EPR-MOGA, is adopted. The application of the proposed procedure to modeling storm water quality parameters in two French catchments shows that it was able to significantly reduce the number of explanatory variables for successive analyses. Finally, the EPR-MOGA models obtained after the input selection are compared with those obtained by using the same technique without benefitting from input selection and with those obtained in previous works where other data-modeling techniques were used on the same data. The comparison highlights the effectiveness of both EPR-MOGA and the input selection procedure.

  13. The extraction of simple relationships in growth factor-specific multiple-input and multiple-output systems in cell-fate decisions by backward elimination PLS regression.

    PubMed

    Akimoto, Yuki; Yugi, Katsuyuki; Uda, Shinsuke; Kudo, Takamasa; Komori, Yasunori; Kubota, Hiroyuki; Kuroda, Shinya

    2013-01-01

    Cells use common signaling molecules for the selective control of downstream gene expression and cell-fate decisions. The relationship between signaling molecules and downstream gene expression and cellular phenotypes is a multiple-input and multiple-output (MIMO) system and is difficult to understand due to its complexity. For example, it has been reported that, in PC12 cells, different types of growth factors activate MAP kinases (MAPKs) including ERK, JNK, and p38, and CREB, for selective protein expression of immediate early genes (IEGs) such as c-FOS, c-JUN, EGR1, JUNB, and FOSB, leading to cell differentiation, proliferation and cell death; however, how multiple-inputs such as MAPKs and CREB regulate multiple-outputs such as expression of the IEGs and cellular phenotypes remains unclear. To address this issue, we employed a statistical method called partial least squares (PLS) regression, which involves a reduction of the dimensionality of the inputs and outputs into latent variables and a linear regression between these latent variables. We measured 1,200 data points for MAPKs and CREB as the inputs and 1,900 data points for IEGs and cellular phenotypes as the outputs, and we constructed the PLS model from these data. The PLS model highlighted the complexity of the MIMO system and growth factor-specific input-output relationships of cell-fate decisions in PC12 cells. Furthermore, to reduce the complexity, we applied a backward elimination method to the PLS regression, in which 60 input variables were reduced to 5 variables, including the phosphorylation of ERK at 10 min, CREB at 5 min and 60 min, AKT at 5 min and JNK at 30 min. The simple PLS model with only 5 input variables demonstrated a predictive ability comparable to that of the full PLS model. The 5 input variables effectively extracted the growth factor-specific simple relationships within the MIMO system in cell-fate decisions in PC12 cells.

  14. CHARACTERISTIC LENGTH SCALE OF INPUT DATA IN DISTRIBUTED MODELS: IMPLICATIONS FOR MODELING GRID SIZE. (R824784)

    EPA Science Inventory

    The appropriate spatial scale for a distributed energy balance model was investigated by: (a) determining the scale of variability associated with the remotely sensed and GIS-generated model input data; and (b) examining the effects of input data spatial aggregation on model resp...

  15. A Multifactor Approach to Research in Instructional Technology.

    ERIC Educational Resources Information Center

    Ragan, Tillman J.

    In a field such as instructional design, explanations of educational outcomes must necessarily consider multiple input variables. To adequately understand the contribution made by the independent variables, it is helpful to have a visual conception of how the input variables interrelate. Two variable models are adequately represented by a two…

  16. A Bayesian approach to model structural error and input variability in groundwater modeling

    NASA Astrophysics Data System (ADS)

    Xu, T.; Valocchi, A. J.; Lin, Y. F. F.; Liang, F.

    2015-12-01

    Effective water resource management typically relies on numerical models to analyze groundwater flow and solute transport processes. Model structural error (due to simplification and/or misrepresentation of the "true" environmental system) and input forcing variability (which commonly arises since some inputs are uncontrolled or estimated with high uncertainty) are ubiquitous in groundwater models. Calibration that overlooks errors in model structure and input data can lead to biased parameter estimates and compromised predictions. We present a fully Bayesian approach for a complete assessment of uncertainty for spatially distributed groundwater models. The approach explicitly recognizes stochastic input and uses data-driven error models based on nonparametric kernel methods to account for model structural error. We employ exploratory data analysis to assist in specifying informative prior for error models to improve identifiability. The inference is facilitated by an efficient sampling algorithm based on DREAM-ZS and a parameter subspace multiple-try strategy to reduce the required number of forward simulations of the groundwater model. We demonstrate the Bayesian approach through a synthetic case study of surface-ground water interaction under changing pumping conditions. It is found that explicit treatment of errors in model structure and input data (groundwater pumping rate) has substantial impact on the posterior distribution of groundwater model parameters. Using error models reduces predictive bias caused by parameter compensation. In addition, input variability increases parametric and predictive uncertainty. The Bayesian approach allows for a comparison among the contributions from various error sources, which could inform future model improvement and data collection efforts on how to best direct resources towards reducing predictive uncertainty.

  17. Exploring the Impact of Different Input Data Types on Soil Variable Estimation Using the ICRAF-ISRIC Global Soil Spectral Database.

    PubMed

    Aitkenhead, Matt J; Black, Helaina I J

    2018-02-01

    Using the International Centre for Research in Agroforestry-International Soil Reference and Information Centre (ICRAF-ISRIC) global soil spectroscopy database, models were developed to estimate a number of soil variables using different input data types. These input types included: (1) site data only; (2) visible-near-infrared (Vis-NIR) diffuse reflectance spectroscopy only; (3) combined site and Vis-NIR data; (4) red-green-blue (RGB) color data only; and (5) combined site and RGB color data. The models produced variable estimation accuracy, with RGB only being generally worst and spectroscopy plus site being best. However, we showed that for certain variables, estimation accuracy levels achieved with the "site plus RGB input data" were sufficiently good to provide useful estimates (r 2  > 0.7). These included major elements (Ca, Si, Al, Fe), organic carbon, and cation exchange capacity. Estimates for bulk density, contrast-to-noise (C/N), and P were moderately good, but K was not well estimated using this model type. For the "spectra plus site" model, many more variables were well estimated, including many that are important indicators for agricultural productivity and soil health. Sum of cation, electrical conductivity, Si, Ca, and Al oxides, and C/N ratio were estimated using this approach with r 2 values > 0.9. This work provides a mechanism for identifying the cost-effectiveness of using different model input data, with associated costs, for estimating soil variables to required levels of accuracy.

  18. The SYSGEN user package

    NASA Technical Reports Server (NTRS)

    Carlson, C. R.

    1981-01-01

    The user documentation of the SYSGEN model and its links with other simulations is described. The SYSGEN is a production costing and reliability model of electric utility systems. Hydroelectric, storage, and time dependent generating units are modeled in addition to conventional generating plants. Input variables, modeling options, output variables, and reports formats are explained. SYSGEN also can be run interactively by using a program called FEPS (Front End Program for SYSGEN). A format for SYSGEN input variables which is designed for use with FEPS is presented.

  19. Soft Mixer Assignment in a Hierarchical Generative Model of Natural Scene Statistics

    PubMed Central

    Schwartz, Odelia; Sejnowski, Terrence J.; Dayan, Peter

    2010-01-01

    Gaussian scale mixture models offer a top-down description of signal generation that captures key bottom-up statistical characteristics of filter responses to images. However, the pattern of dependence among the filters for this class of models is prespecified. We propose a novel extension to the gaussian scale mixture model that learns the pattern of dependence from observed inputs and thereby induces a hierarchical representation of these inputs. Specifically, we propose that inputs are generated by gaussian variables (modeling local filter structure), multiplied by a mixer variable that is assigned probabilistically to each input from a set of possible mixers. We demonstrate inference of both components of the generative model, for synthesized data and for different classes of natural images, such as a generic ensemble and faces. For natural images, the mixer variable assignments show invariances resembling those of complex cells in visual cortex; the statistics of the gaussian components of the model are in accord with the outputs of divisive normalization models. We also show how our model helps interrelate a wide range of models of image statistics and cortical processing. PMID:16999575

  20. Harmonize input selection for sediment transport prediction

    NASA Astrophysics Data System (ADS)

    Afan, Haitham Abdulmohsin; Keshtegar, Behrooz; Mohtar, Wan Hanna Melini Wan; El-Shafie, Ahmed

    2017-09-01

    In this paper, three modeling approaches using a Neural Network (NN), Response Surface Method (RSM) and response surface method basis Global Harmony Search (GHS) are applied to predict the daily time series suspended sediment load. Generally, the input variables for forecasting the suspended sediment load are manually selected based on the maximum correlations of input variables in the modeling approaches based on NN and RSM. The RSM is improved to select the input variables by using the errors terms of training data based on the GHS, namely as response surface method and global harmony search (RSM-GHS) modeling method. The second-order polynomial function with cross terms is applied to calibrate the time series suspended sediment load with three, four and five input variables in the proposed RSM-GHS. The linear, square and cross corrections of twenty input variables of antecedent values of suspended sediment load and water discharge are investigated to achieve the best predictions of the RSM based on the GHS method. The performances of the NN, RSM and proposed RSM-GHS including both accuracy and simplicity are compared through several comparative predicted and error statistics. The results illustrated that the proposed RSM-GHS is as uncomplicated as the RSM but performed better, where fewer errors and better correlation was observed (R = 0.95, MAE = 18.09 (ton/day), RMSE = 25.16 (ton/day)) compared to the ANN (R = 0.91, MAE = 20.17 (ton/day), RMSE = 33.09 (ton/day)) and RSM (R = 0.91, MAE = 20.06 (ton/day), RMSE = 31.92 (ton/day)) for all types of input variables.

  1. Hybrid robust model based on an improved functional link neural network integrating with partial least square (IFLNN-PLS) and its application to predicting key process variables.

    PubMed

    He, Yan-Lin; Xu, Yuan; Geng, Zhi-Qiang; Zhu, Qun-Xiong

    2016-03-01

    In this paper, a hybrid robust model based on an improved functional link neural network integrating with partial least square (IFLNN-PLS) is proposed. Firstly, an improved functional link neural network with small norm of expanded weights and high input-output correlation (SNEWHIOC-FLNN) was proposed for enhancing the generalization performance of FLNN. Unlike the traditional FLNN, the expanded variables of the original inputs are not directly used as the inputs in the proposed SNEWHIOC-FLNN model. The original inputs are attached to some small norm of expanded weights. As a result, the correlation coefficient between some of the expanded variables and the outputs is enhanced. The larger the correlation coefficient is, the more relevant the expanded variables tend to be. In the end, the expanded variables with larger correlation coefficient are selected as the inputs to improve the performance of the traditional FLNN. In order to test the proposed SNEWHIOC-FLNN model, three UCI (University of California, Irvine) regression datasets named Housing, Concrete Compressive Strength (CCS), and Yacht Hydro Dynamics (YHD) are selected. Then a hybrid model based on the improved FLNN integrating with partial least square (IFLNN-PLS) was built. In IFLNN-PLS model, the connection weights are calculated using the partial least square method but not the error back propagation algorithm. Lastly, IFLNN-PLS was developed as an intelligent measurement model for accurately predicting the key variables in the Purified Terephthalic Acid (PTA) process and the High Density Polyethylene (HDPE) process. Simulation results illustrated that the IFLNN-PLS could significant improve the prediction performance. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  2. A users' manual for MCPRAM (Monte Carlo PReprocessor for AMEER) and for the fuze options in AMEER (Aero Mechanical Equation Evaluation Routines)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LaFarge, R.A.

    1990-05-01

    MCPRAM (Monte Carlo PReprocessor for AMEER), a computer program that uses Monte Carlo techniques to create an input file for the AMEER trajectory code, has been developed for the Sandia National Laboratories VAX and Cray computers. Users can select the number of trajectories to compute, which AMEER variables to investigate, and the type of probability distribution for each variable. Any legal AMEER input variable can be investigated anywhere in the input run stream with either a normal, uniform, or Rayleigh distribution. Users also have the option to use covariance matrices for the investigation of certain correlated variables such as boostermore » pre-reentry errors and wind, axial force, and atmospheric models. In conjunction with MCPRAM, AMEER was modified to include the variables introduced by the covariance matrices and to include provisions for six types of fuze models. The new fuze models and the new AMEER variables are described in this report.« less

  3. A neural circuit mechanism for regulating vocal variability during song learning in zebra finches.

    PubMed

    Garst-Orozco, Jonathan; Babadi, Baktash; Ölveczky, Bence P

    2014-12-15

    Motor skill learning is characterized by improved performance and reduced motor variability. The neural mechanisms that couple skill level and variability, however, are not known. The zebra finch, a songbird, presents a unique opportunity to address this question because production of learned song and induction of vocal variability are instantiated in distinct circuits that converge on a motor cortex analogue controlling vocal output. To probe the interplay between learning and variability, we made intracellular recordings from neurons in this area, characterizing how their inputs from the functionally distinct pathways change throughout song development. We found that inputs that drive stereotyped song-patterns are strengthened and pruned, while inputs that induce variability remain unchanged. A simple network model showed that strengthening and pruning of action-specific connections reduces the sensitivity of motor control circuits to variable input and neural 'noise'. This identifies a simple and general mechanism for learning-related regulation of motor variability.

  4. Peer Educators and Close Friends as Predictors of Male College Students' Willingness to Prevent Rape

    ERIC Educational Resources Information Center

    Stein, Jerrold L.

    2007-01-01

    Astin's (1977, 1991, 1993) input-environment-outcome (I-E-O) model provided a conceptual framework for this study which measured 156 male college students' willingness to prevent rape (outcome variable). Predictor variables included personal attitudes (input variable), perceptions of close friends' attitudes toward rape and rape prevention…

  5. Alpha1 LASSO data bundles Lamont, OK

    DOE Data Explorer

    Gustafson, William Jr; Vogelmann, Andrew; Endo, Satoshi; Toto, Tami; Xiao, Heng; Li, Zhijin; Cheng, Xiaoping; Krishna, Bhargavi (ORCID:000000018828528X)

    2016-08-03

    A data bundle is a unified package consisting of LASSO LES input and output, observations, evaluation diagnostics, and model skill scores. LES input includes model configuration information and forcing data. LES output includes profile statistics and full domain fields of cloud and environmental variables. Model evaluation data consists of LES output and ARM observations co-registered on the same grid and sampling frequency. Model performance is quantified by skill scores and diagnostics in terms of cloud and environmental variables.

  6. Dynamics of vehicles in variable velocity runs over non-homogeneous flexible track and foundation with two point input models

    NASA Astrophysics Data System (ADS)

    Yadav, D.; Upadhyay, H. C.

    1992-07-01

    Vehicles obtain track-induced input through the wheels, which commonly number more than one. Analysis available for the vehicle response in a variable velocity run on a non-homogeneously profiled flexible track supported by compliant inertial foundation is for a linear heave model having a single ground input. This analysis is being extended to two point input models with heave-pitch and heave-roll degrees of freedom. Closed form expressions have been developed for the system response statistics. Results are presented for a railway coach and track/foundation problem, and the performances of heave, heave-pitch and heave-roll models have been compared. The three models are found to agree in describing the track response. However, the vehicle sprung mass behaviour is predicted to be different by these models, indicating the strong effect of coupling on the vehicle vibration.

  7. Bottom-up and Top-down Input Augment the Variability of Cortical Neurons

    PubMed Central

    Nassi, Jonathan J.; Kreiman, Gabriel; Born, Richard T.

    2016-01-01

    SUMMARY Neurons in the cerebral cortex respond inconsistently to a repeated sensory stimulus, yet they underlie our stable sensory experiences. Although the nature of this variability is unknown, its ubiquity has encouraged the general view that each cell produces random spike patterns that noisily represent its response rate. In contrast, here we show that reversibly inactivating distant sources of either bottom-up or top-down input to cortical visual areas in the alert primate reduces both the spike train irregularity and the trial-to-trial variability of single neurons. A simple model in which a fraction of the pre-synaptic input is silenced can reproduce this reduction in variability, provided that there exist temporal correlations primarily within, but not between, excitatory and inhibitory input pools. A large component of the variability of cortical neurons may therefore arise from synchronous input produced by signals arriving from multiple sources. PMID:27427459

  8. Probabilistic dose-response modeling: case study using dichloromethane PBPK model results.

    PubMed

    Marino, Dale J; Starr, Thomas B

    2007-12-01

    A revised assessment of dichloromethane (DCM) has recently been reported that examines the influence of human genetic polymorphisms on cancer risks using deterministic PBPK and dose-response modeling in the mouse combined with probabilistic PBPK modeling in humans. This assessment utilized Bayesian techniques to optimize kinetic variables in mice and humans with mean values from posterior distributions used in the deterministic modeling in the mouse. To supplement this research, a case study was undertaken to examine the potential impact of probabilistic rather than deterministic PBPK and dose-response modeling in mice on subsequent unit risk factor (URF) determinations. Four separate PBPK cases were examined based on the exposure regimen of the NTP DCM bioassay. These were (a) Same Mouse (single draw of all PBPK inputs for both treatment groups); (b) Correlated BW-Same Inputs (single draw of all PBPK inputs for both treatment groups except for bodyweights (BWs), which were entered as correlated variables); (c) Correlated BW-Different Inputs (separate draws of all PBPK inputs for both treatment groups except that BWs were entered as correlated variables); and (d) Different Mouse (separate draws of all PBPK inputs for both treatment groups). Monte Carlo PBPK inputs reflect posterior distributions from Bayesian calibration in the mouse that had been previously reported. A minimum of 12,500 PBPK iterations were undertaken, in which dose metrics, i.e., mg DCM metabolized by the GST pathway/L tissue/day for lung and liver were determined. For dose-response modeling, these metrics were combined with NTP tumor incidence data that were randomly selected from binomial distributions. Resultant potency factors (0.1/ED(10)) were coupled with probabilistic PBPK modeling in humans that incorporated genetic polymorphisms to derive URFs. Results show that there was relatively little difference, i.e., <10% in central tendency and upper percentile URFs, regardless of the case evaluated. Independent draws of PBPK inputs resulted in the slightly higher URFs. Results were also comparable to corresponding values from the previously reported deterministic mouse PBPK and dose-response modeling approach that used LED(10)s to derive potency factors. This finding indicated that the adjustment from ED(10) to LED(10) in the deterministic approach for DCM compensated for variability resulting from probabilistic PBPK and dose-response modeling in the mouse. Finally, results show a similar degree of variability in DCM risk estimates from a number of different sources including the current effort even though these estimates were developed using very different techniques. Given the variety of different approaches involved, 95th percentile-to-mean risk estimate ratios of 2.1-4.1 represent reasonable bounds on variability estimates regarding probabilistic assessments of DCM.

  9. Hourly predictive Levenberg-Marquardt ANN and multi linear regression models for predicting of dew point temperature

    NASA Astrophysics Data System (ADS)

    Zounemat-Kermani, Mohammad

    2012-08-01

    In this study, the ability of two models of multi linear regression (MLR) and Levenberg-Marquardt (LM) feed-forward neural network was examined to estimate the hourly dew point temperature. Dew point temperature is the temperature at which water vapor in the air condenses into liquid. This temperature can be useful in estimating meteorological variables such as fog, rain, snow, dew, and evapotranspiration and in investigating agronomical issues as stomatal closure in plants. The availability of hourly records of climatic data (air temperature, relative humidity and pressure) which could be used to predict dew point temperature initiated the practice of modeling. Additionally, the wind vector (wind speed magnitude and direction) and conceptual input of weather condition were employed as other input variables. The three quantitative standard statistical performance evaluation measures, i.e. the root mean squared error, mean absolute error, and absolute logarithmic Nash-Sutcliffe efficiency coefficient ( {| {{{Log}}({{NS}})} |} ) were employed to evaluate the performances of the developed models. The results showed that applying wind vector and weather condition as input vectors along with meteorological variables could slightly increase the ANN and MLR predictive accuracy. The results also revealed that LM-NN was superior to MLR model and the best performance was obtained by considering all potential input variables in terms of different evaluation criteria.

  10. Variance-based interaction index measuring heteroscedasticity

    NASA Astrophysics Data System (ADS)

    Ito, Keiichi; Couckuyt, Ivo; Poles, Silvia; Dhaene, Tom

    2016-06-01

    This work is motivated by the need to deal with models with high-dimensional input spaces of real variables. One way to tackle high-dimensional problems is to identify interaction or non-interaction among input parameters. We propose a new variance-based sensitivity interaction index that can detect and quantify interactions among the input variables of mathematical functions and computer simulations. The computation is very similar to first-order sensitivity indices by Sobol'. The proposed interaction index can quantify the relative importance of input variables in interaction. Furthermore, detection of non-interaction for screening can be done with as low as 4 n + 2 function evaluations, where n is the number of input variables. Using the interaction indices based on heteroscedasticity, the original function may be decomposed into a set of lower dimensional functions which may then be analyzed separately.

  11. Revealing unobserved factors underlying cortical activity with a rectified latent variable model applied to neural population recordings.

    PubMed

    Whiteway, Matthew R; Butts, Daniel A

    2017-03-01

    The activity of sensory cortical neurons is not only driven by external stimuli but also shaped by other sources of input to the cortex. Unlike external stimuli, these other sources of input are challenging to experimentally control, or even observe, and as a result contribute to variability of neural responses to sensory stimuli. However, such sources of input are likely not "noise" and may play an integral role in sensory cortex function. Here we introduce the rectified latent variable model (RLVM) in order to identify these sources of input using simultaneously recorded cortical neuron populations. The RLVM is novel in that it employs nonnegative (rectified) latent variables and is much less restrictive in the mathematical constraints on solutions because of the use of an autoencoder neural network to initialize model parameters. We show that the RLVM outperforms principal component analysis, factor analysis, and independent component analysis, using simulated data across a range of conditions. We then apply this model to two-photon imaging of hundreds of simultaneously recorded neurons in mouse primary somatosensory cortex during a tactile discrimination task. Across many experiments, the RLVM identifies latent variables related to both the tactile stimulation as well as nonstimulus aspects of the behavioral task, with a majority of activity explained by the latter. These results suggest that properly identifying such latent variables is necessary for a full understanding of sensory cortical function and demonstrate novel methods for leveraging large population recordings to this end. NEW & NOTEWORTHY The rapid development of neural recording technologies presents new opportunities for understanding patterns of activity across neural populations. Here we show how a latent variable model with appropriate nonlinear form can be used to identify sources of input to a neural population and infer their time courses. Furthermore, we demonstrate how these sources are related to behavioral contexts outside of direct experimental control. Copyright © 2017 the American Physiological Society.

  12. How model and input uncertainty impact maize yield simulations in West Africa

    NASA Astrophysics Data System (ADS)

    Waha, Katharina; Huth, Neil; Carberry, Peter; Wang, Enli

    2015-02-01

    Crop models are common tools for simulating crop yields and crop production in studies on food security and global change. Various uncertainties however exist, not only in the model design and model parameters, but also and maybe even more important in soil, climate and management input data. We analyze the performance of the point-scale crop model APSIM and the global scale crop model LPJmL with different climate and soil conditions under different agricultural management in the low-input maize-growing areas of Burkina Faso, West Africa. We test the models’ response to different levels of input information from little to detailed information on soil, climate (1961-2000) and agricultural management and compare the models’ ability to represent the observed spatial (between locations) and temporal variability (between years) in crop yields. We found that the resolution of different soil, climate and management information influences the simulated crop yields in both models. However, the difference between models is larger than between input data and larger between simulations with different climate and management information than between simulations with different soil information. The observed spatial variability can be represented well from both models even with little information on soils and management but APSIM simulates a higher variation between single locations than LPJmL. The agreement of simulated and observed temporal variability is lower due to non-climatic factors e.g. investment in agricultural research and development between 1987 and 1991 in Burkina Faso which resulted in a doubling of maize yields. The findings of our study highlight the importance of scale and model choice and show that the most detailed input data does not necessarily improve model performance.

  13. A new interpretation and validation of variance based importance measures for models with correlated inputs

    NASA Astrophysics Data System (ADS)

    Hao, Wenrui; Lu, Zhenzhou; Li, Luyi

    2013-05-01

    In order to explore the contributions by correlated input variables to the variance of the output, a novel interpretation framework of importance measure indices is proposed for a model with correlated inputs, which includes the indices of the total correlated contribution and the total uncorrelated contribution. The proposed indices accurately describe the connotations of the contributions by the correlated input to the variance of output, and they can be viewed as the complement and correction of the interpretation about the contributions by the correlated inputs presented in "Estimation of global sensitivity indices for models with dependent variables, Computer Physics Communications, 183 (2012) 937-946". Both of them contain the independent contribution by an individual input. Taking the general form of quadratic polynomial as an illustration, the total correlated contribution and the independent contribution by an individual input are derived analytically, from which the components and their origins of both contributions of correlated input can be clarified without any ambiguity. In the special case that no square term is included in the quadratic polynomial model, the total correlated contribution by the input can be further decomposed into the variance contribution related to the correlation of the input with other inputs and the independent contribution by the input itself, and the total uncorrelated contribution can be further decomposed into the independent part by interaction between the input and others and the independent part by the input itself. Numerical examples are employed and their results demonstrate that the derived analytical expressions of the variance-based importance measure are correct, and the clarification of the correlated input contribution to model output by the analytical derivation is very important for expanding the theory and solutions of uncorrelated input to those of the correlated one.

  14. A mathematical model for Vertical Attitude Takeoff and Landing (VATOL) aircraft simulation. Volume 2: Model equations and base aircraft data

    NASA Technical Reports Server (NTRS)

    Fortenbaugh, R. L.

    1980-01-01

    Equations incorporated in a VATOL six degree of freedom off-line digital simulation program and data for the Vought SF-121 VATOL aircraft concept which served as the baseline for the development of this program are presented. The equations and data are intended to facilitate the development of a piloted VATOL simulation. The equation presentation format is to state the equations which define a particular model segment. Listings of constants required to quantify the model segment, input variables required to exercise the model segment, and output variables required by other model segments are included. In several instances a series of input or output variables are followed by a section number in parentheses which identifies the model segment of origination or termination of those variables.

  15. Soft sensor modeling based on variable partition ensemble method for nonlinear batch processes

    NASA Astrophysics Data System (ADS)

    Wang, Li; Chen, Xiangguang; Yang, Kai; Jin, Huaiping

    2017-01-01

    Batch processes are always characterized by nonlinear and system uncertain properties, therefore, the conventional single model may be ill-suited. A local learning strategy soft sensor based on variable partition ensemble method is developed for the quality prediction of nonlinear and non-Gaussian batch processes. A set of input variable sets are obtained by bootstrapping and PMI criterion. Then, multiple local GPR models are developed based on each local input variable set. When a new test data is coming, the posterior probability of each best performance local model is estimated based on Bayesian inference and used to combine these local GPR models to get the final prediction result. The proposed soft sensor is demonstrated by applying to an industrial fed-batch chlortetracycline fermentation process.

  16. Integrated controls design optimization

    DOEpatents

    Lou, Xinsheng; Neuschaefer, Carl H.

    2015-09-01

    A control system (207) for optimizing a chemical looping process of a power plant includes an optimizer (420), an income algorithm (230) and a cost algorithm (225) and a chemical looping process models. The process models are used to predict the process outputs from process input variables. Some of the process in puts and output variables are related to the income of the plant; and some others are related to the cost of the plant operations. The income algorithm (230) provides an income input to the optimizer (420) based on a plurality of input parameters (215) of the power plant. The cost algorithm (225) provides a cost input to the optimizer (420) based on a plurality of output parameters (220) of the power plant. The optimizer (420) determines an optimized operating parameter solution based on at least one of the income input and the cost input, and supplies the optimized operating parameter solution to the power plant.

  17. Nonlinear Dynamic Models in Advanced Life Support

    NASA Technical Reports Server (NTRS)

    Jones, Harry

    2002-01-01

    To facilitate analysis, ALS systems are often assumed to be linear and time invariant, but they usually have important nonlinear and dynamic aspects. Nonlinear dynamic behavior can be caused by time varying inputs, changes in system parameters, nonlinear system functions, closed loop feedback delays, and limits on buffer storage or processing rates. Dynamic models are usually cataloged according to the number of state variables. The simplest dynamic models are linear, using only integration, multiplication, addition, and subtraction of the state variables. A general linear model with only two state variables can produce all the possible dynamic behavior of linear systems with many state variables, including stability, oscillation, or exponential growth and decay. Linear systems can be described using mathematical analysis. Nonlinear dynamics can be fully explored only by computer simulations of models. Unexpected behavior is produced by simple models having only two or three state variables with simple mathematical relations between them. Closed loop feedback delays are a major source of system instability. Exceeding limits on buffer storage or processing rates forces systems to change operating mode. Different equilibrium points may be reached from different initial conditions. Instead of one stable equilibrium point, the system may have several equilibrium points, oscillate at different frequencies, or even behave chaotically, depending on the system inputs and initial conditions. The frequency spectrum of an output oscillation may contain harmonics and the sums and differences of input frequencies, but it may also contain a stable limit cycle oscillation not related to input frequencies. We must investigate the nonlinear dynamic aspects of advanced life support systems to understand and counter undesirable behavior.

  18. The impact of 14-nm photomask uncertainties on computational lithography solutions

    NASA Astrophysics Data System (ADS)

    Sturtevant, John; Tejnil, Edita; Lin, Tim; Schultze, Steffen; Buck, Peter; Kalk, Franklin; Nakagawa, Kent; Ning, Guoxiang; Ackmann, Paul; Gans, Fritz; Buergel, Christian

    2013-04-01

    Computational lithography solutions rely upon accurate process models to faithfully represent the imaging system output for a defined set of process and design inputs. These models, which must balance accuracy demands with simulation runtime boundary conditions, rely upon the accurate representation of multiple parameters associated with the scanner and the photomask. While certain system input variables, such as scanner numerical aperture, can be empirically tuned to wafer CD data over a small range around the presumed set point, it can be dangerous to do so since CD errors can alias across multiple input variables. Therefore, many input variables for simulation are based upon designed or recipe-requested values or independent measurements. It is known, however, that certain measurement methodologies, while precise, can have significant inaccuracies. Additionally, there are known errors associated with the representation of certain system parameters. With shrinking total CD control budgets, appropriate accounting for all sources of error becomes more important, and the cumulative consequence of input errors to the computational lithography model can become significant. In this work, we examine with a simulation sensitivity study, the impact of errors in the representation of photomask properties including CD bias, corner rounding, refractive index, thickness, and sidewall angle. The factors that are most critical to be accurately represented in the model are cataloged. CD Bias values are based on state of the art mask manufacturing data and other variables changes are speculated, highlighting the need for improved metrology and awareness.

  19. Analyses of the most influential factors for vibration monitoring of planetary power transmissions in pellet mills by adaptive neuro-fuzzy technique

    NASA Astrophysics Data System (ADS)

    Milovančević, Miloš; Nikolić, Vlastimir; Anđelković, Boban

    2017-01-01

    Vibration-based structural health monitoring is widely recognized as an attractive strategy for early damage detection in civil structures. Vibration monitoring and prediction is important for any system since it can save many unpredictable behaviors of the system. If the vibration monitoring is properly managed, that can ensure economic and safe operations. Potentials for further improvement of vibration monitoring lie in the improvement of current control strategies. One of the options is the introduction of model predictive control. Multistep ahead predictive models of vibration are a starting point for creating a successful model predictive strategy. For the purpose of this article, predictive models of are created for vibration monitoring of planetary power transmissions in pellet mills. The models were developed using the novel method based on ANFIS (adaptive neuro fuzzy inference system). The aim of this study is to investigate the potential of ANFIS for selecting the most relevant variables for predictive models of vibration monitoring of pellet mills power transmission. The vibration data are collected by PIC (Programmable Interface Controller) microcontrollers. The goal of the predictive vibration monitoring of planetary power transmissions in pellet mills is to indicate deterioration in the vibration of the power transmissions before the actual failure occurs. The ANFIS process for variable selection was implemented in order to detect the predominant variables affecting the prediction of vibration monitoring. It was also used to select the minimal input subset of variables from the initial set of input variables - current and lagged variables (up to 11 steps) of vibration. The obtained results could be used for simplification of predictive methods so as to avoid multiple input variables. It was preferable to used models with less inputs because of overfitting between training and testing data. While the obtained results are promising, further work is required in order to get results that could be directly applied in practice.

  20. Data-driven process decomposition and robust online distributed modelling for large-scale processes

    NASA Astrophysics Data System (ADS)

    Shu, Zhang; Lijuan, Li; Lijuan, Yao; Shipin, Yang; Tao, Zou

    2018-02-01

    With the increasing attention of networked control, system decomposition and distributed models show significant importance in the implementation of model-based control strategy. In this paper, a data-driven system decomposition and online distributed subsystem modelling algorithm was proposed for large-scale chemical processes. The key controlled variables are first partitioned by affinity propagation clustering algorithm into several clusters. Each cluster can be regarded as a subsystem. Then the inputs of each subsystem are selected by offline canonical correlation analysis between all process variables and its controlled variables. Process decomposition is then realised after the screening of input and output variables. When the system decomposition is finished, the online subsystem modelling can be carried out by recursively block-wise renewing the samples. The proposed algorithm was applied in the Tennessee Eastman process and the validity was verified.

  1. Simulating maize yield and biomass with spatial variability of soil field capacity

    USDA-ARS?s Scientific Manuscript database

    Spatial variability in field soil water and other properties is a challenge for system modelers who use only representative values for model inputs, rather than their distributions. In this study, we compared simulation results from a calibrated model with spatial variability of soil field capacity ...

  2. Metamodeling and mapping of nitrate flux in the unsaturated zone and groundwater, Wisconsin, USA

    NASA Astrophysics Data System (ADS)

    Nolan, Bernard T.; Green, Christopher T.; Juckem, Paul F.; Liao, Lixia; Reddy, James E.

    2018-04-01

    Nitrate contamination of groundwater in agricultural areas poses a major challenge to the sustainability of water resources. Aquifer vulnerability models are useful tools that can help resource managers identify areas of concern, but quantifying nitrogen (N) inputs in such models is challenging, especially at large spatial scales. We sought to improve regional nitrate (NO3-) input functions by characterizing unsaturated zone NO3- transport to groundwater through use of surrogate, machine-learning metamodels of a process-based N flux model. The metamodels used boosted regression trees (BRTs) to relate mappable landscape variables to parameters and outputs of a previous "vertical flux method" (VFM) applied at sampled wells in the Fox, Wolf, and Peshtigo (FWP) river basins in northeastern Wisconsin. In this context, the metamodels upscaled the VFM results throughout the region, and the VFM parameters and outputs are the metamodel response variables. The study area encompassed the domain of a detailed numerical model that provided additional predictor variables, including groundwater recharge, to the metamodels. We used a statistical learning framework to test a range of model complexities to identify suitable hyperparameters of the six BRT metamodels corresponding to each response variable of interest: NO3- source concentration factor (which determines the local NO3- input concentration); unsaturated zone travel time; NO3- concentration at the water table in 1980, 2000, and 2020 (three separate metamodels); and NO3- "extinction depth", the eventual steady state depth of the NO3- front. The final metamodels were trained to 129 wells within the active numerical flow model area, and considered 58 mappable predictor variables compiled in a geographic information system (GIS). These metamodels had training and cross-validation testing R2 values of 0.52 - 0.86 and 0.22 - 0.38, respectively, and predictions were compiled as maps of the above response variables. Testing performance was reasonable, considering that we limited the metamodel predictor variables to mappable factors as opposed to using all available VFM input variables. Relationships between metamodel predictor variables and mapped outputs were generally consistent with expectations, e.g. with greater source concentrations and NO3- at the groundwater table in areas of intensive crop use and well drained soils. Shorter unsaturated zone travel times in poorly drained areas likely indicated preferential flow through clay soils, and a tendency for fine grained deposits to collocate with areas of shallower water table. Numerical estimates of groundwater recharge were important in the metamodels and may have been a proxy for N input and redox conditions in the northern FWP, which had shallow predicted NO3- extinction depth. The metamodel results provide proof-of-concept for regional characterization of unsaturated zone NO3- transport processes in a statistical framework based on readily mappable GIS input variables.

  3. Role of Updraft Velocity in Temporal Variability of Global Cloud Hydrometeor Number

    NASA Technical Reports Server (NTRS)

    Sullivan, Sylvia C.; Lee, Dong Min; Oreopoulos, Lazaros; Nenes, Athanasios

    2016-01-01

    Understanding how dynamical and aerosol inputs affect the temporal variability of hydrometeor formation in climate models will help to explain sources of model diversity in cloud forcing, to provide robust comparisons with data, and, ultimately, to reduce the uncertainty in estimates of the aerosol indirect effect. This variability attribution can be done at various spatial and temporal resolutions with metrics derived from online adjoint sensitivities of droplet and crystal number to relevant inputs. Such metrics are defined and calculated from simulations using the NASA Goddard Earth Observing System Model, Version 5 (GEOS-5) and the National Center for Atmospheric Research Community Atmosphere Model Version 5.1 (CAM5.1). Input updraft velocity fluctuations can explain as much as 48% of temporal variability in output ice crystal number and 61% in droplet number in GEOS-5 and up to 89% of temporal variability in output ice crystal number in CAM5.1. In both models, this vertical velocity attribution depends strongly on altitude. Despite its importance for hydrometeor formation, simulated vertical velocity distributions are rarely evaluated against observations due to the sparsity of relevant data. Coordinated effort by the atmospheric community to develop more consistent, observationally based updraft treatments will help to close this knowledge gap.

  4. Role of updraft velocity in temporal variability of global cloud hydrometeor number

    DOE PAGES

    Sullivan, Sylvia C.; Lee, Dongmin; Oreopoulos, Lazaros; ...

    2016-05-16

    Understanding how dynamical and aerosol inputs affect the temporal variability of hydrometeor formation in climate models will help to explain sources of model diversity in cloud forcing, to provide robust comparisons with data, and, ultimately, to reduce the uncertainty in estimates of the aerosol indirect effect. This variability attribution can be done at various spatial and temporal resolutions with metrics derived from online adjoint sensitivities of droplet and crystal number to relevant inputs. Such metrics are defined and calculated from simulations using the NASA Goddard Earth Observing System Model, Version 5 (GEOS-5) and the National Center for Atmospheric Research Communitymore » Atmosphere Model Version 5.1 (CAM5.1). Input updraft velocity fluctuations can explain as much as 48% of temporal variability in output ice crystal number and 61% in droplet number in GEOS-5 and up to 89% of temporal variability in output ice crystal number in CAM5.1. In both models, this vertical velocity attribution depends strongly on altitude. Despite its importance for hydrometeor formation, simulated vertical velocity distributions are rarely evaluated against observations due to the sparsity of relevant data. Finally, coordinated effort by the atmospheric community to develop more consistent, observationally based updraft treatments will help to close this knowledge gap.« less

  5. Role of updraft velocity in temporal variability of global cloud hydrometeor number

    NASA Astrophysics Data System (ADS)

    Sullivan, Sylvia C.; Lee, Dongmin; Oreopoulos, Lazaros; Nenes, Athanasios

    2016-05-01

    Understanding how dynamical and aerosol inputs affect the temporal variability of hydrometeor formation in climate models will help to explain sources of model diversity in cloud forcing, to provide robust comparisons with data, and, ultimately, to reduce the uncertainty in estimates of the aerosol indirect effect. This variability attribution can be done at various spatial and temporal resolutions with metrics derived from online adjoint sensitivities of droplet and crystal number to relevant inputs. Such metrics are defined and calculated from simulations using the NASA Goddard Earth Observing System Model, Version 5 (GEOS-5) and the National Center for Atmospheric Research Community Atmosphere Model Version 5.1 (CAM5.1). Input updraft velocity fluctuations can explain as much as 48% of temporal variability in output ice crystal number and 61% in droplet number in GEOS-5 and up to 89% of temporal variability in output ice crystal number in CAM5.1. In both models, this vertical velocity attribution depends strongly on altitude. Despite its importance for hydrometeor formation, simulated vertical velocity distributions are rarely evaluated against observations due to the sparsity of relevant data. Coordinated effort by the atmospheric community to develop more consistent, observationally based updraft treatments will help to close this knowledge gap.

  6. Sobol' sensitivity analysis for stressor impacts on honeybee ...

    EPA Pesticide Factsheets

    We employ Monte Carlo simulation and nonlinear sensitivity analysis techniques to describe the dynamics of a bee exposure model, VarroaPop. Daily simulations are performed of hive population trajectories, taking into account queen strength, foraging success, mite impacts, weather, colony resources, population structure, and other important variables. This allows us to test the effects of defined pesticide exposure scenarios versus controlled simulations that lack pesticide exposure. The daily resolution of the model also allows us to conditionally identify sensitivity metrics. We use the variancebased global decomposition sensitivity analysis method, Sobol’, to assess firstand secondorder parameter sensitivities within VarroaPop, allowing us to determine how variance in the output is attributed to each of the input variables across different exposure scenarios. Simulations with VarroaPop indicate queen strength, forager life span and pesticide toxicity parameters are consistent, critical inputs for colony dynamics. Further analysis also reveals that the relative importance of these parameters fluctuates throughout the simulation period according to the status of other inputs. Our preliminary results show that model variability is conditional and can be attributed to different parameters depending on different timescales. By using sensitivity analysis to assess model output and variability, calibrations of simulation models can be better informed to yield more

  7. Method and system to estimate variables in an integrated gasification combined cycle (IGCC) plant

    DOEpatents

    Kumar, Aditya; Shi, Ruijie; Dokucu, Mustafa

    2013-09-17

    System and method to estimate variables in an integrated gasification combined cycle (IGCC) plant are provided. The system includes a sensor suite to measure respective plant input and output variables. An extended Kalman filter (EKF) receives sensed plant input variables and includes a dynamic model to generate a plurality of plant state estimates and a covariance matrix for the state estimates. A preemptive-constraining processor is configured to preemptively constrain the state estimates and covariance matrix to be free of constraint violations. A measurement-correction processor may be configured to correct constrained state estimates and a constrained covariance matrix based on processing of sensed plant output variables. The measurement-correction processor is coupled to update the dynamic model with corrected state estimates and a corrected covariance matrix. The updated dynamic model may be configured to estimate values for at least one plant variable not originally sensed by the sensor suite.

  8. Predicting language outcomes for children learning AAC: Child and environmental factors

    PubMed Central

    Brady, Nancy C.; Thiemann-Bourque, Kathy; Fleming, Kandace; Matthews, Kris

    2014-01-01

    Purpose To investigate a model of language development for nonverbal preschool age children learning to communicate with AAC. Method Ninety-three preschool children with intellectual disabilities were assessed at Time 1, and 82 of these children were assessed one year later at Time 2. The outcome variable was the number of different words the children produced (with speech, sign or SGD). Children’s intrinsic predictor for language was modeled as a latent variable consisting of cognitive development, comprehension, play, and nonverbal communication complexity. Adult input at school and home, and amount of AAC instruction were proposed mediators of vocabulary acquisition. Results A confirmatory factor analysis revealed that measures converged as a coherent construct and an SEM model indicated that the intrinsic child predictor construct predicted different words children produced. The amount of input received at home but not at school was a significant mediator. Conclusions Our hypothesized model accurately reflected a latent construct of Intrinsic Symbolic Factor (ISF). Children who evidenced higher initial levels of ISF and more adult input at home produced more words one year later. Findings support the need to assess multiple child variables, and suggest interventions directed to the indicators of ISF and input. PMID:23785187

  9. Assessment of model behavior and acceptable forcing data uncertainty in the context of land surface soil moisture estimation

    NASA Astrophysics Data System (ADS)

    Dumedah, Gift; Walker, Jeffrey P.

    2017-03-01

    The sources of uncertainty in land surface models are numerous and varied, from inaccuracies in forcing data to uncertainties in model structure and parameterizations. Majority of these uncertainties are strongly tied to the overall makeup of the model, but the input forcing data set is independent with its accuracy usually defined by the monitoring or the observation system. The impact of input forcing data on model estimation accuracy has been collectively acknowledged to be significant, yet its quantification and the level of uncertainty that is acceptable in the context of the land surface model to obtain a competitive estimation remain mostly unknown. A better understanding is needed about how models respond to input forcing data and what changes in these forcing variables can be accommodated without deteriorating optimal estimation of the model. As a result, this study determines the level of forcing data uncertainty that is acceptable in the Joint UK Land Environment Simulator (JULES) to competitively estimate soil moisture in the Yanco area in south eastern Australia. The study employs hydro genomic mapping to examine the temporal evolution of model decision variables from an archive of values obtained from soil moisture data assimilation. The data assimilation (DA) was undertaken using the advanced Evolutionary Data Assimilation. Our findings show that the input forcing data have significant impact on model output, 35% in root mean square error (RMSE) for 5cm depth of soil moisture and 15% in RMSE for 15cm depth of soil moisture. This specific quantification is crucial to illustrate the significance of input forcing data spread. The acceptable uncertainty determined based on dominant pathway has been validated and shown to be reliable for all forcing variables, so as to provide optimal soil moisture. These findings are crucial for DA in order to account for uncertainties that are meaningful from the model standpoint. Moreover, our results point to a proper treatment of input forcing data in general land surface and hydrological model estimation.

  10. Propagation of uncertainty in nasal spray in vitro performance models using Monte Carlo simulation: Part II. Error propagation during product performance modeling.

    PubMed

    Guo, Changning; Doub, William H; Kauffman, John F

    2010-08-01

    Monte Carlo simulations were applied to investigate the propagation of uncertainty in both input variables and response measurements on model prediction for nasal spray product performance design of experiment (DOE) models in the first part of this study, with an initial assumption that the models perfectly represent the relationship between input variables and the measured responses. In this article, we discard the initial assumption, and extended the Monte Carlo simulation study to examine the influence of both input variable variation and product performance measurement variation on the uncertainty in DOE model coefficients. The Monte Carlo simulations presented in this article illustrate the importance of careful error propagation during product performance modeling. Our results show that the error estimates based on Monte Carlo simulation result in smaller model coefficient standard deviations than those from regression methods. This suggests that the estimated standard deviations from regression may overestimate the uncertainties in the model coefficients. Monte Carlo simulations provide a simple software solution to understand the propagation of uncertainty in complex DOE models so that design space can be specified with statistically meaningful confidence levels. (c) 2010 Wiley-Liss, Inc. and the American Pharmacists Association

  11. Mathematical models of the simplest fuzzy PI/PD controllers with skewed input and output fuzzy sets.

    PubMed

    Mohan, B M; Sinha, Arpita

    2008-07-01

    This paper unveils mathematical models for fuzzy PI/PD controllers which employ two skewed fuzzy sets for each of the two-input variables and three skewed fuzzy sets for the output variable. The basic constituents of these models are Gamma-type and L-type membership functions for each input, trapezoidal/triangular membership functions for output, intersection/algebraic product triangular norm, maximum/drastic sum triangular conorm, Mamdani minimum/Larsen product/drastic product inference method, and center of sums defuzzification method. The existing simplest fuzzy PI/PD controller structures derived via symmetrical fuzzy sets become special cases of the mathematical models revealed in this paper. Finally, a numerical example along with its simulation results are included to demonstrate the effectiveness of the simplest fuzzy PI controllers.

  12. Sensitivity analysis of a sound absorption model with correlated inputs

    NASA Astrophysics Data System (ADS)

    Chai, W.; Christen, J.-L.; Zine, A.-M.; Ichchou, M.

    2017-04-01

    Sound absorption in porous media is a complex phenomenon, which is usually addressed with homogenized models, depending on macroscopic parameters. Since these parameters emerge from the structure at microscopic scale, they may be correlated. This paper deals with sensitivity analysis methods of a sound absorption model with correlated inputs. Specifically, the Johnson-Champoux-Allard model (JCA) is chosen as the objective model with correlation effects generated by a secondary micro-macro semi-empirical model. To deal with this case, a relatively new sensitivity analysis method Fourier Amplitude Sensitivity Test with Correlation design (FASTC), based on Iman's transform, is taken into application. This method requires a priori information such as variables' marginal distribution functions and their correlation matrix. The results are compared to the Correlation Ratio Method (CRM) for reference and validation. The distribution of the macroscopic variables arising from the microstructure, as well as their correlation matrix are studied. Finally the results of tests shows that the correlation has a very important impact on the results of sensitivity analysis. Assessment of correlation strength among input variables on the sensitivity analysis is also achieved.

  13. A Study on the Effects of Spatial Scale on Snow Process in Hyper-Resolution Hydrological Modelling over Mountainous Areas

    NASA Astrophysics Data System (ADS)

    Garousi Nejad, I.; He, S.; Tang, Q.; Ogden, F. L.; Steinke, R. C.; Frazier, N.; Tarboton, D. G.; Ohara, N.; Lin, H.

    2017-12-01

    Spatial scale is one of the main considerations in hydrological modeling of snowmelt in mountainous areas. The size of model elements controls the degree to which variability can be explicitly represented versus what needs to be parameterized using effective properties such as averages or other subgrid variability parameterizations that may degrade the quality of model simulations. For snowmelt modeling terrain parameters such as slope, aspect, vegetation and elevation play an important role in the timing and quantity of snowmelt that serves as an input to hydrologic runoff generation processes. In general, higher resolution enhances the accuracy of the simulation since fine meshes represent and preserve the spatial variability of atmospheric and surface characteristics better than coarse resolution. However, this increases computational cost and there may be a scale beyond which the model response does not improve due to diminishing sensitivity to variability and irreducible uncertainty associated with the spatial interpolation of inputs. This paper examines the influence of spatial resolution on the snowmelt process using simulations of and data from the Animas River watershed, an alpine mountainous area in Colorado, USA, using an unstructured distributed physically based hydrological model developed for a parallel computing environment, ADHydro. Five spatial resolutions (30 m, 100 m, 250 m, 500 m, and 1 km) were used to investigate the variations in hydrologic response. This study demonstrated the importance of choosing the appropriate spatial scale in the implementation of ADHydro to obtain a balance between representing spatial variability and the computational cost. According to the results, variation in the input variables and parameters due to using different spatial resolution resulted in changes in the obtained hydrological variables, especially snowmelt, both at the basin-scale and distributed across the model mesh.

  14. Application of neural networks and sensitivity analysis to improved prediction of trauma survival.

    PubMed

    Hunter, A; Kennedy, L; Henry, J; Ferguson, I

    2000-05-01

    The performance of trauma departments is widely audited by applying predictive models that assess probability of survival, and examining the rate of unexpected survivals and deaths. Although the TRISS methodology, a logistic regression modelling technique, is still the de facto standard, it is known that neural network models perform better. A key issue when applying neural network models is the selection of input variables. This paper proposes a novel form of sensitivity analysis, which is simpler to apply than existing techniques, and can be used for both numeric and nominal input variables. The technique is applied to the audit survival problem, and used to analyse the TRISS variables. The conclusions discuss the implications for the design of further improved scoring schemes and predictive models.

  15. Assessment of input uncertainty by seasonally categorized latent variables using SWAT

    USDA-ARS?s Scientific Manuscript database

    Watershed processes have been explored with sophisticated simulation models for the past few decades. It has been stated that uncertainty attributed to alternative sources such as model parameters, forcing inputs, and measured data should be incorporated during the simulation process. Among varyin...

  16. Testing an Instructional Model in a University Educational Setting from the Student's Perspective

    ERIC Educational Resources Information Center

    Betoret, Fernando Domenech

    2006-01-01

    We tested a theoretical model that hypothesized relationships between several variables from input, process and product in an educational setting, from the university student's perspective, using structural equation modeling. In order to carry out the analysis, we measured in sequential order the input (referring to students' personal…

  17. Stochastic empirical loading and dilution model (SELDM) version 1.0.0

    USGS Publications Warehouse

    Granato, Gregory E.

    2013-01-01

    The Stochastic Empirical Loading and Dilution Model (SELDM) is designed to transform complex scientific data into meaningful information about the risk of adverse effects of runoff on receiving waters, the potential need for mitigation measures, and the potential effectiveness of such management measures for reducing these risks. The U.S. Geological Survey developed SELDM in cooperation with the Federal Highway Administration to help develop planning-level estimates of event mean concentrations, flows, and loads in stormwater from a site of interest and from an upstream basin. Planning-level estimates are defined as the results of analyses used to evaluate alternative management measures; planning-level estimates are recognized to include substantial uncertainties (commonly orders of magnitude). SELDM uses information about a highway site, the associated receiving-water basin, precipitation events, stormflow, water quality, and the performance of mitigation measures to produce a stochastic population of runoff-quality variables. SELDM provides input statistics for precipitation, prestorm flow, runoff coefficients, and concentrations of selected water-quality constituents from National datasets. Input statistics may be selected on the basis of the latitude, longitude, and physical characteristics of the site of interest and the upstream basin. The user also may derive and input statistics for each variable that are specific to a given site of interest or a given area. SELDM is a stochastic model because it uses Monte Carlo methods to produce the random combinations of input variable values needed to generate the stochastic population of values for each component variable. SELDM calculates the dilution of runoff in the receiving waters and the resulting downstream event mean concentrations and annual average lake concentrations. Results are ranked, and plotting positions are calculated, to indicate the level of risk of adverse effects caused by runoff concentrations, flows, and loads on receiving waters by storm and by year. Unlike deterministic hydrologic models, SELDM is not calibrated by changing values of input variables to match a historical record of values. Instead, input values for SELDM are based on site characteristics and representative statistics for each hydrologic variable. Thus, SELDM is an empirical model based on data and statistics rather than theoretical physiochemical equations. SELDM is a lumped parameter model because the highway site, the upstream basin, and the lake basin each are represented as a single homogeneous unit. Each of these source areas is represented by average basin properties, and results from SELDM are calculated as point estimates for the site of interest. Use of the lumped parameter approach facilitates rapid specification of model parameters to develop planning-level estimates with available data. The approach allows for parsimony in the required inputs to and outputs from the model and flexibility in the use of the model. For example, SELDM can be used to model runoff from various land covers or land uses by using the highway-site definition as long as representative water quality and impervious-fraction data are available.

  18. Metamodeling and mapping of nitrate flux in the unsaturated zone and groundwater, Wisconsin, USA

    USGS Publications Warehouse

    Nolan, Bernard T.; Green, Christopher T.; Juckem, Paul F.; Liao, Lixia; Reddy, James E.

    2018-01-01

    Nitrate contamination of groundwater in agricultural areas poses a major challenge to the sustainability of water resources. Aquifer vulnerability models are useful tools that can help resource managers identify areas of concern, but quantifying nitrogen (N) inputs in such models is challenging, especially at large spatial scales. We sought to improve regional nitrate (NO3−) input functions by characterizing unsaturated zone NO3− transport to groundwater through use of surrogate, machine-learning metamodels of a process-based N flux model. The metamodels used boosted regression trees (BRTs) to relate mappable landscape variables to parameters and outputs of a previous “vertical flux method” (VFM) applied at sampled wells in the Fox, Wolf, and Peshtigo (FWP) river basins in northeastern Wisconsin. In this context, the metamodels upscaled the VFM results throughout the region, and the VFM parameters and outputs are the metamodel response variables. The study area encompassed the domain of a detailed numerical model that provided additional predictor variables, including groundwater recharge, to the metamodels. We used a statistical learning framework to test a range of model complexities to identify suitable hyperparameters of the six BRT metamodels corresponding to each response variable of interest: NO3− source concentration factor (which determines the local NO3− input concentration); unsaturated zone travel time; NO3− concentration at the water table in 1980, 2000, and 2020 (three separate metamodels); and NO3− “extinction depth”, the eventual steady state depth of the NO3−front. The final metamodels were trained to 129 wells within the active numerical flow model area, and considered 58 mappable predictor variables compiled in a geographic information system (GIS). These metamodels had training and cross-validation testing R2 values of 0.52 – 0.86 and 0.22 – 0.38, respectively, and predictions were compiled as maps of the above response variables. Testing performance was reasonable, considering that we limited the metamodel predictor variables to mappable factors as opposed to using all available VFM input variables. Relationships between metamodel predictor variables and mapped outputs were generally consistent with expectations, e.g. with greater source concentrations and NO3− at the groundwater table in areas of intensive crop use and well drained soils. Shorter unsaturated zone travel times in poorly drained areas likely indicated preferential flow through clay soils, and a tendency for fine grained deposits to collocate with areas of shallower water table. Numerical estimates of groundwater recharge were important in the metamodels and may have been a proxy for N input and redox conditions in the northern FWP, which had shallow predicted NO3− extinction depth. The metamodel results provide proof-of-concept for regional characterization of unsaturated zone NO3− transport processes in a statistical framework based on readily mappable GIS input variables.

  19. Uncertainty analysis of the simulations of effects of discharging treated wastewater to the Red River of the North at Fargo, North Dakota, and Moorhead, Minnesota

    USGS Publications Warehouse

    Wesolowski, Edwin A.

    1996-01-01

    Two separate studies to simulate the effects of discharging treated wastewater to the Red River of the North at Fargo, North Dakota, and Moorhead, Minnesota, have been completed. In the first study, the Red River at Fargo Water-Quality Model was calibrated and verified for icefree conditions. In the second study, the Red River at Fargo Ice-Cover Water-Quality Model was verified for ice-cover conditions.To better understand and apply the Red River at Fargo Water-Quality Model and the Red River at Fargo Ice-Cover Water-Quality Model, the uncertainty associated with simulated constituent concentrations and property values was analyzed and quantified using the Enhanced Stream Water Quality Model-Uncertainty Analysis. The Monte Carlo simulation and first-order error analysis methods were used to analyze the uncertainty in simulated values for six constituents and properties at sites 5, 10, and 14 (upstream to downstream order). The constituents and properties analyzed for uncertainty are specific conductance, total organic nitrogen (reported as nitrogen), total ammonia (reported as nitrogen), total nitrite plus nitrate (reported as nitrogen), 5-day carbonaceous biochemical oxygen demand for ice-cover conditions and ultimate carbonaceous biochemical oxygen demand for ice-free conditions, and dissolved oxygen. Results are given in detail for both the ice-cover and ice-free conditions for specific conductance, total ammonia, and dissolved oxygen.The sensitivity and uncertainty of the simulated constituent concentrations and property values to input variables differ substantially between ice-cover and ice-free conditions. During ice-cover conditions, simulated specific-conductance values are most sensitive to the headwatersource specific-conductance values upstream of site 10 and the point-source specific-conductance values downstream of site 10. These headwater-source and point-source specific-conductance values also are the key sources of uncertainty. Simulated total ammonia concentrations are most sensitive to the point-source total ammonia concentrations at all three sites. Other input variables that contribute substantially to the variability of simulated total ammonia concentrations are the headwater-source total ammonia and the instream reaction coefficient for biological decay of total ammonia to total nitrite. Simulated dissolved-oxygen concentrations at all three sites are most sensitive to headwater-source dissolved-oxygen concentration. This input variable is the key source of variability for simulated dissolved-oxygen concentrations at sites 5 and 10. Headwatersource and point-source dissolved-oxygen concentrations are the key sources of variability for simulated dissolved-oxygen concentrations at site 14.During ice-free conditions, simulated specific-conductance values at all three sites are most sensitive to the headwater-source specific-conductance values. Headwater-source specificconductance values also are the key source of uncertainty. The input variables to which total ammonia and dissolved oxygen are most sensitive vary from site to site and may or may not correspond to the input variables that contribute the most to the variability. The input variables that contribute the most to the variability of simulated total ammonia concentrations are pointsource total ammonia, instream reaction coefficient for biological decay of total ammonia to total nitrite, and Manning's roughness coefficient. The input variables that contribute the most to the variability of simulated dissolved-oxygen concentrations are reaeration rate, sediment oxygen demand rate, and headwater-source algae as chlorophyll a.

  20. A waste characterisation procedure for ADM1 implementation based on degradation kinetics.

    PubMed

    Girault, R; Bridoux, G; Nauleau, F; Poullain, C; Buffet, J; Steyer, J-P; Sadowski, A G; Béline, F

    2012-09-01

    In this study, a procedure accounting for degradation kinetics was developed to split the total COD of a substrate into each input state variable required for Anaerobic Digestion Model n°1. The procedure is based on the combination of batch experimental degradation tests ("anaerobic respirometry") and numerical interpretation of the results obtained (optimisation of the ADM1 input state variable set). The effects of the main operating parameters, such as the substrate to inoculum ratio in batch experiments and the origin of the inoculum, were investigated. Combined with biochemical fractionation of the total COD of substrates, this method enabled determination of an ADM1-consistent input state variable set for each substrate with affordable identifiability. The substrate to inoculum ratio in the batch experiments and the origin of the inoculum influenced input state variables. However, based on results modelled for a CSTR fed with the substrate concerned, these effects were not significant. Indeed, if the optimal ranges of these operational parameters are respected, uncertainty in COD fractionation is mainly limited to temporal variability of the properties of the substrates. As the method is based on kinetics and is easy to implement for a wide range of substrates, it is a very promising way to numerically predict the effect of design parameters on the efficiency of an anaerobic CSTR. This method thus promotes the use of modelling for the design and optimisation of anaerobic processes. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Blade loss transient dynamics analysis. Volume 3: User's manual for TETRA program

    NASA Technical Reports Server (NTRS)

    Black, G. R.; Gallardo, V. C.; Storace, A. S.; Sagendorph, F.

    1981-01-01

    The users manual for TETRA contains program logic, flow charts, error messages, input sheets, modeling instructions, option descriptions, input variable descriptions, and demonstration problems. The process of obtaining a NASTRAN 17.5 generated modal input file for TETRA is also described with a worked sample.

  2. PM(10) emission forecasting using artificial neural networks and genetic algorithm input variable optimization.

    PubMed

    Antanasijević, Davor Z; Pocajt, Viktor V; Povrenović, Dragan S; Ristić, Mirjana Đ; Perić-Grujić, Aleksandra A

    2013-01-15

    This paper describes the development of an artificial neural network (ANN) model for the forecasting of annual PM(10) emissions at the national level, using widely available sustainability and economical/industrial parameters as inputs. The inputs for the model were selected and optimized using a genetic algorithm and the ANN was trained using the following variables: gross domestic product, gross inland energy consumption, incineration of wood, motorization rate, production of paper and paperboard, sawn wood production, production of refined copper, production of aluminum, production of pig iron and production of crude steel. The wide availability of the input parameters used in this model can overcome a lack of data and basic environmental indicators in many countries, which can prevent or seriously impede PM emission forecasting. The model was trained and validated with the data for 26 EU countries for the period from 1999 to 2006. PM(10) emission data, collected through the Convention on Long-range Transboundary Air Pollution - CLRTAP and the EMEP Programme or as emission estimations by the Regional Air Pollution Information and Simulation (RAINS) model, were obtained from Eurostat. The ANN model has shown very good performance and demonstrated that the forecast of PM(10) emission up to two years can be made successfully and accurately. The mean absolute error for two-year PM(10) emission prediction was only 10%, which is more than three times better than the predictions obtained from the conventional multi-linear regression and principal component regression models that were trained and tested using the same datasets and input variables. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. MODELING OF HUMAN EXPOSURE TO IN-VEHICLE PM2.5 FROM ENVIRONMENTAL TOBACCO SMOKE

    PubMed Central

    Cao, Ye; Frey, H. Christopher

    2012-01-01

    Environmental tobacco smoke (ETS) is estimated to be a significant contributor to in-vehicle human exposure to fine particulate matter of 2.5 µm or smaller (PM2.5). A critical assessment was conducted of a mass balance model for estimating PM2.5 concentration with smoking in a motor vehicle. Recommendations for the range of inputs to the mass-balance model are given based on literature review. Sensitivity analysis was used to determine which inputs should be prioritized for data collection. Air exchange rate (ACH) and the deposition rate have wider relative ranges of variation than other inputs, representing inter-individual variability in operations, and inter-vehicle variability in performance, respectively. Cigarette smoking and emission rates, and vehicle interior volume, are also key inputs. The in-vehicle ETS mass balance model was incorporated into the Stochastic Human Exposure and Dose Simulation for Particulate Matter (SHEDS-PM) model to quantify the potential magnitude and variability of in-vehicle exposures to ETS. The in-vehicle exposure also takes into account near-road incremental PM2.5 concentration from on-road emissions. Results of probabilistic study indicate that ETS is a key contributor to the in-vehicle average and high-end exposure. Factors that mitigate in-vehicle ambient PM2.5 exposure lead to higher in-vehicle ETS exposure, and vice versa. PMID:23060732

  4. A digital spatial predictive model of land-use change using economic and environmental inputs and a statistical tree classification approach: Thailand, 1970s--1990s

    NASA Astrophysics Data System (ADS)

    Felkner, John Sames

    The scale and extent of global land use change is massive, and has potentially powerful effects on the global climate and global atmospheric composition (Turner & Meyer, 1994). Because of this tremendous change and impact, there is an urgent need for quantitative, empirical models of land use change, especially predictive models with an ability to capture the trajectories of change (Agarwal, Green, Grove, Evans, & Schweik, 2000; Lambin et al., 1999). For this research, a spatial statistical predictive model of land use change was created and run in two provinces of Thailand. The model utilized an extensive spatial database, and used a classification tree approach for explanatory model creation and future land use (Breiman, Friedman, Olshen, & Stone, 1984). Eight input variables were used, and the trees were run on a dependent variable of land use change measured from 1979 to 1989 using classified satellite imagery. The derived tree models were used to create probability of change surfaces, and these were then used to create predicted land cover maps for 1999. These predicted 1999 maps were compared with actual 1999 landcover derived from 1999 Landsat 7 imagery. The primary research hypothesis was that an explanatory model using both economic and environmental input variables would better predict future land use change than would either a model using only economic variables or a model using only environmental. Thus, the eight input variables included four economic and four environmental variables. The results indicated a very slight superiority of the full models to predict future agricultural change and future deforestation, but a slight superiority of the economic models to predict future built change. However, the margins of superiority were too small to be statistically significant. The resulting tree structures were used, however, to derive a series of principles or "rules" governing land use change in both provinces. The model was able to predict future land use, given a series of assumptions, with 90 percent overall accuracies. The model can be used in other developing or developed country locations for future land use prediction, determination of future threatened areas, or to derive "rules" or principles driving land use change.

  5. The potential of different artificial neural network (ANN) techniques in daily global solar radiation modeling based on meteorological data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Behrang, M.A.; Assareh, E.; Ghanbarzadeh, A.

    2010-08-15

    The main objective of present study is to predict daily global solar radiation (GSR) on a horizontal surface, based on meteorological variables, using different artificial neural network (ANN) techniques. Daily mean air temperature, relative humidity, sunshine hours, evaporation, and wind speed values between 2002 and 2006 for Dezful city in Iran (32 16'N, 48 25'E), are used in this study. In order to consider the effect of each meteorological variable on daily GSR prediction, six following combinations of input variables are considered: (I)Day of the year, daily mean air temperature and relative humidity as inputs and daily GSR as output.more » (II)Day of the year, daily mean air temperature and sunshine hours as inputs and daily GSR as output. (III)Day of the year, daily mean air temperature, relative humidity and sunshine hours as inputs and daily GSR as output. (IV)Day of the year, daily mean air temperature, relative humidity, sunshine hours and evaporation as inputs and daily GSR as output. (V)Day of the year, daily mean air temperature, relative humidity, sunshine hours and wind speed as inputs and daily GSR as output. (VI)Day of the year, daily mean air temperature, relative humidity, sunshine hours, evaporation and wind speed as inputs and daily GSR as output. Multi-layer perceptron (MLP) and radial basis function (RBF) neural networks are applied for daily GSR modeling based on six proposed combinations. The measured data between 2002 and 2005 are used to train the neural networks while the data for 214 days from 2006 are used as testing data. The comparison of obtained results from ANNs and different conventional GSR prediction (CGSRP) models shows very good improvements (i.e. the predicted values of best ANN model (MLP-V) has a mean absolute percentage error (MAPE) about 5.21% versus 10.02% for best CGSRP model (CGSRP 5)). (author)« less

  6. Fusion of Hard and Soft Information in Nonparametric Density Estimation

    DTIC Science & Technology

    2015-06-10

    and stochastic optimization models, in analysis of simulation output, and when instantiating probability models. We adopt a constrained maximum...particular, density estimation is needed for generation of input densities to simulation and stochastic optimization models, in analysis of simulation output...an essential step in simulation analysis and stochastic optimization is the generation of probability densities for input random variables; see for

  7. Physiological gain leads to high ISI variability in a simple model of a cortical regular spiking cell.

    PubMed

    Troyer, T W; Miller, K D

    1997-07-01

    To understand the interspike interval (ISI) variability displayed by visual cortical neurons (Softky & Koch, 1993), it is critical to examine the dynamics of their neuronal integration, as well as the variability in their synaptic input current. Most previous models have focused on the latter factor. We match a simple integrate-and-fire model to the experimentally measured integrative properties of cortical regular spiking cells (McCormick, Connors, Lighthall, & Prince, 1985). After setting RC parameters, the post-spike voltage reset is set to match experimental measurements of neuronal gain (obtained from in vitro plots of firing frequency versus injected current). Examination of the resulting model leads to an intuitive picture of neuronal integration that unifies the seemingly contradictory 1/square root of N and random walk pictures that have previously been proposed. When ISIs are dominated by postspike recovery, 1/square root of N arguments hold and spiking is regular; after the "memory" of the last spike becomes negligible, spike threshold crossing is caused by input variance around a steady state and spiking is Poisson. In integrate-and-fire neurons matched to cortical cell physiology, steady-state behavior is predominant, and ISIs are highly variable at all physiological firing rates and for a wide range of inhibitory and excitatory inputs.

  8. Spatial uncertainty analysis: Propagation of interpolation errors in spatially distributed models

    USGS Publications Warehouse

    Phillips, D.L.; Marks, D.G.

    1996-01-01

    In simulation modelling, it is desirable to quantify model uncertainties and provide not only point estimates for output variables but confidence intervals as well. Spatially distributed physical and ecological process models are becoming widely used, with runs being made over a grid of points that represent the landscape. This requires input values at each grid point, which often have to be interpolated from irregularly scattered measurement sites, e.g., weather stations. Interpolation introduces spatially varying errors which propagate through the model We extended established uncertainty analysis methods to a spatial domain for quantifying spatial patterns of input variable interpolation errors and how they propagate through a model to affect the uncertainty of the model output. We applied this to a model of potential evapotranspiration (PET) as a demonstration. We modelled PET for three time periods in 1990 as a function of temperature, humidity, and wind on a 10-km grid across the U.S. portion of the Columbia River Basin. Temperature, humidity, and wind speed were interpolated using kriging from 700- 1000 supporting data points. Kriging standard deviations (SD) were used to quantify the spatially varying interpolation uncertainties. For each of 5693 grid points, 100 Monte Carlo simulations were done, using the kriged values of temperature, humidity, and wind, plus random error terms determined by the kriging SDs and the correlations of interpolation errors among the three variables. For the spring season example, kriging SDs averaged 2.6??C for temperature, 8.7% for relative humidity, and 0.38 m s-1 for wind. The resultant PET estimates had coefficients of variation (CVs) ranging from 14% to 27% for the 10-km grid cells. Maps of PET means and CVs showed the spatial patterns of PET with a measure of its uncertainty due to interpolation of the input variables. This methodology should be applicable to a variety of spatially distributed models using interpolated inputs.

  9. Using a Bayesian network to predict barrier island geomorphologic characteristics

    USGS Publications Warehouse

    Gutierrez, Ben; Plant, Nathaniel G.; Thieler, E. Robert; Turecek, Aaron

    2015-01-01

    Quantifying geomorphic variability of coastal environments is important for understanding and describing the vulnerability of coastal topography, infrastructure, and ecosystems to future storms and sea level rise. Here we use a Bayesian network (BN) to test the importance of multiple interactions between barrier island geomorphic variables. This approach models complex interactions and handles uncertainty, which is intrinsic to future sea level rise, storminess, or anthropogenic processes (e.g., beach nourishment and other forms of coastal management). The BN was developed and tested at Assateague Island, Maryland/Virginia, USA, a barrier island with sufficient geomorphic and temporal variability to evaluate our approach. We tested the ability to predict dune height, beach width, and beach height variables using inputs that included longer-term, larger-scale, or external variables (historical shoreline change rates, distances to inlets, barrier width, mean barrier elevation, and anthropogenic modification). Data sets from three different years spanning nearly a decade sampled substantial temporal variability and serve as a proxy for analysis of future conditions. We show that distinct geomorphic conditions are associated with different long-term shoreline change rates and that the most skillful predictions of dune height, beach width, and beach height depend on including multiple input variables simultaneously. The predictive relationships are robust to variations in the amount of input data and to variations in model complexity. The resulting model can be used to evaluate scenarios related to coastal management plans and/or future scenarios where shoreline change rates may differ from those observed historically.

  10. A latent low-dimensional common input drives a pool of motor neurons: a probabilistic latent state-space model.

    PubMed

    Feeney, Daniel F; Meyer, François G; Noone, Nicholas; Enoka, Roger M

    2017-10-01

    Motor neurons appear to be activated with a common input signal that modulates the discharge activity of all neurons in the motor nucleus. It has proven difficult for neurophysiologists to quantify the variability in a common input signal, but characterization of such a signal may improve our understanding of how the activation signal varies across motor tasks. Contemporary methods of quantifying the common input to motor neurons rely on compiling discrete action potentials into continuous time series, assuming the motor pool acts as a linear filter, and requiring signals to be of sufficient duration for frequency analysis. We introduce a space-state model in which the discharge activity of motor neurons is modeled as inhomogeneous Poisson processes and propose a method to quantify an abstract latent trajectory that represents the common input received by motor neurons. The approach also approximates the variation in synaptic noise in the common input signal. The model is validated with four data sets: a simulation of 120 motor units, a pair of integrate-and-fire neurons with a Renshaw cell providing inhibitory feedback, the discharge activity of 10 integrate-and-fire neurons, and the discharge times of concurrently active motor units during an isometric voluntary contraction. The simulations revealed that a latent state-space model is able to quantify the trajectory and variability of the common input signal across all four conditions. When compared with the cumulative spike train method of characterizing common input, the state-space approach was more sensitive to the details of the common input current and was less influenced by the duration of the signal. The state-space approach appears to be capable of detecting rather modest changes in common input signals across conditions. NEW & NOTEWORTHY We propose a state-space model that explicitly delineates a common input signal sent to motor neurons and the physiological noise inherent in synaptic signal transmission. This is the first application of a deterministic state-space model to represent the discharge characteristics of motor units during voluntary contractions. Copyright © 2017 the American Physiological Society.

  11. Alpha 2 LASSO Data Bundles

    DOE Data Explorer

    Gustafson, William Jr; Vogelmann, Andrew; Endo, Satoshi; Toto, Tami; Xiao, Heng; Li, Zhijin; Cheng, Xiaoping; Kim, Jinwon; Krishna, Bhargavi

    2015-08-31

    The Alpha 2 release is the second release from the LASSO Pilot Phase that builds upon the Alpha 1 release. Alpha 2 contains additional diagnostics in the data bundles and focuses on cases from spring-summer 2016. A data bundle is a unified package consisting of LASSO LES input and output, observations, evaluation diagnostics, and model skill scores. LES input include model configuration information and forcing data. LES output includes profile statistics and full domain fields of cloud and environmental variables. Model evaluation data consists of LES output and ARM observations co-registered on the same grid and sampling frequency. Model performance is quantified by skill scores and diagnostics in terms of cloud and environmental variables.

  12. Rotorcraft Optimization Tools: Incorporating Rotorcraft Design Codes into Multi-Disciplinary Design, Analysis, and Optimization

    NASA Technical Reports Server (NTRS)

    Meyn, Larry A.

    2018-01-01

    One of the goals of NASA's Revolutionary Vertical Lift Technology Project (RVLT) is to provide validated tools for multidisciplinary design, analysis and optimization (MDAO) of vertical lift vehicles. As part of this effort, the software package, RotorCraft Optimization Tools (RCOTOOLS), is being developed to facilitate incorporating key rotorcraft conceptual design codes into optimizations using the OpenMDAO multi-disciplinary optimization framework written in Python. RCOTOOLS, also written in Python, currently supports the incorporation of the NASA Design and Analysis of RotorCraft (NDARC) vehicle sizing tool and the Comprehensive Analytical Model of Rotorcraft Aerodynamics and Dynamics II (CAMRAD II) analysis tool into OpenMDAO-driven optimizations. Both of these tools use detailed, file-based inputs and outputs, so RCOTOOLS provides software wrappers to update input files with new design variable values, execute these codes and then extract specific response variable values from the file outputs. These wrappers are designed to be flexible and easy to use. RCOTOOLS also provides several utilities to aid in optimization model development, including Graphical User Interface (GUI) tools for browsing input and output files in order to identify text strings that are used to identify specific variables as optimization input and response variables. This paper provides an overview of RCOTOOLS and its use

  13. Parameter and model uncertainty in a life-table model for fine particles (PM2.5): a statistical modeling study

    PubMed Central

    Tainio, Marko; Tuomisto, Jouni T; Hänninen, Otto; Ruuskanen, Juhani; Jantunen, Matti J; Pekkanen, Juha

    2007-01-01

    Background The estimation of health impacts involves often uncertain input variables and assumptions which have to be incorporated into the model structure. These uncertainties may have significant effects on the results obtained with model, and, thus, on decision making. Fine particles (PM2.5) are believed to cause major health impacts, and, consequently, uncertainties in their health impact assessment have clear relevance to policy-making. We studied the effects of various uncertain input variables by building a life-table model for fine particles. Methods Life-expectancy of the Helsinki metropolitan area population and the change in life-expectancy due to fine particle exposures were predicted using a life-table model. A number of parameter and model uncertainties were estimated. Sensitivity analysis for input variables was performed by calculating rank-order correlations between input and output variables. The studied model uncertainties were (i) plausibility of mortality outcomes and (ii) lag, and parameter uncertainties (iii) exposure-response coefficients for different mortality outcomes, and (iv) exposure estimates for different age groups. The monetary value of the years-of-life-lost and the relative importance of the uncertainties related to monetary valuation were predicted to compare the relative importance of the monetary valuation on the health effect uncertainties. Results The magnitude of the health effects costs depended mostly on discount rate, exposure-response coefficient, and plausibility of the cardiopulmonary mortality. Other mortality outcomes (lung cancer, other non-accidental and infant mortality) and lag had only minor impact on the output. The results highlight the importance of the uncertainties associated with cardiopulmonary mortality in the fine particle impact assessment when compared with other uncertainties. Conclusion When estimating life-expectancy, the estimates used for cardiopulmonary exposure-response coefficient, discount rate, and plausibility require careful assessment, while complicated lag estimates can be omitted without this having any major effect on the results. PMID:17714598

  14. Parameter and model uncertainty in a life-table model for fine particles (PM2.5): a statistical modeling study.

    PubMed

    Tainio, Marko; Tuomisto, Jouni T; Hänninen, Otto; Ruuskanen, Juhani; Jantunen, Matti J; Pekkanen, Juha

    2007-08-23

    The estimation of health impacts involves often uncertain input variables and assumptions which have to be incorporated into the model structure. These uncertainties may have significant effects on the results obtained with model, and, thus, on decision making. Fine particles (PM2.5) are believed to cause major health impacts, and, consequently, uncertainties in their health impact assessment have clear relevance to policy-making. We studied the effects of various uncertain input variables by building a life-table model for fine particles. Life-expectancy of the Helsinki metropolitan area population and the change in life-expectancy due to fine particle exposures were predicted using a life-table model. A number of parameter and model uncertainties were estimated. Sensitivity analysis for input variables was performed by calculating rank-order correlations between input and output variables. The studied model uncertainties were (i) plausibility of mortality outcomes and (ii) lag, and parameter uncertainties (iii) exposure-response coefficients for different mortality outcomes, and (iv) exposure estimates for different age groups. The monetary value of the years-of-life-lost and the relative importance of the uncertainties related to monetary valuation were predicted to compare the relative importance of the monetary valuation on the health effect uncertainties. The magnitude of the health effects costs depended mostly on discount rate, exposure-response coefficient, and plausibility of the cardiopulmonary mortality. Other mortality outcomes (lung cancer, other non-accidental and infant mortality) and lag had only minor impact on the output. The results highlight the importance of the uncertainties associated with cardiopulmonary mortality in the fine particle impact assessment when compared with other uncertainties. When estimating life-expectancy, the estimates used for cardiopulmonary exposure-response coefficient, discount rate, and plausibility require careful assessment, while complicated lag estimates can be omitted without this having any major effect on the results.

  15. Summary of the key features of seven biomathematical models of human fatigue and performance.

    PubMed

    Mallis, Melissa M; Mejdal, Sig; Nguyen, Tammy T; Dinges, David F

    2004-03-01

    Biomathematical models that quantify the effects of circadian and sleep/wake processes on the regulation of alertness and performance have been developed in an effort to predict the magnitude and timing of fatigue-related responses in a variety of contexts (e.g., transmeridian travel, sustained operations, shift work). This paper summarizes key features of seven biomathematical models reviewed as part of the Fatigue and Performance Modeling Workshop held in Seattle, WA, on June 13-14, 2002. The Workshop was jointly sponsored by the National Aeronautics and Space Administration, U.S. Department of Defense, U.S. Army Medical Research and Materiel Command, Office of Naval Research, Air Force Office of Scientific Research, and U.S. Department of Transportation. An invitation was sent to developers of seven biomathematical models that were commonly cited in scientific literature and/or supported by government funding. On acceptance of the invitation to attend the Workshop, developers were asked to complete a survey of the goals, capabilities, inputs, and outputs of their biomathematical models of alertness and performance. Data from the completed surveys were summarized and juxtaposed to provide a framework for comparing features of the seven models. Survey responses revealed that models varied greatly relative to their reported goals and capabilities. While all modelers reported that circadian factors were key components of their capabilities, they differed markedly with regard to the roles of sleep and work times as input factors for prediction: four of the seven models had work time as their sole input variable(s), while the other three models relied on various aspects of sleep timing for model input. Models also differed relative to outputs: five sought to predict results from laboratory experiments, field, and operational data, while two models were developed without regard to predicting laboratory experimental results. All modelers provided published papers describing their models, with three of the models being proprietary. Although all models appear to have been fundamentally influenced by the two-process model of sleep regulation by Borbély, there is considerable diversity among them in the number and type of input and output variables, and their stated goals and capabilities.

  16. Summary of the key features of seven biomathematical models of human fatigue and performance

    NASA Technical Reports Server (NTRS)

    Mallis, Melissa M.; Mejdal, Sig; Nguyen, Tammy T.; Dinges, David F.

    2004-01-01

    BACKGROUND: Biomathematical models that quantify the effects of circadian and sleep/wake processes on the regulation of alertness and performance have been developed in an effort to predict the magnitude and timing of fatigue-related responses in a variety of contexts (e.g., transmeridian travel, sustained operations, shift work). This paper summarizes key features of seven biomathematical models reviewed as part of the Fatigue and Performance Modeling Workshop held in Seattle, WA, on June 13-14, 2002. The Workshop was jointly sponsored by the National Aeronautics and Space Administration, U.S. Department of Defense, U.S. Army Medical Research and Materiel Command, Office of Naval Research, Air Force Office of Scientific Research, and U.S. Department of Transportation. METHODS: An invitation was sent to developers of seven biomathematical models that were commonly cited in scientific literature and/or supported by government funding. On acceptance of the invitation to attend the Workshop, developers were asked to complete a survey of the goals, capabilities, inputs, and outputs of their biomathematical models of alertness and performance. Data from the completed surveys were summarized and juxtaposed to provide a framework for comparing features of the seven models. RESULTS: Survey responses revealed that models varied greatly relative to their reported goals and capabilities. While all modelers reported that circadian factors were key components of their capabilities, they differed markedly with regard to the roles of sleep and work times as input factors for prediction: four of the seven models had work time as their sole input variable(s), while the other three models relied on various aspects of sleep timing for model input. Models also differed relative to outputs: five sought to predict results from laboratory experiments, field, and operational data, while two models were developed without regard to predicting laboratory experimental results. All modelers provided published papers describing their models, with three of the models being proprietary. CONCLUSIONS: Although all models appear to have been fundamentally influenced by the two-process model of sleep regulation by Borbely, there is considerable diversity among them in the number and type of input and output variables, and their stated goals and capabilities.

  17. The impact of 14nm photomask variability and uncertainty on computational lithography solutions

    NASA Astrophysics Data System (ADS)

    Sturtevant, John; Tejnil, Edita; Buck, Peter D.; Schulze, Steffen; Kalk, Franklin; Nakagawa, Kent; Ning, Guoxiang; Ackmann, Paul; Gans, Fritz; Buergel, Christian

    2013-09-01

    Computational lithography solutions rely upon accurate process models to faithfully represent the imaging system output for a defined set of process and design inputs. These models rely upon the accurate representation of multiple parameters associated with the scanner and the photomask. Many input variables for simulation are based upon designed or recipe-requested values or independent measurements. It is known, however, that certain measurement methodologies, while precise, can have significant inaccuracies. Additionally, there are known errors associated with the representation of certain system parameters. With shrinking total CD control budgets, appropriate accounting for all sources of error becomes more important, and the cumulative consequence of input errors to the computational lithography model can become significant. In this work, we examine via simulation, the impact of errors in the representation of photomask properties including CD bias, corner rounding, refractive index, thickness, and sidewall angle. The factors that are most critical to be accurately represented in the model are cataloged. CD bias values are based on state of the art mask manufacturing data and other variables changes are speculated, highlighting the need for improved metrology and communication between mask and OPC model experts. The simulations are done by ignoring the wafer photoresist model, and show the sensitivity of predictions to various model inputs associated with the mask. It is shown that the wafer simulations are very dependent upon the 1D/2D representation of the mask and for 3D, that the mask sidewall angle is a very sensitive factor influencing simulated wafer CD results.

  18. Forecasting of cyanobacterial density in Torrão reservoir using artificial neural networks.

    PubMed

    Torres, Rita; Pereira, Elisa; Vasconcelos, Vítor; Teles, Luís Oliva

    2011-06-01

    The ability of general regression neural networks (GRNN) to forecast the density of cyanobacteria in the Torrão reservoir (Tâmega river, Portugal), in a period of 15 days, based on three years of collected physical and chemical data, was assessed. Several models were developed and 176 were selected based on their correlation values for the verification series. A time lag of 11 was used, equivalent to one sample (periods of 15 days in the summer and 30 days in the winter). Several combinations of the series were used. Input and output data collected from three depths of the reservoir were applied (surface, euphotic zone limit and bottom). The model that presented a higher average correlation value presented the correlations 0.991; 0.843; 0.978 for training, verification and test series. This model had the three series independent in time: first test series, then verification series and, finally, training series. Only six input variables were considered significant to the performance of this model: ammonia, phosphates, dissolved oxygen, water temperature, pH and water evaporation, physical and chemical parameters referring to the three depths of the reservoir. These variables are common to the next four best models produced and, although these included other input variables, their performance was not better than the selected best model.

  19. Community models for wildlife impact assessment: a review of concepts and approaches

    USGS Publications Warehouse

    Schroeder, Richard L.

    1987-01-01

    The first two sections of this paper are concerned with defining and bounding communities, and describing those attributes of the community that are quantifiable and suitable for wildlife impact assessment purposes. Prior to the development or use of a community model, it is important to have a clear understanding of the concept of a community and a knowledge of the types of community attributes that can serve as outputs for the development of models. Clearly defined, unambiguous model outputs are essential for three reasons: (1) to ensure that the measured community attributes relate to the wildlife resource objectives of the study; (2) to allow testing of the outputs in experimental studies, to determine accuracy, and to allow for improvements based on such testing; and (3) to enable others to clearly understand the community attribute that has been measured. The third section of this paper described input variables that may be used to predict various community attributes. These input variables do not include direct measures of wildlife populations. Most impact assessments involve projects that result in drastic changes in habitat, such as changes in land use, vegetation, or available area. Therefore, the model input variables described in this section deal primarily with habitat related features. Several existing community models are described in the fourth section of this paper. A general description of each model is provided, including the nature of the input variables and the model output. The logic and assumptions of each model are discussed, along with data requirements needed to use the model. The fifth section provides guidance on the selection and development of community models. Identification of the community attribute that is of concern will determine the type of model most suitable for a particular application. This section provides guidelines on selected an existing model, as well as a discussion of the major steps to be followed in modifying an existing model or developing a new model. Considerations associated with the use of community models with the Habitat Evaluation Procedures are also discussed. The final section of the paper summarizes major findings of interest to field biologists and provides recommendations concerning the implementation of selected concepts in wildlife community analyses.

  20. Weather models as virtual sensors to data-driven rainfall predictions in urban watersheds

    NASA Astrophysics Data System (ADS)

    Cozzi, Lorenzo; Galelli, Stefano; Pascal, Samuel Jolivet De Marc; Castelletti, Andrea

    2013-04-01

    Weather and climate predictions are a key element of urban hydrology where they are used to inform water management and assist in flood warning delivering. Indeed, the modelling of the very fast dynamics of urbanized catchments can be substantially improved by the use of weather/rainfall predictions. For example, in Singapore Marina Reservoir catchment runoff processes have a very short time of concentration (roughly one hour) and observational data are thus nearly useless for runoff predictions and weather prediction are required. Unfortunately, radar nowcasting methods do not allow to carrying out long - term weather predictions, whereas numerical models are limited by their coarse spatial scale. Moreover, numerical models are usually poorly reliable because of the fast motion and limited spatial extension of rainfall events. In this study we investigate the combined use of data-driven modelling techniques and weather variables observed/simulated with a numerical model as a way to improve rainfall prediction accuracy and lead time in the Singapore metropolitan area. To explore the feasibility of the approach, we use a Weather Research and Forecast (WRF) model as a virtual sensor network for the input variables (the states of the WRF model) to a machine learning rainfall prediction model. More precisely, we combine an input variable selection method and a non-parametric tree-based model to characterize the empirical relation between the rainfall measured at the catchment level and all possible weather input variables provided by WRF model. We explore different lead time to evaluate the model reliability for different long - term predictions, as well as different time lags to see how past information could improve results. Results show that the proposed approach allow a significant improvement of the prediction accuracy of the WRF model on the Singapore urban area.

  1. Artificial neural network modeling of dissolved oxygen in the Heihe River, Northwestern China.

    PubMed

    Wen, Xiaohu; Fang, Jing; Diao, Meina; Zhang, Chuanqi

    2013-05-01

    Identification and quantification of dissolved oxygen (DO) profiles of river is one of the primary concerns for water resources managers. In this research, an artificial neural network (ANN) was developed to simulate the DO concentrations in the Heihe River, Northwestern China. A three-layer back-propagation ANN was used with the Bayesian regularization training algorithm. The input variables of the neural network were pH, electrical conductivity, chloride (Cl(-)), calcium (Ca(2+)), total alkalinity, total hardness, nitrate nitrogen (NO3-N), and ammonical nitrogen (NH4-N). The ANN structure with 14 hidden neurons obtained the best selection. By making comparison between the results of the ANN model and the measured data on the basis of correlation coefficient (r) and root mean square error (RMSE), a good model-fitting DO values indicated the effectiveness of neural network model. It is found that the coefficient of correlation (r) values for the training, validation, and test sets were 0.9654, 0.9841, and 0.9680, respectively, and the respective values of RMSE for the training, validation, and test sets were 0.4272, 0.3667, and 0.4570, respectively. Sensitivity analysis was used to determine the influence of input variables on the dependent variable. The most effective inputs were determined as pH, NO3-N, NH4-N, and Ca(2+). Cl(-) was found to be least effective variables on the proposed model. The identified ANN model can be used to simulate the water quality parameters.

  2. Estimating severity of sideways fall using a generic multi linear regression model based on kinematic input variables.

    PubMed

    van der Zijden, A M; Groen, B E; Tanck, E; Nienhuis, B; Verdonschot, N; Weerdesteyn, V

    2017-03-21

    Many research groups have studied fall impact mechanics to understand how fall severity can be reduced to prevent hip fractures. Yet, direct impact force measurements with force plates are restricted to a very limited repertoire of experimental falls. The purpose of this study was to develop a generic model for estimating hip impact forces (i.e. fall severity) in in vivo sideways falls without the use of force plates. Twelve experienced judokas performed sideways Martial Arts (MA) and Block ('natural') falls on a force plate, both with and without a mat on top. Data were analyzed to determine the hip impact force and to derive 11 selected (subject-specific and kinematic) variables. Falls from kneeling height were used to perform a stepwise regression procedure to assess the effects of these input variables and build the model. The final model includes four input variables, involving one subject-specific measure and three kinematic variables: maximum upper body deceleration, body mass, shoulder angle at the instant of 'maximum impact' and maximum hip deceleration. The results showed that estimated and measured hip impact forces were linearly related (explained variances ranging from 46 to 63%). Hip impact forces of MA falls onto the mat from a standing position (3650±916N) estimated by the final model were comparable with measured values (3698±689N), even though these data were not used for training the model. In conclusion, a generic linear regression model was developed that enables the assessment of fall severity through kinematic measures of sideways falls, without using force plates. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Adaptive optimal input design and parametric estimation of nonlinear dynamical systems: application to neuronal modeling.

    PubMed

    Madi, Mahmoud K; Karameh, Fadi N

    2018-05-11

    Many physical models of biological processes including neural systems are characterized by parametric nonlinear dynamical relations between driving inputs, internal states, and measured outputs of the process. Fitting such models using experimental data (data assimilation) is a challenging task since the physical process often operates in a noisy, possibly non-stationary environment; moreover, conducting multiple experiments under controlled and repeatable conditions can be impractical, time consuming or costly. The accuracy of model identification, therefore, is dictated principally by the quality and dynamic richness of collected data over single or few experimental sessions. Accordingly, it is highly desirable to design efficient experiments that, by exciting the physical process with smart inputs, yields fast convergence and increased accuracy of the model. We herein introduce an adaptive framework in which optimal input design is integrated with Square root Cubature Kalman Filters (OID-SCKF) to develop an online estimation procedure that first, converges significantly quicker, thereby permitting model fitting over shorter time windows, and second, enhances model accuracy when only few process outputs are accessible. The methodology is demonstrated on common nonlinear models and on a four-area neural mass model with noisy and limited measurements. Estimation quality (speed and accuracy) is benchmarked against high-performance SCKF-based methods that commonly employ dynamically rich informed inputs for accurate model identification. For all the tested models, simulated single-trial and ensemble averages showed that OID-SCKF exhibited (i) faster convergence of parameter estimates and (ii) lower dependence on inter-trial noise variability with gains up to around 1000 msec in speed and 81% increase in variability for the neural mass models. In terms of accuracy, OID-SCKF estimation was superior, and exhibited considerably less variability across experiments, in identifying model parameters of (a) systems with challenging model inversion dynamics and (b) systems with fewer measurable outputs that directly relate to the underlying processes. Fast and accurate identification therefore carries particular promise for modeling of transient (short-lived) neuronal network dynamics using a spatially under-sampled set of noisy measurements, as is commonly encountered in neural engineering applications. © 2018 IOP Publishing Ltd.

  4. Machine learning for toxicity characterization of organic chemical emissions using USEtox database: Learning the structure of the input space.

    PubMed

    Marvuglia, Antonino; Kanevski, Mikhail; Benetto, Enrico

    2015-10-01

    Toxicity characterization of chemical emissions in Life Cycle Assessment (LCA) is a complex task which usually proceeds via multimedia (fate, exposure and effect) models attached to models of dose-response relationships to assess the effects on target. Different models and approaches do exist, but all require a vast amount of data on the properties of the chemical compounds being assessed, which are hard to collect or hardly publicly available (especially for thousands of less common or newly developed chemicals), therefore hampering in practice the assessment in LCA. An example is USEtox, a consensual model for the characterization of human toxicity and freshwater ecotoxicity. This paper places itself in a line of research aiming at providing a methodology to reduce the number of input parameters necessary to run multimedia fate models, focusing in particular to the application of the USEtox toxicity model. By focusing on USEtox, in this paper two main goals are pursued: 1) performing an extensive exploratory analysis (using dimensionality reduction techniques) of the input space constituted by the substance-specific properties at the aim of detecting particular patterns in the data manifold and estimating the dimension of the subspace in which the data manifold actually lies; and 2) exploring the application of a set of linear models, based on partial least squares (PLS) regression, as well as a nonlinear model (general regression neural network--GRNN) in the seek for an automatic selection strategy of the most informative variables according to the modelled output (USEtox factor). After extensive analysis, the intrinsic dimension of the input manifold has been identified between three and four. The variables selected as most informative may vary according to the output modelled and the model used, but for the toxicity factors modelled in this paper the input variables selected as most informative are coherent with prior expectations based on scientific knowledge of toxicity factors modelling. Thus the outcomes of the analysis are promising for the future application of the approach to other portions of the model, affected by important data gaps, e.g., to the calculation of human health effect factors. Copyright © 2015. Published by Elsevier Ltd.

  5. SCI model structure determination program (OSR) user's guide. [optimal subset regression

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The computer program, OSR (Optimal Subset Regression) which estimates models for rotorcraft body and rotor force and moment coefficients is described. The technique used is based on the subset regression algorithm. Given time histories of aerodynamic coefficients, aerodynamic variables, and control inputs, the program computes correlation between various time histories. The model structure determination is based on these correlations. Inputs and outputs of the program are given.

  6. Random Predictor Models for Rigorous Uncertainty Quantification: Part 2

    NASA Technical Reports Server (NTRS)

    Crespo, Luis G.; Kenny, Sean P.; Giesy, Daniel P.

    2015-01-01

    This and a companion paper propose techniques for constructing parametric mathematical models describing key features of the distribution of an output variable given input-output data. By contrast to standard models, which yield a single output value at each value of the input, Random Predictors Models (RPMs) yield a random variable at each value of the input. Optimization-based strategies for calculating RPMs having a polynomial dependency on the input and a linear dependency on the parameters are proposed. These formulations yield RPMs having various levels of fidelity in which the mean, the variance, and the range of the model's parameter, thus of the output, are prescribed. As such they encompass all RPMs conforming to these prescriptions. The RPMs are optimal in the sense that they yield the tightest predictions for which all (or, depending on the formulation, most) of the observations are less than a fixed number of standard deviations from the mean prediction. When the data satisfies mild stochastic assumptions, and the optimization problem(s) used to calculate the RPM is convex (or, when its solution coincides with the solution to an auxiliary convex problem), the model's reliability, which is the probability that a future observation would be within the predicted ranges, is bounded rigorously.

  7. Random Predictor Models for Rigorous Uncertainty Quantification: Part 1

    NASA Technical Reports Server (NTRS)

    Crespo, Luis G.; Kenny, Sean P.; Giesy, Daniel P.

    2015-01-01

    This and a companion paper propose techniques for constructing parametric mathematical models describing key features of the distribution of an output variable given input-output data. By contrast to standard models, which yield a single output value at each value of the input, Random Predictors Models (RPMs) yield a random variable at each value of the input. Optimization-based strategies for calculating RPMs having a polynomial dependency on the input and a linear dependency on the parameters are proposed. These formulations yield RPMs having various levels of fidelity in which the mean and the variance of the model's parameters, thus of the predicted output, are prescribed. As such they encompass all RPMs conforming to these prescriptions. The RPMs are optimal in the sense that they yield the tightest predictions for which all (or, depending on the formulation, most) of the observations are less than a fixed number of standard deviations from the mean prediction. When the data satisfies mild stochastic assumptions, and the optimization problem(s) used to calculate the RPM is convex (or, when its solution coincides with the solution to an auxiliary convex problem), the model's reliability, which is the probability that a future observation would be within the predicted ranges, can be bounded tightly and rigorously.

  8. Model predictive controller design for boost DC-DC converter using T-S fuzzy cost function

    NASA Astrophysics Data System (ADS)

    Seo, Sang-Wha; Kim, Yong; Choi, Han Ho

    2017-11-01

    This paper proposes a Takagi-Sugeno (T-S) fuzzy method to select cost function weights of finite control set model predictive DC-DC converter control algorithms. The proposed method updates the cost function weights at every sample time by using T-S type fuzzy rules derived from the common optimal control engineering knowledge that a state or input variable with an excessively large magnitude can be penalised by increasing the weight corresponding to the variable. The best control input is determined via the online optimisation of the T-S fuzzy cost function for all the possible control input sequences. This paper implements the proposed model predictive control algorithm in real time on a Texas Instruments TMS320F28335 floating-point Digital Signal Processor (DSP). Some experimental results are given to illuminate the practicality and effectiveness of the proposed control system under several operating conditions. The results verify that our method can yield not only good transient and steady-state responses (fast recovery time, small overshoot, zero steady-state error, etc.) but also insensitiveness to abrupt load or input voltage parameter variations.

  9. Simulation Framework for Teaching in Modeling and Simulation Areas

    ERIC Educational Resources Information Center

    De Giusti, Marisa Raquel; Lira, Ariel Jorge; Villarreal, Gonzalo Lujan

    2008-01-01

    Simulation is the process of executing a model that describes a system with enough detail; this model has its entities, an internal state, some input and output variables and a list of processes bound to these variables. Teaching a simulation language such as general purpose simulation system (GPSS) is always a challenge, because of the way it…

  10. Sources of Uncertainty in the Prediction of LAI / fPAR from MODIS

    NASA Technical Reports Server (NTRS)

    Dungan, Jennifer L.; Ganapol, Barry D.; Brass, James A. (Technical Monitor)

    2002-01-01

    To explicate the sources of uncertainty in the prediction of biophysical variables over space, consider the general equation: where z is a variable with values on some nominal, ordinal, interval or ratio scale; y is a vector of input variables; u is the spatial support of y and z ; x and u are the spatial locations of y and z , respectively; f is a model and B is the vector of the parameters of this model. Any y or z has a value and a spatial extent which is called its support. Viewed in this way, categories of uncertainty are from variable (e.g. measurement), parameter, positional. support and model (e.g. structural) sources. The prediction of Leaf Area Index (LAI) and the fraction of absorbed photosynthetically active radiation (fPAR) are examples of z variables predicted using model(s) as a function of y variables and spatially constant parameters. The MOD15 algorithm is an example of f, called f(sub 1), with parameters including those defined by one of six biome types and solar and view angles. The Leaf Canopy Model (LCM)2, a nested model that combines leaf radiative transfer with a full canopy reflectance model through the phase function, is a simpler though similar radiative transfer approach to f(sub 1). In a previous study, MOD15 and LCM2 gave similar results for the broadleaf forest biome. Differences between these two models can be used to consider the structural uncertainty in prediction results. In an effort to quantify each of the five sources of uncertainty and rank their relative importance for the LAI/fPAR prediction problem, we used recent data for an EOS Core Validation Site in the broadleaf biome with coincident surface reflectance, vegetation index, fPAR and LAI products from the Moderate Resolution Imaging Spectrometer (MODIS). Uncertainty due to support on the input reflectance variable was characterized using Landsat ETM+ data. Input uncertainties were propagated through the LCM2 model and compared with published uncertainties from the MOD15 algorithm.

  11. Predicting Time Series Outputs and Time-to-Failure for an Aircraft Controller Using Bayesian Modeling

    NASA Technical Reports Server (NTRS)

    He, Yuning

    2015-01-01

    Safety of unmanned aerial systems (UAS) is paramount, but the large number of dynamically changing controller parameters makes it hard to determine if the system is currently stable, and the time before loss of control if not. We propose a hierarchical statistical model using Treed Gaussian Processes to predict (i) whether a flight will be stable (success) or become unstable (failure), (ii) the time-to-failure if unstable, and (iii) time series outputs for flight variables. We first classify the current flight input into success or failure types, and then use separate models for each class to predict the time-to-failure and time series outputs. As different inputs may cause failures at different times, we have to model variable length output curves. We use a basis representation for curves and learn the mappings from input to basis coefficients. We demonstrate the effectiveness of our prediction methods on a NASA neuro-adaptive flight control system.

  12. Fuzzy parametric uncertainty analysis of linear dynamical systems: A surrogate modeling approach

    NASA Astrophysics Data System (ADS)

    Chowdhury, R.; Adhikari, S.

    2012-10-01

    Uncertainty propagation engineering systems possess significant computational challenges. This paper explores the possibility of using correlated function expansion based metamodelling approach when uncertain system parameters are modeled using Fuzzy variables. In particular, the application of High-Dimensional Model Representation (HDMR) is proposed for fuzzy finite element analysis of dynamical systems. The HDMR expansion is a set of quantitative model assessment and analysis tools for capturing high-dimensional input-output system behavior based on a hierarchy of functions of increasing dimensions. The input variables may be either finite-dimensional (i.e., a vector of parameters chosen from the Euclidean space RM) or may be infinite-dimensional as in the function space CM[0,1]. The computational effort to determine the expansion functions using the alpha cut method scales polynomially with the number of variables rather than exponentially. This logic is based on the fundamental assumption underlying the HDMR representation that only low-order correlations among the input variables are likely to have significant impacts upon the outputs for most high-dimensional complex systems. The proposed method is integrated with a commercial Finite Element software. Modal analysis of a simplified aircraft wing with Fuzzy parameters has been used to illustrate the generality of the proposed approach. In the numerical examples, triangular membership functions have been used and the results have been validated against direct Monte Carlo simulations.

  13. The method of belief scales as a means for dealing with uncertainty in tough regulatory decisions.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pilch, Martin M.

    Modeling and simulation is playing an increasing role in supporting tough regulatory decisions, which are typically characterized by variabilities and uncertainties in the scenarios, input conditions, failure criteria, model parameters, and even model form. Variability exists when there is a statistically significant database that is fully relevant to the application. Uncertainty, on the other hand, is characterized by some degree of ignorance. A simple algebraic problem was used to illustrate how various risk methodologies address variability and uncertainty in a regulatory context. These traditional risk methodologies include probabilistic methods (including frequensic and Bayesian perspectives) and second-order methods where variabilities andmore » uncertainties are treated separately. Representing uncertainties with (subjective) probability distributions and using probabilistic methods to propagate subjective distributions can lead to results that are not logically consistent with available knowledge and that may not be conservative. The Method of Belief Scales (MBS) is developed as a means to logically aggregate uncertain input information and to propagate that information through the model to a set of results that are scrutable, easily interpretable by the nonexpert, and logically consistent with the available input information. The MBS, particularly in conjunction with sensitivity analyses, has the potential to be more computationally efficient than other risk methodologies. The regulatory language must be tailored to the specific risk methodology if ambiguity and conflict are to be avoided.« less

  14. Robust integral variable structure controller and pulse-width pulse-frequency modulated input shaper design for flexible spacecraft with mismatched uncertainty/disturbance.

    PubMed

    Hu, Qinglei

    2007-10-01

    This paper presents a dual-stage control system design method for the flexible spacecraft attitude maneuvering control by use of on-off thrusters and active vibration control by input shaper. In this design approach, attitude control system and vibration suppression were designed separately using lower order model. As a stepping stone, an integral variable structure controller with the assumption of knowing the upper bounds of the mismatched lumped perturbation has been designed which ensures exponential convergence of attitude angle and angular velocity in the presence of bounded uncertainty/disturbances. To reconstruct estimates of the system states for use in a full information variable structure control law, an asymptotic variable structure observer is also employed. In addition, the thruster output is modulated in pulse-width pulse-frequency so that the output profile is similar to the continuous control histories. For actively suppressing the induced vibration, the input shaping technique is used to modify the existing command so that less vibration will be caused by the command itself, which only requires information about the vibration frequency and damping of the closed-loop system. The rationale behind this hybrid control scheme is that the integral variable structure controller can achieve good precision pointing, even in the presence of uncertainties/disturbances, whereas the shaped input attenuator is applied to actively suppress the undesirable vibrations excited by the rapid maneuvers. Simulation results for the spacecraft model show precise attitude control and vibration suppression.

  15. Uncertainty and variability in computational and mathematical models of cardiac physiology.

    PubMed

    Mirams, Gary R; Pathmanathan, Pras; Gray, Richard A; Challenor, Peter; Clayton, Richard H

    2016-12-01

    Mathematical and computational models of cardiac physiology have been an integral component of cardiac electrophysiology since its inception, and are collectively known as the Cardiac Physiome. We identify and classify the numerous sources of variability and uncertainty in model formulation, parameters and other inputs that arise from both natural variation in experimental data and lack of knowledge. The impact of uncertainty on the outputs of Cardiac Physiome models is not well understood, and this limits their utility as clinical tools. We argue that incorporating variability and uncertainty should be a high priority for the future of the Cardiac Physiome. We suggest investigating the adoption of approaches developed in other areas of science and engineering while recognising unique challenges for the Cardiac Physiome; it is likely that novel methods will be necessary that require engagement with the mathematics and statistics community. The Cardiac Physiome effort is one of the most mature and successful applications of mathematical and computational modelling for describing and advancing the understanding of physiology. After five decades of development, physiological cardiac models are poised to realise the promise of translational research via clinical applications such as drug development and patient-specific approaches as well as ablation, cardiac resynchronisation and contractility modulation therapies. For models to be included as a vital component of the decision process in safety-critical applications, rigorous assessment of model credibility will be required. This White Paper describes one aspect of this process by identifying and classifying sources of variability and uncertainty in models as well as their implications for the application and development of cardiac models. We stress the need to understand and quantify the sources of variability and uncertainty in model inputs, and the impact of model structure and complexity and their consequences for predictive model outputs. We propose that the future of the Cardiac Physiome should include a probabilistic approach to quantify the relationship of variability and uncertainty of model inputs and outputs. © 2016 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.

  16. Rotary ultrasonic machining of CFRP: a mechanistic predictive model for cutting force.

    PubMed

    Cong, W L; Pei, Z J; Sun, X; Zhang, C L

    2014-02-01

    Cutting force is one of the most important output variables in rotary ultrasonic machining (RUM) of carbon fiber reinforced plastic (CFRP) composites. Many experimental investigations on cutting force in RUM of CFRP have been reported. However, in the literature, there are no cutting force models for RUM of CFRP. This paper develops a mechanistic predictive model for cutting force in RUM of CFRP. The material removal mechanism of CFRP in RUM has been analyzed first. The model is based on the assumption that brittle fracture is the dominant mode of material removal. CFRP micromechanical analysis has been conducted to represent CFRP as an equivalent homogeneous material to obtain the mechanical properties of CFRP from its components. Based on this model, relationships between input variables (including ultrasonic vibration amplitude, tool rotation speed, feedrate, abrasive size, and abrasive concentration) and cutting force can be predicted. The relationships between input variables and important intermediate variables (indentation depth, effective contact time, and maximum impact force of single abrasive grain) have been investigated to explain predicted trends of cutting force. Experiments are conducted to verify the model, and experimental results agree well with predicted trends from this model. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Estimating the Uncertain Mathematical Structure of Hydrological Model via Bayesian Data Assimilation

    NASA Astrophysics Data System (ADS)

    Bulygina, N.; Gupta, H.; O'Donell, G.; Wheater, H.

    2008-12-01

    The structure of hydrological model at macro scale (e.g. watershed) is inherently uncertain due to many factors, including the lack of a robust hydrological theory at the macro scale. In this work, we assume that a suitable conceptual model for the hydrologic system has already been determined - i.e., the system boundaries have been specified, the important state variables and input and output fluxes to be included have been selected, and the major hydrological processes and geometries of their interconnections have been identified. The structural identification problem then is to specify the mathematical form of the relationships between the inputs, state variables and outputs, so that a computational model can be constructed for making simulations and/or predictions of system input-state-output behaviour. We show how Bayesian data assimilation can be used to merge both prior beliefs in the form of pre-assumed model equations with information derived from the data to construct a posterior model. The approach, entitled Bayesian Estimation of Structure (BESt), is used to estimate a hydrological model for a small basin in England, at hourly time scales, conditioned on the assumption of 3-dimensional state - soil moisture storage, fast and slow flow stores - conceptual model structure. Inputs to the system are precipitation and potential evapotranspiration, and outputs are actual evapotranspiration and streamflow discharge. Results show the difference between prior and posterior mathematical structures, as well as provide prediction confidence intervals that reflect three types of uncertainty: due to initial conditions, due to input and due to mathematical structure.

  18. Partial Granger causality--eliminating exogenous inputs and latent variables.

    PubMed

    Guo, Shuixia; Seth, Anil K; Kendrick, Keith M; Zhou, Cong; Feng, Jianfeng

    2008-07-15

    Attempts to identify causal interactions in multivariable biological time series (e.g., gene data, protein data, physiological data) can be undermined by the confounding influence of environmental (exogenous) inputs. Compounding this problem, we are commonly only able to record a subset of all related variables in a system. These recorded variables are likely to be influenced by unrecorded (latent) variables. To address this problem, we introduce a novel variant of a widely used statistical measure of causality--Granger causality--that is inspired by the definition of partial correlation. Our 'partial Granger causality' measure is extensively tested with toy models, both linear and nonlinear, and is applied to experimental data: in vivo multielectrode array (MEA) local field potentials (LFPs) recorded from the inferotemporal cortex of sheep. Our results demonstrate that partial Granger causality can reveal the underlying interactions among elements in a network in the presence of exogenous inputs and latent variables in many cases where the existing conditional Granger causality fails.

  19. The input and output management of solid waste using DEA models: A case study at Jengka, Pahang

    NASA Astrophysics Data System (ADS)

    Mohamed, Siti Rosiah; Ghazali, Nur Fadzrina Mohd; Mohd, Ainun Hafizah

    2017-08-01

    Data Envelopment Analysis (DEA) as a tool for obtaining performance indices has been used extensively in several of organizations sector. The ways to improve the efficiency of Decision Making Units (DMUs) is impractical because some of inputs and outputs are uncontrollable and in certain situation its produce weak efficiency which often reflect the impact for operating environment. Based on the data from Alam Flora Sdn. Bhd Jengka, the researcher wants to determine the efficiency of solid waste management (SWM) in town Jengka Pahang using CCRI and CCRO model of DEA and duality formulation with vector average input and output. Three input variables (length collection in meter, frequency time per week in hour and number of garbage truck) and 2 outputs variables (frequency collection and the total solid waste collection in kilogram) are analyzed. As a conclusion, it shows only three roads from 23 roads are efficient that achieve efficiency score 1. Meanwhile, 20 other roads are in an inefficient management.

  20. Computing the structural influence matrix for biological systems.

    PubMed

    Giordano, Giulia; Cuba Samaniego, Christian; Franco, Elisa; Blanchini, Franco

    2016-06-01

    We consider the problem of identifying structural influences of external inputs on steady-state outputs in a biological network model. We speak of a structural influence if, upon a perturbation due to a constant input, the ensuing variation of the steady-state output value has the same sign as the input (positive influence), the opposite sign (negative influence), or is zero (perfect adaptation), for any feasible choice of the model parameters. All these signs and zeros can constitute a structural influence matrix, whose (i, j) entry indicates the sign of steady-state influence of the jth system variable on the ith variable (the output caused by an external persistent input applied to the jth variable). Each entry is structurally determinate if the sign does not depend on the choice of the parameters, but is indeterminate otherwise. In principle, determining the influence matrix requires exhaustive testing of the system steady-state behaviour in the widest range of parameter values. Here we show that, in a broad class of biological networks, the influence matrix can be evaluated with an algorithm that tests the system steady-state behaviour only at a finite number of points. This algorithm also allows us to assess the structural effect of any perturbation, such as variations of relevant parameters. Our method is applied to nontrivial models of biochemical reaction networks and population dynamics drawn from the literature, providing a parameter-free insight into the system dynamics.

  1. An uncertainty and sensitivity analysis applied to the prioritisation of pharmaceuticals as surface water contaminants from wastewater treatment plant direct emissions.

    PubMed

    Morais, Sérgio Alberto; Delerue-Matos, Cristina; Gabarrell, Xavier

    2014-08-15

    In this study, the concentration probability distributions of 82 pharmaceutical compounds detected in the effluents of 179 European wastewater treatment plants were computed and inserted into a multimedia fate model. The comparative ecotoxicological impact of the direct emission of these compounds from wastewater treatment plants on freshwater ecosystems, based on a potentially affected fraction (PAF) of species approach, was assessed to rank compounds based on priority. As many pharmaceuticals are acids or bases, the multimedia fate model accounts for regressions to estimate pH-dependent fate parameters. An uncertainty analysis was performed by means of Monte Carlo analysis, which included the uncertainty of fate and ecotoxicity model input variables, as well as the spatial variability of landscape characteristics on the European continental scale. Several pharmaceutical compounds were identified as being of greatest concern, including 7 analgesics/anti-inflammatories, 3 β-blockers, 3 psychiatric drugs, and 1 each of 6 other therapeutic classes. The fate and impact modelling relied extensively on estimated data, given that most of these compounds have little or no experimental fate or ecotoxicity data available, as well as a limited reported occurrence in effluents. The contribution of estimated model input variables to the variance of freshwater ecotoxicity impact, as well as the lack of experimental abiotic degradation data for most compounds, helped in establishing priorities for further testing. Generally, the effluent concentration and the ecotoxicity effect factor were the model input variables with the most significant effect on the uncertainty of output results. Copyright © 2014. Published by Elsevier B.V.

  2. Sensitivity analysis of radionuclides atmospheric dispersion following the Fukushima accident

    NASA Astrophysics Data System (ADS)

    Girard, Sylvain; Korsakissok, Irène; Mallet, Vivien

    2014-05-01

    Atmospheric dispersion models are used in response to accidental releases with two purposes: - minimising the population exposure during the accident; - complementing field measurements for the assessment of short and long term environmental and sanitary impacts. The predictions of these models are subject to considerable uncertainties of various origins. Notably, input data, such as meteorological fields or estimations of emitted quantities as function of time, are highly uncertain. The case studied here is the atmospheric release of radionuclides following the Fukushima Daiichi disaster. The model used in this study is Polyphemus/Polair3D, from which derives IRSN's operational long distance atmospheric dispersion model ldX. A sensitivity analysis was conducted in order to estimate the relative importance of a set of identified uncertainty sources. The complexity of this task was increased by four characteristics shared by most environmental models: - high dimensional inputs; - correlated inputs or inputs with complex structures; - high dimensional output; - multiplicity of purposes that require sophisticated and non-systematic post-processing of the output. The sensitivities of a set of outputs were estimated with the Morris screening method. The input ranking was highly dependent on the considered output. Yet, a few variables, such as horizontal diffusion coefficient or clouds thickness, were found to have a weak influence on most of them and could be discarded from further studies. The sensitivity analysis procedure was also applied to indicators of the model performance computed on a set of gamma dose rates observations. This original approach is of particular interest since observations could be used later to calibrate the input variables probability distributions. Indeed, only the variables that are influential on performance scores are likely to allow for calibration. An indicator based on emission peaks time matching was elaborated in order to complement classical statistical scores which were dominated by deposit dose rates and almost insensitive to lower atmosphere dose rates. The substantial sensitivity of these performance indicators is auspicious for future calibration attempts and indicates that the simple perturbations used here may be sufficient to represent an essential part of the overall uncertainty.

  3. Modeling the milling tool wear by using an evolutionary SVM-based model from milling runs experimental data

    NASA Astrophysics Data System (ADS)

    Nieto, Paulino José García; García-Gonzalo, Esperanza; Vilán, José Antonio Vilán; Robleda, Abraham Segade

    2015-12-01

    The main aim of this research work is to build a new practical hybrid regression model to predict the milling tool wear in a regular cut as well as entry cut and exit cut of a milling tool. The model was based on Particle Swarm Optimization (PSO) in combination with support vector machines (SVMs). This optimization mechanism involved kernel parameter setting in the SVM training procedure, which significantly influences the regression accuracy. Bearing this in mind, a PSO-SVM-based model, which is based on the statistical learning theory, was successfully used here to predict the milling tool flank wear (output variable) as a function of the following input variables: the time duration of experiment, depth of cut, feed, type of material, etc. To accomplish the objective of this study, the experimental dataset represents experiments from runs on a milling machine under various operating conditions. In this way, data sampled by three different types of sensors (acoustic emission sensor, vibration sensor and current sensor) were acquired at several positions. A second aim is to determine the factors with the greatest bearing on the milling tool flank wear with a view to proposing milling machine's improvements. Firstly, this hybrid PSO-SVM-based regression model captures the main perception of statistical learning theory in order to obtain a good prediction of the dependence among the flank wear (output variable) and input variables (time, depth of cut, feed, etc.). Indeed, regression with optimal hyperparameters was performed and a determination coefficient of 0.95 was obtained. The agreement of this model with experimental data confirmed its good performance. Secondly, the main advantages of this PSO-SVM-based model are its capacity to produce a simple, easy-to-interpret model, its ability to estimate the contributions of the input variables, and its computational efficiency. Finally, the main conclusions of this study are exposed.

  4. Enabling intelligent copernicus services for carbon and water balance modeling of boreal forest ecosystems - North State

    NASA Astrophysics Data System (ADS)

    Häme, Tuomas; Mutanen, Teemu; Rauste, Yrjö; Antropov, Oleg; Molinier, Matthieu; Quegan, Shaun; Kantzas, Euripides; Mäkelä, Annikki; Minunno, Francesco; Atli Benediktsson, Jon; Falco, Nicola; Arnason, Kolbeinn; Storvold, Rune; Haarpaintner, Jörg; Elsakov, Vladimir; Rasinmäki, Jussi

    2015-04-01

    The objective of project North State, funded by Framework Program 7 of the European Union, is to develop innovative data fusion methods that exploit the new generation of multi-source data from Sentinels and other satellites in an intelligent, self-learning framework. The remote sensing outputs are interfaced with state-of-the-art carbon and water flux models for monitoring the fluxes over boreal Europe to reduce current large uncertainties. This will provide a paradigm for the development of products for future Copernicus services. The models to be interfaced are a dynamic vegetation model and a light use efficiency model. We have identified four groups of variables that will be estimated with remote sensed data: land cover variables, forest characteristics, vegetation activity, and hydrological variables. The estimates will be used as model inputs and to validate the model outputs. The earth observation variables are computed as automatically as possible, with an objective to completely automatic estimation. North State has two sites for intensive studies in southern and northern Finland, respectively, one in Iceland and one in state Komi of Russia. Additionally, the model input variables will be estimated and models applied over European boreal and sub-arctic region from Ural Mountains to Iceland. The accuracy assessment of the earth observation variables will follow statistical sampling design. Model output predictions are compared to earth observation variables. Also flux tower measurements are applied in the model assessment. In the paper, results of hyperspectral, Sentinel-1, and Landsat data and their use in the models is presented. Also an example of a completely automatic land cover class prediction is reported.

  5. Symbolic PathFinder: Symbolic Execution of Java Bytecode

    NASA Technical Reports Server (NTRS)

    Pasareanu, Corina S.; Rungta, Neha

    2010-01-01

    Symbolic Pathfinder (SPF) combines symbolic execution with model checking and constraint solving for automated test case generation and error detection in Java programs with unspecified inputs. In this tool, programs are executed on symbolic inputs representing multiple concrete inputs. Values of variables are represented as constraints generated from the analysis of Java bytecode. The constraints are solved using off-the shelf solvers to generate test inputs guaranteed to achieve complex coverage criteria. SPF has been used successfully at NASA, in academia, and in industry.

  6. Estimating Prediction Uncertainty from Geographical Information System Raster Processing: A User's Manual for the Raster Error Propagation Tool (REPTool)

    USGS Publications Warehouse

    Gurdak, Jason J.; Qi, Sharon L.; Geisler, Michael L.

    2009-01-01

    The U.S. Geological Survey Raster Error Propagation Tool (REPTool) is a custom tool for use with the Environmental System Research Institute (ESRI) ArcGIS Desktop application to estimate error propagation and prediction uncertainty in raster processing operations and geospatial modeling. REPTool is designed to introduce concepts of error and uncertainty in geospatial data and modeling and provide users of ArcGIS Desktop a geoprocessing tool and methodology to consider how error affects geospatial model output. Similar to other geoprocessing tools available in ArcGIS Desktop, REPTool can be run from a dialog window, from the ArcMap command line, or from a Python script. REPTool consists of public-domain, Python-based packages that implement Latin Hypercube Sampling within a probabilistic framework to track error propagation in geospatial models and quantitatively estimate the uncertainty of the model output. Users may specify error for each input raster or model coefficient represented in the geospatial model. The error for the input rasters may be specified as either spatially invariant or spatially variable across the spatial domain. Users may specify model output as a distribution of uncertainty for each raster cell. REPTool uses the Relative Variance Contribution method to quantify the relative error contribution from the two primary components in the geospatial model - errors in the model input data and coefficients of the model variables. REPTool is appropriate for many types of geospatial processing operations, modeling applications, and related research questions, including applications that consider spatially invariant or spatially variable error in geospatial data.

  7. Quantification of 11C-Laniquidar Kinetics in the Brain.

    PubMed

    Froklage, Femke E; Boellaard, Ronald; Bakker, Esther; Hendrikse, N Harry; Reijneveld, Jaap C; Schuit, Robert C; Windhorst, Albert D; Schober, Patrick; van Berckel, Bart N M; Lammertsma, Adriaan A; Postnov, Andrey

    2015-11-01

    Overexpression of the multidrug efflux transport P-glycoprotein may play an important role in pharmacoresistance. (11)C-laniquidar is a newly developed tracer of P-glycoprotein expression. The aim of this study was to develop a pharmacokinetic model for quantification of (11)C-laniquidar uptake and to assess its test-retest variability. Two (test-retest) dynamic (11)C-laniquidar PET scans were obtained in 8 healthy subjects. Plasma input functions were obtained using online arterial blood sampling with metabolite corrections derived from manual samples. Coregistered T1 MR images were used for region-of-interest definition. Time-activity curves were analyzed using various plasma input compartmental models. (11)C-laniquidar was metabolized rapidly, with a parent plasma fraction of 50% at 10 min after tracer injection. In addition, the first-pass extraction of (11)C-laniquidar was low. (11)C-laniquidar time-activity curves were best fitted to an irreversible single-tissue compartment (1T1K) model using conventional models. Nevertheless, significantly better fits were obtained using 2 parallel single-tissue compartments, one for parent tracer and the other for labeled metabolites (dual-input model). Robust K1 results were also obtained by fitting the first 5 min of PET data to the 1T1K model, at least when 60-min plasma input data were used. For both models, the test-retest variability of (11)C-laniquidar rate constant for transfer from arterial plasma to tissue (K1) was approximately 19%. The accurate quantification of (11)C-laniquidar kinetics in the brain is hampered by its fast metabolism and the likelihood that labeled metabolites enter the brain. Best fits for the entire 60 min of data were obtained using a dual-input model, accounting for uptake of (11)C-laniquidar and its labeled metabolites. Alternatively, K1 could be obtained from a 5-min scan using a standard 1T1K model. In both cases, the test-retest variability of K1 was approximately 19%. © 2015 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  8. Adaptive control of a jet turboshaft engine driving a variable pitch propeller using multiple models

    NASA Astrophysics Data System (ADS)

    Ahmadian, Narjes; Khosravi, Alireza; Sarhadi, Pouria

    2017-08-01

    In this paper, a multiple model adaptive control (MMAC) method is proposed for a gas turbine engine. The model of a twin spool turbo-shaft engine driving a variable pitch propeller includes various operating points. Variations in fuel flow and propeller pitch inputs produce different operating conditions which force the controller to be adopted rapidly. Important operating points are three idle, cruise and full thrust cases for the entire flight envelope. A multi-input multi-output (MIMO) version of second level adaptation using multiple models is developed. Also, stability analysis using Lyapunov method is presented. The proposed method is compared with two conventional first level adaptation and model reference adaptive control techniques. Simulation results for JetCat SPT5 turbo-shaft engine demonstrate the performance and fidelity of the proposed method.

  9. Electrical Advantages of Dendritic Spines

    PubMed Central

    Gulledge, Allan T.; Carnevale, Nicholas T.; Stuart, Greg J.

    2012-01-01

    Many neurons receive excitatory glutamatergic input almost exclusively onto dendritic spines. In the absence of spines, the amplitudes and kinetics of excitatory postsynaptic potentials (EPSPs) at the site of synaptic input are highly variable and depend on dendritic location. We hypothesized that dendritic spines standardize the local geometry at the site of synaptic input, thereby reducing location-dependent variability of local EPSP properties. We tested this hypothesis using computational models of simplified and morphologically realistic spiny neurons that allow direct comparison of EPSPs generated on spine heads with EPSPs generated on dendritic shafts at the same dendritic locations. In all morphologies tested, spines greatly reduced location-dependent variability of local EPSP amplitude and kinetics, while having minimal impact on EPSPs measured at the soma. Spine-dependent standardization of local EPSP properties persisted across a range of physiologically relevant spine neck resistances, and in models with variable neck resistances. By reducing the variability of local EPSPs, spines standardized synaptic activation of NMDA receptors and voltage-gated calcium channels. Furthermore, spines enhanced activation of NMDA receptors and facilitated the generation of NMDA spikes and axonal action potentials in response to synaptic input. Finally, we show that dynamic regulation of spine neck geometry can preserve local EPSP properties following plasticity-driven changes in synaptic strength, but is inefficient in modifying the amplitude of EPSPs in other cellular compartments. These observations suggest that one function of dendritic spines is to standardize local EPSP properties throughout the dendritic tree, thereby allowing neurons to use similar voltage-sensitive postsynaptic mechanisms at all dendritic locations. PMID:22532875

  10. Temperature variability is a key component in accurately forecasting the effects of climate change on pest phenology.

    PubMed

    Merrill, Scott C; Peairs, Frank B

    2017-02-01

    Models describing the effects of climate change on arthropod pest ecology are needed to help mitigate and adapt to forthcoming changes. Challenges arise because climate data are at resolutions that do not readily synchronize with arthropod biology. Here we explain how multiple sources of climate and weather data can be synthesized to quantify the effects of climate change on pest phenology. Predictions of phenological events differ substantially between models that incorporate scale-appropriate temperature variability and models that do not. As an illustrative example, we predicted adult emergence of a pest of sunflower, the sunflower stem weevil Cylindrocopturus adspersus (LeConte). Predictions of the timing of phenological events differed by an average of 11 days between models with different temperature variability inputs. Moreover, as temperature variability increases, developmental rates accelerate. Our work details a phenological modeling approach intended to help develop tools to plan for and mitigate the effects of climate change. Results show that selection of scale-appropriate temperature data is of more importance than selecting a climate change emission scenario. Predictions derived without appropriate temperature variability inputs will likely result in substantial phenological event miscalculations. Additionally, results suggest that increased temperature instability will lead to accelerated pest development. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  11. Suspended sediment flux modeling with artificial neural network: An example of the Longchuanjiang River in the Upper Yangtze Catchment, China

    NASA Astrophysics Data System (ADS)

    Zhu, Yun-Mei; Lu, X. X.; Zhou, Yue

    2007-02-01

    Artificial neural network (ANN) was used to model the monthly suspended sediment flux in the Longchuanjiang River, the Upper Yangtze Catchment, China. The suspended sediment flux was related to the average rainfall, temperature, rainfall intensity and water discharge. It is demonstrated that ANN is capable of modeling the monthly suspended sediment flux with fairly good accuracy when proper variables and their lag effect on the suspended sediment flux are used as inputs. Compared with multiple linear regression and power relation models, ANN can generate a better fit under the same data requirement. In addition, ANN can provide more reasonable predictions for extremely high or low values, because of the distributed information processing system and the nonlinear transformation involved. Compared with the ANNs that use the values of the dependent variable at previous time steps as inputs, the ANNs established in this research with only climate variables have an advantage because it can be used to assess hydrological responses to climate change.

  12. Lameness detection based on multivariate continuous sensing of milk yield, rumination, and neck activity.

    PubMed

    Van Hertem, T; Maltz, E; Antler, A; Romanini, C E B; Viazzi, S; Bahr, C; Schlageter-Tello, A; Lokhorst, C; Berckmans, D; Halachmi, I

    2013-07-01

    The objective of this study was to develop and validate a mathematical model to detect clinical lameness based on existing sensor data that relate to the behavior and performance of cows in a commercial dairy farm. Identification of lame (44) and not lame (74) cows in the database was done based on the farm's daily herd health reports. All cows were equipped with a behavior sensor that measured neck activity and ruminating time. The cow's performance was measured with a milk yield meter in the milking parlor. In total, 38 model input variables were constructed from the sensor data comprising absolute values, relative values, daily standard deviations, slope coefficients, daytime and nighttime periods, variables related to individual temperament, and milk session-related variables. A lame group, cows recognized and treated for lameness, to not lame group comparison of daily data was done. Correlations between the dichotomous output variable (lame or not lame) and the model input variables were made. The highest correlation coefficient was obtained for the milk yield variable (rMY=0.45). In addition, a logistic regression model was developed based on the 7 highest correlated model input variables (the daily milk yield 4d before diagnosis; the slope coefficient of the daily milk yield 4d before diagnosis; the nighttime to daytime neck activity ratio 6d before diagnosis; the milk yield week difference ratio 4d before diagnosis; the milk yield week difference 4d before diagnosis; the neck activity level during the daytime 7d before diagnosis; the ruminating time during nighttime 6d before diagnosis). After a 10-fold cross-validation, the model obtained a sensitivity of 0.89 and a specificity of 0.85, with a correct classification rate of 0.86 when based on the averaged 10-fold model coefficients. This study demonstrates that existing farm data initially used for other purposes, such as heat detection, can be exploited for the automated detection of clinically lame animals on a daily basis as well. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  13. Predicting the Direction of Stock Market Index Movement Using an Optimized Artificial Neural Network Model.

    PubMed

    Qiu, Mingyue; Song, Yu

    2016-01-01

    In the business sector, it has always been a difficult task to predict the exact daily price of the stock market index; hence, there is a great deal of research being conducted regarding the prediction of the direction of stock price index movement. Many factors such as political events, general economic conditions, and traders' expectations may have an influence on the stock market index. There are numerous research studies that use similar indicators to forecast the direction of the stock market index. In this study, we compare two basic types of input variables to predict the direction of the daily stock market index. The main contribution of this study is the ability to predict the direction of the next day's price of the Japanese stock market index by using an optimized artificial neural network (ANN) model. To improve the prediction accuracy of the trend of the stock market index in the future, we optimize the ANN model using genetic algorithms (GA). We demonstrate and verify the predictability of stock price direction by using the hybrid GA-ANN model and then compare the performance with prior studies. Empirical results show that the Type 2 input variables can generate a higher forecast accuracy and that it is possible to enhance the performance of the optimized ANN model by selecting input variables appropriately.

  14. Predicting the Direction of Stock Market Index Movement Using an Optimized Artificial Neural Network Model

    PubMed Central

    Qiu, Mingyue; Song, Yu

    2016-01-01

    In the business sector, it has always been a difficult task to predict the exact daily price of the stock market index; hence, there is a great deal of research being conducted regarding the prediction of the direction of stock price index movement. Many factors such as political events, general economic conditions, and traders’ expectations may have an influence on the stock market index. There are numerous research studies that use similar indicators to forecast the direction of the stock market index. In this study, we compare two basic types of input variables to predict the direction of the daily stock market index. The main contribution of this study is the ability to predict the direction of the next day’s price of the Japanese stock market index by using an optimized artificial neural network (ANN) model. To improve the prediction accuracy of the trend of the stock market index in the future, we optimize the ANN model using genetic algorithms (GA). We demonstrate and verify the predictability of stock price direction by using the hybrid GA-ANN model and then compare the performance with prior studies. Empirical results show that the Type 2 input variables can generate a higher forecast accuracy and that it is possible to enhance the performance of the optimized ANN model by selecting input variables appropriately. PMID:27196055

  15. Multi-level emulation of complex climate model responses to boundary forcing data

    NASA Astrophysics Data System (ADS)

    Tran, Giang T.; Oliver, Kevin I. C.; Holden, Philip B.; Edwards, Neil R.; Sóbester, András; Challenor, Peter

    2018-04-01

    Climate model components involve both high-dimensional input and output fields. It is desirable to efficiently generate spatio-temporal outputs of these models for applications in integrated assessment modelling or to assess the statistical relationship between such sets of inputs and outputs, for example, uncertainty analysis. However, the need for efficiency often compromises the fidelity of output through the use of low complexity models. Here, we develop a technique which combines statistical emulation with a dimensionality reduction technique to emulate a wide range of outputs from an atmospheric general circulation model, PLASIM, as functions of the boundary forcing prescribed by the ocean component of a lower complexity climate model, GENIE-1. Although accurate and detailed spatial information on atmospheric variables such as precipitation and wind speed is well beyond the capability of GENIE-1's energy-moisture balance model of the atmosphere, this study demonstrates that the output of this model is useful in predicting PLASIM's spatio-temporal fields through multi-level emulation. Meaningful information from the fast model, GENIE-1 was extracted by utilising the correlation between variables of the same type in the two models and between variables of different types in PLASIM. We present here the construction and validation of several PLASIM variable emulators and discuss their potential use in developing a hybrid model with statistical components.

  16. A Load-Based Temperature Prediction Model for Anomaly Detection

    NASA Astrophysics Data System (ADS)

    Sobhani, Masoud

    Electric load forecasting, as a basic requirement for the decision-making in power utilities, has been improved in various aspects in the past decades. Many factors may affect the accuracy of the load forecasts, such as data quality, goodness of the underlying model and load composition. Due to the strong correlation between the input variables (e.g., weather and calendar variables) and the load, the quality of input data plays a vital role in forecasting practices. Even if the forecasting model were able to capture most of the salient features of the load, a low quality input data may result in inaccurate forecasts. Most of the data cleansing efforts in the load forecasting literature have been devoted to the load data. Few studies focused on weather data cleansing for load forecasting. This research proposes an anomaly detection method for the temperature data. The method consists of two components: a load-based temperature prediction model and a detection technique. The effectiveness of the proposed method is demonstrated through two case studies: one based on the data from the Global Energy Forecasting Competition 2014, and the other based on the data published by ISO New England. The results show that by removing the detected observations from the original input data, the final load forecast accuracy is enhanced.

  17. Scenario planning for water resource management in semi arid zone

    NASA Astrophysics Data System (ADS)

    Gupta, Rajiv; Kumar, Gaurav

    2018-06-01

    Scenario planning for water resource management in semi arid zone is performed using systems Input-Output approach of time domain analysis. This approach derived the future weights of input variables of the hydrological system from their precedent weights. Input variables considered here are precipitation, evaporation, population and crop irrigation. Ingles & De Souza's method and Thornthwaite model have been used to estimate runoff and evaporation respectively. Difference between precipitation inflow and the sum of runoff and evaporation has been approximated as groundwater recharge. Population and crop irrigation derived the total water demand. Compensation of total water demand by groundwater recharge has been analyzed. Further compensation has been evaluated by proposing efficient methods of water conservation. The best measure to be adopted for water conservation is suggested based on the cost benefit analysis. A case study for nine villages in Chirawa region of district Jhunjhunu, Rajasthan (India) validates the model.

  18. Analysis of fMRI data using noise-diffusion network models: a new covariance-coding perspective.

    PubMed

    Gilson, Matthieu

    2018-04-01

    Since the middle of the 1990s, studies of resting-state fMRI/BOLD data have explored the correlation patterns of activity across the whole brain, which is referred to as functional connectivity (FC). Among the many methods that have been developed to interpret FC, a recently proposed model-based approach describes the propagation of fluctuating BOLD activity within the recurrently connected brain network by inferring the effective connectivity (EC). In this model, EC quantifies the strengths of directional interactions between brain regions, viewed from the proxy of BOLD activity. In addition, the tuning procedure for the model provides estimates for the local variability (input variances) to explain how the observed FC is generated. Generalizing, the network dynamics can be studied in the context of an input-output mapping-determined by EC-for the second-order statistics of fluctuating nodal activities. The present paper focuses on the following detection paradigm: observing output covariances, how discriminative is the (estimated) network model with respect to various input covariance patterns? An application with the model fitted to experimental fMRI data-movie viewing versus resting state-illustrates that changes in local variability and changes in brain coordination go hand in hand.

  19. On the usage of ultrasound computational models for decision making under ambiguity

    NASA Astrophysics Data System (ADS)

    Dib, Gerges; Sexton, Samuel; Prowant, Matthew; Crawford, Susan; Diaz, Aaron

    2018-04-01

    Computer modeling and simulation is becoming pervasive within the non-destructive evaluation (NDE) industry as a convenient tool for designing and assessing inspection techniques. This raises a pressing need for developing quantitative techniques for demonstrating the validity and applicability of the computational models. Computational models provide deterministic results based on deterministic and well-defined input, or stochastic results based on inputs defined by probability distributions. However, computational models cannot account for the effects of personnel, procedures, and equipment, resulting in ambiguity about the efficacy of inspections based on guidance from computational models only. In addition, ambiguity arises when model inputs, such as the representation of realistic cracks, cannot be defined deterministically, probabilistically, or by intervals. In this work, Pacific Northwest National Laboratory demonstrates the ability of computational models to represent field measurements under known variabilities, and quantify the differences using maximum amplitude and power spectrum density metrics. Sensitivity studies are also conducted to quantify the effects of different input parameters on the simulation results.

  20. Creating a non-linear total sediment load formula using polynomial best subset regression model

    NASA Astrophysics Data System (ADS)

    Okcu, Davut; Pektas, Ali Osman; Uyumaz, Ali

    2016-08-01

    The aim of this study is to derive a new total sediment load formula which is more accurate and which has less application constraints than the well-known formulae of the literature. 5 most known stream power concept sediment formulae which are approved by ASCE are used for benchmarking on a wide range of datasets that includes both field and flume (lab) observations. The dimensionless parameters of these widely used formulae are used as inputs in a new regression approach. The new approach is called Polynomial Best subset regression (PBSR) analysis. The aim of the PBRS analysis is fitting and testing all possible combinations of the input variables and selecting the best subset. Whole the input variables with their second and third powers are included in the regression to test the possible relation between the explanatory variables and the dependent variable. While selecting the best subset a multistep approach is used that depends on significance values and also the multicollinearity degrees of inputs. The new formula is compared to others in a holdout dataset and detailed performance investigations are conducted for field and lab datasets within this holdout data. Different goodness of fit statistics are used as they represent different perspectives of the model accuracy. After the detailed comparisons are carried out we figured out the most accurate equation that is also applicable on both flume and river data. Especially, on field dataset the prediction performance of the proposed formula outperformed the benchmark formulations.

  1. Prediction of problematic wine fermentations using artificial neural networks.

    PubMed

    Román, R César; Hernández, O Gonzalo; Urtubia, U Alejandra

    2011-11-01

    Artificial neural networks (ANNs) have been used for the recognition of non-linear patterns, a characteristic of bioprocesses like wine production. In this work, ANNs were tested to predict problems of wine fermentation. A database of about 20,000 data from industrial fermentations of Cabernet Sauvignon and 33 variables was used. Two different ways of inputting data into the model were studied, by points and by fermentation. Additionally, different sub-cases were studied by varying the predictor variables (total sugar, alcohol, glycerol, density, organic acids and nitrogen compounds) and the time of fermentation (72, 96 and 256 h). The input of data by fermentations gave better results than the input of data by points. In fact, it was possible to predict 100% of normal and problematic fermentations using three predictor variables: sugars, density and alcohol at 72 h (3 days). Overall, ANNs were capable of obtaining 80% of prediction using only one predictor variable at 72 h; however, it is recommended to add more fermentations to confirm this promising result.

  2. Applying an intelligent model and sensitivity analysis to inspect mass transfer kinetics, shrinkage and crust color changes of deep-fat fried ostrich meat cubes.

    PubMed

    Amiryousefi, Mohammad Reza; Mohebbi, Mohebbat; Khodaiyan, Faramarz

    2014-01-01

    The objectives of this study were to use image analysis and artificial neural network (ANN) to predict mass transfer kinetics as well as color changes and shrinkage of deep-fat fried ostrich meat cubes. Two generalized feedforward networks were separately developed by using the operation conditions as inputs. Results based on the highest numerical quantities of the correlation coefficients between the experimental versus predicted values, showed proper fitting. Sensitivity analysis results of selected ANNs showed that among the input variables, frying temperature was the most sensitive to moisture content (MC) and fat content (FC) compared to other variables. Sensitivity analysis results of selected ANNs showed that MC and FC were the most sensitive to frying temperature compared to other input variables. Similarly, for the second ANN architecture, microwave power density was the most impressive variable having the maximum influence on both shrinkage percentage and color changes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Modeling the cardiovascular system using a nonlinear additive autoregressive model with exogenous input

    NASA Astrophysics Data System (ADS)

    Riedl, M.; Suhrbier, A.; Malberg, H.; Penzel, T.; Bretthauer, G.; Kurths, J.; Wessel, N.

    2008-07-01

    The parameters of heart rate variability and blood pressure variability have proved to be useful analytical tools in cardiovascular physics and medicine. Model-based analysis of these variabilities additionally leads to new prognostic information about mechanisms behind regulations in the cardiovascular system. In this paper, we analyze the complex interaction between heart rate, systolic blood pressure, and respiration by nonparametric fitted nonlinear additive autoregressive models with external inputs. Therefore, we consider measurements of healthy persons and patients suffering from obstructive sleep apnea syndrome (OSAS), with and without hypertension. It is shown that the proposed nonlinear models are capable of describing short-term fluctuations in heart rate as well as systolic blood pressure significantly better than similar linear ones, which confirms the assumption of nonlinear controlled heart rate and blood pressure. Furthermore, the comparison of the nonlinear and linear approaches reveals that the heart rate and blood pressure variability in healthy subjects is caused by a higher level of noise as well as nonlinearity than in patients suffering from OSAS. The residue analysis points at a further source of heart rate and blood pressure variability in healthy subjects, in addition to heart rate, systolic blood pressure, and respiration. Comparison of the nonlinear models within and among the different groups of subjects suggests the ability to discriminate the cohorts that could lead to a stratification of hypertension risk in OSAS patients.

  4. Artificial intelligence models for predicting the performance of biological wastewater treatment plant in the removal of Kjeldahl Nitrogen from wastewater

    NASA Astrophysics Data System (ADS)

    Manu, D. S.; Thalla, Arun Kumar

    2017-11-01

    The current work demonstrates the support vector machine (SVM) and adaptive neuro-fuzzy inference system (ANFIS) modeling to assess the removal efficiency of Kjeldahl Nitrogen of a full-scale aerobic biological wastewater treatment plant. The influent variables such as pH, chemical oxygen demand, total solids (TS), free ammonia, ammonia nitrogen and Kjeldahl Nitrogen are used as input variables during modeling. Model development focused on postulating an adaptive, functional, real-time and alternative approach for modeling the removal efficiency of Kjeldahl Nitrogen. The input variables used for modeling were daily time series data recorded at wastewater treatment plant (WWTP) located in Mangalore during the period June 2014-September 2014. The performance of ANFIS model developed using Gbell and trapezoidal membership functions (MFs) and SVM are assessed using different statistical indices like root mean square error, correlation coefficients (CC) and Nash Sutcliff error (NSE). The errors related to the prediction of effluent Kjeldahl Nitrogen concentration by the SVM modeling appeared to be reasonable when compared to that of ANFIS models with Gbell and trapezoidal MF. From the performance evaluation of the developed SVM model, it is observed that the approach is capable to define the inter-relationship between various wastewater quality variables and thus SVM can be potentially applied for evaluating the efficiency of aerobic biological processes in WWTP.

  5. Exploring objective climate classification for the Himalayan arc and adjacent regions using gridded data sources

    NASA Astrophysics Data System (ADS)

    Forsythe, N.; Blenkinsop, S.; Fowler, H. J.

    2015-05-01

    A three-step climate classification was applied to a spatial domain covering the Himalayan arc and adjacent plains regions using input data from four global meteorological reanalyses. Input variables were selected based on an understanding of the climatic drivers of regional water resource variability and crop yields. Principal component analysis (PCA) of those variables and k-means clustering on the PCA outputs revealed a reanalysis ensemble consensus for eight macro-climate zones. Spatial statistics of input variables for each zone revealed consistent, distinct climatologies. This climate classification approach has potential for enhancing assessment of climatic influences on water resources and food security as well as for characterising the skill and bias of gridded data sets, both meteorological reanalyses and climate models, for reproducing subregional climatologies. Through their spatial descriptors (area, geographic centroid, elevation mean range), climate classifications also provide metrics, beyond simple changes in individual variables, with which to assess the magnitude of projected climate change. Such sophisticated metrics are of particular interest for regions, including mountainous areas, where natural and anthropogenic systems are expected to be sensitive to incremental climate shifts.

  6. Flatness-based control in successive loops for stabilization of heart's electrical activity

    NASA Astrophysics Data System (ADS)

    Rigatos, Gerasimos; Melkikh, Alexey

    2016-12-01

    The article proposes a new flatness-based control method implemented in successive loops which allows for stabilization of the heart's electrical activity. Heart's pacemaking function is modeled as a set of coupled oscillators which potentially can exhibit chaotic behavior. It is shown that this model satisfies differential flatness properties. Next, the control and stabilization of this model is performed with the use of flatness-based control implemented in cascading loops. By applying a per-row decomposition of the state-space model of the coupled oscillators a set of nonlinear differential equations is obtained. Differential flatness properties are shown to hold for the subsystems associated with the each one of the aforementioned differential equations and next a local flatness-based controller is designed for each subsystem. For the i-th subsystem, state variable xi is chosen to be the flat output and state variable xi+1 is taken to be a virtual control input. Then the value of the virtual control input which eliminates the output tracking error for the i-th subsystem becomes reference setpoint for the i + 1-th subsystem. In this manner the control of the entire state-space model is performed by successive flatness-based control loops. By arriving at the n-th row of the state-space model one computes the control input that can be actually exerted on the aforementioned biosystem. This real control input of the coupled oscillators' system, contains recursively all virtual control inputs associated with the previous n - 1 rows of the state-space model. This control approach achieves asymptotically the elimination of the chaotic oscillation effects and the stabilization of the heart's pulsation rhythm. The stability of the proposed control scheme is proven with the use of Lyapunov analysis.

  7. Sensitivity analysis of a short distance atmospheric dispersion model applied to the Fukushima disaster

    NASA Astrophysics Data System (ADS)

    Périllat, Raphaël; Girard, Sylvain; Korsakissok, Irène; Mallet, Vinien

    2015-04-01

    In a previous study, the sensitivity of a long distance model was analyzed on the Fukushima Daiichi disaster case with the Morris screening method. It showed that a few variables, such as horizontal diffusion coefficient or clouds thickness, have a weak influence on most of the chosen outputs. The purpose of the present study is to apply a similar methodology on the IRSN's operational short distance atmospheric dispersion model, called pX. Atmospheric dispersion models are very useful in case of accidental releases of pollutant to minimize the population exposure during the accident and to obtain an accurate assessment of short and long term environmental and sanitary impact. Long range models are mostly used for consequences assessment while short range models are more adapted to the early phases of the crisis and are used to make prognosis. The Morris screening method was used to estimate the sensitivity of a set of outputs and to rank the inputs by their influences. The input ranking is highly dependent on the considered output, but a few variables seem to have a weak influence on most of them. This first step revealed that interactions and non-linearity are much more pronounced with the short range model than with the long range one. Afterward, the Sobol screening method was used to obtain more quantitative results on the same set of outputs. Using this method was possible for the short range model because it is far less computationally demanding than the long range model. The study also confronts two parameterizations, Doury's and Pasquill's models, to contrast their behavior. The Doury's model seems to excessively inflate the influence of some inputs compared to the Pasquill's model, such as the altitude of emission and the air stability which do not have the same role in the two models. The outputs of the long range model were dominated by only a few inputs. On the contrary, in this study the influence is shared more evenly between the inputs.

  8. Determination of the optimal training principle and input variables in artificial neural network model for the biweekly chlorophyll-a prediction: a case study of the Yuqiao Reservoir, China.

    PubMed

    Liu, Yu; Xi, Du-Gang; Li, Zhao-Liang

    2015-01-01

    Predicting the levels of chlorophyll-a (Chl-a) is a vital component of water quality management, which ensures that urban drinking water is safe from harmful algal blooms. This study developed a model to predict Chl-a levels in the Yuqiao Reservoir (Tianjin, China) biweekly using water quality and meteorological data from 1999-2012. First, six artificial neural networks (ANNs) and two non-ANN methods (principal component analysis and the support vector regression model) were compared to determine the appropriate training principle. Subsequently, three predictors with different input variables were developed to examine the feasibility of incorporating meteorological factors into Chl-a prediction, which usually only uses water quality data. Finally, a sensitivity analysis was performed to examine how the Chl-a predictor reacts to changes in input variables. The results were as follows: first, ANN is a powerful predictive alternative to the traditional modeling techniques used for Chl-a prediction. The back program (BP) model yields slightly better results than all other ANNs, with the normalized mean square error (NMSE), the correlation coefficient (Corr), and the Nash-Sutcliffe coefficient of efficiency (NSE) at 0.003 mg/l, 0.880 and 0.754, respectively, in the testing period. Second, the incorporation of meteorological data greatly improved Chl-a prediction compared to models solely using water quality factors or meteorological data; the correlation coefficient increased from 0.574-0.686 to 0.880 when meteorological data were included. Finally, the Chl-a predictor is more sensitive to air pressure and pH compared to other water quality and meteorological variables.

  9. Mathematical modelling of methanogenic reactor start-up: Importance of volatile fatty acids degrading population.

    PubMed

    Jabłoński, Sławomir J; Łukaszewicz, Marcin

    2014-12-01

    Development of balanced community of microorganisms is one of the obligatory for stable anaerobic digestion. Application of mathematical models might be helpful in development of reliable procedures during the process start-up period. Yet, the accuracy of forecast depends on the quality of input and parameters. In this study, the specific anaerobic activity (SAA) tests were applied in order to estimate microbial community structure. Obtained data was applied as input conditions for mathematical model of anaerobic digestion. The initial values of variables describing the amount of acetate and propionate utilizing microorganisms could be calculated on the basis of SAA results. The modelling based on those optimized variables could successfully reproduce the behavior of a real system during the continuous fermentation. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Study report on combining diagnostic and therapeutic considerations with subsystem and whole-body simulation

    NASA Technical Reports Server (NTRS)

    Furukawa, S.

    1975-01-01

    Current applications of simulation models for clinical research described included tilt model simulation of orthostatic intolerance with hemorrhage, and modeling long term circulatory circulation. Current capabilities include: (1) simulation of analogous pathological states and effects of abnormal environmental stressors by the manipulation of system variables and changing inputs in various sequences; (2) simulation of time courses of responses of controlled variables by the altered inputs and their relationships; (3) simulation of physiological responses of treatment such as isotonic saline transfusion; (4) simulation of the effectiveness of a treatment as well as the effects of complication superimposed on an existing pathological state; and (5) comparison of the effectiveness of various treatments/countermeasures for a given pathological state. The feasibility of applying simulation models to diagnostic and therapeutic research problems is assessed.

  11. Estimation of mechanical properties of nanomaterials using artificial intelligence methods

    NASA Astrophysics Data System (ADS)

    Vijayaraghavan, V.; Garg, A.; Wong, C. H.; Tai, K.

    2014-09-01

    Computational modeling tools such as molecular dynamics (MD), ab initio, finite element modeling or continuum mechanics models have been extensively applied to study the properties of carbon nanotubes (CNTs) based on given input variables such as temperature, geometry and defects. Artificial intelligence techniques can be used to further complement the application of numerical methods in characterizing the properties of CNTs. In this paper, we have introduced the application of multi-gene genetic programming (MGGP) and support vector regression to formulate the mathematical relationship between the compressive strength of CNTs and input variables such as temperature and diameter. The predictions of compressive strength of CNTs made by these models are compared to those generated using MD simulations. The results indicate that MGGP method can be deployed as a powerful method for predicting the compressive strength of the carbon nanotubes.

  12. Computer program for design analysis of radial-inflow turbines

    NASA Technical Reports Server (NTRS)

    Glassman, A. J.

    1976-01-01

    A computer program written in FORTRAN that may be used for the design analysis of radial-inflow turbines was documented. The following information is included: loss model (estimation of losses), the analysis equations, a description of the input and output data, the FORTRAN program listing and list of variables, and sample cases. The input design requirements include the power, mass flow rate, inlet temperature and pressure, and rotational speed. The program output data includes various diameters, efficiencies, temperatures, pressures, velocities, and flow angles for the appropriate calculation stations. The design variables include the stator-exit angle, rotor radius ratios, and rotor-exit tangential velocity distribution. The losses are determined by an internal loss model.

  13. African crop yield reductions due to increasingly unbalanced Nitrogen and Phosphorus consumption

    NASA Astrophysics Data System (ADS)

    van der Velde, Marijn; Folberth, Christian; Balkovič, Juraj; Ciais, Philippe; Fritz, Steffen; Janssens, Ivan A.; Obersteiner, Michael; See, Linda; Skalský, Rastislav; Xiong, Wei; Peñuealas, Josep

    2014-05-01

    The impact of soil nutrient depletion on crop production has been known for decades, but robust assessments of the impact of increasingly unbalanced nitrogen (N) and phosphorus (P) application rates on crop production are lacking. Here, we use crop response functions based on 741 FAO maize crop trials and EPIC crop modeling across Africa to examine maize yield deficits resulting from unbalanced N:P applications under low, medium, and high input scenarios, for past (1975), current, and future N:P mass ratios of respectively, 1:0.29, 1:0.15, and 1:0.05. At low N inputs (10 kg/ha), current yield deficits amount to 10% but will increase up to 27% under the assumed future N:P ratio, while at medium N inputs (50 kg N/ha), future yield losses could amount to over 40%. The EPIC crop model was then used to simulate maize yields across Africa. The model results showed relative median future yield reductions at low N inputs of 40%, and 50% at medium and high inputs, albeit with large spatial variability. Dominant low-quality soils such as Ferralsols, which are strongly adsorbing P, and Arenosols with a low nutrient retention capacity, are associated with a strong yield decline, although Arenosols show very variable crop yield losses at low inputs. Optimal N:P ratios, i.e. those where the lowest amount of applied P produces the highest yield (given N input) where calculated with EPIC to be as low as 1:0.5. Finally, we estimated the additional P required given current N inputs, and given N inputs that would allow Africa to close yield gaps (ca. 70%). At current N inputs, P consumption would have to increase 2.3-fold to be optimal, and to increase 11.7-fold to close yield gaps. The P demand to overcome these yield deficits would provide a significant additional pressure on current global extraction of P resources.

  14. A computational model for the prediction of jet entrainment in the vicinity of nozzle boattails (The BOAT code)

    NASA Technical Reports Server (NTRS)

    Dash, S. M.; Pergament, H. S.

    1978-01-01

    The basic code structure is discussed, including the overall program flow and a brief description of all subroutines. Instructions on the preparation of input data, definitions of key FORTRAN variables, sample input and output, and a complete listing of the code are presented.

  15. INFANT HEALTH PRODUCTION FUNCTIONS: WHAT A DIFFERENCE THE DATA MAKE

    PubMed Central

    Reichman, Nancy E.; Corman, Hope; Noonan, Kelly; Dave, Dhaval

    2008-01-01

    SUMMARY We examine the extent to which infant health production functions are sensitive to model specification and measurement error. We focus on the importance of typically unobserved but theoretically important variables (typically unobserved variables, TUVs), other non-standard covariates (NSCs), input reporting, and characterization of infant health. The TUVs represent wantedness, taste for risky behavior, and maternal health endowment. The NSCs include father characteristics. We estimate the effects of prenatal drug use, prenatal cigarette smoking, and First trimester prenatal care on birth weight, low birth weight, and a measure of abnormal infant health conditions. We compare estimates using self-reported inputs versus input measures that combine information from medical records and self-reports. We find that TUVs and NSCs are significantly associated with both inputs and outcomes, but that excluding them from infant health production functions does not appreciably affect the input estimates. However, using self-reported inputs leads to overestimated effects of inputs, particularly prenatal care, on outcomes, and using a direct measure of infant health does not always yield input estimates similar to those when using birth weight outcomes. The findings have implications for research, data collection, and public health policy. PMID:18792077

  16. Boolean Modeling of Neural Systems with Point-Process Inputs and Outputs. Part I: Theory and Simulations

    PubMed Central

    Marmarelis, Vasilis Z.; Zanos, Theodoros P.; Berger, Theodore W.

    2010-01-01

    This paper presents a new modeling approach for neural systems with point-process (spike) inputs and outputs that utilizes Boolean operators (i.e. modulo 2 multiplication and addition that correspond to the logical AND and OR operations respectively, as well as the AND_NOT logical operation representing inhibitory effects). The form of the employed mathematical models is akin to a “Boolean-Volterra” model that contains the product terms of all relevant input lags in a hierarchical order, where terms of order higher than first represent nonlinear interactions among the various lagged values of each input point-process or among lagged values of various inputs (if multiple inputs exist) as they reflect on the output. The coefficients of this Boolean-Volterra model are also binary variables that indicate the presence or absence of the respective term in each specific model/system. Simulations are used to explore the properties of such models and the feasibility of their accurate estimation from short data-records in the presence of noise (i.e. spurious spikes). The results demonstrate the feasibility of obtaining reliable estimates of such models, with excitatory and inhibitory terms, in the presence of considerable noise (spurious spikes) in the outputs and/or the inputs in a computationally efficient manner. A pilot application of this approach to an actual neural system is presented in the companion paper (Part II). PMID:19517238

  17. Associated and Mediating Variables Related to Job Satisfaction among Professionals from Mental Health Teams.

    PubMed

    Fleury, Marie-Josée; Grenier, Guy; Bamvita, Jean-Marie; Chiocchio, François

    2018-06-01

    Using a structural analysis, this study examines the relationship between job satisfaction among 315 mental health professionals from the province of Quebec (Canada) and a wide range of variables related to provider characteristics, team characteristics, processes, and emergent states, and organizational culture. We used the Job Satisfaction Survey to assess job satisfaction. Our conceptual framework integrated numerous independent variables adapted from the input-mediator-output-input (IMOI) model and the Integrated Team Effectiveness Model (ITEM). The structural equation model predicted 47% of the variance of job satisfaction. Job satisfaction was associated with eight variables: strong team support, participation in the decision-making process, closer collaboration, fewer conflicts among team members, modest knowledge production (team processes), firm affective commitment, multifocal identification (emergent states) and belonging to the nursing profession (provider characteristics). Team climate had an impact on six job satisfaction variables (team support, knowledge production, conflicts, affective commitment, collaboration, and multifocal identification). Results show that team processes and emergent states were mediators between job satisfaction and team climate. To increase job satisfaction among professionals, health managers need to pursue strategies that foster a positive climate within mental health teams.

  18. Spatiotemporal dynamics of random stimuli account for trial-to-trial variability in perceptual decision making

    PubMed Central

    Park, Hame; Lueckmann, Jan-Matthis; von Kriegstein, Katharina; Bitzer, Sebastian; Kiebel, Stefan J.

    2016-01-01

    Decisions in everyday life are prone to error. Standard models typically assume that errors during perceptual decisions are due to noise. However, it is unclear how noise in the sensory input affects the decision. Here we show that there are experimental tasks for which one can analyse the exact spatio-temporal details of a dynamic sensory noise and better understand variability in human perceptual decisions. Using a new experimental visual tracking task and a novel Bayesian decision making model, we found that the spatio-temporal noise fluctuations in the input of single trials explain a significant part of the observed responses. Our results show that modelling the precise internal representations of human participants helps predict when perceptual decisions go wrong. Furthermore, by modelling precisely the stimuli at the single-trial level, we were able to identify the underlying mechanism of perceptual decision making in more detail than standard models. PMID:26752272

  19. Sensitivity analysis and nonlinearity assessment of steam cracking furnace process

    NASA Astrophysics Data System (ADS)

    Rosli, M. N.; Sudibyo, Aziz, N.

    2017-11-01

    In this paper, sensitivity analysis and nonlinearity assessment of cracking furnace process are presented. For the sensitivity analysis, the fractional factorial design method is employed as a method to analyze the effect of input parameters, which consist of four manipulated variables and two disturbance variables, to the output variables and to identify the interaction between each parameter. The result of the factorial design method is used as a screening method to reduce the number of parameters, and subsequently, reducing the complexity of the model. It shows that out of six input parameters, four parameters are significant. After the screening is completed, step test is performed on the significant input parameters to assess the degree of nonlinearity of the system. The result shows that the system is highly nonlinear with respect to changes in an air-to-fuel ratio (AFR) and feed composition.

  20. Modelling daily dissolved oxygen concentration using least square support vector machine, multivariate adaptive regression splines and M5 model tree

    NASA Astrophysics Data System (ADS)

    Heddam, Salim; Kisi, Ozgur

    2018-04-01

    In the present study, three types of artificial intelligence techniques, least square support vector machine (LSSVM), multivariate adaptive regression splines (MARS) and M5 model tree (M5T) are applied for modeling daily dissolved oxygen (DO) concentration using several water quality variables as inputs. The DO concentration and water quality variables data from three stations operated by the United States Geological Survey (USGS) were used for developing the three models. The water quality data selected consisted of daily measured of water temperature (TE, °C), pH (std. unit), specific conductance (SC, μS/cm) and discharge (DI cfs), are used as inputs to the LSSVM, MARS and M5T models. The three models were applied for each station separately and compared to each other. According to the results obtained, it was found that: (i) the DO concentration could be successfully estimated using the three models and (ii) the best model among all others differs from one station to another.

  1. Propagation-of-uncertainty from contact angle and streaming potential measurements to XDLVO model assessments of membrane-colloid interactions.

    PubMed

    Muthu, Satish; Childress, Amy; Brant, Jonathan

    2014-08-15

    Membrane fouling assessed from a fundamental standpoint within the context of the Derjaguin-Landau-Verwey-Overbeek (DLVO) model. The DLVO model requires that the properties of the membrane and foulant(s) be quantified. Membrane surface charge (zeta potential) and free energy values are characterized using streaming potential and contact angle measurements, respectively. Comparing theoretical assessments for membrane-colloid interactions between research groups requires that the variability of the measured inputs be established. The impact that such variability in input values on the outcome from interfacial models must be quantified to determine an acceptable variance in inputs. An interlaboratory study was conducted to quantify the variability in streaming potential and contact angle measurements when using standard protocols. The propagation of uncertainty from these errors was evaluated in terms of their impact on the quantitative and qualitative conclusions on extended DLVO (XDLVO) calculated interaction terms. The error introduced into XDLVO calculated values was of the same magnitude as the calculated free energy values at contact and at any given separation distance. For two independent laboratories to draw similar quantitative conclusions regarding membrane-foulant interfacial interactions the standard error in contact angle values must be⩽2.5°, while that for the zeta potential values must be⩽7 mV. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Uncertainty analysis of the Operational Simplified Surface Energy Balance (SSEBop) model at multiple flux tower sites

    USGS Publications Warehouse

    Chen, Mingshi; Senay, Gabriel B.; Singh, Ramesh K.; Verdin, James P.

    2016-01-01

    Evapotranspiration (ET) is an important component of the water cycle – ET from the land surface returns approximately 60% of the global precipitation back to the atmosphere. ET also plays an important role in energy transport among the biosphere, atmosphere, and hydrosphere. Current regional to global and daily to annual ET estimation relies mainly on surface energy balance (SEB) ET models or statistical and empirical methods driven by remote sensing data and various climatological databases. These models have uncertainties due to inevitable input errors, poorly defined parameters, and inadequate model structures. The eddy covariance measurements on water, energy, and carbon fluxes at the AmeriFlux tower sites provide an opportunity to assess the ET modeling uncertainties. In this study, we focused on uncertainty analysis of the Operational Simplified Surface Energy Balance (SSEBop) model for ET estimation at multiple AmeriFlux tower sites with diverse land cover characteristics and climatic conditions. The 8-day composite 1-km MODerate resolution Imaging Spectroradiometer (MODIS) land surface temperature (LST) was used as input land surface temperature for the SSEBop algorithms. The other input data were taken from the AmeriFlux database. Results of statistical analysis indicated that the SSEBop model performed well in estimating ET with an R2 of 0.86 between estimated ET and eddy covariance measurements at 42 AmeriFlux tower sites during 2001–2007. It was encouraging to see that the best performance was observed for croplands, where R2 was 0.92 with a root mean square error of 13 mm/month. The uncertainties or random errors from input variables and parameters of the SSEBop model led to monthly ET estimates with relative errors less than 20% across multiple flux tower sites distributed across different biomes. This uncertainty of the SSEBop model lies within the error range of other SEB models, suggesting systematic error or bias of the SSEBop model is within the normal range. This finding implies that the simplified parameterization of the SSEBop model did not significantly affect the accuracy of the ET estimate while increasing the ease of model setup for operational applications. The sensitivity analysis indicated that the SSEBop model is most sensitive to input variables, land surface temperature (LST) and reference ET (ETo); and parameters, differential temperature (dT), and maximum ET scalar (Kmax), particularly during the non-growing season and in dry areas. In summary, the uncertainty assessment verifies that the SSEBop model is a reliable and robust method for large-area ET estimation. The SSEBop model estimates can be further improved by reducing errors in two input variables (ETo and LST) and two key parameters (Kmax and dT).

  3. FLIP for FLAG model visualization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wooten, Hasani Omar

    A graphical user interface has been developed for FLAG users. FLIP (FLAG Input deck Parser) provides users with an organized view of FLAG models and a means for efficiently and easily navigating and editing nodes, parameters, and variables.

  4. Mathematical Model of Solidification During Electroslag Casting of Pilger Roll

    NASA Astrophysics Data System (ADS)

    Liu, Fubin; Li, Huabing; Jiang, Zhouhua; Dong, Yanwu; Chen, Xu; Geng, Xin; Zang, Ximin

    A mathematical model for describing the interaction of multiple physical fields in slag bath and solidification process in ingot during pilger roll casting with variable cross-section which is produced by the electroslag casting (ESC) process was developed. The commercial software ANSYS was applied to calculate the electromagnetic field, magnetic driven fluid flow, buoyancy-driven flow and heat transfer. The transportation phenomenon in slag bath and solidification characteristic of ingots are analyzed for variable cross-section with variable input power under the conditions of 9Cr3NiMo steel and 70%CaF2 - 30%Al2O3 slag system. The calculated results show that characteristic of current density distribution, velocity patterns and temperature profiles in the slag bath and metal pool profiles in ingot have distinct difference at variable cross-sections due to difference of input power and cooling condition. The pool shape and the local solidification time (LST) during Pilger roll ESC process are analyzed.

  5. Impact of Spatial Soil and Climate Input Data Aggregation on Regional Yield Simulations

    PubMed Central

    Hoffmann, Holger; Zhao, Gang; Asseng, Senthold; Bindi, Marco; Biernath, Christian; Constantin, Julie; Coucheney, Elsa; Dechow, Rene; Doro, Luca; Eckersten, Henrik; Gaiser, Thomas; Grosz, Balázs; Heinlein, Florian; Kassie, Belay T.; Kersebaum, Kurt-Christian; Klein, Christian; Kuhnert, Matthias; Lewan, Elisabet; Moriondo, Marco; Nendel, Claas; Priesack, Eckart; Raynal, Helene; Roggero, Pier P.; Rötter, Reimund P.; Siebert, Stefan; Specka, Xenia; Tao, Fulu; Teixeira, Edmar; Trombi, Giacomo; Wallach, Daniel; Weihermüller, Lutz; Yeluripati, Jagadeesh; Ewert, Frank

    2016-01-01

    We show the error in water-limited yields simulated by crop models which is associated with spatially aggregated soil and climate input data. Crop simulations at large scales (regional, national, continental) frequently use input data of low resolution. Therefore, climate and soil data are often generated via averaging and sampling by area majority. This may bias simulated yields at large scales, varying largely across models. Thus, we evaluated the error associated with spatially aggregated soil and climate data for 14 crop models. Yields of winter wheat and silage maize were simulated under water-limited production conditions. We calculated this error from crop yields simulated at spatial resolutions from 1 to 100 km for the state of North Rhine-Westphalia, Germany. Most models showed yields biased by <15% when aggregating only soil data. The relative mean absolute error (rMAE) of most models using aggregated soil data was in the range or larger than the inter-annual or inter-model variability in yields. This error increased further when both climate and soil data were aggregated. Distinct error patterns indicate that the rMAE may be estimated from few soil variables. Illustrating the range of these aggregation effects across models, this study is a first step towards an ex-ante assessment of aggregation errors in large-scale simulations. PMID:27055028

  6. Impact of Spatial Soil and Climate Input Data Aggregation on Regional Yield Simulations.

    PubMed

    Hoffmann, Holger; Zhao, Gang; Asseng, Senthold; Bindi, Marco; Biernath, Christian; Constantin, Julie; Coucheney, Elsa; Dechow, Rene; Doro, Luca; Eckersten, Henrik; Gaiser, Thomas; Grosz, Balázs; Heinlein, Florian; Kassie, Belay T; Kersebaum, Kurt-Christian; Klein, Christian; Kuhnert, Matthias; Lewan, Elisabet; Moriondo, Marco; Nendel, Claas; Priesack, Eckart; Raynal, Helene; Roggero, Pier P; Rötter, Reimund P; Siebert, Stefan; Specka, Xenia; Tao, Fulu; Teixeira, Edmar; Trombi, Giacomo; Wallach, Daniel; Weihermüller, Lutz; Yeluripati, Jagadeesh; Ewert, Frank

    2016-01-01

    We show the error in water-limited yields simulated by crop models which is associated with spatially aggregated soil and climate input data. Crop simulations at large scales (regional, national, continental) frequently use input data of low resolution. Therefore, climate and soil data are often generated via averaging and sampling by area majority. This may bias simulated yields at large scales, varying largely across models. Thus, we evaluated the error associated with spatially aggregated soil and climate data for 14 crop models. Yields of winter wheat and silage maize were simulated under water-limited production conditions. We calculated this error from crop yields simulated at spatial resolutions from 1 to 100 km for the state of North Rhine-Westphalia, Germany. Most models showed yields biased by <15% when aggregating only soil data. The relative mean absolute error (rMAE) of most models using aggregated soil data was in the range or larger than the inter-annual or inter-model variability in yields. This error increased further when both climate and soil data were aggregated. Distinct error patterns indicate that the rMAE may be estimated from few soil variables. Illustrating the range of these aggregation effects across models, this study is a first step towards an ex-ante assessment of aggregation errors in large-scale simulations.

  7. Modelling the meteorological forest fire niche in heterogeneous pyrologic conditions.

    PubMed

    De Angelis, Antonella; Ricotta, Carlo; Conedera, Marco; Pezzatti, Gianni Boris

    2015-01-01

    Fire regimes are strongly related to weather conditions that directly and indirectly influence fire ignition and propagation. Identifying the most important meteorological fire drivers is thus fundamental for daily fire risk forecasting. In this context, several fire weather indices have been developed focussing mainly on fire-related local weather conditions and fuel characteristics. The specificity of the conditions for which fire danger indices are developed makes its direct transfer and applicability problematic in different areas or with other fuel types. In this paper we used the low-to-intermediate fire-prone region of Canton Ticino as a case study to develop a new daily fire danger index by implementing a niche modelling approach (Maxent). In order to identify the most suitable weather conditions for fires, different combinations of input variables were tested (meteorological variables, existing fire danger indices or a combination of both). Our findings demonstrate that such combinations of input variables increase the predictive power of the resulting index and surprisingly even using meteorological variables only allows similar or better performances than using the complex Canadian Fire Weather Index (FWI). Furthermore, the niche modelling approach based on Maxent resulted in slightly improved model performance and in a reduced number of selected variables with respect to the classical logistic approach. Factors influencing final model robustness were the number of fire events considered and the specificity of the meteorological conditions leading to fire ignition.

  8. Modelling the Meteorological Forest Fire Niche in Heterogeneous Pyrologic Conditions

    PubMed Central

    De Angelis, Antonella; Ricotta, Carlo; Conedera, Marco; Pezzatti, Gianni Boris

    2015-01-01

    Fire regimes are strongly related to weather conditions that directly and indirectly influence fire ignition and propagation. Identifying the most important meteorological fire drivers is thus fundamental for daily fire risk forecasting. In this context, several fire weather indices have been developed focussing mainly on fire-related local weather conditions and fuel characteristics. The specificity of the conditions for which fire danger indices are developed makes its direct transfer and applicability problematic in different areas or with other fuel types. In this paper we used the low-to-intermediate fire-prone region of Canton Ticino as a case study to develop a new daily fire danger index by implementing a niche modelling approach (Maxent). In order to identify the most suitable weather conditions for fires, different combinations of input variables were tested (meteorological variables, existing fire danger indices or a combination of both). Our findings demonstrate that such combinations of input variables increase the predictive power of the resulting index and surprisingly even using meteorological variables only allows similar or better performances than using the complex Canadian Fire Weather Index (FWI). Furthermore, the niche modelling approach based on Maxent resulted in slightly improved model performance and in a reduced number of selected variables with respect to the classical logistic approach. Factors influencing final model robustness were the number of fire events considered and the specificity of the meteorological conditions leading to fire ignition. PMID:25679957

  9. Dynamic modeling and parameter estimation of a radial and loop type distribution system network

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jun Qui; Heng Chen; Girgis, A.A.

    1993-05-01

    This paper presents a new identification approach to three-phase power system modeling and model reduction taking power system network as multi-input, multi-output (MIMO) processes. The model estimate can be obtained in discrete-time input-output form, discrete- or continuous-time state-space variable form, or frequency-domain impedance transfer function matrix form. An algorithm for determining the model structure of this MIMO process is described. The effect of measurement noise on the approach is also discussed. This approach has been applied on a sample system and simulation results are also presented in this paper.

  10. Input Subject Diversity Accelerates the Growth of Tense and Agreement: Indirect Benefits From a Parent-Implemented Intervention

    PubMed Central

    Rispoli, Matthew; Holt, Janet K.

    2017-01-01

    Purpose This follow-up study examined whether a parent intervention that increased the diversity of lexical noun phrase subjects in parent input and accelerated children's sentence diversity (Hadley et al., 2017) had indirect benefits on tense/agreement (T/A) morphemes in parent input and children's spontaneous speech. Method Differences in input variables related to T/A marking were compared for parents who received toy talk instruction and a quasi-control group: input informativeness and full is declaratives. Language growth on tense agreement productivity (TAP) was modeled for 38 children from language samples obtained at 21, 24, 27, and 30 months. Parent input properties following instruction and children's growth in lexical diversity and sentence diversity were examined as predictors of TAP growth. Results Instruction increased parent use of full is declaratives (ηp 2 ≥ .25) but not input informativeness. Children's sentence diversity was also a significant time-varying predictor of TAP growth. Two input variables, lexical noun phrase subject diversity and full is declaratives, were also significant predictors, even after controlling for children's sentence diversity. Conclusions These findings establish a link between children's sentence diversity and the development of T/A morphemes and provide evidence about characteristics of input that facilitate growth in this grammatical system. PMID:28892819

  11. Elemental mercury concentrations and fluxes in the tropical atmosphere and ocean.

    PubMed

    Soerensen, Anne L; Mason, Robert P; Balcom, Prentiss H; Jacob, Daniel J; Zhang, Yanxu; Kuss, Joachim; Sunderland, Elsie M

    2014-10-07

    Air-sea exchange of elemental mercury (Hg(0)) is a critical component of the global biogeochemical Hg cycle. To better understand variability in atmospheric and oceanic Hg(0), we collected high-resolution measurements across large gradients in seawater temperature, salinity, and productivity in the Pacific Ocean (20°N-15°S). We modeled surface ocean Hg inputs and losses using an ocean general circulation model (MITgcm) and an atmospheric chemical transport model (GEOS-Chem). Observed surface seawater Hg(0) was much more variable than atmospheric concentrations. Peak seawater Hg(0) concentrations (∼ 130 fM) observed in the Pacific intertropical convergence zone (ITCZ) were ∼ 3-fold greater than surrounding areas (∼ 50 fM). This is similar to observations from the Atlantic Ocean. Peak evasion in the northern Pacific ITCZ was four times higher than surrounding regions and located at the intersection of high wind speeds and elevated seawater Hg(0). Modeling results show that high Hg inputs from enhanced precipitation in the ITCZ combined with the shallow ocean mixed layer in this region drive elevated seawater Hg(0) concentrations. Modeled seawater Hg(0) concentrations reproduce observed peaks in the ITCZ of both the Atlantic and Pacific Oceans but underestimate its magnitude, likely due to insufficient deep convective scavenging of oxidized Hg from the upper troposphere. Our results demonstrate the importance of scavenging of reactive mercury in the upper atmosphere driving variability in seawater Hg(0) and net Hg inputs to biologically productive regions of the tropical ocean.

  12. A data mining framework for time series estimation.

    PubMed

    Hu, Xiao; Xu, Peng; Wu, Shaozhi; Asgari, Shadnaz; Bergsneider, Marvin

    2010-04-01

    Time series estimation techniques are usually employed in biomedical research to derive variables less accessible from a set of related and more accessible variables. These techniques are traditionally built from systems modeling approaches including simulation, blind decovolution, and state estimation. In this work, we define target time series (TTS) and its related time series (RTS) as the output and input of a time series estimation process, respectively. We then propose a novel data mining framework for time series estimation when TTS and RTS represent different sets of observed variables from the same dynamic system. This is made possible by mining a database of instances of TTS, its simultaneously recorded RTS, and the input/output dynamic models between them. The key mining strategy is to formulate a mapping function for each TTS-RTS pair in the database that translates a feature vector extracted from RTS to the dissimilarity between true TTS and its estimate from the dynamic model associated with the same TTS-RTS pair. At run time, a feature vector is extracted from an inquiry RTS and supplied to the mapping function associated with each TTS-RTS pair to calculate a dissimilarity measure. An optimal TTS-RTS pair is then selected by analyzing these dissimilarity measures. The associated input/output model of the selected TTS-RTS pair is then used to simulate the TTS given the inquiry RTS as an input. An exemplary implementation was built to address a biomedical problem of noninvasive intracranial pressure assessment. The performance of the proposed method was superior to that of a simple training-free approach of finding the optimal TTS-RTS pair by a conventional similarity-based search on RTS features. 2009 Elsevier Inc. All rights reserved.

  13. A stochastic model of input effectiveness during irregular gamma rhythms.

    PubMed

    Dumont, Grégory; Northoff, Georg; Longtin, André

    2016-02-01

    Gamma-band synchronization has been linked to attention and communication between brain regions, yet the underlying dynamical mechanisms are still unclear. How does the timing and amplitude of inputs to cells that generate an endogenously noisy gamma rhythm affect the network activity and rhythm? How does such "communication through coherence" (CTC) survive in the face of rhythm and input variability? We present a stochastic modelling approach to this question that yields a very fast computation of the effectiveness of inputs to cells involved in gamma rhythms. Our work is partly motivated by recent optogenetic experiments (Cardin et al. Nature, 459(7247), 663-667 2009) that tested the gamma phase-dependence of network responses by first stabilizing the rhythm with periodic light pulses to the interneurons (I). Our computationally efficient model E-I network of stochastic two-state neurons exhibits finite-size fluctuations. Using the Hilbert transform and Kuramoto index, we study how the stochastic phase of its gamma rhythm is entrained by external pulses. We then compute how this rhythmic inhibition controls the effectiveness of external input onto pyramidal (E) cells, and how variability shapes the window of firing opportunity. For transferring the time variations of an external input to the E cells, we find a tradeoff between the phase selectivity and depth of rate modulation. We also show that the CTC is sensitive to the jitter in the arrival times of spikes to the E cells, and to the degree of I-cell entrainment. We further find that CTC can occur even if the underlying deterministic system does not oscillate; quasicycle-type rhythms induced by the finite-size noise retain the basic CTC properties. Finally a resonance analysis confirms the relative importance of the I cell pacing for rhythm generation. Analysis of whole network behaviour, including computations of synchrony, phase and shifts in excitatory-inhibitory balance, can be further sped up by orders of magnitude using two coupled stochastic differential equations, one for each population. Our work thus yields a fast tool to numerically and analytically investigate CTC in a noisy context. It shows that CTC can be quite vulnerable to rhythm and input variability, which both decrease phase preference.

  14. Modeling development of natural multi-sensory integration using neural self-organisation and probabilistic population codes

    NASA Astrophysics Data System (ADS)

    Bauer, Johannes; Dávila-Chacón, Jorge; Wermter, Stefan

    2015-10-01

    Humans and other animals have been shown to perform near-optimally in multi-sensory integration tasks. Probabilistic population codes (PPCs) have been proposed as a mechanism by which optimal integration can be accomplished. Previous approaches have focussed on how neural networks might produce PPCs from sensory input or perform calculations using them, like combining multiple PPCs. Less attention has been given to the question of how the necessary organisation of neurons can arise and how the required knowledge about the input statistics can be learned. In this paper, we propose a model of learning multi-sensory integration based on an unsupervised learning algorithm in which an artificial neural network learns the noise characteristics of each of its sources of input. Our algorithm borrows from the self-organising map the ability to learn latent-variable models of the input and extends it to learning to produce a PPC approximating a probability density function over the latent variable behind its (noisy) input. The neurons in our network are only required to perform simple calculations and we make few assumptions about input noise properties and tuning functions. We report on a neurorobotic experiment in which we apply our algorithm to multi-sensory integration in a humanoid robot to demonstrate its effectiveness and compare it to human multi-sensory integration on the behavioural level. We also show in simulations that our algorithm performs near-optimally under certain plausible conditions, and that it reproduces important aspects of natural multi-sensory integration on the neural level.

  15. A hybrid machine learning model to predict and visualize nitrate concentration throughout the Central Valley aquifer, California, USA

    USGS Publications Warehouse

    Ransom, Katherine M.; Nolan, Bernard T.; Traum, Jonathan A.; Faunt, Claudia; Bell, Andrew M.; Gronberg, Jo Ann M.; Wheeler, David C.; Zamora, Celia; Jurgens, Bryant; Schwarz, Gregory E.; Belitz, Kenneth; Eberts, Sandra; Kourakos, George; Harter, Thomas

    2017-01-01

    Intense demand for water in the Central Valley of California and related increases in groundwater nitrate concentration threaten the sustainability of the groundwater resource. To assess contamination risk in the region, we developed a hybrid, non-linear, machine learning model within a statistical learning framework to predict nitrate contamination of groundwater to depths of approximately 500 m below ground surface. A database of 145 predictor variables representing well characteristics, historical and current field and landscape-scale nitrogen mass balances, historical and current land use, oxidation/reduction conditions, groundwater flow, climate, soil characteristics, depth to groundwater, and groundwater age were assigned to over 6000 private supply and public supply wells measured previously for nitrate and located throughout the study area. The boosted regression tree (BRT) method was used to screen and rank variables to predict nitrate concentration at the depths of domestic and public well supplies. The novel approach included as predictor variables outputs from existing physically based models of the Central Valley. The top five most important predictor variables included two oxidation/reduction variables (probability of manganese concentration to exceed 50 ppb and probability of dissolved oxygen concentration to be below 0.5 ppm), field-scale adjusted unsaturated zone nitrogen input for the 1975 time period, average difference between precipitation and evapotranspiration during the years 1971–2000, and 1992 total landscape nitrogen input. Twenty-five variables were selected for the final model for log-transformed nitrate. In general, increasing probability of anoxic conditions and increasing precipitation relative to potential evapotranspiration had a corresponding decrease in nitrate concentration predictions. Conversely, increasing 1975 unsaturated zone nitrogen leaching flux and 1992 total landscape nitrogen input had an increasing relative impact on nitrate predictions. Three-dimensional visualization indicates that nitrate predictions depend on the probability of anoxic conditions and other factors, and that nitrate predictions generally decreased with increasing groundwater age.

  16. A Model of Career Success: A Longitudinal Study of Emergency Physicians

    ERIC Educational Resources Information Center

    Pachulicz, Sarah; Schmitt, Neal; Kuljanin, Goran

    2008-01-01

    Objective and subjective career success were hypothesized to mediate the relationships between sociodemographic variables, human capital indices, individual difference variables, and organizational sponsorship as inputs and a retirement decision and intentions to leave either the specialty of emergency medicine (EM) or medicine as output…

  17. Effects of phase vector and history extension on prediction power of adaptive-network based fuzzy inference system (ANFIS) model for a real scale anaerobic wastewater treatment plant operating under unsteady state.

    PubMed

    Perendeci, Altinay; Arslan, Sever; Tanyolaç, Abdurrahman; Celebi, Serdar S

    2009-10-01

    A conceptual neural fuzzy model based on adaptive-network based fuzzy inference system, ANFIS, was proposed using available input on-line and off-line operational variables for a sugar factory anaerobic wastewater treatment plant operating under unsteady state to estimate the effluent chemical oxygen demand, COD. The predictive power of the developed model was improved as a new approach by adding the phase vector and the recent values of COD up to 5-10 days, longer than overall retention time of wastewater in the system. History of last 10 days for COD effluent with two-valued phase vector in the input variable matrix including all parameters had more predictive power. History of 7 days with two-valued phase vector in the matrix comprised of only on-line variables yielded fairly well estimations. The developed ANFIS model with phase vector and history extension has been able to adequately represent the behavior of the treatment system.

  18. Does linguistic input play the same role in language learning for children with and without early brain injury?

    PubMed

    Rowe, Meredith L; Levine, Susan C; Fisher, Joan A; Goldin-Meadow, Susan

    2009-01-01

    Children with unilateral pre- or perinatal brain injury (BI) show remarkable plasticity for language learning. Previous work highlights the important role that lesion characteristics play in explaining individual variation in plasticity in the language development of children with BI. The current study examines whether the linguistic input that children with BI receive from their caregivers also contributes to this early plasticity, and whether linguistic input plays a similar role in children with BI as it does in typically developing (TD) children. Growth in vocabulary and syntactic production is modeled for 80 children (53 TD, 27 BI) between 14 and 46 months. Findings indicate that caregiver input is an equally potent predictor of vocabulary growth in children with BI and in TD children. In contrast, input is a more potent predictor of syntactic growth for children with BI than for TD children. Controlling for input, lesion characteristics (lesion size, type, seizure history) also affect the language trajectories of children with BI. Thus, findings illustrate how both variability in the environment (linguistic input) and variability in the organism (lesion characteristics) work together to contribute to plasticity in language learning.

  19. Data Reduction Functions for the Langley 14- by 22-Foot Subsonic Tunnel

    NASA Technical Reports Server (NTRS)

    Boney, Andy D.

    2014-01-01

    The Langley 14- by 22-Foot Subsonic Tunnel's data reduction software utilizes six major functions to compute the acquired data. These functions calculate engineering units, tunnel parameters, flowmeters, jet exhaust measurements, balance loads/model attitudes, and model /wall pressures. The input (required) variables, the output (computed) variables, and the equations and/or subfunction(s) associated with each major function are discussed.

  20. Stochastic multi-objective auto-optimization for resource allocation decision-making in fixed-input health systems.

    PubMed

    Bastian, Nathaniel D; Ekin, Tahir; Kang, Hyojung; Griffin, Paul M; Fulton, Lawrence V; Grannan, Benjamin C

    2017-06-01

    The management of hospitals within fixed-input health systems such as the U.S. Military Health System (MHS) can be challenging due to the large number of hospitals, as well as the uncertainty in input resources and achievable outputs. This paper introduces a stochastic multi-objective auto-optimization model (SMAOM) for resource allocation decision-making in fixed-input health systems. The model can automatically identify where to re-allocate system input resources at the hospital level in order to optimize overall system performance, while considering uncertainty in the model parameters. The model is applied to 128 hospitals in the three services (Air Force, Army, and Navy) in the MHS using hospital-level data from 2009 - 2013. The results are compared to the traditional input-oriented variable returns-to-scale Data Envelopment Analysis (DEA) model. The application of SMAOM to the MHS increases the expected system-wide technical efficiency by 18 % over the DEA model while also accounting for uncertainty of health system inputs and outputs. The developed method is useful for decision-makers in the Defense Health Agency (DHA), who have a strategic level objective of integrating clinical and business processes through better sharing of resources across the MHS and through system-wide standardization across the services. It is also less sensitive to data outliers or sampling errors than traditional DEA methods.

  1. Linking annual N2O emission in organic soils to mineral nitrogen input as estimated by heterotrophic respiration and soil C/N ratio.

    PubMed

    Mu, Zhijian; Huang, Aiying; Ni, Jiupai; Xie, Deti

    2014-01-01

    Organic soils are an important source of N2O, but global estimates of these fluxes remain uncertain because measurements are sparse. We tested the hypothesis that N2O fluxes can be predicted from estimates of mineral nitrogen input, calculated from readily-available measurements of CO2 flux and soil C/N ratio. From studies of organic soils throughout the world, we compiled a data set of annual CO2 and N2O fluxes which were measured concurrently. The input of soil mineral nitrogen in these studies was estimated from applied fertilizer nitrogen and organic nitrogen mineralization. The latter was calculated by dividing the rate of soil heterotrophic respiration by soil C/N ratio. This index of mineral nitrogen input explained up to 69% of the overall variability of N2O fluxes, whereas CO2 flux or soil C/N ratio alone explained only 49% and 36% of the variability, respectively. Including water table level in the model, along with mineral nitrogen input, further improved the model with the explanatory proportion of variability in N2O flux increasing to 75%. Unlike grassland or cropland soils, forest soils were evidently nitrogen-limited, so water table level had no significant effect on N2O flux. Our proposed approach, which uses the product of soil-derived CO2 flux and the inverse of soil C/N ratio as a proxy for nitrogen mineralization, shows promise for estimating regional or global N2O fluxes from organic soils, although some further enhancements may be warranted.

  2. Model-free adaptive control of supercritical circulating fluidized-bed boilers

    DOEpatents

    Cheng, George Shu-Xing; Mulkey, Steven L

    2014-12-16

    A novel 3-Input-3-Output (3.times.3) Fuel-Air Ratio Model-Free Adaptive (MFA) controller is introduced, which can effectively control key process variables including Bed Temperature, Excess O2, and Furnace Negative Pressure of combustion processes of advanced boilers. A novel 7-input-7-output (7.times.7) MFA control system is also described for controlling a combined 3-Input-3-Output (3.times.3) process of Boiler-Turbine-Generator (BTG) units and a 5.times.5 CFB combustion process of advanced boilers. Those boilers include Circulating Fluidized-Bed (CFB) Boilers and Once-Through Supercritical Circulating Fluidized-Bed (OTSC CFB) Boilers.

  3. Bayesian analysis of input uncertainty in hydrological modeling: 2. Application

    NASA Astrophysics Data System (ADS)

    Kavetski, Dmitri; Kuczera, George; Franks, Stewart W.

    2006-03-01

    The Bayesian total error analysis (BATEA) methodology directly addresses both input and output errors in hydrological modeling, requiring the modeler to make explicit, rather than implicit, assumptions about the likely extent of data uncertainty. This study considers a BATEA assessment of two North American catchments: (1) French Broad River and (2) Potomac basins. It assesses the performance of the conceptual Variable Infiltration Capacity (VIC) model with and without accounting for input (precipitation) uncertainty. The results show the considerable effects of precipitation errors on the predicted hydrographs (especially the prediction limits) and on the calibrated parameters. In addition, the performance of BATEA in the presence of severe model errors is analyzed. While BATEA allows a very direct treatment of input uncertainty and yields some limited insight into model errors, it requires the specification of valid error models, which are currently poorly understood and require further work. Moreover, it leads to computationally challenging highly dimensional problems. For some types of models, including the VIC implemented using robust numerical methods, the computational cost of BATEA can be reduced using Newton-type methods.

  4. When Can Information from Ordinal Scale Variables Be Integrated?

    ERIC Educational Resources Information Center

    Kemp, Simon; Grace, Randolph C.

    2010-01-01

    Many theoretical constructs of interest to psychologists are multidimensional and derive from the integration of several input variables. We show that input variables that are measured on ordinal scales cannot be combined to produce a stable weakly ordered output variable that allows trading off the input variables. Instead a partial order is…

  5. Spatial interpolation schemes of daily precipitation for hydrologic modeling

    USGS Publications Warehouse

    Hwang, Y.; Clark, M.R.; Rajagopalan, B.; Leavesley, G.

    2012-01-01

    Distributed hydrologic models typically require spatial estimates of precipitation interpolated from sparsely located observational points to the specific grid points. We compare and contrast the performance of regression-based statistical methods for the spatial estimation of precipitation in two hydrologically different basins and confirmed that widely used regression-based estimation schemes fail to describe the realistic spatial variability of daily precipitation field. The methods assessed are: (1) inverse distance weighted average; (2) multiple linear regression (MLR); (3) climatological MLR; and (4) locally weighted polynomial regression (LWP). In order to improve the performance of the interpolations, the authors propose a two-step regression technique for effective daily precipitation estimation. In this simple two-step estimation process, precipitation occurrence is first generated via a logistic regression model before estimate the amount of precipitation separately on wet days. This process generated the precipitation occurrence, amount, and spatial correlation effectively. A distributed hydrologic model (PRMS) was used for the impact analysis in daily time step simulation. Multiple simulations suggested noticeable differences between the input alternatives generated by three different interpolation schemes. Differences are shown in overall simulation error against the observations, degree of explained variability, and seasonal volumes. Simulated streamflows also showed different characteristics in mean, maximum, minimum, and peak flows. Given the same parameter optimization technique, LWP input showed least streamflow error in Alapaha basin and CMLR input showed least error (still very close to LWP) in Animas basin. All of the two-step interpolation inputs resulted in lower streamflow error compared to the directly interpolated inputs. ?? 2011 Springer-Verlag.

  6. Simulating maize yield and bomass with spatial variability of soil field capacity

    USGS Publications Warehouse

    Ma, Liwang; Ahuja, Lajpat; Trout, Thomas; Nolan, Bernard T.; Malone, Robert W.

    2015-01-01

    Spatial variability in field soil properties is a challenge for system modelers who use single representative values, such as means, for model inputs, rather than their distributions. In this study, the root zone water quality model (RZWQM2) was first calibrated for 4 yr of maize (Zea mays L.) data at six irrigation levels in northern Colorado and then used to study spatial variability of soil field capacity (FC) estimated in 96 plots on maize yield and biomass. The best results were obtained when the crop parameters were fitted along with FCs, with a root mean squared error (RMSE) of 354 kg ha–1 for yield and 1202 kg ha–1 for biomass. When running the model using each of the 96 sets of field-estimated FC values, instead of calibrating FCs, the average simulated yield and biomass from the 96 runs were close to measured values with a RMSE of 376 kg ha–1 for yield and 1504 kg ha–1 for biomass. When an average of the 96 FC values for each soil layer was used, simulated yield and biomass were also acceptable with a RMSE of 438 kg ha–1 for yield and 1627 kg ha–1 for biomass. Therefore, when there are large numbers of FC measurements, an average value might be sufficient for model inputs. However, when the ranges of FC measurements were known for each soil layer, a sampled distribution of FCs using the Latin hypercube sampling (LHS) might be used for model inputs.

  7. Assessing the importance of rainfall uncertainty on hydrological models with different spatial and temporal scale

    NASA Astrophysics Data System (ADS)

    Nossent, Jiri; Pereira, Fernando; Bauwens, Willy

    2015-04-01

    Precipitation is one of the key inputs for hydrological models. As long as the values of the hydrological model parameters are fixed, a variation of the rainfall input is expected to induce a change in the model output. Given the increased awareness of uncertainty on rainfall records, it becomes more important to understand the impact of this input - output dynamic. Yet, modellers often still have the intention to mimic the observed flow, whatever the deviation of the employed records from the actual rainfall might be, by recklessly adapting the model parameter values. But is it actually possible to vary the model parameter values in such a way that a certain (observed) model output can be generated based on inaccurate rainfall inputs? Thus, how important is the rainfall uncertainty for the model output with respect to the model parameter importance? To address this question, we apply the Sobol' sensitivity analysis method to assess and compare the importance of the rainfall uncertainty and the model parameters on the output of the hydrological model. In order to be able to treat the regular model parameters and input uncertainty in the same way, and to allow a comparison of their influence, a possible approach is to represent the rainfall uncertainty by a parameter. To tackle the latter issue, we apply so called rainfall multipliers on hydrological independent storm events, as a probabilistic parameter representation of the possible rainfall variation. As available rainfall records are very often point measurements at a discrete time step (hourly, daily, monthly,…), they contain uncertainty due to a latent lack of spatial and temporal variability. The influence of the latter variability can also be different for hydrological models with different spatial and temporal scale. Therefore, we perform the sensitivity analyses on a semi-distributed model (SWAT) and a lumped model (NAM). The assessment and comparison of the importance of the rainfall uncertainty and the model parameters is achieved by considering different scenarios for the included parameters and the state of the models.

  8. UNCERTAINTY ANALYSIS IN WATER QUALITY MODELING USING QUAL2E

    EPA Science Inventory

    A strategy for incorporating uncertainty analysis techniques (sensitivity analysis, first order error analysis, and Monte Carlo simulation) into the mathematical water quality model QUAL2E is described. The model, named QUAL2E-UNCAS, automatically selects the input variables or p...

  9. An evaluation of Bayesian techniques for controlling model complexity and selecting inputs in a neural network for short-term load forecasting.

    PubMed

    Hippert, Henrique S; Taylor, James W

    2010-04-01

    Artificial neural networks have frequently been proposed for electricity load forecasting because of their capabilities for the nonlinear modelling of large multivariate data sets. Modelling with neural networks is not an easy task though; two of the main challenges are defining the appropriate level of model complexity, and choosing the input variables. This paper evaluates techniques for automatic neural network modelling within a Bayesian framework, as applied to six samples containing daily load and weather data for four different countries. We analyse input selection as carried out by the Bayesian 'automatic relevance determination', and the usefulness of the Bayesian 'evidence' for the selection of the best structure (in terms of number of neurones), as compared to methods based on cross-validation. Copyright 2009 Elsevier Ltd. All rights reserved.

  10. A Longitudinal Study of Occupational Aspirations and Attainments of Iowa Young Adults.

    ERIC Educational Resources Information Center

    Yoesting, Dean R.; And Others

    The causal linkage between socioeconomic status, occupational and educational aspiration, and attainment was examined in this attempt to test an existing theoretical model which used socioeconomic status as a major input variable, with significant other influence as a crucial intervening variable between socioeconomic status and aspiration. The…

  11. Smart Frameworks and Self-Describing Models: Model Metadata for Automated Coupling of Hydrologic Process Components (Invited)

    NASA Astrophysics Data System (ADS)

    Peckham, S. D.

    2013-12-01

    Model coupling frameworks like CSDMS (Community Surface Dynamics Modeling System) and ESMF (Earth System Modeling Framework) have developed mechanisms that allow heterogeneous sets of process models to be assembled in a plug-and-play manner to create composite "system models". These mechanisms facilitate code reuse, but must simultaneously satisfy many different design criteria. They must be able to mediate or compensate for differences between the process models, such as their different programming languages, computational grids, time-stepping schemes, variable names and variable units. However, they must achieve this interoperability in a way that: (1) is noninvasive, requiring only relatively small and isolated changes to the original source code, (2) does not significantly reduce performance, (3) is not time-consuming or confusing for a model developer to implement, (4) can very easily be updated to accommodate new versions of a given process model and (5) does not shift the burden of providing model interoperability to the model developers, e.g. by requiring them to provide their output in specific forms that meet the input requirements of other models. In tackling these design challenges, model framework developers have learned that the best solution is to provide each model with a simple, standardized interface, i.e. a set of standardized functions that make the model: (1) fully-controllable by a caller (e.g. a model framework) and (2) self-describing. Model control functions are separate functions that allow a caller to initialize the model, advance the model's state variables in time and finalize the model. Model description functions allow a caller to retrieve detailed information on the model's input and output variables, its computational grid and its timestepping scheme. If the caller is a modeling framework, it can compare the answers to these queries with similar answers from other process models in a collection and then automatically call framework service components as necessary to mediate the differences between the coupled models. This talk will first review two key products of the CSDMS project, namely a standardized model interface called the Basic Model Interface (BMI) and the CSDMS Standard Names. The standard names are used in conjunction with BMI to provide a semantic matching mechanism that allows output variables from one process model to be reliably used as input variables to other process models in a collection. They include not just a standardized naming scheme for model variables, but also a standardized set of terms for describing the attributes and assumptions of a given model. To illustrate the power of standardized model interfaces and metadata, a smart, light-weight modeling framework written in Python will be introduced that can automatically (without user intervention) couple a set of BMI-enabled hydrologic process components together to create a spatial hydrologic model. The same mechanisms could also be used to provide seamless integration (import/export) of data and models.

  12. Influence of Coastal Submarine Groundwater Discharges on Seagrass Communities in a Subtropical Karstic Environment.

    PubMed

    Kantún-Manzano, C A; Herrera-Silveira, J A; Arcega-Cabrera, F

    2018-01-01

    The influence of coastal submarine groundwater discharges (SGD) on the distribution and abundance of seagrass meadows was investigated. In 2012, hydrological variability, nutrient variability in sediments and the biotic characteristics of two seagrass beds, one with SGD present and one without, were studied. Findings showed that SGD inputs were related with one dominant seagrass species. To further understand this, a generalized additive model (GAM) was used to explore the relationship between seagrass biomass and environment conditions (water and sediment variables). Salinity range (21-35.5 PSU) was the most influential variable (85%), explaining why H. wrightii was the sole plant species present at the SGD site. At the site without SGD, GAM could not be performed since environmental variables could not explain a total variance of > 60%. This research shows the relevance of monitoring SGD inputs in coastal karstic areas since they significantly affect biotic characteristics of seagrass beds.

  13. Application of Monte Carlo Methods to Perform Uncertainty and Sensitivity Analysis on Inverse Water-Rock Reactions with NETPATH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGraw, David; Hershey, Ronald L.

    Methods were developed to quantify uncertainty and sensitivity for NETPATH inverse water-rock reaction models and to calculate dissolved inorganic carbon, carbon-14 groundwater travel times. The NETPATH models calculate upgradient groundwater mixing fractions that produce the downgradient target water chemistry along with amounts of mineral phases that are either precipitated or dissolved. Carbon-14 groundwater travel times are calculated based on the upgradient source-water fractions, carbonate mineral phase changes, and isotopic fractionation. Custom scripts and statistical code were developed for this study to facilitate modifying input parameters, running the NETPATH simulations, extracting relevant output, postprocessing the results, and producing graphs and summaries.more » The scripts read userspecified values for each constituent’s coefficient of variation, distribution, sensitivity parameter, maximum dissolution or precipitation amounts, and number of Monte Carlo simulations. Monte Carlo methods for analysis of parametric uncertainty assign a distribution to each uncertain variable, sample from those distributions, and evaluate the ensemble output. The uncertainty in input affected the variability of outputs, namely source-water mixing, phase dissolution and precipitation amounts, and carbon-14 travel time. Although NETPATH may provide models that satisfy the constraints, it is up to the geochemist to determine whether the results are geochemically reasonable. Two example water-rock reaction models from previous geochemical reports were considered in this study. Sensitivity analysis was also conducted to evaluate the change in output caused by a small change in input, one constituent at a time. Results were standardized to allow for sensitivity comparisons across all inputs, which results in a representative value for each scenario. The approach yielded insight into the uncertainty in water-rock reactions and travel times. For example, there was little variation in source-water fraction between the deterministic and Monte Carlo approaches, and therefore, little variation in travel times between approaches. Sensitivity analysis proved very useful for identifying the most important input constraints (dissolved-ion concentrations), which can reveal the variables that have the most influence on source-water fractions and carbon-14 travel times. Once these variables are determined, more focused effort can be applied to determining the proper distribution for each constraint. Second, Monte Carlo results for water-rock reaction modeling showed discrete and nonunique results. The NETPATH models provide the solutions that satisfy the constraints of upgradient and downgradient water chemistry. There can exist multiple, discrete solutions for any scenario and these discrete solutions cause grouping of results. As a result, the variability in output may not easily be represented by a single distribution or a mean and variance and care should be taken in the interpretation and reporting of results.« less

  14. Satellite-derived potential evapotranspiration for distributed hydrologic runoff modeling

    NASA Astrophysics Data System (ADS)

    Spies, R. R.; Franz, K. J.; Bowman, A.; Hogue, T. S.; Kim, J.

    2012-12-01

    Distributed models have the ability of incorporating spatially variable data, especially high resolution forcing inputs such as precipitation, temperature and evapotranspiration in hydrologic modeling. Use of distributed hydrologic models for operational streamflow prediction has been partially hindered by a lack of readily available, spatially explicit input observations. Potential evapotranspiration (PET), for example, is currently accounted for through PET input grids that are based on monthly climatological values. The goal of this study is to assess the use of satellite-based PET estimates that represent the temporal and spatial variability, as input to the National Weather Service (NWS) Hydrology Laboratory Research Distributed Hydrologic Model (HL-RDHM). Daily PET grids are generated for six watersheds in the upper Mississippi River basin using a method that applies only MODIS satellite-based observations and the Priestly Taylor formula (MODIS-PET). The use of MODIS-PET grids will be tested against the use of the current climatological PET grids for simulating basin discharge. Gridded surface temperature forcing data are derived by applying the inverse distance weighting spatial prediction method to point-based station observations from the Automated Surface Observing System (ASOS) and Automated Weather Observing System (AWOS). Precipitation data are obtained from the Climate Prediction Center's (CPC) Climatology-Calibrated Precipitation Analysis (CCPA). A-priori gridded parameters for the Sacramento Soil Moisture Accounting Model (SAC-SMA), Snow-17 model, and routing model are initially obtained from the Office of Hydrologic Development and further calibrated using an automated approach. The potential of the MODIS-PET to be used in an operational distributed modeling system will be assessed with the long-term goal of promoting research to operations transfers and advancing the science of hydrologic forecasting.

  15. A Reduced Form Model for Ozone Based on Two Decades of ...

    EPA Pesticide Factsheets

    A Reduced Form Model (RFM) is a mathematical relationship between the inputs and outputs of an air quality model, permitting estimation of additional modeling without costly new regional-scale simulations. A 21-year Community Multiscale Air Quality (CMAQ) simulation for the continental United States provided the basis for the RFM developed in this study. Predictors included the principal component scores (PCS) of emissions and meteorological variables, while the predictand was the monthly mean of daily maximum 8-hour CMAQ ozone for the ozone season at each model grid. The PCS form an orthogonal basis for RFM inputs. A few PCS incorporate most of the variability of emissions and meteorology, thereby reducing the dimensionality of the source-receptor problem. Stochastic kriging was used to estimate the model. The RFM was used to separate the effects of emissions and meteorology on ozone concentrations. by running the RFM with emissions constant (ozone dependent on meteorology), or constant meteorology (ozone dependent on emissions). Years with ozone-conducive meteorology were identified, and meteorological variables best explaining meteorology-dependent ozone were identified. Meteorology accounted for 19% to 55% of ozone variability in the eastern US, and 39% to 92% in the western US. Temporal trends estimated for original CMAQ ozone data and emission-dependent ozone were mostly negative, but the confidence intervals for emission-dependent ozone are much

  16. Production Economics of Private Forestry: A Comparison of Industrial and Nonindustrial Forest Owners

    Treesearch

    David H. Newman; David N. Wear

    1993-01-01

    This paper compares the producrion behavior of industrial and nonindustrial private forestland owners in the southeastern U.S. using a restricted profit function. Profits are modeled as a function of two outputs, sawtimber and pulpwood. one variable input, regeneration effort. and two quasi-fixed inputs, land and growing stock. Although an identical profit function is...

  17. Study on the medical meteorological forecast of the number of hypertension inpatient based on SVR

    NASA Astrophysics Data System (ADS)

    Zhai, Guangyu; Chai, Guorong; Zhang, Haifeng

    2017-06-01

    The purpose of this study is to build a hypertension prediction model by discussing the meteorological factors for hypertension incidence. The research method is selecting the standard data of relative humidity, air temperature, visibility, wind speed and air pressure of Lanzhou from 2010 to 2012(calculating the maximum, minimum and average value with 5 days as a unit ) as the input variables of Support Vector Regression(SVR) and the standard data of hypertension incidence of the same period as the output dependent variables to obtain the optimal prediction parameters by cross validation algorithm, then by SVR algorithm learning and training, a SVR forecast model for hypertension incidence is built. The result shows that the hypertension prediction model is composed of 15 input independent variables, the training accuracy is 0.005, the final error is 0.0026389. The forecast accuracy based on SVR model is 97.1429%, which is higher than statistical forecast equation and neural network prediction method. It is concluded that SVR model provides a new method for hypertension prediction with its simple calculation, small error as well as higher historical sample fitting and Independent sample forecast capability.

  18. Logic models to predict continuous outputs based on binary inputs with an application to personalized cancer therapy

    PubMed Central

    Knijnenburg, Theo A.; Klau, Gunnar W.; Iorio, Francesco; Garnett, Mathew J.; McDermott, Ultan; Shmulevich, Ilya; Wessels, Lodewyk F. A.

    2016-01-01

    Mining large datasets using machine learning approaches often leads to models that are hard to interpret and not amenable to the generation of hypotheses that can be experimentally tested. We present ‘Logic Optimization for Binary Input to Continuous Output’ (LOBICO), a computational approach that infers small and easily interpretable logic models of binary input features that explain a continuous output variable. Applying LOBICO to a large cancer cell line panel, we find that logic combinations of multiple mutations are more predictive of drug response than single gene predictors. Importantly, we show that the use of the continuous information leads to robust and more accurate logic models. LOBICO implements the ability to uncover logic models around predefined operating points in terms of sensitivity and specificity. As such, it represents an important step towards practical application of interpretable logic models. PMID:27876821

  19. Logic models to predict continuous outputs based on binary inputs with an application to personalized cancer therapy.

    PubMed

    Knijnenburg, Theo A; Klau, Gunnar W; Iorio, Francesco; Garnett, Mathew J; McDermott, Ultan; Shmulevich, Ilya; Wessels, Lodewyk F A

    2016-11-23

    Mining large datasets using machine learning approaches often leads to models that are hard to interpret and not amenable to the generation of hypotheses that can be experimentally tested. We present 'Logic Optimization for Binary Input to Continuous Output' (LOBICO), a computational approach that infers small and easily interpretable logic models of binary input features that explain a continuous output variable. Applying LOBICO to a large cancer cell line panel, we find that logic combinations of multiple mutations are more predictive of drug response than single gene predictors. Importantly, we show that the use of the continuous information leads to robust and more accurate logic models. LOBICO implements the ability to uncover logic models around predefined operating points in terms of sensitivity and specificity. As such, it represents an important step towards practical application of interpretable logic models.

  20. Emulation and Sensitivity Analysis of the Community Multiscale Air Quality Model for a UK Ozone Pollution Episode.

    PubMed

    Beddows, Andrew V; Kitwiroon, Nutthida; Williams, Martin L; Beevers, Sean D

    2017-06-06

    Gaussian process emulation techniques have been used with the Community Multiscale Air Quality model, simulating the effects of input uncertainties on ozone and NO 2 output, to allow robust global sensitivity analysis (SA). A screening process ranked the effect of perturbations in 223 inputs, isolating the 30 most influential from emissions, boundary conditions (BCs), and reaction rates. Community Multiscale Air Quality (CMAQ) simulations of a July 2006 ozone pollution episode in the UK were made with input values for these variables plus ozone dry deposition velocity chosen according to a 576 point Latin hypercube design. Emulators trained on the output of these runs were used in variance-based SA of the model output to input uncertainties. Performing these analyses for every hour of a 21 day period spanning the episode and several days on either side allowed the results to be presented as a time series of sensitivity coefficients, showing how the influence of different input uncertainties changed during the episode. This is one of the most complex models to which these methods have been applied, and here, they reveal detailed spatiotemporal patterns of model sensitivities, with NO and isoprene emissions, NO 2 photolysis, ozone BCs, and deposition velocity being among the most influential input uncertainties.

  1. Evapotranspiration from nonuniform surfaces - A first approach for short-term numerical weather prediction

    NASA Technical Reports Server (NTRS)

    Wetzel, Peter J.; Chang, Jy-Tai

    1988-01-01

    Observations of surface heterogeneity of soil moisture from scales of meters to hundreds of kilometers are discussed, and a relationship between grid element size and soil moisture variability is presented. An evapotranspiration model is presented which accounts for the variability of soil moisture, standing surface water, and vegetation internal and stomatal resistance to moisture flow from the soil. The mean values and standard deviations of these parameters are required as input to the model. Tests of this model against field observations are reported, and extensive sensitivity tests are presented which explore the importance of including subgrid-scale variability in an evapotranspiration model.

  2. Understanding Cirrus Ice Crystal Number Variability for Different Heterogeneous Ice Nucleation Spectra

    NASA Technical Reports Server (NTRS)

    Sullivan, Sylvia C.; Betancourt, Ricardo Morales; Barahona, Donifan; Nenes, Athanasios

    2016-01-01

    Along with minimizing parameter uncertainty, understanding the cause of temporal and spatial variability of the nucleated ice crystal number, Ni, is key to improving the representation of cirrus clouds in climate models. To this end, sensitivities of Ni to input variables like aerosol number and diameter provide valuable information about nucleation regime and efficiency for a given model formulation. Here we use the adjoint model of the adjoint of a cirrus formation parameterization (Barahona and Nenes, 2009b) to understand Ni variability for various ice-nucleating particle (INP) spectra. Inputs are generated with the Community Atmosphere Model version 5, and simulations are done with a theoretically derived spectrum, an empirical lab-based spectrum and two field-based empirical spectra that differ in the nucleation threshold for black carbon particles and in the active site density for dust. The magnitude and sign of Ni sensitivity to insoluble aerosol number can be directly linked to nucleation regime and efficiency of various INP. The lab-based spectrum calculates much higher INP efficiencies than field-based ones, which reveals a disparity in aerosol surface properties. Ni sensitivity to temperature tends to be low, due to the compensating effects of temperature on INP spectrum parameters; this low temperature sensitivity regime has been experimentally reported before but never deconstructed as done here.

  3. The prediction of nonlinear dynamic loads on helicopters from flight variables using artificial neural networks

    NASA Technical Reports Server (NTRS)

    Cook, A. B.; Fuller, C. R.; O'Brien, W. F.; Cabell, R. H.

    1992-01-01

    A method of indirectly monitoring component loads through common flight variables is proposed which requires an accurate model of the underlying nonlinear relationships. An artificial neural network (ANN) model learns relationships through exposure to a database of flight variable records and corresponding load histories from an instrumented military helicopter undergoing standard maneuvers. The ANN model, utilizing eight standard flight variables as inputs, is trained to predict normalized time-varying mean and oscillatory loads on two critical components over a range of seven maneuvers. Both interpolative and extrapolative capabilities are demonstrated with agreement between predicted and measured loads on the order of 90 percent to 95 percent. This work justifies pursuing the ANN method of predicting loads from flight variables.

  4. Exploration of Machine Learning Approaches to Predict Pavement Performance

    DOT National Transportation Integrated Search

    2018-03-23

    Machine learning (ML) techniques were used to model and predict pavement condition index (PCI) for various pavement types using a variety of input variables. The primary objective of this research was to develop and assess PCI predictive models for t...

  5. Development of a prototype land use model for statewide transportation planning activities.

    DOT National Transportation Integrated Search

    2011-11-30

    Future land use forecasting is an important input to transportation planning modeling. Traditionally, land use is allocated to individual : traffic analysis zones (TAZ) based on variables such as the amount of vacant land, zoning restriction, land us...

  6. A NARX damper model for virtual tuning of automotive suspension systems with high-frequency loading

    NASA Astrophysics Data System (ADS)

    Alghafir, M. N.; Dunne, J. F.

    2012-02-01

    A computationally efficient NARX-type neural network model is developed to characterise highly nonlinear frequency-dependent thermally sensitive hydraulic dampers for use in the virtual tuning of passive suspension systems with high-frequency loading. Three input variables are chosen to account for high-frequency kinematics and temperature variations arising from continuous vehicle operation over non-smooth surfaces such as stone-covered streets, rough or off-road conditions. Two additional input variables are chosen to represent tuneable valve parameters. To assist in the development of the NARX model, a highly accurate but computationally excessive physical damper model [originally proposed by S. Duym and K. Reybrouck, Physical characterization of non-linear shock absorber dynamics, Eur. J. Mech. Eng. M 43(4) (1998), pp. 181-188] is extended to allow for high-frequency input kinematics. Experimental verification of this extended version uses measured damper data obtained from an industrial damper test machine under near-isothermal conditions for fixed valve settings, with input kinematics corresponding to harmonic and random road profiles. The extended model is then used only for simulating data for training and testing the NARX model with specified temperature profiles and different valve parameters, both in isolation and within quarter-car vehicle simulations. A heat generation and dissipation model is also developed and experimentally verified for use within the simulations. Virtual tuning using the quarter-car simulation model then exploits the NARX damper to achieve a compromise between ride and handling under transient thermal conditions with harmonic and random road profiles. For quarter-car simulations, the paper shows that a single tuneable NARX damper makes virtual tuning computationally very attractive.

  7. Forecast Modelling via Variations in Binary Image-Encoded Information Exploited by Deep Learning Neural Networks.

    PubMed

    Liu, Da; Xu, Ming; Niu, Dongxiao; Wang, Shoukai; Liang, Sai

    2016-01-01

    Traditional forecasting models fit a function approximation from dependent invariables to independent variables. However, they usually get into trouble when date are presented in various formats, such as text, voice and image. This study proposes a novel image-encoded forecasting method that input and output binary digital two-dimensional (2D) images are transformed from decimal data. Omitting any data analysis or cleansing steps for simplicity, all raw variables were selected and converted to binary digital images as the input of a deep learning model, convolutional neural network (CNN). Using shared weights, pooling and multiple-layer back-propagation techniques, the CNN was adopted to locate the nexus among variations in local binary digital images. Due to the computing capability that was originally developed for binary digital bitmap manipulation, this model has significant potential for forecasting with vast volume of data. The model was validated by a power loads predicting dataset from the Global Energy Forecasting Competition 2012.

  8. Forecast Modelling via Variations in Binary Image-Encoded Information Exploited by Deep Learning Neural Networks

    PubMed Central

    Xu, Ming; Niu, Dongxiao; Wang, Shoukai; Liang, Sai

    2016-01-01

    Traditional forecasting models fit a function approximation from dependent invariables to independent variables. However, they usually get into trouble when date are presented in various formats, such as text, voice and image. This study proposes a novel image-encoded forecasting method that input and output binary digital two-dimensional (2D) images are transformed from decimal data. Omitting any data analysis or cleansing steps for simplicity, all raw variables were selected and converted to binary digital images as the input of a deep learning model, convolutional neural network (CNN). Using shared weights, pooling and multiple-layer back-propagation techniques, the CNN was adopted to locate the nexus among variations in local binary digital images. Due to the computing capability that was originally developed for binary digital bitmap manipulation, this model has significant potential for forecasting with vast volume of data. The model was validated by a power loads predicting dataset from the Global Energy Forecasting Competition 2012. PMID:27281032

  9. Biomass Scenario Model Documentation: Data and References

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Y.; Newes, E.; Bush, B.

    2013-05-01

    The Biomass Scenario Model (BSM) is a system dynamics model that represents the entire biomass-to-biofuels supply chain, from feedstock to fuel use. The BSM is a complex model that has been used for extensive analyses; the model and its results can be better understood if input data used for initialization and calibration are well-characterized. It has been carefully validated and calibrated against the available data, with data gaps filled in using expert opinion and internally consistent assumed values. Most of the main data sources that feed into the model are recognized as baseline values by the industry. This report documentsmore » data sources and references in Version 2 of the BSM (BSM2), which only contains the ethanol pathway, although subsequent versions of the BSM contain multiple conversion pathways. The BSM2 contains over 12,000 total input values, with 506 distinct variables. Many of the variables are opportunities for the user to define scenarios, while others are simply used to initialize a stock, such as the initial number of biorefineries. However, around 35% of the distinct variables are defined by external sources, such as models or reports. The focus of this report is to provide insight into which sources are most influential in each area of the supply chain.« less

  10. Identification and modeling of the electrohydraulic systems of the main gun of a main battle tank

    NASA Astrophysics Data System (ADS)

    Campos, Luiz C. A.; Menegaldo, Luciano L.

    2012-11-01

    The black-box mathematical models of the electrohydraulic systems responsible for driving the two degrees of freedom (elevation and azimuth) of the main gun of a main battle tank (MBT) were identified. Such systems respond to gunner's inputs while acquiring and tracking targets. Identification experiments were designed to collect simultaneous data from two inertial measurement units (IMU) installed at the gunner's handle (input) and at the center of rotation of the turret (output), for the identification of the azimuth system. For the elevation system, IMUs were installed at the gunner's handle (input) and at the breech of the gun (output). Linear accelerations and angular rates were collected for both input and output. Several black-box model architectures were investigated. As a result, nonlinear autoregressive with exogenous variables (NARX) second order model and nonlinear finite impulse response (NFIR) fourth order model, demonstrate to best fit the experimental data, with low computational costs. The derived models are being employed in a broader research, aiming to reproduce such systems in a laboratory virtual main gun simulator.

  11. Effects of Varying Cloud Cover on Springtime Runoff in California's Sierra Nevada

    NASA Astrophysics Data System (ADS)

    Sumargo, E.; Cayan, D. R.

    2017-12-01

    This study investigates how cloud cover modifies snowmelt-runoff processes in Sierra Nevada watersheds during dry and wet periods. We use two of the California Department of Water Resources' (DWR's) quasi-operational models of the Tuolumne and Merced River basins developed from the USGS Precipitation-Runoff Modeling System (PRMS) hydrologic modeling system. Model simulations are conducted after a validated optimization of model performance in simulating recent (1996-2014) historical variability in the Tuolumne and Merced basins using solar radiation (Qsi) derived from Geostationary Operational Environmental Satellite (GOES) remote sensing. Specifically, the questions we address are: 1) how sensitive are snowmelt and runoff in the Tuolumne and Merced River basins to Qsi variability associated with cloud cover variations?, and 2) does this sensitivity change in dry vs. wet years? To address these question, we conduct two experiments, where: E1) theoretical clear-sky Qsi is used as an input to PRMS, and E2) the annual harmonic cycle of Qsi is used as an input to PRMS. The resulting hydrographs from these experiments exhibit changes in peak streamflow timing by several days to a few weeks and smaller streamflow variability when compared to the actual flows and the original simulations. For E1, despite some variations, this pattern persists when the result is evaluated for dry-year and wet-year subsets, reflecting the consistently higher Qsi input available. For E2, the hydrograph shows a later spring-summer streamflow peak in the dry-year subset when compared to the original simulations, indicating the relative importance of the modulating effect of cloud cover on snowmelt-runoff in drier years.

  12. Multi input single output model predictive control of non-linear bio-polymerization process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arumugasamy, Senthil Kumar; Ahmad, Z.

    This paper focuses on Multi Input Single Output (MISO) Model Predictive Control of bio-polymerization process in which mechanistic model is developed and linked with the feedforward neural network model to obtain a hybrid model (Mechanistic-FANN) of lipase-catalyzed ring-opening polymerization of ε-caprolactone (ε-CL) for Poly (ε-caprolactone) production. In this research, state space model was used, in which the input to the model were the reactor temperatures and reactor impeller speeds and the output were the molecular weight of polymer (M{sub n}) and polymer polydispersity index. State space model for MISO created using System identification tool box of Matlab™. This state spacemore » model is used in MISO MPC. Model predictive control (MPC) has been applied to predict the molecular weight of the biopolymer and consequently control the molecular weight of biopolymer. The result shows that MPC is able to track reference trajectory and give optimum movement of manipulated variable.« less

  13. Estimating water temperatures in small streams in western Oregon using neural network models

    USGS Publications Warehouse

    Risley, John C.; Roehl, Edwin A.; Conrads, Paul

    2003-01-01

    Artificial neural network models were developed to estimate water temperatures in small streams using data collected at 148 sites throughout western Oregon from June to September 1999. The sites were located on 1st-, 2nd-, or 3rd-order streams having undisturbed or minimally disturbed conditions. Data collected at each site for model development included continuous hourly water temperature and description of riparian habitat. Additional data pertaining to the landscape characteristics of the basins upstream of the sites were assembled using geographic information system (GIS) techniques. Hourly meteorological time series data collected at 25 locations within the study region also were assembled. Clustering analysis was used to partition 142 sites into 3 groups. Separate models were developed for each group. The riparian habitat, basin characteristic, and meteorological time series data were independent variables and water temperature time series were dependent variables to the models, respectively. Approximately one-third of the data vectors were used for model training, and the remaining two-thirds were used for model testing. Critical input variables included riparian shade, site elevation, and percentage of forested area of the basin. Coefficient of determination and root mean square error for the models ranged from 0.88 to 0.99 and 0.05 to 0.59 oC, respectively. The models also were tested and validated using temperature time series, habitat, and basin landscape data from 6 sites that were separate from the 142 sites that were used to develop the models. The models are capable of estimating water temperatures at locations along 1st-, 2nd-, and 3rd-order streams in western Oregon. The model user must assemble riparian habitat and basin landscape characteristics data for a site of interest. These data, in addition to meteorological data, are model inputs. Output from the models include simulated hourly water temperatures for the June to September period. Adjustments can be made to the shade input data to simulate the effects of minimum or maximum shade on water temperatures.

  14. How sensitive are estimates of carbon fixation in agricultural models to input data?

    PubMed Central

    2012-01-01

    Background Process based vegetation models are central to understand the hydrological and carbon cycle. To achieve useful results at regional to global scales, such models require various input data from a wide range of earth observations. Since the geographical extent of these datasets varies from local to global scale, data quality and validity is of major interest when they are chosen for use. It is important to assess the effect of different input datasets in terms of quality to model outputs. In this article, we reflect on both: the uncertainty in input data and the reliability of model results. For our case study analysis we selected the Marchfeld region in Austria. We used independent meteorological datasets from the Central Institute for Meteorology and Geodynamics and the European Centre for Medium-Range Weather Forecasts (ECMWF). Land cover / land use information was taken from the GLC2000 and the CORINE 2000 products. Results For our case study analysis we selected two different process based models: the Environmental Policy Integrated Climate (EPIC) and the Biosphere Energy Transfer Hydrology (BETHY/DLR) model. Both process models show a congruent pattern to changes in input data. The annual variability of NPP reaches 36% for BETHY/DLR and 39% for EPIC when changing major input datasets. However, EPIC is less sensitive to meteorological input data than BETHY/DLR. The ECMWF maximum temperatures show a systematic pattern. Temperatures above 20°C are overestimated, whereas temperatures below 20°C are underestimated, resulting in an overall underestimation of NPP in both models. Besides, BETHY/DLR is sensitive to the choice and accuracy of the land cover product. Discussion This study shows that the impact of input data uncertainty on modelling results need to be assessed: whenever the models are applied under new conditions, local data should be used for both input and result comparison. PMID:22296931

  15. A Spreadsheet Simulation Tool for Terrestrial and Planetary Balloon Design

    NASA Technical Reports Server (NTRS)

    Raquea, Steven M.

    1999-01-01

    During the early stages of new balloon design and development, it is necessary to conduct many trade studies. These trade studies are required to determine the design space, and aid significantly in determining overall feasibility. Numerous point designs then need to be generated as details of payloads, materials, mission, and manufacturing are determined. To accomplish these numerous designs, transient models are both unnecessary and time intensive. A steady state model that uses appropriate design inputs to generate system-level descriptive parameters can be very flexible and fast. Just such a steady state model has been developed and has been used during both the MABS 2001 Mars balloon study and the Ultra Long Duration Balloon Project. Using Microsoft Excel's built-in iteration routine, a model was built. Separate sheets were used for performance, structural design, materials, and thermal analysis as well as input and output sheets. As can be seen from figure 1, the model takes basic performance requirements, weight estimates, design parameters, and environmental conditions and generates a system level balloon design. Figure 2 shows a sample output of the model. By changing the inputs and a few of the equations in the model, balloons on earth or other planets can be modeled. There are currently several variations of the model for terrestrial and Mars balloons, as well there are versions of the model that perform crude material design based on strength and weight requirements. To perform trade studies, the Visual Basic language built into Excel was used to create an automated matrix of designs. This trade study module allows a three dimensional trade surface to be generated by using a series of values for any two design variables. Once the fixed and variable inputs are defined, the model automatically steps through the input matrix and fills a spreadsheet with the resulting point designs. The proposed paper will describe the model in detail, including current variations. The assumptions, governing equations, and capabilities will be addressed. Detailed examples of the model in practice will also be used.

  16. Development and Application of Regression Models for Estimating Nutrient Concentrations in Streams of the Conterminous United States, 1992-2001

    USGS Publications Warehouse

    Spahr, Norman E.; Mueller, David K.; Wolock, David M.; Hitt, Kerie J.; Gronberg, JoAnn M.

    2010-01-01

    Data collected for the U.S. Geological Survey National Water-Quality Assessment program from 1992-2001 were used to investigate the relations between nutrient concentrations and nutrient sources, hydrology, and basin characteristics. Regression models were developed to estimate annual flow-weighted concentrations of total nitrogen and total phosphorus using explanatory variables derived from currently available national ancillary data. Different total-nitrogen regression models were used for agricultural (25 percent or more of basin area classified as agricultural land use) and nonagricultural basins. Atmospheric, fertilizer, and manure inputs of nitrogen, percent sand in soil, subsurface drainage, overland flow, mean annual precipitation, and percent undeveloped area were significant variables in the agricultural basin total nitrogen model. Significant explanatory variables in the nonagricultural total nitrogen model were total nonpoint-source nitrogen input (sum of nitrogen from manure, fertilizer, and atmospheric deposition), population density, mean annual runoff, and percent base flow. The concentrations of nutrients derived from regression (CONDOR) models were applied to drainage basins associated with the U.S. Environmental Protection Agency (USEPA) River Reach File (RF1) to predict flow-weighted mean annual total nitrogen concentrations for the conterminous United States. The majority of stream miles in the Nation have predicted concentrations less than 5 milligrams per liter. Concentrations greater than 5 milligrams per liter were predicted for a broad area extending from Ohio to eastern Nebraska, areas spatially associated with greater application of fertilizer and manure. Probabilities that mean annual total-nitrogen concentrations exceed the USEPA regional nutrient criteria were determined by incorporating model prediction uncertainty. In all nutrient regions where criteria have been established, there is at least a 50 percent probability of exceeding the criteria in more than half of the stream miles. Dividing calibration sites into agricultural and nonagricultural groups did not improve the explanatory capability for total phosphorus models. The group of explanatory variables that yielded the lowest model error for mean annual total phosphorus concentrations includes phosphorus input from manure, population density, amounts of range land and forest land, percent sand in soil, and percent base flow. However, the large unexplained variability and associated model error precluded the use of the total phosphorus model for nationwide extrapolations.

  17. Greenland Regional and Ice Sheet-wide Geometry Sensitivity to Boundary and Initial conditions

    NASA Astrophysics Data System (ADS)

    Logan, L. C.; Narayanan, S. H. K.; Greve, R.; Heimbach, P.

    2017-12-01

    Ice sheet and glacier model outputs require inputs from uncertainly known initial and boundary conditions, and other parameters. Conservation and constitutive equations formalize the relationship between model inputs and outputs, and the sensitivity of model-derived quantities of interest (e.g., ice sheet volume above floatation) to model variables can be obtained via the adjoint model of an ice sheet. We show how one particular ice sheet model, SICOPOLIS (SImulation COde for POLythermal Ice Sheets), depends on these inputs through comprehensive adjoint-based sensitivity analyses. SICOPOLIS discretizes the shallow-ice and shallow-shelf approximations for ice flow, and is well-suited for paleo-studies of Greenland and Antarctica, among other computational domains. The adjoint model of SICOPOLIS was developed via algorithmic differentiation, facilitated by the source transformation tool OpenAD (developed at Argonne National Lab). While model sensitivity to various inputs can be computed by costly methods involving input perturbation simulations, the time-dependent adjoint model of SICOPOLIS delivers model sensitivities to initial and boundary conditions throughout time at lower cost. Here, we explore both the sensitivities of the Greenland Ice Sheet's entire and regional volumes to: initial ice thickness, precipitation, basal sliding, and geothermal flux over the Holocene epoch. Sensitivity studies such as described here are now accessible to the modeling community, based on the latest version of SICOPOLIS that has been adapted for OpenAD to generate correct and efficient adjoint code.

  18. Soil organic carbon dynamics jointly controlled by climate, carbon inputs, soil properties and soil carbon fractions.

    PubMed

    Luo, Zhongkui; Feng, Wenting; Luo, Yiqi; Baldock, Jeff; Wang, Enli

    2017-10-01

    Soil organic carbon (SOC) dynamics are regulated by the complex interplay of climatic, edaphic and biotic conditions. However, the interrelation of SOC and these drivers and their potential connection networks are rarely assessed quantitatively. Using observations of SOC dynamics with detailed soil properties from 90 field trials at 28 sites under different agroecosystems across the Australian cropping regions, we investigated the direct and indirect effects of climate, soil properties, carbon (C) inputs and soil C pools (a total of 17 variables) on SOC change rate (r C , Mg C ha -1  yr -1 ). Among these variables, we found that the most influential variables on r C were the average C input amount and annual precipitation, and the total SOC stock at the beginning of the trials. Overall, C inputs (including C input amount and pasture frequency in the crop rotation system) accounted for 27% of the relative influence on r C , followed by climate 25% (including precipitation and temperature), soil C pools 24% (including pool size and composition) and soil properties (such as cation exchange capacity, clay content, bulk density) 24%. Path analysis identified a network of intercorrelations of climate, soil properties, C inputs and soil C pools in determining r C . The direct correlation of r C with climate was significantly weakened if removing the effects of soil properties and C pools, and vice versa. These results reveal the relative importance of climate, soil properties, C inputs and C pools and their complex interconnections in regulating SOC dynamics. Ignorance of the impact of changes in soil properties, C pool composition and C input (quantity and quality) on SOC dynamics is likely one of the main sources of uncertainty in SOC predictions from the process-based SOC models. © 2017 John Wiley & Sons Ltd.

  19. Crown fuel spatial variability and predictability of fire spread

    Treesearch

    Russell A. Parsons; Jeremy Sauer; Rodman R. Linn

    2010-01-01

    Fire behavior predictions, as well as measures of uncertainty in those predictions, are essential in operational and strategic fire management decisions. While it is becoming common practice to assess uncertainty in fire behavior predictions arising from variability in weather inputs, uncertainty arising from the fire models themselves is difficult to assess. This is...

  20. Some Insights of Spectral Optimization in Ocean Color Inversion

    NASA Technical Reports Server (NTRS)

    Lee, Zhongping; Franz, Bryan; Shang, Shaoling; Dong, Qiang; Arnone, Robert

    2011-01-01

    In the past decades various algorithms have been developed for the retrieval of water constituents from the measurement of ocean color radiometry, and one of the approaches is spectral optimization. This approach defines an error target (or error function) between the input remote sensing reflectance and the output remote sensing reflectance, with the latter modeled with a few variables that represent the optically active properties (such as the absorption coefficient of phytoplankton and the backscattering coefficient of particles). The values of the variables when the error reach a minimum (optimization is achieved) are considered the properties that form the input remote sensing reflectance; or in other words, the equations are solved numerically. The applications of this approach implicitly assume that the error is a monotonic function of the various variables. Here, with data from numerical simulation and field measurements, we show the shape of the error surface, in a way to justify the possibility of finding a solution of the various variables. In addition, because the spectral properties could be modeled differently, impacts of such differences on the error surface as well as on the retrievals are also presented.

  1. Calculation of the final energy demand for the Federal Republic of Germany with the simulation model MEDEE-2

    NASA Astrophysics Data System (ADS)

    Loeffler, U.; Weible, H.

    1981-08-01

    The final energy demand for the Federal Republic of Germany was calculated. The model MEDEE-2 describes, in relationship to a given distribution of the production of single industrial sectors, of energy specific values and of population development, the final energy consumption of the domestic, service industry and transportation sectors for a given region. The input data, consisting of constants and variables, and the proceeding, by which the projections for the input data of single sectors are performed, are discussed. The results of the calculations are presented and are compared. The sensitivity of single results in relation to the variation of input values is analyzed.

  2. A potato model intercomparison across varying climates and productivity levels.

    PubMed

    Fleisher, David H; Condori, Bruno; Quiroz, Roberto; Alva, Ashok; Asseng, Senthold; Barreda, Carolina; Bindi, Marco; Boote, Kenneth J; Ferrise, Roberto; Franke, Angelinus C; Govindakrishnan, Panamanna M; Harahagazwe, Dieudonne; Hoogenboom, Gerrit; Naresh Kumar, Soora; Merante, Paolo; Nendel, Claas; Olesen, Jorgen E; Parker, Phillip S; Raes, Dirk; Raymundo, Rubi; Ruane, Alex C; Stockle, Claudio; Supit, Iwan; Vanuytrecht, Eline; Wolf, Joost; Woli, Prem

    2017-03-01

    A potato crop multimodel assessment was conducted to quantify variation among models and evaluate responses to climate change. Nine modeling groups simulated agronomic and climatic responses at low-input (Chinoli, Bolivia and Gisozi, Burundi)- and high-input (Jyndevad, Denmark and Washington, United States) management sites. Two calibration stages were explored, partial (P1), where experimental dry matter data were not provided, and full (P2). The median model ensemble response outperformed any single model in terms of replicating observed yield across all locations. Uncertainty in simulated yield decreased from 38% to 20% between P1 and P2. Model uncertainty increased with interannual variability, and predictions for all agronomic variables were significantly different from one model to another (P < 0.001). Uncertainty averaged 15% higher for low- vs. high-input sites, with larger differences observed for evapotranspiration (ET), nitrogen uptake, and water use efficiency as compared to dry matter. A minimum of five partial, or three full, calibrated models was required for an ensemble approach to keep variability below that of common field variation. Model variation was not influenced by change in carbon dioxide (C), but increased as much as 41% and 23% for yield and ET, respectively, as temperature (T) or rainfall (W) moved away from historical levels. Increases in T accounted for the highest amount of uncertainty, suggesting that methods and parameters for T sensitivity represent a considerable unknown among models. Using median model ensemble values, yield increased on average 6% per 100-ppm C, declined 4.6% per °C, and declined 2% for every 10% decrease in rainfall (for nonirrigated sites). Differences in predictions due to model representation of light utilization were significant (P < 0.01). These are the first reported results quantifying uncertainty for tuber/root crops and suggest modeling assessments of climate change impact on potato may be improved using an ensemble approach. © 2016 John Wiley & Sons Ltd.

  3. Linking Annual N2O Emission in Organic Soils to Mineral Nitrogen Input as Estimated by Heterotrophic Respiration and Soil C/N Ratio

    PubMed Central

    Mu, Zhijian; Huang, Aiying; Ni, Jiupai; Xie, Deti

    2014-01-01

    Organic soils are an important source of N2O, but global estimates of these fluxes remain uncertain because measurements are sparse. We tested the hypothesis that N2O fluxes can be predicted from estimates of mineral nitrogen input, calculated from readily-available measurements of CO2 flux and soil C/N ratio. From studies of organic soils throughout the world, we compiled a data set of annual CO2 and N2O fluxes which were measured concurrently. The input of soil mineral nitrogen in these studies was estimated from applied fertilizer nitrogen and organic nitrogen mineralization. The latter was calculated by dividing the rate of soil heterotrophic respiration by soil C/N ratio. This index of mineral nitrogen input explained up to 69% of the overall variability of N2O fluxes, whereas CO2 flux or soil C/N ratio alone explained only 49% and 36% of the variability, respectively. Including water table level in the model, along with mineral nitrogen input, further improved the model with the explanatory proportion of variability in N2O flux increasing to 75%. Unlike grassland or cropland soils, forest soils were evidently nitrogen-limited, so water table level had no significant effect on N2O flux. Our proposed approach, which uses the product of soil-derived CO2 flux and the inverse of soil C/N ratio as a proxy for nitrogen mineralization, shows promise for estimating regional or global N2O fluxes from organic soils, although some further enhancements may be warranted. PMID:24798347

  4. Matrix completion by deep matrix factorization.

    PubMed

    Fan, Jicong; Cheng, Jieyu

    2018-02-01

    Conventional methods of matrix completion are linear methods that are not effective in handling data of nonlinear structures. Recently a few researchers attempted to incorporate nonlinear techniques into matrix completion but there still exists considerable limitations. In this paper, a novel method called deep matrix factorization (DMF) is proposed for nonlinear matrix completion. Different from conventional matrix completion methods that are based on linear latent variable models, DMF is on the basis of a nonlinear latent variable model. DMF is formulated as a deep-structure neural network, in which the inputs are the low-dimensional unknown latent variables and the outputs are the partially observed variables. In DMF, the inputs and the parameters of the multilayer neural network are simultaneously optimized to minimize the reconstruction errors for the observed entries. Then the missing entries can be readily recovered by propagating the latent variables to the output layer. DMF is compared with state-of-the-art methods of linear and nonlinear matrix completion in the tasks of toy matrix completion, image inpainting and collaborative filtering. The experimental results verify that DMF is able to provide higher matrix completion accuracy than existing methods do and DMF is applicable to large matrices. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Novel approach for streamflow forecasting using a hybrid ANFIS-FFA model

    NASA Astrophysics Data System (ADS)

    Yaseen, Zaher Mundher; Ebtehaj, Isa; Bonakdari, Hossein; Deo, Ravinesh C.; Danandeh Mehr, Ali; Mohtar, Wan Hanna Melini Wan; Diop, Lamine; El-shafie, Ahmed; Singh, Vijay P.

    2017-11-01

    The present study proposes a new hybrid evolutionary Adaptive Neuro-Fuzzy Inference Systems (ANFIS) approach for monthly streamflow forecasting. The proposed method is a novel combination of the ANFIS model with the firefly algorithm as an optimizer tool to construct a hybrid ANFIS-FFA model. The results of the ANFIS-FFA model is compared with the classical ANFIS model, which utilizes the fuzzy c-means (FCM) clustering method in the Fuzzy Inference Systems (FIS) generation. The historical monthly streamflow data for Pahang River, which is a major river system in Malaysia that characterized by highly stochastic hydrological patterns, is used in the study. Sixteen different input combinations with one to five time-lagged input variables are incorporated into the ANFIS-FFA and ANFIS models to consider the antecedent seasonal variations in historical streamflow data. The mean absolute error (MAE), root mean square error (RMSE) and correlation coefficient (r) are used to evaluate the forecasting performance of ANFIS-FFA model. In conjunction with these metrics, the refined Willmott's Index (Drefined), Nash-Sutcliffe coefficient (ENS) and Legates and McCabes Index (ELM) are also utilized as the normalized goodness-of-fit metrics. Comparison of the results reveals that the FFA is able to improve the forecasting accuracy of the hybrid ANFIS-FFA model (r = 1; RMSE = 0.984; MAE = 0.364; ENS = 1; ELM = 0.988; Drefined = 0.994) applied for the monthly streamflow forecasting in comparison with the traditional ANFIS model (r = 0.998; RMSE = 3.276; MAE = 1.553; ENS = 0.995; ELM = 0.950; Drefined = 0.975). The results also show that the ANFIS-FFA is not only superior to the ANFIS model but also exhibits a parsimonious modelling framework for streamflow forecasting by incorporating a smaller number of input variables required to yield the comparatively better performance. It is construed that the FFA optimizer can thus surpass the accuracy of the traditional ANFIS model in general, and is able to remove the false (inaccurately) forecasted data in the ANFIS model for extremely low flows. The present results have wider implications not only for streamflow forecasting purposes, but also for other hydro-meteorological forecasting variables requiring only the historical data input data, and attaining a greater level of predictive accuracy with the incorporation of the FFA algorithm as an optimization tool in an ANFIS model.

  6. Assessment of food intake input distributions for use in probabilistic exposure assessments of food additives.

    PubMed

    Gilsenan, M B; Lambe, J; Gibney, M J

    2003-11-01

    A key component of a food chemical exposure assessment using probabilistic analysis is the selection of the most appropriate input distribution to represent exposure variables. The study explored the type of parametric distribution that could be used to model variability in food consumption data likely to be included in a probabilistic exposure assessment of food additives. The goodness-of-fit of a range of continuous distributions to observed data of 22 food categories expressed as average daily intakes among consumers from the North-South Ireland Food Consumption Survey was assessed using the BestFit distribution fitting program. The lognormal distribution was most commonly accepted as a plausible parametric distribution to represent food consumption data when food intakes were expressed as absolute intakes (16/22 foods) and as intakes per kg body weight (18/22 foods). Results from goodness-of-fit tests were accompanied by lognormal probability plots for a number of food categories. The influence on food additive intake of using a lognormal distribution to model food consumption input data was assessed by comparing modelled intake estimates with observed intakes. Results from the present study advise some level of caution about the use of a lognormal distribution as a mode of input for food consumption data in probabilistic food additive exposure assessments and the results highlight the need for further research in this area.

  7. A dual-input nonlinear system analysis of autonomic modulation of heart rate

    NASA Technical Reports Server (NTRS)

    Chon, K. H.; Mullen, T. J.; Cohen, R. J.

    1996-01-01

    Linear analyses of fluctuations in heart rate and other hemodynamic variables have been used to elucidate cardiovascular regulatory mechanisms. The role of nonlinear contributions to fluctuations in hemodynamic variables has not been fully explored. This paper presents a nonlinear system analysis of the effect of fluctuations in instantaneous lung volume (ILV) and arterial blood pressure (ABP) on heart rate (HR) fluctuations. To successfully employ a nonlinear analysis based on the Laguerre expansion technique (LET), we introduce an efficient procedure for broadening the spectral content of the ILV and ABP inputs to the model by adding white noise. Results from computer simulations demonstrate the effectiveness of broadening the spectral band of input signals to obtain consistent and stable kernel estimates with the use of the LET. Without broadening the band of the ILV and ABP inputs, the LET did not provide stable kernel estimates. Moreover, we extend the LET to the case of multiple inputs in order to accommodate the analysis of the combined effect of ILV and ABP effect on heart rate. Analyzes of data based on the second-order Volterra-Wiener model reveal an important contribution of the second-order kernels to the description of the effect of lung volume and arterial blood pressure on heart rate. Furthermore, physiological effects of the autonomic blocking agents propranolol and atropine on changes in the first- and second-order kernels are also discussed.

  8. Partitioning the impacts of spatial and climatological rainfall variability in urban drainage modeling

    NASA Astrophysics Data System (ADS)

    Peleg, Nadav; Blumensaat, Frank; Molnar, Peter; Fatichi, Simone; Burlando, Paolo

    2017-03-01

    The performance of urban drainage systems is typically examined using hydrological and hydrodynamic models where rainfall input is uniformly distributed, i.e., derived from a single or very few rain gauges. When models are fed with a single uniformly distributed rainfall realization, the response of the urban drainage system to the rainfall variability remains unexplored. The goal of this study was to understand how climate variability and spatial rainfall variability, jointly or individually considered, affect the response of a calibrated hydrodynamic urban drainage model. A stochastic spatially distributed rainfall generator (STREAP - Space-Time Realizations of Areal Precipitation) was used to simulate many realizations of rainfall for a 30-year period, accounting for both climate variability and spatial rainfall variability. The generated rainfall ensemble was used as input into a calibrated hydrodynamic model (EPA SWMM - the US EPA's Storm Water Management Model) to simulate surface runoff and channel flow in a small urban catchment in the city of Lucerne, Switzerland. The variability of peak flows in response to rainfall of different return periods was evaluated at three different locations in the urban drainage network and partitioned among its sources. The main contribution to the total flow variability was found to originate from the natural climate variability (on average over 74 %). In addition, the relative contribution of the spatial rainfall variability to the total flow variability was found to increase with longer return periods. This suggests that while the use of spatially distributed rainfall data can supply valuable information for sewer network design (typically based on rainfall with return periods from 5 to 15 years), there is a more pronounced relevance when conducting flood risk assessments for larger return periods. The results show the importance of using multiple distributed rainfall realizations in urban hydrology studies to capture the total flow variability in the response of the urban drainage systems to heavy rainfall events.

  9. Global sensitivity and uncertainty analysis of an atmospheric chemistry transport model: the FRAME model (version 9.15.0) as a case study

    NASA Astrophysics Data System (ADS)

    Aleksankina, Ksenia; Heal, Mathew R.; Dore, Anthony J.; Van Oijen, Marcel; Reis, Stefan

    2018-04-01

    Atmospheric chemistry transport models (ACTMs) are widely used to underpin policy decisions associated with the impact of potential changes in emissions on future pollutant concentrations and deposition. It is therefore essential to have a quantitative understanding of the uncertainty in model output arising from uncertainties in the input pollutant emissions. ACTMs incorporate complex and non-linear descriptions of chemical and physical processes which means that interactions and non-linearities in input-output relationships may not be revealed through the local one-at-a-time sensitivity analysis typically used. The aim of this work is to demonstrate a global sensitivity and uncertainty analysis approach for an ACTM, using as an example the FRAME model, which is extensively employed in the UK to generate source-receptor matrices for the UK Integrated Assessment Model and to estimate critical load exceedances. An optimised Latin hypercube sampling design was used to construct model runs within ±40 % variation range for the UK emissions of SO2, NOx, and NH3, from which regression coefficients for each input-output combination and each model grid ( > 10 000 across the UK) were calculated. Surface concentrations of SO2, NOx, and NH3 (and of deposition of S and N) were found to be predominantly sensitive to the emissions of the respective pollutant, while sensitivities of secondary species such as HNO3 and particulate SO42-, NO3-, and NH4+ to pollutant emissions were more complex and geographically variable. The uncertainties in model output variables were propagated from the uncertainty ranges reported by the UK National Atmospheric Emissions Inventory for the emissions of SO2, NOx, and NH3 (±4, ±10, and ±20 % respectively). The uncertainties in the surface concentrations of NH3 and NOx and the depositions of NHx and NOy were dominated by the uncertainties in emissions of NH3, and NOx respectively, whilst concentrations of SO2 and deposition of SOy were affected by the uncertainties in both SO2 and NH3 emissions. Likewise, the relative uncertainties in the modelled surface concentrations of each of the secondary pollutant variables (NH4+, NO3-, SO42-, and HNO3) were due to uncertainties in at least two input variables. In all cases the spatial distribution of relative uncertainty was found to be geographically heterogeneous. The global methods used here can be applied to conduct sensitivity and uncertainty analyses of other ACTMs.

  10. Inductive reasoning and forecasting of population dynamics of Cylindrospermopsis raciborskii in three sub-tropical reservoirs by evolutionary computation.

    PubMed

    Recknagel, Friedrich; Orr, Philip T; Cao, Hongqing

    2014-01-01

    Seven-day-ahead forecasting models of Cylindrospermopsis raciborskii in three warm-monomictic and mesotrophic reservoirs in south-east Queensland have been developed by means of water quality data from 1999 to 2010 and the hybrid evolutionary algorithm HEA. Resulting models using all measured variables as inputs as well as models using electronically measurable variables only as inputs forecasted accurately timing of overgrowth of C. raciborskii and matched well high and low magnitudes of observed bloom events with 0.45≤r 2 >0.61 and 0.4≤r 2 >0.57, respectively. The models also revealed relationships and thresholds triggering bloom events that provide valuable information on synergism between water quality conditions and population dynamics of C. raciborskii. Best performing models based on using all measured variables as inputs indicated electrical conductivity (EC) within the range of 206-280mSm -1 as threshold above which fast growth and high abundances of C. raciborskii have been observed for the three lakes. Best models based on electronically measurable variables for the Lakes Wivenhoe and Somerset indicated a water temperature (WT) range of 25.5-32.7°C within which fast growth and high abundances of C. raciborskii can be expected. By contrast the model for Lake Samsonvale highlighted a turbidity (TURB) level of 4.8 NTU as indicator for mass developments of C. raciborskii. Experiments with online measured water quality data of the Lake Wivenhoe from 2007 to 2010 resulted in predictive models with 0.61≤r 2 >0.65 whereby again similar levels of EC and WT have been discovered as thresholds for outgrowth of C. raciborskii. The highest validity of r 2 =0.75 for an in situ data-based model has been achieved after considering time lags for EC by 7 days and dissolved oxygen by 1 day. These time lags have been discovered by a systematic screening of all possible combinations of time lags between 0 and 10 days for all electronically measurable variables. The so-developed model performs seven-day-ahead forecasts and is currently implemented and tested for early warning of C. raciborskii blooms in the Wivenhoe reservoir. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Integrate-and-fire vs Poisson models of LGN input to V1 cortex: noisier inputs reduce orientation selectivity

    PubMed Central

    Lin, I-Chun; Xing, Dajun; Shapley, Robert

    2014-01-01

    One of the reasons the visual cortex has attracted the interest of computational neuroscience is that it has well-defined inputs. The lateral geniculate nucleus (LGN) of the thalamus is the source of visual signals to the primary visual cortex (V1). Most large-scale cortical network models approximate the spike trains of LGN neurons as simple Poisson point processes. However, many studies have shown that neurons in the early visual pathway are capable of spiking with high temporal precision and their discharges are not Poisson-like. To gain an understanding of how response variability in the LGN influences the behavior of V1, we study response properties of model V1 neurons that receive purely feedforward inputs from LGN cells modeled either as noisy leaky integrate-and-fire (NLIF) neurons or as inhomogeneous Poisson processes. We first demonstrate that the NLIF model is capable of reproducing many experimentally observed statistical properties of LGN neurons. Then we show that a V1 model in which the LGN input to a V1 neuron is modeled as a group of NLIF neurons produces higher orientation selectivity than the one with Poisson LGN input. The second result implies that statistical characteristics of LGN spike trains are important for V1's function. We conclude that physiologically motivated models of V1 need to include more realistic LGN spike trains that are less noisy than inhomogeneous Poisson processes. PMID:22684587

  12. Integrate-and-fire vs Poisson models of LGN input to V1 cortex: noisier inputs reduce orientation selectivity.

    PubMed

    Lin, I-Chun; Xing, Dajun; Shapley, Robert

    2012-12-01

    One of the reasons the visual cortex has attracted the interest of computational neuroscience is that it has well-defined inputs. The lateral geniculate nucleus (LGN) of the thalamus is the source of visual signals to the primary visual cortex (V1). Most large-scale cortical network models approximate the spike trains of LGN neurons as simple Poisson point processes. However, many studies have shown that neurons in the early visual pathway are capable of spiking with high temporal precision and their discharges are not Poisson-like. To gain an understanding of how response variability in the LGN influences the behavior of V1, we study response properties of model V1 neurons that receive purely feedforward inputs from LGN cells modeled either as noisy leaky integrate-and-fire (NLIF) neurons or as inhomogeneous Poisson processes. We first demonstrate that the NLIF model is capable of reproducing many experimentally observed statistical properties of LGN neurons. Then we show that a V1 model in which the LGN input to a V1 neuron is modeled as a group of NLIF neurons produces higher orientation selectivity than the one with Poisson LGN input. The second result implies that statistical characteristics of LGN spike trains are important for V1's function. We conclude that physiologically motivated models of V1 need to include more realistic LGN spike trains that are less noisy than inhomogeneous Poisson processes.

  13. Bullet trajectory predicts the need for damage control: an artificial neural network model.

    PubMed

    Hirshberg, Asher; Wall, Matthew J; Mattox, Kenneth L

    2002-05-01

    Effective use of damage control in trauma hinges on an early decision to use it. Bullet trajectory has never been studied as a marker for damage control. We hypothesize that this decision can be predicted by an artificial neural network (ANN) model based on the bullet trajectory and the patient's blood pressure. A multilayer perceptron ANN predictive model was developed from a data set of 312 patients with single abdominal gunshot injuries. Input variables were the bullet path, trajectory patterns, and admission systolic pressure. The output variable was either a damage control laparotomy or intraoperative death. The best performing ANN was implemented on prospectively collected data from 34 patients. The model achieved a correct classification rate of 0.96 and area under the receiver operating characteristic curve of 0.94. External validation showed the model to have a sensitivity of 88% and specificity of 96%. Model implementation on the prospectively collected data had a correct classification rate of 0.91. Sensitivity analysis showed that systolic pressure, bullet path across the midline, and trajectory involving the right upper quadrant were the three most important input variables. Bullet trajectory is an important, hitherto unrecognized, factor that should be incorporated into the decision to use damage control.

  14. Prediction of municipal solid waste generation using nonlinear autoregressive network.

    PubMed

    Younes, Mohammad K; Nopiah, Z M; Basri, N E Ahmad; Basri, H; Abushammala, Mohammed F M; Maulud, K N A

    2015-12-01

    Most of the developing countries have solid waste management problems. Solid waste strategic planning requires accurate prediction of the quality and quantity of the generated waste. In developing countries, such as Malaysia, the solid waste generation rate is increasing rapidly, due to population growth and new consumption trends that characterize society. This paper proposes an artificial neural network (ANN) approach using feedforward nonlinear autoregressive network with exogenous inputs (NARX) to predict annual solid waste generation in relation to demographic and economic variables like population number, gross domestic product, electricity demand per capita and employment and unemployment numbers. In addition, variable selection procedures are also developed to select a significant explanatory variable. The model evaluation was performed using coefficient of determination (R(2)) and mean square error (MSE). The optimum model that produced the lowest testing MSE (2.46) and the highest R(2) (0.97) had three inputs (gross domestic product, population and employment), eight neurons and one lag in the hidden layer, and used Fletcher-Powell's conjugate gradient as the training algorithm.

  15. Gravity dependence of subjective visual vertical variability.

    PubMed

    Tarnutzer, A A; Bockisch, C; Straumann, D; Olasagasti, I

    2009-09-01

    The brain integrates sensory input from the otolith organs, the semicircular canals, and the somatosensory and visual systems to determine self-orientation relative to gravity. Only the otoliths directly sense the gravito-inertial force vector and therefore provide the major input for perceiving static head-roll relative to gravity, as measured by the subjective visual vertical (SVV). Intraindividual SVV variability increases with head roll, which suggests that the effectiveness of the otolith signal is roll-angle dependent. We asked whether SVV variability reflects the spatial distribution of the otolithic sensors and the otolith-derived acceleration estimate. Subjects were placed in different roll orientations (0-360 degrees, 15 degrees steps) and asked to align an arrow with perceived vertical. Variability was minimal in upright, increased with head-roll peaking around 120-135 degrees, and decreased to intermediate values at 180 degrees. Otolith-dependent variability was modeled by taking into consideration the nonuniform distribution of the otolith afferents and their nonlinear firing rate. The otolith-derived estimate was combined with an internal bias shifting the estimated gravity-vector toward the body-longitudinal. Assuming an efficient otolith estimator at all roll angles, peak variability of the model matched our data; however, modeled variability in upside-down and upright positions was very similar, which is at odds with our findings. By decreasing the effectiveness of the otolith estimator with increasing roll, simulated variability matched our experimental findings better. We suggest that modulations of SVV precision in the roll plane are related to the properties of the otolith sensors and to central computational mechanisms that are not optimally tuned for roll-angles distant from upright.

  16. Probabilistic estimation of residential air exchange rates for ...

    EPA Pesticide Factsheets

    Residential air exchange rates (AERs) are a key determinant in the infiltration of ambient air pollution indoors. Population-based human exposure models using probabilistic approaches to estimate personal exposure to air pollutants have relied on input distributions from AER measurements. An algorithm for probabilistically estimating AER was developed based on the Lawrence Berkley National Laboratory Infiltration model utilizing housing characteristics and meteorological data with adjustment for window opening behavior. The algorithm was evaluated by comparing modeled and measured AERs in four US cities (Los Angeles, CA; Detroit, MI; Elizabeth, NJ; and Houston, TX) inputting study-specific data. The impact on the modeled AER of using publically available housing data representative of the region for each city was also assessed. Finally, modeled AER based on region-specific inputs was compared with those estimated using literature-based distributions. While modeled AERs were similar in magnitude to the measured AER they were consistently lower for all cities except Houston. AERs estimated using region-specific inputs were lower than those using study-specific inputs due to differences in window opening probabilities. The algorithm produced more spatially and temporally variable AERs compared with literature-based distributions reflecting within- and between-city differences, helping reduce error in estimates of air pollutant exposure. Published in the Journal of

  17. Computational implications of activity-dependent neuronal processes

    NASA Astrophysics Data System (ADS)

    Goldman, Mark Steven

    Synapses, the connections between neurons, often fail to transmit a large percentage of the action potentials that they receive. I describe several models of synaptic transmission at a single stochastic synapse with an activity-dependent probability of transmission and demonstrate how synaptic transmission failures may increase the efficiency with which a synapse transmits information. Spike trains in the visual cortex of freely viewing monkeys have positive auto correlations that are indicative of a redundant representation of the information they contain. I show how a synapse with activity-dependent transmission failures modeled after those occurring in visual cortical synapses can remove this redundancy by transmitting a decorrelated subset of the spike trains it receives. I suggest that redundancy reduction at individual synapses saves synaptic resources while increasing the sensitivity of the postsynaptic neuron to information arriving along many inputs. For a neuron receiving input from many decorrelating synapses, my analysis leads to a prediction of the number of visual inputs to a neuron and the cross-correlations between these inputs and suggests that the time scale of synaptic dynamics observed in sensory areas corresponds to a fundamental time scale for processing sensory information. Systems with activity-dependent changes in their parameters, or plasticity, often display a wide variability in their individual components that belies the stability of their function, Motivated by experiments demonstrating that identified neurons with stereotyped function can have a large variability in the densities of their ion channels, or ionic conductances, I build a conductance-based model of a single neuron. The neuron's firing activity is relatively insensitive to changes in certain combinations of conductances, but markedly sensitive to changes in other combinations. Using a combined modeling and experimental approach, I show that neuromodulators and regulatory processes target sensitive combinations of conductances. I suggest that the variability observed in conductance measurements occurs along insensitive combinations of conductances and could result from homeostatic processes that allow the neuron's conductances to drift without triggering activity- dependent feedback mechanisms. These results together suggest that plastic systems may have a high degree of flexibility and variability in their components without a loss of robustness in their response properties.

  18. Gsflow-py: An integrated hydrologic model development tool

    NASA Astrophysics Data System (ADS)

    Gardner, M.; Niswonger, R. G.; Morton, C.; Henson, W.; Huntington, J. L.

    2017-12-01

    Integrated hydrologic modeling encompasses a vast number of processes and specifications, variable in time and space, and development of model datasets can be arduous. Model input construction techniques have not been formalized or made easily reproducible. Creating the input files for integrated hydrologic models (IHM) requires complex GIS processing of raster and vector datasets from various sources. Developing stream network topology that is consistent with the model resolution digital elevation model is important for robust simulation of surface water and groundwater exchanges. Distribution of meteorologic parameters over the model domain is difficult in complex terrain at the model resolution scale, but is necessary to drive realistic simulations. Historically, development of input data for IHM models has required extensive GIS and computer programming expertise which has restricted the use of IHMs to research groups with available financial, human, and technical resources. Here we present a series of Python scripts that provide a formalized technique for the parameterization and development of integrated hydrologic model inputs for GSFLOW. With some modifications, this process could be applied to any regular grid hydrologic model. This Python toolkit automates many of the necessary and laborious processes of parameterization, including stream network development and cascade routing, land coverages, and meteorological distribution over the model domain.

  19. Estimating Reservoir Inflow Using RADAR Forecasted Precipitation and Adaptive Neuro Fuzzy Inference System

    NASA Astrophysics Data System (ADS)

    Yi, J.; Choi, C.

    2014-12-01

    Rainfall observation and forecasting using remote sensing such as RADAR(Radio Detection and Ranging) and satellite images are widely used to delineate the increased damage by rapid weather changeslike regional storm and flash flood. The flood runoff was calculated by using adaptive neuro-fuzzy inference system, the data driven models and MAPLE(McGill Algorithm for Precipitation Nowcasting by Lagrangian Extrapolation) forecasted precipitation data as the input variables.The result of flood estimation method using neuro-fuzzy technique and RADAR forecasted precipitation data was evaluated by comparing it with the actual data.The Adaptive Neuro Fuzzy method was applied to the Chungju Reservoir basin in Korea. The six rainfall events during the flood seasons in 2010 and 2011 were used for the input data.The reservoir inflow estimation results were comparedaccording to the rainfall data used for training, checking and testing data in the model setup process. The results of the 15 models with the combination of the input variables were compared and analyzed. Using the relatively larger clustering radius and the biggest flood ever happened for training data showed the better flood estimation in this study.The model using the MAPLE forecasted precipitation data showed better result for inflow estimation in the Chungju Reservoir.

  20. Human-arm-and-hand-dynamic model with variability analyses for a stylus-based haptic interface.

    PubMed

    Fu, Michael J; Cavuşoğlu, M Cenk

    2012-12-01

    Haptic interface research benefits from accurate human arm models for control and system design. The literature contains many human arm dynamic models but lacks detailed variability analyses. Without accurate measurements, variability is modeled in a very conservative manner, leading to less than optimal controller and system designs. This paper not only presents models for human arm dynamics but also develops inter- and intrasubject variability models for a stylus-based haptic device. Data from 15 human subjects (nine male, six female, ages 20-32) were collected using a Phantom Premium 1.5a haptic device for system identification. In this paper, grip-force-dependent models were identified for 1-3-N grip forces in the three spatial axes. Also, variability due to human subjects and grip-force variation were modeled as both structured and unstructured uncertainties. For both forms of variability, the maximum variation, 95 %, and 67 % confidence interval limits were examined. All models were in the frequency domain with force as input and position as output. The identified models enable precise controllers targeted to a subset of possible human operator dynamics.

  1. Input Uncertainty and its Implications on Parameter Assessment in Hydrologic and Hydroclimatic Modelling Studies

    NASA Astrophysics Data System (ADS)

    Chowdhury, S.; Sharma, A.

    2005-12-01

    Hydrological model inputs are often derived from measurements at point locations taken at discrete time steps. The nature of uncertainty associated with such inputs is thus a function of the quality and number of measurements available in time. A change in these characteristics (such as a change in the number of rain-gauge inputs used to derive spatially averaged rainfall) results in inhomogeneity in the associated distributional profile. Ignoring such uncertainty can lead to models that aim to simulate based on the observed input variable instead of the true measurement, resulting in a biased representation of the underlying system dynamics as well as an increase in both bias and the predictive uncertainty in simulations. This is especially true of cases where the nature of uncertainty likely in the future is significantly different to that in the past. Possible examples include situations where the accuracy of the catchment averaged rainfall has increased substantially due to an increase in the rain-gauge density, or accuracy of climatic observations (such as sea surface temperatures) increased due to the use of more accurate remote sensing technologies. We introduce here a method to ascertain the true value of parameters in the presence of additive uncertainty in model inputs. This method, known as SIMulation EXtrapolation (SIMEX, [Cook, 1994]) operates on the basis of an empirical relationship between parameters and the level of additive input noise (or uncertainty). The method starts with generating a series of alternate realisations of model inputs by artificially adding white noise in increasing multiples of the known error variance. The alternate realisations lead to alternate sets of parameters that are increasingly biased with respect to the truth due to the increased variability in the inputs. Once several such realisations have been drawn, one is able to formulate an empirical relationship between the parameter values and the level of additive noise present. SIMEX is based on theory that the trend in alternate parameters can be extrapolated back to the notional error free zone. We illustrate the utility of SIMEX in a synthetic rainfall-runoff modelling scenario and an application to study the dependence of uncertain distributed sea surface temperature anomalies with an indicator of the El Nino Southern Oscillation, the Southern Oscillation Index (SOI). The errors in rainfall data and its affect is explored using Sacramento rainfall runoff model. The rainfall uncertainty is assumed to be multiplicative and temporally invariant. The model used to relate the sea surface temperature anomalies (SSTA) to the SOI is assumed to be of a linear form. The nature of uncertainty in the SSTA is additive and varies with time. The SIMEX framework allows assessment of the relationship between the error free inputs and response. Cook, J.R., Stefanski, L. A., Simulation-Extrapolation Estimation in Parametric Measurement Error Models, Journal of the American Statistical Association, 89 (428), 1314-1328, 1994.

  2. Modeling maintenance-strategies with rainbow nets

    NASA Astrophysics Data System (ADS)

    Johnson, Allen M., Jr.; Schoenfelder, Michael A.; Lebold, David

    The Rainbow net (RN) modeling technique offers a promising alternative to traditional reliability modeling techniques. RNs are evaluated through discrete event simulation. Using specialized tokens to represent systems and faults, an RN models the fault-handling behavior of an inventory of systems produced over time. In addition, a portion of the RN represents system repair and the vendor's spare part production. Various dependability parameters are measured and used to calculate the impact of four variations of maintenance strategies. Input variables are chosen to demonstrate the technique. The number of inputs allowed to vary is intentionally constrained to limit the volume of data presented and to avoid overloading the reader with complexity. If only availability data were reviewed, it is possible that the conclusion might be drawn that both strategies are about the same and therefore the cheaper strategy from the vendor's perspective may be chosen. The richer set of metrics provided by the RN simulation gives greater insight into the problem, which leads to better decisions. By using RNs, the impact of several different variables is integrated.

  3. Prediction model of sinoatrial node field potential using high order partial least squares.

    PubMed

    Feng, Yu; Cao, Hui; Zhang, Yanbin

    2015-01-01

    High order partial least squares (HOPLS) is a novel data processing method. It is highly suitable for building prediction model which has tensor input and output. The objective of this study is to build a prediction model of the relationship between sinoatrial node field potential and high glucose using HOPLS. The three sub-signals of the sinoatrial node field potential made up the model's input. The concentration and the actuation duration of high glucose made up the model's output. The results showed that on the premise of predicting two dimensional variables, HOPLS had the same predictive ability and a lower dispersion degree compared with partial least squares (PLS).

  4. Artificial neural networks modelling the prednisolone nanoprecipitation in microfluidic reactors.

    PubMed

    Ali, Hany S M; Blagden, Nicholas; York, Peter; Amani, Amir; Brook, Toni

    2009-06-28

    This study employs artificial neural networks (ANNs) to create a model to identify relationships between variables affecting drug nanoprecipitation using microfluidic reactors. The input variables examined were saturation levels of prednisolone, solvent and antisolvent flow rates, microreactor inlet angles and internal diameters, while particle size was the single output. ANNs software was used to analyse a set of data obtained by random selection of the variables. The developed model was then assessed using a separate set of validation data and provided good agreement with the observed results. The antisolvent flow rate was found to have the dominant role on determining final particle size.

  5. Comparison of climate envelope models developed using expert-selected variables versus statistical selection

    USGS Publications Warehouse

    Brandt, Laura A.; Benscoter, Allison; Harvey, Rebecca G.; Speroterra, Carolina; Bucklin, David N.; Romañach, Stephanie; Watling, James I.; Mazzotti, Frank J.

    2017-01-01

    Climate envelope models are widely used to describe potential future distribution of species under different climate change scenarios. It is broadly recognized that there are both strengths and limitations to using climate envelope models and that outcomes are sensitive to initial assumptions, inputs, and modeling methods Selection of predictor variables, a central step in modeling, is one of the areas where different techniques can yield varying results. Selection of climate variables to use as predictors is often done using statistical approaches that develop correlations between occurrences and climate data. These approaches have received criticism in that they rely on the statistical properties of the data rather than directly incorporating biological information about species responses to temperature and precipitation. We evaluated and compared models and prediction maps for 15 threatened or endangered species in Florida based on two variable selection techniques: expert opinion and a statistical method. We compared model performance between these two approaches for contemporary predictions, and the spatial correlation, spatial overlap and area predicted for contemporary and future climate predictions. In general, experts identified more variables as being important than the statistical method and there was low overlap in the variable sets (<40%) between the two methods Despite these differences in variable sets (expert versus statistical), models had high performance metrics (>0.9 for area under the curve (AUC) and >0.7 for true skill statistic (TSS). Spatial overlap, which compares the spatial configuration between maps constructed using the different variable selection techniques, was only moderate overall (about 60%), with a great deal of variability across species. Difference in spatial overlap was even greater under future climate projections, indicating additional divergence of model outputs from different variable selection techniques. Our work is in agreement with other studies which have found that for broad-scale species distribution modeling, using statistical methods of variable selection is a useful first step, especially when there is a need to model a large number of species or expert knowledge of the species is limited. Expert input can then be used to refine models that seem unrealistic or for species that experts believe are particularly sensitive to change. It also emphasizes the importance of using multiple models to reduce uncertainty and improve map outputs for conservation planning. Where outputs overlap or show the same direction of change there is greater certainty in the predictions. Areas of disagreement can be used for learning by asking why the models do not agree, and may highlight areas where additional on-the-ground data collection could improve the models.

  6. CFEST Coupled Flow, Energy & Solute Transport Version CFEST005 User’s Guide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freedman, Vicky L.; Chen, Yousu; Gilca, Alex

    2006-07-20

    The CFEST (Coupled Flow, Energy, and Solute Transport) simulator described in this User’s Guide is a three-dimensional finite-element model used to evaluate groundwater flow and solute mass transport. Confined and unconfined aquifer systems, as well as constant and variable density fluid flows can be represented with CFEST. For unconfined aquifers, the model uses a moving boundary for the water table, deforming the numerical mesh so that the uppermost nodes are always at the water table. For solute transport, changes in concentra¬tion of a single dissolved chemical constituent are computed for advective and hydrodynamic transport, linear sorption represented by a retardationmore » factor, and radioactive decay. Although several thermal parameters described in this User’s Guide are required inputs, thermal transport has not yet been fully implemented in the simulator. Once fully implemented, transport of thermal energy in the groundwater and solid matrix of the aquifer can also be used to model aquifer thermal regimes. The CFEST simulator is written in the FORTRAN 77 language, following American National Standards Institute (ANSI) standards. Execution of the CFEST simulator is controlled through three required text input files. These input file use a structured format of associated groups of input data. Example input data lines are presented for each file type, as well as a description of the structured FORTRAN data format. Detailed descriptions of all input requirements, output options, and program structure and execution are provided in this User’s Guide. Required inputs for auxillary CFEST utilities that aide in post-processing data are also described. Global variables are defined for those with access to the source code. Although CFEST is a proprietary code (CFEST, Inc., Irvine, CA), the Pacific Northwest National Laboratory retains permission to maintain its own source, and to distribute executables to Hanford subcontractors.« less

  7. Linking nutrient inputs, phytoplankton composition, zooplankton dynamics and the recruitment of pink snapper, Chrysophrys auratus, in a temperate bay

    NASA Astrophysics Data System (ADS)

    Black, Kerry P.; Longmore, Andrew R.; Hamer, Paul A.; Lee, Randall; Swearer, Stephen E.; Jenkins, Gregory P.

    2016-12-01

    Survival of larval fish is often linked to production of preferred prey such as copepods, both inter- and intra-annually. In turn, copepod production depends not only the quantity of food, but also on the nutritional quality, edibility and/or toxicity of their micro-algal food. Hence, larval fish survival can become de-coupled from levels of nutrient input depending on the resulting composition of the plankton. Here we use a plankton dynamics model to study nutrient input, phytoplankton composition and copepod, Paracalanus, production in relation to interannual variation in recruitment of snapper, Chrysophrys auratus, in Port Phillip Bay, Australia. The model was able to simulate the ratio of diatoms to flagellates in the plume of the main river entering Port Phillip Bay. Interannual variability in the copepod, Paracalanus, abundance during the C. auratus spawning period over 5 years was accurately predicted. The seasonal peak in Paracalanus production depended on the timing and magnitude (match-mismatch) of nutrient inputs and how these were reflected in temporal change in the diatom:flagellate ratio. In turn, the model-predicted Paracalanus abundance was strongly related to inter-annaul variability in abundance of snapper, C. auratus, larvae over 7 years. Years of highest larval C. auratus abundance coincided with a matching of the spawning period with the peak in Paracalanus abundance. High freshwater flows and nutrient inputs led to an early seasonal dominance of diatoms, and consequently reduced abundances of copepods over the C. auratus spawning period with correspondingly low abundances of larvae. Conversely years of very low rainfall and nutrient input also led to low phytoplankton and copepod concentrations and larval C. auratus abundances. Highest abundances of larval C. auratus occurred in years of low to intermediate rainfall and nutrient inputs, particularly when pulses of nutrients occurred in the spring period, the latter supporting the match-mismatch hypothesis.

  8. Development of a neural-based forecasting tool to classify recreational water quality using fecal indicator organisms.

    PubMed

    Motamarri, Srinivas; Boccelli, Dominic L

    2012-09-15

    Users of recreational waters may be exposed to elevated pathogen levels through various point/non-point sources. Typical daily notifications rely on microbial analysis of indicator organisms (e.g., Escherichia coli) that require 18, or more, hours to provide an adequate response. Modeling approaches, such as multivariate linear regression (MLR) and artificial neural networks (ANN), have been utilized to provide quick predictions of microbial concentrations for classification purposes, but generally suffer from high false negative rates. This study introduces the use of learning vector quantization (LVQ)--a direct classification approach--for comparison with MLR and ANN approaches and integrates input selection for model development with respect to primary and secondary water quality standards within the Charles River Basin (Massachusetts, USA) using meteorologic, hydrologic, and microbial explanatory variables. Integrating input selection into model development showed that discharge variables were the most important explanatory variables while antecedent rainfall and time since previous events were also important. With respect to classification, all three models adequately represented the non-violated samples (>90%). The MLR approach had the highest false negative rates associated with classifying violated samples (41-62% vs 13-43% (ANN) and <16% (LVQ)) when using five or more explanatory variables. The ANN performance was more similar to LVQ when a larger number of explanatory variables were utilized, but the ANN performance degraded toward MLR performance as explanatory variables were removed. Overall, the use of LVQ as a direct classifier provided the best overall classification ability with respect to violated/non-violated samples for both standards. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Using LiDAR and quickbird data to model plant production and quantify uncertainties associated with wetland detection and land cover generalizations

    USGS Publications Warehouse

    Cook, B.D.; Bolstad, P.V.; Naesset, E.; Anderson, R. Scott; Garrigues, S.; Morisette, J.T.; Nickeson, J.; Davis, K.J.

    2009-01-01

    Spatiotemporal data from satellite remote sensing and surface meteorology networks have made it possible to continuously monitor global plant production, and to identify global trends associated with land cover/use and climate change. Gross primary production (GPP) and net primary production (NPP) are routinely derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard satellites Terra and Aqua, and estimates generally agree with independent measurements at validation sites across the globe. However, the accuracy of GPP and NPP estimates in some regions may be limited by the quality of model input variables and heterogeneity at fine spatial scales. We developed new methods for deriving model inputs (i.e., land cover, leaf area, and photosynthetically active radiation absorbed by plant canopies) from airborne laser altimetry (LiDAR) and Quickbird multispectral data at resolutions ranging from about 30??m to 1??km. In addition, LiDAR-derived biomass was used as a means for computing carbon-use efficiency. Spatial variables were used with temporal data from ground-based monitoring stations to compute a six-year GPP and NPP time series for a 3600??ha study site in the Great Lakes region of North America. Model results compared favorably with independent observations from a 400??m flux tower and a process-based ecosystem model (BIOME-BGC), but only after removing vapor pressure deficit as a constraint on photosynthesis from the MODIS global algorithm. Fine-resolution inputs captured more of the spatial variability, but estimates were similar to coarse-resolution data when integrated across the entire landscape. Failure to account for wetlands had little impact on landscape-scale estimates, because vegetation structure, composition, and conversion efficiencies were similar to upland plant communities. Plant productivity estimates were noticeably improved using LiDAR-derived variables, while uncertainties associated with land cover generalizations and wetlands in this largely forested landscape were considered less important.

  10. Using LIDAR and Quickbird Data to Model Plant Production and Quantify Uncertainties Associated with Wetland Detection and Land Cover Generalizations

    NASA Technical Reports Server (NTRS)

    Cook, Bruce D.; Bolstad, Paul V.; Naesset, Erik; Anderson, Ryan S.; Garrigues, Sebastian; Morisette, Jeffrey T.; Nickeson, Jaime; Davis, Kenneth J.

    2009-01-01

    Spatiotemporal data from satellite remote sensing and surface meteorology networks have made it possible to continuously monitor global plant production, and to identify global trends associated with land cover/use and climate change. Gross primary production (GPP) and net primary production (NPP) are routinely derived from the MOderate Resolution Imaging Spectroradiometer (MODIS) onboard satellites Terra and Aqua, and estimates generally agree with independent measurements at validation sites across the globe. However, the accuracy of GPP and NPP estimates in some regions may be limited by the quality of model input variables and heterogeneity at fine spatial scales. We developed new methods for deriving model inputs (i.e., land cover, leaf area, and photosynthetically active radiation absorbed by plant canopies) from airborne laser altimetry (LiDAR) and Quickbird multispectral data at resolutions ranging from about 30 m to 1 km. In addition, LiDAR-derived biomass was used as a means for computing carbon-use efficiency. Spatial variables were used with temporal data from ground-based monitoring stations to compute a six-year GPP and NPP time series for a 3600 ha study site in the Great Lakes region of North America. Model results compared favorably with independent observations from a 400 m flux tower and a process-based ecosystem model (BIOME-BGC), but only after removing vapor pressure deficit as a constraint on photosynthesis from the MODIS global algorithm. Fine resolution inputs captured more of the spatial variability, but estimates were similar to coarse-resolution data when integrated across the entire vegetation structure, composition, and conversion efficiencies were similar to upland plant communities. Plant productivity estimates were noticeably improved using LiDAR-derived variables, while uncertainties associated with land cover generalizations and wetlands in this largely forested landscape were considered less important.

  11. Unsteady Aerodynamic Testing Using the Dynamic Plunge Pitch and Roll Model Mount

    NASA Technical Reports Server (NTRS)

    Lutze, Frederick H.; Fan, Yigang

    1999-01-01

    A final report on the DyPPiR tests that were run are presented. Essentially it consists of two parts, a description of the data reduction techniques and the results. The data reduction techniques include three methods that were considered: 1) signal processing of wind on - wind off data; 2) using wind on data in conjunction with accelerometer measurements; and 3) using a dynamic model of the sting to predict the sting oscillations and determining the aerodynamic inputs using an optimization process. After trying all three, we ended up using method 1, mainly because of its simplicity and our confidence in its accuracy. The results section consists of time history plots of the input variables (angle of attack, roll angle, and/or plunge position) and the corresponding time histories of the output variables, C(sub L), C(sub D), C(sub m), C(sub l), C(sub m), C(sub n). Also included are some phase plots of one or more of the output variable vs. an input variable. Typically of interest are pitch moment coefficient vs. angle of attack for an oscillatory motion where the hysteresis loops can be observed. These plots are useful to determine the "more interesting" cases. Samples of the data as it appears on the disk are presented at the end of the report. The last maneuver, a rolling pull up, is indicative of the unique capabilities of the DyPPiR, allowing combinations of motions to be exercised at the same time.

  12. Modeling the low-velocity impact characteristics of woven glass epoxy composite laminates using artificial neural networks

    NASA Astrophysics Data System (ADS)

    Mathivanan, N. Rajesh; Mouli, Chandra

    2012-12-01

    In this work, a new methodology based on artificial neural networks (ANN) has been developed to study the low-velocity impact characteristics of woven glass epoxy laminates of EP3 grade. To train and test the networks, multiple impact cases have been generated using statistical analysis of variance (ANOVA). Experimental tests were performed using an instrumented falling-weight impact-testing machine. Different impact velocities and impact energies on different thicknesses of laminates were considered as the input parameters of the ANN model. This model is a feed-forward back-propagation neural network. Using the input/output data of the experiments, the model was trained and tested. Further, the effects of the low-velocity impact response of the laminates at different energy levels were investigated by studying the cause-effect relationship among the influential factors using response surface methodology. The most significant parameter is determined from the other input variables through ANOVA.

  13. Analysis performance of proton exchange membrane fuel cell (PEMFC)

    NASA Astrophysics Data System (ADS)

    Mubin, A. N. A.; Bahrom, M. H.; Azri, M.; Ibrahim, Z.; Rahim, N. A.; Raihan, S. R. S.

    2017-06-01

    Recently, the proton exchange membrane fuel cell (PEMFC) has gained much attention to the technology of renewable energy due to its mechanically ideal and zero emission power source. PEMFC performance reflects from the surroundings such as temperature and pressure. This paper presents an analysis of the performance of the PEMFC by developing the mathematical thermodynamic modelling using Matlab/Simulink. Apart from that, the differential equation of the thermodynamic model of the PEMFC is used to explain the contribution of heat to the performance of the output voltage of the PEMFC. On the other hand, the partial pressure equation of the hydrogen is included in the PEMFC mathematical modeling to study the PEMFC voltage behaviour related to the input variable input hydrogen pressure. The efficiency of the model is 33.8% which calculated by applying the energy conversion device equations on the thermal efficiency. PEMFC’s voltage output performance is increased by increasing the hydrogen input pressure and temperature.

  14. Wind effect on salt transport variability in the Bay of Bengal

    NASA Astrophysics Data System (ADS)

    Sandeep, K. K.; Pant, V.

    2017-12-01

    The Bay of Bengal (BoB) exhibits large spatial variability in sea surface salinity (SSS) pattern caused by its unique hydrological, meteorological and oceanographical characteristics. This SSS variability is largely controlled by the seasonally reversing monsoon winds and the associated currents. Further, the BoB receives substantial freshwater inputs through excess precipitation over evaporation and river discharge. Rivers like Ganges, Brahmaputra, Mahanadi, Krishna, Godavari, and Irawwady discharge annually a freshwater volume in range between 1.5 x 1012 and 1.83 x 1013 m3 into the bay. A major volume of this freshwater input to the bay occurs during the southwest monsoon (June-September) period. In the present study, a relative role of winds in the SSS variability in the bay is investigated by using an eddy-resolving three dimensional Regional Ocean Modeling System (ROMS) numerical model. The model is configured with realistic bathymetry, coastline of study region and forced with daily climatology of atmospheric variables. River discharges from the major rivers are distributed in the model grid points representing their respective geographic locations. Salt transport estimate from the model simulation for realistic case are compared with the standard reference datasets. Further, different experiments were carried out with idealized surface wind forcing representing the normal, low, high, and very high wind speed conditions in the bay while retaining the realistic daily varying directions for all the cases. The experimental simulations exhibit distinct dispersal patterns of the freshwater plume and SSS in different experiments in response to the idealized winds. Comparison of the meridional and zonal surface salt transport estimated for each experiment showed strong seasonality with varying magnitude in the bay with a maximum spatial and temporal variability in the western and northern parts of the BoB.

  15. Variable Density Multilayer Insulation for Cryogenic Storage

    NASA Technical Reports Server (NTRS)

    Hedayat, A.; Brown, T. M.; Hastings, L. J.; Martin, J.

    2000-01-01

    Two analytical models for a foam/Variable Density Multi-Layer Insulation (VD-MLI) system performance are discussed. Both models are one-dimensional and contain three heat transfer mechanisms, namely conduction through the spacer material, radiation between the shields, and conduction through the gas. One model is based on the methodology developed by McIntosh while the other model is based on the Lockheed semi-empirical approach. All models input variables are based on the Multi-purpose Hydrogen Test Bed (MHTB) geometry and available values for material properties and empirical solid conduction coefficient. Heat flux predictions are in good agreement with the MHTB data, The heat flux predictions are presented for the foam/MLI combinations with 30, 45, 60, and 75 MLI layers

  16. An efficient approach to ARMA modeling of biological systems with multiple inputs and delays

    NASA Technical Reports Server (NTRS)

    Perrott, M. H.; Cohen, R. J.

    1996-01-01

    This paper presents a new approach to AutoRegressive Moving Average (ARMA or ARX) modeling which automatically seeks the best model order to represent investigated linear, time invariant systems using their input/output data. The algorithm seeks the ARMA parameterization which accounts for variability in the output of the system due to input activity and contains the fewest number of parameters required to do so. The unique characteristics of the proposed system identification algorithm are its simplicity and efficiency in handling systems with delays and multiple inputs. We present results of applying the algorithm to simulated data and experimental biological data In addition, a technique for assessing the error associated with the impulse responses calculated from estimated ARMA parameterizations is presented. The mapping from ARMA coefficients to impulse response estimates is nonlinear, which complicates any effort to construct confidence bounds for the obtained impulse responses. Here a method for obtaining a linearization of this mapping is derived, which leads to a simple procedure to approximate the confidence bounds.

  17. Long-term hydrometeorological trends in the Midwest region based on a century long gridded hydrometeorological dataset and simulations from a macro-scale hydrology model

    NASA Astrophysics Data System (ADS)

    Chiu, C. M.; Hamlet, A. F.

    2014-12-01

    Climate change is likely to impact the Great Lakes region and Midwest region via changes in Great Lakes water levels, agricultural impacts, river flooding, urban stormwater impacts, drought, water temperature, and impacts to terrestrial and aquatic ecosystems. Self-consistent and temporally homogeneous long-term data sets of precipitation and temperature over the entire Great Lakes region and Midwest regions are needed to provide inputs to hydrologic models, assess historical trends in hydroclimatic variables, and downscale global and regional-scale climate models. To support these needs a new hybrid gridded meteorological forcing dataset at 1/16 degree resolution based on data from co-op station records, the U. S Historical Climatology Network (HCN) , the Historical Canadian Climate Database (HCCD), and Precipitation Regression on Independent Slopes Method (PRISM) has been assembled over the Great Lakes and Midwest region from 1915-2012 at daily time step. These data were then used as inputs to the macro-scale Variable Infiltration Capacity (VIC) hydrology model, implemented over the Midwest and Great Lakes region at 1/16 degree resolution, to produce simulated hydrologic variables that are amenable to long-term trend analysis. Trends in precipitation and temperature from the new meteorological driving data sets, as well as simulated hydrometeorological variables such as snowpack, soil moisture, runoff, and evaporation over the 20th century are presented and discussed.

  18. Understanding cirrus ice crystal number variability for different heterogeneous ice nucleation spectra

    DOE PAGES

    Sullivan, Sylvia C.; Morales Betancourt, Ricardo; Barahona, Donifan; ...

    2016-03-03

    Along with minimizing parameter uncertainty, understanding the cause of temporal and spatial variability of the nucleated ice crystal number, N i, is key to improving the representation of cirrus clouds in climate models. To this end, sensitivities of N i to input variables like aerosol number and diameter provide valuable information about nucleation regime and efficiency for a given model formulation. Here we use the adjoint model of the adjoint of a cirrus formation parameterization (Barahona and Nenes, 2009b) to understand N i variability for various ice-nucleating particle (INP) spectra. Inputs are generated with the Community Atmosphere Model version 5, andmore » simulations are done with a theoretically derived spectrum, an empirical lab-based spectrum and two field-based empirical spectra that differ in the nucleation threshold for black carbon particles and in the active site density for dust. The magnitude and sign of N i sensitivity to insoluble aerosol number can be directly linked to nucleation regime and efficiency of various INP. The lab-based spectrum calculates much higher INP efficiencies than field-based ones, which reveals a disparity in aerosol surface properties. In conclusion, N i sensitivity to temperature tends to be low, due to the compensating effects of temperature on INP spectrum parameters; this low temperature sensitivity regime has been experimentally reported before but never deconstructed as done here.« less

  19. The U.S. Geological Survey Monthly Water Balance Model Futures Portal

    USGS Publications Warehouse

    Bock, Andrew R.; Hay, Lauren E.; Markstrom, Steven L.; Emmerich, Christopher; Talbert, Marian

    2017-05-03

    The U.S. Geological Survey Monthly Water Balance Model Futures Portal (https://my.usgs.gov/mows/) is a user-friendly interface that summarizes monthly historical and simulated future conditions for seven hydrologic and meteorological variables (actual evapotranspiration, potential evapotranspiration, precipitation, runoff, snow water equivalent, atmospheric temperature, and streamflow) at locations across the conterminous United States (CONUS).The estimates of these hydrologic and meteorological variables were derived using a Monthly Water Balance Model (MWBM), a modular system that simulates monthly estimates of components of the hydrologic cycle using monthly precipitation and atmospheric temperature inputs. Precipitation and atmospheric temperature from 222 climate datasets spanning historical conditions (1952 through 2005) and simulated future conditions (2020 through 2099) were summarized for hydrographic features and used to drive the MWBM for the CONUS. The MWBM input and output variables were organized into an open-access database. An Open Geospatial Consortium, Inc., Web Feature Service allows the querying and identification of hydrographic features across the CONUS. To connect the Web Feature Service to the open-access database, a user interface—the Monthly Water Balance Model Futures Portal—was developed to allow the dynamic generation of summary files and plots  based on plot type, geographic location, specific climate datasets, period of record, MWBM variable, and other options. Both the plots and the data files are made available to the user for download 

  20. QUANTIFYING SEASONAL SHIFTS IN NITROGEN SOURCES TO OREGON ESTUARIES: PART II: TRANSPORT MODELING

    EPA Science Inventory

    Identifying the sources of dissolved inorganic nitrogen (DIN) in estuaries is complicated by the multiple sources, temporal variability in inputs, and variations in transport. We used a hydrodynamic model to simulate the transport and uptake of three sources of DIN (oceanic, riv...

  1. The General Ensemble Biogeochemical Modeling System (GEMS) and its applications to agricultural systems in the United States: Chapter 18

    USGS Publications Warehouse

    Liu, Shuguang; Tan, Zhengxi; Chen, Mingshi; Liu, Jinxun; Wein, Anne; Li, Zhengpeng; Huang, Shengli; Oeding, Jennifer; Young, Claudia; Verma, Shashi B.; Suyker, Andrew E.; Faulkner, Stephen P.

    2012-01-01

    The General Ensemble Biogeochemical Modeling System (GEMS) was es in individual models, it uses multiple site-scale biogeochemical models to perform model simulations. Second, it adopts Monte Carlo ensemble simulations of each simulation unit (one site/pixel or group of sites/pixels with similar biophysical conditions) to incorporate uncertainties and variability (as measured by variances and covariance) of input variables into model simulations. In this chapter, we illustrate the applications of GEMS at the site and regional scales with an emphasis on incorporating agricultural practices. Challenges in modeling soil carbon dynamics and greenhouse emissions are also discussed.

  2. Visualizing the ill-posedness of the inversion of a canopy radiative transfer model: A case study for Sentinel-2

    NASA Astrophysics Data System (ADS)

    Zurita-Milla, R.; Laurent, V. C. E.; van Gijsel, J. A. E.

    2015-12-01

    Monitoring biophysical and biochemical vegetation variables in space and time is key to understand the earth system. Operational approaches using remote sensing imagery rely on the inversion of radiative transfer models, which describe the interactions between light and vegetation canopies. The inversion required to estimate vegetation variables is, however, an ill-posed problem because of variable compensation effects that can cause different combinations of soil and canopy variables to yield extremely similar spectral responses. In this contribution, we present a novel approach to visualise the ill-posed problem using self-organizing maps (SOM), which are a type of unsupervised neural network. The approach is demonstrated with simulations for Sentinel-2 data (13 bands) made with the Soil-Leaf-Canopy (SLC) radiative transfer model. A look-up table of 100,000 entries was built by randomly sampling 14 SLC model input variables between their minimum and maximum allowed values while using both a dark and a bright soil. The Sentinel-2 spectral simulations were used to train a SOM of 200 × 125 neurons. The training projected similar spectral signatures onto either the same, or contiguous, neuron(s). Tracing back the inputs that generated each spectral signature, we created a 200 × 125 map for each of the SLC variables. The lack of spatial patterns and the variability in these maps indicate ill-posed situations, where similar spectral signatures correspond to different canopy variables. For Sentinel-2, our results showed that leaf area index, crown cover and leaf chlorophyll, water and brown pigment content are less confused in the inversion than variables with noisier maps like fraction of brown canopy area, leaf dry matter content and the PROSPECT mesophyll parameter. This study supports both educational and on-going research activities on inversion algorithms and might be useful to evaluate the uncertainties of retrieved canopy biophysical and biochemical state variables.

  3. Polynomic nonlinear dynamical systems - A residual sensitivity method for model reduction

    NASA Technical Reports Server (NTRS)

    Yurkovich, S.; Bugajski, D.; Sain, M.

    1985-01-01

    The motivation for using polynomic combinations of system states and inputs to model nonlinear dynamics systems is founded upon the classical theories of analysis and function representation. A feature of such representations is the need to make available all possible monomials in these variables, up to the degree specified, so as to provide for the description of widely varying functions within a broad class. For a particular application, however, certain monomials may be quite superfluous. This paper examines the possibility of removing monomials from the model in accordance with the level of sensitivity displayed by the residuals to their absence. Critical in these studies is the effect of system input excitation, and the effect of discarding monomial terms, upon the model parameter set. Therefore, model reduction is approached iteratively, with inputs redesigned at each iteration to ensure sufficient excitation of remaining monomials for parameter approximation. Examples are reported to illustrate the performance of such model reduction approaches.

  4. Power and Efficiency Analysis of a Solar Central Receiver Combined Cycle Plant with a Small Particle Heat Exchanger Receiver

    NASA Astrophysics Data System (ADS)

    Virgen, Matthew Miguel

    Two significant goals in solar plant operation are lower cost and higher efficiencies. To achieve those goals, a combined cycle gas turbine (CCGT) system, which uses the hot gas turbine exhaust to produce superheated steam for a bottoming Rankine cycle by way of a heat recovery steam generator (HRSG), is investigated in this work. Building off of a previous gas turbine model created at the Combustion and Solar Energy Laboratory at SDSU, here are added the HRSG and steam turbine model, which had to handle significant change in the mass flow and temperature of air exiting the gas turbine due to varying solar input. A wide range of cases were run to explore options for maximizing both power and efficiency from the proposed CSP CCGT plant. Variable guide vanes (VGVs) were found in the earlier model to be an effective tool in providing operational flexibility to address the variable nature of solar input. Combined cycle efficiencies in the range of 50% were found to result from this plant configuration. However, a combustor inlet temperature (CIT) limit leads to two distinct Modes of operation, with a sharp drop in both plant efficiency and power occurring when the air flow through the receiver exceeded the CIT limit. This drawback can be partially addressed through strategic use of the VGVs. Since system response is fully established for the relevant range of solar input and variable guide vane angles, the System Advisor Model (SAM) from NREL can be used to find what the actual expected solar input would be over the course of the day, and plan accordingly. While the SAM software is not yet equipped to model a Brayton cycle cavity receiver, appropriate approximations were made in order to produce a suitable heliostat field to fit this system. Since the SPHER uses carbon nano-particles as the solar absorbers, questions of particle longevity and how the particles might affect the flame behavior in the combustor were addressed using the chemical kinetics software ChemkinPro by modeling the combustion characteristics both with and without the particles. This work is presented in the Appendix.

  5. Modeling the BOD of Danube River in Serbia using spatial, temporal, and input variables optimized artificial neural network models.

    PubMed

    Šiljić Tomić, Aleksandra N; Antanasijević, Davor Z; Ristić, Mirjana Đ; Perić-Grujić, Aleksandra A; Pocajt, Viktor V

    2016-05-01

    This paper describes the application of artificial neural network models for the prediction of biological oxygen demand (BOD) levels in the Danube River. Eighteen regularly monitored water quality parameters at 17 stations on the river stretch passing through Serbia were used as input variables. The optimization of the model was performed in three consecutive steps: firstly, the spatial influence of a monitoring station was examined; secondly, the monitoring period necessary to reach satisfactory performance was determined; and lastly, correlation analysis was applied to evaluate the relationship among water quality parameters. Root-mean-square error (RMSE) was used to evaluate model performance in the first two steps, whereas in the last step, multiple statistical indicators of performance were utilized. As a result, two optimized models were developed, a general regression neural network model (labeled GRNN-1) that covers the monitoring stations from the Danube inflow to the city of Novi Sad and a GRNN model (labeled GRNN-2) that covers the stations from the city of Novi Sad to the border with Romania. Both models demonstrated good agreement between the predicted and actually observed BOD values.

  6. The impact of personalized probabilistic wall thickness models on peak wall stress in abdominal aortic aneurysms.

    PubMed

    Biehler, J; Wall, W A

    2018-02-01

    If computational models are ever to be used in high-stakes decision making in clinical practice, the use of personalized models and predictive simulation techniques is a must. This entails rigorous quantification of uncertainties as well as harnessing available patient-specific data to the greatest extent possible. Although researchers are beginning to realize that taking uncertainty in model input parameters into account is a necessity, the predominantly used probabilistic description for these uncertain parameters is based on elementary random variable models. In this work, we set out for a comparison of different probabilistic models for uncertain input parameters using the example of an uncertain wall thickness in finite element models of abdominal aortic aneurysms. We provide the first comparison between a random variable and a random field model for the aortic wall and investigate the impact on the probability distribution of the computed peak wall stress. Moreover, we show that the uncertainty about the prevailing peak wall stress can be reduced if noninvasively available, patient-specific data are harnessed for the construction of the probabilistic wall thickness model. Copyright © 2017 John Wiley & Sons, Ltd.

  7. Hydrochemical analysis of groundwater using a tree-based model

    NASA Astrophysics Data System (ADS)

    Litaor, M. Iggy; Brielmann, H.; Reichmann, O.; Shenker, M.

    2010-06-01

    SummaryHydrochemical indices are commonly used to ascertain aquifer characteristics, salinity problems, anthropogenic inputs and resource management, among others. This study was conducted to test the applicability of a binary decision tree model to aquifer evaluation using hydrochemical indices as input. The main advantage of the tree-based model compared to other commonly used statistical procedures such as cluster and factor analyses is the ability to classify groundwater samples with assigned probability and the reduction of a large data set into a few significant variables without creating new factors. We tested the model using data sets collected from headwater springs of the Jordan River, Israel. The model evaluation consisted of several levels of complexity, from simple separation between the calcium-magnesium-bicarbonate water type of karstic aquifers to the more challenging separation of calcium-sodium-bicarbonate water type flowing through perched and regional basaltic aquifers. In all cases, the model assigned measures for goodness of fit in the form of misclassification errors and singled out the most significant variable in the analysis. The model proceeded through a sequence of partitions providing insight into different possible pathways and changing lithology. The model results were extremely useful in constraining the interpretation of geological heterogeneity and constructing a conceptual flow model for a given aquifer. The tree model clearly identified the hydrochemical indices that were excluded from the analysis, thus providing information that can lead to a decrease in the number of routinely analyzed variables and a significant reduction in laboratory cost.

  8. A new polytopic approach for the unknown input functional observer design

    NASA Astrophysics Data System (ADS)

    Bezzaoucha, Souad; Voos, Holger; Darouach, Mohamed

    2018-03-01

    In this paper, a constructive procedure to design Functional Unknown Input Observers for nonlinear continuous time systems is proposed under the Polytopic Takagi-Sugeno framework. An equivalent representation for the nonlinear model is achieved using the sector nonlinearity transformation. Applying the Lyapunov theory and the ? attenuation, linear matrix inequalities conditions are deduced which are solved for feasibility to obtain the observer design matrices. To cope with the effect of unknown inputs, classical approach of decoupling the unknown input for the linear case is used. Both algebraic and solver-based solutions are proposed (relaxed conditions). Necessary and sufficient conditions for the existence of the functional polytopic observer are given. For both approaches, the general and particular cases (measurable premise variables, full state estimation with full and reduced order cases) are considered and it is shown that the proposed conditions correspond to the one presented for standard linear case. To illustrate the proposed theoretical results, detailed numerical simulations are presented for a Quadrotor Aerial Robots Landing and a Waste Water Treatment Plant. Both systems are highly nonlinear and represented in a T-S polytopic form with unmeasurable premise variables and unknown inputs.

  9. Phenomenological model of maize starches expansion by extrusion

    NASA Astrophysics Data System (ADS)

    Kristiawan, M.; Della Valle, G.; Kansou, K.; Ndiaye, A.; Vergnes, B.

    2016-10-01

    During extrusion of starchy products, the molten material is forced through a die so that the sudden abrupt pressure drop causes part of the water to vaporize giving an expanded, cellular structure. The objective of this work was to elaborate a phenomenological model of expansion and couple it with Ludovic® mechanistic model of twin screw extrusion process. From experimental results that cover a wide range of thermomechanical conditions, a concept map of influence relationships between input and output variables was built. It took into account the phenomena of bubbles nucleation, growth, coalescence, shrinkage and setting, in a viscoelastic medium. The input variables were the moisture content MC, melt temperature T, specific mechanical energy SME, shear viscosity η at the die exit, computed by Ludovic®, and the melt storage moduli E'(at T > Tg). The outputs of the model were the macrostructure (volumetric expansion index VEI, anisotropy) and cellular structure (fineness F) of solid foams. Then a general model was established: VEI = α (η/η0)n in which α and n depend on T, MC, SME and E' and the link between anisotropy and fineness was established.

  10. Comparative evaluation of 1D and quasi-2D hydraulic models based on benchmark and real-world applications for uncertainty assessment in flood mapping

    NASA Astrophysics Data System (ADS)

    Dimitriadis, Panayiotis; Tegos, Aristoteles; Oikonomou, Athanasios; Pagana, Vassiliki; Koukouvinos, Antonios; Mamassis, Nikos; Koutsoyiannis, Demetris; Efstratiadis, Andreas

    2016-03-01

    One-dimensional and quasi-two-dimensional hydraulic freeware models (HEC-RAS, LISFLOOD-FP and FLO-2d) are widely used for flood inundation mapping. These models are tested on a benchmark test with a mixed rectangular-triangular channel cross section. Using a Monte-Carlo approach, we employ extended sensitivity analysis by simultaneously varying the input discharge, longitudinal and lateral gradients and roughness coefficients, as well as the grid cell size. Based on statistical analysis of three output variables of interest, i.e. water depths at the inflow and outflow locations and total flood volume, we investigate the uncertainty enclosed in different model configurations and flow conditions, without the influence of errors and other assumptions on topography, channel geometry and boundary conditions. Moreover, we estimate the uncertainty associated to each input variable and we compare it to the overall one. The outcomes of the benchmark analysis are further highlighted by applying the three models to real-world flood propagation problems, in the context of two challenging case studies in Greece.

  11. Quantifying seasonal shifts in nitrogen sources to Oregon estuaries using a transport model combined with stable isotopes

    EPA Science Inventory

    Identifying the sources of dissolved inorganic nitrogen (DIN) in estuaries is complicated by the multiple sources, temporal variability in inputs, and variations in transport. We used a hydrodynamic model to simulate the transport and uptake of three sources of DIN (oceanic, riv...

  12. Ecophysiological parameters for Pacific Northwest trees.

    Treesearch

    Amy E. Hessl; Cristina Milesi; Michael A. White; David L. Peterson; Robert E. Keane

    2004-01-01

    We developed a species- and location-specific database of published ecophysiological variables typically used as input parameters for biogeochemical models of coniferous and deciduous forested ecosystems in the Western United States. Parameters are based on the requirements of Biome-BGC, a widely used biogeochemical model that was originally parameterized for the...

  13. Applying Recursive Sensitivity Analysis to Multi-Criteria Decision Models to Reduce Bias in Defense Cyber Engineering Analysis

    DTIC Science & Technology

    2015-10-28

    techniques such as regression analysis, correlation, and multicollinearity assessment to identify the change and error on the input to the model...between many of the independent or predictor variables, the issue of multicollinearity may arise [18]. VII. SUMMARY Accurate decisions concerning

  14. EVALUATING THE SENSITIVITY OF A SUBSURFACE MULTICOMPONENT REACTIVE TRANSPORT MODEL WITH RESPECT TO TRANSPORT AND REACTION PARAMETERS

    EPA Science Inventory

    The input variables for a numerical model of reactive solute transport in groundwater include both transport parameters, such as hydraulic conductivity and infiltration, and reaction parameters that describe the important chemical and biological processes in the system. These pa...

  15. A priori discretization quality metrics for distributed hydrologic modeling applications

    NASA Astrophysics Data System (ADS)

    Liu, Hongli; Tolson, Bryan; Craig, James; Shafii, Mahyar; Basu, Nandita

    2016-04-01

    In distributed hydrologic modelling, a watershed is treated as a set of small homogeneous units that address the spatial heterogeneity of the watershed being simulated. The ability of models to reproduce observed spatial patterns firstly depends on the spatial discretization, which is the process of defining homogeneous units in the form of grid cells, subwatersheds, or hydrologic response units etc. It is common for hydrologic modelling studies to simply adopt a nominal or default discretization strategy without formally assessing alternative discretization levels. This approach lacks formal justifications and is thus problematic. More formalized discretization strategies are either a priori or a posteriori with respect to building and running a hydrologic simulation model. A posteriori approaches tend to be ad-hoc and compare model calibration and/or validation performance under various watershed discretizations. The construction and calibration of multiple versions of a distributed model can become a seriously limiting computational burden. Current a priori approaches are more formalized and compare overall heterogeneity statistics of dominant variables between candidate discretization schemes and input data or reference zones. While a priori approaches are efficient and do not require running a hydrologic model, they do not fully investigate the internal spatial pattern changes of variables of interest. Furthermore, the existing a priori approaches focus on landscape and soil data and do not assess impacts of discretization on stream channel definition even though its significance has been noted by numerous studies. The primary goals of this study are to (1) introduce new a priori discretization quality metrics considering the spatial pattern changes of model input data; (2) introduce a two-step discretization decision-making approach to compress extreme errors and meet user-specified discretization expectations through non-uniform discretization threshold modification. The metrics for the first time provides quantification of the routing relevant information loss due to discretization according to the relationship between in-channel routing length and flow velocity. Moreover, it identifies and counts the spatial pattern changes of dominant hydrological variables by overlaying candidate discretization schemes upon input data and accumulating variable changes in area-weighted way. The metrics are straightforward and applicable to any semi-distributed or fully distributed hydrological model with grid scales are greater than input data resolutions. The discretization metrics and decision-making approach are applied to the Grand River watershed located in southwestern Ontario, Canada where discretization decisions are required for a semi-distributed modelling application. Results show that discretization induced information loss monotonically increases as discretization gets rougher. With regards to routing information loss in subbasin discretization, multiple interesting points rather than just the watershed outlet should be considered. Moreover, subbasin and HRU discretization decisions should not be considered independently since subbasin input significantly influences the complexity of HRU discretization result. Finally, results show that the common and convenient approach of making uniform discretization decisions across the watershed domain performs worse compared to a metric informed non-uniform discretization approach as the later since is able to conserve more watershed heterogeneity under the same model complexity (number of computational units).

  16. Influence of variable selection on partial least squares discriminant analysis models for explosive residue classification

    NASA Astrophysics Data System (ADS)

    De Lucia, Frank C., Jr.; Gottfried, Jennifer L.

    2011-02-01

    Using a series of thirteen organic materials that includes novel high-nitrogen energetic materials, conventional organic military explosives, and benign organic materials, we have demonstrated the importance of variable selection for maximizing residue discrimination with partial least squares discriminant analysis (PLS-DA). We built several PLS-DA models using different variable sets based on laser induced breakdown spectroscopy (LIBS) spectra of the organic residues on an aluminum substrate under an argon atmosphere. The model classification results for each sample are presented and the influence of the variables on these results is discussed. We found that using the whole spectra as the data input for the PLS-DA model gave the best results. However, variables due to the surrounding atmosphere and the substrate contribute to discrimination when the whole spectra are used, indicating this may not be the most robust model. Further iterative testing with additional validation data sets is necessary to determine the most robust model.

  17. Uncertainty quantification in Rothermel's Model using an efficient sampling method

    Treesearch

    Edwin Jimenez; M. Yousuff Hussaini; Scott L. Goodrick

    2007-01-01

    The purpose of the present work is to quantify parametric uncertainty in Rothermel’s wildland fire spread model (implemented in software such as BehavePlus3 and FARSITE), which is undoubtedly among the most widely used fire spread models in the United States. This model consists of a nonlinear system of equations that relates environmental variables (input parameter...

  18. Uncertainty propagation of p-boxes using sparse polynomial chaos expansions

    NASA Astrophysics Data System (ADS)

    Schöbi, Roland; Sudret, Bruno

    2017-06-01

    In modern engineering, physical processes are modelled and analysed using advanced computer simulations, such as finite element models. Furthermore, concepts of reliability analysis and robust design are becoming popular, hence, making efficient quantification and propagation of uncertainties an important aspect. In this context, a typical workflow includes the characterization of the uncertainty in the input variables. In this paper, input variables are modelled by probability-boxes (p-boxes), accounting for both aleatory and epistemic uncertainty. The propagation of p-boxes leads to p-boxes of the output of the computational model. A two-level meta-modelling approach is proposed using non-intrusive sparse polynomial chaos expansions to surrogate the exact computational model and, hence, to facilitate the uncertainty quantification analysis. The capabilities of the proposed approach are illustrated through applications using a benchmark analytical function and two realistic engineering problem settings. They show that the proposed two-level approach allows for an accurate estimation of the statistics of the response quantity of interest using a small number of evaluations of the exact computational model. This is crucial in cases where the computational costs are dominated by the runs of high-fidelity computational models.

  19. Uncertainty propagation of p-boxes using sparse polynomial chaos expansions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schöbi, Roland, E-mail: schoebi@ibk.baug.ethz.ch; Sudret, Bruno, E-mail: sudret@ibk.baug.ethz.ch

    2017-06-15

    In modern engineering, physical processes are modelled and analysed using advanced computer simulations, such as finite element models. Furthermore, concepts of reliability analysis and robust design are becoming popular, hence, making efficient quantification and propagation of uncertainties an important aspect. In this context, a typical workflow includes the characterization of the uncertainty in the input variables. In this paper, input variables are modelled by probability-boxes (p-boxes), accounting for both aleatory and epistemic uncertainty. The propagation of p-boxes leads to p-boxes of the output of the computational model. A two-level meta-modelling approach is proposed using non-intrusive sparse polynomial chaos expansions tomore » surrogate the exact computational model and, hence, to facilitate the uncertainty quantification analysis. The capabilities of the proposed approach are illustrated through applications using a benchmark analytical function and two realistic engineering problem settings. They show that the proposed two-level approach allows for an accurate estimation of the statistics of the response quantity of interest using a small number of evaluations of the exact computational model. This is crucial in cases where the computational costs are dominated by the runs of high-fidelity computational models.« less

  20. Modeling pCO2 variability in the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Xue, Z.; He, R.; Fennel, K.; Cai, W.-J.; Lohrenz, S.; Huang, W.-J.; Tian, H.

    2014-08-01

    A three-dimensional coupled physical-biogeochemical model was used to simulate and examine temporal and spatial variability of surface pCO2 in the Gulf of Mexico (GoM). The model is driven by realistic atmospheric forcing, open boundary conditions from a data-assimilative global ocean circulation model, and observed freshwater and terrestrial nutrient and carbon input from major rivers. A seven-year model hindcast (2004-2010) was performed and was validated against in situ measurements. The model revealed clear seasonality in surface pCO2. Based on the multi-year mean of the model results, the GoM is an overall CO2 sink with a flux of 1.34 × 1012 mol C yr-1, which, together with the enormous fluvial carbon input, is balanced by the carbon export through the Loop Current. A sensitivity experiment was performed where all biological sources and sinks of carbon were disabled. In this simulation surface pCO2 was elevated by ~ 70 ppm, providing the evidence that biological uptake is a primary driver for the observed CO2 sink. The model also provided insights about factors influencing the spatial distribution of surface pCO2 and sources of uncertainty in the carbon budget.

  1. Modeling pCO2 Variability in the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Xue, Z. G.; He, R.; Fennel, K.; Cai, W. J.; Lohrenz, S. E.; Huang, W. J.; Tian, H.

    2014-12-01

    A three-dimensional coupled physical-biogeochemical model was used to simulate and examine temporal and spatial variability of surface pCO2 in the Gulf of Mexico (GoM). The model is driven by realistic atmospheric forcing, open boundary conditions from a data-assimilative global ocean circulation model, and observed freshwater and terrestrial nutrient and carbon input from major rivers. A seven-year model hindcast (2004-2010) was performed and was validated against in situ measurements. The model revealed clear seasonality in surface pCO2. Based on the multi-year mean of the model results, the GoM is an overall CO2 sink with a flux of 1.34 × 1012 mol C yr-1, which, together with the enormous fluvial carbon input, is balanced by the carbon export through the Loop Current. A sensitivity experiment was performed where all biological sources and sinks of carbon were disabled. In this simulation surface pCO2 was elevated by ~70 ppm, providing the evidence that biological uptake is a primary driver for the observed CO2 sink. The model also provided insights about factors influencing the spatial distribution of surface pCO2 and sources of uncertainty in the carbon budget.

  2. Neural network simulation of soil NO3 dynamic under potato crop system

    NASA Astrophysics Data System (ADS)

    Goulet-Fortin, Jérôme; Morais, Anne; Anctil, François; Parent, Léon-Étienne; Bolinder, Martin

    2013-04-01

    Nitrate leaching is a major issue in sandy soils intensively cropped to potato. Modelling could test and improve management practices, particularly as regard to the optimal N application rates. Lack of input data is an important barrier for the application of classical process-based models to predict soil NO3 content (SNOC) and NO3 leaching (NOL). Alternatively, data driven models such as neural networks (NN) could better take into account indicators of spatial soil heterogeneity and plant growth pattern such as the leaf area index (LAI), hence reducing the amount of soil information required. The first objective of this study was to evaluate NN and hybrid models to simulate SNOC in the 0-40 cm soil layer considering inter-annual variations, spatial soil heterogeneity and differential N application rates. The second objective was to evaluate the same methodology to simulate seasonal NOL dynamic at 1 m deep. To this aim, multilayer perceptrons with different combinations of driving meteorological variables, functions of the LAI and state variables of external deterministic models have been trained and evaluated. The state variables from external models were: drainage estimated by the CLASS model and the soil temperature estimated by an ICBM subroutine. Results of SNOC simulations were compared to field data collected between 2004 and 2011 at several experimental plots under potato cropping systems in Québec, Eastern Canada. Results of NOL simulation were compared to data obtained in 2012 from 11 suction lysimeters installed in 2 experimental plots under potato cropping systems in the same region. The most performing model for SNOC simulation was obtained using a 4-input hybrid model composed of 1) cumulative LAI, 2) cumulative drainage, 3) soil temperature and 4) day of year. The most performing model for NOL simulation was obtained using a 5-input NN model composed of 1) N fertilization rate at spring, 2) LAI, 3) cumulative rainfall, 4) the day of year and 5) the percentage of clay content. The MAE was 22% for SNOC simulation and 23% for NOL simulation. High sensitivity to LAI suggests that the model may take into account field and sub-field spatial variability and support N management. Further studies are needed to fully validate the method, particularly in the case of NOL simulation.

  3. A study of commuter airline economics

    NASA Technical Reports Server (NTRS)

    Summerfield, J. R.

    1976-01-01

    Variables are defined and cost relationships developed that describe the direct and indirect operating costs of commuter airlines. The study focused on costs for new aircraft and new aircraft technology when applied to the commuter airline industry. With proper judgement and selection of input variables, the operating costs model was shown to be capable of providing economic insight into other commuter airline system evaluations.

  4. Using Propensity Score Matching to Model Retention of Developmental Math Students in Community Colleges in North Carolina

    ERIC Educational Resources Information Center

    Frye, Bobbie Jean

    2014-01-01

    Traditionally, modeling student retention has been done by deriving student success predictors and measuring the likelihood of success based on several background factors such as age, race, gender, and other pre-college variables, also known as the input-output model. Increasingly, however, researchers have used mediating factors of the student…

  5. Declining Enrollment: Why? What Are the Trends and Implications?; and Enrollment Forecasting Techniques.

    ERIC Educational Resources Information Center

    Finch, Harold L.; Tatham, Elaine L.

    This document presents a modified cohort survival model which can be of use in making enrollment projections. The model begins by analytically profiling an area's residents. Each person's demographic characteristics--sex, age, place of residence--are recorded in the computer memory. Four major input variables are then incorporated into the model:…

  6. Investigation of traveler acceptance factors in short haul air carrier operations

    NASA Technical Reports Server (NTRS)

    Kuhlthau, A. R.; Jacobson, I. D.

    1972-01-01

    The development of a mathematical model for human reaction to variables involved in transportation systems is discussed. The techniques, activities, and results related to defining certain specific inputs to the model are presented. A general schematic diagram of the problem solution is developed. The application of the model to short haul air carrier operations is examined.

  7. Searching for the right scale in catchment hydrology: the effect of soil spatial variability in simulated states and fluxes

    NASA Astrophysics Data System (ADS)

    Baroni, Gabriele; Zink, Matthias; Kumar, Rohini; Samaniego, Luis; Attinger, Sabine

    2017-04-01

    The advances in computer science and the availability of new detailed data-sets have led to a growing number of distributed hydrological models applied to finer and finer grid resolutions for larger and larger catchment areas. It was argued, however, that this trend does not necessarily guarantee better understanding of the hydrological processes or it is even not necessary for specific modelling applications. In the present study, this topic is further discussed in relation to the soil spatial heterogeneity and its effect on simulated hydrological state and fluxes. To this end, three methods are developed and used for the characterization of the soil heterogeneity at different spatial scales. The methods are applied at the soil map of the upper Neckar catchment (Germany), as example. The different soil realizations are assessed regarding their impact on simulated state and fluxes using the distributed hydrological model mHM. The results are analysed by aggregating the model outputs at different spatial scales based on the Representative Elementary Scale concept (RES) proposed by Refsgaard et al. (2016). The analysis is further extended in the present study by aggregating the model output also at different temporal scales. The results show that small scale soil variabilities are not relevant when the integrated hydrological responses are considered e.g., simulated streamflow or average soil moisture over sub-catchments. On the contrary, these small scale soil variabilities strongly affect locally simulated states and fluxes i.e., soil moisture and evapotranspiration simulated at the grid resolution. A clear trade-off is also detected by aggregating the model output by spatial and temporal scales. Despite the scale at which the soil variabilities are (or are not) relevant is not universal, the RES concept provides a simple and effective framework to quantify the predictive capability of distributed models and to identify the need for further model improvements e.g., finer resolution input. For this reason, the integration in this analysis of all the relevant input factors (e.g., precipitation, vegetation, geology) could provide a strong support for the definition of the right scale for each specific model application. In this context, however, the main challenge for a proper model assessment will be the correct characterization of the spatio- temporal variability of each input factor. Refsgaard, J.C., Højberg, A.L., He, X., Hansen, A.L., Rasmussen, S.H., Stisen, S., 2016. Where are the limits of model predictive capabilities?: Representative Elementary Scale - RES. Hydrol. Process. doi:10.1002/hyp.11029

  8. Verification of models for ballistic movement time and endpoint variability.

    PubMed

    Lin, Ray F; Drury, Colin G

    2013-01-01

    A hand control movement is composed of several ballistic movements. The time required in performing a ballistic movement and its endpoint variability are two important properties in developing movement models. The purpose of this study was to test potential models for predicting these two properties. Twelve participants conducted ballistic movements of specific amplitudes using a drawing tablet. The measured data of movement time and endpoint variability were then used to verify the models. This study was successful with Hoffmann and Gan's movement time model (Hoffmann, 1981; Gan and Hoffmann 1988) predicting more than 90.7% data variance for 84 individual measurements. A new theoretically developed ballistic movement variability model, proved to be better than Howarth, Beggs, and Bowden's (1971) model, predicting on average 84.8% of stopping-variable error and 88.3% of aiming-variable errors. These two validated models will help build solid theoretical movement models and evaluate input devices. This article provides better models for predicting end accuracy and movement time of ballistic movements that are desirable in rapid aiming tasks, such as keying in numbers on a smart phone. The models allow better design of aiming tasks, for example button sizes on mobile phones for different user populations.

  9. Decision tree modeling using R.

    PubMed

    Zhang, Zhongheng

    2016-08-01

    In machine learning field, decision tree learner is powerful and easy to interpret. It employs recursive binary partitioning algorithm that splits the sample in partitioning variable with the strongest association with the response variable. The process continues until some stopping criteria are met. In the example I focus on conditional inference tree, which incorporates tree-structured regression models into conditional inference procedures. While growing a single tree is subject to small changes in the training data, random forests procedure is introduced to address this problem. The sources of diversity for random forests come from the random sampling and restricted set of input variables to be selected. Finally, I introduce R functions to perform model based recursive partitioning. This method incorporates recursive partitioning into conventional parametric model building.

  10. Climate science and famine early warning

    USGS Publications Warehouse

    Verdin, James P.; Funk, Chris; Senay, Gabriel B.; Choularton, R.

    2005-01-01

    Food security assessment in sub-Saharan Africa requires simultaneous consideration of multiple socio-economic and environmental variables. Early identification of populations at risk enables timely and appropriate action. Since large and widely dispersed populations depend on rainfed agriculture and pastoralism, climate monitoring and forecasting are important inputs to food security analysis. Satellite rainfall estimates (RFE) fill in gaps in station observations, and serve as input to drought index maps and crop water balance models. Gridded rainfall time-series give historical context, and provide a basis for quantitative interpretation of seasonal precipitation forecasts. RFE are also used to characterize flood hazards, in both simple indices and stream flow models. In the future, many African countries are likely to see negative impacts on subsistence agriculture due to the effects of global warming. Increased climate variability is forecast, with more frequent extreme events. Ethiopia requires special attention. Already facing a food security emergency, troubling persistent dryness has been observed in some areas, associated with a positive trend in Indian Ocean sea surface temperatures. Increased African capacity for rainfall observation, forecasting, data management and modelling applications is urgently needed. Managing climate change and increased climate variability require these fundamental technical capacities if creative coping strategies are to be devised.

  11. Climate science and famine early warning.

    PubMed

    Verdin, James; Funk, Chris; Senay, Gabriel; Choularton, Richard

    2005-11-29

    Food security assessment in sub-Saharan Africa requires simultaneous consideration of multiple socio-economic and environmental variables. Early identification of populations at risk enables timely and appropriate action. Since large and widely dispersed populations depend on rainfed agriculture and pastoralism, climate monitoring and forecasting are important inputs to food security analysis. Satellite rainfall estimates (RFE) fill in gaps in station observations, and serve as input to drought index maps and crop water balance models. Gridded rainfall time-series give historical context, and provide a basis for quantitative interpretation of seasonal precipitation forecasts. RFE are also used to characterize flood hazards, in both simple indices and stream flow models. In the future, many African countries are likely to see negative impacts on subsistence agriculture due to the effects of global warming. Increased climate variability is forecast, with more frequent extreme events. Ethiopia requires special attention. Already facing a food security emergency, troubling persistent dryness has been observed in some areas, associated with a positive trend in Indian Ocean sea surface temperatures. Increased African capacity for rainfall observation, forecasting, data management and modelling applications is urgently needed. Managing climate change and increased climate variability require these fundamental technical capacities if creative coping strategies are to be devised.

  12. Climate science and famine early warning

    PubMed Central

    Verdin, James; Funk, Chris; Senay, Gabriel; Choularton, Richard

    2005-01-01

    Food security assessment in sub-Saharan Africa requires simultaneous consideration of multiple socio-economic and environmental variables. Early identification of populations at risk enables timely and appropriate action. Since large and widely dispersed populations depend on rainfed agriculture and pastoralism, climate monitoring and forecasting are important inputs to food security analysis. Satellite rainfall estimates (RFE) fill in gaps in station observations, and serve as input to drought index maps and crop water balance models. Gridded rainfall time-series give historical context, and provide a basis for quantitative interpretation of seasonal precipitation forecasts. RFE are also used to characterize flood hazards, in both simple indices and stream flow models. In the future, many African countries are likely to see negative impacts on subsistence agriculture due to the effects of global warming. Increased climate variability is forecast, with more frequent extreme events. Ethiopia requires special attention. Already facing a food security emergency, troubling persistent dryness has been observed in some areas, associated with a positive trend in Indian Ocean sea surface temperatures. Increased African capacity for rainfall observation, forecasting, data management and modelling applications is urgently needed. Managing climate change and increased climate variability require these fundamental technical capacities if creative coping strategies are to be devised. PMID:16433101

  13. Team performance in the Italian NHS: the role of reflexivity.

    PubMed

    Urbini, Flavio; Callea, Antonino; Chirumbolo, Antonio; Talamo, Alessandra; Ingusci, Emanuela; Ciavolino, Enrico

    2018-04-09

    Purpose The purpose of this paper is twofold: first, to investigate the goodness of the input-process-output (IPO) model in order to evaluate work team performance within the Italian National Health Care System (NHS); and second, to test the mediating role of reflexivity as an overarching process factor between input and output. Design/methodology/approach The Italian version of the Aston Team Performance Inventory was administered to 351 employees working in teams in the Italian NHS. Mediation analyses with latent variables were performed via structural equation modeling (SEM); the significance of total, direct, and indirect effect was tested via bootstrapping. Findings Underpinned by the IPO framework, the results of SEM supported mediational hypotheses. First, the application of the IPO model in the Italian NHS showed adequate fit indices, showing that the process mediates the relationship between input and output factors. Second, reflexivity mediated the relationship between input and output, influencing some aspects of team performance. Practical implications The results provide useful information for HRM policies improving process dimensions of the IPO model via the mediating role of reflexivity as a key role in team performance. Originality/value This study is one of a limited number of studies that applied the IPO model in the Italian NHS. Moreover, no study has yet examined the role of reflexivity as a mediator between input and output factors in the IPO model.

  14. Investigation of an HMM/ANN hybrid structure in pattern recognition application using cepstral analysis of dysarthric (distorted) speech signals.

    PubMed

    Polur, Prasad D; Miller, Gerald E

    2006-10-01

    Computer speech recognition of individuals with dysarthria, such as cerebral palsy patients requires a robust technique that can handle conditions of very high variability and limited training data. In this study, application of a 10 state ergodic hidden Markov model (HMM)/artificial neural network (ANN) hybrid structure for a dysarthric speech (isolated word) recognition system, intended to act as an assistive tool, was investigated. A small size vocabulary spoken by three cerebral palsy subjects was chosen. The effect of such a structure on the recognition rate of the system was investigated by comparing it with an ergodic hidden Markov model as a control tool. This was done in order to determine if this modified technique contributed to enhanced recognition of dysarthric speech. The speech was sampled at 11 kHz. Mel frequency cepstral coefficients were extracted from them using 15 ms frames and served as training input to the hybrid model setup. The subsequent results demonstrated that the hybrid model structure was quite robust in its ability to handle the large variability and non-conformity of dysarthric speech. The level of variability in input dysarthric speech patterns sometimes limits the reliability of the system. However, its application as a rehabilitation/control tool to assist dysarthric motor impaired individuals holds sufficient promise.

  15. Data-Driven Haptic Modeling and Rendering of Viscoelastic and Frictional Responses of Deformable Objects.

    PubMed

    Yim, Sunghoon; Jeon, Seokhee; Choi, Seungmoon

    2016-01-01

    In this paper, we present an extended data-driven haptic rendering method capable of reproducing force responses during pushing and sliding interaction on a large surface area. The main part of the approach is a novel input variable set for the training of an interpolation model, which incorporates the position of a proxy - an imaginary contact point on the undeformed surface. This allows us to estimate friction in both sliding and sticking states in a unified framework. Estimating the proxy position is done in real-time based on simulation using a sliding yield surface - a surface defining a border between the sliding and sticking regions in the external force space. During modeling, the sliding yield surface is first identified via an automated palpation procedure. Then, through manual palpation on a target surface, input data and resultant force data are acquired. The data are used to build a radial basis interpolation model. During rendering, this input-output mapping interpolation model is used to estimate force responses in real-time in accordance with the interaction input. Physical performance evaluation demonstrates that our approach achieves reasonably high estimation accuracy. A user study also shows plausible perceptual realism under diverse and extensive exploration.

  16. Self-Learning Variable Structure Control for a Class of Sensor-Actuator Systems

    PubMed Central

    Chen, Sanfeng; Li, Shuai; Liu, Bo; Lou, Yuesheng; Liang, Yongsheng

    2012-01-01

    Variable structure strategy is widely used for the control of sensor-actuator systems modeled by Euler-Lagrange equations. However, accurate knowledge on the model structure and model parameters are often required for the control design. In this paper, we consider model-free variable structure control of a class of sensor-actuator systems, where only the online input and output of the system are available while the mathematic model of the system is unknown. The problem is formulated from an optimal control perspective and the implicit form of the control law are analytically obtained by using the principle of optimality. The control law and the optimal cost function are explicitly solved iteratively. Simulations demonstrate the effectiveness and the efficiency of the proposed method. PMID:22778633

  17. The reservoir model: a differential equation model of psychological regulation.

    PubMed

    Deboeck, Pascal R; Bergeman, C S

    2013-06-01

    Differential equation models can be used to describe the relationships between the current state of a system of constructs (e.g., stress) and how those constructs are changing (e.g., based on variable-like experiences). The following article describes a differential equation model based on the concept of a reservoir. With a physical reservoir, such as one for water, the level of the liquid in the reservoir at any time depends on the contributions to the reservoir (inputs) and the amount of liquid removed from the reservoir (outputs). This reservoir model might be useful for constructs such as stress, where events might "add up" over time (e.g., life stressors, inputs), but individuals simultaneously take action to "blow off steam" (e.g., engage coping resources, outputs). The reservoir model can provide descriptive statistics of the inputs that contribute to the "height" (level) of a construct and a parameter that describes a person's ability to dissipate the construct. After discussing the model, we describe a method of fitting the model as a structural equation model using latent differential equation modeling and latent distribution modeling. A simulation study is presented to examine recovery of the input distribution and output parameter. The model is then applied to the daily self-reports of negative affect and stress from a sample of older adults from the Notre Dame Longitudinal Study on Aging. (PsycINFO Database Record (c) 2013 APA, all rights reserved).

  18. The Reservoir Model: A Differential Equation Model of Psychological Regulation

    PubMed Central

    Deboeck, Pascal R.; Bergeman, C. S.

    2017-01-01

    Differential equation models can be used to describe the relationships between the current state of a system of constructs (e.g., stress) and how those constructs are changing (e.g., based on variable-like experiences). The following article describes a differential equation model based on the concept of a reservoir. With a physical reservoir, such as one for water, the level of the liquid in the reservoir at any time depends on the contributions to the reservoir (inputs) and the amount of liquid removed from the reservoir (outputs). This reservoir model might be useful for constructs such as stress, where events might “add up” over time (e.g., life stressors, inputs), but individuals simultaneously take action to “blow off steam” (e.g., engage coping resources, outputs). The reservoir model can provide descriptive statistics of the inputs that contribute to the “height” (level) of a construct and a parameter that describes a person's ability to dissipate the construct. After discussing the model, we describe a method of fitting the model as a structural equation model using latent differential equation modeling and latent distribution modeling. A simulation study is presented to examine recovery of the input distribution and output parameter. The model is then applied to the daily self-reports of negative affect and stress from a sample of older adults from the Notre Dame Longitudinal Study on Aging. PMID:23527605

  19. A first-principle model of 300 mm Czochralski single-crystal Si production process for predicting crystal radius and crystal growth rate

    NASA Astrophysics Data System (ADS)

    Zheng, Zhongchao; Seto, Tatsuru; Kim, Sanghong; Kano, Manabu; Fujiwara, Toshiyuki; Mizuta, Masahiko; Hasebe, Shinji

    2018-06-01

    The Czochralski (CZ) process is the dominant method for manufacturing large cylindrical single-crystal ingots for the electronics industry. Although many models and control methods for the CZ process have been proposed, they were only tested with small equipment and only a few industrial application were reported. In this research, we constructed a first-principle model for controlling industrial CZ processes that produce 300 mm single-crystal silicon ingots. The developed model, which consists of energy, mass balance, hydrodynamic, and geometrical equations, calculates the crystal radius and the crystal growth rate as output variables by using the heater input, the crystal pulling rate, and the crucible rise rate as input variables. To improve accuracy, we modeled the CZ process by considering factors such as changes in the positions of the crucible and the melt level. The model was validated with the operation data from an industrial 300 mm CZ process. We compared the calculated and actual values of the crystal radius and the crystal growth rate, and the results demonstrated that the developed model simulated the industrial process with high accuracy.

  20. Agriculture and Climate Change in Global Scenarios: Why Don't the Models Agree

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, Gerald; van der Mensbrugghe, Dominique; Ahammad, Helal

    Agriculture is unique among economic sectors in the nature of impacts from climate change. The production activity that transforms inputs into agricultural outputs makes direct use of weather inputs. Previous studies of the impacts of climate change on agriculture have reported substantial differences in outcomes of key variables such as prices, production, and trade. These divergent outcomes arise from differences in model inputs and model specification. The goal of this paper is to review climate change results and underlying determinants from a model comparison exercise with 10 of the leading global economic models that include significant representation of agriculture. Bymore » providing common productivity drivers that include climate change effects, differences in model outcomes are reduced. All models show higher prices in 2050 because of negative productivity shocks from climate change. The magnitude of the price increases, and the adaptation responses, differ significantly across the various models. Substantial differences exist in the structural parameters affecting demand, area, and yield, and should be a topic for future research.« less

  1. BOREAS RSS-8 BIOME-BGC Model Simulations at Tower Flux Sites in 1994

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Nickeson, Jaime (Editor); Kimball, John

    2000-01-01

    BIOME-BGC is a general ecosystem process model designed to simulate biogeochemical and hydrologic processes across multiple scales (Running and Hunt, 1993). In this investigation, BIOME-BGC was used to estimate daily water and carbon budgets for the BOREAS tower flux sites for 1994. Carbon variables estimated by the model include gross primary production (i.e., net photosynthesis), maintenance and heterotrophic respiration, net primary production, and net ecosystem carbon exchange. Hydrologic variables estimated by the model include snowcover, evaporation, transpiration, evapotranspiration, soil moisture, and outflow. The information provided by the investigation includes input initialization and model output files for various sites in tabular ASCII format.

  2. Model parameter uncertainty analysis for an annual field-scale P loss model

    NASA Astrophysics Data System (ADS)

    Bolster, Carl H.; Vadas, Peter A.; Boykin, Debbie

    2016-08-01

    Phosphorous (P) fate and transport models are important tools for developing and evaluating conservation practices aimed at reducing P losses from agricultural fields. Because all models are simplifications of complex systems, there will exist an inherent amount of uncertainty associated with their predictions. It is therefore important that efforts be directed at identifying, quantifying, and communicating the different sources of model uncertainties. In this study, we conducted an uncertainty analysis with the Annual P Loss Estimator (APLE) model. Our analysis included calculating parameter uncertainties and confidence and prediction intervals for five internal regression equations in APLE. We also estimated uncertainties of the model input variables based on values reported in the literature. We then predicted P loss for a suite of fields under different management and climatic conditions while accounting for uncertainties in the model parameters and inputs and compared the relative contributions of these two sources of uncertainty to the overall uncertainty associated with predictions of P loss. Both the overall magnitude of the prediction uncertainties and the relative contributions of the two sources of uncertainty varied depending on management practices and field characteristics. This was due to differences in the number of model input variables and the uncertainties in the regression equations associated with each P loss pathway. Inspection of the uncertainties in the five regression equations brought attention to a previously unrecognized limitation with the equation used to partition surface-applied fertilizer P between leaching and runoff losses. As a result, an alternate equation was identified that provided similar predictions with much less uncertainty. Our results demonstrate how a thorough uncertainty and model residual analysis can be used to identify limitations with a model. Such insight can then be used to guide future data collection and model development and evaluation efforts.

  3. Nonlinear model predictive control for chemical looping process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joshi, Abhinaya; Lei, Hao; Lou, Xinsheng

    A control system for optimizing a chemical looping ("CL") plant includes a reduced order mathematical model ("ROM") that is designed by eliminating mathematical terms that have minimal effect on the outcome. A non-linear optimizer provides various inputs to the ROM and monitors the outputs to determine the optimum inputs that are then provided to the CL plant. An estimator estimates the values of various internal state variables of the CL plant. The system has one structure adapted to control a CL plant that only provides pressure measurements in the CL loops A and B, a second structure adapted to amore » CL plant that provides pressure measurements and solid levels in both loops A, and B, and a third structure adapted to control a CL plant that provides full information on internal state variables. A final structure provides a neural network NMPC controller to control operation of loops A and B.« less

  4. Tracheo-bronchial soft tissue and cartilage resonances in the subglottal acoustic input impedance.

    PubMed

    Lulich, Steven M; Arsikere, Harish

    2015-06-01

    This paper offers a re-evaluation of the mechanical properties of the tracheo-bronchial soft tissues and cartilage and uses a model to examine their effects on the subglottal acoustic input impedance. It is shown that the values for soft tissue elastance and cartilage viscosity typically used in models of subglottal acoustics during phonation are not accurate, and corrected values are proposed. The calculated subglottal acoustic input impedance using these corrected values reveals clusters of weak resonances due to soft tissues (SgT) and cartilage (SgC) lining the walls of the trachea and large bronchi, which can be observed empirically in subglottal acoustic spectra. The model predicts that individuals may exhibit SgT and SgC resonances to variable degrees, depending on a number of factors including tissue mechanical properties and the dimensions of the trachea and large bronchi. Potential implications for voice production and large pulmonary airway tissue diseases are also discussed.

  5. Solar array model corrections from Mars Pathfinder lander data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ewell, R.C.; Burger, D.R.

    1997-12-31

    The MESUR solar array power model initially assumed values for input variables. After landing early surface variables such as array tilt and azimuth or early environmental variables such as array temperature can be corrected. Correction of later environmental variables such as tau versus time, spectral shift, dust deposition, and UV darkening is dependent upon time, on-board science instruments, and ability to separate effects of variables. Engineering estimates had to be made for additional shadow losses and Voc sensor temperature corrections. Some variations had not been expected such as tau versus time of day, and spectral shift versus time of day.more » Additions needed to the model are thermal mass of lander petal and correction between Voc sensor and temperature sensor. Conclusions are: the model works well; good battery predictions are difficult; inclusion of Isc and Voc sensors was valuable; and the IMP and MAE science experiments greatly assisted the data analysis and model correction.« less

  6. Uncertainty analysis of geothermal energy economics

    NASA Astrophysics Data System (ADS)

    Sener, Adil Caner

    This dissertation research endeavors to explore geothermal energy economics by assessing and quantifying the uncertainties associated with the nature of geothermal energy and energy investments overall. The study introduces a stochastic geothermal cost model and a valuation approach for different geothermal power plant development scenarios. The Monte Carlo simulation technique is employed to obtain probability distributions of geothermal energy development costs and project net present values. In the study a stochastic cost model with incorporated dependence structure is defined and compared with the model where random variables are modeled as independent inputs. One of the goals of the study is to attempt to shed light on the long-standing modeling problem of dependence modeling between random input variables. The dependence between random input variables will be modeled by employing the method of copulas. The study focuses on four main types of geothermal power generation technologies and introduces a stochastic levelized cost model for each technology. Moreover, we also compare the levelized costs of natural gas combined cycle and coal-fired power plants with geothermal power plants. The input data used in the model relies on the cost data recently reported by government agencies and non-profit organizations, such as the Department of Energy, National Laboratories, California Energy Commission and Geothermal Energy Association. The second part of the study introduces the stochastic discounted cash flow valuation model for the geothermal technologies analyzed in the first phase. In this phase of the study, the Integrated Planning Model (IPM) software was used to forecast the revenue streams of geothermal assets under different price and regulation scenarios. These results are then combined to create a stochastic revenue forecast of the power plants. The uncertainties in gas prices and environmental regulations will be modeled and their potential impacts will be captured in the valuation model. Finally, the study will compare the probability distributions of development cost and project value and discusses the market penetration potential of the geothermal power generation. There is a recent world wide interest in geothermal utilization projects. There are several reasons for the recent popularity of geothermal energy, including the increasing volatility of fossil fuel prices, need for domestic energy sources, approaching carbon emission limitations and state renewable energy standards, increasing need for baseload units, and new technology to make geothermal energy more attractive for power generation. It is our hope that this study will contribute to the recent progress of geothermal energy by shedding light on the uncertainty of geothermal energy project costs.

  7. Deep Recurrent Neural Networks for Human Activity Recognition

    PubMed Central

    Murad, Abdulmajid

    2017-01-01

    Adopting deep learning methods for human activity recognition has been effective in extracting discriminative features from raw input sequences acquired from body-worn sensors. Although human movements are encoded in a sequence of successive samples in time, typical machine learning methods perform recognition tasks without exploiting the temporal correlations between input data samples. Convolutional neural networks (CNNs) address this issue by using convolutions across a one-dimensional temporal sequence to capture dependencies among input data. However, the size of convolutional kernels restricts the captured range of dependencies between data samples. As a result, typical models are unadaptable to a wide range of activity-recognition configurations and require fixed-length input windows. In this paper, we propose the use of deep recurrent neural networks (DRNNs) for building recognition models that are capable of capturing long-range dependencies in variable-length input sequences. We present unidirectional, bidirectional, and cascaded architectures based on long short-term memory (LSTM) DRNNs and evaluate their effectiveness on miscellaneous benchmark datasets. Experimental results show that our proposed models outperform methods employing conventional machine learning, such as support vector machine (SVM) and k-nearest neighbors (KNN). Additionally, the proposed models yield better performance than other deep learning techniques, such as deep believe networks (DBNs) and CNNs. PMID:29113103

  8. Deep Recurrent Neural Networks for Human Activity Recognition.

    PubMed

    Murad, Abdulmajid; Pyun, Jae-Young

    2017-11-06

    Adopting deep learning methods for human activity recognition has been effective in extracting discriminative features from raw input sequences acquired from body-worn sensors. Although human movements are encoded in a sequence of successive samples in time, typical machine learning methods perform recognition tasks without exploiting the temporal correlations between input data samples. Convolutional neural networks (CNNs) address this issue by using convolutions across a one-dimensional temporal sequence to capture dependencies among input data. However, the size of convolutional kernels restricts the captured range of dependencies between data samples. As a result, typical models are unadaptable to a wide range of activity-recognition configurations and require fixed-length input windows. In this paper, we propose the use of deep recurrent neural networks (DRNNs) for building recognition models that are capable of capturing long-range dependencies in variable-length input sequences. We present unidirectional, bidirectional, and cascaded architectures based on long short-term memory (LSTM) DRNNs and evaluate their effectiveness on miscellaneous benchmark datasets. Experimental results show that our proposed models outperform methods employing conventional machine learning, such as support vector machine (SVM) and k-nearest neighbors (KNN). Additionally, the proposed models yield better performance than other deep learning techniques, such as deep believe networks (DBNs) and CNNs.

  9. Predictions of Energy Savings in HVAC Systems by Lumped Models (Preprint)

    DTIC Science & Technology

    2010-04-14

    various control devices into a simulated HVAC system. Con- trols contain a setpoint of 26.7oC. The adjustable damper, variable chiller work input, and variable fanspeed contain values of αP of -1.0, 0.1, and 1.0, respectively. 25 ...Villanova, PA 19085 bCode 985, Naval System Warfare Center, Carderock Division, Philadelphia, PA 19112 Abstract An approach to optimizing the energy...suggest an order of mag- nitude greater energy savings using a variable chiller power control approach compared to control damper and variable-drive

  10. High dimensional model representation method for fuzzy structural dynamics

    NASA Astrophysics Data System (ADS)

    Adhikari, S.; Chowdhury, R.; Friswell, M. I.

    2011-03-01

    Uncertainty propagation in multi-parameter complex structures possess significant computational challenges. This paper investigates the possibility of using the High Dimensional Model Representation (HDMR) approach when uncertain system parameters are modeled using fuzzy variables. In particular, the application of HDMR is proposed for fuzzy finite element analysis of linear dynamical systems. The HDMR expansion is an efficient formulation for high-dimensional mapping in complex systems if the higher order variable correlations are weak, thereby permitting the input-output relationship behavior to be captured by the terms of low-order. The computational effort to determine the expansion functions using the α-cut method scales polynomically with the number of variables rather than exponentially. This logic is based on the fundamental assumption underlying the HDMR representation that only low-order correlations among the input variables are likely to have significant impacts upon the outputs for most high-dimensional complex systems. The proposed method is first illustrated for multi-parameter nonlinear mathematical test functions with fuzzy variables. The method is then integrated with a commercial finite element software (ADINA). Modal analysis of a simplified aircraft wing with fuzzy parameters has been used to illustrate the generality of the proposed approach. In the numerical examples, triangular membership functions have been used and the results have been validated against direct Monte Carlo simulations. It is shown that using the proposed HDMR approach, the number of finite element function calls can be reduced without significantly compromising the accuracy.

  11. A geomorphology-based ANFIS model for multi-station modeling of rainfall-runoff process

    NASA Astrophysics Data System (ADS)

    Nourani, Vahid; Komasi, Mehdi

    2013-05-01

    This paper demonstrates the potential use of Artificial Intelligence (AI) techniques for predicting daily runoff at multiple gauging stations. Uncertainty and complexity of the rainfall-runoff process due to its variability in space and time in one hand and lack of historical data on the other hand, cause difficulties in the spatiotemporal modeling of the process. In this paper, an Integrated Geomorphological Adaptive Neuro-Fuzzy Inference System (IGANFIS) model conjugated with C-means clustering algorithm was used for rainfall-runoff modeling at multiple stations of the Eel River watershed, California. The proposed model could be used for predicting runoff in the stations with lack of data or any sub-basin within the watershed because of employing the spatial and temporal variables of the sub-basins as the model inputs. This ability of the integrated model for spatiotemporal modeling of the process was examined through the cross validation technique for a station. In this way, different ANFIS structures were trained using Sugeno algorithm in order to estimate daily discharge values at different stations. In order to improve the model efficiency, the input data were then classified into some clusters by the means of fuzzy C-means (FCMs) method. The goodness-of-fit measures support the gainful use of the IGANFIS and FCM methods in spatiotemporal modeling of hydrological processes.

  12. Documentation of a dissolved-solids model of the Tongue River, southeastern Montana

    USGS Publications Warehouse

    Woods, Paul F.

    1981-01-01

    A model has been developed for assessing potential increases in dissolved solids of the Tongue River as a result of leaching of overburden materials used to backfill pits in surface coal-mining operations. The model allows spatial and temporal simulation of streamflow and dissolved-solids loads and concentrations under user-defined scenarios of surface coal mining and agricultural development. The model routes an input quantity of streamflow and dissolved solids from the upstream end to the downstream end of a stream reach while algebraically accounting for gains and losses of streamflow and dissolved solids within the stream reach. Input data needed to operate the model include the following: simulation number, designation of hydrologic conditions for each simulated month, either user-defined or regression-defined concentrations of dissolved solids input by the Tongue River Reservoir, number of irrigated acres, number of mined acres, dissolved-solids concentration of mine leachates and quantity of other water losses. A listing of the Fortran computer program, definitions of all variables in the model, and an example output permit use of the model by interested persons. (USGS)

  13. Predicting fire spread in Arizona's oak chaparral

    Treesearch

    A. W. Lindenmuth; James R. Davis

    1973-01-01

    Five existing fire models, both experimental and theoretical, did not adequately predict rate-of-spread (ROS) when tested on single- and multiclump fires in oak chaparral in Arizona. A statistical model developed using essentially the same input variables but weighted differently accounted for 81 percent ofthe variation in ROS. A chemical coefficient that accounts for...

  14. SEASONAL NH3 EMISSION ESTIMATES FOR THE EASTERN UNITED STATES BASED ON AMMONIUM WET CONCENTRATIONS AND AN INVERSE MODELING METHOD

    EPA Science Inventory

    Significant uncertainty exists in the magnitude and variability of ammonia (NH3) emissions. NH3 emissions are needed as input for air quality modeling of aerosols and deposition of nitrogen compounds. Approximately 85% of NH3 emissions are estimated to come from agricultural ...

  15. Glutamatergic model psychoses: prediction error, learning, and inference.

    PubMed

    Corlett, Philip R; Honey, Garry D; Krystal, John H; Fletcher, Paul C

    2011-01-01

    Modulating glutamatergic neurotransmission induces alterations in conscious experience that mimic the symptoms of early psychotic illness. We review studies that use intravenous administration of ketamine, focusing on interindividual variability in the profundity of the ketamine experience. We will consider this individual variability within a hypothetical model of brain and cognitive function centered upon learning and inference. Within this model, the brains, neural systems, and even single neurons specify expectations about their inputs and responding to violations of those expectations with new learning that renders future inputs more predictable. We argue that ketamine temporarily deranges this ability by perturbing both the ways in which prior expectations are specified and the ways in which expectancy violations are signaled. We suggest that the former effect is predominantly mediated by NMDA blockade and the latter by augmented and inappropriate feedforward glutamatergic signaling. We suggest that the observed interindividual variability emerges from individual differences in neural circuits that normally underpin the learning and inference processes described. The exact source for that variability is uncertain, although it is likely to arise not only from genetic variation but also from subjects' previous experiences and prior learning. Furthermore, we argue that chronic, unlike acute, NMDA blockade alters the specification of expectancies more profoundly and permanently. Scrutinizing individual differences in the effects of acute and chronic ketamine administration in the context of the Bayesian brain model may generate new insights about the symptoms of psychosis; their underlying cognitive processes and neurocircuitry.

  16. Blind identification of the kinetic parameters in three-compartment models

    NASA Astrophysics Data System (ADS)

    Riabkov, Dmitri Y.; Di Bella, Edward V. R.

    2004-03-01

    Quantified knowledge of tissue kinetic parameters in the regions of the brain and other organs can offer information useful in clinical and research applications. Dynamic medical imaging with injection of radioactive or paramagnetic tracer can be used for this measurement. The kinetics of some widely used tracers such as [18F]2-fluoro-2-deoxy-D-glucose can be described by a three-compartment physiological model. The kinetic parameters of the tissue can be estimated from dynamically acquired images. Feasibility of estimation by blind identification, which does not require knowledge of the blood input, is considered analytically and numerically in this work for the three-compartment type of tissue response. The non-uniqueness of the two-region case for blind identification of kinetic parameters in three-compartment model is shown; at least three regions are needed for the blind identification to be unique. Numerical results for the accuracy of these blind identification methods in different conditions were considered. Both a separable variables least-squares (SLS) approach and an eigenvector-based algorithm for multichannel blind deconvolution approach were used. The latter showed poor accuracy. Modifications for non-uniform time sampling were also developed. Also, another method which uses a model for the blood input was compared. Results for the macroparameter K, which reflects the metabolic rate of glucose usage, using three regions with noise showed comparable accuracy for the separable variables least squares method and for the input model-based method, and slightly worse accuracy for SLS with the non-uniform sampling modification.

  17. FLUXCOM - Overview and First Synthesis

    NASA Astrophysics Data System (ADS)

    Jung, M.; Ichii, K.; Tramontana, G.; Camps-Valls, G.; Schwalm, C. R.; Papale, D.; Reichstein, M.; Gans, F.; Weber, U.

    2015-12-01

    We present a community effort aiming at generating an ensemble of global gridded flux products by upscaling FLUXNET data using an array of different machine learning methods including regression/model tree ensembles, neural networks, and kernel machines. We produced products for gross primary production, terrestrial ecosystem respiration, net ecosystem exchange, latent heat, sensible heat, and net radiation for two experimental protocols: 1) at a high spatial and 8-daily temporal resolution (5 arc-minute) using only remote sensing based inputs for the MODIS era; 2) 30 year records of daily, 0.5 degree spatial resolution by incorporating meteorological driver data. Within each set-up, all machine learning methods were trained with the same input data for carbon and energy fluxes respectively. Sets of input driver variables were derived using an extensive formal variable selection exercise. The performance of the extrapolation capacities of the approaches is assessed with a fully internally consistent cross-validation. We perform cross-consistency checks of the gridded flux products with independent data streams from atmospheric inversions (NEE), sun-induced fluorescence (GPP), catchment water balances (LE, H), satellite products (Rn), and process-models. We analyze the uncertainties of the gridded flux products and for example provide a breakdown of the uncertainty of mean annual GPP originating from different machine learning methods, different climate input data sets, and different flux partitioning methods. The FLUXCOM archive will provide an unprecedented source of information for water, energy, and carbon cycle studies.

  18. Hourly air pollution concentrations and their important predictors over Houston, Texas using deep neural networks: case study of DISCOVER-AQ time period

    NASA Astrophysics Data System (ADS)

    Eslami, E.; Choi, Y.; Roy, A.

    2017-12-01

    Air quality forecasting carried out by chemical transport models often show significant error. This study uses a deep-learning approach over the Houston-Galveston-Brazoria (HGB) area to overcome this forecasting challenge, for the DISCOVER-AQ period (September 2013). Two approaches, deep neural network (DNN) using a Multi-Layer Perceptron (MLP) and Restricted Boltzmann Machine (RBM) were utilized. The proposed approaches analyzed input data by identifying features abstracted from its previous layer using a stepwise method. The approaches predicted hourly ozone and PM in September 2013 using several predictors of prior three days, including wind fields, temperature, relative humidity, cloud fraction, precipitation along with PM, ozone, and NOx concentrations. Model-measurement comparisons for available monitoring sites reported Indexes of Agreement (IOA) of around 0.95 for both DNN and RBM. A standard artificial neural network (ANN) (IOA=0.90) with similar architecture showed poorer performance than the deep networks, clearly demonstrating the superiority of the deep approaches. Additionally, each network (both deep and standard) performed significantly better than a previous CMAQ study, which showed an IOA of less than 0.80. The most influential input variables were identified using their associated weights, which represented the sensitivity of ozone to input parameters. The results indicate deep learning approaches can achieve more accurate ozone forecasting and identify the important input variables for ozone predictions in metropolitan areas.

  19. Short-term to seasonal variability in factors driving primary productivity in a shallow estuary: Implications for modeling production

    NASA Astrophysics Data System (ADS)

    Canion, Andy; MacIntyre, Hugh L.; Phipps, Scott

    2013-10-01

    The inputs of primary productivity models may be highly variable on short timescales (hourly to daily) in turbid estuaries, but modeling of productivity in these environments is often implemented with data collected over longer timescales. Daily, seasonal, and spatial variability in primary productivity model parameters: chlorophyll a concentration (Chla), the downwelling light attenuation coefficient (kd), and photosynthesis-irradiance response parameters (Pmchl, αChl) were characterized in Weeks Bay, a nitrogen-impacted shallow estuary in the northern Gulf of Mexico. Variability in primary productivity model parameters in response to environmental forcing, nutrients, and microalgal taxonomic marker pigments were analysed in monthly and short-term datasets. Microalgal biomass (as Chla) was strongly related to total phosphorus concentration on seasonal scales. Hourly data support wind-driven resuspension as a major source of short-term variability in Chla and light attenuation (kd). The empirical relationship between areal primary productivity and a combined variable of biomass and light attenuation showed that variability in the photosynthesis-irradiance response contributed little to the overall variability in primary productivity, and Chla alone could account for 53-86% of the variability in primary productivity. Efforts to model productivity in similar shallow systems with highly variable microalgal biomass may benefit the most by investing resources in improving spatial and temporal resolution of chlorophyll a measurements before increasing the complexity of models used in productivity modeling.

  20. Colored noise and a stochastic fractional model for correlated inputs and adaptation in neuronal firing.

    PubMed

    Pirozzi, Enrica

    2018-04-01

    High variability in the neuronal response to stimulations and the adaptation phenomenon cannot be explained by the standard stochastic leaky integrate-and-fire model. The main reason is that the uncorrelated inputs involved in the model are not realistic. There exists some form of dependency between the inputs, and it can be interpreted as memory effects. In order to include these physiological features in the standard model, we reconsider it with time-dependent coefficients and correlated inputs. Due to its hard mathematical tractability, we perform simulations of it for a wide investigation of its output. A Gauss-Markov process is constructed for approximating its non-Markovian dynamics. The first passage time probability density of such a process can be numerically evaluated, and it can be used to fit the histograms of simulated firing times. Some estimates of the moments of firing times are also provided. The effect of the correlation time of the inputs on firing densities and on firing rates is shown. An exponential probability density of the first firing time is estimated for low values of input current and high values of correlation time. For comparison, a simulation-based investigation is also carried out for a fractional stochastic model that allows to preserve the memory of the time evolution of the neuronal membrane potential. In this case, the memory parameter that affects the firing activity is the fractional derivative order. In both models an adaptation level of spike frequency is attained, even if along different modalities. Comparisons and discussion of the obtained results are provided.

  1. Spike-Threshold Adaptation Predicted by Membrane Potential Dynamics In Vivo

    PubMed Central

    Fontaine, Bertrand; Peña, José Luis; Brette, Romain

    2014-01-01

    Neurons encode information in sequences of spikes, which are triggered when their membrane potential crosses a threshold. In vivo, the spiking threshold displays large variability suggesting that threshold dynamics have a profound influence on how the combined input of a neuron is encoded in the spiking. Threshold variability could be explained by adaptation to the membrane potential. However, it could also be the case that most threshold variability reflects noise and processes other than threshold adaptation. Here, we investigated threshold variation in auditory neurons responses recorded in vivo in barn owls. We found that spike threshold is quantitatively predicted by a model in which the threshold adapts, tracking the membrane potential at a short timescale. As a result, in these neurons, slow voltage fluctuations do not contribute to spiking because they are filtered by threshold adaptation. More importantly, these neurons can only respond to input spikes arriving together on a millisecond timescale. These results demonstrate that fast adaptation to the membrane potential captures spike threshold variability in vivo. PMID:24722397

  2. School Mathematics Study Group, Unit Number Two. Chapter 3 - Informal Algorithms and Flow Charts. Chapter 4 - Applications and Mathematics Models.

    ERIC Educational Resources Information Center

    Stanford Univ., CA. School Mathematics Study Group.

    This is the second unit of a 15-unit School Mathematics Study Group (SMSG) mathematics text for high school students. Topics presented in the first chapter (Informal Algorithms and Flow Charts) include: changing a flat tire; algorithms, flow charts, and computers; assignment and variables; input and output; using a variable as a counter; decisions…

  3. Stochastic Simulation Tool for Aerospace Structural Analysis

    NASA Technical Reports Server (NTRS)

    Knight, Norman F.; Moore, David F.

    2006-01-01

    Stochastic simulation refers to incorporating the effects of design tolerances and uncertainties into the design analysis model and then determining their influence on the design. A high-level evaluation of one such stochastic simulation tool, the MSC.Robust Design tool by MSC.Software Corporation, has been conducted. This stochastic simulation tool provides structural analysts with a tool to interrogate their structural design based on their mathematical description of the design problem using finite element analysis methods. This tool leverages the analyst's prior investment in finite element model development of a particular design. The original finite element model is treated as the baseline structural analysis model for the stochastic simulations that are to be performed. A Monte Carlo approach is used by MSC.Robust Design to determine the effects of scatter in design input variables on response output parameters. The tool was not designed to provide a probabilistic assessment, but to assist engineers in understanding cause and effect. It is driven by a graphical-user interface and retains the engineer-in-the-loop strategy for design evaluation and improvement. The application problem for the evaluation is chosen to be a two-dimensional shell finite element model of a Space Shuttle wing leading-edge panel under re-entry aerodynamic loading. MSC.Robust Design adds value to the analysis effort by rapidly being able to identify design input variables whose variability causes the most influence in response output parameters.

  4. An improved state-parameter analysis of ecosystem models using data assimilation

    USGS Publications Warehouse

    Chen, M.; Liu, S.; Tieszen, L.L.; Hollinger, D.Y.

    2008-01-01

    Much of the effort spent in developing data assimilation methods for carbon dynamics analysis has focused on estimating optimal values for either model parameters or state variables. The main weakness of estimating parameter values alone (i.e., without considering state variables) is that all errors from input, output, and model structure are attributed to model parameter uncertainties. On the other hand, the accuracy of estimating state variables may be lowered if the temporal evolution of parameter values is not incorporated. This research develops a smoothed ensemble Kalman filter (SEnKF) by combining ensemble Kalman filter with kernel smoothing technique. SEnKF has following characteristics: (1) to estimate simultaneously the model states and parameters through concatenating unknown parameters and state variables into a joint state vector; (2) to mitigate dramatic, sudden changes of parameter values in parameter sampling and parameter evolution process, and control narrowing of parameter variance which results in filter divergence through adjusting smoothing factor in kernel smoothing algorithm; (3) to assimilate recursively data into the model and thus detect possible time variation of parameters; and (4) to address properly various sources of uncertainties stemming from input, output and parameter uncertainties. The SEnKF is tested by assimilating observed fluxes of carbon dioxide and environmental driving factor data from an AmeriFlux forest station located near Howland, Maine, USA, into a partition eddy flux model. Our analysis demonstrates that model parameters, such as light use efficiency, respiration coefficients, minimum and optimum temperatures for photosynthetic activity, and others, are highly constrained by eddy flux data at daily-to-seasonal time scales. The SEnKF stabilizes parameter values quickly regardless of the initial values of the parameters. Potential ecosystem light use efficiency demonstrates a strong seasonality. Results show that the simultaneous parameter estimation procedure significantly improves model predictions. Results also show that the SEnKF can dramatically reduce the variance in state variables stemming from the uncertainty of parameters and driving variables. The SEnKF is a robust and effective algorithm in evaluating and developing ecosystem models and in improving the understanding and quantification of carbon cycle parameters and processes. ?? 2008 Elsevier B.V.

  5. Simplex-based optimization of numerical and categorical inputs in early bioprocess development: Case studies in HT chromatography.

    PubMed

    Konstantinidis, Spyridon; Titchener-Hooker, Nigel; Velayudhan, Ajoy

    2017-08-01

    Bioprocess development studies often involve the investigation of numerical and categorical inputs via the adoption of Design of Experiments (DoE) techniques. An attractive alternative is the deployment of a grid compatible Simplex variant which has been shown to yield optima rapidly and consistently. In this work, the method is combined with dummy variables and it is deployed in three case studies wherein spaces are comprised of both categorical and numerical inputs, a situation intractable by traditional Simplex methods. The first study employs in silico data and lays out the dummy variable methodology. The latter two employ experimental data from chromatography based studies performed with the filter-plate and miniature column High Throughput (HT) techniques. The solute of interest in the former case study was a monoclonal antibody whereas the latter dealt with the separation of a binary system of model proteins. The implemented approach prevented the stranding of the Simplex method at local optima, due to the arbitrary handling of the categorical inputs, and allowed for the concurrent optimization of numerical and categorical, multilevel and/or dichotomous, inputs. The deployment of the Simplex method, combined with dummy variables, was therefore entirely successful in identifying and characterizing global optima in all three case studies. The Simplex-based method was further shown to be of equivalent efficiency to a DoE-based approach, represented here by D-Optimal designs. Such an approach failed, however, to both capture trends and identify optima, and led to poor operating conditions. It is suggested that the Simplex-variant is suited to development activities involving numerical and categorical inputs in early bioprocess development. © 2017 The Authors. Biotechnology Journal published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. T-MATS Toolbox for the Modeling and Analysis of Thermodynamic Systems

    NASA Technical Reports Server (NTRS)

    Chapman, Jeffryes W.

    2014-01-01

    The Toolbox for the Modeling and Analysis of Thermodynamic Systems (T-MATS) is a MATLABSimulink (The MathWorks Inc.) plug-in for creating and simulating thermodynamic systems and controls. The package contains generic parameterized components that can be combined with a variable input iterative solver and optimization algorithm to create complex system models, such as gas turbines.

  7. Monthly land cover-specific evapotranspiration models derived from global eddy flux measurements and remote sensing data

    Treesearch

    Yuan Fang; Ge Sun; Peter Caldwell; Steven G. McNulty; Asko Noormets; Jean-Christophe Domec; John King; Zhiqiang Zhang; Xudong Zhang; Guanghui Lin; Guangsheng Zhou; Jingfeng Xiao; Jiquan Chen

    2015-01-01

    Evapotranspiration (ET) is arguably the most uncertain ecohydrologic variable for quantifying watershed water budgets. Although numerous ET and hydrological models exist, accurately predicting the effects of global change on water use and availability remains challenging because of model deficiency and/or a lack of input parameters. The objective of this study was to...

  8. A Simple Model of Cirrus Horizontal Inhomogeneity and Cloud Fraction

    NASA Technical Reports Server (NTRS)

    Smith, Samantha A.; DelGenio, Anthony D.

    1998-01-01

    A simple model of horizontal inhomogeneity and cloud fraction in cirrus clouds has been formulated on the basis that all internal horizontal inhomogeneity in the ice mixing ratio is due to variations in the cloud depth, which are assumed to be Gaussian. The use of such a model was justified by the observed relationship between the normalized variability of the ice water mixing ratio (and extinction) and the normalized variability of cloud depth. Using radar cloud depth data as input, the model reproduced well the in-cloud ice water mixing ratio histograms obtained from horizontal runs during the FIRE2 cirrus campaign. For totally overcast cases the histograms were almost Gaussian, but changed as cloud fraction decreased to exponential distributions which peaked at the lowest nonzero ice value for cloud fractions below 90%. Cloud fractions predicted by the model were always within 28% of the observed value. The predicted average ice water mixing ratios were within 34% of the observed values. This model could be used in a GCM to produce the ice mixing ratio probability distribution function and to estimate cloud fraction. It only requires basic meteorological parameters, the depth of the saturated layer and the standard deviation of cloud depth as input.

  9. Artificial neural networks for modeling ammonia emissions released from sewage sludge composting

    NASA Astrophysics Data System (ADS)

    Boniecki, P.; Dach, J.; Pilarski, K.; Piekarska-Boniecka, H.

    2012-09-01

    The project was designed to develop, test and validate an original Neural Model describing ammonia emissions generated in composting sewage sludge. The composting mix was to include the addition of such selected structural ingredients as cereal straw, sawdust and tree bark. All created neural models contain 7 input variables (chemical and physical parameters of composting) and 1 output (ammonia emission). The α data file was subdivided into three subfiles: the learning file (ZU) containing 330 cases, the validation file (ZW) containing 110 cases and the test file (ZT) containing 110 cases. The standard deviation ratios (for all 4 created networks) ranged from 0.193 to 0.218. For all of the selected models, the correlation coefficient reached the high values of 0.972-0.981. The results show that he predictive neural model describing ammonia emissions from composted sewage sludge is well suited for assessing such emissions. The sensitivity analysis of the model for the input of variables of the process in question has shown that the key parameters describing ammonia emissions released in composting sewage sludge are pH and the carbon to nitrogen ratio (C:N).

  10. Next-Generation Lightweight Mirror Modeling Software

    NASA Technical Reports Server (NTRS)

    Arnold, William R., Sr.; Fitzgerald, Mathew; Rosa, Rubin Jaca; Stahl, Phil

    2013-01-01

    The advances in manufacturing techniques for lightweight mirrors, such as EXELSIS deep core low temperature fusion, Corning's continued improvements in the Frit bonding process and the ability to cast large complex designs, combined with water-jet and conventional diamond machining of glasses and ceramics has created the need for more efficient means of generating finite element models of these structures. Traditional methods of assembling 400,000 + element models can take weeks of effort, severely limiting the range of possible optimization variables. This paper will introduce model generation software developed under NASA sponsorship for the design of both terrestrial and space based mirrors. The software deals with any current mirror manufacturing technique, single substrates, multiple arrays of substrates, as well as the ability to merge submodels into a single large model. The modeler generates both mirror and suspension system elements, suspensions can be created either for each individual petal or the whole mirror. A typical model generation of 250,000 nodes and 450,000 elements only takes 5-10 minutes, much of that time being variable input time. The program can create input decks for ANSYS, ABAQUS and NASTRAN. An archive/retrieval system permits creation of complete trade studies, varying cell size, depth, and petal size, suspension geometry with the ability to recall a particular set of parameters and make small or large changes with ease. The input decks created by the modeler are text files which can be modified by any editor, all the key shell thickness parameters are accessible and comments in deck identify which groups of elements are associated with these parameters. This again makes optimization easier. With ANSYS decks, the nodes representing support attachments are grouped into components; in ABAQUS these are SETS and in NASTRAN as GRIDPOINT SETS, this make integration of these models into large telescope or satellite models possible

  11. Next Generation Lightweight Mirror Modeling Software

    NASA Technical Reports Server (NTRS)

    Arnold, William; Fitzgerald, Matthew; Stahl, Philip

    2013-01-01

    The advances in manufacturing techniques for lightweight mirrors, such as EXELSIS deep core low temperature fusion, Corning's continued improvements in the Frit bonding process and the ability to cast large complex designs, combined with water-jet and conventional diamond machining of glasses and ceramics has created the need for more efficient means of generating finite element models of these structures. Traditional methods of assembling 400,000 + element models can take weeks of effort, severely limiting the range of possible optimization variables. This paper will introduce model generation software developed under NASA sponsorship for the design of both terrestrial and space based mirrors. The software deals with any current mirror manufacturing technique, single substrates, multiple arrays of substrates, as well as the ability to merge submodels into a single large model. The modeler generates both mirror and suspension system elements, suspensions can be created either for each individual petal or the whole mirror. A typical model generation of 250,000 nodes and 450,000 elements only takes 5-10 minutes, much of that time being variable input time. The program can create input decks for ANSYS, ABAQUS and NASTRAN. An archive/retrieval system permits creation of complete trade studies, varying cell size, depth, and petal size, suspension geometry with the ability to recall a particular set of parameters and make small or large changes with ease. The input decks created by the modeler are text files which can be modified by any editor, all the key shell thickness parameters are accessible and comments in deck identify which groups of elements are associated with these parameters. This again makes optimization easier. With ANSYS decks, the nodes representing support attachments are grouped into components; in ABAQUS these are SETS and in NASTRAN as GRIDPOINT SETS, this make integration of these models into large telescope or satellite models possible.

  12. Next Generation Lightweight Mirror Modeling Software

    NASA Technical Reports Server (NTRS)

    Arnold, William R., Sr.; Fitzgerald, Mathew; Rosa, Rubin Jaca; Stahl, H. Philip

    2013-01-01

    The advances in manufacturing techniques for lightweight mirrors, such as EXELSIS deep core low temperature fusion, Corning's continued improvements in the Frit bonding process and the ability to cast large complex designs, combined with water-jet and conventional diamond machining of glasses and ceramics has created the need for more efficient means of generating finite element models of these structures. Traditional methods of assembling 400,000 + element models can take weeks of effort, severely limiting the range of possible optimization variables. This paper will introduce model generation software developed under NASA sponsorship for the design of both terrestrial and space based mirrors. The software deals with any current mirror manufacturing technique, single substrates, multiple arrays of substrates, as well as the ability to merge submodels into a single large model. The modeler generates both mirror and suspension system elements, suspensions can be created either for each individual petal or the whole mirror. A typical model generation of 250,000 nodes and 450,000 elements only takes 5-10 minutes, much of that time being variable input time. The program can create input decks for ANSYS, ABAQUS and NASTRAN. An archive/retrieval system permits creation of complete trade studies, varying cell size, depth, and petal size, suspension geometry with the ability to recall a particular set of parameters and make small or large changes with ease. The input decks created by the modeler are text files which can be modified by any editor, all the key shell thickness parameters are accessible and comments in deck identify which groups of elements are associated with these parameters. This again makes optimization easier. With ANSYS decks, the nodes representing support attachments are grouped into components; in ABAQUS these are SETS and in NASTRAN as GRIDPOINT SETS, this make integration of these models into large telescope or satellite models easier.

  13. Propagation of variability in railway dynamic simulations: application to virtual homologation

    NASA Astrophysics Data System (ADS)

    Funfschilling, Christine; Perrin, Guillaume; Kraft, Sönke

    2012-01-01

    Railway dynamic simulations are increasingly used to predict and analyse the behaviour of the vehicle and of the track during their whole life cycle. Up to now however, no simulation has been used in the certification procedure even if the expected benefits are important: cheaper and shorter procedures, more objectivity, better knowledge of the behaviour around critical situations. Deterministic simulations are nevertheless too poor to represent the whole physical of the track/vehicle system which contains several sources of variability: variability of the mechanical parameters of a train among a class of vehicles (mass, stiffness and damping of different suspensions), variability of the contact parameters (friction coefficient, wheel and rail profiles) and variability of the track design and quality. This variability plays an important role on the safety, on the ride quality, and thus on the certification criteria. When using the simulation for certification purposes, it seems therefore crucial to take into account the variability of the different inputs. The main goal of this article is thus to propose a method to introduce the variability in railway dynamics. A four-step method is described namely the definition of the stochastic problem, the modelling of the inputs variability, the propagation and the analysis of the output. Each step is illustrated with railway examples.

  14. Petroleum Release Assessment and Impacts of Weather Extremes

    EPA Science Inventory

    Contaminated ground water and vapor intrusion are two major exposure pathways of concern at petroleum release sites. EPA has recently developed a model for petroleum vapor intrusion, called PVIScreen, which incorporates variability and uncertainty in input parameters. This ap...

  15. Economic Risk of Bee Pollination in Maine Wild Blueberry, Vaccinium angustifolium.

    PubMed

    Asare, Eric; Hoshide, Aaron K; Drummond, Francis A; Criner, George K; Chen, Xuan

    2017-10-01

    Recent pollinator declines highlight the importance of evaluating economic risk of agricultural systems heavily dependent on rented honey bees or native pollinators. Our study analyzed variability of native bees and honey bees, and the risks these pose to profitability of Maine's wild blueberry industry. We used cross-sectional data from organic, low-, medium-, and high-input wild blueberry producers in 1993, 1997-1998, 2005-2007, and from 2011 to 2015 (n = 162 fields). Data included native and honey bee densities (count/m2/min) and honey bee stocking densities (hives/ha). Blueberry fruit set, yield, and honey bee hive stocking density models were estimated. Fruit set is impacted about 1.6 times more by native bees than honey bees on a per bee basis. Fruit set significantly explained blueberry yield. Honey bee stocking density in fields predicted honey bee foraging densities. These three models were used in enterprise budgets for all four systems from on-farm surveys of 23 conventional and 12 organic producers (2012-2013). These budgets formed the basis of Monte Carlo simulations of production and profit. Stochastic dominance of net farm income (NFI) cumulative distribution functions revealed that if organic yields are high enough (2,345 kg/ha), organic systems are economically preferable to conventional systems. However, if organic yields are lower (724 kg/ha), it is riskier with higher variability of crop yield and NFI. Although medium-input systems are stochastically dominant with lower NFI variability compared with other conventional systems, the high-input system breaks even with the low-input system if honey bee hive rental prices triple in the future. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America.

  16. Scheduling the blended solution as industrial CO2 absorber in separation process by back-propagation artificial neural networks.

    PubMed

    Abdollahi, Yadollah; Sairi, Nor Asrina; Said, Suhana Binti Mohd; Abouzari-lotf, Ebrahim; Zakaria, Azmi; Sabri, Mohd Faizul Bin Mohd; Islam, Aminul; Alias, Yatimah

    2015-11-05

    It is believe that 80% industrial of carbon dioxide can be controlled by separation and storage technologies which use the blended ionic liquids absorber. Among the blended absorbers, the mixture of water, N-methyldiethanolamine (MDEA) and guanidinium trifluoromethane sulfonate (gua) has presented the superior stripping qualities. However, the blended solution has illustrated high viscosity that affects the cost of separation process. In this work, the blended fabrication was scheduled with is the process arranging, controlling and optimizing. Therefore, the blend's components and operating temperature were modeled and optimized as input effective variables to minimize its viscosity as the final output by using back-propagation artificial neural network (ANN). The modeling was carried out by four mathematical algorithms with individual experimental design to obtain the optimum topology using root mean squared error (RMSE), R-squared (R(2)) and absolute average deviation (AAD). As a result, the final model (QP-4-8-1) with minimum RMSE and AAD as well as the highest R(2) was selected to navigate the fabrication of the blended solution. Therefore, the model was applied to obtain the optimum initial level of the input variables which were included temperature 303-323 K, x[gua], 0-0.033, x[MDAE], 0.3-0.4, and x[H2O], 0.7-1.0. Moreover, the model has obtained the relative importance ordered of the variables which included x[gua]>temperature>x[MDEA]>x[H2O]. Therefore, none of the variables was negligible in the fabrication. Furthermore, the model predicted the optimum points of the variables to minimize the viscosity which was validated by further experiments. The validated results confirmed the model schedulability. Accordingly, ANN succeeds to model the initial components of the blended solutions as absorber of CO2 capture in separation technologies that is able to industries scale up. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. "Development of an interactive crop growth web service architecture to review and forecast agricultural sustainability"

    NASA Astrophysics Data System (ADS)

    Seamon, E.; Gessler, P. E.; Flathers, E.; Walden, V. P.

    2014-12-01

    As climate change and weather variability raise issues regarding agricultural production, agricultural sustainability has become an increasingly important component for farmland management (Fisher, 2005, Akinci, 2013). Yet with changes in soil quality, agricultural practices, weather, topography, land use, and hydrology - accurately modeling such agricultural outcomes has proven difficult (Gassman et al, 2007, Williams et al, 1995). This study examined agricultural sustainability and soil health over a heterogeneous multi-watershed area within the Inland Pacific Northwest of the United States (IPNW) - as part of a five year, USDA funded effort to explore the sustainability of cereal production systems (Regional Approaches to Climate Change for Pacific Northwest Agriculture - award #2011-68002-30191). In particular, crop growth and soil erosion were simulated across a spectrum of variables and time periods - using the CropSyst crop growth model (Stockle et al, 2002) and the Water Erosion Protection Project Model (WEPP - Flanagan and Livingston, 1995), respectively. A preliminary range of historical scenarios were run, using a high-resolution, 4km gridded dataset of surface meteorological variables from 1979-2010 (Abatzoglou, 2012). In addition, Coupled Model Inter-comparison Project (CMIP5) global climate model (GCM) outputs were used as input to run crop growth model and erosion future scenarios (Abatzoglou and Brown, 2011). To facilitate our integrated data analysis efforts, an agricultural sustainability web service architecture (THREDDS/Java/Python based) is under development, to allow for the programmatic uploading, sharing and processing of variable input data, running model simulations, as well as downloading and visualizing output results. The results of this study will assist in better understanding agricultural sustainability and erosion relationships in the IPNW, as well as provide a tangible server-based tool for use by researchers and farmers - for both small scale field examination, or more regionalized scenarios.

  18. Appraisal of Weather Research and Forecasting Model Downscaling of Hydro-meteorological Variables and their Applicability for Discharge Prediction: Prognostic Approach for Ungauged Basin

    NASA Astrophysics Data System (ADS)

    Srivastava, P. K.; Han, D.; Rico-Ramirez, M. A.; Bray, M.; Islam, T.; Petropoulos, G.; Gupta, M.

    2015-12-01

    Hydro-meteorological variables such as Precipitation and Reference Evapotranspiration (ETo) are the most important variables for discharge prediction. However, it is not always possible to get access to them from ground based measurements, particularly in ungauged catchments. The mesoscale model WRF (Weather Research & Forecasting model) can be used for prediction of hydro-meteorological variables. However, hydro-meteorologists would like to know how well the downscaled global data products are as compared to ground based measurements and whether it is possible to use the downscaled data for ungauged catchments. Even with gauged catchments, most of the stations have only rain and flow gauges installed. Measurements of other weather hydro-meteorological variables such as solar radiation, wind speed, air temperature, and dew point are usually missing and thus complicate the problems. In this study, for downscaling the global datasets, the WRF model is setup over the Brue catchment with three nested domains (D1, D2 and D3) of horizontal grid spacing of 81 km, 27 km and 9 km are used. The hydro-meteorological variables are downscaled using the WRF model from the National Centers for Enviromental Prediction (NCEP) reanalysis datasets and subsequently used for the ETo estimation using the Penman Monteith equation. The analysis of weather variables and precipitation are compared against the ground based datasets, which indicate that the datasets are in agreement with the observed datasets for complete monitoring period as well as during the seasons except precipitation whose performance is poorer in comparison to the measured rainfall. After a comparison, the WRF estimated precipitation and ETo are then used as a input parameter in the Probability Distributed Model (PDM) for discharge prediction. The input data and model parameter sensitivity analysis and uncertainty estimation are also taken into account for the PDM calibration and prediction following the Generalised Likelihood Uncertainty Estimation (GLUE) approach. The overall analysis suggests that the uncertainty estimates in predicted discharge using WRF downscaled ETo have comparable performance to ground based observed datasets and hence is promising for discharge prediction in the absence of ground based measurements.

  19. Predicting Survival From Large Echocardiography and Electronic Health Record Datasets: Optimization With Machine Learning.

    PubMed

    Samad, Manar D; Ulloa, Alvaro; Wehner, Gregory J; Jing, Linyuan; Hartzel, Dustin; Good, Christopher W; Williams, Brent A; Haggerty, Christopher M; Fornwalt, Brandon K

    2018-06-09

    The goal of this study was to use machine learning to more accurately predict survival after echocardiography. Predicting patient outcomes (e.g., survival) following echocardiography is primarily based on ejection fraction (EF) and comorbidities. However, there may be significant predictive information within additional echocardiography-derived measurements combined with clinical electronic health record data. Mortality was studied in 171,510 unselected patients who underwent 331,317 echocardiograms in a large regional health system. We investigated the predictive performance of nonlinear machine learning models compared with that of linear logistic regression models using 3 different inputs: 1) clinical variables, including 90 cardiovascular-relevant International Classification of Diseases, Tenth Revision, codes, and age, sex, height, weight, heart rate, blood pressures, low-density lipoprotein, high-density lipoprotein, and smoking; 2) clinical variables plus physician-reported EF; and 3) clinical variables and EF, plus 57 additional echocardiographic measurements. Missing data were imputed with a multivariate imputation by using a chained equations algorithm (MICE). We compared models versus each other and baseline clinical scoring systems by using a mean area under the curve (AUC) over 10 cross-validation folds and across 10 survival durations (6 to 60 months). Machine learning models achieved significantly higher prediction accuracy (all AUC >0.82) over common clinical risk scores (AUC = 0.61 to 0.79), with the nonlinear random forest models outperforming logistic regression (p < 0.01). The random forest model including all echocardiographic measurements yielded the highest prediction accuracy (p < 0.01 across all models and survival durations). Only 10 variables were needed to achieve 96% of the maximum prediction accuracy, with 6 of these variables being derived from echocardiography. Tricuspid regurgitation velocity was more predictive of survival than LVEF. In a subset of studies with complete data for the top 10 variables, multivariate imputation by chained equations yielded slightly reduced predictive accuracies (difference in AUC of 0.003) compared with the original data. Machine learning can fully utilize large combinations of disparate input variables to predict survival after echocardiography with superior accuracy. Copyright © 2018 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  20. Data analytics using canonical correlation analysis and Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Rickman, Jeffrey M.; Wang, Yan; Rollett, Anthony D.; Harmer, Martin P.; Compson, Charles

    2017-07-01

    A canonical correlation analysis is a generic parametric model used in the statistical analysis of data involving interrelated or interdependent input and output variables. It is especially useful in data analytics as a dimensional reduction strategy that simplifies a complex, multidimensional parameter space by identifying a relatively few combinations of variables that are maximally correlated. One shortcoming of the canonical correlation analysis, however, is that it provides only a linear combination of variables that maximizes these correlations. With this in mind, we describe here a versatile, Monte-Carlo based methodology that is useful in identifying non-linear functions of the variables that lead to strong input/output correlations. We demonstrate that our approach leads to a substantial enhancement of correlations, as illustrated by two experimental applications of substantial interest to the materials science community, namely: (1) determining the interdependence of processing and microstructural variables associated with doped polycrystalline aluminas, and (2) relating microstructural decriptors to the electrical and optoelectronic properties of thin-film solar cells based on CuInSe2 absorbers. Finally, we describe how this approach facilitates experimental planning and process control.

  1. Meta-modeling of the pesticide fate model MACRO for groundwater exposure assessments using artificial neural networks

    NASA Astrophysics Data System (ADS)

    Stenemo, Fredrik; Lindahl, Anna M. L.; Gärdenäs, Annemieke; Jarvis, Nicholas

    2007-08-01

    Several simple index methods that use easily accessible data have been developed and included in decision-support systems to estimate pesticide leaching across larger areas. However, these methods often lack important process descriptions (e.g. macropore flow), which brings into question their reliability. Descriptions of macropore flow have been included in simulation models, but these are too complex and demanding for spatial applications. To resolve this dilemma, a neural network simulation meta-model of the dual-permeability macropore flow model MACRO was created for pesticide groundwater exposure assessment. The model was parameterized using pedotransfer functions that require as input the clay and sand content of the topsoil and subsoil, and the topsoil organic carbon content. The meta-model also requires the topsoil pesticide half-life and the soil organic carbon sorption coefficient as input. A fully connected feed-forward multilayer perceptron classification network with two hidden layers, linked to fully connected feed-forward multilayer perceptron neural networks with one hidden layer, trained on sub-sets of the target variable, was shown to be a suitable meta-model for the intended purpose. A Fourier amplitude sensitivity test showed that the model output (the 80th percentile average yearly pesticide concentration at 1 m depth for a 20 year simulation period) was sensitive to all input parameters. The two input parameters related to pesticide characteristics (i.e. soil organic carbon sorption coefficient and topsoil pesticide half-life) were the most influential, but texture in the topsoil was also quite important since it was assumed to control the mass exchange coefficient that regulates the strength of macropore flow. This is in contrast to models based on the advection-dispersion equation where soil texture is relatively unimportant. The use of the meta-model is exemplified with a case-study where the spatial variability of pesticide leaching is mapped for a small field. It was shown that the area of the field that contributes most to leaching depends on the properties of the compound in question. It is concluded that the simulation meta-model of MACRO should prove useful for mapping relative pesticide leaching risks at large scales.

  2. Modeling of nitrate concentration in groundwater using artificial intelligence approach--a case study of Gaza coastal aquifer.

    PubMed

    Alagha, Jawad S; Said, Md Azlin Md; Mogheir, Yunes

    2014-01-01

    Nitrate concentration in groundwater is influenced by complex and interrelated variables, leading to great difficulty during the modeling process. The objectives of this study are (1) to evaluate the performance of two artificial intelligence (AI) techniques, namely artificial neural networks and support vector machine, in modeling groundwater nitrate concentration using scant input data, as well as (2) to assess the effect of data clustering as a pre-modeling technique on the developed models' performance. The AI models were developed using data from 22 municipal wells of the Gaza coastal aquifer in Palestine from 2000 to 2010. Results indicated high simulation performance, with the correlation coefficient and the mean average percentage error of the best model reaching 0.996 and 7 %, respectively. The variables that strongly influenced groundwater nitrate concentration were previous nitrate concentration, groundwater recharge, and on-ground nitrogen load of each land use land cover category in the well's vicinity. The results also demonstrated the merit of performing clustering of input data prior to the application of AI models. With their high performance and simplicity, the developed AI models can be effectively utilized to assess the effects of future management scenarios on groundwater nitrate concentration, leading to more reasonable groundwater resources management and decision-making.

  3. Rotorcraft system identification techniques for handling qualities and stability and control evaluation

    NASA Technical Reports Server (NTRS)

    Hall, W. E., Jr.; Gupta, N. K.; Hansen, R. S.

    1978-01-01

    An integrated approach to rotorcraft system identification is described. This approach consists of sequential application of (1) data filtering to estimate states of the system and sensor errors, (2) model structure estimation to isolate significant model effects, and (3) parameter identification to quantify the coefficient of the model. An input design algorithm is described which can be used to design control inputs which maximize parameter estimation accuracy. Details of each aspect of the rotorcraft identification approach are given. Examples of both simulated and actual flight data processing are given to illustrate each phase of processing. The procedure is shown to provide means of calibrating sensor errors in flight data, quantifying high order state variable models from the flight data, and consequently computing related stability and control design models.

  4. A unified classification model for modeling of seismic liquefaction potential of soil based on CPT

    PubMed Central

    Samui, Pijush; Hariharan, R.

    2014-01-01

    The evaluation of liquefaction potential of soil due to an earthquake is an important step in geosciences. This article examines the capability of Minimax Probability Machine (MPM) for the prediction of seismic liquefaction potential of soil based on the Cone Penetration Test (CPT) data. The dataset has been taken from Chi–Chi earthquake. MPM is developed based on the use of hyperplanes. It has been adopted as a classification tool. This article uses two models (MODEL I and MODEL II). MODEL I employs Cone Resistance (qc) and Cyclic Stress Ratio (CSR) as input variables. qc and Peak Ground Acceleration (PGA) have been taken as inputs for MODEL II. The developed MPM gives 100% accuracy. The results show that the developed MPM can predict liquefaction potential of soil based on qc and PGA. PMID:26199749

  5. A unified classification model for modeling of seismic liquefaction potential of soil based on CPT.

    PubMed

    Samui, Pijush; Hariharan, R

    2015-07-01

    The evaluation of liquefaction potential of soil due to an earthquake is an important step in geosciences. This article examines the capability of Minimax Probability Machine (MPM) for the prediction of seismic liquefaction potential of soil based on the Cone Penetration Test (CPT) data. The dataset has been taken from Chi-Chi earthquake. MPM is developed based on the use of hyperplanes. It has been adopted as a classification tool. This article uses two models (MODEL I and MODEL II). MODEL I employs Cone Resistance (q c) and Cyclic Stress Ratio (CSR) as input variables. q c and Peak Ground Acceleration (PGA) have been taken as inputs for MODEL II. The developed MPM gives 100% accuracy. The results show that the developed MPM can predict liquefaction potential of soil based on q c and PGA.

  6. Advances in Estimating Methane Emissions from Enteric Fermentation

    NASA Astrophysics Data System (ADS)

    Kebreab, E.; Appuhamy, R.

    2016-12-01

    Methane from enteric fermentation of livestock is the largest contributor to the agricultural GHG emissions. The quantification of methane emissions from livestock on a global scale relies on prediction models because measurements require specialized equipment and may be expensive. Most countries use a fixed number (kg methane/year) or calculate as a proportion of energy intake to estimate enteric methane emissions in national inventories. However, diet composition significantly regulates enteric methane production in addition to total feed intake and thus the main target in formulating mitigation options. The two current methodologies are not able to assess mitigation options, therefore, new estimation methods are required that can take feed composition into account. The availability of information on livestock production systems has increased substantially enabling the development of more detailed methane prediction models. Limited number of process-based models have been developed that represent biological relationships in methane production, however, these require extensive inputs and specialized software that may not be easily available. Empirical models may provide a better alternative in practical situations due to less input requirements. Several models have been developed in the last 10 years but none of them work equally well across all regions of the world. The more successful models particularly in North America require three major inputs: feed (or energy) intake, fiber and fat concentration of the diet. Given the significant variability of emissions within regions, models that are able to capture regional variability of feed intake and diet composition perform the best in model evaluation with independent data. The utilization of such models may reduce uncertainties associated with prediction of methane emissions and allow a better examination and representation of policies regulating emissions from cattle.

  7. Simulations of the September 1987 lower thermospheric tides with the National Center for Atmospheric Research thermosphere-ionosphere general circulation model

    NASA Astrophysics Data System (ADS)

    Fesen, C. G.; Roble, R. G.

    1991-02-01

    The NCAR thermosphere-ionosphere general circulation model (TIGCM) was used to simulate incoherent scatter radar observations of the lower thermosphere tides during the first Lower Thermosphere Coupling Study (LTCS) campaign, September 21-26, 1987. The TIGCM utilized time-varying histories of the model input fields obtained from the World Data Center for the LTCS period. The model inputs included solar flux, total hemispheric power, solar wind data from which the cross-polar-cap potential was derived, and geomagnetic Kp index. Calculations were made for the semidiurnal ion temperatures and horizontal neutral winds at locations representative of Arecibo, Millstone Hill, and Sondrestrom. Tidal inputs to the TIGCM lower boundary were obtained from the middle atmosphere model of Forbes and Vial (1989). The TIGCM tidal structures are in fair general agreement with the observations. The amplitudes tended to be better simulated than the phases, and the mid- and high-latitude locations are simulated better than the low-latitude thermosphere. The model simulations were used to investigate the daily variability of the tides due to the geomagnetic activity occurring during this period.

  8. European nitrogen policies, nitrate in rivers and the use of the INCA model

    NASA Astrophysics Data System (ADS)

    Skeffington, R.

    This paper is concerned with nitrogen inputs to European catchments, how they are likely to change in future, and the implications for the INCA model. National N budgets show that the fifteen countries currently in the European Union (the EU-15 countries) probably have positive N balances - that is, N inputs exceed outputs. The major sources are atmospheric deposition, fertilisers and animal feed, the relative importance of which varies between countries. The magnitude of the fluxes which determine the transport and retention of N in catchments is also very variable in both space and time. The most important of these fluxes are parameterised directly or indirectly in the INCA Model, though it is doubtful whether the present version of the model is flexible enough to encompass short-term (daily) variations in inputs or longer-term (decadal) changes in soil parameters. As an aid to predicting future changes in deposition, international legislation relating to atmospheric N inputs and nitrate in rivers is reviewed briefly. Atmospheric N deposition and fertiliser use are likely to decrease over the next 10 years, but probably not sufficiently to balance national N budgets.

  9. Design of hybrid radial basis function neural networks (HRBFNNs) realized with the aid of hybridization of fuzzy clustering method (FCM) and polynomial neural networks (PNNs).

    PubMed

    Huang, Wei; Oh, Sung-Kwun; Pedrycz, Witold

    2014-12-01

    In this study, we propose Hybrid Radial Basis Function Neural Networks (HRBFNNs) realized with the aid of fuzzy clustering method (Fuzzy C-Means, FCM) and polynomial neural networks. Fuzzy clustering used to form information granulation is employed to overcome a possible curse of dimensionality, while the polynomial neural network is utilized to build local models. Furthermore, genetic algorithm (GA) is exploited here to optimize the essential design parameters of the model (including fuzzification coefficient, the number of input polynomial fuzzy neurons (PFNs), and a collection of the specific subset of input PFNs) of the network. To reduce dimensionality of the input space, principal component analysis (PCA) is considered as a sound preprocessing vehicle. The performance of the HRBFNNs is quantified through a series of experiments, in which we use several modeling benchmarks of different levels of complexity (different number of input variables and the number of available data). A comparative analysis reveals that the proposed HRBFNNs exhibit higher accuracy in comparison to the accuracy produced by some models reported previously in the literature. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. The effect of long-term changes in plant inputs on soil carbon stocks

    NASA Astrophysics Data System (ADS)

    Georgiou, K.; Li, Z.; Torn, M. S.

    2017-12-01

    Soil organic carbon (SOC) is the largest actively-cycling terrestrial reservoir of C and an integral component of thriving natural and managed ecosystems. C input interventions (e.g., litter removal or organic amendments) are common in managed landscapes and present an important decision for maintaining healthy soils in sustainable agriculture and forestry. Furthermore, climate and land-cover change can also affect the amount of plant C inputs that enter the soil through changes in plant productivity, allocation, and rooting depth. Yet, the processes that dictate the response of SOC to such changes in C inputs are poorly understood and inadequately represented in predictive models. Long-term litter manipulations are an invaluable resource for exploring key controls of SOC storage and validating model representations. Here we explore the response of SOC to long-term changes in plant C inputs across a range of biomes and soil types. We synthesize and analyze data from long-term litter manipulation field experiments, and focus our meta-analysis on changes to total SOC stocks, microbial biomass carbon, and mineral-associated (`protected') carbon pools and explore the relative contribution of above- versus below-ground C inputs. Our cross-site data comparison reveals that divergent SOC responses are observed between forest sites, particularly for treatments that increase C inputs to the soil. We explore trends among key variables (e.g., microbial biomass to SOC ratios) that inform soil C model representations. The assembled dataset is an important benchmark for evaluating process-based hypotheses and validating divergent model formulations.

  11. Input-variable sensitivity assessment for sediment transport relations

    NASA Astrophysics Data System (ADS)

    Fernández, Roberto; Garcia, Marcelo H.

    2017-09-01

    A methodology to assess input-variable sensitivity for sediment transport relations is presented. The Mean Value First Order Second Moment Method (MVFOSM) is applied to two bed load transport equations showing that it may be used to rank all input variables in terms of how their specific variance affects the overall variance of the sediment transport estimation. In sites where data are scarce or nonexistent, the results obtained may be used to (i) determine what variables would have the largest impact when estimating sediment loads in the absence of field observations and (ii) design field campaigns to specifically measure those variables for which a given transport equation is most sensitive; in sites where data are readily available, the results would allow quantifying the effect that the variance associated with each input variable has on the variance of the sediment transport estimates. An application of the method to two transport relations using data from a tropical mountain river in Costa Rica is implemented to exemplify the potential of the method in places where input data are limited. Results are compared against Monte Carlo simulations to assess the reliability of the method and validate its results. For both of the sediment transport relations used in the sensitivity analysis, accurate knowledge of sediment size was found to have more impact on sediment transport predictions than precise knowledge of other input variables such as channel slope and flow discharge.

  12. High-resolution, regional-scale crop yield simulations for the Southwestern United States

    NASA Astrophysics Data System (ADS)

    Stack, D. H.; Kafatos, M.; Medvigy, D.; El-Askary, H. M.; Hatzopoulos, N.; Kim, J.; Kim, S.; Prasad, A. K.; Tremback, C.; Walko, R. L.; Asrar, G. R.

    2012-12-01

    Over the past few decades, there have been many process-based crop models developed with the goal of better understanding the impacts of climate, soils, and management decisions on crop yields. These models simulate the growth and development of crops in response to environmental drivers. Traditionally, process-based crop models have been run at the individual farm level for yield optimization and management scenario testing. Few previous studies have used these models over broader geographic regions, largely due to the lack of gridded high-resolution meteorological and soil datasets required as inputs for these data intensive process-based models. In particular, assessment of regional-scale yield variability due to climate change requires high-resolution, regional-scale, climate projections, and such projections have been unavailable until recently. The goal of this study was to create a framework for extending the Agricultural Production Systems sIMulator (APSIM) crop model for use at regional scales and analyze spatial and temporal yield changes in the Southwestern United States (CA, AZ, and NV). Using the scripting language Python, an automated pipeline was developed to link Regional Climate Model (RCM) output with the APSIM crop model, thus creating a one-way nested modeling framework. This framework was used to combine climate, soil, land use, and agricultural management datasets in order to better understand the relationship between climate variability and crop yield at the regional-scale. Three different RCMs were used to drive APSIM: OLAM, RAMS, and WRF. Preliminary results suggest that, depending on the model inputs, there is some variability between simulated RCM driven maize yields and historical yields obtained from the United States Department of Agriculture (USDA). Furthermore, these simulations showed strong non-linear correlations between yield and meteorological drivers, with critical threshold values for some of the inputs (e.g. minimum and maximum temperature), beyond which the yields were negatively affected. These results are now being used for further regional-scale yield analysis as the aforementioned framework is adaptable to multiple geographic regions and crop types.

  13. Are Subject-Specific Musculoskeletal Models Robust to the Uncertainties in Parameter Identification?

    PubMed Central

    Valente, Giordano; Pitto, Lorenzo; Testi, Debora; Seth, Ajay; Delp, Scott L.; Stagni, Rita; Viceconti, Marco; Taddei, Fulvia

    2014-01-01

    Subject-specific musculoskeletal modeling can be applied to study musculoskeletal disorders, allowing inclusion of personalized anatomy and properties. Independent of the tools used for model creation, there are unavoidable uncertainties associated with parameter identification, whose effect on model predictions is still not fully understood. The aim of the present study was to analyze the sensitivity of subject-specific model predictions (i.e., joint angles, joint moments, muscle and joint contact forces) during walking to the uncertainties in the identification of body landmark positions, maximum muscle tension and musculotendon geometry. To this aim, we created an MRI-based musculoskeletal model of the lower limbs, defined as a 7-segment, 10-degree-of-freedom articulated linkage, actuated by 84 musculotendon units. We then performed a Monte-Carlo probabilistic analysis perturbing model parameters according to their uncertainty, and solving a typical inverse dynamics and static optimization problem using 500 models that included the different sets of perturbed variable values. Model creation and gait simulations were performed by using freely available software that we developed to standardize the process of model creation, integrate with OpenSim and create probabilistic simulations of movement. The uncertainties in input variables had a moderate effect on model predictions, as muscle and joint contact forces showed maximum standard deviation of 0.3 times body-weight and maximum range of 2.1 times body-weight. In addition, the output variables significantly correlated with few input variables (up to 7 out of 312) across the gait cycle, including the geometry definition of larger muscles and the maximum muscle tension in limited gait portions. Although we found subject-specific models not markedly sensitive to parameter identification, researchers should be aware of the model precision in relation to the intended application. In fact, force predictions could be affected by an uncertainty in the same order of magnitude of its value, although this condition has low probability to occur. PMID:25390896

  14. Critical carbon input to maintain current soil organic carbon stocks in global wheat systems

    PubMed Central

    Wang, Guocheng; Luo, Zhongkui; Han, Pengfei; Chen, Huansheng; Xu, Jingjing

    2016-01-01

    Soil organic carbon (SOC) dynamics in croplands is a crucial component of global carbon (C) cycle. Depending on local environmental conditions and management practices, typical C input is generally required to reduce or reverse C loss in agricultural soils. No studies have quantified the critical C input for maintaining SOC at global scale with high resolution. Such information will provide a baseline map for assessing soil C dynamics under potential changes in management practices and climate, and thus enable development of management strategies to reduce C footprint from farm to regional scales. We used the soil C model RothC to simulate the critical C input rates needed to maintain existing soil C level at 0.1° × 0.1° resolution in global wheat systems. On average, the critical C input was estimated to be 2.0 Mg C ha−1 yr−1, with large spatial variability depending on local soil and climatic conditions. Higher C inputs are required in wheat system of central United States and western Europe, mainly due to the higher current soil C stocks present in these regions. The critical C input could be effectively estimated using a summary model driven by current SOC level, mean annual temperature, precipitation, and soil clay content. PMID:26759192

  15. Quantified carbon input for maintaining existing soil organic carbon stocks in global wheat systems

    NASA Astrophysics Data System (ADS)

    Wang, G.

    2017-12-01

    Soil organic carbon (SOC) dynamics in croplands is a crucial component of global carbon (C) cycle. Depending on local environmental conditions and management practices, typical C input is generally required to reduce or reverse C loss in agricultural soils. No studies have quantified the critical C input for maintaining SOC at global scale with high resolution. Such information will provide a baseline map for assessing soil C dynamics under potential changes in management practices and climate, and thus enable development of management strategies to reduce C footprint from farm to regional scales. We used the soil C model RothC to simulate the critical C input rates needed to maintain existing soil C level at 0.1°× 0.1° resolution in global wheat systems. On average, the critical C input was estimated to be 2.0 Mg C ha-1 yr-1, with large spatial variability depending on local soil and climatic conditions. Higher C inputs are required in wheat system of central United States and western Europe, mainly due to the higher current soil C stocks present in these regions. The critical C input could be effectively estimated using a summary model driven by current SOC level, mean annual temperature, precipitation, and soil clay content.

  16. Oculomotor learning revisited: a model of reinforcement learning in the basal ganglia incorporating an efference copy of motor actions

    PubMed Central

    Fee, Michale S.

    2012-01-01

    In its simplest formulation, reinforcement learning is based on the idea that if an action taken in a particular context is followed by a favorable outcome, then, in the same context, the tendency to produce that action should be strengthened, or reinforced. While reinforcement learning forms the basis of many current theories of basal ganglia (BG) function, these models do not incorporate distinct computational roles for signals that convey context, and those that convey what action an animal takes. Recent experiments in the songbird suggest that vocal-related BG circuitry receives two functionally distinct excitatory inputs. One input is from a cortical region that carries context information about the current “time” in the motor sequence. The other is an efference copy of motor commands from a separate cortical brain region that generates vocal variability during learning. Based on these findings, I propose here a general model of vertebrate BG function that combines context information with a distinct motor efference copy signal. The signals are integrated by a learning rule in which efference copy inputs gate the potentiation of context inputs (but not efference copy inputs) onto medium spiny neurons in response to a rewarded action. The hypothesis is described in terms of a circuit that implements the learning of visually guided saccades. The model makes testable predictions about the anatomical and functional properties of hypothesized context and efference copy inputs to the striatum from both thalamic and cortical sources. PMID:22754501

  17. Oculomotor learning revisited: a model of reinforcement learning in the basal ganglia incorporating an efference copy of motor actions.

    PubMed

    Fee, Michale S

    2012-01-01

    In its simplest formulation, reinforcement learning is based on the idea that if an action taken in a particular context is followed by a favorable outcome, then, in the same context, the tendency to produce that action should be strengthened, or reinforced. While reinforcement learning forms the basis of many current theories of basal ganglia (BG) function, these models do not incorporate distinct computational roles for signals that convey context, and those that convey what action an animal takes. Recent experiments in the songbird suggest that vocal-related BG circuitry receives two functionally distinct excitatory inputs. One input is from a cortical region that carries context information about the current "time" in the motor sequence. The other is an efference copy of motor commands from a separate cortical brain region that generates vocal variability during learning. Based on these findings, I propose here a general model of vertebrate BG function that combines context information with a distinct motor efference copy signal. The signals are integrated by a learning rule in which efference copy inputs gate the potentiation of context inputs (but not efference copy inputs) onto medium spiny neurons in response to a rewarded action. The hypothesis is described in terms of a circuit that implements the learning of visually guided saccades. The model makes testable predictions about the anatomical and functional properties of hypothesized context and efference copy inputs to the striatum from both thalamic and cortical sources.

  18. Optimisation of Ferrochrome Addition Using Multi-Objective Evolutionary and Genetic Algorithms for Stainless Steel Making via AOD Converter

    NASA Astrophysics Data System (ADS)

    Behera, Kishore Kumar; Pal, Snehanshu

    2018-03-01

    This paper describes a new approach towards optimum utilisation of ferrochrome added during stainless steel making in AOD converter. The objective of optimisation is to enhance end blow chromium content of steel and reduce the ferrochrome addition during refining. By developing a thermodynamic based mathematical model, a study has been conducted to compute the optimum trade-off between ferrochrome addition and end blow chromium content of stainless steel using a predator prey genetic algorithm through training of 100 dataset considering different input and output variables such as oxygen, argon, nitrogen blowing rate, duration of blowing, initial bath temperature, chromium and carbon content, weight of ferrochrome added during refining. Optimisation is performed within constrained imposed on the input parameters whose values fall within certain ranges. The analysis of pareto fronts is observed to generate a set of feasible optimal solution between the two conflicting objectives that provides an effective guideline for better ferrochrome utilisation. It is found out that after a certain critical range, further addition of ferrochrome does not affect the chromium percentage of steel. Single variable response analysis is performed to study the variation and interaction of all individual input parameters on output variables.

  19. Hydrological characterization of Guadalquivir River Basin for the period 1980-2010 using VIC model

    NASA Astrophysics Data System (ADS)

    García-Valdecasas-Ojeda, Matilde; de Franciscis, Sebastiano; Raquel Gámiz-Fortis, Sonia; Castro-Díez, Yolanda; Jesús Esteban-Parra, María

    2017-04-01

    This study analyzes the changes of soil moisture and real evapotranspiration (ETR), during the last 30 years, in the Guadalquivir River Basin, located in the south of the Iberian Peninsula. Soil moisture content is related with the different components of the real evaporation, it is a relevant factor when analyzing the intensity of droughts and heat waves, and particularly, for the impact study of the climate change. The soil moisture and real evapotranspiration data consist of simulations obtained by using the Variable Infiltration Capacity (VIC) hydrological model. This is a large-scale hydrologic model and allows the estimations of different variables in the hydrological system of a basin. Land surface is modeled as a grid of large and uniform cells with sub-grid heterogeneity (e.g. land cover), while water influx is local, only depending from the interaction between grid cell and local atmosphere environment. Observational data of temperature and precipitation from Spain02 dataset have been used as input variables for VIC model. Additionally, estimates of actual evapotranspiration and soil moisture are also analyzed using temperature, precipitation, wind, humidity and radiation as input variables for VIC. These variables are obtained from a dynamical downscaling from ERA-Interim data by the Weather Research and Forecasting (WRF) model. The simulations have a spatial resolution about 9 km and the analysis is done on a seasonal time-scale. Preliminary results show that ETR presents very low values for autumn from WRF simulations compared with VIC simulations. Only significant positive trends are found during autumn for the western part of the basin for the ETR obtained with VIC model, meanwhile no significant trends are found for the ETR WRF simulations. Keywords: Soil moisture, Real evapotranspiration, Guadalquivir Basin, trends, VIC, WRF. Acknowledgements: This work has been financed by the projects P11-RNM-7941 (Junta de Andalucía-Spain) and CGL2013-48539-R (MINECO-Spain, FEDER).

  20. Development of the TACOM (Tank Automotive Command) Thermal Imaging Model (TTIM). Volume 1. Technical Guide and User’s Manual.

    DTIC Science & Technology

    1984-12-01

    BLOCK DATA Default values for variables input by menus. LIBR Interface with frame I/O routines. SNSR Interface with sensor routines. ATMOS Interface with...Routines Included in Frame I/O Interface Routine Description LIBR Selects options for input or output to a data library. FRREAD Reads frame from file and/or...Layer", Journal of Applied Meteorology 20, pp. 242-249, March 1981. 15 L.J. Harding, Numerical Analysis and Applications Software Abstracts, Computing

  1. QFT Multi-Input, Multi-Output Design with Non-Diagonal, Non-Square Compensation Matrices

    NASA Technical Reports Server (NTRS)

    Hess, R. A.; Henderson, D. K.

    1996-01-01

    A technique for obtaining a non-diagonal compensator for the control of a multi-input, multi-output plant is presented. The technique, which uses Quantitative Feedback Theory, provides guaranteed stability and performance robustness in the presence of parametric uncertainty. An example is given involving the lateral-directional control of an uncertain model of a high-performance fighter aircraft in which redundant control effectors are in evidence, i.e. more control effectors than output variables are used.

  2. Development and weighting of a life cycle assessment screening model

    NASA Astrophysics Data System (ADS)

    Bates, Wayne E.; O'Shaughnessy, James; Johnson, Sharon A.; Sisson, Richard

    2004-02-01

    Nearly all life cycle assessment tools available today are high priced, comprehensive and quantitative models requiring a significant amount of data collection and data input. In addition, most of the available software packages require a great deal of training time to learn how to operate the model software. Even after this time investment, results are not guaranteed because of the number of estimations and assumptions often necessary to run the model. As a result, product development, design teams and environmental specialists need a simplified tool that will allow for the qualitative evaluation and "screening" of various design options. This paper presents the development and design of a generic, qualitative life cycle screening model and demonstrates its applicability and ease of use. The model uses qualitative environmental, health and safety factors, based on site or product-specific issues, to sensitize the overall results for a given set of conditions. The paper also evaluates the impact of different population input ranking values on model output. The final analysis is based on site or product-specific variables. The user can then evaluate various design changes and the apparent impact or improvement on the environment, health and safety, compliance cost and overall corporate liability. Major input parameters can be varied, and factors such as materials use, pollution prevention, waste minimization, worker safety, product life, environmental impacts, return of investment, and recycle are evaluated. The flexibility of the model format will be discussed in order to demonstrate the applicability and usefulness within nearly any industry sector. Finally, an example using audience input value scores will be compared to other population input results.

  3. Modeling of local sea level rise and its future projection under climate change using regional information through EOF analysis

    NASA Astrophysics Data System (ADS)

    Naren, A.; Maity, Rajib

    2017-12-01

    Sea level rise is one of the manifestations of climate change and may cause a threat to the coastal regions. Estimates from global circulation models (GCMs) are either not available on coastal locations due to their coarse spatial resolution or not reliable since the mismatch between (interpolated) GCM estimates at coastal locations and actual observation over historical period is significantly different. We propose a semi-empirical framework to model the local sea level rise (SLR) using the possibly existing relationship between local SLR and regional atmospheric/oceanic variables. Selection of set of input variables mostly based on the literature bears the signature of both atmospheric and oceanic variables that possibly have an effect on SLR. The proposed approach offers a method to extract the combined information hidden in the regional fields of atmospheric/oceanic variables for a specific target coastal location. Generality of the approach ensures the inclusion of more variables in the set of inputs depending on the geographical location of any coastal station. For demonstration, 14 coastal locations along the Indian coast and islands are considered and a set of regional atmospheric and oceanic variables are considered. After development and validation of the model at each coastal location with the historical data, the model is further used for future projection of local SLR up to the year 2100 for three different future emission scenarios represented by representative concentration pathways (RCPs)—RCP2.6, RCP4.5, and RCP8.5. The maximum projected SLR is found to vary from 260.65 to 393.16 mm (RCP8.5) by the end of 2100 among the locations considered. Outcome of the proposed approach is expected to be useful in regional coastal management and in developing mitigation strategies in a changing climate.

  4. Modeling soil organic carbon dynamics and their driving factors in the main global cereal cropping systems

    NASA Astrophysics Data System (ADS)

    Wang, Guocheng; Zhang, Wen; Sun, Wenjuan; Li, Tingting; Han, Pengfei

    2017-10-01

    Changes in the soil organic carbon (SOC) stock are determined by the balance between the carbon input from organic materials and the output from the decomposition of soil C. The fate of SOC in cropland soils plays a significant role in both sustainable agricultural production and climate change mitigation. The spatiotemporal changes of soil organic carbon in croplands in response to different carbon (C) input management and environmental conditions across the main global cereal systems were studied using a modeling approach. We also identified the key variables that drive SOC changes at a high spatial resolution (0.1° × 0.1°) and over a long timescale (54 years from 1961 to 2014). A widely used soil C turnover model (RothC) and state-of-the-art databases of soil and climate variables were used in the present study. The model simulations suggested that, on a global average, the cropland SOC density increased at annual rates of 0.22, 0.45 and 0.69 Mg C ha-1 yr-1 under crop residue retention rates of 30, 60 and 90 %, respectively. Increasing the quantity of C input could enhance soil C sequestration or reduce the rate of soil C loss, depending largely on the local soil and climate conditions. Spatially, under a specific crop residue retention rate, relatively higher soil C sinks were found across the central parts of the USA, western Europe, and the northern regions of China. Relatively smaller soil C sinks occurred in the high-latitude regions of both the Northern and Southern hemispheres, and SOC decreased across the equatorial zones of Asia, Africa and America. We found that SOC change was significantly influenced by the crop residue retention rate (linearly positive) and the edaphic variable of initial SOC content (linearly negative). Temperature had weak negative effects, and precipitation had significantly negative impacts on SOC changes. The results can help guide carbon input management practices to effectively mitigate climate change through soil C sequestration in croplands on a global scale.

  5. Development of a distributed air pollutant dry deposition modeling framework

    Treesearch

    Satoshi Hirabayashi; Charles N. Kroll; David J. Nowak

    2012-01-01

    A distributed air pollutant dry deposition modeling systemwas developed with a geographic information system (GIS) to enhance the functionality of i-Tree Eco (i-Tree, 2011). With the developed system, temperature, leaf area index (LAI) and air pollutant concentration in a spatially distributed form can be estimated, and based on these and other input variables, dry...

  6. The magnitude of variability produced by methods used to estimate annual stormwater contaminant loads for highly urbanised catchments.

    PubMed

    Beck, H J; Birch, G F

    2013-06-01

    Stormwater contaminant loading estimates using event mean concentration (EMC), rainfall/runoff relationship calculations and computer modelling (Model of Urban Stormwater Infrastructure Conceptualisation--MUSIC) demonstrated high variability in common methods of water quality assessment. Predictions of metal, nutrient and total suspended solid loadings for three highly urbanised catchments in Sydney estuary, Australia, varied greatly within and amongst methods tested. EMC and rainfall/runoff relationship calculations produced similar estimates (within 1 SD) in a statistically significant number of trials; however, considerable variability within estimates (∼50 and ∼25 % relative standard deviation, respectively) questions the reliability of these methods. Likewise, upper and lower default inputs in a commonly used loading model (MUSIC) produced an extensive range of loading estimates (3.8-8.3 times above and 2.6-4.1 times below typical default inputs, respectively). Default and calibrated MUSIC simulations produced loading estimates that agreed with EMC and rainfall/runoff calculations in some trials (4-10 from 18); however, they were not frequent enough to statistically infer that these methods produced the same results. Great variance within and amongst mean annual loads estimated by common methods of water quality assessment has important ramifications for water quality managers requiring accurate estimates of the quantities and nature of contaminants requiring treatment.

  7. A Sensitivity Analysis Method to Study the Behavior of Complex Process-based Models

    NASA Astrophysics Data System (ADS)

    Brugnach, M.; Neilson, R.; Bolte, J.

    2001-12-01

    The use of process-based models as a tool for scientific inquiry is becoming increasingly relevant in ecosystem studies. Process-based models are artificial constructs that simulate the system by mechanistically mimicking the functioning of its component processes. Structurally, a process-based model can be characterized, in terms of its processes and the relationships established among them. Each process comprises a set of functional relationships among several model components (e.g., state variables, parameters and input data). While not encoded explicitly, the dynamics of the model emerge from this set of components and interactions organized in terms of processes. It is the task of the modeler to guarantee that the dynamics generated are appropriate and semantically equivalent to the phenomena being modeled. Despite the availability of techniques to characterize and understand model behavior, they do not suffice to completely and easily understand how a complex process-based model operates. For example, sensitivity analysis studies model behavior by determining the rate of change in model output as parameters or input data are varied. One of the problems with this approach is that it considers the model as a "black box", and it focuses on explaining model behavior by analyzing the relationship input-output. Since, these models have a high degree of non-linearity, understanding how the input affects an output can be an extremely difficult task. Operationally, the application of this technique may constitute a challenging task because complex process-based models are generally characterized by a large parameter space. In order to overcome some of these difficulties, we propose a method of sensitivity analysis to be applicable to complex process-based models. This method focuses sensitivity analysis at the process level, and it aims to determine how sensitive the model output is to variations in the processes. Once the processes that exert the major influence in the output are identified, the causes of its variability can be found. Some of the advantages of this approach are that it reduces the dimensionality of the search space, it facilitates the interpretation of the results and it provides information that allows exploration of uncertainty at the process level, and how it might affect model output. We present an example using the vegetation model BIOME-BGC.

  8. Conditional parametric models for storm sewer runoff

    NASA Astrophysics Data System (ADS)

    Jonsdottir, H.; Nielsen, H. Aa; Madsen, H.; Eliasson, J.; Palsson, O. P.; Nielsen, M. K.

    2007-05-01

    The method of conditional parametric modeling is introduced for flow prediction in a sewage system. It is a well-known fact that in hydrological modeling the response (runoff) to input (precipitation) varies depending on soil moisture and several other factors. Consequently, nonlinear input-output models are needed. The model formulation described in this paper is similar to the traditional linear models like final impulse response (FIR) and autoregressive exogenous (ARX) except that the parameters vary as a function of some external variables. The parameter variation is modeled by local lines, using kernels for local linear regression. As such, the method might be referred to as a nearest neighbor method. The results achieved in this study were compared to results from the conventional linear methods, FIR and ARX. The increase in the coefficient of determination is substantial. Furthermore, the new approach conserves the mass balance better. Hence this new approach looks promising for various hydrological models and analysis.

  9. Uncertainty Quantification of the FUN3D-Predicted NASA CRM Flutter Boundary

    NASA Technical Reports Server (NTRS)

    Stanford, Bret K.; Massey, Steven J.

    2017-01-01

    A nonintrusive point collocation method is used to propagate parametric uncertainties of the flexible Common Research Model, a generic transport configuration, through the unsteady aeroelastic CFD solver FUN3D. A range of random input variables are considered, including atmospheric flow variables, structural variables, and inertial (lumped mass) variables. UQ results are explored for a range of output metrics (with a focus on dynamic flutter stability), for both subsonic and transonic Mach numbers, for two different CFD mesh refinements. A particular focus is placed on computing failure probabilities: the probability that the wing will flutter within the flight envelope.

  10. Flight dynamics analysis and simulation of heavy lift airships, volume 4. User's guide: Appendices

    NASA Technical Reports Server (NTRS)

    Emmen, R. D.; Tischler, M. B.

    1982-01-01

    This table contains all of the input variables to the three programs. The variables are arranged according to the name list groups in which they appear in the data files. The program name, subroutine name, definition and, where appropriate, a default input value and any restrictions are listed with each variable. The default input values are user supplied, not generated by the computer. These values remove a specific effect from the calculations, as explained in the table. The phrase "not used' indicates that a variable is not used in the calculations and are for identification purposes only. The engineering symbol, where it exists, is listed to assist the user in correlating these inputs with the discussion in the Technical Manual.

  11. Application of experimental design for the optimization of artificial neural network-based water quality model: a case study of dissolved oxygen prediction.

    PubMed

    Šiljić Tomić, Aleksandra; Antanasijević, Davor; Ristić, Mirjana; Perić-Grujić, Aleksandra; Pocajt, Viktor

    2018-04-01

    This paper presents an application of experimental design for the optimization of artificial neural network (ANN) for the prediction of dissolved oxygen (DO) content in the Danube River. The aim of this research was to obtain a more reliable ANN model that uses fewer monitoring records, by simultaneous optimization of the following model parameters: number of monitoring sites, number of historical monitoring data (expressed in years), and number of input water quality parameters used. Box-Behnken three-factor at three levels experimental design was applied for simultaneous spatial, temporal, and input variables optimization of the ANN model. The prediction of DO was performed using a feed-forward back-propagation neural network (BPNN), while the selection of most important inputs was done off-model using multi-filter approach that combines a chi-square ranking in the first step with a correlation-based elimination in the second step. The contour plots of absolute and relative error response surfaces were utilized to determine the optimal values of design factors. From the contour plots, two BPNN models that cover entire Danube flow through Serbia are proposed: an upstream model (BPNN-UP) that covers 8 monitoring sites prior to Belgrade and uses 12 inputs measured in the 7-year period and a downstream model (BPNN-DOWN) which covers 9 monitoring sites and uses 11 input parameters measured in the 6-year period. The main difference between the two models is that BPNN-UP utilizes inputs such as BOD, P, and PO 4 3- , which is in accordance with the fact that this model covers northern part of Serbia (Vojvodina Autonomous Province) which is well-known for agricultural production and extensive use of fertilizers. Both models have shown very good agreement between measured and predicted DO (with R 2  ≥ 0.86) and demonstrated that they can effectively forecast DO content in the Danube River.

  12. Production Function Geometry with "Knightian" Total Product

    ERIC Educational Resources Information Center

    Truett, Dale B.; Truett, Lila J.

    2007-01-01

    Authors of principles and price theory textbooks generally illustrate short-run production using a total product curve that displays first increasing and then diminishing marginal returns to employment of the variable input(s). Although it seems reasonable that a temporary range of increasing returns to variable inputs will likely occur as…

  13. Tritium Records to Trace Stratospheric Moisture Inputs in Antarctica

    NASA Astrophysics Data System (ADS)

    Fourré, E.; Landais, A.; Cauquoin, A.; Jean-Baptiste, P.; Lipenkov, V.; Petit, J.-R.

    2018-03-01

    Better assessing the dynamic of stratosphere-troposphere exchange is a key point to improve our understanding of the climate dynamic in the East Antarctica Plateau, a region where stratospheric inputs are expected to be important. Although tritium (3H or T), a nuclide naturally produced mainly in the stratosphere and rapidly entering the water cycle as HTO, seems a first-rate tracer to study these processes, tritium data are very sparse in this region. We present the first high-resolution measurements of tritium concentration over the last 50 years in three snow pits drilled at the Vostok station. Natural variability of the tritium records reveals two prominent frequencies, one at about 10 years (to be related to the solar Schwabe cycles) and the other one at a shorter periodicity: despite dating uncertainty at this short scale, a good correlation is observed between 3H and Na+ and an anticorrelation between 3H and δ18O measured on an individual pit. The outputs from the LMDZ Atmospheric General Circulation Model including stable water isotopes and tritium show the same 3H-δ18O anticorrelation and allow further investigation on the associated mechanism. At the interannual scale, the modeled 3H variability matches well with the Southern Annular Mode index. At the seasonal scale, we show that modeled stratospheric tritium inputs in the troposphere are favored in winter cold and dry conditions.

  14. Prediction of dissolved oxygen concentration in hypoxic river systems using support vector machine: a case study of Wen-Rui Tang River, China.

    PubMed

    Ji, Xiaoliang; Shang, Xu; Dahlgren, Randy A; Zhang, Minghua

    2017-07-01

    Accurate quantification of dissolved oxygen (DO) is critically important for managing water resources and controlling pollution. Artificial intelligence (AI) models have been successfully applied for modeling DO content in aquatic ecosystems with limited data. However, the efficacy of these AI models in predicting DO levels in the hypoxic river systems having multiple pollution sources and complicated pollutants behaviors is unclear. Given this dilemma, we developed a promising AI model, known as support vector machine (SVM), to predict the DO concentration in a hypoxic river in southeastern China. Four different calibration models, specifically, multiple linear regression, back propagation neural network, general regression neural network, and SVM, were established, and their prediction accuracy was systemically investigated and compared. A total of 11 hydro-chemical variables were used as model inputs. These variables were measured bimonthly at eight sampling sites along the rural-suburban-urban portion of Wen-Rui Tang River from 2004 to 2008. The performances of the established models were assessed through the mean square error (MSE), determination coefficient (R 2 ), and Nash-Sutcliffe (NS) model efficiency. The results indicated that the SVM model was superior to other models in predicting DO concentration in Wen-Rui Tang River. For SVM, the MSE, R 2 , and NS values for the testing subset were 0.9416 mg/L, 0.8646, and 0.8763, respectively. Sensitivity analysis showed that ammonium-nitrogen was the most significant input variable of the proposal SVM model. Overall, these results demonstrated that the proposed SVM model can efficiently predict water quality, especially for highly impaired and hypoxic river systems.

  15. Prediction of heat capacity of amine solutions using artificial neural network and thermodynamic models for CO2 capture processes

    NASA Astrophysics Data System (ADS)

    Afkhamipour, Morteza; Mofarahi, Masoud; Borhani, Tohid Nejad Ghaffar; Zanganeh, Masoud

    2018-03-01

    In this study, artificial neural network (ANN) and thermodynamic models were developed for prediction of the heat capacity ( C P ) of amine-based solvents. For ANN model, independent variables such as concentration, temperature, molecular weight and CO2 loading of amine were selected as the inputs of the model. The significance of the input variables of the ANN model on the C P values was investigated statistically by analyzing of correlation matrix. A thermodynamic model based on the Redlich-Kister equation was used to correlate the excess molar heat capacity ({C}_P^E) data as function of temperature. In addition, the effects of temperature and CO2 loading at different concentrations of conventional amines on the C P values were investigated. Both models were validated against experimental data and very good results were obtained between two mentioned models and experimental data of C P collected from various literatures. The AARD between ANN model results and experimental data of C P for 47 systems of amine-based solvents studied was 4.3%. For conventional amines, the AARD for ANN model and thermodynamic model in comparison with experimental data were 0.59% and 0.57%, respectively. The results showed that both ANN and Redlich-Kister models can be used as a practical tool for simulation and designing of CO2 removal processes by using amine solutions.

  16. ASSESSING ACCURACY OF NET CHANGE DERIVED FROM LAND COVER MAPS

    EPA Science Inventory

    Net change derived from land-cover maps provides important descriptive information for environmental monitoring and is often used as an input or explanatory variable in environmental models. The sampling design and analysis for assessing net change accuracy differ from traditio...

  17. A non-linear data mining parameter selection algorithm for continuous variables

    PubMed Central

    Razavi, Marianne; Brady, Sean

    2017-01-01

    In this article, we propose a new data mining algorithm, by which one can both capture the non-linearity in data and also find the best subset model. To produce an enhanced subset of the original variables, a preferred selection method should have the potential of adding a supplementary level of regression analysis that would capture complex relationships in the data via mathematical transformation of the predictors and exploration of synergistic effects of combined variables. The method that we present here has the potential to produce an optimal subset of variables, rendering the overall process of model selection more efficient. This algorithm introduces interpretable parameters by transforming the original inputs and also a faithful fit to the data. The core objective of this paper is to introduce a new estimation technique for the classical least square regression framework. This new automatic variable transformation and model selection method could offer an optimal and stable model that minimizes the mean square error and variability, while combining all possible subset selection methodology with the inclusion variable transformations and interactions. Moreover, this method controls multicollinearity, leading to an optimal set of explanatory variables. PMID:29131829

  18. Alpine Ecohydrology Across Scales: Propagating Fine-scale Heterogeneity to the Catchment and Beyond

    NASA Astrophysics Data System (ADS)

    Mastrotheodoros, T.; Pappas, C.; Molnar, P.; Burlando, P.; Hadjidoukas, P.; Fatichi, S.

    2017-12-01

    In mountainous ecosystems, complex topography and landscape heterogeneity govern ecohydrological states and fluxes. Here, we investigate topographic controls on water, energy and carbon fluxes across different climatic regimes and vegetation types representative of the European Alps. We use an ecohydrological model to perform fine-scale numerical experiments on a synthetic domain that comprises a symmetric mountain with eight catchments draining along the cardinal and intercardinal directions. Distributed meteorological model input variables are generated using observations from Switzerland. The model computes the incoming solar radiation based on the local topography. We implement a multivariate statistical framework to disentangle the impact of landscape heterogeneity (i.e., elevation, aspect, flow contributing area, vegetation type) on the simulated water, carbon, and energy dynamics. This allows us to identify the sensitivities of several ecohydrological variables (including leaf area index, evapotranspiration, snow-cover and net primary productivity) to topographic and meteorological inputs at different spatial and temporal scales. We also use an alpine catchment as a real case study to investigate how the natural variability of soil and land cover affects the idealized relationships that arise from the synthetic domain. In accordance with previous studies, our analysis shows a complex pattern of vegetation response to radiation. We find also different patterns of ecosystem sensitivity to topography-driven heterogeneity depending on the hydrological regime (i.e., wet vs. dry conditions). Our results suggest that topography-driven variability in ecohydrological variables (e.g. transpiration) at the fine spatial scale can exceed 50%, but it is substantially reduced ( 5%) when integrated at the catchment scale.

  19. Seasonal and diurnal variability of the meteor flux at high latitudes observed using PFISR

    NASA Astrophysics Data System (ADS)

    Sparks, J. J.; Janches, D.; Nicolls, M. J.; Heinselman, C. J.

    2009-05-01

    We report in this and a companion paper [Fentzke, J.T., Janches, D., Sparks, J.J., 2008. Latitudinal and seasonal variability of the micrometeor input function: A study using model predictions and observations from Arecibo and PFISR. Journal of Atmospheric and Solar-Terrestrial Physics, this issue, doi:10.1016/j.jastp.2008.07.015] a complete seasonal study of the micrometeor input function (MIF) at high latitudes using meteor head-echo radar observations performed with the Poker Flat Incoherent Scatter Radar (PFISR). This flux is responsible for a number of atmospheric phenomena; for example, it could be the source of meteoric smoke that is thought to act as condensation nuclei in the formation of ice particles in the polar mesosphere. The observations presented here were performed for full 24-h periods near the summer and winter solstices and spring and autumn equinoxes, times at which the seasonal variability of the MIF is predicted to be large at high latitudes [Janches, D., Heinselman, C.J., Chau, J.L., Chandran, A., Woodman, R., 2006. Modeling of the micrometeor input function in the upper atmosphere observed by High Power and Large Aperture Radars, JGR, 11, A07317, doi:10.1029/2006JA011628]. Precise altitude and radar instantaneous line-of-sight (radial) Doppler velocity information are obtained for each of the hundreds of events detected every day. We show that meteor rates, altitude, and radial velocity distributions have a large seasonal dependence. This seasonal variability can be explained by a change in the relative location of the meteoroid sources with respect to the observer. Our results show that the meteor flux into the upper atmosphere is strongly anisotropic and its characteristics must be accounted for when including this flux into models attempting to explain related aeronomical phenomena. In addition, the measured acceleration and received signal strength distribution do not seem to depend on season; which may suggest that these observed quantities do not have a strong dependence on entry angle.

  20. Attentional modulation of neuronal variability in circuit models of cortex

    PubMed Central

    Kanashiro, Tatjana; Ocker, Gabriel Koch; Cohen, Marlene R; Doiron, Brent

    2017-01-01

    The circuit mechanisms behind shared neural variability (noise correlation) and its dependence on neural state are poorly understood. Visual attention is well-suited to constrain cortical models of response variability because attention both increases firing rates and their stimulus sensitivity, as well as decreases noise correlations. We provide a novel analysis of population recordings in rhesus primate visual area V4 showing that a single biophysical mechanism may underlie these diverse neural correlates of attention. We explore model cortical networks where top-down mediated increases in excitability, distributed across excitatory and inhibitory targets, capture the key neuronal correlates of attention. Our models predict that top-down signals primarily affect inhibitory neurons, whereas excitatory neurons are more sensitive to stimulus specific bottom-up inputs. Accounting for trial variability in models of state dependent modulation of neuronal activity is a critical step in building a mechanistic theory of neuronal cognition. DOI: http://dx.doi.org/10.7554/eLife.23978.001 PMID:28590902

  1. Modeling drivers of phosphorus loads in Chesapeake Bay tributaries and inferences about long-term change

    USGS Publications Warehouse

    Ryberg, Karen R.; Blomquist, Joel; Sprague, Lori A.; Sekellick, Andrew J.; Keisman, Jennifer

    2018-01-01

    Causal attribution of changes in water quality often consists of correlation, qualitative reasoning, listing references to the work of others, or speculation. To better support statements of attribution for water-quality trends, structural equation modeling was used to model the causal factors of total phosphorus loads in the Chesapeake Bay watershed. By transforming, scaling, and standardizing variables, grouping similar sites, grouping some causal factors into latent variable models, and using methods that correct for assumption violations, we developed a structural equation model to show how causal factors interact to produce total phosphorus loads. Climate (in the form of annual total precipitation and the Palmer Hydrologic Drought Index) and anthropogenic inputs are the major drivers of total phosphorus load in the Chesapeake Bay watershed. Increasing runoff due to natural climate variability is offsetting purposeful management actions that are otherwise decreasing phosphorus loading; consequently, management actions may need to be reexamined to achieve target reductions in the face of climate variability.

  2. Comparison of modelling accuracy with and without exploiting automated optical monitoring information in predicting the treated wastewater quality.

    PubMed

    Tomperi, Jani; Leiviskä, Kauko

    2018-06-01

    Traditionally the modelling in an activated sludge process has been based on solely the process measurements, but as the interest to optically monitor wastewater samples to characterize the floc morphology has increased, in the recent years the results of image analyses have been more frequently utilized to predict the characteristics of wastewater. This study shows that the traditional process measurements or the automated optical monitoring variables by themselves are not capable of developing the best predictive models for the treated wastewater quality in a full-scale wastewater treatment plant, but utilizing these variables together the optimal models, which show the level and changes in the treated wastewater quality, are achieved. By this early warning, process operation can be optimized to avoid environmental damages and economic losses. The study also shows that specific optical monitoring variables are important in modelling a certain quality parameter, regardless of the other input variables available.

  3. Software sensors for biomass concentration in a SSC process using artificial neural networks and support vector machine.

    PubMed

    Acuña, Gonzalo; Ramirez, Cristian; Curilem, Millaray

    2014-01-01

    The lack of sensors for some relevant state variables in fermentation processes can be coped by developing appropriate software sensors. In this work, NARX-ANN, NARMAX-ANN, NARX-SVM and NARMAX-SVM models are compared when acting as software sensors of biomass concentration for a solid substrate cultivation (SSC) process. Results show that NARMAX-SVM outperforms the other models with an SMAPE index under 9 for a 20 % amplitude noise. In addition, NARMAX models perform better than NARX models under the same noise conditions because of their better predictive capabilities as they include prediction errors as inputs. In the case of perturbation of initial conditions of the autoregressive variable, NARX models exhibited better convergence capabilities. This work also confirms that a difficult to measure variable, like biomass concentration, can be estimated on-line from easy to measure variables like CO₂ and O₂ using an adequate software sensor based on computational intelligence techniques.

  4. Development and evaluation of height diameter at breast models for native Chinese Metasequoia.

    PubMed

    Liu, Mu; Feng, Zhongke; Zhang, Zhixiang; Ma, Chenghui; Wang, Mingming; Lian, Bo-Ling; Sun, Renjie; Zhang, Li

    2017-01-01

    Accurate tree height and diameter at breast height (dbh) are important input variables for growth and yield models. A total of 5503 Chinese Metasequoia trees were used in this study. We studied 53 fitted models, of which 7 were linear models and 46 were non-linear models. These models were divided into two groups of single models and multivariate models according to the number of independent variables. The results show that the allometry equation of tree height which has diameter at breast height as independent variable can better reflect the change of tree height; in addition the prediction accuracy of the multivariate composite models is higher than that of the single variable models. Although tree age is not the most important variable in the study of the relationship between tree height and dbh, the consideration of tree age when choosing models and parameters in model selection can make the prediction of tree height more accurate. The amount of data is also an important parameter what can improve the reliability of models. Other variables such as tree height, main dbh and altitude, etc can also affect models. In this study, the method of developing the recommended models for predicting the tree height of native Metasequoias aged 50-485 years is statistically reliable and can be used for reference in predicting the growth and production of mature native Metasequoia.

  5. Development and evaluation of height diameter at breast models for native Chinese Metasequoia

    PubMed Central

    Feng, Zhongke; Zhang, Zhixiang; Ma, Chenghui; Wang, Mingming; Lian, Bo-ling; Sun, Renjie; Zhang, Li

    2017-01-01

    Accurate tree height and diameter at breast height (dbh) are important input variables for growth and yield models. A total of 5503 Chinese Metasequoia trees were used in this study. We studied 53 fitted models, of which 7 were linear models and 46 were non-linear models. These models were divided into two groups of single models and multivariate models according to the number of independent variables. The results show that the allometry equation of tree height which has diameter at breast height as independent variable can better reflect the change of tree height; in addition the prediction accuracy of the multivariate composite models is higher than that of the single variable models. Although tree age is not the most important variable in the study of the relationship between tree height and dbh, the consideration of tree age when choosing models and parameters in model selection can make the prediction of tree height more accurate. The amount of data is also an important parameter what can improve the reliability of models. Other variables such as tree height, main dbh and altitude, etc can also affect models. In this study, the method of developing the recommended models for predicting the tree height of native Metasequoias aged 50–485 years is statistically reliable and can be used for reference in predicting the growth and production of mature native Metasequoia. PMID:28817600

  6. On the impact of using downscaled reanalysis data instead of direct measurements for modeling the mass balance of a tropical glacier (Cordillera Blanca, Peru)

    NASA Astrophysics Data System (ADS)

    Galos, Stephan; Hofer, Marlis; Marzeion, Ben; Mölg, Thomas; Großhauser, Martin

    2013-04-01

    Due to their setting, tropical glaciers are sensitive indicators of mid-tropospheric meteorological variability and climate change. Furthermore these glaciers are of particular interest because they respond faster to climatic changes than glaciers located in mid- or high-latitudes. As long-term direct meteorological measurements in such remote environments are scarce, reanalysis data (e.g. ERA-Interim) provide a highly valuable source of information. Reanalysis datasets (i) enable a temporal extension of data records gained by direct measurements and (ii) provide information from regions where direct measurements are not available. In order to properly derive the physical exchange processes between glaciers and atmosphere from reanalysis data, downscaling procedures are required. In the present study we investigate if downscaled atmospheric variables (air temperature and relative humidity) from a reanalysis dataset can be used as input for a physically based, high resolution energy and mass balance model. We apply a well validated empirical-statistical downscaling model, fed with ERA-Interim data, to an automated weather station (AWS) on the surface of Glaciar Artesonraju (8.96° S | 77.63° W). The downscaled data is then used to replace measured air temperature and relative humidity in the input for the energy and mass balance model, which was calibrated using ablation data from stakes and a sonic ranger. In order to test the sensitivity of the modeled mass balance to the downscaled data, the results are compared to a reference model run driven solely with AWS data as model input. We finally discuss the results and present future perspectives for further developing this method.

  7. Investigating Uncertainty in Predicting Carbon Dynamics in North American Biomes: Putting Support-Effect Bias in Perspective

    NASA Technical Reports Server (NTRS)

    Dungan, Jennifer L.; Brass, Jim (Technical Monitor)

    2001-01-01

    A fundamental strategy in NASA's Earth Observing System's (EOS) monitoring of vegetation and its contribution to the global carbon cycle is to rely on deterministic, process-based ecosystem models to make predictions of carbon flux over large regions. These models are parameterized (that is, the input variables are derived) using remotely sensed images such as those from the Moderate Resolution Imaging Spectroradiometer (MODIS), ground measurements and interpolated maps. Since early applications of these models, investigators have noted that results depend partly on the spatial support of the input variables. In general, the larger the support of the input data, the greater the chance that the effects of important components of the ecosystem will be averaged out. A review of previous work shows that using large supports can cause either positive or negative bias in carbon flux predictions. To put the magnitude and direction of these biases in perspective, we must quantify the range of uncertainty on our best measurements of carbon-related variables made on equivalent areas. In other words, support-effect bias should be placed in the context of prediction uncertainty from other sources. If the range of uncertainty at the smallest support is less than the support-effect bias, more research emphasis should probably be placed on support sizes that are intermediate between those of field measurements and MODIS. If the uncertainty range at the smallest support is larger than the support-effect bias, the accuracy of MODIS-based predictions will be difficult to quantify and more emphasis should be placed on field-scale characterization and sampling. This talk will describe methods to address these issues using a field measurement campaign in North America and "upscaling" using geostatistical estimation and simulation.

  8. Use of a watershed model to characterize the fate and transport of fluometuron, a soil-applied cotton herbicide, in surface water

    USGS Publications Warehouse

    Coupe, R.H.

    2007-01-01

    The Soil and Water Assessment Tool (SWAT) was used to characterize the fate and transport of fluometuron (a herbicide used on cotton) in the Bogue Phalia Basin in northwestern Mississippi, USA. SWAT is a basin-scale watershed model, able to simulate hydrological, chemical, and sediment transport processes. After adjustments to a few parameters (specifically the SURLAG variable, the runoff curve number, Manning's N for overland flow, soil available water capacity, and the base-flow alpha factor) the SWAT model fit the observed streamflow well (the Coefficient of Efficiency and R2 were greater than 60). The results from comparing observed fluometuron concentrations with simulated concentrations were reasonable. The simulated concentrations (which were daily averages) followed the pattern of observed concentrations (instantaneous values) closely, but could be off in magnitude at times. Further calibration might have improved the fit, but given the uncertainties in the input data, it was not clear that any improvement would be due to a better understanding of the input variables. ?? 2007 Taylor & Francis.

  9. Computer simulation models as tools for identifying research needs: A black duck population model

    USGS Publications Warehouse

    Ringelman, J.K.; Longcore, J.R.

    1980-01-01

    Existing data on the mortality and production rates of the black duck (Anas rubripes) were used to construct a WATFIV computer simulation model. The yearly cycle was divided into 8 phases: hunting, wintering, reproductive, molt, post-molt, and juvenile dispersal mortality, and production from original and renesting attempts. The program computes population changes for sex and age classes during each phase. After completion of a standard simulation run with all variable default values in effect, a sensitivity analysis was conducted by changing each of 50 input variables, 1 at a time, to assess the responsiveness of the model to changes in each variable. Thirteen variables resulted in a substantial change in population level. Adult mortality factors were important during hunting and wintering phases. All production and mortality associated with original nesting attempts were sensitive, as was juvenile dispersal mortality. By identifying those factors which invoke the greatest population change, and providing an indication of the accuracy required in estimating these factors, the model helps to identify those variables which would be most profitable topics for future research.

  10. The significance of spatial variability of rainfall on streamflow: A synthetic analysis at the Upper Lee catchment, UK

    NASA Astrophysics Data System (ADS)

    Pechlivanidis, Ilias; McIntyre, Neil; Wheater, Howard

    2017-04-01

    Rainfall, one of the main inputs in hydrological modeling, is a highly heterogeneous process over a wide range of scales in space, and hence the ignorance of the spatial rainfall information could affect the simulated streamflow. Calibration of hydrological model parameters is rarely a straightforward task due to parameter equifinality and parameters' 'nature' to compensate for other uncertainties, i.e. structural and forcing input. In here, we analyse the significance of spatial variability of rainfall on streamflow as a function of catchment scale and type, and antecedent conditions using the continuous time, semi-distributed PDM hydrological model at the Upper Lee catchment, UK. The impact of catchment scale and type is assessed using 11 nested catchments ranging in scale from 25 to 1040 km2, and further assessed by artificially changing the catchment characteristics and translating these to model parameters with uncertainty using model regionalisation. Synthetic rainfall events are introduced to directly relate the change in simulated streamflow to the spatial variability of rainfall. Overall, we conclude that the antecedent catchment wetness and catchment type play an important role in controlling the significance of the spatial distribution of rainfall on streamflow. Results show a relationship between hydrograph characteristics (streamflow peak and volume) and the degree of spatial variability of rainfall for the impermeable catchments under dry antecedent conditions, although this decreases at larger scales; however this sensitivity is significantly undermined under wet antecedent conditions. Although there is indication that the impact of spatial rainfall on streamflow varies as a function of catchment scale, the variability of antecedent conditions between the synthetic catchments seems to mask this significance. Finally, hydrograph responses to different spatial patterns in rainfall depend on assumptions used for model parameter estimation and also the spatial variation in parameters indicating the need of an uncertainty framework in such investigation.

  11. A stacking ensemble learning framework for annual river ice breakup dates

    NASA Astrophysics Data System (ADS)

    Sun, Wei; Trevor, Bernard

    2018-06-01

    River ice breakup dates (BDs) are not merely a proxy indicator of climate variability and change, but a direct concern in the management of local ice-caused flooding. A framework of stacking ensemble learning for annual river ice BDs was developed, which included two-level components: member and combining models. The member models described the relations between BD and their affecting indicators; the combining models linked the predicted BD by each member models with the observed BD. Especially, Bayesian regularization back-propagation artificial neural network (BRANN), and adaptive neuro fuzzy inference systems (ANFIS) were employed as both member and combining models. The candidate combining models also included the simple average methods (SAM). The input variables for member models were selected by a hybrid filter and wrapper method. The performances of these models were examined using the leave-one-out cross validation. As the largest unregulated river in Alberta, Canada with ice jams frequently occurring in the vicinity of Fort McMurray, the Athabasca River at Fort McMurray was selected as the study area. The breakup dates and candidate affecting indicators in 1980-2015 were collected. The results showed that, the BRANN member models generally outperformed the ANFIS member models in terms of better performances and simpler structures. The difference between the R and MI rankings of inputs in the optimal member models may imply that the linear correlation based filter method would be feasible to generate a range of candidate inputs for further screening through other wrapper or embedded IVS methods. The SAM and BRANN combining models generally outperformed all member models. The optimal SAM combining model combined two BRANN member models and improved upon them in terms of average squared errors by 14.6% and 18.1% respectively. In this study, for the first time, the stacking ensemble learning was applied to forecasting of river ice breakup dates, which appeared promising for other river ice forecasting problems.

  12. Added value of experts' knowledge to improve a quantitative microbial exposure assessment model--Application to aseptic-UHT food products.

    PubMed

    Pujol, Laure; Johnson, Nicholas Brian; Magras, Catherine; Albert, Isabelle; Membré, Jeanne-Marie

    2015-10-15

    In a previous study, a quantitative microbial exposure assessment (QMEA) model applied to an aseptic-UHT food process was developed [Pujol, L., Albert, I., Magras, C., Johnson, N. B., Membré, J. M. Probabilistic exposure assessment model to estimate aseptic UHT product failure rate. 2015 International Journal of Food Microbiology. 192, 124-141]. It quantified Sterility Failure Rate (SFR) associated with Bacillus cereus and Geobacillus stearothermophilus per process module (nine modules in total from raw material reception to end-product storage). Previously, the probabilistic model inputs were set by experts (using knowledge and in-house data). However, only the variability dimension was taken into account. The model was then improved using expert elicitation knowledge in two ways. First, the model was refined by adding the uncertainty dimension to the probabilistic inputs, enabling to set a second order Monte Carlo analysis. The eight following inputs, and their impact on SFR, are presented in detail in this present study: D-value for each bacteria of interest (B. cereus and G. stearothermophilus) associated with the inactivation model for the UHT treatment step, i.e., two inputs; log reduction (decimal reduction) number associated with the inactivation model for the packaging sterilization step for each bacterium and each part of the packaging (product container and sealing component), i.e., four inputs; and bacterial spore air load of the aseptic tank and the filler cabinet rooms, i.e., two inputs. Second, the model was improved by leveraging expert knowledge to develop further the existing model. The proportion of bacteria in the product which settled on surface of pipes (between the UHT treatment and the aseptic tank on one hand, and between the aseptic tank and the filler cabinet on the other hand) leading to a possible biofilm formation for each bacterium, was better characterized. It was modeled as a function of the hygienic design level of the aseptic-UHT line: the experts provided the model structure and most of the model parameters values. Mean of SFR was estimated to 10×10(-8) (95% Confidence Interval=[0×10(-8); 350×10(-8)]) and 570×10(-8) (95% CI=[380×10(-8); 820×10(-8)]) for B. cereus and G. stearothermophilus, respectively. These estimations were more accurate (since the confidence interval was provided) than those given by the model with only variability (for which the estimates were 15×10(-8) and 580×10(-8) for B. cereus and G. stearothermophilus, respectively). The updated model outputs were also compared with those obtained when inputs were described by a generic distribution, without specific information related to the case-study. Results showed that using a generic distribution can lead to unrealistic estimations (e.g., 3,181,000 product units contaminated by G. stearothermophilus among 10(8) product units produced) and emphasized the added value of eliciting information from experts from the relevant specialist field knowledge. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Do downscaled general circulation models reliably simulate historical climatic conditions?

    USGS Publications Warehouse

    Bock, Andrew R.; Hay, Lauren E.; McCabe, Gregory J.; Markstrom, Steven L.; Atkinson, R. Dwight

    2018-01-01

    The accuracy of statistically downscaled (SD) general circulation model (GCM) simulations of monthly surface climate for historical conditions (1950–2005) was assessed for the conterminous United States (CONUS). The SD monthly precipitation (PPT) and temperature (TAVE) from 95 GCMs from phases 3 and 5 of the Coupled Model Intercomparison Project (CMIP3 and CMIP5) were used as inputs to a monthly water balance model (MWBM). Distributions of MWBM input (PPT and TAVE) and output [runoff (RUN)] variables derived from gridded station data (GSD) and historical SD climate were compared using the Kolmogorov–Smirnov (KS) test For all three variables considered, the KS test results showed that variables simulated using CMIP5 generally are more reliable than those derived from CMIP3, likely due to improvements in PPT simulations. At most locations across the CONUS, the largest differences between GSD and SD PPT and RUN occurred in the lowest part of the distributions (i.e., low-flow RUN and low-magnitude PPT). Results indicate that for the majority of the CONUS, there are downscaled GCMs that can reliably simulate historical climatic conditions. But, in some geographic locations, none of the SD GCMs replicated historical conditions for two of the three variables (PPT and RUN) based on the KS test, with a significance level of 0.05. In these locations, improved GCM simulations of PPT are needed to more reliably estimate components of the hydrologic cycle. Simple metrics and statistical tests, such as those described here, can provide an initial set of criteria to help simplify GCM selection.

  14. Wind Power Curve Modeling Using Statistical Models: An Investigation of Atmospheric Input Variables at a Flat and Complex Terrain Wind Farm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wharton, S.; Bulaevskaya, V.; Irons, Z.

    The goal of our FY15 project was to explore the use of statistical models and high-resolution atmospheric input data to develop more accurate prediction models for turbine power generation. We modeled power for two operational wind farms in two regions of the country. The first site is a 235 MW wind farm in Northern Oklahoma with 140 GE 1.68 turbines. Our second site is a 38 MW wind farm in the Altamont Pass Region of Northern California with 38 Mitsubishi 1 MW turbines. The farms are very different in topography, climatology, and turbine technology; however, both occupy high wind resourcemore » areas in the U.S. and are representative of typical wind farms found in their respective areas.« less

  15. Modeling and Analysis of CNC Milling Process Parameters on Al3030 based Composite

    NASA Astrophysics Data System (ADS)

    Gupta, Anand; Soni, P. K.; Krishna, C. M.

    2018-04-01

    The machining of Al3030 based composites on Computer Numerical Control (CNC) high speed milling machine have assumed importance because of their wide application in aerospace industries, marine industries and automotive industries etc. Industries mainly focus on surface irregularities; material removal rate (MRR) and tool wear rate (TWR) which usually depends on input process parameters namely cutting speed, feed in mm/min, depth of cut and step over ratio. Many researchers have carried out researches in this area but very few have taken step over ratio or radial depth of cut also as one of the input variables. In this research work, the study of characteristics of Al3030 is carried out at high speed CNC milling machine over the speed range of 3000 to 5000 r.p.m. Step over ratio, depth of cut and feed rate are other input variables taken into consideration in this research work. A total nine experiments are conducted according to Taguchi L9 orthogonal array. The machining is carried out on high speed CNC milling machine using flat end mill of diameter 10mm. Flatness, MRR and TWR are taken as output parameters. Flatness has been measured using portable Coordinate Measuring Machine (CMM). Linear regression models have been developed using Minitab 18 software and result are validated by conducting selected additional set of experiments. Selection of input process parameters in order to get best machining outputs is the key contributions of this research work.

  16. Noise facilitates transcriptional control under dynamic inputs.

    PubMed

    Kellogg, Ryan A; Tay, Savaş

    2015-01-29

    Cells must respond sensitively to time-varying inputs in complex signaling environments. To understand how signaling networks process dynamic inputs into gene expression outputs and the role of noise in cellular information processing, we studied the immune pathway NF-κB under periodic cytokine inputs using microfluidic single-cell measurements and stochastic modeling. We find that NF-κB dynamics in fibroblasts synchronize with oscillating TNF signal and become entrained, leading to significantly increased NF-κB oscillation amplitude and mRNA output compared to non-entrained response. Simulations show that intrinsic biochemical noise in individual cells improves NF-κB oscillation and entrainment, whereas cell-to-cell variability in NF-κB natural frequency creates population robustness, together enabling entrainment over a wider range of dynamic inputs. This wide range is confirmed by experiments where entrained cells were measured under all input periods. These results indicate that synergy between oscillation and noise allows cells to achieve efficient gene expression in dynamically changing signaling environments. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Bio-inspired online variable recruitment control of fluidic artificial muscles

    NASA Astrophysics Data System (ADS)

    Jenkins, Tyler E.; Chapman, Edward M.; Bryant, Matthew

    2016-12-01

    This paper details the creation of a hybrid variable recruitment control scheme for fluidic artificial muscle (FAM) actuators with an emphasis on maximizing system efficiency and switching control performance. Variable recruitment is the process of altering a system’s active number of actuators, allowing operation in distinct force regimes. Previously, FAM variable recruitment was only quantified with offline, manual valve switching; this study addresses the creation and characterization of novel, on-line FAM switching control algorithms. The bio-inspired algorithms are implemented in conjunction with a PID and model-based controller, and applied to a simulated plant model. Variable recruitment transition effects and chatter rejection are explored via a sensitivity analysis, allowing a system designer to weigh tradeoffs in actuator modeling, algorithm choice, and necessary hardware. Variable recruitment is further developed through simulation of a robotic arm tracking a variety of spline position inputs, requiring several levels of actuator recruitment. Switching controller performance is quantified and compared with baseline systems lacking variable recruitment. The work extends current variable recruitment knowledge by creating novel online variable recruitment control schemes, and exploring how online actuator recruitment affects system efficiency and control performance. Key topics associated with implementing a variable recruitment scheme, including the effects of modeling inaccuracies, hardware considerations, and switching transition concerns are also addressed.

  18. Methodological development for selection of significant predictors explaining fatal road accidents.

    PubMed

    Dadashova, Bahar; Arenas-Ramírez, Blanca; Mira-McWilliams, José; Aparicio-Izquierdo, Francisco

    2016-05-01

    Identification of the most relevant factors for explaining road accident occurrence is an important issue in road safety research, particularly for future decision-making processes in transport policy. However model selection for this particular purpose is still an ongoing research. In this paper we propose a methodological development for model selection which addresses both explanatory variable and adequate model selection issues. A variable selection procedure, TIM (two-input model) method is carried out by combining neural network design and statistical approaches. The error structure of the fitted model is assumed to follow an autoregressive process. All models are estimated using Markov Chain Monte Carlo method where the model parameters are assigned non-informative prior distributions. The final model is built using the results of the variable selection. For the application of the proposed methodology the number of fatal accidents in Spain during 2000-2011 was used. This indicator has experienced the maximum reduction internationally during the indicated years thus making it an interesting time series from a road safety policy perspective. Hence the identification of the variables that have affected this reduction is of particular interest for future decision making. The results of the variable selection process show that the selected variables are main subjects of road safety policy measures. Published by Elsevier Ltd.

  19. Instantaneous-to-daily GPP upscaling schemes based on a coupled photosynthesis-stomatal conductance model: correcting the overestimation of GPP by directly using daily average meteorological inputs.

    PubMed

    Wang, Fumin; Gonsamo, Alemu; Chen, Jing M; Black, T Andrew; Zhou, Bin

    2014-11-01

    Daily canopy photosynthesis is usually temporally upscaled from instantaneous (i.e., seconds) photosynthesis rate. The nonlinear response of photosynthesis to meteorological variables makes the temporal scaling a significant challenge. In this study, two temporal upscaling schemes of daily photosynthesis, the integrated daily model (IDM) and the segmented daily model (SDM), are presented by considering the diurnal variations of meteorological variables based on a coupled photosynthesis-stomatal conductance model. The two models, as well as a simple average daily model (SADM) with daily average meteorological inputs, were validated using the tower-derived gross primary production (GPP) to assess their abilities in simulating daily photosynthesis. The results showed IDM closely followed the seasonal trend of the tower-derived GPP with an average RMSE of 1.63 g C m(-2) day(-1), and an average Nash-Sutcliffe model efficiency coefficient (E) of 0.87. SDM performed similarly to IDM in GPP simulation but decreased the computation time by >66%. SADM overestimated daily GPP by about 15% during the growing season compared to IDM. Both IDM and SDM greatly decreased the overestimation by SADM, and improved the simulation of daily GPP by reducing the RMSE by 34 and 30%, respectively. The results indicated that IDM and SDM are useful temporal upscaling approaches, and both are superior to SADM in daily GPP simulation because they take into account the diurnally varying responses of photosynthesis to meteorological variables. SDM is computationally more efficient, and therefore more suitable for long-term and large-scale GPP simulations.

  20. Random vectors and spatial analysis by geostatistics for geotechnical applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, D.S.

    1987-08-01

    Geostatistics is extended to the spatial analysis of vector variables by defining the estimation variance and vector variogram in terms of the magnitude of difference vectors. Many random variables in geotechnology are in vectorial terms rather than scalars, and its structural analysis requires those sample variable interpolations to construct and characterize structural models. A better local estimator will result in greater quality of input models; geostatistics can provide such estimators; kriging estimators. The efficiency of geostatistics for vector variables is demonstrated in a case study of rock joint orientations in geological formations. The positive cross-validation encourages application of geostatistics tomore » spatial analysis of random vectors in geoscience as well as various geotechnical fields including optimum site characterization, rock mechanics for mining and civil structures, cavability analysis of block cavings, petroleum engineering, and hydrologic and hydraulic modelings.« less

  1. Input selection and performance optimization of ANN-based streamflow forecasts in the drought-prone Murray Darling Basin region using IIS and MODWT algorithm

    NASA Astrophysics Data System (ADS)

    Prasad, Ramendra; Deo, Ravinesh C.; Li, Yan; Maraseni, Tek

    2017-11-01

    Forecasting streamflow is vital for strategically planning, utilizing and redistributing water resources. In this paper, a wavelet-hybrid artificial neural network (ANN) model integrated with iterative input selection (IIS) algorithm (IIS-W-ANN) is evaluated for its statistical preciseness in forecasting monthly streamflow, and it is then benchmarked against M5 Tree model. To develop hybrid IIS-W-ANN model, a global predictor matrix is constructed for three local hydrological sites (Richmond, Gwydir, and Darling River) in Australia's agricultural (Murray-Darling) Basin. Model inputs comprised of statistically significant lagged combination of streamflow water level, are supplemented by meteorological data (i.e., precipitation, maximum and minimum temperature, mean solar radiation, vapor pressure and evaporation) as the potential model inputs. To establish robust forecasting models, iterative input selection (IIS) algorithm is applied to screen the best data from the predictor matrix and is integrated with the non-decimated maximum overlap discrete wavelet transform (MODWT) applied on the IIS-selected variables. This resolved the frequencies contained in predictor data while constructing a wavelet-hybrid (i.e., IIS-W-ANN and IIS-W-M5 Tree) model. Forecasting ability of IIS-W-ANN is evaluated via correlation coefficient (r), Willmott's Index (WI), Nash-Sutcliffe Efficiency (ENS), root-mean-square-error (RMSE), and mean absolute error (MAE), including the percentage RMSE and MAE. While ANN models are seen to outperform M5 Tree executed for all hydrological sites, the IIS variable selector was efficient in determining the appropriate predictors, as stipulated by the better performance of the IIS coupled (ANN and M5 Tree) models relative to the models without IIS. When IIS-coupled models are integrated with MODWT, the wavelet-hybrid IIS-W-ANN and IIS-W-M5 Tree are seen to attain significantly accurate performance relative to their standalone counterparts. Importantly, IIS-W-ANN model accuracy outweighs IIS-ANN, as evidenced by a larger r and WI (by 7.5% and 3.8%, respectively) and a lower RMSE (by 21.3%). In comparison to the IIS-W-M5 Tree model, IIS-W-ANN model yielded larger values of WI = 0.936-0.979 and ENS = 0.770-0.920. Correspondingly, the errors (RMSE and MAE) ranged from 0.162-0.487 m and 0.139-0.390 m, respectively, with relative errors, RRMSE = (15.65-21.00) % and MAPE = (14.79-20.78) %. Distinct geographic signature is evident where the most and least accurately forecasted streamflow data is attained for the Gwydir and Darling River, respectively. Conclusively, this study advocates the efficacy of iterative input selection, allowing the proper screening of model predictors, and subsequently, its integration with MODWT resulting in enhanced performance of the models applied in streamflow forecasting.

  2. Statistical model selection for better prediction and discovering science mechanisms that affect reliability

    DOE PAGES

    Anderson-Cook, Christine M.; Morzinski, Jerome; Blecker, Kenneth D.

    2015-08-19

    Understanding the impact of production, environmental exposure and age characteristics on the reliability of a population is frequently based on underlying science and empirical assessment. When there is incomplete science to prescribe which inputs should be included in a model of reliability to predict future trends, statistical model/variable selection techniques can be leveraged on a stockpile or population of units to improve reliability predictions as well as suggest new mechanisms affecting reliability to explore. We describe a five-step process for exploring relationships between available summaries of age, usage and environmental exposure and reliability. The process involves first identifying potential candidatemore » inputs, then second organizing data for the analysis. Third, a variety of models with different combinations of the inputs are estimated, and fourth, flexible metrics are used to compare them. As a result, plots of the predicted relationships are examined to distill leading model contenders into a prioritized list for subject matter experts to understand and compare. The complexity of the model, quality of prediction and cost of future data collection are all factors to be considered by the subject matter experts when selecting a final model.« less

  3. figure1.nc

    EPA Pesticide Factsheets

    NetCDF file of the SREF standard deviation of wind speed and direction that was used to inject variability in the FDDA input.variable U_NDG_OLD contains standard deviation of wind speed (m/s)variable V_NDG_OLD contains the standard deviation of wind direction (deg)This dataset is associated with the following publication:Gilliam , R., C. Hogrefe , J. Godowitch, S. Napelenok , R. Mathur , and S.T. Rao. Impact of inherent meteorology uncertainty on air quality model predictions. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES. American Geophysical Union, Washington, DC, USA, 120(23): 12,259–12,280, (2015).

  4. Managing fish habitat for flow and temperature extremes ...

    EPA Pesticide Factsheets

    Summer low flows and stream temperature maxima are key drivers affecting the sustainability of fish populations. Thus, it is critical to understand both the natural templates of spatiotemporal variability, how these are shifting due to anthropogenic influences of development and climate change, and how these impacts can be moderated by natural and constructed green infrastructure. Low flow statistics of New England streams have been characterized using a combination of regression equations to describe long-term averages as a function of indicators of hydrologic regime (rain- versus snow-dominated), precipitation, evapotranspiration or temperature, surface water storage, baseflow recession rates, and impervious cover. Difference equations have been constructed to describe interannual variation in low flow as a function of changing air temperature, precipitation, and ocean-atmospheric teleconnection indices. Spatial statistical network models have been applied to explore fine-scale variability of thermal regimes along stream networks in New England as a function of variables describing natural and altered energy inputs, groundwater contributions, and retention time. Low flows exacerbate temperature impacts by reducing thermal inertia of streams to energy inputs. Based on these models, we can construct scenarios of fish habitat suitability using current and projected future climate and the potential for preservation and restoration of historic habitat regimes th

  5. Job satisfaction among mental healthcare professionals: The respective contributions of professional characteristics, team attributes, team processes, and team emergent states.

    PubMed

    Fleury, Marie-Josée; Grenier, Guy; Bamvita, Jean-Marie

    2017-01-01

    The aim of this study was to determine the respective contribution of professional characteristics, team attributes, team processes, and team emergent states on the job satisfaction of 315 mental health professionals from Quebec (Canada). Job satisfaction was measured with the Job Satisfaction Survey. Independent variables were organized into four categories according to a conceptual framework inspired from the Input-Mediator-Outcomes-Input Model. The contribution of each category of variables was assessed using hierarchical regression analysis. Variations in job satisfaction were mostly explained by team processes, with minimal contribution from the other three categories. Among the six variables significantly associated with job satisfaction in the final model, four were team processes: stronger team support, less team conflict, deeper involvement in the decision-making process, and more team collaboration. Job satisfaction was also associated with nursing and, marginally, male gender (professional characteristics) as well as with a stronger affective commitment toward the team (team emergent states). Results confirm the importance for health managers of offering adequate support to mental health professionals, and creating an environment favorable to collaboration and decision-sharing, and likely to reduce conflicts between team members.

  6. Training feed-forward neural networks with gain constraints

    PubMed

    Hartman

    2000-04-01

    Inaccurate input-output gains (partial derivatives of outputs with respect to inputs) are common in neural network models when input variables are correlated or when data are incomplete or inaccurate. Accurate gains are essential for optimization, control, and other purposes. We develop and explore a method for training feedforward neural networks subject to inequality or equality-bound constraints on the gains of the learned mapping. Gain constraints are implemented as penalty terms added to the objective function, and training is done using gradient descent. Adaptive and robust procedures are devised for balancing the relative strengths of the various terms in the objective function, which is essential when the constraints are inconsistent with the data. The approach has the virtue that the model domain of validity can be extended via extrapolation training, which can dramatically improve generalization. The algorithm is demonstrated here on artificial and real-world problems with very good results and has been advantageously applied to dozens of models currently in commercial use.

  7. Tool for obtaining projected future climate inputs for the WEPP and SWAT models

    USDA-ARS?s Scientific Manuscript database

    Climate change is an increasingly important issue affecting natural resources. Rising temperatures, reductions in snow cover, and variability in precipitation depths and intensities are altering the accepted normal approaches for predicting runoff, soil erosion, and chemical losses from upland areas...

  8. Analysis of input variables for a pre-feasibility evaluation model for toll highways

    DOT National Transportation Integrated Search

    1998-05-01

    In recent years, private industry has been more involved in highway financing and operation. Many countries have started to apply new or improved strategies to promote the development of highway projects using sources other than the State. The most w...

  9. Spatial variability in denitrification rates in an Oregon tidal salt marsh

    EPA Science Inventory

    Modeling denitrification (DeN) is particularly challenging in tidal systems, which play a vital role in buffering adjacent coastal waters from nitrogen inputs. These systems are hydrologically and biogeochemically complex, varying on fine temporal and spatial scales. As part of a...

  10. Tropical Cyclone Footprint in the Ocean Mixed Layer Observed by Argo in the Northwest Pacific

    DTIC Science & Technology

    2014-10-25

    668. Hu, A., and G. A. Meehl (2009), Effect of the Atlantic hurricanes on the oceanic meridional overturning circulation and heat transport, Geo...atmospheric circulation [Hart et al., 2007]. Several studies, based on observations and modeling, suggest that TC-induced energy input and mixing may play...an important role in climate variability through regulating the oceanic general circulation and its variability [e.g., Emanuel, 2001; Sriver and Huber

  11. Attitude Control for an Aero-Vehicle Using Vector Thrusting and Variable Speed Control Moment Gyros

    NASA Technical Reports Server (NTRS)

    Shin, Jong-Yeob; Lim, K. B.; Moerder, D. D.

    2005-01-01

    Stabilization of passively unstable thrust-levitated vehicles can require significant control inputs. Although thrust vectoring is a straightforward choice for realizing these inputs, this may lead to difficulties discussed in the paper. This paper examines supplementing thrust vectoring with Variable-Speed Control Moment Gyroscopes (VSCMGs). The paper describes how to allocate VSCMGs and the vectored thrust mechanism for attitude stabilization in frequency domain and also shows trade-off between vectored thrust and VSCMGs. Using an H2 control synthesis methodology in LMI optimization, a feedback control law is designed for a thrust-levitated research vehicle and is simulated with the full nonlinear model. It is demonstrated that VSCMGs can reduce the use of vectored thrust variation for stabilizing the hovering platform in the presence of strong wind gusts.

  12. Virtual test rig to improve the design and optimisation process of the vehicle steering and suspension systems

    NASA Astrophysics Data System (ADS)

    Mántaras, Daniel A.; Luque, Pablo

    2012-10-01

    A virtual test rig is presented using a three-dimensional model of the elasto-kinematic behaviour of a vehicle. A general approach is put forward to determine the three-dimensional position of the body and the main parameters which influence the handling of the vehicle. For the design process, the variable input data are the longitudinal and lateral acceleration and the curve radius, which are defined by the user as a design goal. For the optimisation process, once the vehicle has been built, the variable input data are the travel of the four struts and the steering wheel angle, which is obtained through monitoring the vehicle. The virtual test rig has been applied to a standard vehicle and the validity of the results has been proven.

  13. Rapid Elemental Analysis and Provenance Study of Blumea balsamifera DC Using Laser-Induced Breakdown Spectroscopy

    PubMed Central

    Liu, Xiaona; Zhang, Qiao; Wu, Zhisheng; Shi, Xinyuan; Zhao, Na; Qiao, Yanjiang

    2015-01-01

    Laser-induced breakdown spectroscopy (LIBS) was applied to perform a rapid elemental analysis and provenance study of Blumea balsamifera DC. Principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) were implemented to exploit the multivariate nature of the LIBS data. Scores and loadings of computed principal components visually illustrated the differing spectral data. The PLS-DA algorithm showed good classification performance. The PLS-DA model using complete spectra as input variables had similar discrimination performance to using selected spectral lines as input variables. The down-selection of spectral lines was specifically focused on the major elements of B. balsamifera samples. Results indicated that LIBS could be used to rapidly analyze elements and to perform provenance study of B. balsamifera. PMID:25558999

  14. New type side weir discharge coefficient simulation using three novel hybrid adaptive neuro-fuzzy inference systems

    NASA Astrophysics Data System (ADS)

    Bonakdari, Hossein; Zaji, Amir Hossein

    2018-03-01

    In many hydraulic structures, side weirs have a critical role. Accurately predicting the discharge coefficient is one of the most important stages in the side weir design process. In the present paper, a new high efficient side weir is investigated. To simulate the discharge coefficient of these side weirs, three novel soft computing methods are used. The process includes modeling the discharge coefficient with the hybrid Adaptive Neuro-Fuzzy Interface System (ANFIS) and three optimization algorithms, namely Differential Evaluation (ANFIS-DE), Genetic Algorithm (ANFIS-GA) and Particle Swarm Optimization (ANFIS-PSO). In addition, sensitivity analysis is done to find the most efficient input variables for modeling the discharge coefficient of these types of side weirs. According to the results, the ANFIS method has higher performance when using simpler input variables. In addition, the ANFIS-DE with RMSE of 0.077 has higher performance than the ANFIS-GA and ANFIS-PSO methods with RMSE of 0.079 and 0.096, respectively.

  15. Thermal sensation prediction by soft computing methodology.

    PubMed

    Jović, Srđan; Arsić, Nebojša; Vilimonović, Jovana; Petković, Dalibor

    2016-12-01

    Thermal comfort in open urban areas is very factor based on environmental point of view. Therefore it is need to fulfill demands for suitable thermal comfort during urban planning and design. Thermal comfort can be modeled based on climatic parameters and other factors. The factors are variables and they are changed throughout the year and days. Therefore there is need to establish an algorithm for thermal comfort prediction according to the input variables. The prediction results could be used for planning of time of usage of urban areas. Since it is very nonlinear task, in this investigation was applied soft computing methodology in order to predict the thermal comfort. The main goal was to apply extreme leaning machine (ELM) for forecasting of physiological equivalent temperature (PET) values. Temperature, pressure, wind speed and irradiance were used as inputs. The prediction results are compared with some benchmark models. Based on the results ELM can be used effectively in forecasting of PET. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Nonequilibrium air radiation (Nequair) program: User's manual

    NASA Technical Reports Server (NTRS)

    Park, C.

    1985-01-01

    A supplement to the data relating to the calculation of nonequilibrium radiation in flight regimes of aeroassisted orbital transfer vehicles contains the listings of the computer code NEQAIR (Nonequilibrium Air Radiation), its primary input data, and explanation of the user-supplied input variables. The user-supplied input variables are the thermodynamic variables of air at a given point, i.e., number densities of various chemical species, translational temperatures of heavy particles and electrons, and vibrational temperature. These thermodynamic variables do not necessarily have to be in thermodynamic equilibrium. The code calculates emission and absorption characteristics of air under these given conditions.

  17. Sensitivity and uncertainty in crop water footprint accounting: a case study for the Yellow River basin

    NASA Astrophysics Data System (ADS)

    Zhuo, L.; Mekonnen, M. M.; Hoekstra, A. Y.

    2014-06-01

    Water Footprint Assessment is a fast-growing field of research, but as yet little attention has been paid to the uncertainties involved. This study investigates the sensitivity of and uncertainty in crop water footprint (in m3 t-1) estimates related to uncertainties in important input variables. The study focuses on the green (from rainfall) and blue (from irrigation) water footprint of producing maize, soybean, rice, and wheat at the scale of the Yellow River basin in the period 1996-2005. A grid-based daily water balance model at a 5 by 5 arcmin resolution was applied to compute green and blue water footprints of the four crops in the Yellow River basin in the period considered. The one-at-a-time method was carried out to analyse the sensitivity of the crop water footprint to fractional changes of seven individual input variables and parameters: precipitation (PR), reference evapotranspiration (ET0), crop coefficient (Kc), crop calendar (planting date with constant growing degree days), soil water content at field capacity (Smax), yield response factor (Ky) and maximum yield (Ym). Uncertainties in crop water footprint estimates related to uncertainties in four key input variables: PR, ET0, Kc, and crop calendar were quantified through Monte Carlo simulations. The results show that the sensitivities and uncertainties differ across crop types. In general, the water footprint of crops is most sensitive to ET0 and Kc, followed by the crop calendar. Blue water footprints were more sensitive to input variability than green water footprints. The smaller the annual blue water footprint is, the higher its sensitivity to changes in PR, ET0, and Kc. The uncertainties in the total water footprint of a crop due to combined uncertainties in climatic inputs (PR and ET0) were about ±20% (at 95% confidence interval). The effect of uncertainties in ET0was dominant compared to that of PR. The uncertainties in the total water footprint of a crop as a result of combined key input uncertainties were on average ±30% (at 95% confidence level).

  18. Tropical Dynamics Process Studies and Numerical Methods

    DTIC Science & Technology

    2011-06-16

    model. Model input and output arc defined in the Table below. Variable Description Ih Latent heat flux (W/ mA2 ) sh Sensible heat flux (W/ mA2 ) lwo...Net longwave flux (W/ mA2 ) swo Net shortwave flux (W/ mA2 ) 11 Wind speed (m/s) us Atmospheric friction velocity tb Bulk temperature (deg C) dtwo Warm

  19. Numerical Simulation and Optimization of Directional Solidification Process of Single Crystal Superalloy Casting

    PubMed Central

    Zhang, Hang; Xu, Qingyan; Liu, Baicheng

    2014-01-01

    The rapid development of numerical modeling techniques has led to more accurate results in modeling metal solidification processes. In this study, the cellular automaton-finite difference (CA-FD) method was used to simulate the directional solidification (DS) process of single crystal (SX) superalloy blade samples. Experiments were carried out to validate the simulation results. Meanwhile, an intelligent model based on fuzzy control theory was built to optimize the complicate DS process. Several key parameters, such as mushy zone width and temperature difference at the cast-mold interface, were recognized as the input variables. The input variables were functioned with the multivariable fuzzy rule to get the output adjustment of withdrawal rate (v) (a key technological parameter). The multivariable fuzzy rule was built, based on the structure feature of casting, such as the relationship between section area, and the delay time of the temperature change response by changing v, and the professional experience of the operator as well. Then, the fuzzy controlling model coupled with CA-FD method could be used to optimize v in real-time during the manufacturing process. The optimized process was proven to be more flexible and adaptive for a steady and stray-grain free DS process. PMID:28788535

  20. Data driven model generation based on computational intelligence

    NASA Astrophysics Data System (ADS)

    Gemmar, Peter; Gronz, Oliver; Faust, Christophe; Casper, Markus

    2010-05-01

    The simulation of discharges at a local gauge or the modeling of large scale river catchments are effectively involved in estimation and decision tasks of hydrological research and practical applications like flood prediction or water resource management. However, modeling such processes using analytical or conceptual approaches is made difficult by both complexity of process relations and heterogeneity of processes. It was shown manifold that unknown or assumed process relations can principally be described by computational methods, and that system models can automatically be derived from observed behavior or measured process data. This study describes the development of hydrological process models using computational methods including Fuzzy logic and artificial neural networks (ANN) in a comprehensive and automated manner. Methods We consider a closed concept for data driven development of hydrological models based on measured (experimental) data. The concept is centered on a Fuzzy system using rules of Takagi-Sugeno-Kang type which formulate the input-output relation in a generic structure like Ri : IFq(t) = lowAND...THENq(t+Δt) = ai0 +ai1q(t)+ai2p(t-Δti1)+ai3p(t+Δti2)+.... The rule's premise part (IF) describes process states involving available process information, e.g. actual outlet q(t) is low where low is one of several Fuzzy sets defined over variable q(t). The rule's conclusion (THEN) estimates expected outlet q(t + Δt) by a linear function over selected system variables, e.g. actual outlet q(t), previous and/or forecasted precipitation p(t ?Δtik). In case of river catchment modeling we use head gauges, tributary and upriver gauges in the conclusion part as well. In addition, we consider temperature and temporal (season) information in the premise part. By creating a set of rules R = {Ri|(i = 1,...,N)} the space of process states can be covered as concise as necessary. Model adaptation is achieved by finding on optimal set A = (aij) of conclusion parameters with respect to a defined rating function and experimental data. To find A, we use for example a linear equation solver and RMSE-function. In practical process models, the number of Fuzzy sets and the according number of rules is fairly low. Nevertheless, creating the optimal model requires some experience. Therefore, we improved this development step by methods for automatic generation of Fuzzy sets, rules, and conclusions. Basically, the model achievement depends to a great extend on the selection of the conclusion variables. It is the aim that variables having most influence on the system reaction being considered and superfluous ones being neglected. At first, we use Kohonen maps, a specialized ANN, to identify relevant input variables from the large set of available system variables. A greedy algorithm selects a comprehensive set of dominant and uncorrelated variables. Next, the premise variables are analyzed with clustering methods (e.g. Fuzzy-C-means) and Fuzzy sets are then derived from cluster centers and outlines. The rule base is automatically constructed by permutation of the Fuzzy sets of the premise variables. Finally, the conclusion parameters are calculated and the total coverage of the input space is iteratively tested with experimental data, rarely firing rules are combined and coarse coverage of sensitive process states results in refined Fuzzy sets and rules. Results The described methods were implemented and integrated in a development system for process models. A series of models has already been built e.g. for rainfall-runoff modeling or for flood prediction (up to 72 hours) in river catchments. The models required significantly less development effort and showed advanced simulation results compared to conventional models. The models can be used operationally and simulation takes only some minutes on a standard PC e.g. for a gauge forecast (up to 72 hours) for the whole Mosel (Germany) river catchment.

  1. Nonlinear autoregressive neural networks with external inputs for forecasting of typhoon inundation level.

    PubMed

    Ouyang, Huei-Tau

    2017-08-01

    Accurate inundation level forecasting during typhoon invasion is crucial for organizing response actions such as the evacuation of people from areas that could potentially flood. This paper explores the ability of nonlinear autoregressive neural networks with exogenous inputs (NARX) to predict inundation levels induced by typhoons. Two types of NARX architecture were employed: series-parallel (NARX-S) and parallel (NARX-P). Based on cross-correlation analysis of rainfall and water-level data from historical typhoon records, 10 NARX models (five of each architecture type) were constructed. The forecasting ability of each model was assessed by considering coefficient of efficiency (CE), relative time shift error (RTS), and peak water-level error (PE). The results revealed that high CE performance could be achieved by employing more model input variables. Comparisons of the two types of model demonstrated that the NARX-S models outperformed the NARX-P models in terms of CE and RTS, whereas both performed exceptionally in terms of PE and without significant difference. The NARX-S and NARX-P models with the highest overall performance were identified and their predictions were compared with those of traditional ARX-based models. The NARX-S model outperformed the ARX-based models in all three indexes, whereas the NARX-P model exhibited comparable CE performance and superior RTS and PE performance.

  2. A non-linear dimension reduction methodology for generating data-driven stochastic input models

    NASA Astrophysics Data System (ADS)

    Ganapathysubramanian, Baskar; Zabaras, Nicholas

    2008-06-01

    Stochastic analysis of random heterogeneous media (polycrystalline materials, porous media, functionally graded materials) provides information of significance only if realistic input models of the topology and property variations are used. This paper proposes a framework to construct such input stochastic models for the topology and thermal diffusivity variations in heterogeneous media using a data-driven strategy. Given a set of microstructure realizations (input samples) generated from given statistical information about the medium topology, the framework constructs a reduced-order stochastic representation of the thermal diffusivity. This problem of constructing a low-dimensional stochastic representation of property variations is analogous to the problem of manifold learning and parametric fitting of hyper-surfaces encountered in image processing and psychology. Denote by M the set of microstructures that satisfy the given experimental statistics. A non-linear dimension reduction strategy is utilized to map M to a low-dimensional region, A. We first show that M is a compact manifold embedded in a high-dimensional input space Rn. An isometric mapping F from M to a low-dimensional, compact, connected set A⊂Rd(d≪n) is constructed. Given only a finite set of samples of the data, the methodology uses arguments from graph theory and differential geometry to construct the isometric transformation F:M→A. Asymptotic convergence of the representation of M by A is shown. This mapping F serves as an accurate, low-dimensional, data-driven representation of the property variations. The reduced-order model of the material topology and thermal diffusivity variations is subsequently used as an input in the solution of stochastic partial differential equations that describe the evolution of dependant variables. A sparse grid collocation strategy (Smolyak algorithm) is utilized to solve these stochastic equations efficiently. We showcase the methodology by constructing low-dimensional input stochastic models to represent thermal diffusivity in two-phase microstructures. This model is used in analyzing the effect of topological variations of two-phase microstructures on the evolution of temperature in heat conduction processes.

  3. Control design methods for floating wind turbines for optimal disturbance rejection

    NASA Astrophysics Data System (ADS)

    Lemmer, Frank; Schlipf, David; Cheng, Po Wen

    2016-09-01

    An analysis of the floating wind turbine as a multi-input-multi-output system investigating the effect of the control inputs on the system outputs is shown. These effects are compared to the ones of the disturbances from wind and waves in order to give insights for the selection of the control layout. The frequencies with the largest impact on the outputs due to limited effect of the controlled variables are identified. Finally, an optimal controller is designed as a benchmark and compared to a conventional PI-controller using only the rotor speed as input. Here, the previously found system properties, especially the difficulties to damp responses to wave excitation, are confirmed and verified through a spectral analysis with realistic environmental conditions. This comparison also assesses the quality of the employed simplified linear simulation model compared to the nonlinear model and shows that such an efficient frequency-domain evaluation for control design is feasible.

  4. Fuzzy set methods for object recognition in space applications

    NASA Technical Reports Server (NTRS)

    Keller, James M.

    1991-01-01

    During the reporting period, the development of the theory and application of methodologies for decision making under uncertainty was addressed. Two subreports are included; the first on properties of general hybrid operators, while the second considers some new research on generalized threshold logic units. In the first part, the properties of the additive gamma-model, where the intersection part is first considered to be the product of the input values and the union part is obtained by an extension of De Morgan's law to fuzzy sets, is explored. Then the Yager's class of union and intersection is used in the additive gamma-model. The inputs are weighted to some power that represents their importance and thus their contribution to the compensation process. In the second part, the extension of binary logic synthesis methods to multiple valued logic synthesis methods to enable the synthesis of decision networks when the input/output variables are not binary is discussed.

  5. Reliable and accurate point-based prediction of cumulative infiltration using soil readily available characteristics: A comparison between GMDH, ANN, and MLR

    NASA Astrophysics Data System (ADS)

    Rahmati, Mehdi

    2017-08-01

    Developing accurate and reliable pedo-transfer functions (PTFs) to predict soil non-readily available characteristics is one of the most concerned topic in soil science and selecting more appropriate predictors is a crucial factor in PTFs' development. Group method of data handling (GMDH), which finds an approximate relationship between a set of input and output variables, not only provide an explicit procedure to select the most essential PTF input variables, but also results in more accurate and reliable estimates than other mostly applied methodologies. Therefore, the current research was aimed to apply GMDH in comparison with multivariate linear regression (MLR) and artificial neural network (ANN) to develop several PTFs to predict soil cumulative infiltration point-basely at specific time intervals (0.5-45 min) using soil readily available characteristics (RACs). In this regard, soil infiltration curves as well as several soil RACs including soil primary particles (clay (CC), silt (Si), and sand (Sa)), saturated hydraulic conductivity (Ks), bulk (Db) and particle (Dp) densities, organic carbon (OC), wet-aggregate stability (WAS), electrical conductivity (EC), and soil antecedent (θi) and field saturated (θfs) water contents were measured at 134 different points in Lighvan watershed, northwest of Iran. Then, applying GMDH, MLR, and ANN methodologies, several PTFs have been developed to predict cumulative infiltrations using two sets of selected soil RACs including and excluding Ks. According to the test data, results showed that developed PTFs by GMDH and MLR procedures using all soil RACs including Ks resulted in more accurate (with E values of 0.673-0.963) and reliable (with CV values lower than 11 percent) predictions of cumulative infiltrations at different specific time steps. In contrast, ANN procedure had lower accuracy (with E values of 0.356-0.890) and reliability (with CV values up to 50 percent) compared to GMDH and MLR. The results also revealed that Ks exclusion from input variables list caused around 30 percent decrease in PTFs accuracy for all applied procedures. However, it seems that Ks exclusion resulted in more practical PTFs especially in the case of GMDH network applying input variables which are less time consuming than Ks. In general, it is concluded that GMDH provides more accurate and reliable estimates of cumulative infiltration (a non-readily available characteristic of soil) with a minimum set of input variables (2-4 input variables) and can be promising strategy to model soil infiltration combining the advantages of ANN and MLR methodologies.

  6. Topographical effects of climate dataset and their impacts on the estimation of regional net primary productivity

    NASA Astrophysics Data System (ADS)

    Sun, L. Qing; Feng, Feng X.

    2014-11-01

    In this study, we first built and compared two different climate datasets for Wuling mountainous area in 2010, one of which considered topographical effects during the ANUSPLIN interpolation was referred as terrain-based climate dataset, while the other one did not was called ordinary climate dataset. Then, we quantified the topographical effects of climatic inputs on NPP estimation by inputting two different climate datasets to the same ecosystem model, the Boreal Ecosystem Productivity Simulator (BEPS), to evaluate the importance of considering relief when estimating NPP. Finally, we found the primary contributing variables to the topographical effects through a series of experiments given an overall accuracy of the model output for NPP. The results showed that: (1) The terrain-based climate dataset presented more reliable topographic information and had closer agreements with the station dataset than the ordinary climate dataset at successive time series of 365 days in terms of the daily mean values. (2) On average, ordinary climate dataset underestimated NPP by 12.5% compared with terrain-based climate dataset over the whole study area. (3) The primary climate variables contributing to the topographical effects of climatic inputs for Wuling mountainous area were temperatures, which suggest that it is necessary to correct temperature differences for estimating NPP accurately in such a complex terrain.

  7. Utility of Satellite Remote Sensing for Land-Atmosphere Coupling and Drought Metrics

    NASA Technical Reports Server (NTRS)

    Roundy, Joshua K.; Santanello, Joseph A.

    2017-01-01

    Feedbacks between the land and the atmosphere can play an important role in the water cycle and a number of studies have quantified Land-Atmosphere (L-A) interactions and feedbacks through observations and prediction models. Due to the complex nature of L-A interactions, the observed variables are not always available at the needed temporal and spatial scales. This work derives the Coupling Drought Index (CDI) solely from satellite data and evaluates the input variables and the resultant CDI against in-situ data and reanalysis products. NASA's AQUA satellite and retrievals of soil moisture and lower tropospheric temperature and humidity properties are used as input. Overall, the AQUA-based CDI and its inputs perform well at a point, spatially, and in time (trends) compared to in-situ and reanalysis products. In addition, this work represents the first time that in-situ observations were utilized for the coupling classification and CDI. The combination of in-situ and satellite remote sensing CDI is unique and provides an observational tool for evaluating models at local and large scales. Overall, results indicate that there is sufficient information in the signal from simultaneous measurements of the land and atmosphere from satellite remote sensing to provide useful information for applications of drought monitoring and coupling metrics.

  8. Utility of Satellite Remote Sensing for Land-Atmosphere Coupling and Drought Metrics

    PubMed Central

    Roundy, Joshua K.; Santanello, Joseph A.

    2018-01-01

    Feedbacks between the land and the atmosphere can play an important role in the water cycle and a number of studies have quantified Land-Atmosphere (L-A) interactions and feedbacks through observations and prediction models. Due to the complex nature of L-A interactions, the observed variables are not always available at the needed temporal and spatial scales. This work derives the Coupling Drought Index (CDI) solely from satellite data and evaluates the input variables and the resultant CDI against in-situ data and reanalysis products. NASA’s AQUA satellite and retrievals of soil moisture and lower tropospheric temperature and humidity properties are used as input. Overall, the AQUA-based CDI and its inputs perform well at a point, spatially, and in time (trends) compared to in-situ and reanalysis products. In addition, this work represents the first time that in-situ observations were utilized for the coupling classification and CDI. The combination of in-situ and satellite remote sensing CDI is unique and provides an observational tool for evaluating models at local and large scales. Overall, results indicate that there is sufficient information in the signal from simultaneous measurements of the land and atmosphere from satellite remote sensing to provide useful information for applications of drought monitoring and coupling metrics. PMID:29645012

  9. Beam-column joint shear prediction using hybridized deep learning neural network with genetic algorithm

    NASA Astrophysics Data System (ADS)

    Mundher Yaseen, Zaher; Abdulmohsin Afan, Haitham; Tran, Minh-Tung

    2018-04-01

    Scientifically evidenced that beam-column joints are a critical point in the reinforced concrete (RC) structure under the fluctuation loads effects. In this novel hybrid data-intelligence model developed to predict the joint shear behavior of exterior beam-column structure frame. The hybrid data-intelligence model is called genetic algorithm integrated with deep learning neural network model (GA-DLNN). The genetic algorithm is used as prior modelling phase for the input approximation whereas the DLNN predictive model is used for the prediction phase. To demonstrate this structural problem, experimental data is collected from the literature that defined the dimensional and specimens’ properties. The attained findings evidenced the efficitveness of the hybrid GA-DLNN in modelling beam-column joint shear problem. In addition, the accurate prediction achived with less input variables owing to the feasibility of the evolutionary phase.

  10. Application of receptor models on water quality data in source apportionment in Kuantan River Basin

    PubMed Central

    2012-01-01

    Recent techniques in the management of surface river water have been expanding the demand on the method that can provide more representative of multivariate data set. A proper technique of the architecture of artificial neural network (ANN) model and multiple linear regression (MLR) provides an advance tool for surface water modeling and forecasting. The development of receptor model was applied in order to determine the major sources of pollutants at Kuantan River Basin, Malaysia. Thirteen water quality parameters were used in principal component analysis (PCA) and new variables of fertilizer waste, surface runoff, anthropogenic input, chemical and mineral changes and erosion are successfully developed for modeling purposes. Two models were compared in terms of efficiency and goodness-of-fit for water quality index (WQI) prediction. The results show that APCS-ANN model gives better performance with high R2 value (0.9680) and small root mean square error (RMSE) value (2.6409) compared to APCS-MLR model. Meanwhile from the sensitivity analysis, fertilizer waste acts as the dominant pollutant contributor (59.82%) to the basin studied followed by anthropogenic input (22.48%), surface runoff (13.42%), erosion (2.33%) and lastly chemical and mineral changes (1.95%). Thus, this study concluded that receptor modeling of APCS-ANN can be used to solve various constraints in environmental problem that exist between water distribution variables toward appropriate water quality management. PMID:23369363

  11. Assessing geotechnical centrifuge modelling in addressing variably saturated flow in soil and fractured rock.

    PubMed

    Jones, Brendon R; Brouwers, Luke B; Van Tonder, Warren D; Dippenaar, Matthys A

    2017-05-01

    The vadose zone typically comprises soil underlain by fractured rock. Often, surface water and groundwater parameters are readily available, but variably saturated flow through soil and rock are oversimplified or estimated as input for hydrological models. In this paper, a series of geotechnical centrifuge experiments are conducted to contribute to the knowledge gaps in: (i) variably saturated flow and dispersion in soil and (ii) variably saturated flow in discrete vertical and horizontal fractures. Findings from the research show that the hydraulic gradient, and not the hydraulic conductivity, is scaled for seepage flow in the geotechnical centrifuge. Furthermore, geotechnical centrifuge modelling has been proven as a viable experimental tool for the modelling of hydrodynamic dispersion as well as the replication of similar flow mechanisms for unsaturated fracture flow, as previously observed in literature. Despite the imminent challenges of modelling variable saturation in the vadose zone, the geotechnical centrifuge offers a powerful experimental tool to physically model and observe variably saturated flow. This can be used to give valuable insight into mechanisms associated with solid-fluid interaction problems under these conditions. Findings from future research can be used to validate current numerical modelling techniques and address the subsequent influence on aquifer recharge and vulnerability, contaminant transport, waste disposal, dam construction, slope stability and seepage into subsurface excavations.

  12. Team-level predictors of innovation at work: a comprehensive meta-analysis spanning three decades of research.

    PubMed

    Hülsheger, Ute R; Anderson, Neil; Salgado, Jesus F

    2009-09-01

    This article presents a meta-analysis of team-level antecedents of creativity and innovation in the workplace. Using a general input-process-output model, the authors examined 15 team-level variables researched in primary studies published over the last 30 years and their relation to creativity and innovation. An exhaustive search of the international innovation literature resulted in a final sample (k) of 104 independent studies. Results revealed that team process variables of support for innovation, vision, task orientation, and external communication displayed the strongest relationships with creativity and innovation (rhos between 0.4 and 0.5). Input variables (i.e., team composition and structure) showed weaker effect sizes. Moderator analyses confirmed that relationships differ substantially depending on measurement method (self-ratings vs. independent ratings of innovation) and measurement level (individual vs. team innovation). Team variables displayed considerably stronger relationships with self-report measures of innovation compared with independent ratings and objective criteria. Team process variables were more strongly related to creativity and innovation measured at the team than the individual level. Implications for future research and pragmatic ramifications for organizational practice are discussed in conclusion.

  13. Influence of estuarine processes on spatiotemporal variation in bioavailable selenium

    USGS Publications Warehouse

    Stewart, Robin; Luoma, Samuel N.; Elrick, Kent A.; Carter, James L.; van der Wegen, Mick

    2013-01-01

    Dynamic processes (physical, chemical and biological) challenge our ability to quantify and manage the ecological risk of chemical contaminants in estuarine environments. Selenium (Se) bioavailability (defined by bioaccumulation), stable isotopes and molar carbon-tonitrogen ratios in the benthic clam Potamocorbula amurensis, an important food source for predators, were determined monthly for 17 yr in northern San Francisco Bay. Se concentrations in the clams ranged from a low of 2 to a high of 22 μg g-1 over space and time. Little of that variability was stochastic, however. Statistical analyses and preliminary hydrodynamic modeling showed that a constant mid-estuarine input of Se, which was dispersed up- and down-estuary by tidal currents, explained the general spatial patterns in accumulated Se among stations. Regression of Se bioavailability against river inflows suggested that processes driven by inflows were the primary driver of seasonal variability. River inflow also appeared to explain interannual variability but within the range of Se enrichment established at each station by source inputs. Evaluation of risks from Se contamination in estuaries requires the consideration of spatial and temporal variability on multiple scales and of the processes that drive that variability.

  14. iTOUGH2 Universal Optimization Using the PEST Protocol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finsterle, S.A.

    2010-07-01

    iTOUGH2 (http://www-esd.lbl.gov/iTOUGH2) is a computer program for parameter estimation, sensitivity analysis, and uncertainty propagation analysis [Finsterle, 2007a, b, c]. iTOUGH2 contains a number of local and global minimization algorithms for automatic calibration of a model against measured data, or for the solution of other, more general optimization problems (see, for example, Finsterle [2005]). A detailed residual and estimation uncertainty analysis is conducted to assess the inversion results. Moreover, iTOUGH2 can be used to perform a formal sensitivity analysis, or to conduct Monte Carlo simulations for the examination for prediction uncertainties. iTOUGH2's capabilities are continually enhanced. As the name implies, iTOUGH2more » is developed for use in conjunction with the TOUGH2 forward simulator for nonisothermal multiphase flow in porous and fractured media [Pruess, 1991]. However, iTOUGH2 provides FORTRAN interfaces for the estimation of user-specified parameters (see subroutine USERPAR) based on user-specified observations (see subroutine USEROBS). These user interfaces can be invoked to add new parameter or observation types to the standard set provided in iTOUGH2. They can also be linked to non-TOUGH2 models, i.e., iTOUGH2 can be used as a universal optimization code, similar to other model-independent, nonlinear parameter estimation packages such as PEST [Doherty, 2008] or UCODE [Poeter and Hill, 1998]. However, to make iTOUGH2's optimization capabilities available for use with an external code, the user is required to write some FORTRAN code that provides the link between the iTOUGH2 parameter vector and the input parameters of the external code, and between the output variables of the external code and the iTOUGH2 observation vector. While allowing for maximum flexibility, the coding requirement of this approach limits its applicability to those users with FORTRAN coding knowledge. To make iTOUGH2 capabilities accessible to many application models, the PEST protocol [Doherty, 2007] has been implemented into iTOUGH2. This protocol enables communication between the application (which can be a single 'black-box' executable or a script or batch file that calls multiple codes) and iTOUGH2. The concept requires that for the application model: (1) Input is provided on one or more ASCII text input files; (2) Output is returned to one or more ASCII text output files; (3) The model is run using a system command (executable or script/batch file); and (4) The model runs to completion without any user intervention. For each forward run invoked by iTOUGH2, select parameters cited within the application model input files are then overwritten with values provided by iTOUGH2, and select variables cited within the output files are extracted and returned to iTOUGH2. It should be noted that the core of iTOUGH2, i.e., its optimization routines and related analysis tools, remains unchanged; it is only the communication format between input parameters, the application model, and output variables that are borrowed from PEST. The interface routines have been provided by Doherty [2007]. The iTOUGH2-PEST architecture is shown in Figure 1. This manual contains installation instructions for the iTOUGH2-PEST module, and describes the PEST protocol as well as the input formats needed in iTOUGH2. Examples are provided that demonstrate the use of model-independent optimization and analysis using iTOUGH2.« less

  15. Analysis of a utility-interactive wind-photovoltaic hybrid system with battery storage using neural network

    NASA Astrophysics Data System (ADS)

    Giraud, Francois

    1999-10-01

    This dissertation investigates the application of neural network theory to the analysis of a 4-kW Utility-interactive Wind-Photovoltaic System (WPS) with battery storage. The hybrid system comprises a 2.5-kW photovoltaic generator and a 1.5-kW wind turbine. The wind power generator produces power at variable speed and variable frequency (VSVF). The wind energy is converted into dc power by a controlled, tree-phase, full-wave, bridge rectifier. The PV power is maximized by a Maximum Power Point Tracker (MPPT), a dc-to-dc chopper, switching at a frequency of 45 kHz. The whole dc power of both subsystems is stored in the battery bank or conditioned by a single-phase self-commutated inverter to be sold to the utility at a predetermined amount. First, the PV is modeled using Artificial Neural Network (ANN). To reduce model uncertainty, the open-circuit voltage VOC and the short-circuit current ISC of the PV are chosen as model input variables of the ANN. These input variables have the advantage of incorporating the effects of the quantifiable and non-quantifiable environmental variants affecting the PV power. Then, a simplified way to predict accurately the dynamic responses of the grid-linked WPS to gusty winds using a Recurrent Neural Network (RNN) is investigated. The RNN is a single-output feedforward backpropagation network with external feedback, which allows past responses to be fed back to the network input. In the third step, a Radial Basis Functions (RBF) Network is used to analyze the effects of clouds on the Utility-Interactive WPS. Using the irradiance as input signal, the network models the effects of random cloud movement on the output current, the output voltage, the output power of the PV system, as well as the electrical output variables of the grid-linked inverter. Fourthly, using RNN, the combined effects of a random cloud and a wind gusts on the system are analyzed. For short period intervals, the wind speed and the solar radiation are considered as the sole sources of power, whose variations influence the system variables. Since both subsystems have different dynamics, their respective responses are expected to impact differently the whole system behavior. The dispatchability of the battery-supported system as well as its stability and reliability during gusts and/or cloud passage is also discussed. In the fifth step, the goal is to determine to what extent the overall power quality of the grid would be affected by a proliferation of Utility-interactive hybrid system and whether recourse to bulky or individual filtering and voltage controller is necessary. The final stage of the research includes a steady-state analysis of two-year operation (May 96--Apr 98) of the system, with a discussion on system reliability, on any loss of supply probability, and on the effects of the randomness in the wind and solar radiation upon the system design optimization.

  16. Atmospheric Dispersion Capability for T2VOC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oldenburg, Curtis M.

    2005-09-19

    Atmospheric transport by variable-K theory dispersion has been added to T2VOC. The new code, T2VOCA, models flow and transport in the subsurface identically to T2VOC, but includes also the capability for modeling passive multicomponent variable-K theory dispersion in an atmospheric region assumed to be flat, horizontal, and with a logarithmic wind profile. The specification of the logarithmic wind profile in the T2VOC input file is automated through the use of a build code called ATMDISPV. The new capability is demonstrated on 2-D and 3-D example problems described in this report.

  17. Macroscopic singlet oxygen model incorporating photobleaching as an input parameter

    NASA Astrophysics Data System (ADS)

    Kim, Michele M.; Finlay, Jarod C.; Zhu, Timothy C.

    2015-03-01

    A macroscopic singlet oxygen model for photodynamic therapy (PDT) has been used extensively to calculate the reacted singlet oxygen concentration for various photosensitizers. The four photophysical parameters (ξ, σ, β, δ) and threshold singlet oxygen dose ([1O2]r,sh) can be found for various drugs and drug-light intervals using a fitting algorithm. The input parameters for this model include the fluence, photosensitizer concentration, optical properties, and necrosis radius. An additional input variable of photobleaching was implemented in this study to optimize the results. Photobleaching was measured by using the pre-PDT and post-PDT sensitizer concentrations. Using the RIF model of murine fibrosarcoma, mice were treated with a linear source with fluence rates from 12 - 150 mW/cm and total fluences from 24 - 135 J/cm. The two main drugs investigated were benzoporphyrin derivative monoacid ring A (BPD) and 2-[1-hexyloxyethyl]-2-devinyl pyropheophorbide-a (HPPH). Previously published photophysical parameters were fine-tuned and verified using photobleaching as the additional fitting parameter. Furthermore, photobleaching can be used as an indicator of the robustness of the model for the particular mouse experiment by comparing the experimental and model-calculated photobleaching ratio.

  18. A user-friendly software package to ease the use of VIC hydrologic model for practitioners

    NASA Astrophysics Data System (ADS)

    Wi, S.; Ray, P.; Brown, C.

    2016-12-01

    The VIC (Variable Infiltration Capacity) hydrologic and river routing model simulates the water and energy fluxes that occur near the land surface and provides users with useful information regarding the quantity and timing of available water at points of interest within the basin. However, despite its popularity (proved by numerous applications in the literature), its wider adoption is hampered by the considerable effort required to prepare model inputs; e.g., input files storing spatial information related to watershed topography, soil properties, and land cover. This study presents a user-friendly software package (named VIC Setup Toolkit) developed within the MATLAB (matrix laboratory) framework and accessible through an intuitive graphical user interface. The VIC Setup Toolkit enables users to navigate the model building process confidently through prompts and automation, with an intention to promote the use of the model for both practical and academic purposes. The automated processes include watershed delineation, climate and geographical input set-up, model parameter calibration, graph generation and output evaluation. We demonstrate the package's usefulness in various case studies with the American River, Oklahoma River, Feather River and Zambezi River basins.

  19. Modeling Hurricane Katrina's merchantable timber and wood damage in south Mississippi using remotely sensed and field-measured data

    NASA Astrophysics Data System (ADS)

    Collins, Curtis Andrew

    Ordinary and weighted least squares multiple linear regression techniques were used to derive 720 models predicting Katrina-induced storm damage in cubic foot volume (outside bark) and green weight tons (outside bark). The large number of models was dictated by the use of three damage classes, three product types, and four forest type model strata. These 36 models were then fit and reported across 10 variable sets and variable set combinations for volume and ton units. Along with large model counts, potential independent variables were created using power transforms and interactions. The basis of these variables was field measured plot data, satellite (Landsat TM and ETM+) imagery, and NOAA HWIND wind data variable types. As part of the modeling process, lone variable types as well as two-type and three-type combinations were examined. By deriving models with these varying inputs, model utility is flexible as all independent variable data are not needed in future applications. The large number of potential variables led to the use of forward, sequential, and exhaustive independent variable selection techniques. After variable selection, weighted least squares techniques were often employed using weights of one over the square root of the pre-storm volume or weight of interest. This was generally successful in improving residual variance homogeneity. Finished model fits, as represented by coefficient of determination (R2), surpassed 0.5 in numerous models with values over 0.6 noted in a few cases. Given these models, an analyst is provided with a toolset to aid in risk assessment and disaster recovery should Katrina-like weather events reoccur.

  20. Semi-arid vegetation response to antecedent climate and water balance windows

    USGS Publications Warehouse

    Thoma, David P.; Munson, Seth M.; Irvine, Kathryn M.; Witwicki, Dana L.; Bunting, Erin

    2016-01-01

    Questions Can we improve understanding of vegetation response to water availability on monthly time scales in semi-arid environments using remote sensing methods? What climatic or water balance variables and antecedent windows of time associated with these variables best relate to the condition of vegetation? Can we develop credible near-term forecasts from climate data that can be used to prepare for future climate change effects on vegetation? Location Semi-arid grasslands in Capitol Reef National Park, Utah, USA. Methods We built vegetation response models by relating the normalized difference vegetation index (NDVI) from MODIS imagery in Mar–Nov 2000–2013 to antecedent climate and water balance variables preceding the monthly NDVI observations. We compared how climate and water balance variables explained vegetation greenness and then used a multi-model ensemble of climate and water balance models to forecast monthly NDVI for three holdout years. Results Water balance variables explained vegetation greenness to a greater degree than climate variables for most growing season months. Seasonally important variables included measures of antecedent water input and storage in spring, switching to indicators of drought, input or use in summer, followed by antecedent moisture availability in autumn. In spite of similar climates, there was evidence the grazed grassland showed a response to drying conditions 1 mo sooner than the ungrazed grassland. Lead times were generally short early in the growing season and antecedent window durations increased from 3 mo early in the growing season to 1 yr or more as the growing season progressed. Forecast accuracy for three holdout years using a multi-model ensemble of climate and water balance variables outperformed forecasts made with a naïve NDVI climatology. Conclusions We determined the influence of climate and water balance on vegetation at a fine temporal scale, which presents an opportunity to forecast vegetation response with short lead times. This understanding was obtained through high-frequency vegetation monitoring using remote sensing, which reduces the costs and time necessary for field measurements and can lead to more rapid detection of vegetation changes that could help managers take appropriate actions.

  1. Error characterization of microwave satellite soil moisture data sets using fourier analysis

    USDA-ARS?s Scientific Manuscript database

    Soil moisture is a key geophysical variable in hydrological and meteorological processes. Accurate and current observations of soil moisture over meso to global scales used as inputs to hydrological, weather and climate modelling will benefit the predictability and understanding of these processes. ...

  2. Error characterization of microwave satellite soil moisture data sets using fourier analysis

    USDA-ARS?s Scientific Manuscript database

    Abstract: Soil moisture is a key geophysical variable in hydrological and meteorological processes. Accurate and current observations of soil moisture over mesoscale to global scales as inputs to hydrological, weather and climate modelling will benefit the predictability and understanding of these p...

  3. Digital Troposcatter Performance Model: Software Documentation.

    DTIC Science & Technology

    1983-11-28

    Instantanous detection SNR. Output arguments: OUTISI R*4 Conditional outage probabilit.-. IERR 1*2 Error flag. Global variables input from commor IRSN /NUNPAR...meaning onlv when ITOFF = 3. - Possiblv given a new value in the following subprograms: TRANSF IRSN /NUMPAR/ 1*2 NUMPAR.INC Number of values in SNR

  4. Toward a Geoscientific Semantic Web Based on How Geoscientists Talk Across Disciplines

    NASA Astrophysics Data System (ADS)

    Peckham, S. D.

    2015-12-01

    Are there terms and scientific concepts from math and science that almost all geoscientists understand? Is there a limited set of terms, patterns and language elements that geoscientists use for efficient, unambiguous communication that could be used to describe the variables that they measure, store in data sets and use as model inputs and outputs? In this talk it will be argued that the answer to both questions is "yes" by drawing attention to many such patterns and then showing how they have been used to create a rich set of naming conventions for variables called the CSDMS Standard Names. Variables, which store numerical quantities associated with specific objects, are the fundamental currency of science. They are the items that are measured and saved in data sets, which may then be read into models. They are the inputs and outputs of models and the items exchanged between coupled models. They also star in the equations that summarize our scientific knowledge. Carefully constructed, unambiguous and unique labels for commonly used variables therefore provide an attractive mechanism for automatic semantic mediation when variables are to be shared between heterogeous resources. They provide a means to automatically check for semantic equivalence so that variables can be safely shared in resource compositions. A good set of standardized variable names can serve as the hub in a hub-and-spoke solution to semantic mediation, where the "internal vocabularies" of geoscience resources (i.e. data sets and models) are mapped to and from the hub to facilitate interoperability and data sharing. When built from patterns and terms that most geoscientists are already familiar with, these standardized variable names are then "readable" by both humans and machines. Despite the importance of variables in scientific work, most of the ontological work in the geosciences is focused at a higher level that supports finding resources (e.g data sets) but not on describing the contents of those resources. The CSDMS Standard Names have matured continuously since they were first introduced over three years ago. Many recent extensions and applications of them (e.g. different science domains, different projects, new rules, ontological work) as well as their compatibility with the International System of Quantities (ISO 80000) will be discussed.

  5. Study of a control strategy for grid side converter in doubly- fed wind power system

    NASA Astrophysics Data System (ADS)

    Zhu, D. J.; Tan, Z. L.; Yuan, F.; Wang, Q. Y.; Ding, M.

    2016-08-01

    The grid side converter is an important part of the excitation system of doubly-fed asynchronous generator used in wind power system. As a three-phase voltage source PWM converter, it can not only transfer slip power in the form of active power, but also adjust the reactive power of the grid. This paper proposed a control approach for improving its performance. In this control approach, the dc voltage is regulated by a sliding mode variable structure control scheme and current by a variable structure controller based on the input output linearization. The theoretical bases of the sliding mode variable structure control were introduced, and the stability proof was presented. Switching function of the system has been deduced, sliding mode voltage controller model has been established, and the output of the outer voltage loop is the instruction of the inner current loop. Affine nonlinear model of two input two output equations on d-q axis for current has been established its meeting conditions of exact linearization were proved. In order to improve the anti-jamming capability of the system, a variable structure control was added in the current controller, the control law was deduced. The dual-loop control with sliding mode control in outer voltage loop and linearization variable structure control in inner current loop was proposed. Simulation results demonstrate the effectiveness of the proposed control strategy even during the dc reference voltage and system load variation.

  6. Noise produced by turbulent flow into a rotor: Users manual for noise calculation

    NASA Technical Reports Server (NTRS)

    Amiet, R. K.; Egolf, C. G.; Simonich, J. C.

    1989-01-01

    A users manual for a computer program for the calculation of noise produced by turbulent flow into a helicopter rotor is presented. These inputs to the program are obtained from the atmospheric turbulence model and mean flow distortion calculation, described in another volume of this set of reports. Descriptions of the various program modules and subroutines, their function, programming structure, and the required input and output variables are included. This routine is incorporated as one module of NASA's ROTONET helicopter noise prediction program.

  7. Gravity dependence of the effect of optokinetic stimulation on the subjective visual vertical.

    PubMed

    Ward, Bryan K; Bockisch, Christopher J; Caramia, Nicoletta; Bertolini, Giovanni; Tarnutzer, Alexander Andrea

    2017-05-01

    Accurate and precise estimates of direction of gravity are essential for spatial orientation. According to Bayesian theory, multisensory vestibular, visual, and proprioceptive input is centrally integrated in a weighted fashion based on the reliability of the component sensory signals. For otolithic input, a decreasing signal-to-noise ratio was demonstrated with increasing roll angle. We hypothesized that the weights of vestibular (otolithic) and extravestibular (visual/proprioceptive) sensors are roll-angle dependent and predicted an increased weight of extravestibular cues with increasing roll angle, potentially following the Bayesian hypothesis. To probe this concept, the subjective visual vertical (SVV) was assessed in different roll positions (≤ ± 120°, steps = 30°, n = 10) with/without presenting an optokinetic stimulus (velocity = ± 60°/s). The optokinetic stimulus biased the SVV toward the direction of stimulus rotation for roll angles ≥ ± 30° ( P < 0.005). Offsets grew from 3.9 ± 1.8° (upright) to 22.1 ± 11.8° (±120° roll tilt, P < 0.001). Trial-to-trial variability increased with roll angle, demonstrating a nonsignificant increase when providing optokinetic stimulation. Variability and optokinetic bias were correlated ( R 2 = 0.71, slope = 0.71, 95% confidence interval = 0.57-0.86). An optimal-observer model combining an optokinetic bias with vestibular input reproduced measured errors closely. These findings support the hypothesis of a weighted multisensory integration when estimating direction of gravity with optokinetic stimulation. Visual input was weighted more when vestibular input became less reliable, i.e., at larger roll-tilt angles. However, according to Bayesian theory, the variability of combined cues is always lower than the variability of each source cue. If the observed increase in variability, although nonsignificant, is true, either it must depend on an additional source of variability, added after SVV computation, or it would conflict with the Bayesian hypothesis. NEW & NOTEWORTHY Applying a rotating optokinetic stimulus while recording the subjective visual vertical in different whole body roll angles, we noted the optokinetic-induced bias to correlate with the roll angle. These findings allow the hypothesis that the established optimal weighting of single-sensory cues depending on their reliability to estimate direction of gravity could be extended to a bias caused by visual self-motion stimuli. Copyright © 2017 the American Physiological Society.

  8. TopoSCALE v.1.0: downscaling gridded climate data in complex terrain

    NASA Astrophysics Data System (ADS)

    Fiddes, J.; Gruber, S.

    2014-02-01

    Simulation of land surface processes is problematic in heterogeneous terrain due to the the high resolution required of model grids to capture strong lateral variability caused by, for example, topography, and the lack of accurate meteorological forcing data at the site or scale it is required. Gridded data products produced by atmospheric models can fill this gap, however, often not at an appropriate spatial resolution to drive land-surface simulations. In this study we describe a method that uses the well-resolved description of the atmospheric column provided by climate models, together with high-resolution digital elevation models (DEMs), to downscale coarse-grid climate variables to a fine-scale subgrid. The main aim of this approach is to provide high-resolution driving data for a land-surface model (LSM). The method makes use of an interpolation of pressure-level data according to topographic height of the subgrid. An elevation and topography correction is used to downscale short-wave radiation. Long-wave radiation is downscaled by deriving a cloud-component of all-sky emissivity at grid level and using downscaled temperature and relative humidity fields to describe variability with elevation. Precipitation is downscaled with a simple non-linear lapse and optionally disaggregated using a climatology approach. We test the method in comparison with unscaled grid-level data and a set of reference methods, against a large evaluation dataset (up to 210 stations per variable) in the Swiss Alps. We demonstrate that the method can be used to derive meteorological inputs in complex terrain, with most significant improvements (with respect to reference methods) seen in variables derived from pressure levels: air temperature, relative humidity, wind speed and incoming long-wave radiation. This method may be of use in improving inputs to numerical simulations in heterogeneous and/or remote terrain, especially when statistical methods are not possible, due to lack of observations (i.e. remote areas or future periods).

  9. An Integrated Probabilistic-Fuzzy Assessment of Uncertainty Associated with Human Health Risk to MSW Landfill Leachate Contamination

    NASA Astrophysics Data System (ADS)

    Mishra, H.; Karmakar, S.; Kumar, R.

    2016-12-01

    Risk assessment will not remain simple when it involves multiple uncertain variables. Uncertainties in risk assessment majorly results from (1) the lack of knowledge of input variable (mostly random), and (2) data obtained from expert judgment or subjective interpretation of available information (non-random). An integrated probabilistic-fuzzy health risk approach has been proposed for simultaneous treatment of random and non-random uncertainties associated with input parameters of health risk model. The LandSim 2.5, a landfill simulator, has been used to simulate the Turbhe landfill (Navi Mumbai, India) activities for various time horizons. Further the LandSim simulated six heavy metals concentration in ground water have been used in the health risk model. The water intake, exposure duration, exposure frequency, bioavailability and average time are treated as fuzzy variables, while the heavy metals concentration and body weight are considered as probabilistic variables. Identical alpha-cut and reliability level are considered for fuzzy and probabilistic variables respectively and further, uncertainty in non-carcinogenic human health risk is estimated using ten thousand Monte-Carlo simulations (MCS). This is the first effort in which all the health risk variables have been considered as non-deterministic for the estimation of uncertainty in risk output. The non-exceedance probability of Hazard Index (HI), summation of hazard quotients, of heavy metals of Co, Cu, Mn, Ni, Zn and Fe for male and female population have been quantified and found to be high (HI>1) for all the considered time horizon, which evidently shows possibility of adverse health effects on the population residing near Turbhe landfill.

  10. Dust Emission Modeling Incorporating Land Cover Parameterizations in the Chihuahuan Desert and Dissemination of Data Suites

    NASA Astrophysics Data System (ADS)

    Olgin, J. G.; Pennington, D. D.; Webb, N.

    2017-12-01

    A variety of models have been developed to better understand dust emissions - from initial erosive event to entrainment to transport through the atmosphere. Many of these models have been used to analyze dust emissions by representing atmospheric and surface variables, such as wind and soil moisture respectively, in a numerical model to determine the resulting dust emissions. Pertinent to modeling these variables, there are three important factors influencing emissions: 1) Friction velocity threshold based on wind interactions with dust, 2) horizontal flux (saltation) of dust and 3) vertical dust flux. While all of the existing models incorporate these processes, additional improvements are needed to yield results reflective of recorded data of dust events. Our investigation focuses on explicitly identifying specific land cover (LC) elements unique to the Chihuahan desert that contribute to aerodynamic roughness length (Zo); a main component to dust emission and key to provide results more representative of known dust events in semi-arid regions. These elements will be formulated into computer model inputs by conducting analysis (e.g. geostatistics) on field and satellite data to ascertain core LC characteristics responsible for affecting wind velocities (e.g. wind shadowing effects), which are conducive to dust emissions. This inputs will be used in a modified program using the Weather and Research Forecast model (WRF) to replicate previously recorded dust events. Results from this study will be presented here.

  11. Class identity assignment for amphetamines using neural networks and GC-FTIR data

    NASA Astrophysics Data System (ADS)

    Gosav, S.; Praisler, M.; Van Bocxlaer, J.; De Leenheer, A. P.; Massart, D. L.

    2006-08-01

    An exploratory analysis was performed in order to evaluate the feasibility of building of neural network (NN) systems automating the identification of amphetamines necessary in the investigation of drugs of abuse for epidemiological, clinical and forensic purposes. A first neural network system was built to distinguish between amphetamines and nonamphetamines. A second, more refined system, aimed to the recognition of amphetamines according to their toxicological activity (stimulant amphetamines, hallucinogenic amphetamines, nonamphetamines). Both systems proved that discrimination between amphetamines and nonamphetamines, as well as between stimulants, hallucinogens and nonamphetamines is possible (83.44% and 85.71% correct classification rate, respectively). The spectroscopic interpretation of the 40 most important input variables (GC-FTIR absorption intensities) shows that the modeling power of an input variable seems to be correlated with the stability and not with the intensity of the spectral interaction. Thus, discarding variables only because they correspond to spectral windows with weak absorptions does not seem be not advisable.

  12. Poisson process stimulation of an excitable membrane cable model.

    PubMed Central

    Goldfinger, M D

    1986-01-01

    The convergence of multiple inputs within a single-neuronal substrate is a common design feature of both peripheral and central nervous systems. Typically, the result of such convergence impinges upon an intracellularly contiguous axon, where it is encoded into a train of action potentials. The simplest representation of the result of convergence of multiple inputs is a Poisson process; a general representation of axonal excitability is the Hodgkin-Huxley/cable theory formalism. The present work addressed multiple input convergence upon an axon by applying Poisson process stimulation to the Hodgkin-Huxley axonal cable. The results showed that both absolute and relative refractory periods yielded in the axonal output a random but non-Poisson process. While smaller amplitude stimuli elicited a type of short-interval conditioning, larger amplitude stimuli elicited impulse trains approaching Poisson criteria except for the effects of refractoriness. These results were obtained for stimulus trains consisting of pulses of constant amplitude and constant or variable durations. By contrast, with or without stimulus pulse shape variability, the post-impulse conditional probability for impulse initiation in the steady-state was a Poisson-like process. For stimulus variability consisting of randomly smaller amplitudes or randomly longer durations, mean impulse frequency was attenuated or potentiated, respectively. Limitations and implications of these computations are discussed. PMID:3730505

  13. Frequency Preference Response to Oscillatory Inputs in Two-dimensional Neural Models: A Geometric Approach to Subthreshold Amplitude and Phase Resonance.

    PubMed

    Rotstein, Horacio G

    2014-01-01

    We investigate the dynamic mechanisms of generation of subthreshold and phase resonance in two-dimensional linear and linearized biophysical (conductance-based) models, and we extend our analysis to account for the effect of simple, but not necessarily weak, types of nonlinearities. Subthreshold resonance refers to the ability of neurons to exhibit a peak in their voltage amplitude response to oscillatory input currents at a preferred non-zero (resonant) frequency. Phase-resonance refers to the ability of neurons to exhibit a zero-phase (or zero-phase-shift) response to oscillatory input currents at a non-zero (phase-resonant) frequency. We adapt the classical phase-plane analysis approach to account for the dynamic effects of oscillatory inputs and develop a tool, the envelope-plane diagrams, that captures the role that conductances and time scales play in amplifying the voltage response at the resonant frequency band as compared to smaller and larger frequencies. We use envelope-plane diagrams in our analysis. We explain why the resonance phenomena do not necessarily arise from the presence of imaginary eigenvalues at rest, but rather they emerge from the interplay of the intrinsic and input time scales. We further explain why an increase in the time-scale separation causes an amplification of the voltage response in addition to shifting the resonant and phase-resonant frequencies. This is of fundamental importance for neural models since neurons typically exhibit a strong separation of time scales. We extend this approach to explain the effects of nonlinearities on both resonance and phase-resonance. We demonstrate that nonlinearities in the voltage equation cause amplifications of the voltage response and shifts in the resonant and phase-resonant frequencies that are not predicted by the corresponding linearized model. The differences between the nonlinear response and the linear prediction increase with increasing levels of the time scale separation between the voltage and the gating variable, and they almost disappear when both equations evolve at comparable rates. In contrast, voltage responses are almost insensitive to nonlinearities located in the gating variable equation. The method we develop provides a framework for the investigation of the preferred frequency responses in three-dimensional and nonlinear neuronal models as well as simple models of coupled neurons.

  14. SU-E-T-206: Improving Radiotherapy Toxicity Based On Artificial Neural Network (ANN) for Head and Neck Cancer Patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, Daniel D; Wernicke, A Gabriella; Nori, Dattatreyudu

    Purpose/Objective(s): The aim of this study is to build the estimator of toxicity using artificial neural network (ANN) for head and neck cancer patients Materials/Methods: An ANN can combine variables into a predictive model during training and considered all possible correlations of variables. We constructed an ANN based on the data from 73 patients with advanced H and N cancer treated with external beam radiotherapy and/or chemotherapy at our institution. For the toxicity estimator we defined input data including age, sex, site, stage, pathology, status of chemo, technique of external beam radiation therapy (EBRT), length of treatment, dose of EBRT,more » status of post operation, length of follow-up, the status of local recurrences and distant metastasis. These data were digitized based on the significance and fed to the ANN as input nodes. We used 20 hidden nodes (for the 13 input nodes) to take care of the correlations of input nodes. For training ANN, we divided data into three subsets such as training set, validation set and test set. Finally, we built the estimator for the toxicity from ANN output. Results: We used 13 input variables including the status of local recurrences and distant metastasis and 20 hidden nodes for correlations. 59 patients for training set, 7 patients for validation set and 7 patients for test set and fed the inputs to Matlab neural network fitting tool. We trained the data within 15% of errors of outcome. In the end we have the toxicity estimation with 74% of accuracy. Conclusion: We proved in principle that ANN can be a very useful tool for predicting the RT outcomes for high risk H and N patients. Currently we are improving the results using cross validation.« less

  15. Short-stack modeling of degradation in solid oxide fuel cells. Part I. Contact degradation

    NASA Astrophysics Data System (ADS)

    Gazzarri, J. I.; Kesler, O.

    As the first part of a two paper series, we present a two-dimensional impedance model of a working solid oxide fuel cell (SOFC) to study the effect of contact degradation on the impedance spectrum for the purpose of non-invasive diagnosis. The two dimensional modeled geometry includes the ribbed interconnect, and is adequate to represent co- and counter-flow configurations. Simulated degradation modes include: cathode delamination, interconnect oxidation, and interconnect-cathode detachment. The simulations show differences in the way each degradation mode impacts the impedance spectrum shape, suggesting that identification is possible. In Part II, we present a sensitivity analysis of the results to input parameter variability that reveals strengths and limitations of the method, as well as describing possible interactions between input parameters and concurrent degradation modes.

  16. Research on the Complexity of Dual-Channel Supply Chain Model in Competitive Retailing Service Market

    NASA Astrophysics Data System (ADS)

    Ma, Junhai; Li, Ting; Ren, Wenbo

    2017-06-01

    This paper examines the optimal decisions of dual-channel game model considering the inputs of retailing service. We analyze how adjustment speed of service inputs affect the system complexity and market performance, and explore the stability of the equilibrium points by parameter basin diagrams. And chaos control is realized by variable feedback method. The numerical simulation shows that complex behavior would trigger the system to become unstable, such as double period bifurcation and chaos. We measure the performances of the model in different periods by analyzing the variation of average profit index. The theoretical results show that the percentage share of the demand and cross-service coefficients have important influence on the stability of the system and its feasible basin of attraction.

  17. Computer program for simulation of variable recharge with the U. S. Geological Survey modular finite-difference ground-water flow model (MODFLOW)

    USGS Publications Warehouse

    Kontis, A.L.

    2001-01-01

    The Variable-Recharge Package is a computerized method designed for use with the U.S. Geological Survey three-dimensional finitedifference ground-water flow model (MODFLOW-88) to simulate areal recharge to an aquifer. It is suitable for simulations of aquifers in which the relation between ground-water levels and land surface can affect the amount and distribution of recharge. The method is based on the premise that recharge to an aquifer cannot occur where the water level is at or above land surface. Consequently, recharge will vary spatially in simulations in which the Variable- Recharge Package is applied, if the water levels are sufficiently high. The input data required by the program for each model cell that can potentially receive recharge includes the average land-surface elevation and a quantity termed ?water available for recharge,? which is equal to precipitation minus evapotranspiration. The Variable-Recharge Package also can be used to simulate recharge to a valley-fill aquifer in which the valley fill and the adjoining uplands are explicitly simulated. Valley-fill aquifers, which are the most common type of aquifer in the glaciated northeastern United States, receive much of their recharge from upland sources as channeled and(or) unchanneled surface runoff and as lateral ground-water flow. Surface runoff in the uplands is generated in the model when the applied water available for recharge is rejected because simulated water levels are at or above land surface. The surface runoff can be distributed to other parts of the model by (1) applying the amount of the surface runoff that flows to upland streams (channeled runoff) to explicitly simulated streams that flow onto the valley floor, and(or) (2) applying the amount that flows downslope toward the valley- fill aquifer (unchanneled runoff) to specified model cells, typically those near the valley wall. An example model of an idealized valley- fill aquifer is presented to demonstrate application of the method and the type of information that can be derived from its use. Documentation of the Variable-Recharge Package is provided in the appendixes and includes listings of model code and of program variables. Comment statements in the program listings provide a narrative of the code. Input-data instructions and printed model output for the package are included.

  18. Linked population and economic models: some methodological issues in forecasting, analysis, and policy optimization.

    PubMed

    Madden, M; Batey Pwj

    1983-05-01

    Some problems associated with demographic-economic forecasting include finding models appropriate for a declining economy with unemployment, using a multiregional approach in an interregional model, finding a way to show differential consumption while endogenizing unemployment, and avoiding unemployment inconsistencies. The solution to these problems involves the construction of an activity-commodity framework, locating it within a group of forecasting models, and indicating possible ratios towards dynamization of the framework. The authors demonstrate the range of impact multipliers that can be derived from the framework and show how these multipliers relate to Leontief input-output multipliers. It is shown that desired population distribution may be obtained by selecting instruments from the economic sphere to produce, through the constraints vector of an activity-commodity framework, targets selected from demographic activities. The next step in this process, empirical exploitation, was carried out by the authors in the United Kingdom, linking an input-output model with a wide selection of demographic and demographic-economic variables. The generally tenuous control which government has over any variables in systems of this type, especially in market economies, makes application in the policy field of the optimization approach a partly conjectural exercise, although the analytic capacity of the approach can provide clear indications of policy directions.

  19. OpenDrift - an open source framework for ocean trajectory modeling

    NASA Astrophysics Data System (ADS)

    Dagestad, Knut-Frode; Breivik, Øyvind; Ådlandsvik, Bjørn

    2016-04-01

    We will present a new, open source tool for modeling the trajectories and fate of particles or substances (Lagrangian Elements) drifting in the ocean, or even in the atmosphere. The software is named OpenDrift, and has been developed at Norwegian Meteorological Institute in cooperation with Institute of Marine Research. OpenDrift is a generic framework written in Python, and is openly available at https://github.com/knutfrode/opendrift/. The framework is modular with respect to three aspects: (1) obtaining input data, (2) the transport/morphological processes, and (3) exporting of results to file. Modularity is achieved through well defined interfaces between components, and use of a consistent vocabulary (CF conventions) for naming of variables. Modular input implies that it is not necessary to preprocess input data (e.g. currents, wind and waves from Eulerian models) to a particular file format. Instead "reader modules" can be written/used to obtain data directly from any original source, including files or through web based protocols (e.g. OPeNDAP/Thredds). Modularity of processes implies that a model developer may focus on the geophysical processes relevant for the application of interest, without needing to consider technical tasks such as reading, reprojecting, and colocating input data, rotation and scaling of vectors and model output. We will show a few example applications of using OpenDrift for predicting drifters, oil spills, and search and rescue objects.

  20. Uncertainty in predictions of oil spill trajectories in a coastal zone

    NASA Astrophysics Data System (ADS)

    Sebastião, P.; Guedes Soares, C.

    2006-12-01

    A method is introduced to determine the uncertainties in the predictions of oil spill trajectories using a classic oil spill model. The method considers the output of the oil spill model as a function of random variables, which are the input parameters, and calculates the standard deviation of the output results which provides a measure of the uncertainty of the model as a result of the uncertainties of the input parameters. In addition to a single trajectory that is calculated by the oil spill model using the mean values of the parameters, a band of trajectories can be defined when various simulations are done taking into account the uncertainties of the input parameters. This band of trajectories defines envelopes of the trajectories that are likely to be followed by the spill given the uncertainties of the input. The method was applied to an oil spill that occurred in 1989 near Sines in the southwestern coast of Portugal. This model represented well the distinction between a wind driven part that remained offshore, and a tide driven part that went ashore. For both parts, the method defined two trajectory envelopes, one calculated exclusively with the wind fields, and the other using wind and tidal currents. In both cases reasonable approximation to the observed results was obtained. The envelope of likely trajectories that is obtained with the uncertainty modelling proved to give a better interpretation of the trajectories that were simulated by the oil spill model.

  1. Features Extraction of Flotation Froth Images and BP Neural Network Soft-Sensor Model of Concentrate Grade Optimized by Shuffled Cuckoo Searching Algorithm

    PubMed Central

    Wang, Jie-sheng; Han, Shuang; Shen, Na-na; Li, Shu-xia

    2014-01-01

    For meeting the forecasting target of key technology indicators in the flotation process, a BP neural network soft-sensor model based on features extraction of flotation froth images and optimized by shuffled cuckoo search algorithm is proposed. Based on the digital image processing technique, the color features in HSI color space, the visual features based on the gray level cooccurrence matrix, and the shape characteristics based on the geometric theory of flotation froth images are extracted, respectively, as the input variables of the proposed soft-sensor model. Then the isometric mapping method is used to reduce the input dimension, the network size, and learning time of BP neural network. Finally, a shuffled cuckoo search algorithm is adopted to optimize the BP neural network soft-sensor model. Simulation results show that the model has better generalization results and prediction accuracy. PMID:25133210

  2. Implementation of a 3D Coupled Hydrodynamic and Contaminant Fate Model for PCDD/Fs in Thau Lagoon (France): The Importance of Atmospheric Sources of Contamination

    PubMed Central

    Dueri, Sibylle; Marinov, Dimitar; Fiandrino, Annie; Tronczyński, Jacek; Zaldívar, José-Manuel

    2010-01-01

    A 3D hydrodynamic and contaminant fate model was implemented for polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in Thau lagoon. The hydrodynamic model was tested against temperature and salinity measurements, while the contaminant fate model was assessed against available data collected at different stations inside the lagoon. The model results allow an assessment of the spatial and temporal variability of the distribution of contaminants in the lagoon, the seasonality of loads and the role of atmospheric deposition for the input of PCDD/Fs. The outcome suggests that air is an important source of PCDD/Fs for this ecosystem, therefore the monitoring of air pollution is very appropriate for assessing the inputs of these contaminants. These results call for the development of integrated environmental protection policies. PMID:20617040

  3. Informing Ex Ante Event Studies with Macro-Econometric Evidence on the Structural and Policy Impacts of Terrorism.

    PubMed

    Nassios, Jason; Giesecke, James A

    2018-04-01

    Economic consequence analysis is one of many inputs to terrorism contingency planning. Computable general equilibrium (CGE) models are being used more frequently in these analyses, in part because of their capacity to accommodate high levels of event-specific detail. In modeling the potential economic effects of a hypothetical terrorist event, two broad sets of shocks are required: (1) physical impacts on observable variables (e.g., asset damage); (2) behavioral impacts on unobservable variables (e.g., investor uncertainty). Assembling shocks describing the physical impacts of a terrorist incident is relatively straightforward, since estimates are either readily available or plausibly inferred. However, assembling shocks describing behavioral impacts is more difficult. Values for behavioral variables (e.g., required rates of return) are typically inferred or estimated by indirect means. Generally, this has been achieved via reference to extraneous literature or ex ante surveys. This article explores a new method. We elucidate the magnitude of CGE-relevant structural shifts implicit in econometric evidence on terrorist incidents, with a view to informing future ex ante event assessments. Ex post econometric studies of terrorism by Blomberg et al. yield macro econometric equations that describe the response of observable economic variables (e.g., GDP growth) to terrorist incidents. We use these equations to determine estimates for relevant (unobservable) structural and policy variables impacted by terrorist incidents, using a CGE model of the United States. This allows us to: (i) compare values for these shifts with input assumptions in earlier ex ante CGE studies; and (ii) discuss how future ex ante studies can be informed by our analysis. © 2017 Society for Risk Analysis.

  4. Observing spatio-temporal dynamics of excitable media using reservoir computing

    NASA Astrophysics Data System (ADS)

    Zimmermann, Roland S.; Parlitz, Ulrich

    2018-04-01

    We present a dynamical observer for two dimensional partial differential equation models describing excitable media, where the required cross prediction from observed time series to not measured state variables is provided by Echo State Networks receiving input from local regions in space, only. The efficacy of this approach is demonstrated for (noisy) data from a (cubic) Barkley model and the Bueno-Orovio-Cherry-Fenton model describing chaotic electrical wave propagation in cardiac tissue.

  5. RMS Spectral Modelling - a powerful tool to probe the origin of variability in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Mallick, Labani; Dewangan, Gulab chand; Misra, Ranjeev

    2016-07-01

    The broadband energy spectra of Active Galactic Nuclei (AGN) are very complex in nature with the contribution from many ingredients: accretion disk, corona, jets, broad-line region (BLR), narrow-line region (NLR) and Compton-thick absorbing cloud or TORUS. The complexity of the broadband AGN spectra gives rise to mean spectral model degeneracy, e.g, there are competing models for the broad feature near 5-7 keV in terms of blurred reflection and complex absorption. In order to overcome the energy spectral model degeneracy, the most reliable approach is to study the RMS variability spectrum which connects the energy spectrum with temporal variability. The origin of variability could be pivoting of the primary continuum, reflection and/or absorption. The study of RMS (Root Mean Square) spectra would help us to connect the energy spectra with the variability. In this work, we study the energy dependent variability of AGN by developing theoretical RMS spectral model in ISIS (Interactive Spectral Interpretation System) for different input energy spectra. In this talk, I would like to present results of RMS spectral modelling for few radio-loud and radio-quiet AGN observed by XMM-Newton, Suzaku, NuSTAR and ASTROSAT and will probe the dichotomy between these two classes of AGN.

  6. A review of surrogate models and their application to groundwater modeling

    NASA Astrophysics Data System (ADS)

    Asher, M. J.; Croke, B. F. W.; Jakeman, A. J.; Peeters, L. J. M.

    2015-08-01

    The spatially and temporally variable parameters and inputs to complex groundwater models typically result in long runtimes which hinder comprehensive calibration, sensitivity, and uncertainty analysis. Surrogate modeling aims to provide a simpler, and hence faster, model which emulates the specified output of a more complex model in function of its inputs and parameters. In this review paper, we summarize surrogate modeling techniques in three categories: data-driven, projection, and hierarchical-based approaches. Data-driven surrogates approximate a groundwater model through an empirical model that captures the input-output mapping of the original model. Projection-based models reduce the dimensionality of the parameter space by projecting the governing equations onto a basis of orthonormal vectors. In hierarchical or multifidelity methods the surrogate is created by simplifying the representation of the physical system, such as by ignoring certain processes, or reducing the numerical resolution. In discussing the application to groundwater modeling of these methods, we note several imbalances in the existing literature: a large body of work on data-driven approaches seemingly ignores major drawbacks to the methods; only a fraction of the literature focuses on creating surrogates to reproduce outputs of fully distributed groundwater models, despite these being ubiquitous in practice; and a number of the more advanced surrogate modeling methods are yet to be fully applied in a groundwater modeling context.

  7. Next generation lightweight mirror modeling software

    NASA Astrophysics Data System (ADS)

    Arnold, William R.; Fitzgerald, Matthew; Rosa, Rubin Jaca; Stahl, H. Philip

    2013-09-01

    The advances in manufacturing techniques for lightweight mirrors, such as EXELSIS deep core low temperature fusion, Corning's continued improvements in the Frit bonding process and the ability to cast large complex designs, combined with water-jet and conventional diamond machining of glasses and ceramics has created the need for more efficient means of generating finite element models of these structures. Traditional methods of assembling 400,000 + element models can take weeks of effort, severely limiting the range of possible optimization variables. This paper will introduce model generation software developed under NASA sponsorship for the design of both terrestrial and space based mirrors. The software deals with any current mirror manufacturing technique, single substrates, multiple arrays of substrates, as well as the ability to merge submodels into a single large model. The modeler generates both mirror and suspension system elements, suspensions can be created either for each individual petal or the whole mirror. A typical model generation of 250,000 nodes and 450,000 elements only takes 3-5 minutes, much of that time being variable input time. The program can create input decks for ANSYS, ABAQUS and NASTRAN. An archive/retrieval system permits creation of complete trade studies, varying cell size, depth, and petal size, suspension geometry with the ability to recall a particular set of parameters and make small or large changes with ease. The input decks created by the modeler are text files which can be modified by any text editor, all the shell thickness parameters and suspension spring rates are accessible and comments in deck identify which groups of elements are associated with these parameters. This again makes optimization easier. With ANSYS decks, the nodes representing support attachments are grouped into components; in ABAQUS these are SETS and in NASTRAN as GRIDPOINT SETS, this make integration of these models into large telescope or satellite models easier.

  8. Data sources and compilation: Chapter 27 in Petroleum systems and geologic assessment of oil and gas in the San Joaquin Basin Province, California

    USGS Publications Warehouse

    Klett, T.R.; Schmoker, James W.

    2007-01-01

    Geologic, production, and exploration/discovery-history data are used by the U.S. Geological Survey to aid in the assessment of petroleum resources. These data, as well as the broad knowledge and experience of the assessing geologists, are synthesized to provide, for each assessment unit, geologic and exploration models upon which estimates are made of the number and sizes of undiscovered accumulations for conventional assessment units or number and total recoverable volumes of untested cells for continuous assessment units (input data for resource calculations). Quantified geologic information and trends in production and exploration/discovery-history data with respect to time and exploration effort provide guides for the estimating parameters of variables recorded on the input-data forms (input data) used to calculate petroleum resources. An Assessment Review Team reviews proposed geologic and exploration models and input data for each assessment unit in formal assessment meetings. The Assessment Review Team maintains the accuracy and consistency of the assessment procedure during the formal assessment meetings.

  9. Sequential state estimation of nonlinear/non-Gaussian systems with stochastic input for turbine degradation estimation

    NASA Astrophysics Data System (ADS)

    Hanachi, Houman; Liu, Jie; Banerjee, Avisekh; Chen, Ying

    2016-05-01

    Health state estimation of inaccessible components in complex systems necessitates effective state estimation techniques using the observable variables of the system. The task becomes much complicated when the system is nonlinear/non-Gaussian and it receives stochastic input. In this work, a novel sequential state estimation framework is developed based on particle filtering (PF) scheme for state estimation of general class of nonlinear dynamical systems with stochastic input. Performance of the developed framework is then validated with simulation on a Bivariate Non-stationary Growth Model (BNGM) as a benchmark. In the next step, three-year operating data of an industrial gas turbine engine (GTE) are utilized to verify the effectiveness of the developed framework. A comprehensive thermodynamic model for the GTE is therefore developed to formulate the relation of the observable parameters and the dominant degradation symptoms of the turbine, namely, loss of isentropic efficiency and increase of the mass flow. The results confirm the effectiveness of the developed framework for simultaneous estimation of multiple degradation symptoms in complex systems with noisy measured inputs.

  10. Application of soft computing based hybrid models in hydrological variables modeling: a comprehensive review

    NASA Astrophysics Data System (ADS)

    Fahimi, Farzad; Yaseen, Zaher Mundher; El-shafie, Ahmed

    2017-05-01

    Since the middle of the twentieth century, artificial intelligence (AI) models have been used widely in engineering and science problems. Water resource variable modeling and prediction are the most challenging issues in water engineering. Artificial neural network (ANN) is a common approach used to tackle this problem by using viable and efficient models. Numerous ANN models have been successfully developed to achieve more accurate results. In the current review, different ANN models in water resource applications and hydrological variable predictions are reviewed and outlined. In addition, recent hybrid models and their structures, input preprocessing, and optimization techniques are discussed and the results are compared with similar previous studies. Moreover, to achieve a comprehensive view of the literature, many articles that applied ANN models together with other techniques are included. Consequently, coupling procedure, model evaluation, and performance comparison of hybrid models with conventional ANN models are assessed, as well as, taxonomy and hybrid ANN models structures. Finally, current challenges and recommendations for future researches are indicated and new hybrid approaches are proposed.

  11. [Application of characteristic NIR variables selection in portable detection of soluble solids content of apple by near infrared spectroscopy].

    PubMed

    Fan, Shu-Xiang; Huang, Wen-Qian; Li, Jiang-Bo; Guo, Zhi-Ming; Zhaq, Chun-Jiang

    2014-10-01

    In order to detect the soluble solids content(SSC)of apple conveniently and rapidly, a ring fiber probe and a portable spectrometer were applied to obtain the spectroscopy of apple. Different wavelength variable selection methods, including unin- formative variable elimination (UVE), competitive adaptive reweighted sampling (CARS) and genetic algorithm (GA) were pro- posed to select effective wavelength variables of the NIR spectroscopy of the SSC in apple based on PLS. The back interval LS- SVM (BiLS-SVM) and GA were used to select effective wavelength variables based on LS-SVM. Selected wavelength variables and full wavelength range were set as input variables of PLS model and LS-SVM model, respectively. The results indicated that PLS model built using GA-CARS on 50 characteristic variables selected from full-spectrum which had 1512 wavelengths achieved the optimal performance. The correlation coefficient (Rp) and root mean square error of prediction (RMSEP) for prediction sets were 0.962, 0.403°Brix respectively for SSC. The proposed method of GA-CARS could effectively simplify the portable detection model of SSC in apple based on near infrared spectroscopy and enhance the predictive precision. The study can provide a reference for the development of portable apple soluble solids content spectrometer.

  12. Mathematical Modeling and Optimizing of in Vitro Hormonal Combination for G × N15 Vegetative Rootstock Proliferation Using Artificial Neural Network-Genetic Algorithm (ANN-GA)

    PubMed Central

    Arab, Mohammad M.; Yadollahi, Abbas; Ahmadi, Hamed; Eftekhari, Maliheh; Maleki, Masoud

    2017-01-01

    The efficiency of a hybrid systems method which combined artificial neural networks (ANNs) as a modeling tool and genetic algorithms (GAs) as an optimizing method for input variables used in ANN modeling was assessed. Hence, as a new technique, it was applied for the prediction and optimization of the plant hormones concentrations and combinations for in vitro proliferation of Garnem (G × N15) rootstock as a case study. Optimizing hormones combination was surveyed by modeling the effects of various concentrations of cytokinin–auxin, i.e., BAP, KIN, TDZ, IBA, and NAA combinations (inputs) on four growth parameters (outputs), i.e., micro-shoots number per explant, length of micro-shoots, developed callus weight (CW) and the quality index (QI) of plantlets. Calculation of statistical values such as R2 (coefficient of determination) related to the accuracy of ANN-GA models showed a considerably higher prediction accuracy for ANN models, i.e., micro-shoots number: R2 = 0.81, length of micro-shoots: R2 = 0.87, CW: R2 = 0.88, QI: R2 = 0.87. According to the results, among the input variables, BAP (19.3), KIN (9.64), and IBA (2.63) showed the highest values of variable sensitivity ratio for proliferation rate. The GA showed that media containing 1.02 mg/l BAP in combination with 0.098 mg/l IBA could lead to the optimal proliferation rate (10.53) for G × N15 rootstock. Another objective of the present study was to compare the performance of predicted and optimized cytokinin–auxin combination with the best optimized obtained concentrations of our other experiments. Considering three growth parameters (length of micro-shoots, micro-shoots number, and proliferation rate), the last treatment was found to be superior to the rest of treatments for G × N15 rootstock in vitro multiplication. Very little difference between the ANN predicted and experimental data confirmed high capability of ANN-GA method in predicting new optimized protocols for plant in vitro propagation. PMID:29163583

  13. The Effects of a Change in the Variability of Irrigation Water

    NASA Astrophysics Data System (ADS)

    Lyon, Kenneth S.

    1983-10-01

    This paper examines the short-run effects upon several variables of an increase in the variability of an input. The measure of an increase in the variability is the "mean preserving spread" suggested by Rothschild and Stiglitz (1970). The variables examined are real income (utility), expected profits, expected output, the quantity used of the controllable input, and the shadow price of the stochastic input. Four striking features of the results follow: (1) The concepts that have been useful in summarizing deterministic comparative static results are nearly absent when an input is stochastic. (2) Most of the signs of the partial derivatives depend upon more than concavity of the utility and production functions. (3) If the utility function is not "too" risk averse, then the risk-neutral results hold for the risk-aversion case. (4) If the production function is Cobb-Douglas, then definite results are achieved if the utility function is linear or if the "degree of risk-aversion" is "small."

  14. Advances in Geoscience Modeling: Smart Modeling Frameworks, Self-Describing Models and the Role of Standardized Metadata

    NASA Astrophysics Data System (ADS)

    Peckham, Scott

    2016-04-01

    Over the last decade, model coupling frameworks like CSDMS (Community Surface Dynamics Modeling System) and ESMF (Earth System Modeling Framework) have developed mechanisms that make it much easier for modelers to connect heterogeneous sets of process models in a plug-and-play manner to create composite "system models". These mechanisms greatly simplify code reuse, but must simultaneously satisfy many different design criteria. They must be able to mediate or compensate for differences between the process models, such as their different programming languages, computational grids, time-stepping schemes, variable names and variable units. However, they must achieve this interoperability in a way that: (1) is noninvasive, requiring only relatively small and isolated changes to the original source code, (2) does not significantly reduce performance, (3) is not time-consuming or confusing for a model developer to implement, (4) can very easily be updated to accommodate new versions of a given process model and (5) does not shift the burden of providing model interoperability to the model developers. In tackling these design challenges, model framework developers have learned that the best solution is to provide each model with a simple, standardized interface, i.e. a set of standardized functions that make the model: (1) fully-controllable by a caller (e.g. a model framework) and (2) self-describing with standardized metadata. Model control functions are separate functions that allow a caller to initialize the model, advance the model's state variables in time and finalize the model. Model description functions allow a caller to retrieve detailed information on the model's input and output variables, its computational grid and its timestepping scheme. If the caller is a modeling framework, it can use the self description functions to learn about each process model in a collection to be coupled and then automatically call framework service components (e.g. regridders, time interpolators and unit converters) as necessary to mediate the differences between them so they can work together. This talk will first review two key products of the CSDMS project, namely a standardized model interface called the Basic Model Interface (BMI) and the CSDMS Standard Names. The standard names are used in conjunction with BMI to provide a semantic matching mechanism that allows output variables from one process model or data set to be reliably used as input variables to other process models in a collection. They include not just a standardized naming scheme for model variables, but also a standardized set of terms for describing the attributes and assumptions of a given model. Recent efforts to bring powerful uncertainty analysis and inverse modeling toolkits such as DAKOTA into modeling frameworks will also be described. This talk will conclude with an overview of several related modeling projects that have been funded by NSF's EarthCube initiative, namely the Earth System Bridge, OntoSoft and GeoSemantics projects.

  15. Linguistic Parameters in Performance Models.

    ERIC Educational Resources Information Center

    Mansell, Philip

    This paper deals with problems concerning the nature of the input to a phonetic processor. Several assumptions provide the basis for consideration of the problem. There is a phonological level of processing which reflects the sound structure of the language; the rules associated with it are not affected by variables associated either with the…

  16. Basic Investigations of Dynamic Travel Time Estimation Model for Traffic Signals Control Using Information from Optical Beacons

    NASA Astrophysics Data System (ADS)

    Okutani, Iwao; Mitsui, Tatsuro; Nakada, Yusuke

    In this paper put forward are neuron-type models, i.e., neural network model, wavelet neuron model and three layered wavelet neuron model(WV3), for estimating traveling time between signalized intersections in order to facilitate adaptive setting of traffic signal parameters such as green time and offset. Model validation tests using simulated data reveal that compared to other models, WV3 model works very fast in learning process and can produce more accurate estimates of travel time. Also, it is exhibited that up-link information obtainable from optical beacons, i.e., travel time observed during the former cycle time in this case, makes a crucial input variable to the models in that there isn't any substantial difference between the change of estimated and simulated travel time with the change of green time or offset when up-link information is employed as input while there appears big discrepancy between them when not employed.

  17. Optimal allocation of testing resources for statistical simulations

    NASA Astrophysics Data System (ADS)

    Quintana, Carolina; Millwater, Harry R.; Singh, Gulshan; Golden, Patrick

    2015-07-01

    Statistical estimates from simulation involve uncertainty caused by the variability in the input random variables due to limited data. Allocating resources to obtain more experimental data of the input variables to better characterize their probability distributions can reduce the variance of statistical estimates. The methodology proposed determines the optimal number of additional experiments required to minimize the variance of the output moments given single or multiple constraints. The method uses multivariate t-distribution and Wishart distribution to generate realizations of the population mean and covariance of the input variables, respectively, given an amount of available data. This method handles independent and correlated random variables. A particle swarm method is used for the optimization. The optimal number of additional experiments per variable depends on the number and variance of the initial data, the influence of the variable in the output function and the cost of each additional experiment. The methodology is demonstrated using a fretting fatigue example.

  18. Analysis of Multiple Precipitation Products and Preliminary Assessment of Their Impact on Global Land Data Assimilation System (GLDAS) Land Surface States

    NASA Technical Reports Server (NTRS)

    Gottschalck, Jon; Meng, Jesse; Rodel, Matt; Houser, paul

    2005-01-01

    Land surface models (LSMs) are computer programs, similar to weather and climate prediction models, which simulate the stocks and fluxes of water (including soil moisture, snow, evaporation, and runoff) and energy (including the temperature of and sensible heat released from the soil) after they arrive on the land surface as precipitation and sunlight. It is not currently possible to measure all of the variables of interest everywhere on Earth with sufficient accuracy and space-time resolution. Hence LSMs have been developed to integrate the available observations with our understanding of the physical processes involved, using powerful computers, in order to map these stocks and fluxes as they change in time. The maps are used to improve weather forecasts, support water resources and agricultural applications, and study the Earth's water cycle and climate variability. NASA's Global Land Data Assimilation System (GLDAS) project facilitates testing of several different LSMs with a variety of input datasets (e.g., precipitation, plant type). Precipitation is arguably the most important input to LSMs. Many precipitation datasets have been produced using satellite and rain gauge observations and weather forecast models. In this study, seven different global precipitation datasets were evaluated over the United States, where dense rain gauge networks contribute to reliable precipitation maps. We then used the seven datasets as inputs to GLDAS simulations, so that we could diagnose their impacts on output stocks and fluxes of water. In terms of totals, the Climate Prediction Center (CPC) Merged Analysis of Precipitation (CMAP) had the closest agreement with the US rain gauge dataset for all seasons except winter. The CMAP precipitation was also the most closely correlated in time with the rain gauge data during spring, fall, and winter, while the satellitebased estimates performed best in summer. The GLDAS simulations revealed that modeled soil moisture is highly sensitive to precipitation, with differences in spring and summer as large as 45% depending on the choice of precipitation input.

  19. Variability in common synaptic input to motor neurons modulates both force steadiness and pegboard time in young and older adults.

    PubMed

    Feeney, Daniel F; Mani, Diba; Enoka, Roger M

    2018-06-07

    We investigated the associations between grooved pegboard times, force steadiness (coefficient of variation for force), and variability in an estimate of the common synaptic input to motor neurons innervating the wrist extensor muscles during steady contractions performed by young and older adults. The discharge times of motor units were derived from recordings obtained with high-density surface electrodes while participants performed steady isometric contractions at 10% and 20% of maximal voluntary contraction (MVC) force. The steady contractions were performed with a pinch grip and wrist extension, both independently (single action) and concurrently (double action). The variance in common synaptic input to motor neurons was estimated with a state-space model of the latent common input dynamics. There was a statistically significant association between the coefficient of variation for force during the steady contractions and the estimated variance in common synaptic input in young (r 2 = 0.31) and older (r 2 = 0.39) adults, but not between either the mean or the coefficient of variation for interspike interval of single motor units with the coefficient of variation for force. Moreover, the estimated variance in common synaptic input during the double-action task with the wrist extensors at the 20% target was significantly associated with grooved pegboard time (r 2 = 0.47) for older adults, but not young adults. These findings indicate that longer pegboard times of older adults were associated with worse force steadiness and greater fluctuations in the estimated common synaptic input to motor neurons during steady contractions. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  20. A Robot-Driven Computational Model for Estimating Passive Ankle Torque With Subject-Specific Adaptation.

    PubMed

    Zhang, Mingming; Meng, Wei; Davies, T Claire; Zhang, Yanxin; Xie, Sheng Q

    2016-04-01

    Robot-assisted ankle assessment could potentially be conducted using sensor-based and model-based methods. Existing ankle rehabilitation robots usually use torquemeters and multiaxis load cells for measuring joint dynamics. These measurements are accurate, but the contribution as a result of muscles and ligaments is not taken into account. Some computational ankle models have been developed to evaluate ligament strain and joint torque. These models do not include muscles and, thus, are not suitable for an overall ankle assessment in robot-assisted therapy. This study proposed a computational ankle model for use in robot-assisted therapy with three rotational degrees of freedom, 12 muscles, and seven ligaments. This model is driven by robotics, uses three independent position variables as inputs, and outputs an overall ankle assessment. Subject-specific adaptations by geometric and strength scaling were also made to allow for a universal model. This model was evaluated using published results and experimental data from 11 participants. Results show a high accuracy in the evaluation of ligament neutral length and passive joint torque. The subject-specific adaptation performance is high, with each normalized root-mean-square deviation value less than 10%. This model could be used for ankle assessment, especially in evaluating passive ankle torque, for a specific individual. The characteristic that is unique to this model is the use of three independent position variables that can be measured in real time as inputs, which makes it advantageous over other models when combined with robot-assisted therapy.

  1. Sources of Uncertainty in Predicting Land Surface Fluxes Using Diverse Data and Models

    NASA Technical Reports Server (NTRS)

    Dungan, Jennifer L.; Wang, Weile; Michaelis, Andrew; Votava, Petr; Nemani, Ramakrishma

    2010-01-01

    In the domain of predicting land surface fluxes, models are used to bring data from large observation networks and satellite remote sensing together to make predictions about present and future states of the Earth. Characterizing the uncertainty about such predictions is a complex process and one that is not yet fully understood. Uncertainty exists about initialization, measurement and interpolation of input variables; model parameters; model structure; and mixed spatial and temporal supports. Multiple models or structures often exist to describe the same processes. Uncertainty about structure is currently addressed by running an ensemble of different models and examining the distribution of model outputs. To illustrate structural uncertainty, a multi-model ensemble experiment we have been conducting using the Terrestrial Observation and Prediction System (TOPS) will be discussed. TOPS uses public versions of process-based ecosystem models that use satellite-derived inputs along with surface climate data and land surface characterization to produce predictions of ecosystem fluxes including gross and net primary production and net ecosystem exchange. Using the TOPS framework, we have explored the uncertainty arising from the application of models with different assumptions, structures, parameters, and variable definitions. With a small number of models, this only begins to capture the range of possible spatial fields of ecosystem fluxes. Few attempts have been made to systematically address the components of uncertainty in such a framework. We discuss the characterization of uncertainty for this approach including both quantifiable and poorly known aspects.

  2. Data-driven Modeling of Metal-oxide Sensors with Dynamic Bayesian Networks

    NASA Astrophysics Data System (ADS)

    Gosangi, Rakesh; Gutierrez-Osuna, Ricardo

    2011-09-01

    We present a data-driven probabilistic framework to model the transient response of MOX sensors modulated with a sequence of voltage steps. Analytical models of MOX sensors are usually built based on the physico-chemical properties of the sensing materials. Although building these models provides an insight into the sensor behavior, they also require a thorough understanding of the underlying operating principles. Here we propose a data-driven approach to characterize the dynamical relationship between sensor inputs and outputs. Namely, we use dynamic Bayesian networks (DBNs), probabilistic models that represent temporal relations between a set of random variables. We identify a set of control variables that influence the sensor responses, create a graphical representation that captures the causal relations between these variables, and finally train the model with experimental data. We validated the approach on experimental data in terms of predictive accuracy and classification performance. Our results show that DBNs can accurately predict the dynamic response of MOX sensors, as well as capture the discriminatory information present in the sensor transients.

  3. Numerical modeling of rapidly varying flows using HEC-RAS and WSPG models.

    PubMed

    Rao, Prasada; Hromadka, Theodore V

    2016-01-01

    The performance of two popular hydraulic models (HEC-RAS and WSPG) for modeling hydraulic jump in an open channel is investigated. The numerical solutions are compared with a new experimental data set obtained for varying channel bottom slopes and flow rates. Both the models satisfactorily predict the flow depths and location of the jump. The end results indicate that the numerical models output is sensitive to the value of chosen roughness coefficient. For this application, WSPG model is easier to implement with few input variables.

  4. Climate, soil water storage, and the average annual water balance

    USGS Publications Warehouse

    Milly, P.C.D.

    1994-01-01

    This paper describes the development and testing of the hypothesis that the long-term water balance is determined only by the local interaction of fluctuating water supply (precipitation) and demand (potential evapotranspiration), mediated by water storage in the soil. Adoption of this hypothesis, together with idealized representations of relevant input variabilities in time and space, yields a simple model of the water balance of a finite area having a uniform climate. The partitioning of average annual precipitation into evapotranspiration and runoff depends on seven dimensionless numbers: the ratio of average annual potential evapotranspiration to average annual precipitation (index of dryness); the ratio of the spatial average plant-available water-holding capacity of the soil to the annual average precipitation amount; the mean number of precipitation events per year; the shape parameter of the gamma distribution describing spatial variability of storage capacity; and simple measures of the seasonality of mean precipitation intensity, storm arrival rate, and potential evapotranspiration. The hypothesis is tested in an application of the model to the United States east of the Rocky Mountains, with no calibration. Study area averages of runoff and evapotranspiration, based on observations, are 263 mm and 728 mm, respectively; the model yields corresponding estimates of 250 mm and 741 mm, respectively, and explains 88% of the geographical variance of observed runoff within the study region. The differences between modeled and observed runoff can be explained by uncertainties in the model inputs and in the observed runoff. In the humid (index of dryness <1) parts of the study area, the dominant factor producing runoff is the excess of annual precipitation over annual potential evapotranspiration, but runoff caused by variability of supply and demand over time is also significant; in the arid (index of dryness >1) parts, all of the runoff is caused by variability of forcing over time. Contributions to model runoff attributable to small-scale spatial variability of storage capacity are insignificant throughout the study area. The consistency of the model with observational data is supportive of the supply-demand-storage hypothesis, which neglects infiltration excess runoff and other finite-permeability effects on the soil water balance.

  5. Modeling and predicting low-speed vehicle emissions as a function of driving kinematics.

    PubMed

    Hao, Lijun; Chen, Wei; Li, Lei; Tan, Jianwei; Wang, Xin; Yin, Hang; Ding, Yan; Ge, Yunshan

    2017-05-01

    An instantaneous emission model was developed to model and predict the real driving emissions of the low-speed vehicles. The emission database used in the model was measured by using portable emission measurement system (PEMS) under actual traffic conditions in the rural area, and the characteristics of the emission data were determined in relation to the driving kinematics (speed and acceleration) of the low-speed vehicle. The input of the emission model is driving cycle, and the model requires instantaneous vehicle speed and acceleration levels as input variables and uses them to interpolate the pollutant emission rate maps to calculate the transient pollutant emission rates, which will be accumulated to calculate the total emissions released during the whole driving cycle. And the vehicle fuel consumption was determined through the carbon balance method. The model predicted the emissions and fuel consumption of an in-use low-speed vehicle type model, which agreed well with the measured data. Copyright © 2016. Published by Elsevier B.V.

  6. Using soft computing techniques to predict corrected air permeability using Thomeer parameters, air porosity and grain density

    NASA Astrophysics Data System (ADS)

    Nooruddin, Hasan A.; Anifowose, Fatai; Abdulraheem, Abdulazeez

    2014-03-01

    Soft computing techniques are recently becoming very popular in the oil industry. A number of computational intelligence-based predictive methods have been widely applied in the industry with high prediction capabilities. Some of the popular methods include feed-forward neural networks, radial basis function network, generalized regression neural network, functional networks, support vector regression and adaptive network fuzzy inference system. A comparative study among most popular soft computing techniques is presented using a large dataset published in literature describing multimodal pore systems in the Arab D formation. The inputs to the models are air porosity, grain density, and Thomeer parameters obtained using mercury injection capillary pressure profiles. Corrected air permeability is the target variable. Applying developed permeability models in recent reservoir characterization workflow ensures consistency between micro and macro scale information represented mainly by Thomeer parameters and absolute permeability. The dataset was divided into two parts with 80% of data used for training and 20% for testing. The target permeability variable was transformed to the logarithmic scale as a pre-processing step and to show better correlations with the input variables. Statistical and graphical analysis of the results including permeability cross-plots and detailed error measures were created. In general, the comparative study showed very close results among the developed models. The feed-forward neural network permeability model showed the lowest average relative error, average absolute relative error, standard deviations of error and root means squares making it the best model for such problems. Adaptive network fuzzy inference system also showed very good results.

  7. 3-D ballistic transport of ellipsoidal volcanic projectiles considering horizontal wind field and variable shape-dependent drag coefficients

    NASA Astrophysics Data System (ADS)

    Bertin, Daniel

    2017-02-01

    An innovative 3-D numerical model for the dynamics of volcanic ballistic projectiles is presented here. The model focuses on ellipsoidal particles and improves previous approaches by considering horizontal wind field, virtual mass forces, and drag forces subjected to variable shape-dependent drag coefficients. Modeling suggests that the projectile's launch velocity and ejection angle are first-order parameters influencing ballistic trajectories. The projectile's density and minor radius are second-order factors, whereas both intermediate and major radii of the projectile are of third order. Comparing output parameters, assuming different input data, highlights the importance of considering a horizontal wind field and variable shape-dependent drag coefficients in ballistic modeling, which suggests that they should be included in every ballistic model. On the other hand, virtual mass forces should be discarded since they almost do not contribute to ballistic trajectories. Simulation results were used to constrain some crucial input parameters (launch velocity, ejection angle, wind speed, and wind azimuth) of the block that formed the biggest and most distal ballistic impact crater during the 1984-1993 eruptive cycle of Lascar volcano, Northern Chile. Subsequently, up to 106 simulations were performed, whereas nine ejection parameters were defined by a Latin-hypercube sampling approach. Simulation results were summarized as a quantitative probabilistic hazard map for ballistic projectiles. Transects were also done in order to depict aerial hazard zones based on the same probabilistic procedure. Both maps combined can be used as a hazard prevention tool for ground and aerial transits nearby unresting volcanoes.

  8. Biomass burning aerosol over Romania using dispersion model and Calipso data

    NASA Astrophysics Data System (ADS)

    Nicolae, Victor; Dandocsi, Alexandru; Marmureanu, Luminita; Talianu, Camelia

    2018-04-01

    The purpose of the study is to analyze the seasonal variability, for the hot and cold seasons, of biomass burning aerosol observed over Romania using forward dispersion calculations based on FLEXPART model. The model was set up to use as input the MODIS fire data with a degree of confidence over 25% after transforming the emitted power in emission rate. The modelled aerosols in this setup was black carbon coated by organics. Distribution in the upper layers were compared to Calipso retrieval.

  9. Visual Predictive Check in Models with Time-Varying Input Function.

    PubMed

    Largajolli, Anna; Bertoldo, Alessandra; Campioni, Marco; Cobelli, Claudio

    2015-11-01

    The nonlinear mixed effects models are commonly used modeling techniques in the pharmaceutical research as they enable the characterization of the individual profiles together with the population to which the individuals belong. To ensure a correct use of them is fundamental to provide powerful diagnostic tools that are able to evaluate the predictive performance of the models. The visual predictive check (VPC) is a commonly used tool that helps the user to check by visual inspection if the model is able to reproduce the variability and the main trend of the observed data. However, the simulation from the model is not always trivial, for example, when using models with time-varying input function (IF). In this class of models, there is a potential mismatch between each set of simulated parameters and the associated individual IF which can cause an incorrect profile simulation. We introduce a refinement of the VPC by taking in consideration a correlation term (the Mahalanobis or normalized Euclidean distance) that helps the association of the correct IF with the individual set of simulated parameters. We investigate and compare its performance with the standard VPC in models of the glucose and insulin system applied on real and simulated data and in a simulated pharmacokinetic/pharmacodynamic (PK/PD) example. The newly proposed VPC performance appears to be better with respect to the standard VPC especially for the models with big variability in the IF where the probability of simulating incorrect profiles is higher.

  10. Extended Fitts' model of pointing time in eye-gaze input system - Incorporating effects of target shape and movement direction into modeling.

    PubMed

    Murata, Atsuo; Fukunaga, Daichi

    2018-04-01

    This study attempted to investigate the effects of the target shape and the movement direction on the pointing time using an eye-gaze input system and extend Fitts' model so that these factors are incorporated into the model and the predictive power of Fitts' model is enhanced. The target shape, the target size, the movement distance, and the direction of target presentation were set as within-subject experimental variables. The target shape included: a circle, and rectangles with an aspect ratio of 1:1, 1:2, 1:3, and 1:4. The movement direction included eight directions: upper, lower, left, right, upper left, upper right, lower left, and lower right. On the basis of the data for identifying the effects of the target shape and the movement direction on the pointing time, an attempt was made to develop a generalized and extended Fitts' model that took into account the movement direction and the target shape. As a result, the generalized and extended model was found to fit better to the experimental data, and be more effective for predicting the pointing time for a variety of human-computer interaction (HCI) task using an eye-gaze input system. Copyright © 2017. Published by Elsevier Ltd.

  11. Computer-program documentation of an interactive-accounting model to simulate streamflow, water quality, and water-supply operations in a river basin

    USGS Publications Warehouse

    Burns, A.W.

    1988-01-01

    This report describes an interactive-accounting model used to simulate streamflow, chemical-constituent concentrations and loads, and water-supply operations in a river basin. The model uses regression equations to compute flow from incremental (internode) drainage areas. Conservative chemical constituents (typically dissolved solids) also are computed from regression equations. Both flow and water quality loads are accumulated downstream. Optionally, the model simulates the water use and the simplified groundwater systems of a basin. Water users include agricultural, municipal, industrial, and in-stream users , and reservoir operators. Water users list their potential water sources, including direct diversions, groundwater pumpage, interbasin imports, or reservoir releases, in the order in which they will be used. Direct diversions conform to basinwide water law priorities. The model is interactive, and although the input data exist in files, the user can modify them interactively. A major feature of the model is its color-graphic-output options. This report includes a description of the model, organizational charts of subroutines, and examples of the graphics. Detailed format instructions for the input data, example files of input data, definitions of program variables, and listing of the FORTRAN source code are Attachments to the report. (USGS)

  12. Dengue: recent past and future threats

    PubMed Central

    Rogers, David J.

    2015-01-01

    This article explores four key questions about statistical models developed to describe the recent past and future of vector-borne diseases, with special emphasis on dengue: (1) How many variables should be used to make predictions about the future of vector-borne diseases?(2) Is the spatial resolution of a climate dataset an important determinant of model accuracy?(3) Does inclusion of the future distributions of vectors affect predictions of the futures of the diseases they transmit?(4) Which are the key predictor variables involved in determining the distributions of vector-borne diseases in the present and future?Examples are given of dengue models using one, five or 10 meteorological variables and at spatial resolutions of from one-sixth to two degrees. Model accuracy is improved with a greater number of descriptor variables, but is surprisingly unaffected by the spatial resolution of the data. Dengue models with a reduced set of climate variables derived from the HadCM3 global circulation model predictions for the 1980s are improved when risk maps for dengue's two main vectors (Aedes aegypti and Aedes albopictus) are also included as predictor variables; disease and vector models are projected into the future using the global circulation model predictions for the 2020s, 2040s and 2080s. The Garthwaite–Koch corr-max transformation is presented as a novel way of showing the relative contribution of each of the input predictor variables to the map predictions. PMID:25688021

  13. Statistics, Uncertainty, and Transmitted Variation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wendelberger, Joanne Roth

    2014-11-05

    The field of Statistics provides methods for modeling and understanding data and making decisions in the presence of uncertainty. When examining response functions, variation present in the input variables will be transmitted via the response function to the output variables. This phenomenon can potentially have significant impacts on the uncertainty associated with results from subsequent analysis. This presentation will examine the concept of transmitted variation, its impact on designed experiments, and a method for identifying and estimating sources of transmitted variation in certain settings.

  14. Does model structure limit the use of satellite data as hydrologic forcing for distributed operational models?

    NASA Astrophysics Data System (ADS)

    Bowman, A. L.; Franz, K.; Hogue, T. S.

    2015-12-01

    We are investigating the implications for use of satellite data in operational streamflow prediction. Specifically, the consequence of potential hydrologic model structure deficiencies on the ability to achieve improved forecast accuracy through the use of satellite data. We want to understand why advanced data do not lead to improved streamflow simulations by exploring how various fluxes and states differ among models of increasing complexity. In a series of prior studies, we investigated the use of a daily satellite-derived potential evapotranspiration (PET) estimate as input to the National Weather Service (NWS) streamflow forecast models for watersheds in the Upper Mississippi and Red river basins. Although the spatial PET product appears to represent the day-to-day variability in PET more realistically than current climatological methods used by the NWS, the impact of the satellite data on streamflow simulations results in slightly poorer model efficiency overall. Analysis of the model states indicates the model progresses differently between simulations with baseline PET and the satellite-derived PET input, though variation in streamflow simulations overall is negligible. For instance, the upper zone states, responsible for the high flows of a hydrograph, show a profound difference, while simulation of the peak flows tend to show little variation in the timing and magnitude. Using the spatial PET input, the lower zone states show improvement with simulating the recession limb and baseflow portion of the hydrograph. We anticipate that through a better understanding of the relationship between model structure, model states, and simulated streamflow we will be able to diagnose why simulations of discharge from the forecast model have failed to improve when provided seemingly more representative input data. Identifying model limitations are critical to demonstrating the full benefit of a satellite data for operational use.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Katherine H.; Cutler, Dylan S.; Olis, Daniel R.

    REopt is a techno-economic decision support model used to optimize energy systems for buildings, campuses, communities, and microgrids. The primary application of the model is for optimizing the integration and operation of behind-the-meter energy assets. This report provides an overview of the model, including its capabilities and typical applications; inputs and outputs; economic calculations; technology descriptions; and model parameters, variables, and equations. The model is highly flexible, and is continually evolving to meet the needs of each analysis. Therefore, this report is not an exhaustive description of all capabilities, but rather a summary of the core components of the model.

  16. Quantifying the importance of spatial resolution and other factors through global sensitivity analysis of a flood inundation model

    NASA Astrophysics Data System (ADS)

    Thomas Steven Savage, James; Pianosi, Francesca; Bates, Paul; Freer, Jim; Wagener, Thorsten

    2016-11-01

    Where high-resolution topographic data are available, modelers are faced with the decision of whether it is better to spend computational resource on resolving topography at finer resolutions or on running more simulations to account for various uncertain input factors (e.g., model parameters). In this paper we apply global sensitivity analysis to explore how influential the choice of spatial resolution is when compared to uncertainties in the Manning's friction coefficient parameters, the inflow hydrograph, and those stemming from the coarsening of topographic data used to produce Digital Elevation Models (DEMs). We apply the hydraulic model LISFLOOD-FP to produce several temporally and spatially variable model outputs that represent different aspects of flood inundation processes, including flood extent, water depth, and time of inundation. We find that the most influential input factor for flood extent predictions changes during the flood event, starting with the inflow hydrograph during the rising limb before switching to the channel friction parameter during peak flood inundation, and finally to the floodplain friction parameter during the drying phase of the flood event. Spatial resolution and uncertainty introduced by resampling topographic data to coarser resolutions are much more important for water depth predictions, which are also sensitive to different input factors spatially and temporally. Our findings indicate that the sensitivity of LISFLOOD-FP predictions is more complex than previously thought. Consequently, the input factors that modelers should prioritize will differ depending on the model output assessed, and the location and time of when and where this output is most relevant.

  17. Evaluation of Deep Learning Models for Predicting CO2 Flux

    NASA Astrophysics Data System (ADS)

    Halem, M.; Nguyen, P.; Frankel, D.

    2017-12-01

    Artificial neural networks have been employed to calculate surface flux measurements from station data because they are able to fit highly nonlinear relations between input and output variables without knowing the detail relationships between the variables. However, the accuracy in performing neural net estimates of CO2 flux from observations of CO2 and other atmospheric variables is influenced by the architecture of the neural model, the availability, and complexity of interactions between physical variables such as wind, temperature, and indirect variables like latent heat, and sensible heat, etc. We evaluate two deep learning models, feed forward and recurrent neural network models to learn how they each respond to the physical measurements, time dependency of the measurements of CO2 concentration, humidity, pressure, temperature, wind speed etc. for predicting the CO2 flux. In this paper, we focus on a) building neural network models for estimating CO2 flux based on DOE data from tower Atmospheric Radiation Measurement data; b) evaluating the impact of choosing the surface variables and model hyper-parameters on the accuracy and predictions of surface flux; c) assessing the applicability of the neural network models on estimate CO2 flux by using OCO-2 satellite data; d) studying the efficiency of using GPU-acceleration for neural network performance using IBM Power AI deep learning software and packages on IBM Minsky system.

  18. A blueprint for using climate change predictions in an eco-hydrological study

    NASA Astrophysics Data System (ADS)

    Caporali, E.; Fatichi, S.; Ivanov, V. Y.

    2009-12-01

    There is a growing interest to extend climate change predictions to smaller, catchment-size scales and identify their implications on hydrological and ecological processes. Small scale processes are, in fact, expected to mediate climate changes, producing local effects and feedbacks that can interact with the principal consequences of the change. This is particularly applicable, when a complex interaction, such as the inter-relationship between the hydrological cycle and vegetation dynamics, is considered. This study presents a blueprint methodology for studying climate change impacts, as inferred from climate models, on eco-hydrological dynamics at the catchment scale. Climate conditions, present or future, are imposed through input hydrometeorological variables for hydrological and eco-hydrological models. These variables are simulated with an hourly weather generator as an outcome of a stochastic downscaling technique. The generator is parameterized to reproduce the climate of southwestern Arizona for present (1961-2000) and future (2081-2100) conditions. The methodology provides the capability to generate ensemble realizations for the future that take into account the heterogeneous nature of climate predictions from different models. The generated time series of meteorological variables for the two scenarios corresponding to the current and mean expected future serve as input to a coupled hydrological and vegetation dynamics model, “Tethys-Chloris”. The hydrological model reproduces essential components of the land-surface hydrological cycle, solving the mass and energy budget equations. The vegetation model parsimoniously parameterizes essential plant life-cycle processes, including photosynthesis, phenology, carbon allocation, and tissue turnover. The results for the two mean scenarios are compared and discussed in terms of changes in the hydrological balance components, energy fluxes, and indices of vegetation productivity The need to account for uncertainties in projections of future climate is discussed and a methodology for propagating these uncertainties into the probability density functions of changes in eco-hydrological variables is presented.

  19. Real-time quality monitoring in debutanizer column with regression tree and ANFIS

    NASA Astrophysics Data System (ADS)

    Siddharth, Kumar; Pathak, Amey; Pani, Ajaya Kumar

    2018-05-01

    A debutanizer column is an integral part of any petroleum refinery. Online composition monitoring of debutanizer column outlet streams is highly desirable in order to maximize the production of liquefied petroleum gas. In this article, data-driven models for debutanizer column are developed for real-time composition monitoring. The dataset used has seven process variables as inputs and the output is the butane concentration in the debutanizer column bottom product. The input-output dataset is divided equally into a training (calibration) set and a validation (testing) set. The training set data were used to develop fuzzy inference, adaptive neuro fuzzy (ANFIS) and regression tree models for the debutanizer column. The accuracy of the developed models were evaluated by simulation of the models with the validation dataset. It is observed that the ANFIS model has better estimation accuracy than other models developed in this work and many data-driven models proposed so far in the literature for the debutanizer column.

  20. A Data-driven Approach for Forecasting Next-day River Discharge

    NASA Astrophysics Data System (ADS)

    Sharif, H. O.; Billah, K. S.

    2017-12-01

    This study focuses on evaluating the performance of the Soil and Water Assessment Tool (SWAT) eco-hydrological model, a simple Auto-Regressive with eXogenous input (ARX) model, and a Gene expression programming (GEP)-based model in one-day-ahead forecasting of discharge of a subtropical basin (the upper Kentucky River Basin). The three models were calibrated with daily flow at the US Geological Survey (USGS) stream gauging station not affected by flow regulation for the period of 2002-2005. The calibrated models were then validated at the same gauging station as well as another USGS gauge 88 km downstream for the period of 2008-2010. The results suggest that simple models outperform a sophisticated hydrological model with GEP having the advantage of being able to generate functional relationships that allow scientific investigation of the complex nonlinear interrelationships among input variables. Unlike SWAT, GEP, and to some extent, ARX are less sensitive to the length of the calibration time series and do not require a spin-up period.

  1. Teasing apart the effects of natural and constructed green ...

    EPA Pesticide Factsheets

    Summer low flows and stream temperature maxima are key drivers affecting the sustainability of fish populations. Thus, it is critical to understand both the natural templates of spatiotemporal variability, how these are shifting due to anthropogenic influences of development and climate change, and how these impacts can be moderated by natural and constructed green infrastructure. Low flow statistics of New England streams have been characterized using a combination of regression equations to describe long-term averages as a function of indicators of hydrologic regime (rain- versus snow-dominated), precipitation, evapotranspiration or temperature, surface water storage, baseflow recession rates, and impervious cover. Difference equations have been constructed to describe interannual variation in low flow as a function of changing air temperature, precipitation, and ocean-atmospheric teleconnection indices. Spatial statistical network models have been applied to explore fine-scale variability of thermal regimes along stream networks in New England as a function of variables describing natural and altered energy inputs, groundwater contributions, and retention time. Low flows exacerbate temperature impacts by reducing thermal inertia of streams to energy inputs. Based on these models, we can construct scenarios of fish habitat suitability using current and projected future climate and the potential for preservation and restoration of historic habitat regimes th

  2. Job satisfaction among mental healthcare professionals: The respective contributions of professional characteristics, team attributes, team processes, and team emergent states

    PubMed Central

    Fleury, Marie-Josée; Grenier, Guy; Bamvita, Jean-Marie

    2017-01-01

    Objectives: The aim of this study was to determine the respective contribution of professional characteristics, team attributes, team processes, and team emergent states on the job satisfaction of 315 mental health professionals from Quebec (Canada). Methods: Job satisfaction was measured with the Job Satisfaction Survey. Independent variables were organized into four categories according to a conceptual framework inspired from the Input-Mediator-Outcomes-Input Model. The contribution of each category of variables was assessed using hierarchical regression analysis. Results: Variations in job satisfaction were mostly explained by team processes, with minimal contribution from the other three categories. Among the six variables significantly associated with job satisfaction in the final model, four were team processes: stronger team support, less team conflict, deeper involvement in the decision-making process, and more team collaboration. Job satisfaction was also associated with nursing and, marginally, male gender (professional characteristics) as well as with a stronger affective commitment toward the team (team emergent states). Discussion and Conclusion: Results confirm the importance for health managers of offering adequate support to mental health professionals, and creating an environment favorable to collaboration and decision-sharing, and likely to reduce conflicts between team members. PMID:29276591

  3. Prediction of Layer Thickness in Molten Borax Bath with Genetic Evolutionary Programming

    NASA Astrophysics Data System (ADS)

    Taylan, Fatih

    2011-04-01

    In this study, the vanadium carbide coating in molten borax bath process is modeled by evolutionary genetic programming (GEP) with bath composition (borax percentage, ferro vanadium (Fe-V) percentage, boric acid percentage), bath temperature, immersion time, and layer thickness data. Five inputs and one output data exist in the model. The percentage of borax, Fe-V, and boric acid, temperature, and immersion time parameters are used as input data and the layer thickness value is used as output data. For selected bath components, immersion time, and temperature variables, the layer thicknesses are derived from the mathematical expression. The results of the mathematical expressions are compared to that of experimental data; it is determined that the derived mathematical expression has an accuracy of 89%.

  4. Interval Predictor Models for Data with Measurement Uncertainty

    NASA Technical Reports Server (NTRS)

    Lacerda, Marcio J.; Crespo, Luis G.

    2017-01-01

    An interval predictor model (IPM) is a computational model that predicts the range of an output variable given input-output data. This paper proposes strategies for constructing IPMs based on semidefinite programming and sum of squares (SOS). The models are optimal in the sense that they yield an interval valued function of minimal spread containing all the observations. Two different scenarios are considered. The first one is applicable to situations where the data is measured precisely whereas the second one is applicable to data subject to known biases and measurement error. In the latter case, the IPMs are designed to fully contain regions in the input-output space where the data is expected to fall. Moreover, we propose a strategy for reducing the computational cost associated with generating IPMs as well as means to simulate them. Numerical examples illustrate the usage and performance of the proposed formulations.

  5. Computational methods in the development of a knowledge-based system for the prediction of solid catalyst performance.

    PubMed

    Procelewska, Joanna; Galilea, Javier Llamas; Clerc, Frederic; Farrusseng, David; Schüth, Ferdi

    2007-01-01

    The objective of this work is the construction of a correlation between characteristics of heterogeneous catalysts, encoded in a descriptor vector, and their experimentally measured performances in the propene oxidation reaction. In this paper the key issue in the modeling process, namely the selection of adequate input variables, is explored. Several data-driven feature selection strategies were applied in order to obtain an estimate of the differences in variance and information content of various attributes, furthermore to compare their relative importance. Quantitative property activity relationship techniques using probabilistic neural networks have been used for the creation of various semi-empirical models. Finally, a robust classification model, assigning selected attributes of solid compounds as input to an appropriate performance class in the model reaction was obtained. It has been evident that the mathematical support for the primary attributes set proposed by chemists can be highly desirable.

  6. Improved ground hydrology calculations for global climate models (GCMs) - Soil water movement and evapotranspiration

    NASA Technical Reports Server (NTRS)

    Abramopoulos, F.; Rosenzweig, C.; Choudhury, B.

    1988-01-01

    A physically based ground hydrology model is presented that includes the processes of transpiration, evaporation from intercepted precipitation and dew, evaporation from bare soil, infiltration, soil water flow, and runoff. Data from the Goddard Institute for Space Studies GCM were used as inputs for off-line tests of the model in four 8 x 10 deg regions, including Brazil, Sahel, Sahara, and India. Soil and vegetation input parameters were caculated as area-weighted means over the 8 x 10 deg gridbox; the resulting hydrological quantities were compared to ground hydrology model calculations performed on the 1 x 1 deg cells which comprise the 8 x 10 deg gridbox. Results show that the compositing procedure worked well except in the Sahel, where low soil water levels and a heterogeneous land surface produce high variability in hydrological quantities; for that region, a resolution better than 8 x 10 deg is needed.

  7. Correction of I/Q channel errors without calibration

    DOEpatents

    Doerry, Armin W.; Tise, Bertice L.

    2002-01-01

    A method of providing a balanced demodular output for a signal such as a Doppler radar having an analog pulsed input; includes adding a variable phase shift as a function of time to the input signal, applying the phase shifted input signal to a demodulator; and generating a baseband signal from the input signal. The baseband signal is low-pass filtered and converted to a digital output signal. By removing the variable phase shift from the digital output signal, a complex data output is formed that is representative of the output of a balanced demodulator.

  8. Use of collateral information to improve LANDSAT classification accuracies

    NASA Technical Reports Server (NTRS)

    Strahler, A. H. (Principal Investigator)

    1981-01-01

    Methods to improve LANDSAT classification accuracies were investigated including: (1) the use of prior probabilities in maximum likelihood classification as a methodology to integrate discrete collateral data with continuously measured image density variables; (2) the use of the logit classifier as an alternative to multivariate normal classification that permits mixing both continuous and categorical variables in a single model and fits empirical distributions of observations more closely than the multivariate normal density function; and (3) the use of collateral data in a geographic information system as exercised to model a desired output information layer as a function of input layers of raster format collateral and image data base layers.

  9. Nonlinear effects in a plain journal bearing. I - Analytical study. II - Results

    NASA Technical Reports Server (NTRS)

    Choy, F. K.; Braun, M. J.; Hu, Y.

    1991-01-01

    In the first part of this work, a numerical model is presented which couples the variable-property Reynolds equation with a rotor-dynamics model for the calculation of a plain journal bearing's nonlinear characteristics when working with a cryogenic fluid, LOX. The effects of load on the linear/nonlinear plain journal bearing characteristics are analyzed and presented in a parametric form. The second part of this work presents numerical results obtained for specific parametric-study input variables (lubricant inlet temperature, external load, angular rotational speed, and axial misalignment). Attention is given to the interrelations between pressure profiles and bearing linear and nonlinear characteristics.

  10. The Navy’s Application of Ocean Forecasting to Decision Support

    DTIC Science & Technology

    2014-09-01

    Prediction Center (OPC) website for graphics or the National Operational Model Archive and Distribution System ( NOMADS ) for data files. Regional...inputs: » GLOBE = Global Land One-km Base Elevation » WVS = World Vector Shoreline » DBDB2 = Digital Bathymetry Data Base 2 minute resolution » DBDBV... Digital Bathymetry Data Base variable resolution Oceanography | Vol. 27, No.3130 Very High-Resolution Coastal Circulation Models Nearshore

  11. Long-term solar UV radiation reconstructed by ANN modelling with emphasis on spatial characteristics of input data

    NASA Astrophysics Data System (ADS)

    Feister, U.; Junk, J.; Woldt, M.; Bais, A.; Helbig, A.; Janouch, M.; Josefsson, W.; Kazantzidis, A.; Lindfors, A.; den Outer, P. N.; Slaper, H.

    2008-06-01

    Artificial Neural Networks (ANN) are efficient tools to derive solar UV radiation from measured meteorological parameters such as global radiation, aerosol optical depths and atmospheric column ozone. The ANN model has been tested with different combinations of data from the two sites Potsdam and Lindenberg, and used to reconstruct solar UV radiation at eight European sites by more than 100 years into the past. Special emphasis will be given to the discussion of small-scale characteristics of input data to the ANN model. Annual totals of UV radiation derived from reconstructed daily UV values reflect interannual variations and long-term patterns that are compatible with variabilities and changes of measured input data, in particular global dimming by about 1980/1990, subsequent global brightening, volcanic eruption effects such as that of Mt. Pinatubo, and the long-term ozone decline since the 1970s. Patterns of annual erythemal UV radiation are very similar at sites located at latitudes close to each other, but different patterns occur between UV radiation at sites in different latitude regions.

  12. Using recorded sound spectra profile as input data for real-time short-term urban road-traffic-flow estimation.

    PubMed

    Torija, Antonio J; Ruiz, Diego P

    2012-10-01

    Road traffic has a heavy impact on the urban sound environment, constituting the main source of noise and widely dominating its spectral composition. In this context, our research investigates the use of recorded sound spectra as input data for the development of real-time short-term road traffic flow estimation models. For this, a series of models based on the use of Multilayer Perceptron Neural Networks, multiple linear regression, and the Fisher linear discriminant were implemented to estimate road traffic flow as well as to classify it according to the composition of heavy vehicles and motorcycles/mopeds. In view of the results, the use of the 50-400 Hz and 1-2.5 kHz frequency ranges as input variables in multilayer perceptron-based models successfully estimated urban road traffic flow with an average percentage of explained variance equal to 86%, while the classification of the urban road traffic flow gave an average success rate of 96.1%. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. A Biophysical Neural Model To Describe Spatial Visual Attention

    NASA Astrophysics Data System (ADS)

    Hugues, Etienne; José, Jorge V.

    2008-02-01

    Visual scenes have enormous spatial and temporal information that are transduced into neural spike trains. Psychophysical experiments indicate that only a small portion of a spatial image is consciously accessible. Electrophysiological experiments in behaving monkeys have revealed a number of modulations of the neural activity in special visual area known as V4, when the animal is paying attention directly towards a particular stimulus location. The nature of the attentional input to V4, however, remains unknown as well as to the mechanisms responsible for these modulations. We use a biophysical neural network model of V4 to address these issues. We first constrain our model to reproduce the experimental results obtained for different external stimulus configurations and without paying attention. To reproduce the known neuronal response variability, we found that the neurons should receive about equal, or balanced, levels of excitatory and inhibitory inputs and whose levels are high as they are in in vivo conditions. Next we consider attentional inputs that can induce and reproduce the observed spiking modulations. We also elucidate the role played by the neural network to generate these modulations.

  14. A Biophysical Neural Model To Describe Spatial Visual Attention

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hugues, Etienne; Jose, Jorge V.

    2008-02-14

    Visual scenes have enormous spatial and temporal information that are transduced into neural spike trains. Psychophysical experiments indicate that only a small portion of a spatial image is consciously accessible. Electrophysiological experiments in behaving monkeys have revealed a number of modulations of the neural activity in special visual area known as V4, when the animal is paying attention directly towards a particular stimulus location. The nature of the attentional input to V4, however, remains unknown as well as to the mechanisms responsible for these modulations. We use a biophysical neural network model of V4 to address these issues. We firstmore » constrain our model to reproduce the experimental results obtained for different external stimulus configurations and without paying attention. To reproduce the known neuronal response variability, we found that the neurons should receive about equal, or balanced, levels of excitatory and inhibitory inputs and whose levels are high as they are in in vivo conditions. Next we consider attentional inputs that can induce and reproduce the observed spiking modulations. We also elucidate the role played by the neural network to generate these modulations.« less

  15. Fabric filter model sensitivity analysis. Final report Jun 1978-Feb 1979

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dennis, R.; Klemm, H.A.; Battye, W.

    1979-04-01

    The report gives results of a series of sensitivity tests of a GCA fabric filter model, as a precursor to further laboratory and/or field tests. Preliminary tests had shown good agreement with field data. However, the apparent agreement between predicted and actual values was based on limited comparisons: validation was carried out without regard to optimization of the data inputs selected by the filter users or manufactures. The sensitivity tests involved introducing into the model several hypothetical data inputs that reflect the expected ranges in the principal filter system variables. Such factors as air/cloth ratio, cleaning frequency, amount of cleaning,more » specific resistence coefficient K2, the number of compartments, and inlet concentration were examined in various permutations. A key objective of the tests was to determine the variables that require the greatest accuracy in estimation based on their overall impact on model output. For K2 variations, the system resistance and emission properties showed little change; but the cleaning requirement changed drastically. On the other hand, considerable difference in outlet dust concentration was indicated when the degree of fabric cleaning was varied. To make the findings more useful to persons assessing the probable success of proposed or existing filter systems, much of the data output is presented in graphs or charts.« less

  16. Predicted trends in the supply and demand of veterinarians in Japan.

    PubMed

    Kimura, S; Shinkawa, S; Mago, J; Yamamoto, M; Sakai, M; Sugisaki, T; Karaki, H; Sugiura, K

    2008-12-01

    Currently in Japan, there are 32,000 active veterinarians, mainly engaged in small and large animal practice and public animal health and public health services. In the face of the notable increase in recent years in the proportion of female students enrolled in veterinary schools and in the number of households with companion animals, a model was developed to predict the supply and demand of veterinarians toward 2040 in Japan. Surveys were conducted on sampled households and veterinarians to estimate input variables used in the supply and demand model. From this data it is predicted that there might be somewhere between a shortage of 1,000 to an over-supply of 3,700 veterinarians engaged in small animal practice in 2040. This, however, will depend on possible changes in the number of visits made to veterinarians by small animal owners and the efficiency of practices in the future. The model also predicts that there will be a shortage of around 1,100 veterinarians in large animal practice in 2040. Considering the many assumptions made to estimate the input variables used in the model, the results of this study do not provide definitive conclusions, but provide a base for discussions on what will be needed in the veterinary profession in the future.

  17. Assessing the predictive capability of randomized tree-based ensembles in streamflow modelling

    NASA Astrophysics Data System (ADS)

    Galelli, S.; Castelletti, A.

    2013-02-01

    Combining randomization methods with ensemble prediction is emerging as an effective option to balance accuracy and computational efficiency in data-driven modeling. In this paper we investigate the prediction capability of extremely randomized trees (Extra-Trees), in terms of accuracy, explanation ability and computational efficiency, in a streamflow modeling exercise. Extra-Trees are a totally randomized tree-based ensemble method that (i) alleviates the poor generalization property and tendency to overfitting of traditional standalone decision trees (e.g. CART); (ii) is computationally very efficient; and, (iii) allows to infer the relative importance of the input variables, which might help in the ex-post physical interpretation of the model. The Extra-Trees potential is analyzed on two real-world case studies (Marina catchment (Singapore) and Canning River (Western Australia)) representing two different morphoclimatic contexts comparatively with other tree-based methods (CART and M5) and parametric data-driven approaches (ANNs and multiple linear regression). Results show that Extra-Trees perform comparatively well to the best of the benchmarks (i.e. M5) in both the watersheds, while outperforming the other approaches in terms of computational requirement when adopted on large datasets. In addition, the ranking of the input variable provided can be given a physically meaningful interpretation.

  18. Assessing the predictive capability of randomized tree-based ensembles in streamflow modelling

    NASA Astrophysics Data System (ADS)

    Galelli, S.; Castelletti, A.

    2013-07-01

    Combining randomization methods with ensemble prediction is emerging as an effective option to balance accuracy and computational efficiency in data-driven modelling. In this paper, we investigate the prediction capability of extremely randomized trees (Extra-Trees), in terms of accuracy, explanation ability and computational efficiency, in a streamflow modelling exercise. Extra-Trees are a totally randomized tree-based ensemble method that (i) alleviates the poor generalisation property and tendency to overfitting of traditional standalone decision trees (e.g. CART); (ii) is computationally efficient; and, (iii) allows to infer the relative importance of the input variables, which might help in the ex-post physical interpretation of the model. The Extra-Trees potential is analysed on two real-world case studies - Marina catchment (Singapore) and Canning River (Western Australia) - representing two different morphoclimatic contexts. The evaluation is performed against other tree-based methods (CART and M5) and parametric data-driven approaches (ANNs and multiple linear regression). Results show that Extra-Trees perform comparatively well to the best of the benchmarks (i.e. M5) in both the watersheds, while outperforming the other approaches in terms of computational requirement when adopted on large datasets. In addition, the ranking of the input variable provided can be given a physically meaningful interpretation.

  19. Differential flatness properties and multivariable adaptive control of ovarian system dynamics

    NASA Astrophysics Data System (ADS)

    Rigatos, Gerasimos

    2016-12-01

    The ovarian system exhibits nonlinear dynamics which is modeled by a set of coupled nonlinear differential equations. The paper proposes adaptive fuzzy control based on differential flatness theory for the complex dynamics of the ovarian system. It is proven that the dynamic model of the ovarian system, having as state variables the LH and the FSH hormones and their derivatives, is a differentially flat one. This means that all its state variables and its control inputs can be described as differential functions of the flat output. By exploiting differential flatness properties the system's dynamic model is written in the multivariable linear canonical (Brunovsky) form, for which the design of a state feedback controller becomes possible. After this transformation, the new control inputs of the system contain unknown nonlinear parts, which are identified with the use of neurofuzzy approximators. The learning procedure for these estimators is determined by the requirement the first derivative of the closed-loop's Lyapunov function to be a negative one. Moreover, Lyapunov stability analysis shows that H-infinity tracking performance is succeeded for the feedback control loop and this assures improved robustness to the aforementioned model uncertainty as well as to external perturbations. The efficiency of the proposed adaptive fuzzy control scheme is confirmed through simulation experiments.

  20. A Novel Approach to Implement Takagi-Sugeno Fuzzy Models.

    PubMed

    Chang, Chia-Wen; Tao, Chin-Wang

    2017-09-01

    This paper proposes new algorithms based on the fuzzy c-regressing model algorithm for Takagi-Sugeno (T-S) fuzzy modeling of the complex nonlinear systems. A fuzzy c-regression state model (FCRSM) algorithm is a T-S fuzzy model in which the functional antecedent and the state-space-model-type consequent are considered with the available input-output data. The antecedent and consequent forms of the proposed FCRSM consists mainly of two advantages: one is that the FCRSM has low computation load due to only one input variable is considered in the antecedent part; another is that the unknown system can be modeled to not only the polynomial form but also the state-space form. Moreover, the FCRSM can be extended to FCRSM-ND and FCRSM-Free algorithms. An algorithm FCRSM-ND is presented to find the T-S fuzzy state-space model of the nonlinear system when the input-output data cannot be precollected and an assumed effective controller is available. In the practical applications, the mathematical model of controller may be hard to be obtained. In this case, an online tuning algorithm, FCRSM-FREE, is designed such that the parameters of a T-S fuzzy controller and the T-S fuzzy state model of an unknown system can be online tuned simultaneously. Four numerical simulations are given to demonstrate the effectiveness of the proposed approach.

Top