Sample records for model laser damage

  1. Determination of ultra-short laser induced damage threshold of KH{sub 2}PO{sub 4} crystal: Numerical calculation and experimental verification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Jian; Department of Physics, The Ohio State University, 191 W. Woodruff Ave, Columbus, OH 43210; Chen, Mingjun, E-mail: chenmj@hit.edu.cn, E-mail: chowdhury.24@osu.edu

    Rapid growth and ultra-precision machining of large-size KDP (KH{sub 2}PO{sub 4}) crystals with high laser damage resistance are tough challenges in the development of large laser systems. It is of high interest and practical significance to have theoretical models for scientists and manufacturers to determine the laser-induced damage threshold (LIDT) of actually prepared KDP optics. Here, we numerically and experimentally investigate the laser-induced damage on KDP crystals in ultra-short pulse laser regime. On basis of the rate equation for free electron generation, a model dedicated to predicting the LIDT is developed by considering the synergistic effect of photoionization, impact ionizationmore » and decay of electrons. Laser damage tests are performed to measure the single-pulse LIDT with several testing protocols. The testing results combined with previously reported experimental data agree well with those calculated by the model. By taking the light intensification into consideration, the model is successfully applied to quantitatively evaluate the effect of surface flaws inevitably introduced in the preparation processes on the laser damage resistance of KDP crystals. This work can not only contribute to further understanding of the laser damage mechanisms of optical materials, but also provide available models for evaluating the laser damage resistance of exquisitely prepared optical components used in high power laser systems.« less

  2. Catastrophic nanosecond laser induced damage in the bulk of potassium titanyl phosphate crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagner, Frank R., E-mail: frank.wagner@fresnel.fr; Natoli, Jean-Yves; Akhouayri, Hassan

    2014-06-28

    Due to its high effective nonlinearity and the possibility to produce periodically poled crystals, potassium titanyl phosphate (KTiOPO{sub 4}, KTP) is still one of the economically important nonlinear optical materials. In this overview article, we present a large study on catastrophic nanosecond laser induced damage in this material and the very similar RbTiOPO{sub 4} (RTP). Several different systematic studies are included: multiple pulse laser damage, multi-wavelength laser damage in KTP, damage resistance anisotropy, and variations of the laser damage thresholds for RTP crystals of different qualities. All measurements were carried out in comparable experimental conditions using a 1064 nm Q-switched lasermore » and some were repeated at 532 nm. After summarizing the experimental results, we detail the proposed model for laser damage in this material and discuss the experimental results in this context. According to the model, nanosecond laser damage is caused by light-induced generation of transient laser-damage precursors which subsequently provide free electrons that are heated by the same nanosecond pulse. We also present a stimulated Raman scattering measurement and confront slightly different models to the experimental data. Finally, the physical nature of the transient damage precursors is discussed and similarities and differences to laser damage in other crystals are pointed out.« less

  3. Laser-Induced Thermal Damage of Skin

    DTIC Science & Technology

    1977-12-01

    identify by block number) Skin Burns Skin Model Laser Effects \\Thermal Predictions 20 ABSTRACT (Continue on reverse side it necessary and identify by...block number) A computerized model was developed for predicting thermal damage of skin by laser exposures. Thermal, optical, and physiological data are...presented for the model. Model predictions of extent of irreversible damage were compared with histologic determinations of the extent of damage

  4. Dynamic modeling of photothermal interactions for laser-induced interstitial thermotherapy: parameter sensitivity analysis.

    PubMed

    Jiang, S C; Zhang, X X

    2005-12-01

    A two-dimensional model was developed to model the effects of dynamic changes in the physical properties on tissue temperature and damage to simulate laser-induced interstitial thermotherapy (LITT) treatment procedures with temperature monitoring. A modified Monte Carlo method was used to simulate photon transport in the tissue in the non-uniform optical property field with the finite volume method used to solve the Pennes bioheat equation to calculate the temperature distribution and the Arrhenius equation used to predict the thermal damage extent. The laser light transport and the heat transfer as well as the damage accumulation were calculated iteratively at each time step. The influences of different laser sources, different applicator sizes, and different irradiation modes on the final damage volume were analyzed to optimize the LITT treatment. The numerical results showed that damage volume was the smallest for the 1,064-nm laser, with much larger, similar damage volumes for the 980- and 850-nm lasers at normal blood perfusion rates. The damage volume was the largest for the 1,064-nm laser with significantly smaller, similar damage volumes for the 980- and 850-nm lasers with temporally interrupted blood perfusion. The numerical results also showed that the variations in applicator sizes, laser powers, heating durations and temperature monitoring ranges significantly affected the shapes and sizes of the thermal damage zones. The shapes and sizes of the thermal damage zones can be optimized by selecting different applicator sizes, laser powers, heating duration times, temperature monitoring ranges, etc.

  5. EFFECTS OF LASER RADIATION ON MATTER: Laser damage behaviour of titania coatings

    NASA Astrophysics Data System (ADS)

    Skvortsov, L. A.

    2010-01-01

    A model is proposed for the generation of defects responsible for laser damage in thin titania films during repetitive exposure to nanosecond near-IR laser pulses. The model relies on the hypothesis that there is charge transfer between two point defect centres differing in photoionisation cross section, one of which has an adsorptive nature. The model's predictions agree well with the experimentally determined accumulation curve and the temperature dependence of the damage threshold at low temperatures and clarify the role of protective coatings.

  6. Numerical analysis of laser ablation and damage in glass with multiple picosecond laser pulses.

    PubMed

    Sun, Mingying; Eppelt, Urs; Russ, Simone; Hartmann, Claudia; Siebert, Christof; Zhu, Jianqiang; Schulz, Wolfgang

    2013-04-08

    This study presents a novel numerical model for laser ablation and laser damage in glass including beam propagation and nonlinear absorption of multiple incident ultrashort laser pulses. The laser ablation and damage in the glass cutting process with a picosecond pulsed laser was studied. The numerical results were in good agreement with our experimental observations, thereby revealing the damage mechanism induced by laser ablation. Beam propagation effects such as interference, diffraction and refraction, play a major role in the evolution of the crater structure and the damage region. There are three different damage regions, a thin layer and two different kinds of spikes. Moreover, the electronic damage mechanism was verified and distinguished from heat modification using the experimental results with different pulse spatial overlaps.

  7. Understanding Femtosecond-Pulse Laser Damage through Fundamental Physics Simulations

    NASA Astrophysics Data System (ADS)

    Mitchell, Robert A., III

    It did not take long after the invention of the laser for the field of laser damage to appear. For several decades researchers have been studying how lasers damage materials, both for the basic scientific understanding of highly nonequilibrium processes as well as for industrial applications. Femtosecond pulse lasers create little collateral damage and a readily reproducible damage pattern. They are easily tailored to desired specifications and are particularly powerful and versatile tools, contributing even more industrial interest in the field. As with most long-standing fields of research, many theoretical tools have been developed to model the laser damage process, covering a wide range of complexities and regimes of applicability. However, most of the modeling methods developed are either too limited in spatial extent to model the full morphology of the damage crater, or incorporate only a small subset of the important physics and require numerous fitting parameters and assumptions in order to match values interpolated from experimental data. Demonstrated in this work is the first simulation method capable of fundamentally modeling the full laser damage process, from the laser interaction all the way through to the resolidification of the target, on a large enough scale that can capture the full morphology of the laser damage crater so as to be compared directly to experimental measurements instead of extrapolated values, and all without any fitting parameters. The design, implementation, and testing of this simulation technique, based on a modified version of the particle-in-cell (PIC) method, is presented. For a 60 fs, 1 mum wavelength laser pulse with fluences of 0.5 J/cm 2, 1.0 J/cm2, and 2.0 J/cm2 the resulting laser damage craters in copper are shown and, using the same technique applied to experimental crater morphologies, a laser damage fluence threshold is calculated of 0.15 J/cm2, consistent with current experiments performed under conditions similar to those in the simulation. Lastly, this method is applied to the phenomenon known as LIPSS, or Laser-Induced Periodic Surface Structures; a problem of fundamental importance that is also of great interest for industrial applications. While LIPSS have been observed for decades in laser damage experiments, the exact physical mechanisms leading to the periodic corrugation on the surface of a target have been highly debated, with no general consensus. Applying this technique to a situation known to create LIPSS in a single shot, the generation of this periodicity is observed, the wavelength of the damage is consistent with experimental measures and, due to the fundamental nature of the simulation method, the physical mechanisms behind LIPSS are examined. The mechanism behind LIPSS formation in the studied regime is shown to be the formation of and interference with an evanescent surface electromagnetic wave known as a surface plasmon-polariton. This shows that not only can this simulation technique model a basic laser damage situation, but it is also flexible and powerful enough to be applied to complex areas of research, allowing for new physical insight in regimes that are difficult to probe experimentally.

  8. Laser-Induced Thermal-Mechanical Damage Characteristics of Cleartran Multispectral Zinc Sulfide with Temperature-Dependent Properties

    NASA Astrophysics Data System (ADS)

    Peng, Yajing; Jiang, Yanxue; Yang, Yanqiang

    2015-01-01

    Laser-induced thermal-mechanical damage characteristics of window materials are the focus problems in laser weapon and anti-radiation reinforcement technology. Thermal-mechanical effects and damage characteristics are investigated for cleartran multispectral zinc sulfide (ZnS) thin film window materials irradiated by continuous laser using three-dimensional (3D) thermal-mechanical model. Some temperature-dependent parameters are introduced into the model. The temporal-spatial distributions of temperature and thermal stress are exhibited. The damage mechanism is analyzed. The influences of temperature effect of material parameters and laser intensity on the development of thermal stress and the damage characteristics are examined. The results show, the von Mises equivalent stress along the thickness direction is fluctuant, which originates from the transformation of principal stresses from compressive stress to tensile stress with the increase of depth from irradiated surface. The damage originates from the thermal stress but not the melting. The thermal stress is increased and the damage is accelerated by introducing the temperature effect of parameters or the increasing laser intensity.

  9. FEM modeling and histological analyses on thermal damage induced in facial skin resurfacing procedure with different CO2 laser pulse duration

    NASA Astrophysics Data System (ADS)

    Rossi, Francesca; Zingoni, Tiziano; Di Cicco, Emiliano; Manetti, Leonardo; Pini, Roberto; Fortuna, Damiano

    2011-07-01

    Laser light is nowadays routinely used in the aesthetic treatments of facial skin, such as in laser rejuvenation, scar removal etc. The induced thermal damage may be varied by setting different laser parameters, in order to obtain a particular aesthetic result. In this work, it is proposed a theoretical study on the induced thermal damage in the deep tissue, by considering different laser pulse duration. The study is based on the Finite Element Method (FEM): a bidimensional model of the facial skin is depicted in axial symmetry, considering the different skin structures and their different optical and thermal parameters; the conversion of laser light into thermal energy is modeled by the bio-heat equation. The light source is a CO2 laser, with different pulse durations. The model enabled to study the thermal damage induced into the skin, by calculating the Arrhenius integral. The post-processing results enabled to study in space and time the temperature dynamics induced in the facial skin, to study the eventual cumulative effects of subsequent laser pulses and to optimize the procedure for applications in dermatological surgery. The calculated data where then validated in an experimental measurement session, performed in a sheep animal model. Histological analyses were performed on the treated tissues, evidencing the spatial distribution and the entity of the thermal damage in the collageneous tissue. Modeling and experimental results were in good agreement, and they were used to design a new optimized laser based skin resurfacing procedure.

  10. Damage modeling and statistical analysis of optics damage performance in MJ-class laser systems.

    PubMed

    Liao, Zhi M; Raymond, B; Gaylord, J; Fallejo, R; Bude, J; Wegner, P

    2014-11-17

    Modeling the lifetime of a fused silica optic is described for a multiple beam, MJ-class laser system. This entails combining optic processing data along with laser shot data to account for complete history of optic processing and shot exposure. Integrating with online inspection data allows for the construction of a performance metric to describe how an optic performs with respect to the model. This methodology helps to validate the damage model as well as allows strategic planning and identifying potential hidden parameters that are affecting the optic's performance.

  11. Numerical simulation of temperature field in K9 glass irradiated by ultraviolet pulse laser

    NASA Astrophysics Data System (ADS)

    Wang, Xi; Fang, Xiaodong

    2015-10-01

    The optical component of photoelectric system was easy to be damaged by irradiation of high power pulse laser, so the effect of high power pulse laser irradiation on K9 glass was researched. A thermodynamic model of K9 glass irradiated by ultraviolet pulse laser was established using the finite element software ANSYS. The article analyzed some key problems in simulation process of ultraviolet pulse laser damage of K9 glass based on ANSYS from the finite element models foundation, meshing, loading of pulse laser, setting initial conditions and boundary conditions and setting the thermal physical parameters of material. The finite element method (FEM) model was established and a numerical analysis was performed to calculate temperature field in K9 glass irradiated by ultraviolet pulse laser. The simulation results showed that the temperature of irradiation area exceeded the melting point of K9 glass, while the incident laser energy was low. The thermal damage dominated in the damage mechanism of K9 glass, the melting phenomenon should be much more distinct.

  12. Evaluating the damage process of dynamic target by high-energy laser in ocean environment

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Ye, Demao

    2013-12-01

    The high-energy laser, as one of directed energy weapon, is famous for its unique advantage of speed-of-light response which was considered as an ideal weapon against anti-ship missile. This paper commits to evaluate the damage process of missile by high-energy laser weapon. We analyze the propagation properties which are susceptible to atmospheric attenuation effects, atmospheric turbulence effects, thermal blooming effects in sky-sea atmosphere firstly. Then because laser weapons attack one target at a time and it takes several seconds at a minimum for the target engaged, a model of calculating the required t ime for damaging the attack target was built . In the end effective evaluation methods of hot-ablated and high-energy laser weapon's damaging effectiveness are made, when the body or the optical elements of the missile is irradiated by the concatenation wave laser weapon. And one of the issues just as laser power, propagation distance is changed; the model can make different evaluation. The above model can provide the theoretical basis for the high-energy laser weapon intercept anti-ship missile and tactic deraign rationality for naval ship-borne laser weapons.

  13. Functional and Physical Outcomes following Use of a Flexible CO2 Laser Fiber and Bipolar Electrocautery in Close Proximity to the Rat Sciatic Nerve with Correlation to an In Vitro Thermal Profile Model

    PubMed Central

    Robinson, A. M.; Fishman, A. J.; Bendok, B. R.; Richter, C.-P.

    2015-01-01

    This study compared functional and physical collateral damage to a nerve when operating a Codman MALIS Bipolar Electrosurgical System CMC-III or a CO2 laser coupled to a laser, with correlation to an in vitro model of heating profiles created by the devices in thermochromic ink agarose. Functional damage of the rat sciatic nerve after operating the MALIS or CO2 laser at various power settings and proximities to the nerve was measured by electrically evoked nerve action potentials, and histology of the nerve was used to assess physical damage. Thermochromic ink dissolved in agarose was used to model the spatial and temporal profile of the collateral heating zone of the electrosurgical system and the laser ablation cone. We found that this laser can be operated at 2 W directly above the nerve with minimal damage, while power settings of 5 W and 10 W resulted in acute functional and physical nerve damage, correlating with the maximal heating cone in the thermochromic ink model. MALIS settings up to 40 (11 W) did not result in major functional or physical nerve damage until the nerve was between the forceps tips, correlating with the hottest zone, localized discretely between the tips. PMID:25699266

  14. Probability of growth of small damage sites on the exit surface of fused silica optics.

    PubMed

    Negres, Raluca A; Abdulla, Ghaleb M; Cross, David A; Liao, Zhi M; Carr, Christopher W

    2012-06-04

    Growth of laser damage on fused silica optical components depends on several key parameters including laser fluence, wavelength, pulse duration, and site size. Here we investigate the growth behavior of small damage sites on the exit surface of SiO₂ optics under exposure to tightly controlled laser pulses. Results demonstrate that the onset of damage growth is not governed by a threshold, but is probabilistic in nature and depends both on the current size of a damage site and the laser fluence to which it is exposed. We also develop models for use in growth prediction. In addition, we show that laser exposure history also influences the behavior of individual sites.

  15. Interaction of 1.319 μm laser with skin: an optical-thermal-damage model and experimental validation

    NASA Astrophysics Data System (ADS)

    Jiao, Luguang; Yang, Zaifu; Wang, Jiarui

    2014-09-01

    With the widespread use of high-power laser systems operating within the wavelength region of approximately 1.3 to 1.4 μm, it becomes very necessary to refine the laser safety guidelines setting the exposure limits for the eye and skin. In this paper, an optical-thermal-damage model was developed to simulate laser propagation, energy deposition, heat transfer and thermal damage in the skin for 1.319 μm laser irradiation. Meanwhile, an experiment was also conducted in vitro to measure the tempreture history of a porcine skin specimen irradiated by a 1.319 μm laser. Predictions from the model included light distribution in the skin, temperature response and thermal damge level of the tissue. It was shown that the light distribution region was much larger than that of the incident laser at the wavelength of 1.319 μm, and the maximum value of the fluence rate located on the interior region of the skin, not on the surface. By comparing the calculated temperature curve with the experimentally recorded temperautre data, good agreement was shown betweeen them, which validated the numerical model. The model also indicated that the damage integral changed little when the temperature of skin tissue was lower than about 55 °C, after that, the integral increased rapidly and denatunation of the tissue would occur. Based on this model, we can further explore the damage mechanisms and trends for the skin and eye within the wavelength region of 1.3 μm to 1.4 μm, incorporating with in vivo experimental investigations.

  16. Tapered fiber optic applicator for laser ablation: Theoretical and experimental assessment of thermal effects on ex vivo model.

    PubMed

    Saccomandi, P; Di Matteo, F M; Schena, E; Quero, G; Massaroni, C; Giurazza, F; Costamagna, G; Silvestri, S

    2017-07-01

    Laser Ablation (LA) is a minimally invasive technique for tumor removal. The laser light is guided into the target tissue by a fiber optic applicator; thus the physical features of the applicator tip strongly influence size and shape of the tissue lesion. This study aims to verify the geometry of the lesion achieved by a tapered-tip applicator, and to investigate the percentage of thermally damaged cells induced by the tapered-tip fiber optic applicator. A theoretical model was implemented to simulate: i) the distribution of laser light fluence rate in the tissue through Monte Carlo method, ii) the induced temperature distribution, by means of the Bio Heat Equation, iii) the tissue injury, by Arrhenius integral. The results obtained by the implementation of the theoretical model were experimentally assessed. Ex vivo porcine liver underwent LA with tapered-tip applicator, at different laser settings (laser power of 1 W and 1.7 W, deposited energy equal to 330 J and 500 J, respectively). Almost spherical volume lesions were produced. The thermal damage was assessed by measuring the diameter of the circular-shaped lesion. The comparison between experimental results and theoretical prediction shows that the thermal damage discriminated by visual inspection always corresponds to a percentage of damaged cells of 96%. A tapered-tip applicator allows obtaining localized and reproducible damage close to spherical shape, whose diameter is related to the laser settings, and the simple theoretical model described is suitable to predict the effects, in terms of thermal damage, on ex vivo liver. Further trials should be addressed to adapt the model also on in vivo tissue, aiming to develop a tool useful to support the physician in clinical application of LA.

  17. 355 nm and 1064 nm-pulse mixing to identify the laser-induced damage mechanisms in KDP

    NASA Astrophysics Data System (ADS)

    Reyné, Stéphane; Duchateau, Guillaume; Natoli, Jean-Yves; Lamaignère, Laurent

    2011-02-01

    Nanosecond laser-induced damage (LID) in potassium dihydrogen phosphate (KH2PO4 or KDP) remains an issue for light-frequency converters in large-aperture lasers such as NIF (National Ignition Facility, in USA) LMJ (Laser MegaJoule, in France). In the final optic assembly, converters are simultaneously illuminated by multiple wavelengths during the frequency conversion. In this configuration, the damage resistance of the KDP crystals becomes a crucial problem and has to be improved. In this study, we propose a refined investigation about the LID mechanisms involved in the case of a multiple wavelengths combination. Experiments based on an original pump-pump set-up have been carried out in the nanosecond regime on a KDP crystal. In particular, the impact of a simultaneous mixing of 355 nm and 1064 nm pulses has been experimentally studied and compared to a model based on heat transfer, the Mie theory and a Drude model. This study sheds light on the physical processes implied in the KDP laser damage. In particular, a three-photon ionization mechanism is shown to be responsible for laser damage in KDP.

  18. Infrared skin damage thresholds from 1319-nm continuous-wave laser exposures

    NASA Astrophysics Data System (ADS)

    Oliver, Jeffrey W.; Vincelette, Rebecca; Noojin, Gary D.; Clark, Clifton D.; Harbert, Corey A.; Schuster, Kurt J.; Shingledecker, Aurora D.; Kumru, Semih S.; Maughan, Justin; Kitzis, Naomi; Buffington, Gavin D.; Stolarski, David J.; Thomas, Robert J.

    2013-12-01

    A series of experiments were conducted in vivo using Yucatan miniature pigs (Sus scrofa domestica) to determine thermal damage thresholds to the skin from 1319-nm continuous-wave Nd:YAG laser irradiation. Experiments employed exposure durations of 0.25, 1.0, 2.5, and 10 s and beam diameters of ˜0.6 and 1 cm. Thermal imagery data provided a time-dependent surface temperature response from the laser. A damage endpoint of fifty percent probability of a minimally visible effect was used to determine threshold for damage at 1 and 24 h postexposure. Predicted thermal response and damage thresholds are compared with a numerical model of optical-thermal interaction. Resultant trends with respect to exposure duration and beam diameter are compared with current standardized exposure limits for laser safety. Mathematical modeling agreed well with experimental data, predicting that though laser safety standards are sufficient for exposures <10 s, they may become less safe for very long exposures.

  19. Atmospheric effects on laser eye safety and damage to instrumentation

    NASA Astrophysics Data System (ADS)

    Zilberman, Arkadi; Kopeika, Natan S.

    2017-10-01

    Electro-optical sensors as well as unprotected human eyes are extremely sensitive to laser radiation and can be permanently damaged from direct or reflected beams. Laser detector/eye hazard depends on the interaction between the laser beam and the media in which it traverses. The environmental conditions including terrain features, atmospheric particulate and water content, and turbulence, may alter the laser's effect on the detector/eye. It is possible to estimate the performance of an electro-optical system as long as the atmospheric propagation of the laser beam can be adequately modeled. More recent experiments and modeling of atmospheric optics phenomena such as inner scale effect, aperture averaging, atmospheric attenuation in NIR-SWIR, and Cn2 modeling justify an update of previous eye/detector safety modeling. In the present work, the influence of the atmospheric channel on laser safety for personnel and instrumentation is shown on the basis of theoretical and experimental data of laser irradiance statistics for different atmospheric conditions. A method for evaluating the probability of damage and hazard distances associated with the use of laser systems in a turbulent atmosphere operating in the visible and NIR-SWIR portions of the electromagnetic spectrum is presented. It can be used as a performance prediction model for directed energy engagement of ground-based or air-based systems.

  20. Analysis and studies on the threats to the composite material from laser

    NASA Astrophysics Data System (ADS)

    Xu, Wei; Yao, Weixing; Wang, Liwei; Wang, Guoliang; Xie, Fang

    2015-10-01

    It is always an attracting research field for the interaction between laser and matters. The interaction between laser and matters is used not only in the natural science, but also in practical application, for example, laser machine, laser weapon, laser ablations and so on. In this paper, we will give the model for the damage effect of the composite materials caused by the superpower laser weapons. Mechanism of the laser damage on the composite materials have been researched and modeled by the numerical analysis methods. Through the designed model, we analyzed the temperature and the stress fields of the composite material after the superpower lasers attacks with different power densities. By analyzing these modeling results, we achieved some conclusions on the threats to the composite materials from the superpower lasers. From the results, we have obtained the Irradiated threshold from the Laser. This paper will provide the theoretical foundations for the anti-laser design of the composite materials.

  1. An in vitro Corneal Model with a Laser Damage Threshold at 2 Micrometers That is Similar to That in the Rabbit

    DTIC Science & Technology

    2007-11-01

    Proceedings 3. DATES COVERED (From - To) June 2007- November 2007 4. TITLE AND SUBTITLE An In Vitro Corneal Model with a Laser Damage Threshold at 2...2-µm wavelength output of a thulium fiber laser with 4 mm beam diameter for 0.25 seconds in a thermally controlled environment and then assayed for...data in the literature. 15. SUBJECT TERMS corneal organotypic culture, laser , threshold, thermography, Probit 16. SECURITY CLASSIFICATION OF

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kozlowski, M.F.; Maricle, S.; Mouser, R.

    A statistics-based model is being developed to predict the laser-damage-limited lifetime of UV optical components on the NIF laser. In order to provide data for the model, laser damage experiments were performed on the Beamlet laser system at LLNL. An early prototype NIF focus lens was exposed to twenty 35 1 nm pulses at an average fluence of 5 J/cm{sup 2}, 3ns. Using a high resolution optic inspection system a total of 353 damage sites was detected within the 1160 cm{sup 2} beam aperture. Through inspections of the lens before, after and, in some cases, during the campaign, pulse tomore » pulse damage growth rates were measured for damage initiating both on the surface and at bulk inclusions. Growth rates as high as 79 {micro}m/pulse (surface diameter) were observed for damage initiating at pre-existing scratches in the surface. For most damage sites on the optic, both surface and bulk, the damage growth rate was approximately l0{micro}m/pulse. The lens was also used in Beamlet for a subsequent 1053 {micro}m/526 {micro}m campaign. The 352 {micro}m-initiated damage continued to grow during that campaign although at generally lower growth rate.« less

  3. Special Section Guest Editorial: Laser Damage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gruzdev, Vitaly E.; Shinn, Michelle D.

    2012-11-09

    Laser damage of optical materials, first reported in 1964, continues to limit the output energy and power of pulsed and continuous-wave laser systems. In spite of some 48 years of research in this area, interest from the international laser community to laser damage issues remains at a very high level and does not show any sign of decreasing. Moreover, it grows with the development of novel laser systems, for example, ultrafast and short-wavelength lasers that involve new damage effects and specific mechanisms not studied before. This interest is evident from the high level of attendance and presentations at the annualmore » SPIE Laser Damage Symposium (aka, Boulder Damage Symposium) that has been held in Boulder, Colorado, since 1969. This special section of Optical Engineering is the first one devoted to the entire field of laser damage rather than to a specific part. It is prepared in response to growing interest from the international laser-damage community. Some papers in this special section were presented at the Laser Damage Symposium; others were submitted in response to the general call for papers for this special section. The 18 papers compiled into this special section represent many sides of the broad field of laser-damage research. They consider theoretical studies of the fundamental mechanisms of laser damage including laser-driven electron dynamics in solids (O. Brenk and B. Rethfeld; A. Nikiforov, A. Epifanov, and S. Garnov; T. Apostolova et al.), modeling of propagation effects for ultrashort high-intensity laser pulses (J. Gulley), an overview of mechanisms of inclusion-induced damage (M. Koldunov and A. Manenkov), the formation of specific periodic ripples on a metal surface by femtosecond laser pulses (M. Ahsan and M. Lee), and the laser-plasma effects on damage in glass (Y. Li et al). Material characterization is represented by the papers devoted to accurate and reliable measurements of absorption with special emphasis on thin films (C. Mühlig and S. Bublitz; B. Cho, E. Danielewicz, and J. Rudisill; W. Palm et al; and J. Lu et al.). Statistical treatment of measurements of the laser-damage threshold (J. Arenberg) and the relationship to damage mechanisms (F. Wagner et al.) represent the large subfield of laser-damage measurements. Various aspects of multilayer coating and thin-film characterization are considered in papers by B. Cho, J. Rudisill, and E. Danielewicz (spectral shift in multilayer mirrors) and R. Weber et al. (novel approach to damage studies based on third-harmonic generation microscopy). Of special interest for readers is the paper by C. Stolz that summarizes the results of four “thin-film damage competitions” organized as a part of the Laser Damage Symposium. Another paper is devoted to thermal annealing of damage precursors (N. Shen et al.). Finally, the influence of nano-size contamination on initiation of laser damage by ultrashort pulses is considered in paper of V. Komolov et al.« less

  4. Thermal Model of Laser-Induced Eye Damage

    DTIC Science & Technology

    1974-10-08

    Identify by. block ntber) Ocular Damage Laser Effect3 Thermal Model Temperature Rise Prediction Retinal, Corneal, Lenticular Damage 20. ABSTR ACT (CoIfn...routine available to predict retinal or lenticular beam characteristics based on beam de- scripton at the cornea and distance of the last beam waist 5...used are selected for minimal aberrations of the astigmatic kind and that coma is negligible because of nearly axial "illumination. Secondly, the thermal

  5. The role of defects in laser-induced modifications of silica coatings and fused silica using picosecond pulses at 1053 nm: I Damage morphology

    DOE PAGES

    Laurence, T. A.; Ly, S.; Shen, N.; ...

    2017-06-22

    Laser-induced damage with ps pulse widths straddles the transition from intrinsic, multi-photon ionization and avalanche ionization-based ablation with fs pulses to defect-dominated, thermal-based damage with ns pulses. We investigated the morphology of damage for fused silica and silica coatings between 1 ps and 60 ps at 1053 nm. Using calibrated laser-induced damage experiments, in situ imaging, and high-resolution optical microscopy, atomic force microscopy, and scanning electron microscopy, we show that defects play an important role in laser-induced damage down to 1 ps. Three types of damage are observed: ablation craters, ultra-high density pits, and smooth, circular depressions with central pits.more » For 10 ps and longer, the smooth, circular depressions limit the damage performance of fused silica and silica coatings. The observed high-density pits and material removal down to 3 ps indicate that variations in surface properties limit the laser-induced damage onset to a greater extent than expected below 60 ps. Below 3 ps, damage craters are smoother although there is still evidence as seen by AFM of inhomogeneous laser-induced damage response very near the damage onset. These results show that modeling the damage onset only as a function of pulse width does not capture the convoluted processes leading to laser induced damage with ps pulses. It is necessary to account for the effects of defects on the processes leading to laser-induced damage. In conclusion, the effects of isolated defects or inhomogeneities are most pronounced above 3 ps but are still discernible and possibly important down to the shortest pulse width investigated here.« less

  6. The role of defects in laser-induced modifications of silica coatings and fused silica using picosecond pulses at 1053 nm: I Damage morphology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laurence, T. A.; Ly, S.; Shen, N.

    Laser-induced damage with ps pulse widths straddles the transition from intrinsic, multi-photon ionization and avalanche ionization-based ablation with fs pulses to defect-dominated, thermal-based damage with ns pulses. We investigated the morphology of damage for fused silica and silica coatings between 1 ps and 60 ps at 1053 nm. Using calibrated laser-induced damage experiments, in situ imaging, and high-resolution optical microscopy, atomic force microscopy, and scanning electron microscopy, we show that defects play an important role in laser-induced damage down to 1 ps. Three types of damage are observed: ablation craters, ultra-high density pits, and smooth, circular depressions with central pits.more » For 10 ps and longer, the smooth, circular depressions limit the damage performance of fused silica and silica coatings. The observed high-density pits and material removal down to 3 ps indicate that variations in surface properties limit the laser-induced damage onset to a greater extent than expected below 60 ps. Below 3 ps, damage craters are smoother although there is still evidence as seen by AFM of inhomogeneous laser-induced damage response very near the damage onset. These results show that modeling the damage onset only as a function of pulse width does not capture the convoluted processes leading to laser induced damage with ps pulses. It is necessary to account for the effects of defects on the processes leading to laser-induced damage. In conclusion, the effects of isolated defects or inhomogeneities are most pronounced above 3 ps but are still discernible and possibly important down to the shortest pulse width investigated here.« less

  7. Design and comparison of laser windows for high-power lasers

    NASA Astrophysics Data System (ADS)

    Niu, Yanxiong; Liu, Wenwen; Liu, Haixia; Wang, Caili; Niu, Haisha; Man, Da

    2014-11-01

    High-power laser systems are getting more and more widely used in industry and military affairs. It is necessary to develop a high-power laser system which can operate over long periods of time without appreciable degradation in performance. When a high-energy laser beam transmits through a laser window, it is possible that the permanent damage is caused to the window because of the energy absorption by window materials. So, when we design a high-power laser system, a suitable laser window material must be selected and the laser damage threshold of the window must be known. In this paper, a thermal analysis model of high-power laser window is established, and the relationship between the laser intensity and the thermal-stress field distribution is studied by deducing the formulas through utilizing the integral-transform method. The influence of window radius, thickness and laser intensity on the temperature and stress field distributions is analyzed. Then, the performance of K9 glass and the fused silica glass is compared, and the laser-induced damage mechanism is analyzed. Finally, the damage thresholds of laser windows are calculated. The results show that compared with K9 glass, the fused silica glass has a higher damage threshold due to its good thermodynamic properties. The presented theoretical analysis and simulation results are helpful for the design and selection of high-power laser windows.

  8. Heat Damage Zones Created by Different Energy Sources Used in the Treatment of Benign Prostatic Hyperplasia in a Pig Liver Model.

    PubMed

    Kan, Chi Fai; Chan, Alexander Chak Lam; Pun, Chung Ting; Ho, Lap Yin; Chan, Steve Wai-Hee; Au, Wing Hang

    2015-06-01

    There are different types of transurethral prostatic surgeries and the complication profiles are different. This study aims to compare the heat damage zones (HDZ) created by five different technologies in a pig liver model. Monopolar resection, bipolar resection, electrovaporization, and Greenlight™ lasers of 120 and 180 W were used to remove fresh pig liver tissue in a simulated model. Each procedure was repeated in five specimens. Two blocks were selected from each specimen to measure the three deepest HDZ. The mean of HDZ was 295, 234, 192, 673, and 567 μm, respectively, for monopolar resection, bipolar resection, electrovaporization, Greenlight laser 120 W, and Greenlight laser 180 W, respectively. The Greenlight laser produced one to three times deeper HDZ than the other energy sources (p=0.000). Both 120 and 180 W Greenlight lasers produced deeper HDZ than the other energy sources. Urologists need to be aware of HDZ that cause tissue damage outside the operative field.

  9. Dynamics of laser-induced damage of spherical nanoparticles by high-intensity ultrashort laser pulses

    NASA Astrophysics Data System (ADS)

    Komolov, Vladimir L.; Gruzdev, Vitaly E.; Przhibelskii, Sergey G.; Smirnov, Dmitry S.

    2012-12-01

    Damage of a metal spherical nanoparticle by femtosecond laser pulses is analyzed by splitting the overall process into two steps. The fast step includes electron photoemission from a nanoparticle. It takes place during direct action of a laser pulse and its rate is evaluated as a function of laser and particle parameters by two approaches. Obtained results suggest the formation of significant positive charge of the nanoparticles due to the photoemission. The next step includes ion emission that removes the excessive positive charge and modifies particle structure. It is delayed with respect to the photo-emission and is analyzed by a simple analytical model and modified molecular dynamics. Obtained energy distribution suggests generation of fast ions capable of penetrating into surrounding material and generating defects next to the nanoparticle. The modeling is extended to the case of a nanoparticle on a solid surface to understand the basic mechanism of surface laser damage initiated by nano-contamination. Simulations predict embedding the emitted ions into substrate within a spot with size significantly exceeding the original particle size. We discuss the relation of those effects to the problem of bulk and surface laser-induced damage of optical materials by single and multiple ultrashort laser pulses.

  10. Precision Laser Annealing of Focal Plane Arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bender, Daniel A.; DeRose, Christopher; Starbuck, Andrew Lea

    2015-09-01

    We present results from laser annealing experiments in Si using a passively Q-switched Nd:YAG microlaser. Exposure with laser at fluence values above the damage threshold of commercially available photodiodes results in electrical damage (as measured by an increase in photodiode dark current). We show that increasing the laser fluence to values in excess of the damage threshold can result in annealing of a damage site and a reduction in detector dark current by as much as 100x in some cases. A still further increase in fluence results in irreparable damage. Thus we demonstrate the presence of a laser annealing windowmore » over which performance of damaged detectors can be at least partially reconstituted. Moreover dark current reduction is observed over the entire operating range of the diode indicating that device performance has been improved for all values of reverse bias voltage. Additionally, we will present results of laser annealing in Si waveguides. By exposing a small (<10 um) length of a Si waveguide to an annealing laser pulse, the longitudinal phase of light acquired in propagating through the waveguide can be modified with high precision, <15 milliradian per laser pulse. Phase tuning by 180 degrees is exhibited with multiple exposures to one arm of a Mach-Zehnder interferometer at fluence values below the morphological damage threshold of an etched Si waveguide. No reduction in optical transmission at 1550 nm was found after 220 annealing laser shots. Modeling results for laser annealing in Si are also presented.« less

  11. EFFECTS OF LASER RADIATION ON MATTER. LASER PLASMA: Thermally induced optical damage to barium-sodium niobate crystals

    NASA Astrophysics Data System (ADS)

    Baryshev, S. A.; Goncharova, I. F.; Konvisar, P. G.; Kuznetsov, V. A.

    1990-06-01

    Thermally induced optical damage (TIOD) was observed in undoped barium-sodium niobate (BSN) crystals as a result of changes in their temperature. This damage was deduced from the behavior of YAG:Nd3+ laser radiation when a BSN crystal was inserted in the resonator and also using a helium-neon laser probe beam. The experimental results were satisfactorily explained by the familiar pyroelectric model of TIOD and, in the crystals studied, an inhomogeneity of the conductivity rather than an inhomogeneity of the pyroelectric constant played the main role.

  12. Photothermal and photoacoustic processes of laser activated nano-thermolysis of cells

    NASA Astrophysics Data System (ADS)

    Lapotko, Dmitri; Lukianova, Ekaterina; Mitskevich, Pavel; Smolnikova, Victoria; Potapnev, Michail; Konopleva, Marina; Andreeff, Michael; Oraevsky, Alexander

    2007-02-01

    Laser Activated Nano-Thermolysis was recently proposed for selective damage of individual target (cancer) cells by pulsed laser induced microbubbles around superheated clusters of optically absorbing nanoparticles (NP). One of the clinical applications of this technology is the elimination of residual tumor cells from human blood and bone marrow. Clinical standards for the safety and efficacy of such procedure require the development and verification of highly selective and controllable mechanisms of cell killing. Our previous experiments showed that laser-induced microbubble is the main damaging factor in the case cell irradiation by short laser pulses above the threshold. Our current aim was to study the cell damage mechanisms and analyze selectivity and efficacy of cell damage as a function of NP parameters, NP-cell interaction conditions, and conditions of bubble generation around NP and NP clusters in cells. Generation of laser-induced bubbles around gold NP with diameters 10-250 nm was studied in Acute Myeloblast Leukemia (AML) cultures, normal stem and model K562 human cells. Short laser pulses (10 ns, 532 nm) were applied to those cells in vitro and the processes in cells were investigated with photothermal, fluorescent and atomic force microscopies and also with fluorescence flow cytometry. We have found that the best selectivity of cell damage is achieved by (1) forming large clusters of optically absorbing NP in target cells and (2) irradiating the cells with single laser pulses with the lowest fluence that can generate microbubble only around large clusters but not around single NP. Laser microbubbles with the lifetime from 20 ns to 2000 ns generated in individual cells caused damage and lysis of the cellular membrane and consequently cell death. Laser microbubbles did not damage normal cells around the damaged target (tumor) cell. Laser irradiation with equal fluence did not cause any damage of cells without accumulated NP clusters.

  13. Laser Induced Damage of Potassium Dihydrogen Phosphate (KDP) Optical Crystal Machined by Water Dissolution Ultra-Precision Polishing Method

    PubMed Central

    Gao, Hang; Wang, Xu; Guo, Dongming; Liu, Ziyuan

    2018-01-01

    Laser induced damage threshold (LIDT) is an important optical indicator for nonlinear Potassium Dihydrogen Phosphate (KDP) crystal used in high power laser systems. In this study, KDP optical crystals are initially machined with single point diamond turning (SPDT), followed by water dissolution ultra-precision polishing (WDUP) and then tested with 355 nm nanosecond pulsed-lasers. Power spectral density (PSD) analysis shows that WDUP process eliminates the laser-detrimental spatial frequencies band of micro-waviness on SPDT machined surface and consequently decreases its modulation effect on the laser beams. The laser test results show that LIDT of WDUP machined crystal improves and its stability has a significant increase by 72.1% compared with that of SPDT. Moreover, a subsequent ultrasonic assisted solvent cleaning process is suggested to have a positive effect on the laser performance of machined KDP crystal. Damage crater investigation indicates that the damage morphologies exhibit highly thermal explosion features of melted cores and brittle fractures of periphery material, which can be described with the classic thermal explosion model. The comparison result demonstrates that damage mechanisms for SPDT and WDUP machined crystal are the same and WDUP process reveals the real bulk laser resistance of KDP optical crystal by removing the micro-waviness and subsurface damage on SPDT machined surface. This improvement of WDUP method makes the LIDT more accurate and will be beneficial to the laser performance of KDP crystal. PMID:29534032

  14. 3-ω damage threshold evaluation of final optics components using Beamlet Mule and off-line testing

    NASA Astrophysics Data System (ADS)

    Kozlowski, Mark R.; Maricle, Stephen M.; Mouser, Ron P.; Schwartz, Sheldon; Wegner, Paul J.; Weiland, Timothy L.

    1999-07-01

    A statistics-based model is being develop to predict the laser-damage-limited lifetime of UV optical components on the NIF laser. In order to provide data for the mode, laser damage experiments were performed on the Beamlet laser system at LLNL. An early protoype NIF focus lens was exposed to twenty 351 nm pulses at an average fluence of 5 J/cm2, 3ns. Using a high resolution optic inspection inspection system a total of 353 damage sites was detected within the 1160 cm2 beam aperture. Through inspections of the lens before, after and, in some cases, during the campaign, pulse to pulse damage growth rates were measured for damage initiating both on the surface and at bulk inclusions. Growth rates as high as 79 micrometers /pulse were observed for damage initiating at pre-existing scratches in the surface. For most damage sites on the optic, both on the surface and at bulk inclusions. Growth rates as high as 79 micrometers /pulse were observed for damage initiating at per- existing scratches in the surface. For most damage sites on the optic, both surface and bulk, the damage growth rate was approximately 10(Mu) m/pulse.

  15. Thin film contamination effects on laser-induced damage of fused silica surfaces at 355 nm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burnham, A. K.; Cordillot, C.; Fornier, A.

    1998-07-28

    Fused silica windows were artificially contaminated to estimate the resistance of target chamber debris shields against laser damage during NIF operation. Uniform contamination thin films (1 to 5 nm thick) were prepared by sputtering various materials (Au, Al, Cu, and B 4C). The loss of transmission of the samples was first measured. They were then tested at 355 nm in air with an 8-ns Nd:YAG laser. The damage morphologies were characterized by Nomarski optical microscopy and SEM. Both theory and experiments showed that metal contamination for films as thin as 1 nm leads to a substantial loss of transmission. Themore » laser damage resistance dropped very uniformly across the entire surface (e.g. 6 J/cm 2 for 5 nm of Cu). The damage morphology characterization showed that contrary to clean silica, metal coated samples did not produce pits on the surface. B 4C coated silica, on the other hand, led to a higher density of such damage pits. A model for light absorption in the thin film was coupled with a simple heat deposition and diffusion model to perform preliminary theoretical estimates of damage thresholds. The estimates of the loss due to light absorption and reflection pointed out significant .differences between metals (e.g. Al and Au). The damage threshold predictions were in qualitative agreement with experimental measurements.« less

  16. Wavelength dependence of femtosecond laser-induced damage threshold of optical materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gallais, L., E-mail: laurent.gallais@fresnel.fr; Douti, D.-B.; Commandré, M.

    2015-06-14

    An experimental and numerical study of the laser-induced damage of the surface of optical material in the femtosecond regime is presented. The objective of this work is to investigate the different processes involved as a function of the ratio of photon to bandgap energies and compare the results to models based on nonlinear ionization processes. Experimentally, the laser-induced damage threshold of optical materials has been studied in a range of wavelengths from 1030 nm (1.2 eV) to 310 nm (4 eV) with pulse durations of 100 fs with the use of an optical parametric amplifier system. Semi-conductors and dielectrics materials, in bulk or thinmore » film forms, in a range of bandgap from 1 to 10 eV have been tested in order to investigate the scaling of the femtosecond laser damage threshold with the bandgap and photon energy. A model based on the Keldysh photo-ionization theory and the description of impact ionization by a multiple-rate-equation system is used to explain the dependence of laser-breakdown with the photon energy. The calculated damage fluence threshold is found to be consistent with experimental results. From these results, the relative importance of the ionization processes can be derived depending on material properties and irradiation conditions. Moreover, the observed damage morphologies can be described within the framework of the model by taking into account the dynamics of energy deposition with one dimensional propagation simulations in the excited material and thermodynamical considerations.« less

  17. Pico-second laser materials interactions: mechanisms, material lifetime and performance optimization Ted Laurence(14-ERD-014)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laurence, Ted A.

    2016-12-14

    Laser-induced damage with ps pulse widths straddles the transition from intrinsic, multiphoton ionization- and avalanche ionization-based ablation with fs pulses to defectdominated, thermal-based damage with ns pulses. We investigated the morphology and scaling of damage for commonly used silica and hafnia coatings as well as fused silica. Using carefully calibrated laser-induced damage experiments, in situ imaging, and high-resolution optical microscopy, atomic force microscopy, and scanning electron microscopy, we showed that defects play an important role in laser-induced damage for pulse durations as short as 1 ps. Three damage morphologies were observed: standard material ablation, ultra-high density pits, and isolated absorbers.more » For 10 ps and longer, the isolated absorbers limited the damage performance of the coating materials. We showed that damage resulting from the isolated absorbers grows dramatically with subsequent pulses for sufficient fluences. For hafnia coatings, we used electric field modeling and experiments to show that isolated absorbers near the surface were affected by the chemical environment (vacuum vs. air) for pulses as short as 10 ps. Coupled with the silica results, these results suggested that improvements in the performance in the 10 -60 ps range have not reached fundamental limits. These findings motivate new efforts, including a new SI LDRD in improving the laser-damage performance of multi-layer dielectric coatings. A damage test facility for ps pulses was developed and automated, and was used for testing production optics for ARC. The resulting software was transferred to other laser test facilities for fs pulses and multiple wavelengths with 30 ps pulses. Additionally, the LDRD supported the retention and promotion of an important staff scientist in high-resolution dynamic microscopy and laser-damage testing.« less

  18. Thermal damage produced by high-irradiance continuous wave CO2 laser cutting of tissue.

    PubMed

    Schomacker, K T; Walsh, J T; Flotte, T J; Deutsch, T F

    1990-01-01

    Thermal damage produced by continuous wave (cw) CO2 laser ablation of tissue in vitro was measured for irradiances ranging from 360 W/cm2 to 740 kW/cm2 in order to investigate the extent to which ablative cooling can limit tissue damage. Damage zones thinner than 100 microns were readily produced using single pulses to cut guinea pig skin as well as bovine cornea, aorta, and myocardium. Multiple pulses can lead to increased damage. However, a systematic decrease in damage with irradiance, predicted theoretically by an evaporation model of ablation, was not observed. The damage-zone thickness was approximately constant around the periphery of the cut, consistent with the existence of a liquid layer which stores heat and leads to tissue damage, and with a model of damage and ablation recently proposed by Zweig et al.

  19. Development, Modeling and Test of Optical Coatings with Novel Thermal and Stress Management for High Energy Laser Applications

    DTIC Science & Technology

    2017-01-11

    and to mitigate the defects in the coating that lead to damage under laser irradiation . In this final 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND...understand and to mitigate the defects in the coating that lead to damage under laser irradiation . In this final report we list the accomplishments of this...Luke A. Emmert, Wolfgang Rudolph. Time-dependent absorption of TiO_2 optical thin films under pulsed and continuous wave 790??nm laser irradiation

  20. Nanosecond multiple pulse measurements and the different types of defects

    NASA Astrophysics Data System (ADS)

    Wagner, Frank R.; Natoli, Jean-Yves; Beaudier, Alexandre; Commandré, Mireille

    2017-11-01

    Laser damage measurements with multiple pulses at constant fluence (S-on-1 measurements) are of high practical importance for design and validation of high power photonic instruments. Using nanosecond lasers, it has been recognized long ago that single pulse laser damage is linked to fabrication related defects. Models describing the laser damage probability as the probability of encounter between the high fluence region of the laser beam and the fabrication related defects are thus widely used to analyze the measurements. Nanosecond S-on-1 tests often reveal the "fatigue effect", i.e. a decrease of the laser damage threshold with increasing pulse number. Most authors attribute this effect to cumulative material modifications operated by the first pulses. In this paper we discuss the different situations that are observed upon nanosecond S-on-1 measurements of several different materials using different wavelengths and speak in particular about the defects involved in the laser damage mechanism. These defects may be fabrication-related or laser-induced, stable or evolutive, cumulative or of short lifetime. We will show that the type of defect that is dominating an S-on-1 experiment depends on the wavelength and the material under test and give examples from measurements of nonlinear optical crystals, fused silica and oxide mixture coatings.

  1. Effect of annealing on the laser induced damage of polished and CO2 laser-processed fused silica surfaces

    NASA Astrophysics Data System (ADS)

    Doualle, T.; Gallais, L.; Cormont, P.; Donval, T.; Lamaignère, L.; Rullier, J. L.

    2016-06-01

    We investigate the effect of different heat treatments on the laser-induced damage probabilities of fused silica samples. Isothermal annealing in a furnace is applied, with different temperatures in the range 700-1100 °C and 12 h annealing time, to super-polished fused silica samples. The surface flatness and laser damage probabilities at 3 ns, 351 nm are measured before and after the different annealing procedures. We have found a significant improvement of the initial laser damage probabilities of the silica surface after annealing at 1050 °C for 12 h. A similar study has been conducted on CO2 laser-processed sites on the surface of the samples. Before and after annealing, we have studied the morphology of the sites, the evolution of residual stress, and the laser-induced damage threshold measured at 351 nm, 3 ns. In this case, we observe that the laser damage resistance of the laser created craters can reach the damage level of the bare fused silica surface after the annealing process, with a complete stress relieve. The obtained results are then compared to the case of local annealing process by CO2 laser irradiation during 1 s, and we found similar improvements in both cases. The different results obtained in the study are compared to numerical simulations made with a thermo-mechanical model based on finite-element method that allows the simulation of the isothermal or the local annealing process, the evolution of stress and fictive temperature. The simulation results were found to be very consistent with experimental observations for the stresses evolution after annealing and estimation of the heat affected area during laser-processing based on the density dependence with fictive temperature. Following this work, the temperature for local annealing should reach 1330-1470 °C for an optimized reduction of damage probability and be below the threshold for material removal, whereas furnace annealing should be kept below the annealing point to avoid sample deformation.

  2. Neuronal growth cones respond to laser-induced axonal damage

    PubMed Central

    Wu, Tao; Mohanty, Samarendra; Gomez-Godinez, Veronica; Shi, Linda Z.; Liaw, Lih-Huei; Miotke, Jill; Meyer, Ronald L.; Berns, Michael W.

    2012-01-01

    Although it is well known that damage to neurons results in release of substances that inhibit axonal growth, release of chemical signals from damaged axons that attract axon growth cones has not been observed. In this study, a 532 nm 12 ns laser was focused to a diffraction-limited spot to produce site-specific damage to single goldfish axons in vitro. The axons underwent a localized decrease in thickness (‘thinning’) within seconds. Analysis by fluorescence and transmission electron microscopy indicated that there was no gross rupture of the cell membrane. Mitochondrial transport along the axonal cytoskeleton immediately stopped at the damage site, but recovered over several minutes. Within seconds of damage nearby growth cones extended filopodia towards the injury and were often observed to contact the damaged site. Turning of the growth cone towards the injured axon also was observed. Repair of the laser-induced damage was evidenced by recovery of the axon thickness as well as restoration of mitochondrial movement. We describe a new process of growth cone response to damaged axons. This has been possible through the interface of optics (laser subcellular surgery), fluorescence and electron microscopy, and a goldfish retinal ganglion cell culture model. PMID:21831892

  3. Interaction of laser pulse with confined plasma during exit surface nanosecond laser damage

    NASA Astrophysics Data System (ADS)

    Rubenchik, Alexander M.; Feit, Michael D.; Demos, Stavros G.

    2013-12-01

    Interpretation of spatial and time resolved images of rear surface ns laser damage in dielectrics requires understanding of the dynamic interaction of the incoming laser beam with the confined expanding plasma in the material. The detailed kinetics of the plasma, involving both expansion and retraction, depends on details of reflection and absorption in the hot material. The growth of the hot region is treated using a model previously developed to understand laser peening. The pressure is found to scale as the square root of laser intensity and drops off slowly after energy deposition is complete. For the conditions of our experimental observations in fused silica, our model predicts a pressure of about 9 GPa and a surface expansion velocity of about 1.5 km/sec, in good agreement with experimental observation.

  4. Laser-induced damage in biological tissue: Role of complex and dynamic optical properties of the medium

    NASA Astrophysics Data System (ADS)

    Ahmed, Elharith M.

    Since its invention in the early 1960's, the laser has been used as a tool for surgical, therapeutic, and diagnostic purposes. To achieve maximum effectiveness with the greatest margin of safety it is important to understand the mechanisms of light propagation through tissue and how that light affects living cells. Lasers with novel output characteristics for medical and military applications are too often implemented prior to proper evaluation with respect to tissue optical properties and human safety. Therefore, advances in computational models that describe light propagation and the cellular responses to laser exposure, without the use of animal models, are of considerable interest. Here, a physics-based laser-tissue interaction model was developed to predict the spatial and temporal temperature and pressure rise during laser exposure to biological tissues. Our new model also takes into account the dynamic nature of tissue optical properties and their impact on the induced temperature and pressure profiles. The laser-induced retinal damage is attributed to the formation of microbubbles formed around melanosomes in the retinal pigment epithelium (RPE) and the damage mechanism is assumed to be photo-thermal. Selective absorption by melanin creates these bubbles that expand and collapse around melanosomes, destroying cell membranes and killing cells. The Finite Element (FE) approach taken provides suitable ground for modeling localized pigment absorption which leads to a non-uniform temperature distribution within pigmented cells following laser pulse exposure. These hot-spots are sources for localized thermo-elastic stresses which lead to rapid localized expansions that manifest themselves as microbubbles and lead to microcavitations. Model predictions for the interaction of lasers at wavelengths of 193, 694, 532, 590, 1314, 1540, 2000, and 2940 nm with biological tissues were generated and comparisons were made with available experimental data for the retina, cornea or the skin. Good agreement between model and experimental results established the validity of the model.

  5. A Novel Nanoparticle Mediated Selective Inner Retinal Photocoagulation for Diseases of the Inner Retina.

    PubMed

    Singh, Rupesh; Rajaraman, Srinivas; Balasubramanian, Madhusudhanan

    2017-10-01

    A novel nanoparticle mediated methodology for laser photocoagulation of the inner retina to achieve tissue selective treatment is presented. Transport of 527, 577, and 810 nm laser, heat deposition, and eventual thermal damage in vitreous, retina, RPE, choroid, and sclera were modeled using Bouguer-Beer-Lambert law of absorption and solved numerically using the finite volume method. Nanoparticles were designed using Mie theory of scattering. Performance of the new photocoagulation strategy using gold nanospheres and gold-silica nanoshells was compared with that of conventional methods without nanoparticles. For experimental validation, vitreous cavity of ex vivo porcine eyes was infused with gold nanospheres. After ~6 h of nanoparticle diffusion, the porcine retina was irradiated with a green laser and imaged simultaneously using a spectral domain optical coherence tomography (Spectralis SD-OCT, Heidelberg Engineering). Our computational model predicted a significant spatial shift in the peak temperature from RPE to the inner retinal region when infused with nanoparticles. Arrhenius thermal damage in the mid-retinal location was achieved in ~14 ms for 527 nm laser thereby reducing the irradiation duration by ~30 ms compared with the treatment without nanoparticles. In ex vivo porcine eyes infused with gold nanospheres, SD-OCT retinal images revealed a lower thermal damage and expansion at RPE due to laser photocoagulation. Nanoparticle infused laser photocoagulation strategy provided a selective inner retinal thermal damage with significant decrease in laser power and laser exposure time. The proposed treatment strategy shows possibilities for an efficient and highly selective inner retinal laser treatment.

  6. Revision of laser-induced damage threshold evaluation from damage probability data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bataviciute, Gintare; Grigas, Povilas; Smalakys, Linas

    2013-04-15

    In this study, the applicability of commonly used Damage Frequency Method (DFM) is addressed in the context of Laser-Induced Damage Threshold (LIDT) testing with pulsed lasers. A simplified computer model representing the statistical interaction between laser irradiation and randomly distributed damage precursors is applied for Monte Carlo experiments. The reproducibility of LIDT predicted from DFM is examined under both idealized and realistic laser irradiation conditions by performing numerical 1-on-1 tests. A widely accepted linear fitting resulted in systematic errors when estimating LIDT and its error bars. For the same purpose, a Bayesian approach was proposed. A novel concept of parametricmore » regression based on varying kernel and maximum likelihood fitting technique is introduced and studied. Such approach exhibited clear advantages over conventional linear fitting and led to more reproducible LIDT evaluation. Furthermore, LIDT error bars are obtained as a natural outcome of parametric fitting which exhibit realistic values. The proposed technique has been validated on two conventionally polished fused silica samples (355 nm, 5.7 ns).« less

  7. Mechanism for atmosphere dependence of laser damage morphology in HfO2/SiO2 high reflective films

    NASA Astrophysics Data System (ADS)

    Pu, Yunti; Ma, Ping; Chen, Songlin; Zhu, Jiliang; Wang, Gang; Pan, Feng; Sun, Ping; Zhu, Xiaohong; Zhu, Jianguo; Xiao, Dingquan

    2012-07-01

    We show in this paper single-shot and multi-shot laser-induced damage thresholds (LIDTs) of HfO2/SiO2 high reflective films (the reflectance = 99.9%) are affected by the presence of a water layer absorbed on the surface of the porous films. When the water layer was removed with the process of pumping, the single-shot LIDT measured in vacuum dropped to ˜48% of that measured in air, while the multi-shot LIDT in vacuum dropped to ˜47% of its atmospheric value for the high reflective films. Typical damage micrographs of the films in air and in vacuum were obtained, showing distinct damage morphologies. Such atmosphere dependence of the laser damage morphology was found to originate from that formation of a water layer on the surface of porous films could cause an increase of horizontal thermal conductivity and a reduction of vertical thermal conductivity. Moreover, laser-induced periodic ripple damages in air were found in the SiO2 layer from the micrographs. A model of deformation kinematics was used to illustrate the occurrence of the periodic ripple damage, showing that it could be attributed to a contraction of the HfO2 layer under irradiation by the 5-ns laser pulses in air.

  8. Thermal injury models for optical treatment of biological tissues: a comparative study.

    PubMed

    Fanjul-Velez, Felix; Ortega-Quijano, Noe; Salas-Garcia, Irene; Arce-Diego, Jose L

    2010-01-01

    The interaction of optical radiation with biological tissues causes an increase in the temperature that, depending on its magnitude, can provoke a thermal injury process in the tissue. The establishment of laser irradiation pathological limits constitutes an essential task, as long as it enables to fix and delimit a range of parameters that ensure a safe treatment in laser therapies. These limits can be appropriately described by kinetic models of the damage processes. In this work, we present and compare several models for the study of thermal injury in biological tissues under optical illumination, particularly the Arrhenius thermal damage model and the thermal dosimetry model based on CEM (Cumulative Equivalent Minutes) 43°C. The basic concepts that link the temperature and exposition time with the tissue injury or cellular death are presented, and it will be shown that they enable to establish predictive models for the thermal damage in laser therapies. The results obtained by both models will be compared and discussed, highlighting the main advantages of each one and proposing the most adequate one for optical treatment of biological tissues.

  9. Laser effects based optimal laser parameter identifications for paint removal from metal substrate at 1064 nm: a multi-pulse model

    NASA Astrophysics Data System (ADS)

    Han, Jinghua; Cui, Xudong; Wang, Sha; Feng, Guoying; Deng, Guoliang; Hu, Ruifeng

    2017-10-01

    Paint removal by laser ablation is favoured among cleaning techniques due to its high efficiency. How to predict the optimal laser parameters without producing damage to substrate still remains challenging for accurate paint stripping. On the basis of ablation morphologies and combining experiments with numerical modelling, the underlying mechanisms and the optimal conditions for paint removal by laser ablation are thoroughly investigated. Our studies suggest that laser paint removal is dominated by the laser vaporization effect, thermal stress effect and laser plasma effect, in which thermal stress effect is the most favoured while laser plasma effect should be avoided during removal operations. Based on the thermodynamic equations, we numerically evaluated the spatial distribution of the temperature as well as thermal stress in the paint and substrate under the irradiation of laser pulse at 1064 nm. The obtained curves of the paint thickness vs. threshold fluences can provide the reference standard of laser parameter selection in view of the paint layer with different thickness. A multi-pulse model is proposed and validated under a constant laser fluence to perfectly remove a thicker paint layer. The investigations and the methods proposed here might give hints to the efficient operations on the paint removal and lowering the risk of substrate damages.

  10. Temperature field analysis of single layer TiO2 film components induced by long-pulse and short-pulse lasers.

    PubMed

    Wang, Bin; Zhang, Hongchao; Qin, Yuan; Wang, Xi; Ni, Xiaowu; Shen, Zhonghua; Lu, Jian

    2011-07-10

    To study the differences between the damaging of thin film components induced by long-pulse and short-pulse lasers, a model of single layer TiO(2) film components with platinum high-absorptance inclusions was established. The temperature rises of TiO(2) films with inclusions of different sizes and different depths induced by a 1 ms long-pulse and a 10 ns short-pulse lasers were analyzed based on temperature field theory. The results show that there is a radius range of inclusions that corresponds to high temperature rises. Short-pulse lasers are more sensitive to high-absorptance inclusions and long-pulse lasers are more easily damage the substrate. The first-damage decision method is drawn from calculations. © 2011 Optical Society of America

  11. Optical damage performance of conductive widegap semiconductors: spatial, temporal, and lifetime modeling

    DOE PAGES

    Elhadj, Selim; Yoo, Jae-hyuck; Negres, Raluca A.; ...

    2016-12-19

    The optical damage performance of electrically conductive gallium nitride (GaN) and indium tin oxide (ITO) films is addressed using large area, high power laser beam exposures at 1064 nm sub-bandgap wavelength. Analysis of the laser damage process assumes that onset of damage (threshold) is determined by the absorption and heating of a nanoscale region of a characteristic size reaching a critical temperature. We use this model to rationalize semi-quantitatively the pulse width scaling of the damage threshold from picosecond to nanosecond timescales, along with the pulse width dependence of the damage threshold probability derived by fitting large beam damage densitymore » data. Multi-shot exposures were used to address lifetime performance degradation described by an empirical expression based on the single exposure damage model. A damage threshold degradation of at least 50% was observed for both materials. Overall, the GaN films tested had 5-10 × higher optical damage thresholds than the ITO films tested for comparable transmission and electrical conductivity. This route to optically robust, large aperture transparent electrodes and power optoelectronics may thus involve use of next generation widegap semiconductors such as GaN.« less

  12. Laser-induced cartilage damage: an ex-vivo model using confocal microscopy

    NASA Astrophysics Data System (ADS)

    Frenz, Martin; Zueger, Benno J.; Monin, D.; Weiler, C.; Mainil-Varlet, P. M.; Weber, Heinz P.; Schaffner, Thomas

    1999-06-01

    Although there is an increasing popularity of lasers in orthopedic surgery, there is a growing concern about negative side effects of this therapy e.g. prolonged restitution time, radiation damage to adjacent cartilage or depth effects like bone necrosis. Despite case reports and experimental investigations over the last few years little is known about the extent of acute cartilage damage induced by different lasers types and energies. Histological examination offers only limited insights in cell viability and metabolism. Ho:YAG and Er:YAG lasers emitting at 2.1 micrometer and 2.94 micrometer, respectively, are ideally suited for tissue treatment because these wavelengths are strongly absorbed in water. The Purpose of the present study is to evaluate the effect of laser type and energy on chondrocyte viability in an ex vivo model. Free running Er:YAG (E equals 100 and 150 mJ) and Ho:YAG (E equals 500 and 800 mJ) lasers were used at different energy levels using a fixed pulse length of 400 microseconds. The energy was delivered at 8 Hz through optical fibers. Fresh bovine hyaline cartilage samples were mounted in a water bath at room temperature and the fiber was positioned at 30 degree and 180 degree angles relative to the tissue surface. After laser irradiation the samples were assessed by a life-dead cell viability test using a confocal microscope and by standard histology. Thermal damage was much deeper with Ho:YAG (up to 1800 micrometer) than with the Er:YAG laser (up to 70 micrometer). The cell viability test revealed a damage zone about twice the one determined by standard histology. Confocal microscopy is a powerful tool for assessing changes in tissue structure after laser treatment. In addition this technique allows to quantify these alterations without necessitating time consuming and expensive animal experiments.

  13. Photobiomodulation in laser surgery

    NASA Astrophysics Data System (ADS)

    Liu, Timon Cheng-Yi; Rong, Dong-Liang; Huang, Jin; Deng, Xiao-Yuan; Liu, Song-Hao

    2006-01-01

    Laser surgery provides good exposure with clear operating fields and satisfactory preliminary functional results. In contrast to conventional excision, it was found that matrix metalloproteinases and the tissue inhibitors of metalloproteinases -1 mRNA expression is higher, myofibroblasts appeared and disappeared slower in laser excision wounds. It has been suggested that the better anatomical and functional results achieved following laser cordectomy may be explained by the fact that such procedures result in better, more rapid healing processes to recover vocal cord for early glottic tumors and better. In this paper, the role of photobiomodulation in laser surgery will be discussed by the cultured monolayer normal human skin fibroblast model of the photobiomodulation of marginal irradiation of high intensity laser beam, the photobiomodulation related to the irradiated tissue, the biological information model of photobiomodulation and the animal models of laser surgery. Although high intensity laser beam is so intense that it destroys the irradiated cells or tissue, its marginal irradiation intensity is so low that there is photobiomodulation on non-damage cells to modulate the regeneration of partly damaged tissue so that the surgery of laser of different parameters results in different post-surgical recovery. It was concluded that photobiomodulation might play an important role in the long-term effects of laser surgery, which might be used to design laser surgery.

  14. Histologic evaluation of laser lipolysis comparing continuous wave vs pulsed lasers in an in vivo pig model.

    PubMed

    Levi, Jessica R; Veerappan, Anna; Chen, Bo; Mirkov, Mirko; Sierra, Ray; Spiegel, Jeffrey H

    2011-01-01

    To evaluate acute and delayed laser effects of subdermal lipolysis and collagen deposition using an in vivo pig model and to compare histologic findings in fatty tissue after continuous wave diode (CW) vs pulsed laser treatment. Three CW lasers (980, 1370, and 1470 nm) and 3 pulsed lasers (1064, 1320, and 1440 nm) were used to treat 4 Göttingen minipigs. Following administration of Klein tumescent solution, a laser cannula was inserted at the top of a 10 × 2.5-cm rectangle and was passed subdermally to create separate laser "tunnels." Temperatures at the surface and at intervals of 4-mm to 20-mm depths were recorded immediately after exposure and were correlated with skin injury. Full-thickness cutaneous biopsy specimens were obtained at 1 day, 1 week, and 1 month after exposure and were stained with hematoxylin-eosin and trichrome stain. Qualitative and semiquantitative histopathologic evaluations were performed with attention to vascular damage, lipolysis, and collagen deposition. Skin surface damage occurred at temperatures exceeding 46°C. Histologic examination at 1 day after exposure showed hemorrhage, fibrous collagen fiber coagulation, and adipocyte damage. Adipocytes surrounded by histiocytes, a marker of lipolysis, were present at 1 week and 1 month after exposure. Collagen deposition in subdermal fatty tissue and in reticular dermis of some specimens was noted at 1 week and had increased at 1 month. Tissue treated with CW laser at 1470 nm demonstrated greater hemorrhage and more histiocytes at damage sites than tissue treated with pulsed laser at 1440 nm. There was a trend toward more collagen deposition with pulsed lasers than with CW lasers, but this was not statistically significant. Histopathologic comparison between results of CW laser at 980 nm vs pulsed laser at 1064 nm showed the same trend. Hemorrhage differences may result from pulse duration variations. A theoretical calculation estimating temperature rise in vessels supported this hypothesis. Pulsed lasers with higher peak powers provided better hemostatic effects than CW lasers. The degree of lipolysis depended on wavelength, laser power, and energy density. Subdermal laser irradiation can stimulate collagen deposition in subdermal tissue and reticular dermis.

  15. Heat shock protein expression as guidance for the therapeutic window of retinal laser therapy

    NASA Astrophysics Data System (ADS)

    Wang, Jenny; Huie, Philip; Dalal, Roopa; Lee, Seungjun; Tan, Gavin; Lee, Daeyoung; Lavinksy, Daniel; Palanker, Daniel

    2016-03-01

    Unlike conventional photocoagulation, non-damaging retinal laser therapy (NRT) limits laser-induced heating to stay below the retinal damage threshold and therefore requires careful dosimetry. Without the adverse effects associated with photocoagulation, NRT can be applied to critical areas of the retina and repeatedly to manage chronic disorders. Although the clinical benefits of NRT have been demonstrated, the mechanism of therapeutic effect and width of the therapeutic window below damage threshold are not well understood. Here, we measure activation of heat shock response via laser-induced hyperthermia as one indication of cellular response. A 577 nm laser is used with the Endpoint Management (EpM) user interface, a titration algorithm, to set experimental pulse energies relative to a barely visible titration lesion. Live/dead staining and histology show that the retinal damage threshold in rabbits is at 40% of titration energy on EpM scale. Heat shock protein 70 (HSP70) expression in the retinal pigment epithelium (RPE) was detected by whole-mount immunohistochemistry after different levels of laser treatment. We show HSP70 expression in the RPE beginning at 25% of titration energy indicating that there is a window for NRT between 25% and 40% with activation of the heat shock protein expression in response to hyperthermia. HSP70 expression is also seen at the perimeter of damaging lesions, as expected based on a computational model of laser heating. Expression area for each pulse energy setting varied between laser spots due to pigmentation changes, indicating the relatively narrow window of non-damaging activation and highlighting the importance of proper titration.

  16. Calculation of femtosecond pulse laser induced damage threshold for broadband antireflective microstructure arrays.

    PubMed

    Jing, Xufeng; Shao, Jianda; Zhang, Junchao; Jin, Yunxia; He, Hongbo; Fan, Zhengxiu

    2009-12-21

    In order to more exactly predict femtosecond pulse laser induced damage threshold, an accurate theoretical model taking into account photoionization, avalanche ionization and decay of electrons is proposed by comparing respectively several combined ionization models with the published experimental measurements. In addition, the transmittance property and the near-field distribution of the 'moth eye' broadband antireflective microstructure directly patterned into the substrate material as a function of the surface structure period and groove depth are performed by a rigorous Fourier model method. It is found that the near-field distribution is strongly dependent on the periodicity of surface structure for TE polarization, but for TM wave it is insensitive to the period. What's more, the femtosecond pulse laser damage threshold of the surface microstructure on the pulse duration taking into account the local maximum electric field enhancement was calculated using the proposed relatively accurate theoretical ionization model. For the longer incident wavelength of 1064 nm, the weak linear damage threshold on the pulse duration is shown, but there is a surprising oscillation peak of breakdown threshold as a function of the pulse duration for the shorter incident wavelength of 532 nm.

  17. Fabrication of spherical mitigation pit on KH2PO4 crystal by micro-milling and modeling of its induced light intensification.

    PubMed

    Cheng, Jian; Chen, Mingjun; Liao, Wei; Wang, Haijun; Xiao, Yong; Li, Mingquan

    2013-07-15

    Micro-machining is the most promising method for KH(2)PO(4) crystal to mitigate the surface damage growth in high power laser system. In this work, spherical mitigation pit is fabricated by micro-milling with an efficient machining procedure. The light intensification caused by rear surface features before and after mitigation is numerically modeled based on the finite-difference time-domain method. The results indicate that the occurrence of total internal reflections should be responsible for the largest light intensification inside the crystal. For spherical pits after mitigation, the light intensification can be greatly alleviated by preventing the occurrence of total internal reflections. The light intensification caused by spherical mitigation pit is strongly dependent on the width-depth ratio and it is suggested that the width-depth ratio of spherical mitigation pit must be devised to be larger than 5.0 to achieve the minimal light intensification for the mitigation of surface damage growth. Laser damage tests for KH(2)PO(4) crystal validate that the laser damage resistance of initially damaged surface can be retrieved to near the level of ideal surface by replacing initial damage site with predesigned mitigation pit.

  18. Ablation velocity and thermal damage of myocardial tissue using a CO2 laser for transmyocardial laser revascularization

    NASA Astrophysics Data System (ADS)

    Sachinopoulou, Anna; Beek, Johan F.; van Leeuwen, Ton G. J. M.; Beek, W. J.

    1999-02-01

    Transmyocardial Laser Revascularization (TMLR) is a new experimental method for relief of angina pectoris in patients with severe coronary artery disease. TMLR aims at revascularizing chronic hibernating myocardium by creating transmural channels. One of the working mechanism hypotheses is that the endocardial side of the channels remains open, enabling perfusion of the hibernating myocardium directly from the left ventricle. Although the working mechanism of TMLR is still unknown (perfusion through patent channels, induction of angiogenesis, relief of angina through destruction of sympatic innervation, others?), first clinical studies are successful. Currently, the Heart LaserTM and other CO2 lasers, XeCl Excimer laser and Ho:YAG laser are under investigation for TMLR. The initial attempts of TMR with needles were soon replaced by laser induced channels. Efforts were focused on developing a CO2 laser that could penetrate a beating heart during its relaxation phase. Later, the position of the beam could be fixed in the myocardial wall using lasers with fiber delivery systems and perforation was achieved within multiple cycles. Various researchers reported on both patent and non-patent channels after TMLR. Our belief is that the extent of laser induced thermal damage is one of the factors that determine the clinical outcome and the extent of angiogenesis (and, possibly, the patency of the channel). The purpose of this study is to present a simple theoretical model to predict the extent of thermal damage around a transmyocardial channel. In vitro experiments were performed on myocardial bovine tissue and damage was assessed. The results were used to determine the final parameters of the approximating theoretical equation. To evaluate our results, we compared our results to in vitro data using the Heart LaserTM from the literature. Ablation velocities were also measured and the results were compared to ablation velocity calculations using a model described by Ostegar et al.

  19. Influence trend of temperature distribution in skin tissue generated by different exposure dose pulse laser

    NASA Astrophysics Data System (ADS)

    Shan, Ning; Wang, Zhijing; Liu, Xia

    2014-11-01

    Laser is widely applied in military and medicine fields because of its excellent capability. In order to effectively defend excess damage by laser, the thermal processing theory of skin tissue generated by laser should be carried out. The heating rate and thermal damage area should be studied. The mathematics model of bio-tissue heat transfer that is irradiated by laser is analyzed. And boundary conditions of bio-tissue are discussed. Three layer FEM grid model of bio-tissue is established. The temperature rising inducing by pulse laser in the tissue is modeled numerically by adopting ANSYS software. The changing trend of temperature in the tissue is imitated and studied under the conditions of different exposure dose pulse laser. The results show that temperature rising in the tissue depends on the parameters of pulse laser largely. In the same conditions, the pulse width of laser is smaller and its instant power is higher. And temperature rising effect in the tissue is very clear. On the contrary, temperature rising effect in the tissue is lower. The cooling time inducing by temperature rising effect in the tissue is longer along with pulse separation of laser is bigger. And the temperature difference is bigger in the pulse period.

  20. Highlighting the DNA damage response with ultrashort laser pulses in the near infrared and kinetic modeling

    PubMed Central

    Ferrando-May, Elisa; Tomas, Martin; Blumhardt, Philipp; Stöckl, Martin; Fuchs, Matthias; Leitenstorfer, Alfred

    2013-01-01

    Our understanding of the mechanisms governing the response to DNA damage in higher eucaryotes crucially depends on our ability to dissect the temporal and spatial organization of the cellular machinery responsible for maintaining genomic integrity. To achieve this goal, we need experimental tools to inflict DNA lesions with high spatial precision at pre-defined locations, and to visualize the ensuing reactions with adequate temporal resolution. Near-infrared femtosecond laser pulses focused through high-aperture objective lenses of advanced scanning microscopes offer the advantage of inducing DNA damage in a 3D-confined volume of subnuclear dimensions. This high spatial resolution results from the highly non-linear nature of the excitation process. Here we review recent progress based on the increasing availability of widely tunable and user-friendly technology of ultrafast lasers in the near infrared. We present a critical evaluation of this approach for DNA microdamage as compared to the currently prevalent use of UV or VIS laser irradiation, the latter in combination with photosensitizers. Current and future applications in the field of DNA repair and DNA-damage dependent chromatin dynamics are outlined. Finally, we discuss the requirement for proper simulation and quantitative modeling. We focus in particular on approaches to measure the effect of DNA damage on the mobility of nuclear proteins and consider the pros and cons of frequently used analysis models for FRAP and photoactivation and their applicability to non-linear photoperturbation experiments. PMID:23882280

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doualle, T.; Gallais, L., E-mail: laurent.gallais@fresnel.fr; Cormont, P.

    We investigate the effect of different heat treatments on the laser-induced damage probabilities of fused silica samples. Isothermal annealing in a furnace is applied, with different temperatures in the range 700–1100 °C and 12 h annealing time, to super-polished fused silica samples. The surface flatness and laser damage probabilities at 3 ns, 351 nm are measured before and after the different annealing procedures. We have found a significant improvement of the initial laser damage probabilities of the silica surface after annealing at 1050 °C for 12 h. A similar study has been conducted on CO{sub 2} laser-processed sites on the surface of the samples. Before andmore » after annealing, we have studied the morphology of the sites, the evolution of residual stress, and the laser-induced damage threshold measured at 351 nm, 3 ns. In this case, we observe that the laser damage resistance of the laser created craters can reach the damage level of the bare fused silica surface after the annealing process, with a complete stress relieve. The obtained results are then compared to the case of local annealing process by CO{sub 2} laser irradiation during 1 s, and we found similar improvements in both cases. The different results obtained in the study are compared to numerical simulations made with a thermo-mechanical model based on finite-element method that allows the simulation of the isothermal or the local annealing process, the evolution of stress and fictive temperature. The simulation results were found to be very consistent with experimental observations for the stresses evolution after annealing and estimation of the heat affected area during laser-processing based on the density dependence with fictive temperature. Following this work, the temperature for local annealing should reach 1330–1470 °C for an optimized reduction of damage probability and be below the threshold for material removal, whereas furnace annealing should be kept below the annealing point to avoid sample deformation.« less

  2. Optical coherence tomography (OCT) guided smart laser knife for cancer surgery (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Katta, Nitesh; Mcelroy, Austin; Estrada, Arnold; Milner, Thomas E.

    2017-02-01

    Neurological cancer surgeries require specialized tools that enhance imaging for precise cutting and removal of tissue without damaging adjacent neurological structures. The novel combination of high-resolution fast optical coherence tomography (OCT) alongside short pulsed nanosecond thulium (Tm) lasers offers stark advantages utilizing the superior beam quality, high volumetric tissue removal rates of thulium lasers with minimal residual thermal footprint in the tissue and avoiding damage to delicate sub-surface structures (e.g., nerves and microvessels); which has not been showcased before. A bench-top system is constructed, using a 15W 1940nm nanosecond pulsed Tm fiber laser (500uJ pulse energy, 100ns pulse duration, 30kHz repetition rate) for removing tissue and a swept source laser (1310±70nm, 100kHz sweep rate) is utilized for OCT imaging, forming a combined Tm/OCT system - a smart laser knife. The OCT image-guidance informs the Tm laser for cutting/removal of targeted tissue structures. Tissue phantoms were constructed to demonstrate surgical incision with blood vessel avoidance on the surface where 2mm wide 600um deep cuts are executed around the vessel using OCT to guide the procedure. Cutting up to delicate subsurface blood vessels (2mm deep) is demonstrated while avoiding damage to their walls. A tissue removal rate of 5mm^3/sec is obtained from the bench-top system. We constructed a blow-off model to characterize Tm cut depths taking into account the absorption coefficients and beam delivery systems to compute Arrhenius damage integrals. The model is used to compare predicted tissue removal rate and residual thermal injury with experimental values in response to Tm laser-tissue modification.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elhadj, Selim; Yoo, Jae-hyuck; Negres, Raluca A.

    The optical damage performance of electrically conductive gallium nitride (GaN) and indium tin oxide (ITO) films is addressed using large area, high power laser beam exposures at 1064 nm sub-bandgap wavelength. Analysis of the laser damage process assumes that onset of damage (threshold) is determined by the absorption and heating of a nanoscale region of a characteristic size reaching a critical temperature. We use this model to rationalize semi-quantitatively the pulse width scaling of the damage threshold from picosecond to nanosecond timescales, along with the pulse width dependence of the damage threshold probability derived by fitting large beam damage densitymore » data. Multi-shot exposures were used to address lifetime performance degradation described by an empirical expression based on the single exposure damage model. A damage threshold degradation of at least 50% was observed for both materials. Overall, the GaN films tested had 5-10 × higher optical damage thresholds than the ITO films tested for comparable transmission and electrical conductivity. This route to optically robust, large aperture transparent electrodes and power optoelectronics may thus involve use of next generation widegap semiconductors such as GaN.« less

  4. Nanosecond laser-induced damage at different initial temperatures of Ta{sub 2}O{sub 5} films prepared by dual ion beam sputtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Cheng, E-mail: xucheng@cumt.edu.cn; Jia, Jiaojiao; Fan, Heliang

    2014-08-07

    Ta{sub 2}O{sub 5} films were deposited by dual ion beam sputtering method. The nanosecond laser-induced damage threshold (LIDT) at different initial temperatures and time of the films was investigated by an in situ high temperature laser-induced damage testing platform. It was shown that, when the initial temperature increased from 298 K to 383 K, the LIDT at 1064 nm and 12 ns significantly decreased by nearly 14%. Then the LIDT at 1064 nm and 12 ns decreased slower with the same temperature increment. Different damage morphologies were found at different initial temperatures. At low initial temperatures, it was the defects-isolated damage while at high initial temperaturesmore » it was the defects-combined damage. The theoretical calculations based on the defect-induced damage model revealed that both the significant increase of the highest temperature and the duration contributed to the different damage morphologies. With the initial temperature being increased, the thermal-stress coupling damage mechanism transformed gradually to the thermal dominant damage mechanism.« less

  5. Skin graft take and healing following 193-nm excimer, continuous-wave carbon dioxide (CO2), pulsed CO2, or pulsed holmium: YAG laser ablation of the graft bed.

    PubMed

    Green, H A; Burd, E E; Nishioka, N S; Compton, C C

    1993-08-01

    Ablative lasers have been used for cutaneous surgery for greater than two decades since they can remove skin and skin lesions bloodlessly and efficiently. Because full-thickness skin wounds created after thermal laser ablation may require skin grafting in order to heal, we have examined the effect of the residual laser-induced thermal damage in the wound bed on subsequent skin graft take and healing. In a pig model, four different pulsed and continuous-wave lasers with varying wavelengths and radiant energy exposures were used to create uniform fascial graft bed thermal damage of approximately 25, 160, 470, and 1100 microns. Meshed split-thickness skin graft take and healing on the thermally damaged fascial graft beds were examined on a gross and microscopic level on days 3 and 7, and then weekly up to 42 days. Laser-induced thermal damage on the graft bed measuring greater than 160 +/- 60 microns in depth significantly decreased skin graft take. Other deleterious effects included delayed graft revascularization, increased inflammatory cell infiltrate at the graft-wound bed interface, and accelerated formation of hypertrophied fibrous tissue within the graft bed and underlying muscle. Ablative lasers developed for cutaneous surgery should create less than 160 +/- 60 microns of residual thermal damage to permit optimal skin graft take and healing. Pulsed carbon dioxide and 193-nm excimer lasers may be valuable instruments for the removal of full-thickness skin, skin lesions, and necrotic tissue, since they create wound beds with minimal thermal damage permitting graft take comparable to that achieved with standard surgical techniques.

  6. Radiation Damage in XFEL: Case study from the oxygen-evolving complex of Photosystem II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amin, Muhamed; Badawi, Ashraf; Obayya, S. S.

    Structural changes induced by radiation damage in X-ray crystallography hinder the ability to understand the structure/function relationship in chemical reactions. Serial femtosecond crystallography overcomes this problem by exposing the sample to very short and intense laser pulse leading to measurement before destruction. Here we use molecular modeling to map the radiation damage during the 10–50 fs to the intensity, the energy and the time duration of the laser pulse on the oxygen-evolving complex (OEC) of photosystem II. In the model, the nuclei move classically in a fully quantum potential created by electron density under the effect of strong laser pulsemore » in the Ehrenfest dynamics regime. The results show that the Mn-Mn and Mn-Ca distances are less affected by radiation damage due to the their heavy masses, while one μ-oxo bridge (O5) moves significantly. The radiation damage may induce conformational changes of the water ligands but only bond elongation for the amino acids ligands. These effects are relatively intensity independent from 10 16 to 10 17 W/cm 2, but changes increase dramatically if the beam intensity is increased to 10 18 W/cm 2. Finally, in addition, the self amplified spontaneous emission (SASE) nature of the laser beam does not affect the dynamics of the ions.« less

  7. Radiation Damage in XFEL: Case study from the oxygen-evolving complex of Photosystem II

    DOE PAGES

    Amin, Muhamed; Badawi, Ashraf; Obayya, S. S.

    2016-11-09

    Structural changes induced by radiation damage in X-ray crystallography hinder the ability to understand the structure/function relationship in chemical reactions. Serial femtosecond crystallography overcomes this problem by exposing the sample to very short and intense laser pulse leading to measurement before destruction. Here we use molecular modeling to map the radiation damage during the 10–50 fs to the intensity, the energy and the time duration of the laser pulse on the oxygen-evolving complex (OEC) of photosystem II. In the model, the nuclei move classically in a fully quantum potential created by electron density under the effect of strong laser pulsemore » in the Ehrenfest dynamics regime. The results show that the Mn-Mn and Mn-Ca distances are less affected by radiation damage due to the their heavy masses, while one μ-oxo bridge (O5) moves significantly. The radiation damage may induce conformational changes of the water ligands but only bond elongation for the amino acids ligands. These effects are relatively intensity independent from 10 16 to 10 17 W/cm 2, but changes increase dramatically if the beam intensity is increased to 10 18 W/cm 2. Finally, in addition, the self amplified spontaneous emission (SASE) nature of the laser beam does not affect the dynamics of the ions.« less

  8. Impact of laser-contaminant interaction on the performance of the protective capping layer of 1w high-reflection mirror coatings

    DOE PAGES

    Qiu, S. R.; Norton, M. A.; Raman, R. N.; ...

    2015-10-02

    In this paper, high dielectric constant multilayer coatings are commonly used on high-reflection mirrors for high-peak-power laser systems because of their high laser-damage resistance. However, surface contaminants often lead to damage upon laser exposure, thus limiting the mirror’s lifetime and performance. One plausible approach to improve the overall mirror resistance against laser damage, including that induced by laser-contaminant coupling, is to coat the multilayers with a thin protective capping (absentee) layer on top of the multilayer coatings. An understanding of the underlying mechanism by which laser-particle interaction leads to capping layer damage is important for the rational design and selectionmore » of capping materials of high-reflection multilayer coatings. In this paper, we examine the responses of two candidate capping layer materials, made of SiO 2 and Al 2O 3, over silica-hafnia multilayer coatings. These are exposed to a single oblique shot of a 1053 nm laser beam (fluence ~10 J/cm 2, pulse length 14 ns), in the presence of Ti particles on the surface. We find that the two capping layers show markedly different responses to the laser-particle interaction. The Al 2O 3 cap layer exhibits severe damage, with the capping layer becoming completely delaminated at the particle locations. The SiO 2 capping layer, on the other hand, is only mildly modified by a shallow depression. Combining the observations with optical modeling and thermal/mechanical calculations, we argue that a high-temperature thermal field from plasma generated by the laser-particle interaction above a critical fluence is responsible for the surface modification of each capping layer. The great difference in damage behavior is mainly attributed to the large disparity in the thermal expansion coefficient of the two capping materials, with that of Al 2O 3 layer being about 15 times greater than that of SiO 2.« less

  9. Impact of laser-contaminant interaction on the performance of the protective capping layer of 1w high-reflection mirror coatings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiu, S. R.; Norton, M. A.; Raman, R. N.

    In this paper, high dielectric constant multilayer coatings are commonly used on high-reflection mirrors for high-peak-power laser systems because of their high laser-damage resistance. However, surface contaminants often lead to damage upon laser exposure, thus limiting the mirror’s lifetime and performance. One plausible approach to improve the overall mirror resistance against laser damage, including that induced by laser-contaminant coupling, is to coat the multilayers with a thin protective capping (absentee) layer on top of the multilayer coatings. An understanding of the underlying mechanism by which laser-particle interaction leads to capping layer damage is important for the rational design and selectionmore » of capping materials of high-reflection multilayer coatings. In this paper, we examine the responses of two candidate capping layer materials, made of SiO 2 and Al 2O 3, over silica-hafnia multilayer coatings. These are exposed to a single oblique shot of a 1053 nm laser beam (fluence ~10 J/cm 2, pulse length 14 ns), in the presence of Ti particles on the surface. We find that the two capping layers show markedly different responses to the laser-particle interaction. The Al 2O 3 cap layer exhibits severe damage, with the capping layer becoming completely delaminated at the particle locations. The SiO 2 capping layer, on the other hand, is only mildly modified by a shallow depression. Combining the observations with optical modeling and thermal/mechanical calculations, we argue that a high-temperature thermal field from plasma generated by the laser-particle interaction above a critical fluence is responsible for the surface modification of each capping layer. The great difference in damage behavior is mainly attributed to the large disparity in the thermal expansion coefficient of the two capping materials, with that of Al 2O 3 layer being about 15 times greater than that of SiO 2.« less

  10. A model for traumatic brain injury using laser induced shockwaves

    NASA Astrophysics Data System (ADS)

    Selfridge, A.; Preece, D.; Gomez, V.; Shi, L. Z.; Berns, M. W.

    2015-08-01

    Traumatic brain injury (TBI) represents a major treatment challenge in both civilian and military medicine; on the cellular level, its mechanisms are poorly understood. As a method to study the dysfunctional repair mechanisms following injury, laser induced shock waves (LIS) are a useful way to create highly precise, well characterized mechanical forces. We present a simple model for TBI using laser induced shock waves as a model for damage. Our objective is to develop an understanding of the processes responsible for neuronal death, the ways in which we can manipulate these processes to improve cell survival and repair, and the importance of these processes at different levels of biological organization. The physics of shock wave creation has been modeled and can be used to calculate forces acting on individual neurons. By ensuring that the impulse is in the same regime as that occurring in practical TBI, the LIS model can ensure that in vitro conditions and damage are similar to those experienced in TBI. This model will allow for the study of the biochemical response of neurons to mechanical stresses, and can be combined with microfluidic systems for cell growth in order to better isolate areas of damage.

  11. Optical coherence tomography image-guided smart laser knife for surgery.

    PubMed

    Katta, Nitesh; McElroy, Austin B; Estrada, Arnold D; Milner, Thomas E

    2018-03-01

    Surgical oncology can benefit from specialized tools that enhance imaging and enable precise cutting and removal of tissue without damage to adjacent structures. The combination of high-resolution, fast optical coherence tomography (OCT) co-aligned with a nanosecond pulsed thulium (Tm) laser offers advantages over conventional surgical laser systems. Tm lasers provide superior beam quality, high volumetric tissue removal rates with minimal residual thermal footprint in tissue, enabling a reduction in unwanted damage to delicate adjacent sub-surface structures such as nerves or micro-vessels. We investigated such a combined Tm/OCT system with co-aligned imaging and cutting beams-a configuration we call a "smart laser knife." A blow-off model that considers absorption coefficients and beam delivery systems was utilized to predict Tm cut depth, tissue removal rate and spatial distribution of residual thermal injury. Experiments were performed to verify the volumetric removal rate predicted by the model as a function of average power. A bench-top, combined Tm/OCT system was constructed using a 15W 1940 nm nanosecond pulsed Tm fiber laser (500 μJ pulse energy, 100 ns pulse duration, 30 kHz repetition rate) for removing tissue and a swept source laser (1310 ± 70 nm, 100 kHz sweep rate) for OCT imaging. Tissue phantoms were used to demonstrate precise surgery with blood vessel avoidance. Depth imaging informed cutting/removal of targeted tissue structures by the Tm laser was performed. Laser cutting was accomplished around and above phantom blood vessels while avoiding damage to vessel walls. A tissue removal rate of 5.5 mm 3 /sec was achieved experimentally, in comparison to the model prediction of approximately 6 mm 3 /sec. We describe a system that combines OCT and laser tissue modification with a Tm laser. Simulation results of the tissue removal rate using a simple model, as a function of average power, are in good agreement with experimental results using tissue phantoms. Lasers Surg. Med. 50:202-212, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  12. Experimental and model analysis on the temperature dynamics during diode laser welding of the cornea.

    PubMed

    Rossi, Francesca; Pini, Roberto; Menabuoni, Luca

    2007-01-01

    Corneal laser welding is a technique used clinically to induce the immediate sealing of corneal wounds. We present an experimental and model analysis of the temperature dynamics during diode laser-induced corneal welding, which is aimed at characterizing the mechanism of tissue fusion. Ex vivo tests were performed on porcine eyes in the typical irradiation conditions used for laser-induced suturing in cornea transplant. Three laser power densities (12.5 W/cm(2), 16.7 W/cm(2), 20.8 W/cm(2)) were tested. The superficial temperature of the cornea was measured by means of an infrared thermocamera. Experimental data were compared with the results of a three-dimensional (3D) model of a laser-welding process in the cornea, solved by the use of the Finite Element Method (FEM). The model solution and experimental results showed good agreement. The model was thus used to estimate the temperature enhancement inside the corneal wound and to calculate the thermal damage inside the tissue. The results indicated a selective, spatially confined heating effect that occurred at operative temperatures (59 to 66 degrees C) close to intermediate denaturation points of the stromal collagen, before its complete disorganization. No significant heat damage to the region of the laser-treated wound was evidenced in the operative irradiation conditions of corneal welding.

  13. Subsurface defects of fused silica optics and laser induced damage at 351 nm.

    PubMed

    Hongjie, Liu; Jin, Huang; Fengrui, Wang; Xinda, Zhou; Xin, Ye; Xiaoyan, Zhou; Laixi, Sun; Xiaodong, Jiang; Zhan, Sui; Wanguo, Zheng

    2013-05-20

    Many kinds of subsurface defects are always present together in the subsurface of fused silica optics. It is imperfect that only one kind of defects is isolated to investigate its impact on laser damage. Therefore it is necessary to investigate the impact of subsurface defects on laser induced damage of fused silica optics with a comprehensive vision. In this work, we choose the fused silica samples manufactured by different vendors to characterize subsurface defects and measure laser induced damage. Contamination defects, subsurface damage (SSD), optical-thermal absorption and hardness of fused silica surface are characterized with time-of-flight secondary ion mass spectrometry (TOF-SIMS), fluorescence microscopy, photo-thermal common-path interferometer and fully automatic micro-hardness tester respectively. Laser induced damage threshold and damage density are measured by 351 nm nanosecond pulse laser. The correlations existing between defects and laser induced damage are analyzed. The results show that Cerium element and SSD both have a good correlation with laser-induced damage thresholds and damage density. Research results evaluate process technology of fused silica optics in China at present. Furthermore, the results can provide technique support for improving laser induced damage performance of fused silica.

  14. Non-damaging laser therapy of the macula: Titration algorithm and tissue response

    NASA Astrophysics Data System (ADS)

    Palanker, Daniel; Lavinsky, Daniel; Dalal, Roopa; Huie, Philip

    2014-02-01

    Retinal photocoagulation typically results in permanent scarring and scotomata, which limit its applicability to the macula, preclude treatments in the fovea, and restrict the retreatments. Non-damaging approaches to laser therapy have been tested in the past, but the lack of reliable titration and slow treatment paradigms limited their clinical use. We developed and tested a titration algorithm for sub-visible and non-damaging treatments of the retina with pulses sufficiently short to be used with pattern laser scanning. The algorithm based on Arrhenius model of tissue damage optimizes the power and duration for every energy level, relative to the threshold of lesion visibility established during titration (and defined as 100%). Experiments with pigmented rabbits established that lesions in the 50-75% energy range were invisible ophthalmoscopically, but detectable with Fluorescein Angiography and OCT, while at 30% energy there was only very minor damage to the RPE, which recovered within a few days. Patients with Diabetic Macular Edema (DME) and Central Serous Retinopathy (CSR) have been treated over the edematous areas at 30% energy, using 200μm spots with 0.25 diameter spacing. No signs of laser damage have been detected with any imaging modality. In CSR patients, subretinal fluid resolved within 45 days. In DME patients the edema decreased by approximately 150μm over 60 days. After 3-4 months some patients presented with recurrence of edema, and they responded well to retreatment with the same parameters, without any clinically visible damage. This pilot data indicates a possibility of effective and repeatable macular laser therapy below the tissue damage threshold.

  15. Repetitive pulses and laser-induced retinal injury thresholds

    NASA Astrophysics Data System (ADS)

    Lund, David J.

    2007-02-01

    Experimental studies with repetitively pulsed lasers show that the ED 50, expressed as energy per pulse, varies as the inverse fourth power of the number of pulses in the exposure, relatively independently of the wavelength, pulse duration, or pulse repetition frequency of the laser. Models based on a thermal damage mechanism cannot readily explain this result. Menendez et al. proposed a probability-summation model for predicting the threshold for a train of pulses based on the probit statistics for a single pulse. The model assumed that each pulse is an independent trial, unaffected by any other pulse in the train of pulses and assumes that the probability of damage for a single pulse is adequately described by the logistic curve. The requirement that the effect of each pulse in the pulse train be unaffected by the effects of other pulses in the train is a showstopper when the end effect is viewed as a thermal effect with each pulse in the train contributing to the end temperature of the target tissue. There is evidence that the induction of cell death by microcavitation bubbles around melanin granules heated by incident laser irradiation can satisfy the condition of pulse independence as required by the probability summation model. This paper will summarize the experimental data and discuss the relevance of the probability summation model given microcavitation as a damage mechanism.

  16. Assessing laser-tissue damage with bioluminescent imaging

    NASA Astrophysics Data System (ADS)

    Wilmink, Gerald J.; Opalenik, Susan R.; Beckham, Josh T.; Davidson, Jeffrey M.; Jansen, Eric D.

    2006-07-01

    Effective medical laser procedures are achieved by selecting laser parameters that minimize undesirable tissue damage. Traditionally, human subjects, animal models, and monolayer cell cultures have been used to study wound healing, tissue damage, and cellular effects of laser radiation. Each of these models has significant limitations, and consequently, a novel skin model is needed. To this end, a highly reproducible human skin model that enables noninvasive and longitudinal studies of gene expression was sought. In this study, we present an organotypic raft model (engineered skin) used in combination with bioluminescent imaging (BLI) techniques. The efficacy of the raft model was validated and characterized by investigating the role of heat shock protein 70 (hsp70) as a sensitive marker of thermal damage. The raft model consists of human cells incorporated into an extracellular matrix. The raft cultures were transfected with an adenovirus containing a murine hsp70 promoter driving transcription of luciferase. The model enables quantitative analysis of spatiotemporal expression of proteins using BLI. Thermal stress was induced on the raft cultures by means of a constant temperature water bath or with a carbon dioxide (CO2) laser (λ=10.6 µm, 0.679 to 2.262 W/cm2, cw, unfocused Gaussian beam, ωL=4.5 mm, 1 min exposure). The bioluminescence was monitored noninvasively with an IVIS 100 Bioluminescent Imaging System. BLI indicated that peak hsp70 expression occurs 4 to 12 h after exposure to thermal stress. A minimum irradiance of 0.679 W/cm2 activated the hsp70 response, and a higher irradiance of 2.262 W/cm2 was associated with a severe reduction in hsp70 response due to tissue ablation. Reverse transcription polymerase chain reaction demonstrated that hsp70 mRNA levels increased with prolonged heating exposures. Enzyme-linked immunosorbent protein assays confirmed that luciferase was an accurate surrogate for hsp70 intracellular protein levels. Hematoxylin and eosin stains verified the presence of the thermally denatured tissue regions. Immunohistochemical analyses confirmed that maximal hsp70 expression occurred at a depth of 150 µm. Bioluminescent microscopy was employed to corroborate these findings. These results indicate that quantitative BLI in engineered tissue equivalents provides a powerful model that enables sequential gene expression studies. Such a model can be used as a high throughput screening platform for laser-tissue interaction studies.

  17. Heat effect of pulsed Er:YAG laser radiation

    NASA Astrophysics Data System (ADS)

    Hibst, Raimund; Keller, Ulrich

    1990-06-01

    Pulsed Er:YAG laser radiation has been found to be effective for dental enamel and dentin removal. Damage to the surrounding hard tissue is little, but before testing the Er:YAG laser clinically for the preparation of cavities, possible effects on the soft tissue of the pulp must be known. In order to estimate pulp damage , temperature rise in dentin caused by the laser radiation was measured by a thermocouple. Additionally, temperature distributions were observed by means of a thermal imaging system. The heat effect of a single Er:YAG laser pulse is little and limited to the vicinity of the impact side. Because heat energy is added with each additional pulse , the temperature distribution depends not only on the radiant energy, but also on the number of pulses and the repetition rate. Both irradiation conditions can be found , making irreversible pulp damage either likely or unlikely. The experimental observations can be explained qualitatively by a simple model of the ablation process.

  18. Morphological studies of laser-induced photoacoustic damage

    NASA Astrophysics Data System (ADS)

    Flotte, Thomas J.; Yashima, Yutaka; Watanabe, Shinichi; McAuliffe, Daniel J., Sr.; Jacques, Steven L.

    1990-06-01

    Argon-fluoride excimer laser ablation of stratum comeum causes deeper tissue damage than expected for thermal or photochemical mechanisms, suggesting thatphotoacoustic waves have arole in tissue damage. Laserirradiation (193 nm, 14 ns pulses, 1-2 Hz) attworadiantexposures, 60 and 160 mJ/cm2perpulse was usedto ablate the stratumcomeumofskin. Light and electron microscopy ofimmediate biopsies demonstrated damage to fibroblasts as deep as 88 and 220 jun, respectively, below the ablation site. Ablation throughwaterwas usedtoinertially confine the ablation zone. Partial ablationofs.c. through airproducedno damage, whereas partial ablation through water damaged skin to amean depth of 1 14.5 8.8( Full thickness ablation of s.c. through air and water produced damage zones measuring 192.2 16.2 and 293.0 71.6 rim, respectively (p <0.05). The increased depth ofdamage in the presence ofinertial confinementprovided by the layer of water strongly supports a photoacoustic mechanism ofdamage. The depths ofdamage for thelarge spot, line, and small spots were 43 1 164 urn, 269 96xni, andno damage. The spot size dependence ofthedepthofdamage is consistentwiththe geometric attenuation one would expect to be present from a pressure wave related phenomena. Sequential biopsies were taken over a 7 day period for light and transmission electron microscopy. At 24 hours, there was necrosis of the epidermis and papillary dermis subjacent to the ablation site, with neutrophils surrounding and demarcating the affected area. The necrotic zone sloughedby48 hours. Thereepithelializationwas completeby7 days. The sequenceofrepairis similartoknife wound healing which we have previously studied, and is analogous to other wound healing processes. We have used an experimental model of ArF excimer laser ablation of stratum corneum to investigate laser-induced photoacoustic damage. The evidence for the injury being due to pressure transients is indirectbutcompelling. Whether these pressuretransients are acoustic transients orshockwaves has notbeendetermined, although itis ourprejudicethatshockwaves are the predominant force under these conditions. It is important to consider the possible effects of pressure transients in evaluating laser-tissue interactions, particularly when using short pulse, high peak power lasers.

  19. Application of laser scanning technique in earthquake protection of Istanbul's historical heritage buildings

    NASA Astrophysics Data System (ADS)

    Çaktı, Eser; Ercan, Tülay; Dar, Emrullah

    2017-04-01

    Istanbul's vast historical and cultural heritage is under constant threat of earthquakes. Historical records report repeated damages to the city's landmark buildings. Our efforts towards earthquake protection of several buildings in Istanbul involve earthquake monitoring via structural health monitoring systems, linear and non-linear structural modelling and analysis in search of past and future earthquake performance, shake-table testing of scaled models and non-destructive testing. More recently we have been using laser technology in monitoring structural deformations and damage in five monumental buildings which are Hagia Sophia Museum and Fatih, Sultanahmet, Süleymaniye and Mihrimah Sultan Mosques. This presentation is about these efforts with special emphasis on the use of laser scanning in monitoring of edifices.

  20. Carbon dioxide laser polishing of fused silica surfaces for increased laser-damage resistance at 1064 nm.

    PubMed

    Temple, P A; Lowdermilk, W H; Milam, D

    1982-09-15

    Mechanically polished fused silica surfaces were heated with continuous-wave CO(2) laser radiation. Laser-damage thresholds of the surfaces were measured with 1064-nm 9-nsec pulses focused to small spots and with large-spot, 1064-nm, 1-nsec irradiation. A sharp transition from laser-damage-prone to highly laser-damage-resistant took place over a small range in CO(2) laser power. The transition to high damage resistance occurred at a silica surface temperature where material softening began to take place as evidenced by the onset of residual strain in the CO(2) laser-processed part. The small-spot damage measurements show that some CO(2) laser-treated surfaces have a local damage threshold as high as the bulk damage threshold of SiO(2). On some CO(2) laser-treated surfaces, large-spot damage thresholds were increased by a factor of 3-4 over thresholds of the original mechanically polished surface. These treated parts show no obvious change in surface appearance as seen in bright-field, Nomarski, or total internal reflection microscopy. They also show little change in transmissive figure. Further, antireflection films deposited on CO(2) laser-treated surfaces have thresholds greater than the thresholds of antireflection films on mechanically polished surfaces.

  1. Analysis of thermal damage in vocal cords for the prevention of collateral laser treatment effects

    NASA Astrophysics Data System (ADS)

    Fanjul Vélez, Félix; Luis Arce-Diego, José; del Barrio Fernández, Ángela; Borragán Torre, Alfonso

    2007-05-01

    The importance of vocal cords for the interaction with the world around is obviously known. Vocal cords disorders can be divided mainly into three categories: difficulty of movement of one or both vocal folds, lesion formation on them, and difficulty or lack of mucosal wave movement. In this last case, a laser heating treatment can be useful in order to improve tissue vibration. However, thermal damage should be considered to adjust laser parameters and so to prevent irreversible harmful effects to the patient. in this work, an analysis of thermal damage in vocal folds is proposed. Firstly thermo-optical laser-tissue interaction is studied, by means of a RTT (Radiation Transfer Theory) model solved with a Monte Carlo approach for the optical propagation of radiation, and a bio-heat equation, with a finite difference numerical method based solution, taking into account blood perfusion and boundary effects, for the thermal distribution. The spatial-temporal temperature distributions are obtained for two widely used lasers, Nd:YAG (1064 nm) and KTP (532 nm). From these data, an Arrhenius thermal damage analysis allows a prediction of possible laser treatment harmful effects on vocal cords that could cause scar formation or tissue burn. Different source powers and exposition times are considered, in such a way that an approximation of adequate wavelength, power and duration is achieved, in order to implement an efficient and safe laser treatment.

  2. Theory and simulent design of a type of auto-self-protecting optical switches

    NASA Astrophysics Data System (ADS)

    Li, Binhong; Peng, Songcun

    1990-06-01

    As the use of lasers in the military and in the civilian economy increases with each passing day, it is often necessary for the human eye or sensitive instruments to observe weak lasers, such as the return waves of laser radar and laser communications signals; but it is also necessary to provide protection against damage to the eye from the strong lasers of enemy laser weapons. For this reason, it is necessary to have a kind of automatic optical self-protecting switch. Based upon a study of the transmitting and scattering characteristics of multilayer dielectric optical waveguides, a practical computer program is set up for designing a type of auto-self-protecting optical switch with a computer model by using the nonlinear property of dielectric layers and the plasma behavior of metal substrates. This technique can be used to protect the human eye and sensitive detectors from damage caused by strong laser beams.

  3. Ocular damage effects from 1338-nm pulsed laser radiation in a rabbit eye model

    PubMed Central

    Jiao, Luguang; Wang, Jiarui; Jing, Xiaomin; Chen, Hongxia; Yang, Zaifu

    2017-01-01

    The ocular damage effects induced by transitional near-infrared (NIR) lasers have been investigated for years. However, no retinal damage thresholds are determined in a wide interval between 0.65 ms and 80 ms, and a definite relationship between corneal damage threshold and spot size cannot be drawn from existing data points. In this paper, the in-vivo corneal damage thresholds (ED50s) were determined in New Zealand white rabbits for a single 5 ms pulse at the wavelength of 1338 nm for spot sizes from 0.28 mm to 3.55 mm. Meanwhile, the retinal damage threshold for this laser was determined in chinchilla grey rabbits under the condition that the beam was collimated, and the incident corneal spot diameter was 5.0 mm. The corneal ED50s given in terms of the corneal radiant exposure for spot diameters of 0.28, 0.94, 1.91, and 3.55 mm were 70.3, 35.6, 29.6 and 30.3 J/cm2, respectively. The retinal ED50 given in terms of total intraocular energy (TIE) was 0.904 J. The most sensitive ocular tissue to this laser changed from the cornea to retina with the increase of spot size. PMID:28663903

  4. Corneal and skin laser exposures from 1540-nm laser pulses

    NASA Astrophysics Data System (ADS)

    Johnson, Thomas E.; Mitchell, Michael A.; Rico, Pedro J.; Fletcher, David J.; Eurell, Thomas E.; Roach, William P.

    2000-06-01

    Mechanisms of tissue damage are investigated for skin and cornea exposures from 1540 nm ('eye safe') laser single pulses of 0.8 milli-seconds. New skin model data point out the advantages of using the Yucatan mini-pig versus the Yorkshire pig for in-vivo skin laser exposures. Major advantages found include similarities in thickness and melanin content when compared with human skin. Histology from Yucatan mini-pig skin exposures and the calculation of an initial ED50 threshold indicate that the main photon tissue interaction may not be solely due to water absorption. In-vitro corneal equivalents compared well with in-vivo rabbit cornea exposure under similar laser conditions. In-vivo and in-vitro histology show that initial energy deposition leading to damage occurs intrastromally, while epithelial cells show no direct injury due to laser light absorption.

  5. Spectral and temperature-dependent infrared emissivity measurements of painted metals for improved temperature estimation during laser damage testing

    NASA Astrophysics Data System (ADS)

    Baumann, Sean M.; Keenan, Cameron; Marciniak, Michael A.; Perram, Glen P.

    2014-10-01

    A database of spectral and temperature-dependent emissivities was created for painted Al-alloy laser-damage-testing targets for the purpose of improving the uncertainty to which temperature on the front and back target surfaces may be estimated during laser-damage testing. Previous temperature estimates had been made by fitting an assumed gray-body radiance curve to the calibrated spectral radiance data collected from the back surface using a Telops Imaging Fourier Transform Spectrometer (IFTS). In this work, temperature-dependent spectral emissivity measurements of the samples were made from room temperature to 500 °C using a Surface Optics Corp. SOC-100 Hemispherical Directional Reflectometer (HDR) with Nicolet FTS. Of particular interest was a high-temperature matte-black enamel paint used to coat the rear surfaces of the Al-alloy samples. The paint had been assumed to have a spectrally flat and temperatureinvariant emissivity. However, the data collected using the HDR showed both spectral variation and temperature dependence. The uncertainty in back-surface temperature estimation during laser-damage testing made using the measured emissivities was improved from greater than +10 °C to less than +5 °C for IFTS pixels away from the laser burn-through hole, where temperatures never exceeded those used in the SOC-100 HDR measurements. At beam center, where temperatures exceeded those used in the SOC-100 HDR, uncertainty in temperature estimates grew beyond those made assuming gray-body emissivity. Accurate temperature estimations during laser-damage testing are useful in informing a predictive model for future high-energy-laser weapon applications.

  6. Residual stress and damage-induced critical fracture on CO2 laser treated fused silica

    NASA Astrophysics Data System (ADS)

    Matthews, M. J.; Stolken, J. S.; Vignes, R. M.; Norton, M. A.; Yang, S.; Cooke, J. D.; Guss, G. M.; Adams, J. J.

    2009-10-01

    Localized damage repair and polishing of silica-based optics using mid- and far-IR CO2 lasers has been shown to be an effective method for increasing optical damage threshold in the UV. However, it is known that CO2 laser heating of silicate surfaces can lead to a level of residual stress capable of causing critical fracture either during or after laser treatment. Sufficient control of the surface temperature as a function of time and position is therefore required to limit this residual stress to an acceptable level to avoid critical fracture. In this work we present the results of 351 nm, 3ns Gaussian damage growth experiments within regions of varying residual stress caused by prior CO2 laser exposures. Thermally stressed regions were non-destructively characterized using polarimetry and confocal Raman microscopy to measure the stress induced birefringence and fictive temperature respectively. For 1~40s square pulse CO2 laser exposures created over 0.5-1.25kW/cm2 with a 1-3mm 1/e2 diameter beam (Tmax~1500-3000K), the critical damage site size leading to fracture increases weakly with peak temperature, but shows a stronger dependence on cooling rate, as predicted by finite element hydrodynamics simulations. Confocal micro-Raman was used to probe structural changes to the glass over different thermal histories and indicated a maximum fictive temperature of 1900K for Tmax>=2000K. The effect of cooling rate on fictive temperature caused by CO2 laser heating are consistent with finite element calculations based on a Tool-Narayanaswamy relaxation model.

  7. Precision resection of lung cancer in a sheep model using ultrashort laser pulses

    NASA Astrophysics Data System (ADS)

    Beck, Rainer J.; Mohanan, Syam Mohan P. C.; Góra, Wojciech S.; Cousens, Chris; Finlayson, Jeanie; Dagleish, Mark P.; Griffiths, David J.; Shephard, Jonathan D.

    2017-02-01

    Recent developments and progress in the delivery of high average power ultrafast laser pulses enable a range of novel minimally invasive surgical procedures. Lung cancer is the leading cause of cancer deaths worldwide and here the resection of lung tumours by means of picosecond laser pulses is presented. This represents a potential alternative to mitigate limitations of existing surgical treatments in terms of precision and collateral thermal damage to the healthy tissue. Robust process parameters for the laser resection are demonstrated using ovine pulmonary adenocarcinoma (OPA). OPA is a naturally occurring lung cancer of sheep caused by retrovirus infection that has several features in common with some forms of human pulmonary adenocarcinoma, including a similar histological appearance, which makes it ideally suited for this study. The picosecond laser was operated at a wavelength of 515 nm to resect square cavities from fresh ex-vivo OPA samples using a range of scanning strategies. Process parameters are presented for efficient ablation of the tumour with clear margins and only minimal collateral damage to the surrounding tissue. The resection depth can be controlled precisely by means of the pulse energy. By adjusting the overlap between successive laser pulses, deliberate heat transfer to the tissue and thermal damage can be achieved. This can be beneficial for on demand haemostasis and laser coagulation. Overall, the application of ultrafast lasers for the resection of lung tumours has potential to enable significantly improved precision and reduced thermal damage to the surrounding tissue compared to conventional techniques.

  8. Impact of different cleaning processes on the laser damage threshold of antireflection coatings for Z-Backlighter optics at Sandia National Laboratories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Field, Ella; Bellum, John; Kletecka, Damon

    We have examined how different cleaning processes affect the laser-induced damage threshold of antireflection coatings for large dimension, Z-Backlighter laser optics at Sandia National Laboratories. Laser damage thresholds were measured after the coatings were created, and again 4 months later to determine which cleaning processes were most effective. There is a nearly twofold increase in laser-induced damage threshold between the antireflection coatings that were cleaned and those that were not cleaned. Aging of the coatings after 4 months resulted in even higher laser-induced damage thresholds. Also, the laser-induced damage threshold results revealed that every antireflection coating had a high defectmore » density, despite the cleaning process used, which indicates that improvements to either the cleaning or deposition processes should provide even higher laser-induced damage thresholds.« less

  9. Impact of different cleaning processes on the laser damage threshold of antireflection coatings for Z-Backlighter optics at Sandia National Laboratories

    DOE PAGES

    Field, Ella; Bellum, John; Kletecka, Damon

    2014-11-06

    We have examined how different cleaning processes affect the laser-induced damage threshold of antireflection coatings for large dimension, Z-Backlighter laser optics at Sandia National Laboratories. Laser damage thresholds were measured after the coatings were created, and again 4 months later to determine which cleaning processes were most effective. There is a nearly twofold increase in laser-induced damage threshold between the antireflection coatings that were cleaned and those that were not cleaned. Aging of the coatings after 4 months resulted in even higher laser-induced damage thresholds. Also, the laser-induced damage threshold results revealed that every antireflection coating had a high defectmore » density, despite the cleaning process used, which indicates that improvements to either the cleaning or deposition processes should provide even higher laser-induced damage thresholds.« less

  10. Studies on transmitted beam modulation effect from laser induced damage on fused silica optics.

    PubMed

    Zheng, Yi; Ma, Ping; Li, Haibo; Liu, Zhichao; Chen, Songlin

    2013-07-15

    UV laser induced damage (LID) on exit surface of fused silica could cause modulation effect to transmitted beam and further influence downstream propagation properties. This paper presents our experimental and analytical studies on this topic. In experiment, a series of measurement instruments are applied, including beam profiler, interferometer, microscope, and optical coherent tomography (OCT). Creating and characterizing of LID on fused silica sample have been implemented. Morphological features are studied based on their particular modulation effects on transmitted beam. In theoretical investigation, analytical modeling and numerical simulation are performed. Modulation effects from amplitude, phase, and size factors are analyzed respectively. Furthermore, we have novelly designed a simplified polygon model to simulate actual damage site with multiform modulation features, and the simulation results demonstrate that the modeling is usable and representative.

  11. Limits of performance: CW laser damage

    NASA Astrophysics Data System (ADS)

    Shah, Rashmi S.; Rey, Justin J.; Stewart, Alan F.

    2007-01-01

    High performance optical coatings are an enabling technology for many applications - navigation systems, telecom, fusion, advanced measurement systems of many types as well as directed energy weapons. The results of recent testing of superior optical coatings conducted at high flux levels have been presented. Failure of these coatings was rare. However, induced damage was not expected from simple thermal models relating flux loading to induced temperatures. Clearly, other mechanisms must play a role in the occurrence of laser damage. Contamination is an obvious mechanism-both particulate and molecular. Less obvious are structural defects and the role of induced stresses. These mechanisms are examined through simplified models and finite element analysis. The results of the models are compared to experiment, for induced temperatures and observed stress levels. The role of each mechanism is described and limiting performance is determined.

  12. Visible lesion laser thresholds in Cynomolgus (Macaca fascicularis) retina with a 1064 nm 12-ns pulsed laser

    NASA Astrophysics Data System (ADS)

    Oliver, Jeffrey W.; Stolarski, David J.; Noojin, Gary D.; Hodnett, Harvey M.; Imholte, Michelle L.; Rockwell, Benjamin A.; Kumru, Semih S.

    2007-02-01

    A series of experiments in a new animal model for retinal damage, cynomolgus monkeys (Macaca fascicularis), have been conducted to determine the damage threshold for 12.5-nanosecond laser exposures at 1064 nm. These results provide a direct comparison to threshold values obtained in rhesus monkey (Macaca mulatta), which is the model historically used in establishing retinal maximum permissible exposure (MPE) limits. In this study, the irradiance level of a collimated Gaussian laser beam of 2.5 mm diameter at the cornea was randomly varied to produce a rectangular grid of exposures on the retina. Exposures sites were fundoscopically evaluated at post-irradiance intervals of 1 hour and 24 hours. Probit analysis was performed on dose-response data to obtain probability of response curves. The 50% probability of damage (ED50) values for 1 and 24 hours post-exposure are 28.5(22.7-38.4) μJ and 17.0(12.9-21.8) μJ, respectively. These values compare favorably to data obtained with the rhesus model, 28.7(22.3-39.3) μJ and 19.1(13.6-24.4) μJ, suggesting that the cynomolgus monkey may be a suitable replacement for rhesus monkey in photoacoustic minimum visible lesion threshold studies.

  13. Porcine Skin Visible Lesion Thresholds for Near-Infrared Lasers Including Modeling at Two Pulse Durations and Spot Sizes

    DTIC Science & Technology

    2006-08-01

    injuries, including corneal, lenticular , and retinal lesions as a function of pulse duration. American National Standards Institute (ANSI) laser...little for skin effects. Unlike most other laser wavelengths, 1315-nm irradiation has been shown to cause damage at corneal, lenticular , and retinal

  14. Supra-threshold epidermis injury from near-infrared laser radiation prior to ablation onset

    NASA Astrophysics Data System (ADS)

    DeLisi, Michael P.; Peterson, Amanda M.; Lile, Lily A.; Noojin, Gary D.; Shingledecker, Aurora D.; Stolarski, David J.; Zohner, Justin J.; Kumru, Semih S.; Thomas, Robert J.

    2017-02-01

    With continued advancement of solid-state laser technology, high-energy lasers operating in the near-infrared (NIR) band are being applied in an increasing number of manufacturing techniques and medical treatments. Safety-related investigations of potentially harmful laser interaction with skin are commonplace, consisting of establishing the maximum permissible exposure (MPE) thresholds under various conditions, often utilizing the minimally-visible lesion (MVL) metric as an indication of damage. Likewise, characterization of ablation onset and velocity is of interest for therapeutic and surgical use, and concerns exceptionally high irradiance levels. However, skin injury response between these two exposure ranges is not well understood. This study utilized a 1070-nm Yb-doped, diode-pumped fiber laser to explore the response of excised porcine skin tissue to high-energy exposures within the supra-threshold injury region without inducing ablation. Concurrent high-speed videography was employed to assess the effect on the epidermis, with a dichotomous response determination given for three progressive damage event categories: observable permanent distortion on the surface, formation of an epidermal bubble due to bounded intra-cutaneous water vaporization, and rupture of said bubble during laser exposure. ED50 values were calculated for these categories under various pulse configurations and beam diameters, and logistic regression models predicted injury events with approximately 90% accuracy. The distinction of skin response into categories of increasing degrees of damage expands the current understanding of high-energy laser safety while also underlining the unique biophysical effects during induced water phase change in tissue. These observations could prove useful in augmenting biothermomechanical models of laser exposure in the supra-threshold region.

  15. Do We Really Need to Wear Proper Eye Protection When Using Holmium:YAG Laser During Endourologic Procedures? Results from an Ex Vivo Animal Model on Pig Eyes.

    PubMed

    Villa, Luca; Cloutier, Jonathan; Compérat, Eva; Kronemberg, Peter; Charlotte, Frederic; Berthe, Laurent; Rouchausse, Yann; Salonia, Andrea; Montorsi, Francesco; Traxer, Olivier

    2016-03-01

    We sought to evaluate the effect of holmium:yttrium-aluminum-garnet (Ho:YAG) laser exposure on ex vivo pig eyes and to test the protective action of different glasses in preventing eye lesions in case of accident. We pointed the tip of a Ho:YAG laser fiber from different distances (0, 3, 5, 8, 10, and 20 cm, respectively) toward the center of the pupil of the pig eye. The Ho:YAG laser was activated for 1 or 5 seconds at three different settings (0.5 J-20 Hz, 1 J-10 Hz, and 2 J-10 Hz, respectively). The experiment was repeated using laser safety glasses and eyeglasses. A total of 78 pig eyes were used. The effects of the Ho:YAG laser on pig eyes were assessed by histopathology. Comparable laser emission experiments were performed on thermal paper at different distances using different pulse energies. Ho:YAG laser-induced corneal lesions were observed in unprotected eyes, ranging from superficial burning lesions to full-thickness necrotic areas, and were directly related to pulse energy and time of exposure and inversely related to the distance from the eye. When the laser was placed 5 cm or more, no corneal damage was observed regardless of the laser setting and the time of exposure. Similar distance/energy level relationships were observed on thermal paper. No damage was observed to the lens or the retina in any of the Ho-YAG laser-treated eyes or in any of the eyes protected by laser safety and eyeglasses. Ho:YAG lasers can cause damage when set to high energy, but only to the cornea, from close distances (0-5 cm) and in the absence of eye protection. Eyeglasses are equally effective in preventing laser damage as laser safety glasses.

  16. Laser damage mechanisms in conductive widegap semiconductor films

    DOE PAGES

    Yoo, Jae-Hyuck; Menor, Marlon G.; Adams, John J.; ...

    2016-07-25

    Here, laser damage mechanisms of two conductive wide-bandgap semiconductor films - indium tin oxide (ITO) and silicon doped GaN (Si:GaN) were studied via microscopy, spectroscopy, photoluminescence (PL), and elemental analysis. Nanosecond laser pulse exposures with a laser photon energy (1.03 eV, 1064 nm) smaller than the conductive films bandgaps were applied and radically different film damage morphologies were produced. The laser damaged ITO film exhibited deterministic features of thermal degradation. In contrast, laser damage in the Si:GaN film resulted in highly localized eruptions originating at interfaces. For ITO, thermally driven damage was related to free carrier absorption and, for GaN,more » carbon complexes were proposed as potential damage precursors or markers.« less

  17. Identification of the formation phases of filamentary damage induced by nanosecond laser pulses in bulk fused silica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Chao; Xu, Zhongjie; Chambonneau, Maxime, E-mail: chambonneau@lp3.univ-mrs.fr, E-mail: jiangtian198611@163.com

    2015-09-14

    Employing a pump-probe polarization-based two-frame shadowgraphy setup, the formation of filamentary damage induced in bulk fused silica by a nanosecond pulse at 1064 nm is investigated with a picosecond probe. Three different phases are exhibited in the damage experiments. The first phase is the formation of a micrometric plasma channel along the laser direction during the beginning of the pulse likely caused by multi-photon ionization. This channel exhibits growth during ∼400 ps, and the newly grown plasma is discrete. Then, during the end of the pulse, this channel evolves into a tadpole-like morphology showing an elliptical head upstream the laser fluxmore » followed by a thin tail. This observed asymmetry is attributed to shielding effects caused by both the plasma and hot modified silica. Once the damage shows its almost final morphology, a last phase consists in the launch of a pressure wave enlarging it after the laser pulse. The physical mechanisms that might be involved in the formation of plasma channels are discussed. The experimental data are first confronted to the moving breakdown model which overestimates the filamentary damage length. Finally, taking into account the temporal shape of the laser pulses, the coupling between Kerr-induced self-focusing and stimulated Brillouin scattering is discussed to interpret the observations.« less

  18. Wavelength dependence of laser-induced retinal injury

    NASA Astrophysics Data System (ADS)

    Lund, David J.; Edsall, Peter; Stuck, Bruce E.

    2005-04-01

    The threshold for laser-induced retinal damage is dependent primarily upon the laser wavelength and the exposure duration. The study of the wavelength dependence of the retinal damage threshold has been greatly enhanced by the availability of tunable lasers. The Optical Parametric Oscillator (OPO), capable of providing useful pulse energy throughout a tuning range from 400 nm to 2200 nm, made it possible to determine the wavelength dependence of laser-induced retinal damage thresholds for q-switched pulses throughout the visible and NIR spectrum. Studies using the a tunable TI:Saph laser and several fixed-wavelength lasers yielded threshold values for 0.1 s exposures from 440 nm to 1060 nm. Laser-induced retinal damage for these exposure durations results from thermal conversion of the incident laser irradiation and an action spectrum for thermal retinal damage was developed based on the wavelength dependent transmission and absorption of ocular tissue and chromatic aberration of the eye optics. Long (1-1000s) duration exposures to visible laser demonstrated the existence of non-thermal laser-induced retinal damage mechanisms having a different action spectrum. This paper will present the available data for the wavelength dependence of laser-induced thermal retinal damage and compare this data to the maximum permissible exposure levels (MPEs) provided by the current guidelines for the safe use of lasers.

  19. Neuroprotective vaccination with copolymer-1 decreases laser-induced retinal damage

    NASA Astrophysics Data System (ADS)

    Belokopytov, Mark; Dubinsky, Galina; Belkin, Michael; Rosner, Mordechai

    2003-06-01

    The retinal damage induced by laser photocoagulation increases manifold by the secondary degeneration process whereby tissues adjacent to the primary lesion are destroyed. The neuroprotective effect of immunization by glatiramer acetate (Copolymer-1, Cop-1) in adjuvant was previously demonstrated in models of retina, optic nerve, brain, and spinal cord lesions. The present study tested the neuroprotective ability of Cop-1 to reduce the spread of laser-induced retinal damage. Standard argon laser lesions were created in 72 DA pigmented rats divided into four groups: two Cop-1 treated groups (animals treated seven days before or immediately after the laser session) and two control groups treated respectively by saline or the effective but toxic neuroprotective compound MK-801. The histological and morphological evaluations of the lesions 3, 20, and 60 days after the injury revealed significant reduction in photoreceptor loss of the retinas of the pre-immunized animals. Cop-1 given after the laser injury did not prevent cell loss significantly, while the neuroprotective effect of MK-801 was observed only on the third day after the laser injury. The results show that pre-immunization with Cop-1 is neuroprotective in unmyelinated (gray matter) neural tissue such as the retina. This approach may be of clinical significance in ameliorating laser-induced retinal injuries in humans.

  20. Design of a high pulse repitition frequency carbon dioxide laser for processing high damage threshold materials

    NASA Astrophysics Data System (ADS)

    Chatwin, Christopher R.; McDonald, Donald W.; Scott, Brian F.

    1989-07-01

    The absence of an applications led design philosophy has compromised both the development of laser source technology and its effective implementation into manufacturing technology in particular. For example, CO2 lasers are still incapable of processing classes of refractory and non-ferrous metals. Whilst the scope of this paper is restricted to high power CO2 lasers; the design methodology reported herein is applicable to source technology in general, which when exploited, will effect an expansion of applications. The CO2 laser operational envelope should not only be expanded to incorporate high damage threshold materials but also offer a greater degree of controllability. By a combination of modelling and experimentation the requisite beam characteristics, at the workpiece, were determined then utilised to design the Laser Manufacturing System. The design of sub-system elements was achieved by a combination of experimentation and simulation which benefited from a comprehensive set of software tools. By linking these tools the physical processes in the laser - electron processes in the plasma, the history of photons in the resonator, etc. - can be related, in a detailed model, to the heating mechanisms in the workpiece.

  1. Role of thermal stresses on pulsed laser irradiation of thin films under conditions of microbump formation and nonvaporization forward transfer

    NASA Astrophysics Data System (ADS)

    Meshcheryakov, Yuri P.; Shugaev, Maxim V.; Mattle, Thomas; Lippert, Thomas; Bulgakova, Nadezhda M.

    2013-11-01

    This paper presents a theoretical analysis of the processes in thin solid films irradiated by short and ultrashort laser pulses in the regimes of film structuring and laser-induced forward transfer. The regimes are considered at which vaporization of the film materials is insignificant and film dynamics is governed mainly by mechanical processes. Thermoelastoplastic modeling has been performed for a model film in one- and two-dimensional geometries. A method has been proposed to estimate the height of microbumps produced by nanosecond laser irradiation of solid films. Contrary to femtosecond laser pulses, in nanosecond pulse regimes, stress waves across the film are weak and cannot induce film damage. The main role in laser-induced dynamics of irradiated films is played by radial thermal stresses which lead to the formation of a bending wave propagating along the film and drawing the film matter to the center of the irradiation spot. The bending wave dynamics depends on the hardness of the substrate underlying the film. The causes of the receiver substrate damage sometimes observed upon laser-induced forward transfer in the scheme of the direct contact between the film and the receiver are discussed.

  2. Optimization of morphological parameters for mitigation pits on rear KDP surface: experiments and numerical modeling.

    PubMed

    Yang, Hao; Cheng, Jian; Chen, Mingjun; Wang, Jian; Liu, Zhichao; An, Chenhui; Zheng, Yi; Hu, Kehui; Liu, Qi

    2017-07-24

    In high power laser systems, precision micro-machining is an effective method to mitigate the laser-induced surface damage growth on potassium dihydrogen phosphate (KDP) crystal. Repaired surfaces with smooth spherical and Gaussian contours can alleviate the light field modulation caused by damage site. To obtain the optimal repairing structure parameters, finite element method (FEM) models for simulating the light intensification caused by the mitigation pits on rear KDP surface were established. The light intensity modulation of these repairing profiles was compared by changing the structure parameters. The results indicate the modulation is mainly caused by the mutual interference between the reflected and incident lights on the rear surface. Owing to the total reflection, the light intensity enhancement factors (LIEFs) of the spherical and Gaussian mitigation pits sharply increase when the width-depth ratios are near 5.28 and 3.88, respectively. To achieve the optimal mitigation effect, the width-depth ratios greater than 5.3 and 4.3 should be applied to the spherical and Gaussian repaired contours. Particularly, for the cases of width-depth ratios greater than 5.3, the spherical repaired contour is preferred to achieve lower light intensification. The laser damage test shows that when the width-depth ratios are larger than 5.3, the spherical repaired contour presents higher laser damage resistance than that of Gaussian repaired contour, which agrees well with the simulation results.

  3. Contamination and Radiation Effects on Nonlinear Crystals for Space Laser Systems

    NASA Technical Reports Server (NTRS)

    Abdeldayem, Hossain A.; Dowdye, Edward; Jamison, Tracee; Canham, John; Jaeger, Todd

    2005-01-01

    Space Lasers are vital tools for NASA s space missions and military applications. Although, lasers are highly reliable on the ground, several past space laser missions proved to be short-lived and unreliable. In this communication, we are shedding more light on the contamination and radiation issues, which are the most common causes for optical damages and laser failures in space. At first, we will present results based on the study of liquids and subsequently correlate these results to the particulates of the laser system environment. We present a model explaining how the laser beam traps contaminants against the optical surfaces and cause optical damages and the role of gravity in the process. We also report the results of the second harmonic generation efficiency for nonlinear optical crystals irradiated with high-energy beams of protons. In addition, we are proposing to employ the technique of adsorption to minimize the presence of adsorbing molecules present in the laser compartment.

  4. Damage Resistant Optical Glasses for High Power Lasers: A Continuing Glass Science and Technology Challenge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, J H

    2002-08-28

    A major challenge in the development of optical glasses for high-power lasers is reducing or eliminating laser-induced damage to the interior (bulk) and the polished surface of the glass. Bulk laser damage in glass generally originates from inclusions. With the development of novel glass melting and forming processes it is now possible to make both fused silica and a suit of meta-phosphate laser glasses in large sizes ({approx}>0.5-lm diameter), free of inclusions and with high optical homogeneity ({approx} 10{sup -6}). Considerable attention also has been focused on improving the laser damage resistance to polished optical glass surfaces. Studies have shownmore » that laser-induced damage to surfaces grows exponentially with the number of shots when illuminated with nano-second pulses at 351-nm above a given fluence threshold. A new approach for reducing and eliminating laser-induced surface damage relies on a series of post-polishing treatment steps. This damage improvement method is briefly reviewed.« less

  5. Ultrafast pre-breakdown dynamics in Al₂O₃SiO₂ reflector by femtosecond UV laser spectroscopy.

    PubMed

    Du, Juan; Li, Zehan; Xue, Bing; Kobayashi, Takayoshi; Han, Dongjia; Zhao, Yuanan; Leng, Yuxin

    2015-06-29

    Ultrafast carrier dynamics in Al2O3/SiO2 high reflectors has been investigated by UV femtosecond laser. It is identified by laser spectroscopy that, the carrier dynamics contributed from the front few layers of Al2O3 play a dominating role in the initial laser-induced damage of the UV reflector. Time-resolved reflection decrease after the UV excitation is observed, and conduction electrons is found to relaxed to a mid-gap defect state locating about one photon below the conduction band . To interpret the laser induced carrier dynamics further, a theoretical model including electrons relaxation to a mid-gap state is built, and agrees very well with the experimental results.. To the best of our knowledge, this is the first study on the pre-damage dynamics in UV high reflector induced by femtosecond UV laser.

  6. Effect of Proximity of Features on the Damage Threshold During Submicron Additive Manufacturing Via Two-Photon Polymerization

    DOE PAGES

    Saha, Sourabh K.; Divin, Chuck; Cuadra, Jefferson A.; ...

    2017-05-12

    Two-photon polymerization (TPP) is a laser writing process that enables fabrication of millimeter scale three-dimensional (3D) structures with submicron features. In TPP, writing is achieved via nonlinear two-photon absorption that occurs at high laser intensities. Thus, it is essential to carefully select the incident power to prevent laser damage during polymerization. Currently, the feasible range of laser power is identified by writing small test patterns at varying power levels. Here in this paper, we demonstrate that the results of these tests cannot be generalized, because the damage threshold power depends on the proximity of features and reduces by as muchmore » as 47% for overlapping features. We have identified that this reduction occurs primarily due to an increase in the single-photon absorptivity of the resin after curing. We have captured the damage from proximity effects via X-ray 3D computed tomography (CT) images of a non-homogenous part that has varying feature density. Part damage manifests as internal spherical voids that arise due to boiling of the resist. We have empirically quantified this proximity effect by identifying the damage threshold power at different writing speeds and feature overlap spacings. In addition, we present a first-order analytical model that captures the scaling of this proximity effect. Based on this model and the experiments, we have identified that the proximity effect is more significant at high writing speeds; therefore, it adversely affects the scalability of manufacturing. The scaling laws and the empirical data generated here can be used to select the appropriate TPP writing parameters.« less

  7. Effect of Proximity of Features on the Damage Threshold During Submicron Additive Manufacturing Via Two-Photon Polymerization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saha, Sourabh K.; Divin, Chuck; Cuadra, Jefferson A.

    Two-photon polymerization (TPP) is a laser writing process that enables fabrication of millimeter scale three-dimensional (3D) structures with submicron features. In TPP, writing is achieved via nonlinear two-photon absorption that occurs at high laser intensities. Thus, it is essential to carefully select the incident power to prevent laser damage during polymerization. Currently, the feasible range of laser power is identified by writing small test patterns at varying power levels. Here in this paper, we demonstrate that the results of these tests cannot be generalized, because the damage threshold power depends on the proximity of features and reduces by as muchmore » as 47% for overlapping features. We have identified that this reduction occurs primarily due to an increase in the single-photon absorptivity of the resin after curing. We have captured the damage from proximity effects via X-ray 3D computed tomography (CT) images of a non-homogenous part that has varying feature density. Part damage manifests as internal spherical voids that arise due to boiling of the resist. We have empirically quantified this proximity effect by identifying the damage threshold power at different writing speeds and feature overlap spacings. In addition, we present a first-order analytical model that captures the scaling of this proximity effect. Based on this model and the experiments, we have identified that the proximity effect is more significant at high writing speeds; therefore, it adversely affects the scalability of manufacturing. The scaling laws and the empirical data generated here can be used to select the appropriate TPP writing parameters.« less

  8. Optical stimulation of the prostate nerves: A potential diagnostic technique

    NASA Astrophysics Data System (ADS)

    Tozburun, Serhat

    There is wide variability in sexual potency rates (9--86%) after nerve-sparing prostate cancer surgery due to limited knowledge of the location of the cavernous nerves (CN's) on the prostate surface, which are responsible for erectile function. Thus, preservation of the CN's is critical in preserving a man's ability to have spontaneous erections following surgery. Nerve-mapping devices, utilizing conventional Electrical Nerve Stimulation (ENS) techniques, have been used as intra-operative diagnostic tools to assist in preservation of the CN. However, these technologies have proven inconsistent and unreliable in identifying the CN's due to the need for physical contact, the lack of spatial selectivity, and the presence of electrical artifacts in measurements. Optical Nerve Stimulation (ONS), using pulsed infrared laser radiation, is studied as an alternative to ENS. The objective of this study is sevenfold: (1) to develop a laparoscopic laser probe for ONS of the CN's in a rat model, in vivo; (2) to demonstrate faster ONS using continuous-wave infrared laser radiation; (3) to describe and characterize the mechanism of successful ONS using alternative laser wavelengths; (4) to test a compact, inexpensive all-single-mode fiber configuration for optical stimulation of the rat CN studies; (5) to implement fiber optic beam shaping methods for comparison of Gaussian and flat-top spatial beam profiles during ONS; (6) to demonstrate successful ONS of CN's through a thin layer of fascia placed over the nerve and prostate gland; and (7) to verify the experimentally determined therapeutic window for safe and reliable ONS without thermal damage to the CN's by comparison with a computational model for thermal damage. A 5.5-Watt Thulium fiber laser operated at 1870 nm and two pigtailed, single mode, near-IR diode lasers (150-mW, 1455-nm laser and 500-mW, 1550-nm laser) were used for non-contact stimulation of the rat CN's. Successful laser stimulation, as measured by an intracavernous pressure (ICP) response in the penis, was achieved with the laser operating in CW mode. CW optical nerve stimulation provides a significantly faster ICP response time using a lower laser power laser than conventional pulsed stimulation. An all-single-mode fiber design was successfully tested in a rat model. The CN reached a threshold temperature of ˜ 42 °C, with response times as short as 3 s, and ICP responses in the rat penis of up to 50 mmHg compared to a baseline of 5--10 mmHg. Chemical etching of the distal single-mode-fiber tip produced a concave shape and transformed the Gaussian to a flat-top spatial beam profile, resulting in simplified alignment of the laser beam with the nerve. This novel, all-single-mode-fiber laser nerve stimulation system introduces several advantages including: (1) a less expensive and more compact ONS configuration; (2) elimination of alignment and cleaning bulk optical components; and (3) improved spatial beam profile for simplified alignment. For the fascia layers over the CN's (240--600 microm), the 1550 nm laser with an optical penetration depth of ˜ 930 microm in water was substituted for the 1455 nm laser. Successful ONS was achieved, for the first time, in fascia layers up to 450 microm thick which is critical for future clinical translation of this method for intra-operative identification and preservation of CN's during prostate cancer surgery. In order to define the upper limit of the therapeutic window for ONS of CN in a rat model, in vivo, identification of the thermal damage threshold for the CN after laser irradiation was investigated by direct comparison of the visible thermal damage data with a theoretical thermal damage calculation utilizing a standard Arrhenius integral model.

  9. Femtosecond laser ablation of the stapes

    NASA Astrophysics Data System (ADS)

    McCaughey, Ryan G.; Sun, Hui; Rothholtz, Vanessa S.; Juhasz, Tibor; Wong, Brian J. F.

    2009-03-01

    A femtosecond laser, normally used for LASIK eye surgery, is used to perforate cadaveric human stapes. The thermal side effects of bone ablation are measured with a thermocouple in an inner ear model and are found to be within acceptable limits for inner ear surgery. Stress and acoustic events, recorded with piezoelectric film and a microphone, respectively, are found to be negligible. Optical microscopy, scanning electron microscopy, and optical coherence tomography are used to confirm the precision of the ablation craters and lack of damage to the surrounding tissue. Ablation is compared to that from an Er:YAG laser, the current laser of choice for stapedotomy, and is found to be superior. Ultra-short-pulsed lasers offer a precise and efficient ablation of the stapes, with minimal thermal and negligible mechanical and acoustic damage. They are, therefore, ideal for stapedotomy operations.

  10. Retinal injury resulting from simultaneous exposure to radiation from two lasers with different wavelengths

    NASA Astrophysics Data System (ADS)

    Stolarski, David J.; Cain, Clarence P.; Schuster, Kurt J.; Imholte, Michelle; Carothers, Val C.; Buffington, Gavin D.; Edwards, Michael; Thomas, Robert J.; Rockwell, Benjamin A.

    2005-04-01

    To assess the retinal hazards related to simultaneous exposure from two lasers of separate wavelengths, the retinal effects of 5-second laser irradiation from 532 nm and 647 nm were determined in non-human primates. A total of six eyes were exposed using equal amounts of power to determine the damage levels. The results were combined with those of previous, two-wavelength studies done by our group and compared to damage models developed in our lab. The data were also compared to the calculations resulting from use of the currently accepted method of predicting hazards from simultaneous lasing.

  11. Laser induced photoreceptor damage and recovery in the high numerical aperture eye of the garter snake.

    PubMed

    Zwick, H; Edsall, P; Stuck, B E; Wood, E; Elliott, R; Cheramie, R; Hacker, H

    2008-02-01

    The garter snake provides a unique model for in-vivo imaging of photoreceptor damage induced by laser retinal exposure. Laser thermal/mechanical retinal injury induced alterations in photoreceptor structure and leukocyte cellular behavior. Photoreceptors turned white, lost mode structure, and swelled; leukocyte activity was observed in the vicinity of photoreceptor cells. Non-thermal alterations were identified with a bio-tag for oxidative stress. Mechanisms of photoreceptor recovery and replacement were observed and evaluated for active cytoskeletal systems by using an anti-actin tag that could detect the presence of active cytoskeletal systems resident in photoreceptors as well as other retinal systems.

  12. Laser injury and in vivo multimodal imaging using a mouse model

    NASA Astrophysics Data System (ADS)

    Pocock, Ginger M.; Boretsky, Adam; Gupta, Praveena; Oliver, Jeff W.; Motamedi, Massoud

    2011-03-01

    Balb/c wild type mice were used to perform in vivo experiments of laser-induced thermal damage to the retina. A Heidelberg Spectralis HRA confocal scanning laser ophthalmoscope with a spectral domain optical coherence tomographer was used to obtain fundus and cross-sectional images of laser induced injury in the retina. Sub-threshold, threshold, and supra-threshold lesions were observed using optical coherence tomography (OCT), infrared reflectance, red-free reflectance, fluorescence angiography, and autofluorescence imaging modalities at different time points post-exposure. Lesions observed using all imaging modalities, except autofluorescence, were not visible immediately after exposure but did resolve within an hour and grew in size over a 24 hour period. There was a decrease in fundus autofluorescence at exposure sites immediately following exposure that developed into hyper-fluorescence 24-48 hours later. OCT images revealed threshold damage that was localized to the RPE but extended into the neural retina over a 24 hour period. Volumetric representations of the mouse retina were created to visualize the extent of damage within the retina over a 24 hour period. Multimodal imaging provides complementary information regarding damage mechanisms that may be used to quantify the extent of the damage as well as the effectiveness of treatments without need for histology.

  13. Combining wet etching and real-time damage event imaging to reveal the most dangerous laser damage initiator in fused silica.

    PubMed

    Hu, Guohang; Zhao, Yuanan; Liu, Xiaofeng; Li, Dawei; Xiao, Qiling; Yi, Kui; Shao, Jianda

    2013-08-01

    A reliable method, combining a wet etch process and real-time damage event imaging during a raster scan laser damage test, has been developed to directly determine the most dangerous precursor inducing low-density laser damage at 355 nm in fused silica. It is revealed that ~16% of laser damage sites were initiated at the place of the scratches, ~49% initiated at the digs, and ~35% initiated at invisible defects. The morphologies of dangerous scratches and digs were compared with those of moderate ones. It is found that local sharp variation at the edge, twist, or inside of a subsurface defect is the most dangerous laser damage precursor.

  14. Physical analysis on laser-induced cerebral damage

    NASA Astrophysics Data System (ADS)

    Luo, Xiaosen; Liu, Jiangang; Tao, Chunkan; Lan, Xiufeng; Cao, Lingyan; Pan, Weimin; Shen, Zhonghua; Lu, Jian; Ni, Xiaowu

    2005-01-01

    Experimental investigation on cerebral damage of adult SD rats induced by 532nm CW laser was performed. Tissue heat conductive equation was set up based on two-layered structure model. Finite difference algorithm was utilized to numerically simulate the temperature distribution in the brain tissue. Allowing for tissue response to temperature variation, free boundary model was used to discuss tissue thermal coagulation formation in brain. Experimental observations show that thermal coagulation and necrosis can be caused due to laser light absorption. The result of the calculation shows that the process of the thermal coagulation of the given mode comprises two stages: fast and slow. At the first stage, necrosis domain grows fast. Then necrosis domain growth becomes slower because of the competition between the heat diffusion into the surrounding undamaged tissue and the heat dissipation caused by blood perfusion. At the center of coagulation area no neuron was observed and at the transitional zone few nervous cells were seen by microscope. The research can provide reference data for developing clinical therapy of some kind of encephalic diseases by using 532nm laser, and for making cerebral infarction models in animal experiment.

  15. Experimental research on femto-second laser damaging array CCD cameras

    NASA Astrophysics Data System (ADS)

    Shao, Junfeng; Guo, Jin; Wang, Ting-feng; Wang, Ming

    2013-05-01

    Charged Coupled Devices (CCD) are widely used in military and security applications, such as airborne and ship based surveillance, satellite reconnaissance and so on. Homeland security requires effective means to negate these advanced overseeing systems. Researches show that CCD based EO systems can be significantly dazzled or even damaged by high-repetition rate pulsed lasers. Here, we report femto - second laser interaction with CCD camera, which is probable of great importance in future. Femto - second laser is quite fresh new lasers, which has unique characteristics, such as extremely short pulse width (1 fs = 10-15 s), extremely high peak power (1 TW = 1012W), and especially its unique features when interacting with matters. Researches in femto second laser interaction with materials (metals, dielectrics) clearly indicate non-thermal effect dominates the process, which is of vast difference from that of long pulses interaction with matters. Firstly, the damage threshold test are performed with femto second laser acting on the CCD camera. An 800nm, 500μJ, 100fs laser pulse is used to irradiate interline CCD solid-state image sensor in the experiment. In order to focus laser energy onto tiny CCD active cells, an optical system of F/5.6 is used. A Sony production CCDs are chose as typical targets. The damage threshold is evaluated with multiple test data. Point damage, line damage and full array damage were observed when the irradiated pulse energy continuously increase during the experiment. The point damage threshold is found 151.2 mJ/cm2.The line damage threshold is found 508.2 mJ/cm2.The full-array damage threshold is found to be 5.91 J/cm2. Although the phenomenon is almost the same as that of nano laser interaction with CCD, these damage thresholds are substantially lower than that of data obtained from nano second laser interaction with CCD. Then at the same time, the electric features after different degrees of damage are tested with electronic multi meter. The resistance values between clock signal lines are measured. Contrasting the resistance values of the CCD before and after damage, it is found that the resistances decrease significantly between the vertical transfer clock signal lines values. The same results are found between the vertical transfer clock signal line and the earth electrode (ground).At last, the damage position and the damage mechanism were analyzed with above results and SEM morphological experiments. The point damage results in the laser destroying material, which shows no macro electro influence. The line damage is quite different from that of point damage, which shows deeper material corroding effect. More importantly, short circuits are found between vertical clock lines. The full array damage is even more severe than that of line damage starring with SEM, while no obvious different electrical features than that of line damage are found. Further researches are anticipated in femto second laser caused CCD damage mechanism with more advanced tools. This research is valuable in EO countermeasure and/or laser shielding applications.

  16. Advanced Mitigation Process (AMP) for Improving Laser Damage Threshold of Fused Silica Optics

    NASA Astrophysics Data System (ADS)

    Ye, Xin; Huang, Jin; Liu, Hongjie; Geng, Feng; Sun, Laixi; Jiang, Xiaodong; Wu, Weidong; Qiao, Liang; Zu, Xiaotao; Zheng, Wanguo

    2016-08-01

    The laser damage precursors in subsurface of fused silica (e.g. photosensitive impurities, scratches and redeposited silica compounds) were mitigated by mineral acid leaching and HF etching with multi-frequency ultrasonic agitation, respectively. The comparison of scratches morphology after static etching and high-frequency ultrasonic agitation etching was devoted in our case. And comparison of laser induce damage resistance of scratched and non-scratched fused silica surfaces after HF etching with high-frequency ultrasonic agitation were also investigated in this study. The global laser induce damage resistance was increased significantly after the laser damage precursors were mitigated in this case. The redeposition of reaction produce was avoided by involving multi-frequency ultrasonic and chemical leaching process. These methods made the increase of laser damage threshold more stable. In addition, there is no scratch related damage initiations found on the samples which were treated by Advanced Mitigation Process.

  17. Advanced Mitigation Process (AMP) for Improving Laser Damage Threshold of Fused Silica Optics

    PubMed Central

    Ye, Xin; Huang, Jin; Liu, Hongjie; Geng, Feng; Sun, Laixi; Jiang, Xiaodong; Wu, Weidong; Qiao, Liang; Zu, Xiaotao; Zheng, Wanguo

    2016-01-01

    The laser damage precursors in subsurface of fused silica (e.g. photosensitive impurities, scratches and redeposited silica compounds) were mitigated by mineral acid leaching and HF etching with multi-frequency ultrasonic agitation, respectively. The comparison of scratches morphology after static etching and high-frequency ultrasonic agitation etching was devoted in our case. And comparison of laser induce damage resistance of scratched and non-scratched fused silica surfaces after HF etching with high-frequency ultrasonic agitation were also investigated in this study. The global laser induce damage resistance was increased significantly after the laser damage precursors were mitigated in this case. The redeposition of reaction produce was avoided by involving multi-frequency ultrasonic and chemical leaching process. These methods made the increase of laser damage threshold more stable. In addition, there is no scratch related damage initiations found on the samples which were treated by Advanced Mitigation Process. PMID:27484188

  18. Extracting the distribution of laser damage precursors on fused silica surfaces for 351 nm, 3 ns laser pulses at high fluences (20-150 J/cm2).

    PubMed

    Laurence, Ted A; Bude, Jeff D; Ly, Sonny; Shen, Nan; Feit, Michael D

    2012-05-07

    Surface laser damage limits the lifetime of optics for systems guiding high fluence pulses, particularly damage in silica optics used for inertial confinement fusion-class lasers (nanosecond-scale high energy pulses at 355 nm/3.5 eV). The density of damage precursors at low fluence has been measured using large beams (1-3 cm); higher fluences cannot be measured easily since the high density of resulting damage initiation sites results in clustering. We developed automated experiments and analysis that allow us to damage test thousands of sites with small beams (10-30 µm), and automatically image the test sites to determine if laser damage occurred. We developed an analysis method that provides a rigorous connection between these small beam damage test results of damage probability versus laser pulse energy and the large beam damage results of damage precursor densities versus fluence. We find that for uncoated and coated fused silica samples, the distribution of precursors nearly flattens at very high fluences, up to 150 J/cm2, providing important constraints on the physical distribution and nature of these precursors.

  19. Bioheat model evaluations of laser effects on tissues: role of water evaporation and diffusion

    NASA Astrophysics Data System (ADS)

    Nagulapally, Deepthi; Joshi, Ravi P.; Thomas, Robert J.

    2011-03-01

    A two-dimensional, time-dependent bioheat model is applied to evaluate changes in temperature and water content in tissues subjected to laser irradiation. Our approach takes account of liquid-to-vapor phase changes and a simple diffusive flow of water within the biotissue. An energy balance equation considers blood perfusion, metabolic heat generation, laser absorption, and water evaporation. The model also accounts for the water dependence of tissue properties (both thermal and optical), and variations in blood perfusion rates based on local tissue injury. Our calculations show that water diffusion would reduce the local temperature increases and hot spots in comparison to simple models that ignore the role of water in the overall thermal and mass transport. Also, the reduced suppression of perfusion rates due to tissue heating and damage with water diffusion affect the necrotic depth. Two-dimensional results for the dynamic temperature, water content, and damage distributions will be presented for skin simulations. It is argued that reduction in temperature gradients due to water diffusion would mitigate local refractive index variations, and hence influence the phenomenon of thermal lensing. Finally, simple quantitative evaluations of pressure increases within the tissue due to laser absorption are presented.

  20. Optical and electrical properties of indium tin oxide films near their laser damage threshold [Electrical and optical properties of indium tin oxide films under multi-pulse laser irradiation at 1064 nm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoo, Jae -Hyuck; Lange, Andrew; Bude, Jeff

    In this paper, we investigated whether the optical and electrical properties of indium tin oxide (ITO) films are degraded under laser irradiation below their laser ablation threshold. While performing multi-pulse laser damage experiments on a single ITO film (4.7 ns, 1064 nm, 10 Hz), we examined the optical and electrical properties in situ. A decrease in reflectance was observed prior to laser damage initiation. However, under sub-damage threshold irradiation, conductivity and reflectance of the film were maintained without measurable degradation. This indicates that ITO films in optoelectronic devices may be operated below their lifetime laser damage threshold without noticeable performancemore » degradation.« less

  1. Optical and electrical properties of indium tin oxide films near their laser damage threshold [Electrical and optical properties of indium tin oxide films under multi-pulse laser irradiation at 1064 nm

    DOE PAGES

    Yoo, Jae -Hyuck; Lange, Andrew; Bude, Jeff; ...

    2017-02-10

    In this paper, we investigated whether the optical and electrical properties of indium tin oxide (ITO) films are degraded under laser irradiation below their laser ablation threshold. While performing multi-pulse laser damage experiments on a single ITO film (4.7 ns, 1064 nm, 10 Hz), we examined the optical and electrical properties in situ. A decrease in reflectance was observed prior to laser damage initiation. However, under sub-damage threshold irradiation, conductivity and reflectance of the film were maintained without measurable degradation. This indicates that ITO films in optoelectronic devices may be operated below their lifetime laser damage threshold without noticeable performancemore » degradation.« less

  2. Laser-induced damage threshold of camera sensors and micro-optoelectromechanical systems

    NASA Astrophysics Data System (ADS)

    Schwarz, Bastian; Ritt, Gunnar; Koerber, Michael; Eberle, Bernd

    2017-03-01

    The continuous development of laser systems toward more compact and efficient devices constitutes an increasing threat to electro-optical imaging sensors, such as complementary metal-oxide-semiconductors (CMOS) and charge-coupled devices. These types of electronic sensors are used in day-to-day life but also in military or civil security applications. In camera systems dedicated to specific tasks, micro-optoelectromechanical systems, such as a digital micromirror device (DMD), are part of the optical setup. In such systems, the DMD can be located at an intermediate focal plane of the optics and it is also susceptible to laser damage. The goal of our work is to enhance the knowledge of damaging effects on such devices exposed to laser light. The experimental setup for the investigation of laser-induced damage is described in detail. As laser sources, both pulsed lasers and continuous-wave (CW)-lasers are used. The laser-induced damage threshold is determined by the single-shot method by increasing the pulse energy from pulse to pulse or in the case of CW-lasers, by increasing the laser power. Furthermore, we investigate the morphology of laser-induced damage patterns and the dependence of the number of destructive device elements on the laser pulse energy or laser power. In addition to the destruction of single pixels, we observe aftereffects, such as persistent dead columns or rows of pixels in the sensor image.

  3. High-laser-damage-threshold HfO2/SiO2 mirrors manufactured by sputtering process

    NASA Astrophysics Data System (ADS)

    Fornier, Anne; Bernardino, D.; Lam, Odile; Neauport, Jerome; Dufour, Francois; Schmitt, Bernard R.; Mackowski, Jean-Marie

    1999-07-01

    A major preoccupation for the design of the LMJ laser is the mirrors laser damage threshold. SAGEM SA, in collaboration with the CEA, has conducted a study in order to improve the laser induced damage threshold under operational conditions.

  4. Permanent laser conditioning of thin film optical materials

    DOEpatents

    Wolfe, C. Robert; Kozlowski, Mark R.; Campbell, John H.; Staggs, Michael; Rainer, Frank

    1995-01-01

    The invention comprises a method for producing optical thin films with a high laser damage threshold and the resulting thin films. The laser damage threshold of the thin films is permanently increased by irradiating the thin films with a fluence below an unconditioned laser damage threshold.

  5. Diagnostics for the detection and evaluation of laser induced damage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheehan, L.; Kozlowski, M.; Rainer, F.

    1995-12-31

    The Laser Damage and Conditioning Group at LLNL is evaluating diagnostics which will help make damage testing more efficient and reduce the risk of damage during laser conditioning. The work to date has focused on photoacoustic and scattered light measurements on 1064-nm wavelength HfO{sub 2}/SiO{sub 2} multilayer mirror and polarizer coatings. Both the acoustic and scatter diagnostics have resolved 10 {mu}m diameter damage points in these coatings. Using a scanning stage, the scatter diagnostic can map both intrinsic and laser-induced scatter. Damage threshold measurements obtained using scatter diagnostics compare within experimental error with those measured using 100x Nomarski microscopy. Scattermore » signals measured during laser conditioning can be used to detect damage related to nodular defects.« less

  6. Diagnostics for the detection and evaluation of laser induced damage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheehan, L.; Kozlowski, M.; Rainer, F.

    1995-01-03

    The Laser Damage and Conditioning Group at LLNL is evaluating diagnostics which will help make damage testing more efficient and reduce the risk of damage during laser conditioning. The work to date has focused on photoacoustic and scattered light measurements on 1064-nm wavelength HfO{sub 2}/SiO{sub 2} multilayer mirror and polarizer coatings. Both the acoustic and scatter diagnostics have resolved 10 {mu}m diameter damage points in these coatings. Using a scanning stage, the scatter diagnostic can map both intrinsic and laser-induced scatter. Damage threshold measurements obtained using scatter diagnostics compare within experimental error with those measured using 100x Nomarski microscopy. Scattermore » signals measured during laser conditioning can be used to detect damage related to nodular defects.« less

  7. Carbon dioxide laser ablation with immediate autografting in a full-thickness porcine burn model.

    PubMed Central

    Glatter, R D; Goldberg, J S; Schomacker, K T; Compton, C C; Flotte, T J; Bua, D P; Greaves, K W; Nishioka, N S; Sheridan, R L

    1998-01-01

    OBJECTIVE: To compare the long-term clinical and histologic outcome of immediate autografting of full-thickness burn wounds ablated with a high-power continuous-wave CO2 laser to sharply débrided wounds in a porcine model. SUMMARY BACKGROUND DATA: Continuous-wave CO2 lasers have performed poorly as tools for burn excision because the large amount of thermal damage to viable subeschar tissues precluded successful autografting. However, a new technique, in which a high-power laser is rapidly scanned over the eschar, results in eschar vaporization without significant damage to underlying viable tissues, allowing successful immediate autografting. METHODS: Full-thickness paravertebral burn wounds measuring 36 cm2 were created on 11 farm swine. Wounds were ablated to adipose tissue 48 hours later using either a surgical blade or a 150-Watt continuous-wave CO2 laser deflected by an x-y galvanometric scanner that translated the beam over the tissue surface, removing 200 microm of tissue per scan. Both sites were immediately autografted and serially evaluated clinically and histologically for 180 days. RESULTS: The laser-treated sites were nearly bloodless. The mean residual thermal damage was 0.18+/-0.05 mm. The mean graft take was 96+/-11% in manual sites and 93+/-8% in laser sites. On postoperative day 7, the thickness of granulation tissue at the graft-wound bed interface was greater in laser-debrided sites. By postoperative day 180, the manual and laser sites were histologically identical. Vancouver scar assessment revealed no differences in scarring at postoperative day 180. CONCLUSIONS: Long-term scarring, based on Vancouver scar assessments and histologic evaluation, was equivalent at 6 months in laser-ablated and sharply excised sites. Should this technology become practical, the potential clinical implications include a reduction in surgical blood loss without sacrifice of immediate engraftment rates or long-term outcome. Images Figure 1. Figure 2. Figure 3. Figure 4. PMID:9712572

  8. Numerical models of laser fusion of intestinal tissues.

    PubMed

    Pearce, John A

    2009-01-01

    Numerical models of continuous wave Tm:YAG thermal fusion in rat intestinal tissues were compared to experiment. Optical and thermal FDM models that included tissue damage based on Arrhenius kinetics were used to predict birefringence loss in collagen as the standard of comparison. The models also predicted collagen shrinkage, jellification and water loss. The inclusion of variable optical and thermal properties is essential to achieve favorable agreement between predicted and measured damage boundaries.

  9. Cavity formation and surface modeling of laser milling process under a thin-flowing water layer

    NASA Astrophysics Data System (ADS)

    Tangwarodomnukun, Viboon

    2016-11-01

    Laser milling process normally involves a number of laser scans over a workpiece to selectively remove the material and then to form cavities with shape and dimensions required. However, this process adversely causes a heat accumulation in work material, which can in turn damage the laser-milled area and vicinity in terms of recast deposition and change of material properties. Laser milling process performing in a thin-flowing water layer is a promising method that can overcome such damage. With the use of this technique, water can flush away the cut debris and at the same time cool the workpiece during the ablation. To understand the potential of this technique for milling application, the effects of process parameters on cavity dimensions and surface roughness were experimentally examined in this study. Titanium sheet was used as a workpiece to be milled by a nanosecond pulse laser under different water flow velocities. A smooth and uniform cut feature can be obtained when the metal was ablated under the high laser pulse frequency and high water flow velocity. Furthermore, a surface model based on the energy balance was developed in this study to predict the cavity profile and surface roughness. By comparing to the experiments, the predicted profiles had a good agreement with the measured ones.

  10. Design and implementation of a system for laser assisted milling of advanced materials

    NASA Astrophysics Data System (ADS)

    Wu, Xuefeng; Feng, Gaocheng; Liu, Xianli

    2016-09-01

    Laser assisted machining is an effective method to machine advanced materials with the added benefits of longer tool life and increased material removal rates. While extensive studies have investigated the machining properties for laser assisted milling(LAML), few attempts have been made to extend LAML to machining parts with complex geometric features. A methodology for continuous path machining for LAML is developed by integration of a rotary and movable table into an ordinary milling machine with a laser beam system. The machining strategy and processing path are investigated to determine alignment of the machining path with the laser spot. In order to keep the material removal temperatures above the softening temperature of silicon nitride, the transformation is coordinated and the temperature interpolated, establishing a transient thermal model. The temperatures of the laser center and cutting zone are also carefully controlled to achieve optimal machining results and avoid thermal damage. These experiments indicate that the system results in no surface damage as well as good surface roughness, validating the application of this machining strategy and thermal model in the development of a new LAML system for continuous path processing of silicon nitride. The proposed approach can be easily applied in LAML system to achieve continuous processing and improve efficiency in laser assisted machining.

  11. Laser-driven mechanical fracture in fused silica

    NASA Astrophysics Data System (ADS)

    Dahmani, Faiz

    1999-10-01

    Fused silica, widely used as optical-window material in high-fluence requirements on glass and KrF lasers, experiences optical damage. Under fatigue conditions, the damage is initiated by slow crack growth and culminates, if not arrested, with catastrophic crack growth and implosive failure when the stress intensity approaches the critical value. Since laser-induced cracks cannot be eliminated entirely, the behavior of cracked structures under service conditions must be quantified to be predicted. Systematic scientific rules must be devised to characterize laser-induced cracks and their effects, and to predict if and when it may become necessary to replace the damaged components. This thesis makes a contribution toward this end. Measurements of fatigue failure strength of laser-cracked fused silica in air at room temperature for different number of laser pulses and laser fluences are presented. The failure-strength variability is found to be due mainly to the spectrum of crack depths. Agreement with theory suggests the incorporation of a residual term into the failure-strength equation. Experiments on residual stresses induced in fused silica by the presence of a laser-induced crack are carried out using two different techniques. Theoretical modelings show that this residual stress field is of shear nature and mouth-opening. A correlation between the reduction in fracture strength of fused silica and the increase of the residual-stress field is established, providing laser systems designers and operators with guidance on the rate of crack growth as well as on the stress-related ramifications such as laser-driven cracks entail. Specifically, a hoop-stress in the immediate vicinity of a crack growing along the beam propagation direction is identified as strongly coupling to both the laser fluence and the crack growth. This coupling prompted the question of whether or not breaking the hoop stress symmetry by some external perturbation will accelerate or stymie crack growth. Experimental results on stress-inhibited laser-driven crack growth and stress-delayed-laser-damage initiation thresholds in fused silica and borosilicate glass (BK7) are presented. The results obtained show that, for very low compressive stresses (<10 psi), the damage initiation threshold is raised by as much as 78%, while the crack growth is arrested by 70%. Different loading- geometries are tested, giving different crack growth rates and raising the distinction between uniaxial and biaxial states of stresses.

  12. Characterization of laser damage performance of fused silica using photothermal absorption technique

    NASA Astrophysics Data System (ADS)

    Wan, Wen; Shi, Feng; Dai, Yifan; Peng, Xiaoqiang

    2017-06-01

    The subsurface damage and metal impurities have been the main laser damage precursors of fused silica while subjected to high power laser irradiation. Light field enhancement and thermal absorption were used to explain the appearance of damage pits while the laser energy is far smaller than the energy that can reach the intrinsic threshold of fused silica. For fused silica optics manufactured by magnetorheological finishing or advanced mitigation process, no scratch-related damage site occurs can be found on the surface. In this work, we implemented a photothermal absorption technique based on thermal lens method to characterize the subsurface defects of fused silica optics. The pump beam is CW 532 nm wavelength laser. The probe beam is a He-Ne laser. They are collinear and focused through the same objective. When pump beam pass through the sample, optical absorption induces the local temperature rise. The lowest absorptance that we can detect is about the order of magnitude of 0.01 ppm. When pump beam pass through the sample, optical absorption induces the local temperature rise. The photothermal absorption value of fused silica samples range from 0.5 to 10 ppm. The damage densities of the samples were plotted. The damage threshold of samples at 8J/cm2 were gived to show laser damage performance of fused silica.The results show that there is a strong correlation between the thermal absorption and laser damage density. The photothermal absorption technique can be used to predict and evaluate the laser damage performance of fused silica optics.

  13. Scalable process for mitigation of laser-damaged potassium dihydrogen phosphate crystal optic surfaces with removal of damaged antireflective coating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elhadj, S.; Steele, W. A.; VanBlarcom, D. S.

    Here, we investigate an approach for the recycling of laser-damaged large-aperture deuterated potassium dihydrogen phosphate (DKDP) crystals used for optical switching (KDP) and for frequency conversion (DKDP) in megajoule-class high-power laser systems. The approach consists of micromachining the surface laser damage sites (mitigation), combined with multiple soaks and ultrasonication steps in a coating solvent to remove, synergistically, both the highly adherent machining debris and the laser-damage-affected antireflection coating. We then identify features of the laser-damage-affected coating, such as the “solvent-persistent” coating and the “burned-in” coating, that are difficult to remove by conventional approaches without damaging the surface. We also providemore » a solution to the erosion problem identified in this work when colloidal coatings are processed during ultrasonication. Finally, we provide a proof of principle of the approach by testing the full process that includes laser damage mitigation of DKDP test parts, coat stripping, reapplication of a new antireflective coat, and a laser damage test demonstrating performance up to at least 12 J/cm 2 at UV wavelengths, which is well above current requirements. Our approach ultimately provides a potential path to a scalable recycling loop for the management of optics in large, high-power laser systems that can reduce cost and extend lifetime of highly valuable and difficult to grow large DKDP crystals.« less

  14. Scalable process for mitigation of laser-damaged potassium dihydrogen phosphate crystal optic surfaces with removal of damaged antireflective coating

    DOE PAGES

    Elhadj, S.; Steele, W. A.; VanBlarcom, D. S.; ...

    2017-03-07

    Here, we investigate an approach for the recycling of laser-damaged large-aperture deuterated potassium dihydrogen phosphate (DKDP) crystals used for optical switching (KDP) and for frequency conversion (DKDP) in megajoule-class high-power laser systems. The approach consists of micromachining the surface laser damage sites (mitigation), combined with multiple soaks and ultrasonication steps in a coating solvent to remove, synergistically, both the highly adherent machining debris and the laser-damage-affected antireflection coating. We then identify features of the laser-damage-affected coating, such as the “solvent-persistent” coating and the “burned-in” coating, that are difficult to remove by conventional approaches without damaging the surface. We also providemore » a solution to the erosion problem identified in this work when colloidal coatings are processed during ultrasonication. Finally, we provide a proof of principle of the approach by testing the full process that includes laser damage mitigation of DKDP test parts, coat stripping, reapplication of a new antireflective coat, and a laser damage test demonstrating performance up to at least 12 J/cm 2 at UV wavelengths, which is well above current requirements. Our approach ultimately provides a potential path to a scalable recycling loop for the management of optics in large, high-power laser systems that can reduce cost and extend lifetime of highly valuable and difficult to grow large DKDP crystals.« less

  15. Permanent laser conditioning of thin film optical materials

    DOEpatents

    Wolfe, C.R.; Kozlowski, M.R.; Campbell, J.H.; Staggs, M.; Rainer, F.

    1995-12-05

    The invention comprises a method for producing optical thin films with a high laser damage threshold and the resulting thin films. The laser damage threshold of the thin films is permanently increased by irradiating the thin films with a fluence below an unconditioned laser damage threshold. 9 figs.

  16. Calibrated heat flow model for the determination of different heat-affected zones in single-pass laser-cut CFRP using a cw CO2 laser

    NASA Astrophysics Data System (ADS)

    Mucha, P.; Berger, P.; Weber, R.; Speker, N.; Sommer, B.; Graf, T.

    2015-03-01

    Laser machining has great potential for automated manufacturing of parts made of carbon-fiber-reinforced plastic (CFRP) due to the nearly force and tool-wear free processing. The high vaporization temperatures and the large heat conductivity of the carbon fibers, however, lead to unintentional heat conduction into the material causing damage in zones close to the process. In this paper, the matrix damage zone (MDZ) is subdivided into a matrix sublimation zone (MSZ) where the matrix material was sublimated and a zone where the temperature temporarily exceeded a value causing structural damage in the matrix. In order to investigate the extent of these zones, a one-dimensional heat flow model was applied, which was calibrated by cutting experiments using temperature sensors embedded in the CFRP samples. The investigations showed that the extents of the MSZ and MDZ are dominated by a total interaction time, which includes the passage of the laser beam and the continued interaction of the cloud of hot ablation products with the carbon fibers at the kerf wall and that from a practical point of view, the experimentally determined effective heat conductivity is suitable for simple estimations of the heat-affected zones in CFRP.

  17. Thermal damage assessment of blood vessels in a hamster skin flap model by fluorescence measurement of a liposome-dye system.

    PubMed

    Mordon, S; Desmettre, T; Devoisselle, J M; Soulie, S

    1997-01-01

    The present study was undertaken to evaluate the feasibility of thermal damage assessment of blood vessels by using laser-induced release of liposome-encapsulated dye. Experiments were performed in a hamster skin flap model. Laser irradiation was achieved with a 300 microm fiber connected to a 805 nm diode laser (power = 0.8W, spot diameter = 1.3 mm and pulse exposure time lasting from 1 to 6 s) after potentiation using a specific indocyanine green (ICG) formulation (water and oil emulsion). Liposomes-encapsulated carboxyfluorescein were prepared by the sonication procedure. Carboxyfluorescein (5,6-CF) was loaded at high concentration (100 mM) in order to quench its fluorescence. The measurements were performed after i.v. injection of DSPC liposomes (1.5 ml) and lasted 40 min. Fluorescence emission was measured with an ultra high sensitivity intensified camera. Three different shapes of fluorescent spots were identified depending on target (blood vessel or skin) and energy deposition in tissue: (i) intravascular fluorescence, (ii) transient low fluorescence circular spot, and (iii) persistent high intense fluorescence spot. These images are correlated with histological data. Real-time fluorescence imaging seems to be a good tool to estimate in a non-invasive manner the thermal damage induced by a diode laser combined with ICG potentiation.

  18. Laser-based structural sensing and surface damage detection

    NASA Astrophysics Data System (ADS)

    Guldur, Burcu

    Damage due to age or accumulated damage from hazards on existing structures poses a worldwide problem. In order to evaluate the current status of aging, deteriorating and damaged structures, it is vital to accurately assess the present conditions. It is possible to capture the in situ condition of structures by using laser scanners that create dense three-dimensional point clouds. This research investigates the use of high resolution three-dimensional terrestrial laser scanners with image capturing abilities as tools to capture geometric range data of complex scenes for structural engineering applications. Laser scanning technology is continuously improving, with commonly available scanners now capturing over 1,000,000 texture-mapped points per second with an accuracy of ~2 mm. However, automatically extracting meaningful information from point clouds remains a challenge, and the current state-of-the-art requires significant user interaction. The first objective of this research is to use widely accepted point cloud processing steps such as registration, feature extraction, segmentation, surface fitting and object detection to divide laser scanner data into meaningful object clusters and then apply several damage detection methods to these clusters. This required establishing a process for extracting important information from raw laser-scanned data sets such as the location, orientation and size of objects in a scanned region, and location of damaged regions on a structure. For this purpose, first a methodology for processing range data to identify objects in a scene is presented and then, once the objects from model library are correctly detected and fitted into the captured point cloud, these fitted objects are compared with the as-is point cloud of the investigated object to locate defects on the structure. The algorithms are demonstrated on synthetic scenes and validated on range data collected from test specimens and test-bed bridges. The second objective of this research is to combine useful information extracted from laser scanner data with color information, which provides information in the fourth dimension that enables detection of damage types such as cracks, corrosion, and related surface defects that are generally difficult to detect using only laser scanner data; moreover, the color information also helps to track volumetric changes on structures such as spalling. Although using images with varying resolution to detect cracks is an extensively researched topic, damage detection using laser scanners with and without color images is a new research area that holds many opportunities for enhancing the current practice of visual inspections. The aim is to combine the best features of laser scans and images to create an automatic and effective surface damage detection method, which will reduce the need for skilled labor during visual inspections and allow automatic documentation of related information. This work enables developing surface damage detection strategies that integrate existing condition rating criteria for a wide range damage types that are collected under three main categories: small deformations already existing on the structure (cracks); damage types that induce larger deformations, but where the initial topology of the structure has not changed appreciably (e.g., bent members); and large deformations where localized changes in the topology of the structure have occurred (e.g., rupture, discontinuities and spalling). The effectiveness of the developed damage detection algorithms are validated by comparing the detection results with the measurements taken from test specimens and test-bed bridges.

  19. High-Resolution In Vivo Imaging of Regimes of Laser Damage to the Primate Retina

    PubMed Central

    Pocock, Ginger M.; Oliver, Jeffrey W.; Specht, Charles S.; Estep, J. Scot; Noojin, Gary D.; Schuster, Kurt; Rockwell, Benjamin A.

    2014-01-01

    Purpose. To investigate fundamental mechanisms of regimes of laser induced damage to the retina and the morphological changes associated with the damage response. Methods. Varying grades of photothermal, photochemical, and photomechanical retinal laser damage were produced in eyes of eight cynomolgus monkeys. An adaptive optics confocal scanning laser ophthalmoscope and spectral domain optical coherence tomographer were combined to simultaneously collect complementary in vivo images of retinal laser damage during and following exposure. Baseline color fundus photography was performed to complement high-resolution imaging. Monkeys were perfused with 10% buffered formalin and eyes were enucleated for histological analysis. Results. Laser energies for visible retinal damage in this study were consistent with previously reported damage thresholds. Lesions were identified in OCT images that were not visible in direct ophthalmoscopic examination or fundus photos. Unique diagnostic characteristics, specific to each damage regime, were identified and associated with shape and localization of lesions to specific retinal layers. Previously undocumented retinal healing response to blue continuous wave laser exposure was recorded through a novel experimental methodology. Conclusion. This study revealed increased sensitivity of lesion detection and improved specificity to the laser of origin utilizing high-resolution imaging when compared to traditional ophthalmic imaging techniques in the retina. PMID:24891943

  20. Determination of SBS induced damage limits in large fused silica optics for intense, time varying laser pulses

    NASA Astrophysics Data System (ADS)

    Kyrazis, D. T.; Weiland, T. L.

    1990-10-01

    The propagation of intense 3rd harmonic light (0.351 micron) through large optical components of the Nova laser results in fracture damage of the center of the component. This damage is caused by an intense acoustical wave brought to focus in the center by reflecting off the circular edge of the optic. The source of this wave is light generated by transverse stimulated Brillouin scattering (SBS). By taking into account the transient gain characteristics of the SBS, the pulse energy can be correctly predicted that would cause damage for any time variation in intensity in the pump beam, and predict the relative intensity of the Brillouin light. The model is based on the transient behavior of a first order linear system.

  1. Robust optimization of the laser induced damage threshold of dielectric mirrors for high power lasers.

    PubMed

    Chorel, Marine; Lanternier, Thomas; Lavastre, Éric; Bonod, Nicolas; Bousquet, Bruno; Néauport, Jérôme

    2018-04-30

    We report on a numerical optimization of the laser induced damage threshold of multi-dielectric high reflection mirrors in the sub-picosecond regime. We highlight the interplay between the electric field distribution, refractive index and intrinsic laser induced damage threshold of the materials on the overall laser induced damage threshold (LIDT) of the multilayer. We describe an optimization method of the multilayer that minimizes the field enhancement in high refractive index materials while preserving a near perfect reflectivity. This method yields a significant improvement of the damage resistance since a maximum increase of 40% can be achieved on the overall LIDT of the multilayer.

  2. Laser-Induced Damage with Femtosecond Pulses

    NASA Astrophysics Data System (ADS)

    Kafka, Kyle R. P.

    The strong electric fields of focused femtosecond laser pulses lead to non-equilibrium dynamics in materials, which, beyond a threshold intensity, causes laser-induced damage (LID). Such a strongly non-linear and non-perturbative process renders important LID observables like fluence and intensity thresholds and damage morphology (crater) extremely difficult to predict quantitatively. However, femtosecond LID carries a high degree of precision, which has been exploited in various micro/nano-machining and surface engineering applications, such as human eye surgery and super-hydrophobic surfaces. This dissertation presents an array of experimental studies which have measured the damage behavior of various materials under femtosecond irradiation. Precision experiments were performed to produce extreme spatio-temporal confinement of the femtosecond laser-solid damage interaction on monocrystalline Cu, which made possible the first successful direct-benchmarking of LID simulation with realistic damage craters. A technique was developed to produce laser-induced periodic surface structures (LIPSS) in a single pulse (typically a multi-pulse phenomenon), and was used to perform a pump-probe study which revealed asynchronous LIPSS formation on copper. Combined with 1-D calculations, this new experimental result suggests more drastic electron heating than expected. Few-cycle pulses were used to study the LID performance and morphology of commercial ultra-broadband optics, which had not been systematically studied before. With extensive surface analysis, various morphologies were observed, including LIPSS, swelling (blisters), simple craters, and even ring-shaped structures, which varied depending on the coating design, number of pulses, and air/vacuum test environment. Mechanisms leading to these morphologies are discussed, many of which are ultrafast in nature. The applied damage behavior of multi-layer dielectric mirrors was measured and compared between long pulse (150 ps) and femtosecond (33 fs) regimes for a large number of optics contributed by manufacturers globally. The damage performance of the mirrors in the 150 ps tests was shown to be uncorrelated with the 33 fs tests, which implies that the two regimes are guided by different mechanisms. In fact, one of the worst-performing mirrors in the long-pulse regime turned out to be the best-performer in the femtosecond regime. The broad array of experimental results presented here all found that LID in the femtosecond regime is distinctly different from long pulse damage, and paves multiple pathways into developing the next stage of theoretical models and applications of femtosecond laser-induced damage.

  3. Non-destructive evaluation of UV pulse laser-induced damage performance of fused silica optics.

    PubMed

    Huang, Jin; Wang, Fengrui; Liu, Hongjie; Geng, Feng; Jiang, Xiaodong; Sun, Laixi; Ye, Xin; Li, Qingzhi; Wu, Weidong; Zheng, Wanguo; Sun, Dunlu

    2017-11-24

    The surface laser damage performance of fused silica optics is related to the distribution of surface defects. In this study, we used chemical etching assisted by ultrasound and magnetorheological finishing to modify defect distribution in a fused silica surface, resulting in fused silica samples with different laser damage performance. Non-destructive test methods such as UV laser-induced fluorescence imaging and photo-thermal deflection were used to characterize the surface defects that contribute to the absorption of UV laser radiation. Our results indicate that the two methods can quantitatively distinguish differences in the distribution of absorptive defects in fused silica samples subjected to different post-processing steps. The percentage of fluorescence defects and the weak absorption coefficient were strongly related to the damage threshold and damage density of fused silica optics, as confirmed by the correlation curves built from statistical analysis of experimental data. The results show that non-destructive evaluation methods such as laser-induced fluorescence and photo-thermal absorption can be effectively applied to estimate the damage performance of fused silica optics at 351 nm pulse laser radiation. This indirect evaluation method is effective for laser damage performance assessment of fused silica optics prior to utilization.

  4. A statistical study of the relationship between surface quality and laser induced damage

    NASA Astrophysics Data System (ADS)

    Turner, Trey; Turchette, Quentin; Martin, Alex R.

    2012-11-01

    Laser induced damage of optical components is a concern in many applications in the commercial, scientific and military market sectors. Numerous component manufacturers supply "high laser damage threshold" (HLDT) optics to meet the needs of this market, and consumers pay a premium price for these products. While there's no question that HLDT optics are manufactured to more rigorous standards (and are therefore inherently more expensive) than conventional products, it is not clear how this added expense translates directly into better performance. This is because the standard methods for evaluating laser damage, and the underlying assumptions about the validity of traditional laser damage testing, are flawed. In particular, the surface and coating defects that generally lead to laser damage (in many laserparameter regimes of interest) are widely distributed over the component surface with large spaces in between them. As a result, laser damage testing typically doesn't include enough of these defects to achieve the sample sizes necessary to make its results statistically meaningful. The result is a poor correlation between defect characteristics and damage events. This paper establishes specifically why this is the case, and provides some indication of what might be done to remedy the problem.

  5. Laser damage threshold of gelatin and a copper phthalocyanine doped gelatin optical limiter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brant, M.C.; McLean, D.G.; Sutherland, R.L.

    1996-12-31

    The authors demonstrate optical limiting in a unique guest-host system which uses neither the typical liquid or solid host. Instead, they dope a gelatin gel host with a water soluble Copper (II) phthalocyaninetetrasulfonic acid, tetrasodium salt (CuPcTs). They report on the gelatin`s viscoelasticity, laser damage threshold, and self healing of this damage. The viscoelastic gelatin has mechanical properties quite different than a liquid or solid. The authors` laser measurements demonstrate that the single shot damage threshold of the undoped gelatin host increases with decreasing gelatin concentration. The gelatin also has a much higher laser damage threshold than a stiff acrylic.more » Unlike brittle solids, the soft gelatin self heals from laser induced damage. Optical limiting test also show the utility of a gelatin host doped with CuPcTs. The CuPcTs/gelatin matrix is not damaged at incident laser energies 5 times the single shot damage threshold of the gelatin host. However, at this high laser energy the CuPcTs is photo bleached at the beam waist. The authors repair photo bleached sites by annealing the CuPcTs/gelatin matrix.« less

  6. Particle damage sources for fused silica optics and their mitigation on high energy laser systems.

    PubMed

    Bude, J; Carr, C W; Miller, P E; Parham, T; Whitman, P; Monticelli, M; Raman, R; Cross, D; Welday, B; Ravizza, F; Suratwala, T; Davis, J; Fischer, M; Hawley, R; Lee, H; Matthews, M; Norton, M; Nostrand, M; VanBlarcom, D; Sommer, S

    2017-05-15

    High energy laser systems are ultimately limited by laser-induced damage to their critical components. This is especially true of damage to critical fused silica optics, which grows rapidly upon exposure to additional laser pulses. Much progress has been made in eliminating damage precursors in as-processed fused silica optics (the advanced mitigation process, AMP3), and very high damage resistance has been demonstrated in laboratory studies. However, the full potential of these improvements has not yet been realized in actual laser systems. In this work, we explore the importance of additional damage sources-in particular, particle contamination-for fused silica optics fielded in a high-performance laser environment, the National Ignition Facility (NIF) laser system. We demonstrate that the most dangerous sources of particle contamination in a system-level environment are laser-driven particle sources. In the specific case of the NIF laser, we have identified the two important particle sources which account for nearly all the damage observed on AMP3 optics during full laser operation and present mitigations for these particle sources. Finally, with the elimination of these laser-driven particle sources, we demonstrate essentially damage free operation of AMP3 fused silica for ten large optics (a total of 12,000 cm 2 of beam area) for shots from 8.6 J/cm 2 to 9.5 J/cm 2 of 351 nm light (3 ns Gaussian pulse shapes). Potentially many other pulsed high energy laser systems have similar particle sources, and given the insight provided by this study, their identification and elimination should be possible. The mitigations demonstrated here are currently being employed for all large UV silica optics on the National Ignition Facility.

  7. DNA damage in wounded, hypoxic and acidotic human skin fibroblast cell cultures after low laser irradiation

    NASA Astrophysics Data System (ADS)

    Hawkins Evans, D.; Mbene, A.; Zungu, I.; Houreld, N.; Abrahamse, H.

    2009-02-01

    Phototherapy has become more popular and widely used in the treatment of a variety of medical conditions. To ensure sound results as evidence of its effectiveness, well designed experiments must be conducted when determining the effect of phototherapy. Cell culture models such as hypoxic, acidotic and wounded cell cultures simulating different disease conditions including ischemic heart disease, diabetes and wound healing were used to determine the effect of laser irradiation on the genetic integrity of the cell. Even though phototherapy has been found to be beneficial in a wide spectrum of conditions, it has been shown to induce DNA damage. However, this damage appears to be repairable. The risk lies in the fact that phototherapy may help the medical condition initially but damage DNA at the same time leaving undetected damage that may result in late onset, more severe, induced medical conditions including cancer. Human skin fibroblasts were cultured and used to induce a wound (by the central scratch model), hypoxic (by incubation in an anaerobic jar, 95% N2 and 5% O2) and acidotic (reducing the pH of the media to 6.7) conditions. Different models were irradiated using a Helium-Neon (632.8 nm) laser with a power density of 2.07 mW/cm2 and a fluence of 5 J/cm2 or 16 J/cm2. The effect of the irradiation was determined using the Comet assay 1 and 24 h after irradiation. In addition, the Comet assay was performed with the addition of formamidopyrimidine glycosylase (FPG) obviating strand brakes in oxidized bases at a high fluence of 16 J/cm2. A significant increase in DNA damage was seen in all three injured models at both 1 and 24 h post-irradiation when compared to the normal un-injured cells. However, when compared to non-irradiated controls the acidotic model showed a significant decrease in DNA damage 24 h after irradiation indicating the possible induction of cellular DNA repair mechanisms. When wounded cells were irradiated with higher fluences of 16 J/cm2, there was a significant increase in DNA damage in irradiated cells with and without the addition of FPG. These results are indicative of the importance of both cell injury model as well as fluence when assessing the effect of phototherapy on DNA integrity.

  8. Visible lesion thresholds and model predictions for Q-switched 1318-nm and 1540-nm laser exposures to porcine skin

    NASA Astrophysics Data System (ADS)

    Zohner, Justin J.; Schuster, Kurt J.; Chavey, Lucas J.; Stolarski, David J.; Kumru, Semih S.; Rockwell, Benjamin A.; Thomas, Robert J.; Cain, Clarence P.

    2006-02-01

    Skin damage thresholds were measured and compared with theoretical predictions using a skin thermal model for near-IR laser pulses at 1318 nm and 1540 nm. For the 1318-nm data, a Q-switched, 50-ns pulse with a spot size of 5 mm was applied to porcine skin and the damage thresholds were determined at 1 hour and 24 hours postexposure using Probit analysis. The same analysis was conducted for a Q-switched, 30-ns pulse at 1540 nm with a spot size of 5 mm. The Yucatan mini-pig was used as the skin model for human skin due to its similarity to pigmented human skin. The ED 50 for these skin exposures at 24 hours postexposure was 10.5 J/cm2 for the 1318-nm exposures, and 6.1 J/cm2 for the 1540-nm exposures. These results were compared to thermal model predictions. We show that the thermal model fails to account for the ED 50 values observed. A brief discussion of the possible causes of this discrepancy is presented. These thresholds are also compared with previously published skin minimum visible lesion (MVL) thresholds and with the ANSI Standard's MPE for 1318-nm lasers at 50 ns and 1540-nm lasers at 30 ns.

  9. Measurement of optical scattered power from laser-induced shallow pits on silica

    DOE PAGES

    Feigenbaum, Eyal; Nielsen, Norman; Matthews, Manyalibo J.

    2015-10-01

    We describe a model for far-field scattered power and irradiance by a silica glass slab with a shallow-pitted exit surface and is experimentally validated. The comparison to the model is performed using a precisely micromachined ensemble of ~11 μm wide laser ablated shallow pits producing 1% of the incident beam scatter in a 10 mrad angle. This series of samples with damage initiations and laser-induced shallow pits resulting from 351 nm, 5 ns pulsed laser cleaning of metal microparticles at different fluences between 2 J/cm 2 and 11 J/cm 2 are characterized as well and found in good agreement withmore » model predictions.« less

  10. Acute and chronic response of meniscal fibrocartilage to holmium:YAG laser irradiation

    NASA Astrophysics Data System (ADS)

    Horan, Patrick J.; Popovic, Neven A.; Islinger, Richard B.; Kuklo, Timothy R.; Dick, Edward J.

    1997-05-01

    The acute and chronic (10 week) histological effects of the holmium:YAG laser during partial meniscectomy in an in vivo rabbit model were investigated. Twenty-four adult male New Zealand rabbits underwent bilateral parapatellar medial knee arthrotomies. In the right knee, a partial medial meniscectomy was done through the avascular zone using a standard surgical blade. In the left knee, an anatomically similar partial medial meniscectomy was performed using a Ho:YAG laser (Coherent, USA). This study indicates that the laser creates two zones of damage in the meniscal fibrocartilage and that the zone of thermal change may act as a barrier to healing. The zone of thermal change which is eventually debrided was thought at the time of surgery to be viable. In the laser cut menisci, the synovium appears to have greater inflammation early and to be equivalent with the scalpel cut after three weeks. At all time periods there appeared more cellular damage in the laser specimens.

  11. Using a cover layer to improve the damage resistance of gold-coated gratings induced by a picosecond pulsed laser

    NASA Astrophysics Data System (ADS)

    Xia, Zhilin; Wu, Yihan; Kong, Fanyu; Jin, Yunxia

    2018-04-01

    The chirped pulse amplification (CPA) technology is the main approach to achieve high-intensity short-pulse laser. Diffraction gratings are good candidates for stretching and compressing laser pulses in CPA. In this paper, a kind of gold-coated grating has been prepared and its laser damage experiment has been performed. The results reflect that the gratings laser damage was dominated by thermal ablation due to gold films or inclusions absorption and involved the deformation or eruption of the gold film. Based on these damage phenomena, a method of using a cover layer to prevent gold films from deforming and erupting has been adopted to improve the gold-coated gratings laser damage threshold. Since the addition of a cover layer changes the gratings diffraction efficiency, the gratings structure has been re-optimized. Furthermore, according to the calculated thermal stress distributions in gratings with optimized structures, the cover layer was demonstrated to be helpful for improving the gratings laser damage resistance if it is thick enough.

  12. Laser-induced damage threshold of camera sensors and micro-opto-electro-mechanical systems

    NASA Astrophysics Data System (ADS)

    Schwarz, Bastian; Ritt, Gunnar; Körber, Michael; Eberle, Bernd

    2016-10-01

    The continuous development of laser systems towards more compact and efficient devices constitutes an increasing threat to electro-optical imaging sensors such as complementary metal-oxide-semiconductors (CMOS) and charge-coupled devices (CCD). These types of electronic sensors are used in day-to-day life but also in military or civil security applications. In camera systems dedicated to specific tasks, also micro-opto-electro-mechanical systems (MOEMS) like a digital micromirror device (DMD) are part of the optical setup. In such systems, the DMD can be located at an intermediate focal plane of the optics and it is also susceptible to laser damage. The goal of our work is to enhance the knowledge of damaging effects on such devices exposed to laser light. The experimental setup for the investigation of laser-induced damage is described in detail. As laser sources both pulsed lasers and continuous-wave (CW) lasers are used. The laser-induced damage threshold (LIDT) is determined by the single-shot method by increasing the pulse energy from pulse to pulse or in the case of CW-lasers, by increasing the laser power. Furthermore, we investigate the morphology of laser-induced damage patterns and the dependence of the number of destructed device elements on the laser pulse energy or laser power. In addition to the destruction of single pixels, we observe aftereffects like persisting dead columns or rows of pixels in the sensor image.

  13. Characterization of laser induced damage of HR coatings with picosecond pulses

    NASA Astrophysics Data System (ADS)

    Li, Cheng; Zhao, Yuan'an; Cui, Yun; Wang, Yueliang; Peng, Xiaocong; Shan, Chong; Zhu, Meiping; Wang, Jianguo; Shao, Jianda

    2017-11-01

    The effect of protective layer on the picosecond laser-induced damage behaviors of HfO2/SiO2 high-reflective (HR) coatings are explored. Two kinds of 1064nm HR coatings with and without protective layer are deposited by electron beam evaporation. Laser-induced damage tests are conducted with 1064nm, 30ps S-polarized and P-polarized pulses with different angle of incidence (AOI) to make the electric fields intensity in the HR coatings discrepantly. Damage morphology and cross section of damage sites were characterized by scanning electron microscope (SEM) and focused ion beam (FIB), respectively. It is found that SiO2 protective layer have a certain degree of improvement on laser induced damage threshold (LIDT) for every AOIs. The onset damage initiated very near to the Max peak of e-field, after which forms ripple-like pits. The damage morphology presents as layer delamination at high fluence. The Laser damage resistance is correspond with the maximum E-intensity in the coating stacks.

  14. Comparative study of 1,064-nm laser-induced skin burn and thermal skin burn.

    PubMed

    Zhang, Yi-Ming; Ruan, Jing; Xiao, Rong; Zhang, Qiong; Huang, Yue-Sheng

    2013-01-01

    Infrared lasers are widely used in medicine, industry, and other fields. While science, medicine, and the society in general have benefited from the many practical uses of lasers, they also have inherent safety issues. Although several procedures have been put forward to protect the skin from non-specific laser-induced damage, individuals receiving laser therapy or researchers who use laser are still at risk for skin damage. This study aims to understand the interaction between laser and the skin, and to investigate the differences between the skin damage caused by 1,064-nm laser and common thermal burns. Skin lesions on Wistar rats were induced by a 1,064-nm CW laser at a maximum output of 40 W and by a copper brass bar attached to an HQ soldering iron. Histological sections of the lesions and the process of wound healing were evaluated. The widths of the epidermal necrosis and dermal denaturalization of each lesion were measured. To observe wound healing, the epithelial gap and wound gap were measured. Masson's trichrome and picrosirius red staining were also used to assess lesions and wound healing. The thermal damage induced by laser intensified significantly in both horizontal dimension and in vertical depth with increased duration of irradiation. Ten days after wounding, the dermal injuries induced by laser were more severe. Compared with the laser-induced skin damage, the skin burn induced by an HQ soldering iron did not show a similar development or increased in severity with the passage of time. The results of this study showed the pattern of skin damage induced by laser irradiation and a heated brass bar. This study also highlighted the difference between laser irradiation and thermal burn in terms of skin damage and wound healing, and offers insight for further treatment.

  15. Experimental Validation of Thermal Retinal Models of Damage from Laser Radiation

    DTIC Science & Technology

    1979-08-01

    for measuring relative intensity profile with a thermocouple or fiber-optic sensor .............................................. 72 B-2 Calculated...relative intensity profiles meas- ured by 5- and 10-pm-radius sensors of a Gaussian beam, with standard deviation of 10 Pm...the Air Force de - veloped a model for the mathematical prediction of thermal ef- fects of laser radiation on the eye (8). Given the characteris- tics

  16. Laser drilling of thermal barrier coated jet-engine components

    NASA Astrophysics Data System (ADS)

    Sezer, H. K.

    Aero engine hot end components are often covered with ceramic Thermal Barrier Coatings (TBCs). Laser drilling in the TBC coated components can be a source of service life TBC degradation and spallation. The present study aims to understand the mechanisms of TBC delamination and develop techniques to drill holes without damaging the TBC, Nimonic 263 workpieces coated with TBC are used in the experiments. Microwave non-destructive testing (NDT) is employed to monitor the integrity of the coating /substrate interfaces of the post-laser drilled materials. A numerical modelling technique is used to investigate the role of melt ejection on TBC delamination. The model accounts for the vapour and the assist gas flow effects in the process. Broadly, melt ejection induced mechanical stresses for the TBC coating / bond coating and thermal effects for the bond coating / substrate interfaces are found the key delamination mechanisms. Experiments are carried out to validate the findings from the model. Various techniques that enable laser drilling without damaging the TBC are demonstrated. Twin jet assisted acute angle laser drilling is one successful technique that has been analysed using the melt ejection simulation. Optimisation of the twin jet assisted acute angle laser drilling process parameters is carried out using Design of Experiments (DoE) and statistical modelling approaches. Finally, an industrial case study to develop a high speed, high quality laser drilling system for combustor cans is described. Holes are drilled by percussion and trepan drilling in TBC coated and uncoated Haynes 230 workpieces. The production rate of percussion drilling is significantly higher than the trepan drilling, however metallurgical hole quality and reproducibility is poor. A number of process parameters are investigated to improve these characteristics. Gas type and gas pressure effects on various characteristics of the inclined laser drilled holes are investigated through theoretical and experimental work.

  17. Experimental and simulated ultrasonic characterization of complex damage in fused silica.

    PubMed

    Martin, L Peter; Chambers, David H; Thomas, Graham H

    2002-02-01

    The growth of a laser-induced, surface damage site in a fused silica window was monitored by the ultrasonic pulse-echo technique. The laser damage was grown using 12-ns pulses of 1.053-microm wavelength light at a fluence of approximately 27 J/cm2. The ultrasonic data were acquired after each pulse of the laser beam for 19 pulses. In addition, optical images of the surface and subsurface damage shape were recorded after each pulse of the laser. The ultrasonic signal amplitude exhibited variations with the damage size, which were attributed to the subsurface morphology of the damage site. A mechanism for the observed ultrasonic data based on the interaction of the ultrasound with cracks radiating from the damage site was tested using two-dimensional numerical simulations. The simulated results exhibit qualitatively similar characteristics to the experimental data and demonstrate the usefulness of numerical simulation as an aid for ultrasonic signal interpretation. The observed sensitivity to subsurface morphology makes the ultrasonic methodology a promising tool for monitoring laser damage in large aperture laser optics used in fusion energy research.

  18. A developmental perspective on high power laser facility technology for ICF

    NASA Astrophysics Data System (ADS)

    Zhu, Jianqiang; Sun, Mingying; Liu, Chong; Guo, Yajing; Yang, Lin; Yang, Pengqian; Zhang, Yanli; Wang, Bingyan; Liu, Cheng; Li, Yangshuai; Ren, Zhiyuan; Liu, Dean; Liu, Zhigang; Jiao, Zhaoyang; Ren, Lei; Zhang, Guowen; Fan, Quantang; Feng, Tao; Lin, Zunqi

    2018-02-01

    The latest progress on high power laser facilities in NLHPLP was reported. Based on a high power laser prototype, damage behavior of 3ω optics was experimentally tested, and the key influencing factors contributed to laser-induced damage in optics were deeply analyzed. The latest experimental results of advanced precision measurement for optical quality applied in the high power laser facility were introduced. At last, based on the accumulated works of 3ω elements damage behavior status in our laboratory, beam expanding scheme was presented to increase the total maximum output 3ω energy properly and decrease the laser induced damage risking of ω optics simultaneously.

  19. CMO YAG laser damage test facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hue, J.; Dijon, J.; Lyan, P.

    1996-12-31

    The CMO YAG laser damage test facility, which is equipped with a 30Hz laser, is presented in this paper. The main points are described below: (1) The characteristics of the laser beam and the in situ damage detection technique (a scattered light measurement system) are perfectly suited to work up to the frequency of the laser. They are monitored in real time, and work at three wavelengths: 1064 nm, 532 nm, 355 nm. (2) With this same shutter, it is possible to automatically stop the laser on the pulse which induces the first damages. These automatic capabilities enable the samplesmore » to be tested quickly. (3) A Nomarski microscope supplied with a 16-bit CCD camera enables the test sites to be photographed before and after the laser interaction. Image processing enables the authors to extract the first damages. before and after the laser interaction. Image processing enables them to extract the first damages. (4) Six pulse widths are available (between 3ns and 13ns). Therefore, with all these characterization tools, many kinds of laser tests may be considered. These different features are illustrated by experimental results (1-on-1 test or R-on-1 test).« less

  20. Analysis of Depth of Ablation,Thermal Damage, Wound Healing, and Wound Contraction With Erbium YAG Laser in a Yorkshire Pig Model.

    PubMed

    Alsaad, Salman M S; Ross, E Victor; Smith, Wiley J; DeRienzo, Damian P

    2015-11-01

    The erbium YAG laser is commonly used for skin resurfacing. It is known that varying the pulse duration can influence residual thermal damage and wound healing. Our study used a porcine model to evaluate a broad range of settings in a comparison of depth of ablation, depth of residual thermal damage (RTD), and wound contraction employing both a full coverage and fractional hand piece with an erbium YAG laser. The laser delivered an ablative pulse followed by a heating pulse of variable duration using either the full coverage or fractional hand piece. Pulse durations for specific coagulation depths were selected based on existing heat transfer models. The bilateral flanks of a single Yorkshire pig were irradiated. There were 14 treatment groups. 3 sites were treated per group for a total of 42 sites. Two of the 3 sites were for observational assessments and the 3rd site served as a reservoir for biopsies. Biopsy specimens were collected on days 0, 1, 3, 7, 14, and 28. Bleeding, erythema, wound healing, and wound contraction (in the fractional hand piece groups) were assessed. Wound healing is faster for fractional laser skin resurfacing compared with traditional contiguous resurfacing as demonstrated by textural changes and degree of erythema. The laser operator can be confident that the depth of ablation displayed on this system accurately reflects what is occurring in vivo for both confluent and fractional modes. Likewise, the measured degree of coagulation was consistent with panel display settings for the confluent mode. However, the degree of coagulation, as measured by the thickness of residual thermal damage, did not vary significantly between the fractional groups. In other words, the pulse duration of the second (heating) pulse did not impact the degree of coagulation in the fractional mode. There was a 2.3% wound contraction between some groups and a 6.5% wound contraction between other groups. A two way analysis of variance found a statistically significant difference in wound contraction based on ablation depth ( P = 0.012) but the degree of coagulation did not prove to be statistically significant for wound contraction (P = 0.66).

  1. Modeling of laser-induced ionization of solid dielectrics for ablation simulations: role of effective mass

    NASA Astrophysics Data System (ADS)

    Gruzdev, Vitaly

    2010-11-01

    Modeling of laser-induced ionization and heating of conduction-band electrons by laser radiation frequently serves as a basis for simulations supporting experimental studies of laser-induced ablation and damage of solid dielectrics. Together with band gap and electron-particle collision rate, effective electron mass is one of material parameters employed for the ionization modeling. Exact value of the effective mass is not known for many materials frequently utilized in experiments, e.g., fused silica and glasses. Because of that reason, value of the effective mass is arbitrary varied around "reasonable values" for the ionization modeling. In fact, it is utilized as a fitting parameter to fit experimental data on dependence of ablation or damage threshold on laser parameters. In this connection, we study how strong is the influence of variations of the effective mass on the value of conduction-band electron density. We consider influence of the effective mass on the photo-ionization rate and rate of impact ionization. In particular, it is shown that the photo-ionization rate can vary by 2-4 orders of magnitude with variation of effective mass by 50%. Impact ionization shows a much weaker dependence on effective mass, but it significantly enhances the variations of seed-electron density produced by the photo-ionization. Utilizing those results, we demonstrate that variation of effective mass by 50% produces variations of conduction-band electron density by 6 orders of magnitude. In this connection, we discuss the general issues of the current models of laser-induced ionization.

  2. Laser-induced damage of intrinsic and extrinsic defects by picosecond pulses on multilayer dielectric coatings for petawatt-class lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Negres, Raluca A.; Carr, Christopher W.; Laurence, Ted A.

    2016-08-01

    Here, we describe a damage testing system and its use in investigating laser-induced optical damage initiated by both intrinsic and extrinsic precursors on multilayer dielectric coatings suitable for use in high-energy, large-aperture petawatt-class lasers. We employ small-area damage test methodologies to evaluate the intrinsic damage resistance of various coatings as a function of deposition methods and coating materials under simulated use conditions. In addition, we demonstrate that damage initiation by raster scanning at lower fluences and growth threshold testing are required to probe the density of extrinsic defects, which will limit large-aperture optics performance.

  3. Femtosecond near-infrared laser microirradiation reveals a crucial role for PARP signaling on factor assemblies at DNA damage sites

    PubMed Central

    Saquilabon Cruz, Gladys Mae; Kong, Xiangduo; Silva, Bárbara Alcaraz; Khatibzadeh, Nima; Thai, Ryan; Berns, Michael W.; Yokomori, Kyoko

    2016-01-01

    Laser microirradiation is a powerful tool for real-time single-cell analysis of the DNA damage response (DDR). It is often found, however, that factor recruitment or modification profiles vary depending on the laser system employed. This is likely due to an incomplete understanding of how laser conditions/dosages affect the amounts and types of damage and the DDR. We compared different irradiation conditions using a femtosecond near-infrared laser and found distinct damage site recruitment thresholds for 53BP1 and TRF2 correlating with the dose-dependent increase of strand breaks and damage complexity. Low input-power microirradiation that induces relatively simple strand breaks led to robust recruitment of 53BP1 but not TRF2. In contrast, increased strand breaks with complex damage including crosslinking and base damage generated by high input-power microirradiation resulted in TRF2 recruitment to damage sites with no 53BP1 clustering. We found that poly(ADP-ribose) polymerase (PARP) activation distinguishes between the two damage states and that PARP activation is essential for rapid TRF2 recruitment while suppressing 53BP1 accumulation at damage sites. Thus, our results reveal that careful titration of laser irradiation conditions allows induction of varying amounts and complexities of DNA damage that are gauged by differential PARP activation regulating protein assembly at the damage site. PMID:26424850

  4. Visible lesion thresholds with pulse duration, spot size dependency, and model predictions for 1.54-microm, near-infrared laser pulses penetrating porcine skin.

    PubMed

    Cain, Clarence P; Schuster, Kurt J; Zohner, Justin J; Stockton, Kevin L; Stolarski, David J; Thomas, Robert J; Rockwell, Benjamin A; Roach, William P

    2006-01-01

    Er:glass lasers have been in operation with both long pulses (hundreds of microseconds) and Q-switched pulses (50 to 100 ns) for more than 35 yr. The ocular hazards of this laser were reported early, and it was determined that damage to the eye from the 1.54-microm wavelength occurred mainly in the cornea where light from this wavelength is highly absorbed. Research on skin hazards has been reported only in the past few years because of limited pulse energies from these lasers. Currently, however, with pulse energies in the hundreds of joules, these lasers may be hazardous to the skin in addition to being eye hazards. We report our minimum visible lesion (MVL) threshold measurements for two different pulse durations and three different spot sizes for the 1.54-microm wavelength using porcine skin as an in vivo model. We also compare our measurements to results from our model, based on the heat transfer equation and the rate process equation. Our MVL-ED50 thresholds for the long pulse (600 micros) at 24 h postexposure were measured to be 20, 8.1, and 7.4 J cm(-2) for spot diameters of 0.7, 1.0, and 5 mm, respectively. Q-switched laser pulses of 31 ns had lower ED50 (estimated dose for a 50% probability of laser-induced damage) thresholds of 6.1 J cm(-2) for a 5-mm-diam, top-hat spatial profile laser pulse.

  5. Optical coatings for laser fusion applications

    NASA Astrophysics Data System (ADS)

    Lowdermilk, W. H.; Milam, D.; Rainer, F.

    1980-04-01

    Lasers for fusion experiments use thin-film dielectric coatings for reflecting antireflecting and polarizing surface elements. Coatings are most important to the Nd:glass laser application. The most important requirements of these coatings are accuracy of the average value of reflectance and transmission, uniformity of amplitude and phase front of the reflected or transmitted light, and laser damage threshold. Damage resistance strongly affects the laser's design and performance. The success of advanced lasers for future experiments and for reactor applications requires significant developments in damage resistant coatings for ultraviolet laser radiation.

  6. Genotoxic effects of 1064-nm Nd:YAG and 532-nm KTP lasers on fibroblast cell cultures.

    PubMed

    Senturk, N; Bedir, A; Bilgici, B; Aydin, F; Okuyucu, A; Ozmen, Z C; Turanli, A Y

    2010-07-01

    Several different laser types are used in cutaneous surgery. The neodymium:yttrium-aluminium-garnet (Nd:YAG) and frequency-doubled Nd:YAG (KTP, potassium titanyl phosphate) lasers are widely used in dermatology. To investigate the possible genotoxic effects on fibroblasts of irradiation with a 1064-nm Nd:YAG laser and a 532-nm KTP laser. Fibroblast cell cultures were exposed to each of the lasers, using 10-mm spot size at 60 ms pulse duration with 10, 20, 40 J/cm(2) and 3, 6, 12 J/cm(2) fluences, respectively. Fibroblasts in passages 1-6 were used. During laser irradiation, 96-well microplate cultures were kept on a cooling block and transported on ice and in the dark, and processed immediately for single-cell gel electrophoresis (SCGE) assay (also known as a comet assay). DNA damage was determined by computerized assessment of comet assay. There was increasing damage with increasing numbers of passages. For the Nd:YAG laser, the greatest damage occurred on passages 5 and 6, whereas the greatest damage appeared at passages 3 and 4 for KTP and returned to baseline at passages 5 and 6. Damage also increased with each dose increment for both wavelengths. At the highest dose for both wavelengths (Nd:YAG 40 J/cm(2) and KTP 12 J/cm(2)), damage was higher with the Nd:YAG laser. Different patterns of cellular damage were seen for different cell-culture passages, treatment doses, and laser wavelengths. These dose ranges are generally used for the treatment of vascular and pigmented lesions and for rejuvenation purposes. As replicative ageing or cell senescence is one of the critical factors determining the extent of cell damage induced by laser therapy, these results may have important implications for clinical practice.

  7. The effect of different angiolytic lasers on resolution of subepithelial mucosal hematoma in an animal model.

    PubMed

    Novakovic, Daniel; D'Elia, Joanna; Branski, Ryan C; Blitzer, Andrew

    2014-06-01

    Vocal fold hematoma is traditionally managed with a period of voice rest, in the order of weeks, to allow natural resolution. This study is designed to examine the efficacy and safety of a number of hemoglobin-avid (vascular) lasers when used in the setting of acute vocal fold hematoma. Venous blood drawn from 4 white rabbits was used to create an array of subepithelial hematomas in the buccal cavities of each animal. Laser energy from I of 3 different lasers (532-nm pulsed potassium titanyl phosphate [KTP], 532-nm diode KTP, and 940-nm diode laser) was applied to each of the test hematomas at varying energy levels. Hematoma sites were photographed at days 0, 1, 5, 7, 9, and 12. Two animals were sacrificed on day 7 and the remainder on day 12. Histological evaluation of collateral tissue damage and residual hematoma was performed on biopsy specimens. Macroscopic and microscopic ulceration at laser-treated sites was mostly resolved by day 7. Inflammatory cell infiltrate was present in laser-treated and hematoma-only sites. Laser-treated samples showed alterations in vascularity. Hemoglobin-avid lasers may be beneficial in accelerating subepithelial hematoma resolution with a favorable tissue damage profile.

  8. A finite element method model to simulate laser interstitial thermo therapy in anatomical inhomogeneous regions

    PubMed Central

    Mohammed, Yassene; Verhey, Janko F

    2005-01-01

    Background Laser Interstitial ThermoTherapy (LITT) is a well established surgical method. The use of LITT is so far limited to homogeneous tissues, e.g. the liver. One of the reasons is the limited capability of existing treatment planning models to calculate accurately the damage zone. The treatment planning in inhomogeneous tissues, especially of regions near main vessels, poses still a challenge. In order to extend the application of LITT to a wider range of anatomical regions new simulation methods are needed. The model described with this article enables efficient simulation for predicting damaged tissue as a basis for a future laser-surgical planning system. Previously we described the dependency of the model on geometry. With the presented paper including two video files we focus on the methodological, physical and mathematical background of the model. Methods In contrast to previous simulation attempts, our model is based on finite element method (FEM). We propose the use of LITT, in sensitive areas such as the neck region to treat tumours in lymph node with dimensions of 0.5 cm – 2 cm in diameter near the carotid artery. Our model is based on calculations describing the light distribution using the diffusion approximation of the transport theory; the temperature rise using the bioheat equation, including the effect of microperfusion in tissue to determine the extent of thermal damage; and the dependency of thermal and optical properties on the temperature and the injury. Injury is estimated using a damage integral. To check our model we performed a first in vitro experiment on porcine muscle tissue. Results We performed the derivation of the geometry from 3D ultrasound data and show for this proposed geometry the energy distribution, the heat elevation, and the damage zone. Further on, we perform a comparison with the in-vitro experiment. The calculation shows an error of 5% in the x-axis parallel to the blood vessel. Conclusions The FEM technique proposed can overcome limitations of other methods and enables an efficient simulation for predicting the damage zone induced using LITT. Our calculations show clearly that major vessels would not be damaged. The area/volume of the damaged zone calculated from both simulation and in-vitro experiment fits well and the deviation is small. One of the main reasons for the deviation is the lack of accurate values of the tissue optical properties. In further experiments this needs to be validated. PMID:15631630

  9. Enhanced Damage-Resistant Optics for Spaceflight Laser Systems: Workshop findings and recommendations

    NASA Technical Reports Server (NTRS)

    Schulze, Norman; Cimolino, Marc; Guenther, Arthur; Mcminn, Ted; Rainer, Frank; Schmid, Ansgar; Seitel, Steven C.; Soileau, M. J.; Theon, John S.; Walz, William

    1991-01-01

    NASA has defined a program to address critical laser-induced damage issues peculiar to its remote sensing systems. The Langley Research Center (LaRC), with input from the Goddard Space Flight Center (GSFC), has developed a program plan focusing on the certification of optical materials for spaceflight applications and the development of techniques to determine the reliability of such materials under extended laser exposures. This plan involves cooperative efforts between NASA and optics manufacturers to quantify the performance of optical materials for NASA systems and to ensure NASA's continued application of the highest quality optics possible for enhanced system reliability. A review panel was organized to assess NASA's optical damage concerns and to evaluate the effectiveness of the LaRC proposed program plan. This panel consisted of experts in the areas of laser-induced damage, optical coating manufacture, and the design and development of laser systems for space. The panel was presented information on NASA's current and planned laser remote sensing programs, laser-induced damage problems already encountered in NASA systems, and the proposed program plan to address these issues. Additionally, technical presentations were made on the state of the art in damage mechanisms, optical materials testing, and issues of coating manufacture germane to laser damage.

  10. Recruitment of TRF2 to laser-induced DNA damage sites.

    PubMed

    Huda, Nazmul; Abe, Satoshi; Gu, Ling; Mendonca, Marc S; Mohanty, Samarendra; Gilley, David

    2012-09-01

    Several lines of evidence suggest that the telomere-associated protein TRF2 plays critical roles in the DNA damage response. TRF2 is rapidly and transiently phosphorylated by an ATM-dependent pathway in response to DNA damage and this DNA damage-induced phosphoryation is essential for the DNA-PK-dependent pathway of DNA double-strand break repair (DSB). However, the type of DNA damage that induces TRF2 localization to the damage sites, the requirement for DNA damage-induced phosphorylation of TRF2 for its recruitment, as well as the detailed kinetics of TRF2 accumulation at DNA damage sites have not been fully investigated. In order to address these questions, we used an ultrafast femtosecond multiphoton laser and a continuous wave 405-nm single photon laser to induce DNA damage at defined nuclear locations. Our results showed that DNA damage produced by a femtosecond multiphoton laser was sufficient for localization of TRF2 to these DNA damage sites. We also demonstrate that ectopically expressed TRF2 was recruited to DNA lesions created by a 405-nm laser. Our data suggest that ATM and DNA-PKcs kinases are not required for TRF2 localization to DNA damage sites. Furthermore, we found that phosphorylation of TRF2 at residue T188 was not essential for its recruitment to laser-induced DNA damage sites. Thus, we provide further evidence that a protein known to function in telomere maintenance, TRF2, is recruited to sites of DNA damage and plays critical roles in the DNA damage response. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Effect of low-level laser treatment on cochlea hair-cell recovery after ototoxic hearing loss

    NASA Astrophysics Data System (ADS)

    Rhee, Chung-Ku; He, Peijie; Jung, Jae Yun; Ahn, Jin-Chul; Chung, Phil-Sang; Lee, Min Young; Suh, Myung-Whan

    2013-12-01

    The primary cause of hearing loss includes damage to cochlear hair cells. Low-level laser therapy (LLLT) has become a popular treatment for damaged nervous systems. Based on the idea that cochlea hair cells and neural cells are from same developmental origin, the effect of LLLT on hearing loss in animal models is evaluated. Hearing loss animal models were established, and the animals were irradiated by 830-nm diode laser once a day for 10 days. Power density of the laser treatment was 900 mW/cm2, and the fluence was 162 to 194 J. The tympanic membrane was evaluated after LLLT. Thresholds of auditory brainstem responses were evaluated before treatment, after gentamicin, and after 10 days of LLLT. Quantitative scanning electron microscopic (SEM) observations were done by counting remaining hair cells. Tympanic membranes were intact at the end of the experiment. No adverse tissue reaction was found. On SEM images, LLLT significantly increased the number of hair cells in middle and basal turns. Hearing was significantly improved by laser irradiation. After LLLT treatment, both the hearing threshold and hair-cell count significantly improved.

  12. Investigation of Laser Induced Breakdown Spectroscopy (LIBS) for the Differentiation of Nerve and Gland Tissue—A Possible Application for a Laser Surgery Feedback Control Mechanism

    NASA Astrophysics Data System (ADS)

    Mehari, F.; Rohde, M.; Knipfer, C.; Kanawade, R.; Klämpfl, F.; W., Adler; Oetter, N.; Stelzle, F.; Schmidt, M.

    2016-06-01

    Laser surgery provides clean, fast and accurate modeling of tissue. However, the inability to determine what kind of tissue is being ablated at the bottom of the cut may lead to the iatrogenic damage of structures that were meant to be preserved. In this context, nerve preservation is one of the key challenges in any surgical procedure. One example is the treatment of parotid gland pathologies, where the facial nerve (N. VII) and its main branches run through and fan out inside the glands parenchyma. A feedback system that automatically stops the ablation to prevent nerve-tissue damage could greatly increase the applicability and safety of surgical laser systems. In the present study, Laser Induced Breakdown Spectroscopy (LIBS) is used to differentiate between nerve and gland tissue of an ex-vivo pig animal model. The LIBS results obtained in this preliminary experiment suggest that the measured spectra, containing atomic and molecular emissions, can be used to differentiate between the two tissue types. The measurements and differentiation were performed in open air and under normal stray light conditions.

  13. Photothermal and photochemical effects of laser light absorption by indocyanine green (ICG)

    NASA Astrophysics Data System (ADS)

    Yaseen, Mohammad A.; Diagaradjane, Parmeswaran; Pikkula, Brian M.; Yu, Jie; Wong, Michael S.; Anvari, Bahman

    2005-04-01

    Indocyanine Green (ICG) is clinically used as a fluorescent dye for imaging purposes. Its rapid circulation kinetics and minimal toxicity has prompted investigation into ICG's utility as a photosentitizer for therapeutic applications. Traditionally, optically mediated tumor therapy has focused on photodynamic therapy, which employs a photochemical mechanism resulting from the absorption of low intensity CW laser light by localized photosensitizers such as Photofrin II, Benzoporphyrin Derivative (BPD), ICG. Treatment of cutaneous vascular malformations such as port-wine stains, on the other hand, is based on a photothermal mechanism resulting from the absorption of high intensity pulsed laser light by hemoglobin. In this study, we compared the effectiveness of combining photochemical and photothermal mechanisms during application of ICG in conjunction with laser irradiation with the intention that the combined approach may lead to a reduction in the threshold dose of pulsed laser light required to treat hypervascular malformations. The blood vessels in rabbit ears were used as an in vivo model for targeted vasculature. Irradiation of the ears with IR light (λ=785 nm, Δτ = 3 min, Io = 120 mW) was used to elicit photochemical damage, while photothermal damage was brought about using pulses from a ruby laser (λ=694 nm, τ = 3 ms) with different fluences. For the combined modality, photochemical damage was induced first and followed by photothermal irradiation. This modality was compared with photothermal irradiation alone. The effectiveness of each irradiation scheme was assessed using histopathological analysis. We present preliminary data that suggests that pretreatment with photodynamic therapy before photothermal coagulation results in more severe vascular damage with lower photothermal fluence levels. The results of this study provide the foundation work for further exploration of the therapeutic potentials of photochemical and photothermal effects during application of ICG in conjunction with laser irradiation.

  14. MELBA: a fully customizable laser for damage experiments

    NASA Astrophysics Data System (ADS)

    Veinhard, Matthieu; Bonville, Odile; Courchinoux, Roger; Parreault, Romain; Natoli, Jean-Yves; Lamaignère, Laurent

    2017-11-01

    A millimetric aperture Nd:glass laser system has been designed and constructed at the CEA-CESTA. Its aim is to best mimic the laser conditions that can be found in inertial confinement fusion facilities. It is therefore used to study the main phenomena that prevents these lasers to work at their maximum power: the laser induced damage of the optical components. The combination of temporal and spatial modulators provides, every minute, a 6 J, 7 mm, 351 nm homogeneous beam at the fused silica sample location. This proceeding illustrates the capacity of the facility over two experiments: the study of damage initiation and the growth of laser damage sites on fused silica, up to millimetric scales

  15. An Investigation of Laser Induced Surface Damage in glass.

    DTIC Science & Technology

    1985-06-01

    ROA-RI60 669 RN INVESTIGATION OF LASER INDUCED SURFACE DAMAG IN In1 1 6lo GLASS (U) NAVAL POSTGRADUATE SCHOOL MONTEREY CA R D UYAK JUN 85IUNCLASSIFIED...ii -0 NAVAL POSTGRADUATE SCHOOL Monterey, California bor OCT THESIS AN INVESTIGATION OF LASER INDUCED SURFACE DAMAGE IN GLASS by )Richard David Uyak ,L...Subtitle) EPORT 6 PERIOD COVERED %An Investigation of Laser Induced Master’s Thesis Surface Damage in Glass June 1985S. PERFORMING ORG. REPORT MUMMER 7

  16. Dynamics of retinal photocoagulation and rupture

    NASA Astrophysics Data System (ADS)

    Sramek, Christopher; Paulus, Yannis; Nomoto, Hiroyuki; Huie, Phil; Brown, Jefferson; Palanker, Daniel

    2009-05-01

    In laser retinal photocoagulation, short (<20 ms) pulses have been found to reduce thermal damage to the inner retina, decrease treatment time, and minimize pain. However, the safe therapeutic window (defined as the ratio of power for producing a rupture to that of mild coagulation) decreases with shorter exposures. To quantify the extent of retinal heating and maximize the therapeutic window, a computational model of millisecond retinal photocoagulation and rupture was developed. Optical attenuation of 532-nm laser light in ocular tissues was measured, including retinal pigment epithelial (RPE) pigmentation and cell-size variability. Threshold powers for vaporization and RPE damage were measured with pulse durations ranging from 1 to 200 ms. A finite element model of retinal heating inferred that vaporization (rupture) takes place at 180-190°C. RPE damage was accurately described by the Arrhenius model with activation energy of 340 kJ/mol. Computed photocoagulation lesion width increased logarithmically with pulse duration, in agreement with histological findings. The model will allow for the optimization of beam parameters to increase the width of the therapeutic window for short exposures.

  17. Laser-induced damage of coatings on Yb:YAG crystals at cryogenic condition

    NASA Astrophysics Data System (ADS)

    Wang, He; Zhang, Weili; Chen, Shunli; Zhu, Meiping; He, Hongbo; Fan, Zhengxiu

    2011-12-01

    As large amounts of heat need to be dissipated during laser operation, some diode pumped solid state lasers (DPSSL), especially Yb:YAG laser, operate at cryogenic condition. This work investigated the laser induced damage of coatings (high-reflective and anti-reflective coatings) on Yb:YAG crystals at cryogenic temperature and room temperature. The results show that the damage threshold of coatings at cryogenic temperature is lower than the one at room temperature. Field-emission scanning electron microscopy (FESEM), optical profiler, step profiler and Atomic force microscope (AFM) were used to obtain the damage morphology, size and depth. Taking alteration of physical parameters, microstructure of coatings and the environmental pollution into consideration, we analyzed the key factor of lowering the coating damage threshold at cryogenic conditions. The results are important to understand the mechanisms leading to damage at cryogenic condition.

  18. DNA damage in blood cells exposed to low-level lasers.

    PubMed

    Sergio, Luiz Philippe da Silva; Silva, Ana Paula Almeida da; Amorim, Philipi Freitas; Campos, Vera Maria Araújo; Magalhães, Luis Alexandre Gonçalves; de Paoli, Flavia; de Souza da Fonseca, Adenilson

    2015-04-01

    In regenerative medicine, there are increasing applications of low-level lasers in therapeutic protocols for treatment of diseases in soft and in bone tissues. However, there are doubts about effects on DNA, and an adequate dosimetry could improve the safety of clinical applications of these lasers. This work aimed to evaluate DNA damage in peripheral blood cells of Wistar rats induced by low-level red and infrared lasers at different fluences, powers, and emission modes according to therapeutic protocols. Peripheral blood samples were exposed to lasers and DNA damage was accessed by comet assay. In other experiments, DNA damage was accessed in blood cells by modified comet assay using formamidopyrimidine DNA glycosylase (Fpg) and endonuclease III enzymes. Data show that exposure to low-level red and infrared lasers induce DNA damage depending on fluence, power and emission mode, which are targeted by Fpg and endonuclease III. Oxidative DNA damage should be considered for therapeutic efficacy and patient safety in clinical applications based on low-level red and infrared lasers. © 2015 Wiley Periodicals, Inc.

  19. Optical components damage parameters database system

    NASA Astrophysics Data System (ADS)

    Tao, Yizheng; Li, Xinglan; Jin, Yuquan; Xie, Dongmei; Tang, Dingyong

    2012-10-01

    Optical component is the key to large-scale laser device developed by one of its load capacity is directly related to the device output capacity indicators, load capacity depends on many factors. Through the optical components will damage parameters database load capacity factors of various digital, information technology, for the load capacity of optical components to provide a scientific basis for data support; use of business processes and model-driven approach, the establishment of component damage parameter information model and database systems, system application results that meet the injury test optical components business processes and data management requirements of damage parameters, component parameters of flexible, configurable system is simple, easy to use, improve the efficiency of the optical component damage test.

  20. Empirical constraints on the effects of radiation damage on helium diffusion in zircon

    NASA Astrophysics Data System (ADS)

    Anderson, Alyssa J.; Hodges, Kip V.; van Soest, Matthijs C.

    2017-12-01

    In this study, we empirically evaluate the impact of radiation damage on zircon (U-Th)/He closure temperatures for a suite of zircon crystals from the slowly cooled McClure Mountain syenite of south-central Colorado, USA. We present new zircon, titanite, and apatite conventional (U-Th)/He dates, zircon laser ablation (U-Th)/He and U-Pb dates, and zircon Raman spectra for crystals from the syenite. Titanite and apatite (U-Th)/He dates range from 447 to 523 Ma and 88.0 to 138.9 Ma, respectively, and display no clear correlation between (U-Th)/He date and effective uranium concentration. Conventional zircon (U-Th)/He dates range from 230.3 to 474 Ma, while laser ablation zircon (U-Th)/He dates show even greater dispersion, ranging from 5.31 to 520 Ma. Dates from both zircon (U-Th)/He datasets decrease with increasing alpha dose, indicating that most of the dispersion can be attributed to radiation damage. Alpha dose values for the dated zircon crystals range from effectively zero to 2.15 × 1019 α /g, spanning the complete damage spectrum. We use an independently constrained thermal model to empirically assign a closure temperature to each dated zircon grain. If we assume that this thermal model is robust, the zircon radiation damage accumulation and annealing model of Guenthner et al. (2013) does not accurately predict closure temperatures for many of the analyzed zircon crystals. Raman maps of the zircons dated by laser ablation document complex radiation damage zoning, sometimes revealing crystalline zones in grains with alpha dose values suggestive of amorphous material. Such zoning likely resulted in heterogeneous intra-crystalline helium diffusion and may help explain some of the discrepancies between our empirical findings and the Guenthner et al. (2013) model predictions. Because U-Th zoning is a common feature in zircon, radiation damage zoning is likely to be a concern for most ancient, slowly cooled zircon (U-Th)/He datasets. Whenever possible, multiple mineral-isotopic systems should be employed to add additional, independent constraints to a sample's thermal history.

  1. Development of high damage threshold laser-machined apodizers and gain filters for laser applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rambo, Patrick; Schwarz, Jens; Kimmel, Mark

    We have developed high damage threshold filters to modify the spatial profile of a high energy laser beam. The filters are formed by laser ablation of a transmissive window. The ablation sites constitute scattering centers which can be filtered in a subsequent spatial filter. Finally, by creating the filters in dielectric materials, we see an increased laser-induced damage threshold from previous filters created using ‘metal on glass’ lithography.

  2. Development of high damage threshold laser-machined apodizers and gain filters for laser applications

    DOE PAGES

    Rambo, Patrick; Schwarz, Jens; Kimmel, Mark; ...

    2016-09-27

    We have developed high damage threshold filters to modify the spatial profile of a high energy laser beam. The filters are formed by laser ablation of a transmissive window. The ablation sites constitute scattering centers which can be filtered in a subsequent spatial filter. Finally, by creating the filters in dielectric materials, we see an increased laser-induced damage threshold from previous filters created using ‘metal on glass’ lithography.

  3. Fast and automatic depth control of iterative bone ablation based on optical coherence tomography data

    NASA Astrophysics Data System (ADS)

    Fuchs, Alexander; Pengel, Steffen; Bergmeier, Jan; Kahrs, Lüder A.; Ortmaier, Tobias

    2015-07-01

    Laser surgery is an established clinical procedure in dental applications, soft tissue ablation, and ophthalmology. The presented experimental set-up for closed-loop control of laser bone ablation addresses a feedback system and enables safe ablation towards anatomical structures that usually would have high risk of damage. This study is based on combined working volumes of optical coherence tomography (OCT) and Er:YAG cutting laser. High level of automation in fast image data processing and tissue treatment enables reproducible results and shortens the time in the operating room. For registration of the two coordinate systems a cross-like incision is ablated with the Er:YAG laser and segmented with OCT in three distances. The resulting Er:YAG coordinate system is reconstructed. A parameter list defines multiple sets of laser parameters including discrete and specific ablation rates as ablation model. The control algorithm uses this model to plan corrective laser paths for each set of laser parameters and dynamically adapts the distance of the laser focus. With this iterative control cycle consisting of image processing, path planning, ablation, and moistening of tissue the target geometry and desired depth are approximated until no further corrective laser paths can be set. The achieved depth stays within the tolerances of the parameter set with the smallest ablation rate. Specimen trials with fresh porcine bone have been conducted to prove the functionality of the developed concept. Flat bottom surfaces and sharp edges of the outline without visual signs of thermal damage verify the feasibility of automated, OCT controlled laser bone ablation with minimal process time.

  4. CO2 laser and plasma microjet process for improving laser optics

    DOEpatents

    Brusasco, Raymond M.; Penetrante, Bernardino M.; Butler, James A.; Grundler, Walter; Governo, George K.

    2003-09-16

    A optic is produced for operation at the fundamental Nd:YAG laser wavelength of 1.06 micrometers through the tripled Nd:YAG laser wavelength of 355 nanometers by the method of reducing or eliminating the growth of laser damage sites in the optics by processing the optics to stop damage in the optics from growing to a predetermined critical size. A system is provided of mitigating the growth of laser-induced damage in optics by virtue of very localized removal of glass and absorbing material.

  5. Mitigating intrinsic defects and laser damage using pulsetrain-burst (>100 MHz) ultrafast laser processing

    NASA Astrophysics Data System (ADS)

    McKinney, Luke; Frank, Felix; Graper, David; Dean, Jesse; Forrester, Paul; Rioblanc, Maxence; Nantel, Marc; Marjoribanks, Robin

    2005-09-01

    Ultrafast-laser micromachining has promise as an approach to trimming and 'healing' small laser-produced damage sites in laser-system optics--a common experience in state-of-the-art high-power laser systems. More-conventional approaches currently include mechanical micromachining, chemical modification, and treatment using cw and long-pulse lasers. Laser-optics materials of interest include fused silica, multilayer dielectric stacks for anti-reflection coatings or high-reflectivity mirrors, and inorganic crystals such as KD*P, used for Pockels cells and frequency-doubling. We report on novel efforts using ultrafast-laser pulsetrain-burst processing (microsecond bursts at 133 MHz) to mitigate damage in fused silica, dielectric coatings, and KD*P crystals. We have established the characteristics of pulsetrain-burst micromachining in fused silica, multilayer mirrors, and KD*P, and determined the etch rates and morphology under different conditions of fluence-delivery. From all of these, we have begun to identify new means to optimize the laser-repair of optics defects and damage.

  6. Small-scale mechanical characterization of viscoelastic adhesive systems

    NASA Astrophysics Data System (ADS)

    Shean, T. A. V.

    Aero engine hot end components are often covered with ceramic Thermal Barrier Coatings (TBCs). Laser drilling in the TBC coated components can be a source of service life TBC degradation and spallation. The present study aims to understand the mechanisms of TBC delamination and develop techniques to drill holes without damaging the TBC, Nimonic 263 workpieces coated with TBC are used in the experiments. Microwave non-destructive testing (NDT) is employed to monitor the integrity of the coating /substrate interfaces of the post-laser drilled materials. A numerical modelling technique is used to investigate the role of melt ejection on TBC delamination. The model accounts for the vapour and the assist gas flow effects in the process. Broadly, melt ejection induced mechanical stresses for the TBC coating / bond coating and thermal effects for the bond coating / substrate interfaces are found the key delamination mechanisms. Experiments are carried out to validate the findings from the model. Various techniques that enable laser drilling without damaging the TBC are demonstrated. Twin jet assisted acute angle laser drilling is one successful technique that has been analysed using the melt ejection simulation. Optimisation of the twin jet assisted acute angle laser drilling process parameters is carried out using Design of Experiments (DoE) and statistical modelling approaches. Finally, an industrial case study to develop a high speed, high quality laser drilling system for combustor cans is described. Holes are drilled by percussion and trepan drilling in TBC coated and uncoated Haynes 230 workpieces. The production rate of percussion drilling is significantly higher than the trepan drilling, however metallurgical hole quality and reproducibility is poor. A number of process parameters are investigated to improve these characteristics. Gas type and gas pressure effects on various characteristics of the inclined laser drilled holes are investigated through theoretical and experimental work.

  7. Laser-induced retinal damage thresholds for annular retinal beam profiles

    NASA Astrophysics Data System (ADS)

    Kennedy, Paul K.; Zuclich, Joseph A.; Lund, David J.; Edsall, Peter R.; Till, Stephen; Stuck, Bruce E.; Hollins, Richard C.

    2004-07-01

    The dependence of retinal damage thresholds on laser spot size, for annular retinal beam profiles, was measured in vivo for 3 μs, 590 nm pulses from a flashlamp-pumped dye laser. Minimum Visible Lesion (MVL)ED50 thresholds in rhesus were measured for annular retinal beam profiles covering 5, 10, and 20 mrad of visual field; which correspond to outer beam diameters of roughly 70, 160, and 300 μm, respectively, on the primate retina. Annular beam profiles at the retinal plane were achieved using a telescopic imaging system, with the focal properties of the eye represented as an equivalent thin lens, and all annular beam profiles had a 37% central obscuration. As a check on experimental data, theoretical MVL-ED50 thresholds for annular beam exposures were calculated using the Thompson-Gerstman granular model of laser-induced thermal damage to the retina. Threshold calculations were performed for the three experimental beam diameters and for an intermediate case with an outer beam diameter of 230 μm. Results indicate that the threshold vs. spot size trends, for annular beams, are similar to the trends for top hat beams determined in a previous study; i.e., the threshold dose varies with the retinal image area for larger image sizes. The model correctly predicts the threshold vs. spot size trends seen in the biological data, for both annular and top hat retinal beam profiles.

  8. USAF Summer Research Program - 1993 Summer Research Extension Program Final Reports, Volume 1B, Armstrong Laboratory

    DTIC Science & Technology

    1994-11-01

    For example, the Collimating scotopic components of the ERG flash response are significantly attenuated by retinitis pigmentosa [7]. It is possible... RETINAL DAMAGE Bernard S. Gerstman Associate Professor Department of Physics Florida International University University Park Miami, FL 33199 Final...and Florida International University April 1994 6-1 A COMPUTATIONAL THERMAL MODEL AND THEORETICAL THERMODYNAMIC MODEL OF LASER INDUCED RETINAL DAMAGE

  9. Damage Thresholds for Exposure to NIR and Blue Lasers in an In Vitro RPE Cell System

    DTIC Science & Technology

    2006-07-01

    damage , and to identify antioxidants capable of protecting these cells from laser-in- duced cell death. MATERIALS AND METHODS The human RPE cell...melanosomes in blue laser-induced damage in vitro, which confirms the view that melanin plays an important role in photochemical damage mechanisms in...community has only a validating role in the animal ED50 damage threshold data used by safety committees. Systems of in vitro analysis must be

  10. The effect of nonablative laser energy on joint capsular properties. An in vitro histologic and biochemical study using a rabbit model

    NASA Technical Reports Server (NTRS)

    Hayashi, K.; Thabit, G. 3rd; Vailas, A. C.; Bogdanske, J. J.; Cooley, A. J.; Markel, M. D.

    1996-01-01

    The purpose of this study was to evaluate the effect of laser energy at nonablative levels on joint capsular histologic and biochemical properties in an in vitro rabbit model. The medial and lateral portions of the femoropatellar joint capsule from both stifles of 12 mature New Zealand White rabbits were used. Specimens were divided into three treatment groups (5 watts, 10 watts, and 15 watt) and one control group using a randomized block design. Specimens were placed in a 37 degrees bath of lactated Ringer's solution and laser energy was applied using a holmium:yttrium-aluminum-garnet laser in four transverse passes across the tissue at a velocity of 2 mm/sec with the handpiece set 1.5 mm from the synovial surface. Histologic analysis revealed thermal alteration of collagen (fusion) and fibroblasts (pyknosis) at all energy densities, with higher laser energy causing significantly greater morphologic changes over a larger area (P < 0.05). Application of laser energy did not significantly alter the biochemical parameters evaluated, including type I collagen content and nonreducible crosslinks (P > 0.05). This study demonstrated that nonablative laser energy caused significant thermal damage to the joint capsular tissue in an energy-dependent fashion, but type I collagen content and nonreducible crosslinks (P > 0.05). This study demonstrated that nonablative laser energy caused significant thermal damage to the joint capsular tissue in an energy-dependent fashion, but type I Collagen content and nonreducible corsslinks were not significantly altered.

  11. Laser pointers: toys, nuisances, or significant eye hazards?

    PubMed

    Yolton, R L; Citek, K; Schmeisser, E; Reichow, A W; Griffith, T

    1999-05-01

    Laser pointers have been used inappropriately to harass and "dazzle" victims. Reports of retinal damage caused by pointers have also been circulated in the popular press. Information on pointer abuse was collected from the literature and through discussions with specialists. Few, if any, documented cases of permanent retinal damage caused by laser pointers could be found. For actual damage to occur, viewing, times need to exceed approximately 10 seconds. Exposures of this duration would require the person being lased to cooperate by holding fixation on the laser beam. Although the risk of permanent retinal damage from a laser-pointer beam is minimal, other risks include dazzle, annoyance, and concern that a weapon-aiming device rather than a pointer is generating the laser beam.

  12. Pulsewidth-dependent nature of laser-induced DNA damage in RPE cells

    NASA Astrophysics Data System (ADS)

    Hall, Rebecca M.; Glickman, Randolph D.; Rockwell, Benjamin A.; Kumar, Neeru; Noojin, Gary D.

    2001-07-01

    Ultrashort pulse laser radiation may produce cellular damage through unique mechanisms. Primary cultures of bovine retinal pigment epithelial (RPE) cells were exposed to the out put of a Ti:Sapphire laser producing 30 fs (mode-locked) pulses, 44 amplified fs pulses, or continuous wave exposures at 800 nm. Laser exposures at and below the damage threshold were studied. DNA damage was detected using single cell gel electrophoresis (comet assay). Unexposed (control) cells produced short tails with low tail moments. In contrast, all laser-exposed cells showed some degree of DNA fragmentation, but the size and shape of the resulting comets differed among the various modalities. CW-exposed cells produced generally light and relatively compact tails, suggesting fewer and larger DNA fragments, while mode-locked laser exposures (30 fs pulses) resulted in large and diffuse comets, indicating the DNA was fragmented into many very small pieces. Work is continuing to define the relationship of laser pulsewidth and intensity with the degree of DNA fragmentation. These results suggest that DNA damage may result from multiple mechanisms of laser-cell interaction, including multiphoton absorption.

  13. Characteristics and mechanism of laser-induced surface damage initiated by metal contaminants

    NASA Astrophysics Data System (ADS)

    Shi, Shuang; Sun, Mingying; Shi, Shuaixu; Li, Zhaoyan; Zhang, Ya-nan; Liu, Zhigang

    2015-08-01

    In high power laser facility, contaminants on optics surfaces reduce damage resistance of optical elements and then decrease their lifetime. By damage test experiments, laser damage induced by typical metal particles such as stainless steel 304 is studied. Optics samples with metal particles of different sizes on surfaces are prepared artificially based on the file and sieve. Damage test is implemented in air using a 1-on-1 mode. Results show that damage morphology and mechanism caused by particulate contamination on the incident and exit surfaces are quite different. Contaminants on the incident surface absorb laser energy and generate high temperature plasma during laser irradiation which can ablate optical surface. Metal particles melt and then the molten nano-particles redeposit around the initial particles. Central region of the damaged area bears the same outline as the initial particle because of the shielding effect. However, particles on the exit surface absorb a mass of energy, generate plasma and splash lots of smaller particles, only a few of them redeposit at the particle coverage area on the exit surface. Most of the laser energy is deposited at the interface of the metal particle and the sample surface, and thus damage size on the exit surface is larger than that on the incident surface. The areas covered by the metal particle are strongly damaged. And the damage sites are more serious than that on the incident surface. Besides damage phenomenon also depends on coating and substrate materials.

  14. System and method for laser-based, non-evaporative repair of damage sites in the surfaces of fused silica optics

    DOEpatents

    Adams, John J.; Bolourchi, Masoud; Bude, Jeffrey D.; Guss, Gabriel M.; Jarboe, Jeffery A.; Matthews, Manyalibo J.; Nostrand, Michael C; Wegner, Paul J.

    2016-09-06

    A method for repairing a damage site on a surface of an optical material is disclosed. The method may involve focusing an Infrared (IR) laser beam having a predetermined wavelength, with a predetermined beam power, to a predetermined full width ("F/W") 1/e.sup.2 diameter spot on the damage site. The focused IR laser beam is maintained on the damage site for a predetermined exposure period corresponding to a predetermined acceptable level of downstream intensification. The focused IR laser beam heats the damage site to a predetermined peak temperature, which melts and reflows material at the damage site of the optical material to create a mitigated site.

  15. Laser-induced damage threshold tests of ultrafast multilayer dielectric coatings in various environmental conditions relevant for operation of ELI beamlines laser systems

    NASA Astrophysics Data System (ADS)

    Ďurák, Michal; Velpula, Praveen Kumar; Kramer, Daniel; Cupal, Josef; Medřík, Tomáš; Hřebíček, Jan; Golasowski, Jiří; Peceli, Davorin; Kozlová, Michaela; Rus, Bedřich

    2017-01-01

    Increasing the laser-induced damage resistance of optical components is one of the major challenges in the development of Peta-watt (PW) class laser systems. The extreme light infrastructure (ELI) beamlines project will provide ultrafast laser systems with peak powers up to 10 PW available every minute and PW class beams at 10 Hz complemented by a 5-TW, 1-kHz beamline. Sustainable performance of PW class laser systems relies on the durability of the employed optical components. As part of an effort to evaluate the damage resistance of components utilized in ELI beamlines systems, damage thresholds of several optical multilayer dielectric coatings were measured with different laser parameters and in different environments. Three coatings were tested with 10 Hz and 1 kHz pulse repetition rates, and the effect of a cleaning treatment on their damage resistance was examined. To explore the damage threshold behavior at different vacuum levels, one coating was subject to tests at various residual gas pressures. No change of damage threshold in a high vacuum with respect to ambient pressure was recorded. The effect of the cleaning treatment was found to be inconsistent, suggesting that development of the optimal cleaning treatment for a given coating requires consideration of its specific properties.

  16. The generation of amplified spontaneous emission in high-power CPA laser systems.

    PubMed

    Keppler, Sebastian; Sävert, Alexander; Körner, Jörg; Hornung, Marco; Liebetrau, Hartmut; Hein, Joachim; Kaluza, Malte Christoph

    2016-03-01

    An analytical model is presented describing the temporal intensity contrast determined by amplified spontaneous emission in high-intensity laser systems which are based on the principle of chirped pulse amplification. The model describes both the generation and the amplification of the amplified spontaneous emission for each type of laser amplifier. This model is applied to different solid state laser materials which can support the amplification of pulse durations ≤350 fs . The results are compared to intensity and fluence thresholds, e.g. determined by damage thresholds of a certain target material to be used in high-intensity applications. This allows determining if additional means for contrast improvement, e.g. plasma mirrors, are required for a certain type of laser system and application. Using this model, the requirements for an optimized high-contrast front-end design are derived regarding the necessary contrast improvement and the amplified "clean" output energy for a desired focussed peak intensity. Finally, the model is compared to measurements at three different high-intensity laser systems based on Ti:Sapphire and Yb:glass. These measurements show an excellent agreement with the model.

  17. Statistical study of single and multiple pulse laser-induced damage in glasses.

    PubMed

    Gallais, L; Natoli, J; Amra, C

    2002-12-16

    Single and multiple pulse laser damage studies are performed in Suprasil silica and BK-7 borosilicate glasses. Experiments are made in the bulk of materials at 1.064microm with nanosecond pulses, using an accurate and reliable measurement system. By means of a statistical study on laser damage probabilities, we demonstrate that the same nano-precursors could be involved in the multiple shot and single shot damage process. A damage mechanism with two stages is then proposed to explain the results. Firstly, a pre-damage process, corresponding to material changes at a microscopic level, leads the precursor to a state that can induce a one-pulse damage. And secondly a final damage occurs, with a mechanism identical to the single shot case. For each material, a law is found to predict the precursor life-time. We can then deduce the long term life of optical elements in high-power laser systems submitted to multipulse irradiation.

  18. Influence of subsurface defects on damage performance of fused silica in ultraviolet laser

    NASA Astrophysics Data System (ADS)

    Huang, Jin; Zhou, Xinda; Liu, Hongjie; Wang, Fengrui; Jiang, Xiaodong; Wu, Weidong; Tang, Yongjian; Zheng, Wanguo

    2013-02-01

    In ultraviolet pulse laser, damage performance of fused silica optics is directly dependent on the absorptive impurities and scratches in subsurface, which are induced by mechanical polishing. In the research about influence of subsurface defects on damage performance, a series of fused silica surfaces with various impurity concentrations and scratch structures were created by hydrofluoric (HF) acid solution etching. Time of Flight secondary ion mass spectrometry and scanning probe microprobe revealed that with increasing etching depth, impurity concentrations in subsurface layers are decreased, the scratch structures become smoother and the diameter:depth ratio is increased. Damage performance test with 355-nm pulse laser showed that when 600 nm subsurface thickness is removed by HF acid etching, laser-induced damage threshold of fused silica is raised by 40 percent and damage density is decreased by over one order of magnitude. Laser weak absorption was tested to explain the cause of impurity elements impacting damage performance, field enhancement caused by change of scratch structures was calculated by finite difference time domain simulation, and the calculated results are in accord with the damage test results.

  19. Spot-shadowing optimization to mitigate damage growth in a high-energy-laser amplifier chain.

    PubMed

    Bahk, Seung-Whan; Zuegel, Jonathan D; Fienup, James R; Widmayer, C Clay; Heebner, John

    2008-12-10

    A spot-shadowing technique to mitigate damage growth in a high-energy laser is studied. Its goal is to minimize the energy loss and undesirable hot spots in intermediate planes of the laser. A nonlinear optimization algorithm solves for the complex fields required to mitigate damage growth in the National Ignition Facility amplifier chain. The method is generally applicable to any large fusion laser.

  20. Laser induced damage thresholds and laser safety levels. Do the units of measurement matter?

    NASA Astrophysics Data System (ADS)

    Wood, R. M.

    1998-04-01

    The commonly used units of measurement for laser induced damage are those of peak energy or power density. However, the laser induced damage thresholds, LIDT, of all materials are well known to be absorption, wavelength, spot size and pulse length dependent. As workers using these values become divorced from the theory it becomes increasingly important to use the correct units and to understand the correct scaling factors. This paper summarizes the theory and highlights the danger of using the wrong LIDT units in the context of potentially hazardous materials, laser safety eyewear and laser safety screens.

  1. Inertial Confinement Fusion Quarterly Report January-March 1999, Volume 9, Number 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Atherton, J.

    1999-03-31

    This quarterly report covers the following topics: (1) Properties of and Manufacturing Methods for NIF Laser Glasses (J. H. Campbell)--The NIF amplifiers require 3380 Nd-doped laser glass slabs; continuous glass melting methods will be used for the first time to manufacture these slabs. The properties of the laser glasses are summarized and the novel continuous melting method is described. (2) Diffractive Optics for the NIF (J. A. Britten)--We have fabricated demonstration diffractive optics according to the NIF baseline design at full scale, via wet-chemical etching of patterns into fused silica. We have examined the effects of dip-coated sol-gel antireflection coatingsmore » on the performance of these optics, and have concluded that diffractive optics should remain uncoated to minimize laser-induced damage to downstream optics and to maximize environmental stability. We have also demonstrated the feasibility of combining all diffractive structures required by NIF, which vary over orders of magnitude in lateral and vertical scales, onto a single surface. (3) Producing KDP and DKDP Crystals for the NIF Laser (A. K. Burnham)--Rapid-growth KDP has overcome most of the hurdles for production of boules for NIF switch crystals and doublers, but some improvements in process reliability at the tripler's 3{omega} damage threshold are needed. The ability to meet KDP finishing specifications has been demonstrated, and the equipment for efficient NIF production is being built. (4) Engineering High-Damage-Threshold NIF Polarizers and Mirrors (C. J. Stolz)--High-fluence polarizer and mirror coatings for the NIF can be realized by engineering the coating process and design once the laser interaction with coating defects is understood. (5) Improved Antireflection Coatings for the NIF (P. K. Whitman)--We summarize our progress in developing antireflection coatings and applications processes for the NIF laser optics. We describe new materials and coating treatments to minimize the sensitivity of these porous sol-gel coatings to environmental humidity and organic contamination. (6) Developing Optics Finishing Technologies for the National Ignition Facility (T. G. Parham)--Fabrication of the 7500 meter-class lenses and flats for the NIF required extension of finishing technologies to meet cost and schedule targets. Developments at LLNL and our industrial partners are described for improved shaping, grinding, polishing, figuring, and metrology of large optics. (7) Laser-Damage Testing and Modeling Methods for Predicting the Performance of Large-Area NIF Optics (M. R. Kozlowski)--Laser damage to high-quality laser optics is limited by localized, defect-initiated processes. The damage performance of such materials is better described by statistical distributions than by discrete damage thresholds. The prediction of the damage performance of a Beamlet focus lens, based on new statistics-based damage data measurement and analysis techniques, is demonstrated. (8) Development of the NIF Target Chamber First Wall and Beam Dumps (A. K. Burnham)--NIF target designs and target chamber ablations are listed by a 1-nm/shot contamination rate of the final optics debris shield, as determined by transmittance and damage lifetime. This constraint forces a self-cleaning louvre design for the first wall and unconverted-light beam dumps. Nickel-free stainless steel is the cheapest and most practical material.« less

  2. Comparative analysis of different laser systems to study cellular responses to DNA damage in mammalian cells

    PubMed Central

    Kong, Xiangduo; Mohanty, Samarendra K.; Stephens, Jared; Heale, Jason T.; Gomez-Godinez, Veronica; Shi, Linda Z.; Kim, Jong-Soo; Yokomori, Kyoko; Berns, Michael W.

    2009-01-01

    Proper recognition and repair of DNA damage is critical for the cell to protect its genomic integrity. Laser microirradiation ranging in wavelength from ultraviolet A (UVA) to near-infrared (NIR) can be used to induce damage in a defined region in the cell nucleus, representing an innovative technology to effectively analyze the in vivo DNA double-strand break (DSB) damage recognition process in mammalian cells. However, the damage-inducing characteristics of the different laser systems have not been fully investigated. Here we compare the nanosecond nitrogen 337 nm UVA laser with and without bromodeoxyuridine (BrdU), the nanosecond and picosecond 532 nm green second-harmonic Nd:YAG, and the femtosecond NIR 800 nm Ti:sapphire laser with regard to the type(s) of damage and corresponding cellular responses. Crosslinking damage (without significant nucleotide excision repair factor recruitment) and single-strand breaks (with corresponding repair factor recruitment) were common among all three wavelengths. Interestingly, UVA without BrdU uniquely produced base damage and aberrant DSB responses. Furthermore, the total energy required for the threshold H2AX phosphorylation induction was found to vary between the individual laser systems. The results indicate the involvement of different damage mechanisms dictated by wavelength and pulse duration. The advantages and disadvantages of each system are discussed. PMID:19357094

  3. Toward robot-assisted neurosurgical lasers.

    PubMed

    Motkoski, Jason W; Yang, Fang Wei; Lwu, Shelly H H; Sutherland, Garnette R

    2013-04-01

    Despite the potential increase in precision and accuracy, laser technology is not widely used in neurological surgery. This in part relates to challenges associated with the early introduction of lasers into neurosurgery. Considerable advances in laser technology have occurred, which together with robotic technology could create an ideal platform for neurosurgical application. In this study, a 980-nm contact diode laser was integrated with neuroArm. Preclinical evaluation involved partial hepatectomy, bilateral nephrectomy, splenectomy, and bilateral submandibular gland excision in a Sprague-Dawley rat model (n = 50). Total surgical time, blood loss as weight of surgical gauze before and after the procedure, and the incidence of thermal, vascular, or lethal injury were recorded and converted to an overall performance score. Thermal damage was evaluated in the liver using tissue samples stained with hematoxylin and eosin. Clinical studies involved step-wise integration of the 980-nm laser system into four neurosurgical cases. Results demonstrate the successful integration of contact laser technology into microsurgery, with and without robotic assistance. In preclinical studies, the laser improved microsurgical performance and reduced thermal damage, while neuroArm decreased intra- and intersurgeon variability. Clinical studies demonstrate dutility in meningioma resection (n = 4). Together, laser and robotic technology offered a more consistent, expedient, and precise tool for microsurgery.

  4. X-ray lasers: Strategic problems and potential as an in-orbit exoatmospheric ballistic missile defense system

    NASA Astrophysics Data System (ADS)

    Perusich, Karl Anthony

    1986-12-01

    The problems and potential of a single proposed ballistic missile defense system, the X-ray laser-armed satellite, are examined in this research. Specifically, the X-ray laser satellite system is examined to determine its impact on the issues of cost-effectiveness and crisis stability. To examime the cost-effectiveness and the crisis stability of the X-ray laser satellites, a simulation of a nuclear exchange was constructed. The X-ray laser satellites were assumed to be vulnerable to attack from energy satellites with limited satellite-to-satellite lethal ranges. Symmetric weapons and force postures were used. Five principal weapon classes were used in the model: ICMBs, SLBMs, X-ray laser satellites, bombers, and endo-atmospheric silo defenses. Also, the orbital dynamics of the ballistic missiles and satellites were simulated. The cost-effectiveness of the X-ray laser satellites was determined for two different operational capabilities, damage-limitation and assured destruction. The following conclusions were reached. The effects of deployment of a new weapon system on the Triad as a whole should be examined. The X-ray laser was found to have little effectiveness as a damage-limiting weapon for a defender. For an assured destruction capability, X-ray laser satellites could be part of a minimum-cost force mix with that capability.

  5. Heat transfer modelling of pulsed laser-tissue interaction

    NASA Astrophysics Data System (ADS)

    Urzova, J.; Jelinek, M.

    2018-03-01

    Due to their attributes, the application of medical lasers is on the rise in numerous medical fields. From a biomedical point of view, the most interesting applications are the thermal interactions and the photoablative interactions, which effectively remove tissue without excessive heat damage to the remaining tissue. The objective of this work is to create a theoretical model for heat transfer in the tissue following its interaction with the laser beam to predict heat transfer during medical laser surgery procedures. The dimensions of the ablated crater (shape and ablation depth) were determined by computed tomography imaging. COMSOL Multiphysics software was used for temperature modelling. The parameters of tissue and blood, such as density, specific heat capacity, thermal conductivity and diffusivity, were calculated from the chemical ratio. The parameters of laser-tissue interaction, such as absorption and reflection coefficients, were experimentally determined. The parameters of the laser beam were power density, repetition frequency, pulse length and spot dimensions. Heat spreading after laser interaction with tissue was captured using a Fluke thermal camera. The model was verified for adipose tissue, skeletal muscle tissue and heart muscle tissue.

  6. Laser-Induced Damage Threshold and Certification Procedures for Optical Materials

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This document provides instructions for performing laser-induced-damage-threshold tests and pass-fail certification tests on optical materials used in pulsed-laser systems. The optical materials to which these procedures apply include coated and uncoated optical substrates, laser crystals, Q-switches, polarizers, and other optical components employed in pulsed-laser systems.

  7. Understanding the Femtosecond Laser-Solid Interaction Near and Beyond the Material Damage Threshold

    DTIC Science & Technology

    2016-05-23

    study of the fundamentals of femtosecond laser damage as a function of various parameters, laser wavelength, pulsewidth, pulse number, experimental ... experimental observation without any free parameters. The brand new FSD Lab constructed under the BRI grant in the Physics Research Building at the Ohio... studied across a range of band-gaps for s- and p-polarized light and it is found that conventional theoretical prediction on laser damage threshold

  8. Uncovering dental implants using a new thermo-optically powered (TOP) technology with tissue air-cooling.

    PubMed

    Romanos, Georgios E; Belikov, Andrey V; Skrypnik, Alexei V; Feldchtein, Felix I; Smirnov, Michael Z; Altshuler, Gregory B

    2015-07-01

    Uncovering implants with lasers, while bloodless, has been associated with a risk of implant and bone overheating. The present study evaluated the effect of using a new generation of high-power diode lasers on the temperature of a dental implant and the surrounding tissues using an in vitro model. The implant temperature was measured at three locations using micro thermocouples. Collateral thermal damage of uncovered soft tissues was evaluated using NTBC stain. Implant temperature rise during and collateral thermal soft-tissue damage following implant uncovering with and without tissue air-cooling was studied using both the classic operational mode and the new thermo-optically powered (TOP) technology. For the classic surgical mode using a cork-initiated tip and constant laser power set at 3.4 W, the maximum temperature rise in the coronal and apical parts of the implant was 23.2 ± 4.1°С and 9.5 ± 1.8°С, respectively, while 1.5 ± 0.5 mm of collateral thermal damage of the soft tissue surrounding the implant model occurred. Using the TOP surgical tip with constant laser power reduced implant overheating by 30%; collateral thermal soft-tissue damage was 0.8 ± 0.2 mm. Using the TOP surgical mode with a tip temperature setting of 800°C and air-cooling reduced the implant temperature rise by more than 300%, and only 0.2 ± 0.1 mm of collateral thermal soft-tissue damage occurred, typical for optimized CO2 laser surgery. Furthermore, use of the new generation diode technology (TOP surgical mode) appeared to reduce the time required for implant uncovering by a factor of two, compared to the standard surgical mode. Use of the new generation diode technology (TOP surgical mode) may significantly reduce overheating of dental implants during uncovering and seems to be safer for the adjacent soft and hard tissues. Use of such diode lasers with air-cooling can radically reduce the rise in implant temperatures (by more than three times), potentially making this technology safe and effective for implant uncovering. © 2015 Wiley Periodicals, Inc.

  9. Renal denervation using focused infrared fiber lasers: a potential treatment for hypertension.

    PubMed

    Alexander, Vinay V; Shi, Zhennan; Iftekher, Fariha; Welsh, Michael J; Gurm, Hitinder S; Rising, Gail; Yanovich, Amber; Walacavage, Kim; Islam, Mohammed N

    2014-11-01

    Renal denervation has recently become of great interest as a potential treatment for resistant hypertension. Denervation techniques using radio frequency (RF) or ultrasound energy sources have already been explored in literature. In this study, we investigate the use of lasers as a potential energy source for renal denervation. In vitro studies are performed in porcine/ovine renal arteries with focused laser beams at 980 nm, 1210 nm, and 1700 nm to study the ability to damage renal nerves without causing injury to non-target tissue structures like the endothelium. Then, a 980 nm laser catheter prototype is built and used to demonstrate in vivo renal denervation in ovine renal arteries. This study utilizes fiber coupled infrared lasers at 980 nm, 1210 nm, and 1700 nm. In vitro laser denervation studies at 980 nm are performed in both porcine and ovine renal arteries to study the ability of focused laser beams to damage renal nerves without injuring the endothelium. In vitro studies using lasers close to the lipid absorption lines at 1210 nm and 1700 nm are also performed in porcine renal arteries to study the possibility of selectively damaging the renal nerves by targeting the lipid myelin sheaths surrounding the nerves. Then, a laser catheter prototype is designed and built for in vivo renal denervation in ovine renal arteries using the 980 nm laser (powers ranging from 2 to 4 W, 5 seconds per exposure). Histochemical evaluations of the frozen sections are performed using methylthiazolyldiphenyl-tetrazolium bromide (MTT) assay. Histochemical analysis of in vitro laser treatments at 980 nm in porcine and ovine renal arteries show clear evidence of laser-induced renal nerve damage without injury to the endothelium and part of the media. No evidence of selective nerve damage is observed using the 1210 nm and 1700 nm lasers with the current treatment parameters. Histochemical analysis of in vivo laser treatments in ovine renal arteries using a focused 980 nm laser show clear evidence of renal nerve damage with depths of damage extending > 1.5 mm from the artery wall. Sections with laser-induced damage to the media/adventitia at depths of > 1 mm without injury to the endothelium are also observed. We demonstrate the use of focused lasers as an attractive energy source for causing renal nerve damage without injury to the artery wall and thus, may have potential therapeutic applications for conditions such as resistant hypertension, where renal denervation has been shown to be a promising form of treatment. © 2014 Wiley Periodicals, Inc.

  10. Experimental microendoscopic photoablative laser goniotomy as a surgical model for the treatment of dysgenetic glaucoma.

    PubMed

    Jacobi, P C; Dietlein, T S; Krieglstein, G K

    1996-11-01

    The aim of this study was to investigate the feasibility of photoablative Er:YAG laser goniotomy under microendoscopic control in a surgical cloudy corneal model of primary infantile glaucoma. Pectinate ligaments of 12 freshly enucleated cadaver porcine eyes were treated by ab interno single-pulse (5 mJ, 200 microseconds) Er:YAG laser (2.94 microns) photoablation. Through a clear corneal incision near the limbus an ophthalmic microendoscope (18 and 20 gauge) was inserted into the anterior chamber. Internal structures were observed and photoablative laser goniotomy was conducted under video guidance. Following treatment all eyes were prepared for light and scanning electron microscopy. Anterior chamber angle structures and tissue photoablation were clearly visualized on the videoscreen using ophthalmic microendoscopy. Energy settings of 5 mJ per pulse proved to be sufficient for reproducible photoablation of pectinate ligaments, accompanied by the root of the iris falling back and exposing trabecular meshwork. This was confirmed histopathologically. Scatter thermal damage was less than 30 microns. This new therapeutic modality, which combines endoscopic visualization of the internal structures with photoablative laser goniotomy, can be effective in the management of dysgenetic glaucoma in the presence of a cloudy cornea. High reproducibility of contact laser photoablation enabled sufficient control of incision depth and was not accompanied by inadvertent tissue damage to adjacent intraocular structures.

  11. Comparison of solar and laser macula retinal injury using scanning laser ophthalmoscopy spectral imaging

    NASA Astrophysics Data System (ADS)

    Zwick, Harry; Gagliano, Donald A.; Stuck, Bruce E.; Lund, David J.

    1994-07-01

    Both solar and laser sources may induce punctate foveal retinal damage. Unprotected viewing of the sun or bright blue sky represent potential solar radiation causes of photic maculopathy that may induce punctate foveal damage. Laser induced macular retinal damage is another more recent kind of photic maculopathy. Most documented cases of laser photic maculopathy have involved acute laser exposure generally from Q-switched visible or nonvisible near IR laser systems. In our comparison of these types of photic maculopathies, we have employed conventional as well as spectral and confocal scanning laser ophthalomoscopy to evaluate the depth of the photic maculopathy. Functionally, we have observed a tritan color vision loss present in nearly all photic maculopathies.

  12. Monitoring the inhibition of erosion by a CO2 laser with OCT

    NASA Astrophysics Data System (ADS)

    Chan, Kenneth H.; Tom, Henry; Fried, Daniel

    2014-02-01

    Since optical coherence tomography (OCT) is well suited for measuring small dimensional changes on tooth surfaces, OCT has great potential for monitoring tooth erosion. Previous studies have shown that enamel areas ablated by a carbon dioxide laser manifested lower rates of erosion compared to the nonablated areas. The purpose of this study was to develop a model to monitor erosion in vitro that could potentially be used in vivo. Teeth surfaces were irradiated with a carbon dioxide laser at low sub-ablative fluence to create an acid-resistant reference layer without damaging the enamel. The laser treated areas were compared with the unprotected areas using OCT during exposure to a pH cycling model for up to 6 days. The laser treated areas markedly reduced the rate of erosion.

  13. Width of thermal damage after using the YAG contact laser for cutting biological tissue: animal experimental investigation.

    PubMed

    Mecke, H; Schünke, M; Schnaidt, S; Freys, I; Semm, K

    1991-01-01

    At the University Women's Clinic in Kiel, the YAG contact laser has been used as a cutting instrument in pelviscopic operations since 1987. When the laser cuts, it produces only a scant amount of mechanical trauma. The determining factor is the amount of thermal damage produced along the wound margins and in direct neighboring tissue. The extent of the tissue change seen in the uterus and liver parenchyma of rats and the striated muscle of rabbits after application of the YAG contact laser was demonstrated using various staining techniques and stains. Liver parenchyma proved to be the most sensitive to thermal damage. In the uterine horn, enzyme-histochemical ATPase and alkaline phosphatase demonstrations showed a significantly wider zone of thermal damage after laser incision than did hematoxylin-eosin and Goldner staining techniques. A good understanding of the extent of thermal damage is essential for atraumatic pelviscopic operations using the YAG contact laser and also for the preventing of complications.

  14. Interference effects in laser-induced plasma emission from surface-bound metal micro-particles

    DOE PAGES

    Feigenbaum, Eyal; Malik, Omer; Rubenchik, Alexander M.; ...

    2017-04-19

    Here, the light-matter interaction of an optical beam and metal micro-particulates at the vicinity of an optical substrate surface is critical to the many fields of applied optics. Examples of impacted fields are laser-induced damage in high power laser systems, sub-wavelength laser machining of transmissive materials, and laser-target interaction in directed energy applications. We present a full-wave-based model that predicts the laser-induced plasma pressure exerted on a substrate surface as a result of light absorption in surface-bound micron-scale metal particles. The model predictions agree with experimental observation of laser-induced shallow pits, formed by plasma emission and etching from surface-bound metalmore » micro-particulates. It provides an explanation for the prototypical side lobes observed along the pit profile, as well as for the dependence of the pit shape on the incident laser and particle parameters. Furthermore, the model highlights the significance of the interference of the incident light in the open cavity geometry formed between the micro-particle and the substrate in the resulting pit shape.« less

  15. Interference effects in laser-induced plasma emission from surface-bound metal micro-particles.

    PubMed

    Feigenbaum, Eyal; Malik, Omer; Rubenchik, Alexander M; Matthews, Manyalibo J

    2017-05-01

    The light-matter interaction of an optical beam and metal micro-particulates at the vicinity of an optical substrate surface is critical to the many fields of applied optics. Examples of impacted fields are laser-induced damage in high power laser systems, sub-wavelength laser machining of transmissive materials, and laser-target interaction in directed energy applications. We present a full-wave-based model that predicts the laser-induced plasma pressure exerted on a substrate surface as a result of light absorption in surface-bound micron-scale metal particles. The model predictions agree with experimental observation of laser-induced shallow pits, formed by plasma emission and etching from surface-bound metal micro-particulates. It provides an explanation for the prototypical side lobes observed along the pit profile, as well as for the dependence of the pit shape on the incident laser and particle parameters. Furthermore, the model highlights the significance of the interference of the incident light in the open cavity geometry formed between the micro-particle and the substrate in the resulting pit shape.

  16. Laser damage of HR, AR-coatings, monolayers and bare surfaces at 1064 nm

    NASA Technical Reports Server (NTRS)

    Garnov, S. V.; Klimentov, S. M.; Said, A. A.; Soileau, M. J.

    1993-01-01

    Laser induced damage thresholds and morphologies were investigated in a variety of uncoated and coated surfaces, including monolayers and multi-layers of different chemical compositions. Both antireflective (AR) and highly reflective (HR) were tested. Testing was done at 1064 nm with 25 picosecond and 8 nanosecond YAG/Nd laser single pulses. Spot diameter in the experiments varied from 0.09 to 0.22 mm. The laser damage measurement procedure consisted of 1-on-1 (single laser pulse in the selected site) and N-on-1 experiments including repeated irradiation by pulses of the same fluence and subsequently raised from pulse to pulse fluence until damage occurred. The highest picosecond damage thresholds of commercially available coatings averaged 12 - 14 J/sq cm, 50 percent less than thresholds obtained in bare fused silica. Some coatings and bare surfaces revealed a palpable preconditioning effect (an increase in threshold of 1.2 to 1.8 times). Picosecond and nanosecond data were compared to draw conclusions about pulse width dependence. An attempt was made to classify damage morphologies according to the type of coating, class of irradiating, and damage level.

  17. Cell damage evaluation of mammalian cells in cell manipulation by amplified femtosecond ytterbium laser

    NASA Astrophysics Data System (ADS)

    Hong, Z.-Y.; Iino, T.; Hagihara, H.; Maeno, T.; Okano, K.; Yasukuni, R.; Hosokawa, Y.

    2018-03-01

    A micrometer-scale explosion with cavitation bubble generation is induced by focusing a femtosecond laser in an aqueous solution. We have proposed to apply the explosion as an impulsive force to manipulate mammalian cells especially in microfluidic chip. Herein, we employed an amplified femtosecond ytterbium laser as an excitation source for the explosion and evaluated cell damage in the manipulation process to clarify the application potential. The damage of C2C12 myoblast cell prepared as a representative mammalian cell was investigated as a function of distance between cell and laser focal point. Although the cell received strong damage on the direct laser irradiation condition, the damage sharply decreased with increasing distance. Since the threshold distance, above which the cell had no damage, was consistent with radius of the cavitation bubble, impact of the cavitation bubble would be a critical factor for the cell damage. The damage had strong nonlinearity in the pulse energy dependence. On the other hand, cell position shift by the impact of the cavitation bubble was almost proportional to the pulse energy. In balance between the cell viability and the cell position shift, we elucidated controllability of the cell manipulation in microfluidic chip.

  18. Fabrication of mitigation pits for improving laser damage resistance in dielectric mirrors by femtosecond laser machining

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolfe, Justin E.; Qiu, S. Roger; Stolz, Christopher J.

    2011-03-20

    Femtosecond laser machining is used to create mitigation pits to stabilize nanosecond laser-induced damage in multilayer dielectric mirror coatings on BK7 substrates. In this paper, we characterize features and the artifacts associated with mitigation pits and further investigate the impact of pulse energy and pulse duration on pit quality and damage resistance. Our results show that these mitigation features can double the fluence-handling capability of large-aperture optical multilayer mirror coatings and further demonstrate that femtosecond laser macromachining is a promising means for fabricating mitigation geometry in multilayer coatings to increase mirror performance under high-power laser irradiation.

  19. Growth behavior of laser-induced damage on fused silica optics under UV, ns laser irradiation.

    PubMed

    Negres, Raluca A; Norton, Mary A; Cross, David A; Carr, Christopher W

    2010-09-13

    The growth behavior of laser-induced damage sites is affected by a large number of laser parameters as well as site morphology. Here we investigate the effects of pulse duration on the growth rate of damage sites located on the exit surface of fused silica optics. Results demonstrate a significant dependence of the growth parameters on laser pulse duration at 351 nm from 1 ns to 15 ns, including the observation of a dominant exponential versus linear, multiple-shot growth behavior for long and short pulses, respectively. These salient behaviors are tied to the damage morphology and suggest a shift in the fundamental growth mechanisms for pulses in the 1-5 ns range.

  20. Damage Detection in Rotorcraft Composite Structures Using Thermography and Laser-Based Ultrasound

    NASA Technical Reports Server (NTRS)

    Anastasi, Robert F.; Zalameda, Joseph N.; Madaras, Eric I.

    2004-01-01

    New rotorcraft structural composite designs incorporate lower structural weight, reduced manufacturing complexity, and improved threat protection. These new structural concepts require nondestructive evaluation inspection technologies that can potentially be field-portable and able to inspect complex geometries for damage or structural defects. Two candidate technologies were considered: Thermography and Laser-Based Ultrasound (Laser UT). Thermography and Laser UT have the advantage of being non-contact inspection methods, with Thermography being a full-field imaging method and Laser UT a point scanning technique. These techniques were used to inspect composite samples that contained both embedded flaws and impact damage of various size and shape. Results showed that the inspection techniques were able to detect both embedded and impact damage with varying degrees of success.

  1. Optical damage testing at the Z-Backlighter facility at Sandia National Laboratories

    NASA Astrophysics Data System (ADS)

    Kimmel, Mark; Rambo, Patrick; Broyles, Robin; Geissel, Matthias; Schwarz, Jens; Bellum, John; Atherton, Briggs

    2009-10-01

    To enable laser-based radiography of high energy density physics events on the Z-Accelerator[4,5] at Sandia National Laboratories, a facility known as the Z-Backlighter has been developed. Two Nd:Phosphate glass lasers are used to create x-rays and/or proton beams capable of this radiographic diagnosis: Z-Beamlet (a multi-kilojoule laser operating at 527nm in a few nanoseconds) and Z-Petawatt (a several hundred joule laser operating at 1054nm in the subpicosecond regime) [1,2]. At the energy densities used in these systems, it is necessary to use high damage threshold optical materials, some of which are poorly characterized (especially for the sub-picosecond pulse). For example, Sandia has developed a meter-class dielectric coating capability for system optics. Damage testing can be performed by external facilities for nanosecond 532nm pulses, measuring high reflector coating damage thresholds >80J/cm2 and antireflection coating damage thresholds >20J/cm2 [3]. However, available external testing capabilities do not use femtosecond/picosecond scale laser pulses. To this end, we have constructed a sub-picoseond-laser-based optical damage test system. The damage tester system also allows for testing in a vacuum vessel, which is relevant since many optics in the Z-Backlighter system are used in vacuum. This paper will present the results of laser induced damage testing performed in both atmosphere and in vacuum, with 1054nm sub-picosecond laser pulses. Optical materials/coatings discussed are: bare fused silica and protected gold used for benchmarking; BK7; Zerodur; protected silver; and dielectric optical coatings (halfnia/silica layer pairs) produced by Sandia's in-house meter-class coating capability.

  2. Effects of wet etch processing on laser-induced damage of fused silica surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Battersby, C.L.; Kozlowski, M.R.; Sheehan, L.M.

    1998-12-22

    Laser-induced damage of transparent fused silica optical components by 355 nm illumination occurs primarily at surface defects produced during the grinding and polishing processes. These defects can either be surface defects or sub-surface damage.Wet etch processing in a buffered hydrogen fluoride (HF) solution has been examined as a tool for characterizing such defects. A study was conducted to understand the effects of etch depth on the damage threshold of fused silica substrates. The study used a 355 nm, 7.5 ns, 10 Hz Nd:YAG laser to damage test fused silica optics through various wet etch processing steps. Inspection of the surfacemore » quality was performed with Nomarski microscopy and Total Internal Reflection Microscopy. The damage test data and inspection results were correlated with polishing process specifics. The results show that a wet etch exposes subsurface damage while maintaining or improving the laser damage performance. The benefits of a wet etch must be evaluated for each polishing process.« less

  3. Geometric identification and damage detection of structural elements by terrestrial laser scanner

    NASA Astrophysics Data System (ADS)

    Hou, Tsung-Chin; Liu, Yu-Wei; Su, Yu-Min

    2016-04-01

    In recent years, three-dimensional (3D) terrestrial laser scanning technologies with higher precision and higher capability are developing rapidly. The growing maturity of laser scanning has gradually approached the required precision as those have been provided by traditional structural monitoring technologies. Together with widely available fast computation for massive point cloud data processing, 3D laser scanning can serve as an efficient structural monitoring alternative for civil engineering communities. Currently most research efforts have focused on integrating/calculating the measured multi-station point cloud data, as well as modeling/establishing the 3D meshes of the scanned objects. Very little attention has been spent on extracting the information related to health conditions and mechanical states of structures. In this study, an automated numerical approach that integrates various existing algorithms for geometric identification and damage detection of structural elements were established. Specifically, adaptive meshes were employed for classifying the point cloud data of the structural elements, and detecting the associated damages from the calculated eigenvalues in each area of the structural element. Furthermore, kd-tree was used to enhance the searching efficiency of plane fitting which were later used for identifying the boundaries of structural elements. The results of geometric identification were compared with M3C2 algorithm provided by CloudCompare, as well as validated by LVDT measurements of full-scale reinforced concrete beams tested in laboratory. It shows that 3D laser scanning, through the established processing approaches of the point cloud data, can offer a rapid, nondestructive, remote, and accurate solution for geometric identification and damage detection of structural elements.

  4. Thin film femtosecond laser damage competition

    NASA Astrophysics Data System (ADS)

    Stolz, Christopher J.; Ristau, Detlev; Turowski, Marcus; Blaschke, Holger

    2009-10-01

    In order to determine the current status of thin film laser resistance within the private, academic, and government sectors, a damage competition was started at the 2008 Boulder Damage Symposium. This damage competition allows a direct comparison of the current state of the art of high laser resistance coatings since they are tested using the same damage test setup and the same protocol. In 2009 a high reflector coating was selected at a wavelength of 786 nm at normal incidence at a pulse length of 180 femtoseconds. A double blind test assured sample and submitter anonymity so only a summary of the results are presented here. In addition to the laser resistance results, details of deposition processes, coating materials and layer count, and spectral results will also be shared.

  5. BDS thin film damage competition

    NASA Astrophysics Data System (ADS)

    Stolz, Christopher J.; Thomas, Michael D.; Griffin, Andrew J.

    2008-10-01

    A laser damage competition was held at the 2008 Boulder Damage Symposium in order to determine the current status of thin film laser resistance within the private, academic, and government sectors. This damage competition allows a direct comparison of the current state-of-the-art of high laser resistance coatings since they are all tested using the same damage test setup and the same protocol. A normal incidence high reflector multilayer coating was selected at a wavelength of 1064 nm. The substrates were provided by the submitters. A double blind test assured sample and submitter anonymity so only a summary of the results are presented here. In addition to the laser resistance results, details of deposition processes, coating materials, and layer count will also be shared.

  6. Retinal damage profiles and neuronal effects of laser treatment: comparison of a conventional photocoagulator and a novel 3-nanosecond pulse laser.

    PubMed

    Wood, John P M; Shibeeb, O'Sam; Plunkett, Malcolm; Casson, Robert J; Chidlow, Glyn

    2013-03-28

    To determine detailed effects to retinal cells and, in particular, neurons following laser photocoagulation using a conventional 532 nm Nd:YAG continuous wave (CW) laser. Furthermore, to determine whether a novel 3 ns pulse laser (retinal regeneration therapy; 2RT) could specifically ablate retinal pigment epithelium (RPE) cells without causing collateral damage to other retinal cells. Adult Dark Agouti (DA) rats were separated into four groups: control, CW laser (12.7 J/cm(2)/pulse, 100 ms pulse duration), or 3 ns pulse 2RT laser at one of two energy settings ("High," 2RT-H, 163 mJ/cm(2)/pulse; "Low," 2RT-L, 109 mJ/cm(2)/pulse). Animals were treated and killed after 6 hours to 7 days, and retina/RPE was analyzed by histologic assessment, Western blot, polymerase chain reaction, and immunohistochemistry. Both lasers caused focal loss of RPE cells with no destruction of Bruch's membrane; RPE cells were present at lesion sites again within 7 days of treatments. CW and 2RT-H treatments caused extensive and moderate damage, respectively, to the outer retina. There were no obvious effects to horizontal, amacrine, or ganglion cells, as defined by immunolabeling, but an activation of PKCα within bipolar cells was noted. There was little discernible damage to any cells other than the RPE with the 2RT-L treatment. Conventional laser photocoagulation caused death of RPE cells with associated widespread damage to the outer retina but little influence on the inner retina. The novel 3 ns 2RT laser, however, was able to selectively kill RPE cells without causing collateral damage to photoreceptors. Potential benefits of this laser for clinical treatment of diabetic macular edema are discussed.

  7. Boulder damage symposium annual thin film laser damage competition

    DOE PAGES

    Stolz, Christopher J.

    2012-11-28

    Optical instruments and laser systems are often fluence-limited by multilayer thin films deposited on the optical surfaces. When comparing publications within the laser damage literature, there can be confusing and conflicting laser damage results. This is due to differences in testing protocols between research groups studying very different applications. In this series of competitions, samples from multiple vendors are compared under identical testing parameters and a single testing service. Unlike a typical study where a hypothesis is tested within a well-controlled experiment with isolated variables, this competition isolates the laser damage testing variables so that trends can be observed betweenmore » different deposition processes, coating materials, cleaning techniques, and multiple coating suppliers. The resulting series of damage competitions has also been designed to observe general trends of damage morphologies and mechanisms over a wide range of coating types (high reflector and antireflector), wavelengths (193 to 1064 nm), and pulse lengths (180 fs to 13 ns). A double blind test assured sample and submitter anonymity were used in each of the competitions so only a summary of the deposition process, coating materials, layer count and spectral results are presented. Laser resistance was strongly affected by substrate cleaning, coating deposition method, and coating material selection whereas layer count and spectral properties had minimal impact.« less

  8. Development of an Opto-Acoustic Recanalization System Final Report CRADA No. 1314-96

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silva, L. D.; Adam, H. R.

    The objective of the project was to develop an ischemic stroke treatient system that restores blood flow to the brain by removing occlusions using acoustic energy created by fiber optic delivery of laser light, a process called Opto Acoustic Recanalization (OAR). The key tasks of the project were to select a laser system, quantify temperature, pressure and particle size distribution, and develop a prototype device incorporating a feedback mechanism. System parameters were developed to cause emulsification while attempting to minimize particle size and collateral damage. The prototype system was tested in animal models and resulted in no visible collateral damage.

  9. Neuroprotective therapy for argon-laser-induced retinal injury

    NASA Astrophysics Data System (ADS)

    Belkin, Michael; Rosner, Mordechai; Solberg, Yoram; Turetz, Yosef

    1999-06-01

    Laser photocoagulation treatment of the central retina is often complicated by an immediate side effect of visual impairment, caused by the unavoidable laser-induced destruction of the normal tissue lying adjacent to the lesion and not affected directly by the laser beam. Furthermore, accidental laser injuries are at present untreatable. A neuroprotective therapy for salvaging the normal tissue might enhance the benefit obtained from treatment and allow safe perifoveal photocoagulation. We have developed a rat model for studying the efficacy of putative neuroprotective compounds in ameliorating laser-induced retinal damage. Four compounds were evaluated: the corticosteroid methylprednisolone, the glutamate-receptor blocker MK-801, the anti-oxidant enzyme superoxide dismutase, and the calcim-overload antagonist flunarizine. The study was carried out in two steps: in the first, the histopathological development of retinal laser injuries was studied. Argon laser lesions were inflicted in the retinas of 18 pigmented rats. The animals were sacrificed after 3, 20 or 60 days and their retinal lesions were evaluated under the light microscope. The laser injury mainly involved the outer layers of the retina, where it destroyed significant numbers of photoreceptor cells. Over time, evidence of two major histopathological processes was observed: traction of adjacent nomral retinal cells into the central area of the lesion forming an internal retinal bulging, and a retinal pigmented epithelial proliferative reaction associated with subretinal neovascularization and invations of the retinal lesion site by phagocytes. The neuroprotective effects of each of the four compounds were verified in a second step of the study. For each drug tested, 12 rats were irradiated wtih argon laser inflictions: six of them received the tested agent while the other six were treated with the corresponding vehicle. Twenty days after laser expsoure, the rats were sacrificed and their lesions were subjected to image-analysis morphometry. The extent of retianl damage was assessed by measuring the lesion diameter and the amount of photoreceptor cell loss in the outer nuclear layer. Methylprednisolone and MI-801 were shown to ameliorate laser-induced retinal damage, whereas both superoxide dismutase and flunarizine were ineffective. Furthermore, MK-801 diminished the proliferative reaction of the retinal pigment epithelial cells. On the basis of our results we suggest that the pigmented rat model is suitable for studying and screening various compounds for their neuroprotective efficacy in treating retinal laser injury. We further suggest that glutamate might play a key role in mediating retinal injury induced by laser irradiation.

  10. Ultrafast Passive Shields for Laser and Ballistic Protection

    DTIC Science & Technology

    1991-07-15

    chemically polymerized P(DPA)) as a binder, and these were tested for ablation (i.e. laser damage threshold ) limits. Table IV below summarizes these results...50, 100, 250 and 500 AJ/pulse o 1.G, 2.5, 5.0 mJ/pulse. The following energies were used for the preliminary laser damage threshold tests: o 2.5, 5.0...these were tested for ablation (i.e. laser damage threshold ) limits. Table VI summarizes these results which are all for tests in the absence of an iris

  11. Predicting threshold and location of laser damage on optical surfaces

    DOEpatents

    Siekhaus, Wigbert

    1987-01-01

    An apparatus useful in the prediction of the damage threshold of various optical devices, the location of weak spots on such devices and the location, identification, and elimination of optical surface impurities comprising, a focused and pulsed laser, an photo electric detector/imaging means, and a timer. The weak spots emit photoelectrons when subjected to laser intensities that are less than the intensity actually required to produce the damage. The weak spots may be eliminated by sustained exposure to the laser beam.

  12. Combined Advanced Finishing and UV-Laser Conditioning for Producing UV-Damage-Resistant Fused Silica Optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menapace, J A; Penetrante, B; Golini, D

    2001-11-01

    Laser induced damage initiation on fused silica optics can limit the lifetime of the components when used in high power UV laser environments. Foe example in inertial confinement fusion research applications, the optics can be exposed to temporal laser pulses of about 3-nsec with average fluences of 8 J/cm{sup 2} and peak fluences between 12 and 15 J/cm{sup 2}. During the past year, we have focused on optimizing the damage performance at a wavelength of 355-nm (3{omega}), 3-nsec pulse length, for optics in this category by examining a variety of finishing technologies with a challenge to improve the laser damagemore » initiation density by at least two orders of magnitude. In this paper, we describe recent advances in improving the 3{omega} damage initiation performance of laboratory-scale zirconium oxide and cerium oxide conventionally finished fused silica optics via application of processes incorporating magnetorheological finishing (MRF), wet chemical etching, and UV laser conditioning. Details of the advanced finishing procedures are described and comparisons are made between the procedures based upon large area 3{omega} damage performance, polishing layer contamination, and optical subsurface damage.« less

  13. Neodymium: YAG laser damage threshold. A comparison of injection-molded and lathe-cut polymethylmethacrylate intraocular lenses.

    PubMed

    Wilson, S E; Brubaker, R F

    1987-01-01

    The possibility that injection-molded intraocular lenses (IOLs) with imperfections called iridescent clefts could have a decreased threshold to neodymium: YAG (Nd:YAG) laser-induced damage was investigated. Thresholds for Nd:YAG laser-induced damage were determined for injection-molded and lathe-cut polymethylmethacrylate lenses. When aimed at a membrane in contact with a posterior convex surface, the average thresholds were 0.96 +/- 0.18 mJ (Standard deviation [SD]) and 1.80 +/- 0.55 mJ, respectively. The difference was significant at P = 0.001. When injection-molding polymethylmethacrylate was used to make lathe-cut IOLs, very few iridescent clefts were present, and the threshold to Nd:YAG laser-induced damage was 0.94 +/- 0.25 mJ. Iridescent clefts are therefore produced during the injection-molding process but they do not lower the threshold to Nd:YAG laser-induced damage. Rather, the reduced threshold in injection-molded lenses is most probably a result of the polymethylmethacrylate used in their manufacture. Clinically, iridescent clefts in a lens suggest that it has been manufactured by an injection-molding process and that Nd:YAG laser posterior capsulotomy must be performed at the lowest possible energy level to avoid damage.

  14. Multiple laser pulses in conjunction with an optical clearing agent to improve the curative effect of cutaneous vascular lesions.

    PubMed

    Ma, Jun; Chen, Bin; Li, Dong; Zhang, Yue; Ying, Zhaoxia

    2018-03-14

    Port-wine stain (PWS) birthmark is a congenital microvascular malformation of the skin. A 1064-nm Nd:YAG laser can achieve a deeper treatment, but the weak absorption by blood limits its clinical application. Multiple laser pulses (MLPs) are a potential solution to enhance the curative effect of a Nd:YAG laser. To reduce the pulse number (p n ) required for the thermal destruction of the blood vessel, the effect of glucose in conjunction with MLP was investigated. In vivo experiments were performed on a dorsal skin chamber model. Different concentrations (20, 25, 30, and 40%) of glucose were applied to the sub-dermal side of the hamster skin before laser irradiation. Identical vessels with diameters of 200 ± 30 and 110 ± 20 μm were chosen as representatives of typical PWS vessels. Instant thermal responses of the blood vessel were recorded by a high-speed camera. The required p n for blood vessel damage was compared with that without glucose pretreatment. Results showed that the use of glucose with a concentration of 20% combined with MLP Nd:YAG laser to damage blood vessels is more appropriate because severe hemorrhage or carbonization easily appeared in blood vessels at higher glucose concentration of 25, 30, and 40%. When 20% glycerol is pretreated on the sub-dermal hamster skin, the required p n for blood vessel damage can be significantly decreased for different power densities. For example, p n can be reduced by 40% when the power density is 57 J/cm 2 . In addition, generation of cavitation and bubbles in blood vessels is difficult upon pretreatment with glucose. The combination of glucose with MLP Nd:YAG laser could be an effective protocol for reducing the p n required for blood vessel damage. Randomized controlled trial (RCT) and human trials will be conducted in the future.

  15. Simulation of the temperature increase in human cadaver retina during direct illumination by 150-kHz femtosecond laser pulses

    PubMed Central

    Sun, Hui; Hosszufalusi, Nora; Mikula, Eric R.; Juhasz, Tibor

    2011-01-01

    We have developed a two-dimensional computer model to predict the temperature increase of the retina during femtosecond corneal laser flap cutting. Simulating a typical clinical setting for 150-kHz iFS advanced femtosecond laser (0.8- to 1-μJ laser pulse energy and 15-s procedure time at a laser wavelength of 1053 nm), the temperature increase is 0.2°C. Calculated temperature profiles show good agreement with data obtained from ex vivo experiments using human cadaver retina. Simulation results obtained for different commercial femtosecond lasers indicate that during the laser in situ keratomileusis procedure the temperature increase of the retina is insufficient to induce damage. PMID:22029369

  16. Research on laser-induced damage resistance of fused silica optics by the fluid jet polishing method.

    PubMed

    Lv, Liang; Ma, Ping; Huang, Jinyong; He, Xiang; Cai, Chao; Zhu, Heng

    2016-03-20

    Laser-induced damage threshold (LIDT) is one important evaluation index for optical glasses applied in large laser instruments which are exposed to high light irradiation flux. As a new kind of precise polishing technology, fluid jet polishing (FJP) has been widely used in generating planar, spherical, and aspherical optics with high-accuracy surfaces. Laser damage resistances of fused silica optics by the FJP process are studied in this paper. Fused silica samples with various FJP parameters are prepared, and laser damage experiments are performed with 351 nm wavelength and a 5.5 ns pulse width laser. Experimental results demonstrate that the LIDT of the samples treated with FJP processes did not increase, compared to their original state. The surface quality of the samples is one factor for the decrease of LIDT. For ceria solution polished samples, the cerium element remaining is another factor of the lower LIDT.

  17. Thermal evaluation of laser exposures in an in vitro retinal model by microthermal sensing

    NASA Astrophysics Data System (ADS)

    Choi, Tae Y.; Denton, Michael L.; Noojin, Gary D.; Estlack, Larry E.; Shrestha, Ramesh; Rockwell, Benjamin A.; Thomas, Robert; Kim, Dongsik

    2014-09-01

    A temperature detection system using a micropipette thermocouple sensor was developed for use within mammalian cells during laser exposure with an 8.6-μm beam at 532 nm. We have demonstrated the capability of measuring temperatures at a single-cell level in the microscale range by inserting micropipette-based thermal sensors of size ranging from 2 to 4 μm into the membrane of a live retinal pigment epithelium (RPE) cell subjected to a laser beam. We setup the treatment groups of 532-nm laser-irradiated single RPE cell and in situ temperature recordings were made over time. Thermal profiles are given for representative cells experiencing damage resulting from exposures of 0.2 to 2 s. The measured maximum temperature rise for each cell ranges from 39 to 73°C the RPE cells showed a signature of death for all the cases reported herein. In order to check the cell viability, real-time fluorescence microscopy was used to identify the transition of pigmented RPE cells between viable and damaged states due to laser exposure.

  18. Finite element model of thermal processes in retinal photocoagulation

    NASA Astrophysics Data System (ADS)

    Sramek, Christopher; Paulus, Yannis M.; Nomoto, Hiroyuki; Huie, Phil; Palanker, Daniel

    2009-02-01

    Short duration (< 20 ms) pulses are desirable in patterned scanning laser photocoagulation to confine thermal damage to the photoreceptor layer, decrease overall treatment time and reduce pain. However, short exposures have a smaller therapeutic window (defined as the ratio of rupture threshold power to that of light coagulation). We have constructed a finite-element computational model of retinal photocoagulation to predict spatial damage and improve the therapeutic window. Model parameters were inferred from experimentally measured absorption characteristics of ocular tissues, as well as the thresholds of vaporization, coagulation, and retinal pigment epithelial (RPE) damage. Calculated lesion diameters showed good agreement with histological measurements over a wide range of pulse durations and powers.

  19. Application of Laser Micro-irradiation for Examination of Single and Double Strand Break Repair in Mammalian Cells.

    PubMed

    Holton, Nathaniel W; Andrews, Joel F; Gassman, Natalie R

    2017-09-05

    Highly coordinated DNA repair pathways exist to detect, excise and replace damaged DNA bases, and coordinate repair of DNA strand breaks. While molecular biology techniques have clarified structure, enzymatic functions, and kinetics of repair proteins, there is still a need to understand how repair is coordinated within the nucleus. Laser micro-irradiation offers a powerful tool for inducing DNA damage and monitoring the recruitment of repair proteins. Induction of DNA damage by laser micro-irradiation can occur with a range of wavelengths, and users can reliably induce single strand breaks, base lesions and double strand breaks with a range of doses. Here, laser micro-irradiation is used to examine repair of single and double strand breaks induced by two common confocal laser wavelengths, 355 nm and 405 nm. Further, proper characterization of the applied laser dose for inducing specific damage mixtures is described, so users can reproducibly perform laser micro-irradiation data acquisition and analysis.

  20. Reduction of thermal damage in photodynamic therapy by laser irradiation techniques.

    PubMed

    Lim, Hyun Soo

    2012-12-01

    General application of continuous-wave (CW) laser irradiation modes in photodynamic therapy can cause thermal damage to normal tissues in addition to tumors. A new photodynamic laser therapy system using a pulse irradiation mode was optimized to reduce nonspecific thermal damage. In in vitro tissue specimens, tissue energy deposition rates were measured in three irradiation modes, CW, pulse, and burst-pulse. In addition, methods were tested for reducing variations in laser output and specific wavelength shifts using a thermoelectric cooler and thermistor. The average temperature elevation per 10 J/cm2 was 0.27°C, 0.09°C, and 0.08°C using the three methods, respectively, in pig muscle tissue. Variations in laser output were controlled within ± 0.2%, and specific wavelength shift was limited to ± 3 nm. Thus, optimization of a photodynamic laser system was achieved using a new pulse irradiation mode and controlled laser output to reduce potential thermal damage during conventional CW-based photodynamic therapy.

  1. Modelling single shot damage thresholds of multilayer optics for high-intensity short-wavelength radiation sources.

    PubMed

    Loch, R A; Sobierajski, R; Louis, E; Bosgra, J; Bijkerk, F

    2012-12-17

    The single shot damage thresholds of multilayer optics for high-intensity short-wavelength radiation sources are theoretically investigated, using a model developed on the basis of experimental data obtained at the FLASH and LCLS free electron lasers. We compare the radiation hardness of commonly used multilayer optics and propose new material combinations selected for a high damage threshold. Our study demonstrates that the damage thresholds of multilayer optics can vary over a large range of incidence fluences and can be as high as several hundreds of mJ/cm(2). This strongly suggests that multilayer mirrors are serious candidates for damage resistant optics. Especially, multilayer optics based on Li(2)O spacers are very promising for use in current and future short-wavelength radiation sources.

  2. Pulsed laser-induced damage of metals at 492 nm.

    PubMed

    Marrs, C D; Faith, W N; Dancy, J H; Porteus, J O

    1982-11-15

    A triaxial flashlamp-pumped dye laser has been used to perform laser damage testing of metal surfaces in the blue-green spectral region. Using LD490 laser dye, the laser produces 0.18-J, 0.5-microsec pulses at 492 nm. The spatial profile of the focused beam is measured in orthogonal directions in the plane of the sample surface. The orthogonal profiles are flat-topped Gaussians with 1/e(2) widths of 270 microm. Multithreshold laser damage test results are presented for polished Mo, diamond-turned high-purity Al alloy, diamond-turned bulk Cu, and diamond-turned electrodeposits of Ag and Au on Cu. Comparisons are made between calculated and experimentally measured slip and melt thresholds.

  3. Analysis of the Damage Mechanism Related to CO2 Laser Cochleostomy on Guinea Pig Cochlea

    PubMed Central

    Liu, Xiang; Qian, Xiao-qing; Ma, Rui

    2016-01-01

    Different types of lasers have been used in inner ear surgery. Therefore, it is of the utmost importance to avoid damage to the inner ear (e.g., hyperthermia and acoustic effects) caused by the use of such lasers. The aim of this study was to use a high powered fibre-enabled CO2 laser (10 W, 606 J/cm2) to perform cochleostomies on guinea pig cochlea and to investigate the possible laser-induced damage mechanisms. The temperature changes in the round window membrane, auditory evoked brainstem response, and morphological of the hair cells were measured and recorded before and after laser application. All of the outcomes differed in comparison with the control group. A rise in temperature and subsequent increased hearing loss were observed in animals that underwent surgery with a 10 W CO2 laser. These findings correlated with increased injury to the cochlear ultrastructure and a higher positive expression of E-cadherin and β-catenin in the damaged organ of Corti. We assume that enhanced cell-cell adhesion and the activated β-catenin-related canonical Wnt-signalling pathway may play a role in the protection of the cochlea to prevent further damage. PMID:28070426

  4. New method for measuring the laser-induced damage threshold of optical thin film

    NASA Astrophysics Data System (ADS)

    Su, Jun-hong; Wang, Hong; Xi, Ying-xue

    2012-10-01

    The laser-induced damage threshold (LIDT) of thin film means that the thin film can withstand a maximum intensity of laser radiation. The film will be damaged when the irradiation under high laser intensity is greater than the value of LIDT. In this paper, an experimental platform with measurement operator interfaces and control procedures in the VB circumstance is built according to ISO11254-1. In order to obtain more accurate results than that with manual measurement, in the software system, a hardware device can be controlled by control widget on the operator interfaces. According to the sample characteristic, critical parameters of the LIDT measurement system such as spot diameter, damage threshold region, and critical damage pixel number are set up on the man-machine conversation interface, which could realize intelligent measurements of the LIDT. According to experimental data, the LIDT is obtained by fitting damage curve automatically.

  5. Laser-driven formation of a high-pressure phase in amorphous silica.

    PubMed

    Salleo, Alberto; Taylor, Seth T; Martin, Michael C; Panero, Wendy R; Jeanloz, Raymond; Sands, Timothy; Génin, François Y

    2003-12-01

    Because of its simple composition, vast availability in pure form and ease of processing, vitreous silica is often used as a model to study the physics of amorphous solids. Research in amorphous silica is also motivated by its ubiquity in modern technology, a prominent example being as bulk material in transmissive and diffractive optics for high-power laser applications such as inertial confinement fusion (ICF). In these applications, stability under high-fluence laser irradiation is a key requirement, with optical breakdown occurring when the fluence of the beam is higher than the laser-induced damage threshold (LIDT) of the material. The optical strength of polished fused silica transmissive optics is limited by their surface LIDT. Surface optical breakdown is accompanied by densification, formation of point defects, cratering, material ejection, melting and cracking. Through a combination of electron diffraction and infrared reflectance measurements we show here that synthetic vitreous silica transforms partially into a defective form of the high-pressure stishovite phase under high-intensity (GW cm(-2)) laser irradiation. This phase transformation offers one suitable mechanism by which laser-induced damage grows catastrophically once initiated, thereby dramatically shortening the service lifetime of optics used for high-power photonics.

  6. Reduction of damage initiation density in fused silica optics via UV laser conditioning

    DOEpatents

    Peterson, John E.; Maricle, Stephen M.; Brusasco, Raymond M.; Penetrante, Bernardino M.

    2004-03-16

    The present invention provides a method for reducing the density of sites on the surface of fused silica optics that are prone to the initiation of laser-induced damage, resulting in optics which have far fewer catastrophic defects and are better capable of resisting optical deterioration upon exposure for a long period of time to a high-power laser beam having a wavelength of about 360 nm or less. The initiation of laser-induced damage is reduced by conditioning the optic at low fluences below levels that normally lead to catastrophic growth of damage. When the optic is then irradiated at its high fluence design limit, the concentration of catastrophic damage sites that form on the surface of the optic is greatly reduced.

  7. Infrared laser damage thresholds in corneal tissue phantoms using femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Boretsky, Adam R.; Clary, Joseph E.; Noojin, Gary D.; Rockwell, Benjamin A.

    2018-02-01

    Ultrafast lasers have become a fixture in many biomedical, industrial, telecommunications, and defense applications in recent years. These sources are capable of generating extremely high peak power that can cause laser-induced tissue breakdown through the formation of a plasma upon exposure. Despite the increasing prevalence of such lasers, current safety standards (ANSI Z136.1-2014) do not include maximum permissible exposure (MPE) values for the cornea with pulse durations less than one nanosecond. This study was designed to measure damage thresholds in corneal tissue phantoms in the near-infrared and mid-infrared to identify the wavelength dependence of laser damage thresholds from 1200-2500 nm. A high-energy regenerative amplifier and optical parametric amplifier outputting 100 femtosecond pulses with pulse energies up to 2 mJ were used to perform exposures and determine damage thresholds in transparent collagen gel tissue phantoms. Three-dimensional imaging, primarily optical coherence tomography, was used to evaluate tissue phantoms following exposure to determine ablation characteristics at the surface and within the bulk material. The determination of laser damage thresholds in the near-IR and mid-IR for ultrafast lasers will help to guide safety standards and establish the appropriate MPE levels for exposure sensitive ocular tissue such as the cornea. These data will help promote the safe use of ultrafast lasers for a wide range of applications.

  8. Corneal injury to ex vivo eyes exposed to a 3.8-micron laser

    NASA Astrophysics Data System (ADS)

    Fyffe, James G.; Randolph, Donald Q.; Winston, Golda C. H.; Johnson, Thomas E.

    2005-04-01

    As a consequence of the enormous expansion of laser use in medicine, industry and research, specific safety standards must be developed that appropriately address eye protection. The purpose of this study is to establish injury thresholds to the cornea for 3.8 micron 8 microsecond laser light pulses and to investigate a possible replacement model to live animal testing. Previous studies of pulsed energy absorption at 3.8 microns were performed using rhesus monkey cornea and were at pulse durations two orders of magnitude different than the 8 microsecond pulses used in this study. Ex-vivo pig eyes were exposed at varying energies and evaluated to establish the statistical threshold for corneal damage. Histology was used to determine the extent of damage to the cornea. It is expected that the results will be used to assist in the establishment of safety standards for laser use and offer an alternative to future animal use in establishment of safety standards.

  9. Laser-induced damage thresholds of gold, silver and their alloys in air and water

    NASA Astrophysics Data System (ADS)

    Starinskiy, Sergey V.; Shukhov, Yuri G.; Bulgakov, Alexander V.

    2017-02-01

    The nanosecond-laser-induced damage thresholds of gold, silver and gold-silver alloys of various compositions in air and water have been measured for single-shot irradiation conditions. The experimental results are analyzed theoretically by solving the heat flow equation for the samples irradiated in air and in water taking into account vapor nucleation at the solid-water interface. The damage thresholds of Au-Ag alloys are systematically lower than those for pure metals, both in air and water that is explained by lower thermal conductivities of the alloys. The thresholds measured in air agree well with the calculated melting thresholds for all samples. The damage thresholds in water are found to be considerably higher, by a factor of ∼1.5, than the corresponding thresholds in air. This cannot be explained, in the framework of the used model, neither by the conductive heat transfer to water nor by the vapor pressure effect. Possible reasons for the high damage thresholds in water such as scattering of the incident laser light by the vapor-liquid interface and the critical opalescence in the superheated water are suggested. Optical pump-probe measurements have been performed to study the reflectance dynamics of the surface irradiated in air and water. Comparison of the transient reflectance signal with the calculated nucleation dynamics provides evidence that the both suggested scattering mechanisms are likely to occur during metal ablation in water.

  10. Mitochondrial dependent oxidative stress in cell culture induced by laser radiation at 1265 nm.

    PubMed

    Saenko, Yury V; Glushchenko, Eugenia S; Zolotovskii, Igor O; Sholokhov, Evgeny; Kurkov, Andrey

    2016-04-01

    Photodynamic therapy is the main technique applied for surface carcinoma treatment. This technique employs singlet oxygen generated via a laser excited photosensitizer as a main damaging agent. However, prolonged sensitivity to intensive light, relatively low tissue penetration by activating light the cost of photosensitizer (PS) administration can limit photodynamic therapy applications. Early was reported singlet oxygen generation without photosensitizer induced by a laser irradiation at the wavelength of 1250-1270 nm. Here, we study the dynamics of oxidative stress, DNA damage, changes of mitochondrial potential, and mitochondrial mass induced by a laser at 1265 nm have been studied in HCT-116 and CHO-K cells. Laser irradiation of HCT-116 and CHO-K cells has induced a dose-dependent cell death via increasing intracellular reactive oxygen species (ROS) concentration, increase of DNA damage, decrease of mitochondrial potential, and reduced glutathione. It has been shown that, along with singlet oxygen generation, the increase of the intracellular ROS concentration induced by mitochondrial damage contributes to the damaging effect of the laser irradiation at 1265 nm.

  11. Improved laser damage threshold for chalcogenide glasses through surface microstructuring

    NASA Astrophysics Data System (ADS)

    Florea, Catalin; Sanghera, Jasbinder; Busse, Lynda; Shaw, Brandon; Aggarwal, Ishwar

    2011-03-01

    We demonstrate improved laser damage threshold of chalcogenide glasses with microstructured surfaces as compared to chalcogenide glasses provided with traditional antireflection coatings. The surface microstructuring is used to reduce Fresnel losses over large bandwidths in As2S3 glasses and fibers. The treated surfaces show almost a factor of two of improvement in the laser damage threshold when compared with untreated surfaces.

  12. Damage mechanisms avoided or managed for NIF large optics

    DOE PAGES

    Manes, K. R.; Spaeth, M. L.; Adams, J. J.; ...

    2016-02-09

    After every other failure mode has been considered, in the end, the high-performance limit of all lasers is set by optical damage. The demands of inertial confinement fusion (ICF) pushed lasers designed as ICF drivers into this limit from their very earliest days. The first ICF lasers were small, and their pulses were short. Their goal was to provide as much power to the target as possible. Typically, they faced damage due to high intensity on their optics. As requests for higher laser energy, longer pulse lengths, and better symmetry appeared, new kinds of damage also emerged, some of themmore » anticipated and others unexpected. This paper will discuss the various types of damage to large optics that had to be considered, avoided to the extent possible, or otherwise managed as the National Ignition Facility (NIF) laser was designed, fabricated, and brought into operation. Furthermore, it has been possible for NIF to meet its requirements because of the experience gained in previous ICF systems and because NIF designers have continued to be able to avoid or manage new damage situations as they have appeared.« less

  13. Laser-induced bulk damage of silica glass at 355nm and 266nm

    NASA Astrophysics Data System (ADS)

    Kashiwagi, R.; Aramomi, S.

    2016-12-01

    Laser processing machines using Nd:YAG 3rd harmonic wave (355 nm) and 4th harmonic wave (266 nm) have been developed and put into practical use lately. Due to this, optical elements with high laser durability to 355 nm and 266 nm are required. Silica glass is the optical element which has high UV transmission and high laser durability. Laser-induced surface damage of the silica glass has been studied in detail, but we hardly have the significant knowledge of laserinduced bulk damage. This knowledge is required in order to evaluate the silica glass itself. That is because cracks and scratches on the surface give rise to a higher possibility of damage. Therefore, we studied the laser durability of a variety of the silica glass samples by 1-on-1 and S-on-1 laser-induced bulk damage threshold (LIDT) at 355 nm and 266 nm. In this study, we gained knowledge in three areas about bulk damage to the silica glass. First, the LIDT became lower as shot counts increased. Second, the LIDT decreased as the hydroxyl content in the silica glass increased. Last, the LIDT became higher as the hydrogen concentration in the silica glass increased. Under the UV irradiation, impurities are generated and the silica glass absorbs more light. Therefore, the LIDT decreased as shot counts increased. Also, the hydroxyl in particular generates more impurities, so damage easily occurs. On the other hand, the hydrogen reacts with impurities and absorption is suppressed. Based on these results, we can improve laser durability at 355 nm and 266 nm by reducing the hydroxyl content and increasing the hydrogen concentration in the silica glass.

  14. An In Vitro Model for Retinal Laser Damage

    DTIC Science & Technology

    2007-01-01

    Approved for public release, distribution unlimited This paper is part of the following report: TITLE: Conference on Optical Interactions with Tissue...necessarily endorsed by the United States Air Force. Optical Interactions with Tissue and Cells XVIII, edited by Steven L. Jacques, William P. Roach, Proc...used for the 532-nm exposures. Verification of laser wavelength was performed with a spectrometer (Ocean Optics ). Figure 4 provides a schematic

  15. Laser damage of free-standing nanometer membranes

    NASA Astrophysics Data System (ADS)

    Morimoto, Yuya; Roland, Iännis; Rennesson, Stéphanie; Semond, Fabrice; Boucaud, Philippe; Baum, Peter

    2017-12-01

    Many high-field/attosecond and ultrafast electron diffraction/microscopy experiments on condensed matter require samples in the form of free-standing membranes with nanometer thickness. Here, we report the measurement of the laser-induced damage threshold of 11 different free-standing nanometer-thin membranes of metallic, semiconducting, and insulating materials for 1-ps, 1030-nm laser pulses at 50 kHz repetition rate. We find a laser damage threshold that is very similar to each corresponding bulk material. The measurements also reveal a band gap dependence of the damage threshold as a consequence of different ionization rates. These results establish the suitability of free-standing nanometer membranes for high-field pump-probe experiments.

  16. Numerical analysis of breakdown dynamics dependence on pulse width in laser-induced damage in fused silica: Role of optical system

    NASA Astrophysics Data System (ADS)

    Hamam, Kholoud A.; Gamal, Yosr E. E.-D.

    2018-06-01

    We report a numerical investigation of the breakdown and damage in fused silica caused by ultra-short laser pulses. The study based on a modified model (Gaabour et al., 2012) that solves the rate equation numerically for the electron density evolution during the laser pulse, under the combined effect of both multiphoton and electron impact ionization processes. Besides, electron loss processes due to diffusion out of the focal volume and recombination are also considered in this analysis. The model is applied to investigate the threshold intensity dependence on laser pulse width in the experimental measurements that are given by Liu et al. (2005). In this experiment, a Ti-sapphire laser source operating at 800 nm with pulse duration varies between 240 fs and 2.5 ps is used to irradiate a bulk of fused silica with dimensions 10 × 5 × 3 mm. The laser beam was focused into the bulk using two optical systems with effective numerical apertures (NA) 0.126 and 0.255 to give beam spot radius at the focus of the order 2.0 μm and 0.95 μm respectively. Reasonable agreement between the calculated thresholds and the measured ones is attained. Moreover, a study is performed to examine the respective role of the physical processes of the breakdown of fused silica in relation to the pulse width and focusing optical system. The analysis revealed a real picture of the location and size of the generated plasma.

  17. N-acetylcysteine and acute retinal laser lesions in the colubrid snake eye

    NASA Astrophysics Data System (ADS)

    Elliott, William R., III; Rentmeister-Bryant, Heike K.; Barsalou, Norman; Beer, Jeremy; Zwick, Harry

    2004-07-01

    This study examined the role of oxidative stress and the effect of a single dose treatment with N-Acetylcysteine (NAC) on the temporal development of acute laser-induced retinal injury. We used the snake eye/Scanning Laser Ophthalmoscope (SLO) model, an in vivo, non-invasive ocular imaging technique, which has the ability to image cellular retinal detail and allows for studying morphological changes of retinal injury over time. For this study 12 corn-snakes (Elaphe g. guttata) received 5 laser exposures per eye, followed by either a single dose of the antioxidant NAC (150mg/kg, IP in sterile saline) or placebo. Laser exposures were made with a Nd: VO4 DPSS, 532nm laser, coaxially aligned to the SLO. Shuttered pulses were 20msec x 50 mW; 1mJ each. Retinal images were taken using a Rodenstock cSLO and were digitally recorded at 1, 6, 24-hrs, and at 3-wks post-exposure. Lesions were assessed by two raters blind to the conditions of the study yielding measures of damaged area and counts of missing or damaged photoreceptors. Treated eyes showed a significant beneficial effect overall, and these results suggest that oxidative stress plays a role in laser-induced retinal injury. The use of NAC or a similar antioxidant shows promise as a therapeutic tool.

  18. Femtosecond laser polishing of optical materials

    NASA Astrophysics Data System (ADS)

    Taylor, Lauren L.; Qiao, Jun; Qiao, Jie

    2015-10-01

    Technologies including magnetorheological finishing and CNC polishing are commonly used to finish optical elements, but these methods are often expensive, generate waste through the use of fluids or abrasives, and may not be suited for specific freeform substrates due to the size and shape of finishing tools. Pulsed laser polishing has been demonstrated as a technique capable of achieving nanoscale roughness while offering waste-free fabrication, material-specific processing through direct tuning of laser radiation, and access to freeform shapes using refined beam delivery and focusing techniques. Nanosecond and microsecond pulse duration radiation has been used to perform successful melting-based polishing of a variety of different materials, but this approach leads to extensive heat accumulation resulting in subsurface damage. We have experimentally investigated the ability of femtosecond laser radiation to ablate silicon carbide and silicon. By substituting ultrafast laser radiation, polishing can be performed by direct evaporation of unwanted surface asperities with minimal heating and melting, potentially offering damage-free finishing of materials. Under unoptimized laser processing conditions, thermal effects can occur leading to material oxidation. To investigate these thermal effects, simulation of the heat accumulation mechanism in ultrafast laser ablation was performed. Simulations have been extended to investigate the optimum scanning speed and pulse energy required for processing various substrates. Modeling methodologies and simulation results will be presented.

  19. Neoplasms treatment by diode laser with and without real time temperature control on operation zone

    NASA Astrophysics Data System (ADS)

    Belikov, Andrey V.; Gelfond, Mark L.; Shatilova, Ksenia V.; Sosenkova, Svetlana A.; Lazareva, Anastasia A.; Semyashkina, Yulia V.

    2016-04-01

    Results of nevus, papilloma, dermatofibroma, and basal cell skin cancer in vivo removal by a 980+/-10 nm diode laser with "blackened" tip operating in continuous (CW) mode and automatic power control (APC) mode are presented. The collateral damage width and width of graze wound area around the collateral damage area were demonstrated. The total damage area width was calculated as sum of collateral damage width and graze wound area width. The mean width of total damage area reached 1.538+/-0.254 mm for patient group with nevus removing by 980 nm diode laser operating in CW mode, papilloma - 0.586+/-0.453 mm, dermatofibroma - 1.568+/-0.437 mm, and basal cell skin cancer - 1.603+/-0.613 mm. The mean width of total damage area reached 1.201+/-0.292 mm for patient group with nevus removing by 980 nm diode laser operating in APC mode, papilloma - 0.413+/-0.418 mm, dermatofibroma - 1.240+/-0.546 mm, and basal cell skin cancer - 1.204+/-0.517 mm. It was found that using APC mode decreases the total damage area width at removing of these nosological neoplasms of human skin, and decreases the width of graze wound area at removing of nevus and basal cell skin cancer. At the first time, the dynamic of output laser power and thermal signal during laser removal of nevus in CW and APC mode is presented. It was determined that output laser power during nevus removal for APC mode was 1.6+/-0.05 W and for CW mode - 14.0+/-0.1 W. This difference can explain the decrease of the total damage area width and width of graze wound area for APC mode in comparison with CW mode.

  20. Power degradation and reliability study of high-power laser bars at quasi-CW operation

    NASA Astrophysics Data System (ADS)

    Zhang, Haoyu; Fan, Yong; Liu, Hui; Wang, Jingwei; Zah, Chungen; Liu, Xingsheng

    2017-02-01

    The solid state laser relies on the laser diode (LD) pumping array. Typically for high peak power quasi-CW (QCW) operation, both energy output per pulse and long term reliability are critical. With the improved bonding technique, specially Indium-free bonded diode laser bars, most of the device failures were caused by failure within laser diode itself (wearout failure), which are induced from dark line defect (DLD), bulk failure, point defect generation, facet mirror damage and etc. Measuring the reliability of LD under QCW condition will take a rather long time. Alternatively, an accelerating model could be a quicker way to estimate the LD life time under QCW operation. In this report, diode laser bars were mounted on micro channel cooler (MCC) and operated under QCW condition with different current densities and junction temperature (Tj ). The junction temperature is varied by modulating pulse width and repetition frequency. The major concern here is the power degradation due to the facet failure. Reliability models of QCW and its corresponding failures are studied. In conclusion, QCW accelerated life-time model is discussed, with a few variable parameters. The model is compared with CW model to find their relationship.

  1. Lowered threshold energy for femtosecond laser induced optical breakdown in a water based eye model by aberration correction with adaptive optics.

    PubMed

    Hansen, Anja; Géneaux, Romain; Günther, Axel; Krüger, Alexander; Ripken, Tammo

    2013-06-01

    In femtosecond laser ophthalmic surgery tissue dissection is achieved by photodisruption based on laser induced optical breakdown. In order to minimize collateral damage to the eye laser surgery systems should be optimized towards the lowest possible energy threshold for photodisruption. However, optical aberrations of the eye and the laser system distort the irradiance distribution from an ideal profile which causes a rise in breakdown threshold energy even if great care is taken to minimize the aberrations of the system during design and alignment. In this study we used a water chamber with an achromatic focusing lens and a scattering sample as eye model and determined breakdown threshold in single pulse plasma transmission loss measurements. Due to aberrations, the precise lower limit for breakdown threshold irradiance in water is still unknown. Here we show that the threshold energy can be substantially reduced when using adaptive optics to improve the irradiance distribution by spatial beam shaping. We found that for initial aberrations with a root-mean-square wave front error of only one third of the wavelength the threshold energy can still be reduced by a factor of three if the aberrations are corrected to the diffraction limit by adaptive optics. The transmitted pulse energy is reduced by 17% at twice the threshold. Furthermore, the gas bubble motions after breakdown for pulse trains at 5 kilohertz repetition rate show a more transverse direction in the corrected case compared to the more spherical distribution without correction. Our results demonstrate how both applied and transmitted pulse energy could be reduced during ophthalmic surgery when correcting for aberrations. As a consequence, the risk of retinal damage by transmitted energy and the extent of collateral damage to the focal volume could be minimized accordingly when using adaptive optics in fs-laser surgery.

  2. Lowered threshold energy for femtosecond laser induced optical breakdown in a water based eye model by aberration correction with adaptive optics

    PubMed Central

    Hansen, Anja; Géneaux, Romain; Günther, Axel; Krüger, Alexander; Ripken, Tammo

    2013-01-01

    In femtosecond laser ophthalmic surgery tissue dissection is achieved by photodisruption based on laser induced optical breakdown. In order to minimize collateral damage to the eye laser surgery systems should be optimized towards the lowest possible energy threshold for photodisruption. However, optical aberrations of the eye and the laser system distort the irradiance distribution from an ideal profile which causes a rise in breakdown threshold energy even if great care is taken to minimize the aberrations of the system during design and alignment. In this study we used a water chamber with an achromatic focusing lens and a scattering sample as eye model and determined breakdown threshold in single pulse plasma transmission loss measurements. Due to aberrations, the precise lower limit for breakdown threshold irradiance in water is still unknown. Here we show that the threshold energy can be substantially reduced when using adaptive optics to improve the irradiance distribution by spatial beam shaping. We found that for initial aberrations with a root-mean-square wave front error of only one third of the wavelength the threshold energy can still be reduced by a factor of three if the aberrations are corrected to the diffraction limit by adaptive optics. The transmitted pulse energy is reduced by 17% at twice the threshold. Furthermore, the gas bubble motions after breakdown for pulse trains at 5 kilohertz repetition rate show a more transverse direction in the corrected case compared to the more spherical distribution without correction. Our results demonstrate how both applied and transmitted pulse energy could be reduced during ophthalmic surgery when correcting for aberrations. As a consequence, the risk of retinal damage by transmitted energy and the extent of collateral damage to the focal volume could be minimized accordingly when using adaptive optics in fs-laser surgery. PMID:23761849

  3. Predicting threshold and location of laser damage on optical surfaces

    DOEpatents

    Siekhaus, W.

    1985-02-04

    Disclosed is an apparatus useful in the prediction of the damage threshold of various optical devices, the location of weak spots on such devices and the location, identification, and elimination of optical surface impurities. The apparatus comprises a focused and pulsed laser, a photo electric detector/imaging means, and a timer. The weak spots emit photoelectrons when subjected to laser intensities that are less than the intensity actually required to produce the damage. The weak spots may be eliminated by sustained exposure to the laser beam.

  4. Evaluating the thermal damage resistance of graphene/carbon nanotube hybrid composite coatings

    NASA Astrophysics Data System (ADS)

    David, L.; Feldman, A.; Mansfield, E.; Lehman, J.; Singh, G.

    2014-03-01

    We study laser irradiation behavior of multiwalled carbon nanotubes (MWCNT) and chemically modified graphene (rGO)-composite spray coatings for use as a thermal absorber material for high-power laser calorimeters. Spray coatings on aluminum test coupon were exposed to increasing laser irradiance for extended exposure times to quantify their damage threshold and optical absorbance. The coatings, prepared at varying mass % of MWCNTs in rGO, demonstrated significantly higher damage threshold values at 2.5 kW laser power at 10.6 μm wavelength than carbon paint or MWCNTs alone. Electron microscopy and Raman spectroscopy of irradiated specimens show that the coating prepared at 50% CNT loading endure at least 2 kW.cm-2 for 10 seconds without significant damage. The improved damage resistance is attributed to the unique structure of the composite in which the MWCNTs act as an efficient absorber of laser light while the much larger rGO sheets surrounding them, dissipate the heat over a wider area.

  5. Total Internal Reflection Microscopy (TIRM) as a nondestructive surface damage assessment tool

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liao, Z.M.; Cohen, S.J.; Taylor, J.R.

    1994-10-01

    An easy to use, nondestructive, method for evaluating subsurface damage in polished substrates has been established at LLNL. Subsurface damage has been related to laser damage in coated optical components used in high power, high repetition rate laser systems. Total Internal Reflection Microscopy (TIRM) has been shown to be a viable nondestructive technique in analyzing subsurface damage in optical components. A successful TIRM system has been established for evaluating subsurface damage on fused silica components. Laser light scattering from subsurface damage sites is collected through a Nomarski microscope. These images are then captured by a CCD camera for analysis onmore » a computer. A variety of optics, including components with intentional subsurface damage due to grinding and polishing, have been analyzed and their TIRM images compared to an existing destructive etching method. Methods for quantitative measurement of subsurface damage are also discussed.« less

  6. Prediction of strontium bromide laser efficiency using cluster and decision tree analysis

    NASA Astrophysics Data System (ADS)

    Iliev, Iliycho; Gocheva-Ilieva, Snezhana; Kulin, Chavdar

    2018-01-01

    Subject of investigation is a new high-powered strontium bromide (SrBr2) vapor laser emitting in multiline region of wavelengths. The laser is an alternative to the atom strontium lasers and electron free lasers, especially at the line 6.45 μm which line is used in surgery for medical processing of biological tissues and bones with minimal damage. In this paper the experimental data from measurements of operational and output characteristics of the laser are statistically processed by means of cluster analysis and tree-based regression techniques. The aim is to extract the more important relationships and dependences from the available data which influence the increase of the overall laser efficiency. There are constructed and analyzed a set of cluster models. It is shown by using different cluster methods that the seven investigated operational characteristics (laser tube diameter, length, supplied electrical power, and others) and laser efficiency are combined in 2 clusters. By the built regression tree models using Classification and Regression Trees (CART) technique there are obtained dependences to predict the values of efficiency, and especially the maximum efficiency with over 95% accuracy.

  7. Report on the Study of Radiation Damage in Calcium Fluoride and Magnesium Fluoride Crystals for use in Excimer Laser Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    1999-10-04

    A study was performed to investigate the effects of radiation damage in calcium fluoride and magnesium fluoride crystals caused by gamma rays and UV photons from excimer lasers. The purpose was to study and correlate the damage caused by these two different mechanisms in various types of material used for fabricating optical elements in high power excimer lasers and lens systems of lithography tools. These optical systems are easily damaged by the laser itself, and it is necessary to use only the most radiation resistant materials for certain key elements. It was found that a clear correlation exists between the,more » radiation induced damage caused by high energy gamma rays and that produced by UV photons from the excimer laser. This correlation allows a simple procedure to be developed to select the most radiation resistant material at the ingot level, which would be later used to fabricate various components of the optical system. This avoids incurring the additional cost of fabricating actual optical elements with material that would later be damaged under prolonged use. The result of this screening procedure can result in a considerable savings in the overall cost of the lens and laser system.« less

  8. Mathematical modeling of laser lipolysis

    PubMed Central

    Mordon, Serge R; Wassmer, Benjamin; Reynaud, Jean Pascal; Zemmouri, Jaouad

    2008-01-01

    Background and Objectives Liposuction continues to be one of the most popular procedures performed in cosmetic surgery. As the public's demand for body contouring continues, laser lipolysis has been proposed to improve results, minimize risk, optimize patient comfort, and reduce the recovery period. Mathematical modeling of laser lipolysis could provide a better understanding of the laser lipolysis process and could determine the optimal dosage as a function of fat volume to be removed. Study design/Materials and Methods An Optical-Thermal-Damage Model was formulated using finite-element modeling software (Femlab 3.1, Comsol Inc). The general model simulated light distribution using the diffusion approximation of the transport theory, temperature rise using the bioheat equation and laser-induced injury using the Arrhenius damage model. Biological tissue was represented by two homogenous regions (dermis and fat layer) with a nonlinear air-tissue boundary condition including free convection. Video recordings were used to gain a better understanding of the back and forth movement of the cannula during laser lipolysis in order to consider them in our mathematical model. Infrared video recordings were also performed in order to compare the actual surface temperatures to our calculations. The reduction in fat volume was determined as a function of the total applied energy and subsequently compared to clinical data reported in the literature. Results In patients, when using cooled tumescent anesthesia, 1064 nm Nd:YAG laser or 980 nm diode laser: (6 W, back and forth motion: 100 mm/s) give similar skin surface temperature (max: 41°C). These measurements are in accordance with those obtained by mathematical modeling performed with a 1 mm cannula inserted inside the hypodermis layer at 0.8 cm below the surface. Similarly, the fat volume reduction observed in patients at 6-month follow up can be determined by mathematical modeling. This fat reduction depends on the applied energy, typically 5 cm3 for 3000 J. At last, skin retraction was observed in patients at 6-month follow up. This observation can be easily explained by mathematical modeling showing that the temperature increase inside the lower dermis is sufficient (48–50°C) to induce skin tightening Discussion and Conclusion Laser lipolysis can be described by a theoretical model. Fat volume reduction observed in patients is in accordance with model calculations. Due to heat diffusion, temperature elevation is also produced inside the lower reticular dermis. This interesting observation can explain remodeling of the collagenous tissue, with clinically evident skin tightening. In conclusion, while the heat generated by interstitial laser irradiation provides stimulate lipolysis of the fat cells, the collagen and elastin are also stimulated resulting in a tightening in the skin. This mathematical model should serve as a useful tool to simulate and better understand the mechanism of action of the laser lipolysis PMID:18312643

  9. Correlation between He-Ne scatter and 2.7-microm pulsed laser damage at coating defects.

    PubMed

    Porteus, J O; Spiker, C J; Franck, J B

    1986-11-01

    A reported correlation between defect-initiated pulsed laser damage and local predamage scatter in multilayer infrared mirror coatings has been analyzed in detail. Examination of a much larger data base confirms the previous result on dielectric-enhanced reflectors with polished substrates over a wide range of energy densities above the damage onset. Scatter signals from individual undamaged defects were detected using a He-Ne scatter probe with a focal spot that nearly coincides with the 150-microm-diam (D1/e(2)) focal spot of the damage-probe beam. Subsequent damage frequency measurements (1-on-1) were made near normal or at 45 degrees incidence with 100-ns pulses at 2.7-microm wavelength. The correlation is characterized by an increase in damage frequency with increasing predamage scatter signal and by equivalence of the defect densities indicated by the two probes. Characteristics of the correlation are compared with a simple model based on focal spot intensity profiles. Conditions that limit correlation are discussed, including variable scatter from defects and background scatter from diamond-turned substrates. Results have implication for nondestructive defect detection and coating quality control.

  10. High-order-harmonic generation from Rydberg atoms driven by plasmon-enhanced laser fields

    NASA Astrophysics Data System (ADS)

    Tikman, Y.; Yavuz, I.; Ciappina, M. F.; Chacón, A.; Altun, Z.; Lewenstein, M.

    2016-02-01

    We theoretically investigate high-order-harmonic generation (HHG) in Rydberg atoms driven by spatially inhomogeneous laser fields, induced, for instance, by plasmonic enhancement. It is well known that the laser intensity should exceed a certain threshold in order to stimulate HHG when noble gas atoms in their ground state are used as an active medium. One way to enhance the coherent light coming from a conventional laser oscillator is to take advantage of the amplification obtained by the so-called surface plasmon polaritons, created when a low-intensity laser field is focused onto a metallic nanostructure. The main limitation of this scheme is the low damage threshold of the materials employed in the nanostructure engineering. In this work we propose the use of Rydberg atoms, driven by spatially inhomogeneous, plasmon-enhanced laser fields, for HHG. We exhaustively discuss the behavior and efficiency of these systems in the generation of coherent harmonic emission. Toward this aim we numerically solve the time-dependent Schrödinger equation for an atom, with an electron initially in a highly excited n th Rydberg state, located in the vicinity of a metallic nanostructure. In this zone the electric field changes spatially on scales relevant for the dynamics of the laser-ionized electron. We first use a one-dimensional model to investigate systematically the phenomena. We then employ a more realistic situation, in which the interaction of a plasmon-enhanced laser field with a three-dimensional hydrogen atom is modeled. We discuss the scaling of the relevant input parameters with the principal quantum number n of the Rydberg state in question and demonstrate that harmonic emission can be achieved from Rydberg atoms well below the damage threshold, thus without deterioration of the geometry and properties of the metallic nanostructure.

  11. Effects of substrate on the femtosecond laser-induced damage properties of gold films

    NASA Astrophysics Data System (ADS)

    Huang, Haopeng; Wang, Leilei; Kong, Fanyu; Xia, Zhilin; Jin, Yunxia; Xu, Jiao; Chen, Junming; Cui, Yun; Shao, Jianda

    2018-07-01

    In this work, gold films on two different types of substrates were fabricated by electron beam (e-beam) evaporation, and the femtosecond laser-induced damage properties were evaluated. The first sample was gold film deposited on fused silica, whereas the second was gold deposited on photoresist. 1-on-1 damage tests were implemented by an 800 ± 30 nm laser with pulse duration of 30 fs. Different damage thresholds and morphologies were obtained for the two samples. The damage threshold of the gold film on fused silica was 0.64 J/cm2, with the typical damage morphology of thermal ablation and melting; the damage threshold of the gold film on photoresist was 0.30 J/cm2, with the typical damage morphology of blisters or peeling off. In order to better understand the impact of the substrate on the properties of the whole sample, the normalized electric field intensity, temperature, and thermal stress distributions were calculated. The adhesion between the gold film and substrate were measured and the experimental results well agreed with the theoretical analysis. The results indicate that gold films deposited onto grating-structured fused silica will have more powerful laser damage resistance performance.

  12. Enhanced thermomechanical stability on laser-induced damage by functionally graded layers in quasi-rugate filters

    NASA Astrophysics Data System (ADS)

    Pu, Yunti; Ma, Ping; Lv, Liang; Zhang, Mingxiao; Lu, Zhongwen; Qiao, Zhao; Qiu, Fuming

    2018-05-01

    Ta2O5-SiO2 quasi-rugate filters with a reasonable optimization of rugate notch filter design were prepared by ion-beam sputtering. The optical properties and laser-induced damage threshold are studied. Compared with the spectrum of HL-stacks, the spectrum of quasi-rugate filters have weaker second harmonic peaks and narrower stopbands. According to the effect of functionally graded layers (FGLs), 1-on-1 and S-on-1 Laser induced damage threshold (LIDT) of quasi-rugate filters are about 22% and 50% higher than those of HL stacks, respectively. Through the analysis of the damage morphologies, laser-induced damage of films under nanosecond multi-pulse are dominated by a combination of thermal shock stress and thermomechanical instability due to nodules. Compared with catastrophic damages, the damage sits of quasi-rugate filters are developed in a moderate way. The damage growth behavior of defect-induced damage sites have been effectively restrained by the structure of FGLs. Generally, FGLs are used to reduce thermal stress by the similar thermal-expansion coefficients of neighboring layers and solve the problems such as instability and cracking raised by the interface discontinuity of nodular boundaries, respectively.

  13. Numerical and experimental investigations on cavitation erosion

    NASA Astrophysics Data System (ADS)

    Fortes Patella, R.; Archer, A.; Flageul, C.

    2012-11-01

    A method is proposed to predict cavitation damage from cavitating flow simulations. For this purpose, a numerical process coupling cavitating flow simulations and erosion models was developed and applied to a two-dimensional (2D) hydrofoil tested at TUD (Darmstadt University of Technology, Germany) [1] and to a NACA 65012 tested at LMH-EPFL (Lausanne Polytechnic School) [2]. Cavitation erosion tests (pitting tests) were carried out and a 3D laser profilometry was used to analyze surfaces damaged by cavitation [3]. The method allows evaluating the pit characteristics, and mainly the volume damage rates. The paper describes the developed erosion model, the technique of cavitation damage measurement and presents some comparisons between experimental results and numerical damage predictions. The extent of cavitation erosion was correctly estimated in both hydrofoil geometries. The simulated qualitative influence of flow velocity, sigma value and gas content on cavitation damage agreed well with experimental observations.

  14. Nanoscale effects on the thermal and mechanical properties of AlGaAs/GaAs quantum well laser diodes: influence on the catastrophic optical damage

    NASA Astrophysics Data System (ADS)

    Souto, Jorge; Pura, José Luis; Jiménez, Juan

    2017-06-01

    In this work we study the catastrophic optical damage (COD) of graded-index separate confinement heterostructure quantum well (QW) laser diodes based on AlGaAs/GaAs. The emphasis is placed on the impact that the nanoscale physical properties have on the operation and degradation of the active layers of these devices. When these laser diodes run in continuous-wave mode with high internal optical power densities, the QW and guide layers can experiment very intense local heating phenomena that lead to device failure. A thermo-mechanical model has been set up to study the mechanism of degradation. This model has been solved by applying finite element methods. A variety of physical factors related to the materials properties, which play a paramount role in the laser degradation process, have been considered. Among these, the reduced thicknesses of the QW and the guides lead to thermal conductivities smaller than the bulk figures, which are further reduced as extended defects develop in these layers. This results in a progressively deteriorating thermal management in the device. To the best of our knowledge, this model for laser diodes is the first one to have taken into account low scale mechanical effects that result in enhanced strengths in the structural layers. Moreover, the consequences of these conflicting size-dependent properties on the thermo-mechanical behaviour on the route to COD are examined. Subsequently, this approach opens the possibility of taking advantage of these properties in order to design robust diode lasers (or other types of power devices) in a controlled manner.

  15. Experimental investigation on the vascular thermal response to near-infrared laser pulses.

    PubMed

    Li, Dong; Chen, Bin; Wu, Wenjuan; Ying, Zhaoxia

    2017-12-01

    Port wine stains (PWS) are congenital vascular malformations that progressively darken and thicken with age. To improve the effect of laser therapy in clinical practice, thermal response of blood vessel to a 1064 nm Nd:YAG laser with controlled energy doses and pulse durations was evaluated using the dorsal skin chamber model. A total of 137 vessels with 30-300 μm diameters were selected from the dorsal skin of the mouse to match those capillaries in port wine stains. Experimental results showed that the thermal response of blood vessels to 1064 nm laser irradiation can be classified as follows: vessel dilation, coagulation, constriction with decreased diameter, complete constriction, hemorrhage, and collagen damage with increasing laser radiant exposure. In most cases, that is, 83 of 137 blood vessels (60.6%), Nd:YAG laser irradiation was characterized by complete constriction (immediate blood vessel disappearance). To reveal the possible damage mechanisms and evaluate blood vessel photocoagulation patterns, theoretical investigation using bioheat transfer equation was conducted in mouse skin with a depth of 1000 μm. Complete constriction as the dominant thermal response as evidenced by uniform blood heating within the vessel lumen was noted in both experimental observation and theoretical investigation. To achieve the ideal clinical effect using the Nd:YAG laser treatment, the radiant exposure should not only be high enough to induce complete constriction of the blood vessels but also controlled carefully to avoid surrounding collagen damage. The short pulse duration of 1-3 ms is better than long pulse durations because hemorrhaging of small capillaries is occasionally observed postirradiation with pulse durations longer than 10 ms.

  16. Retinal Thermal Injury

    NASA Astrophysics Data System (ADS)

    Allen, Ralph G.

    1980-10-01

    Ucular damage resulting from exposure to intense light, has been a long standing concern--with solar eclipse burns, snow blindness, and glass blowers cataracts being examples. The development of intense light sources by man, culminating to date with lasers, has increased the possibility of accidental exposures. Systematic laboratory study of ocular damage was initiated in the early 1950's and has continued more or less continuously ever since. Probably the most thoroughly understood mechanism of injury is that described as thermal. This mechanism has been rather thoroughly modeled and the model validated reasonably well within the limits of its applicability. However, other mechanisms of injury such as acoustical shock waves and photochemical interactions have been identified and have received considerable attention in the past decade. The results of the research efforts of many investigators over a considerable span of time have been incorporated into numerous Laser Safety Standards, typified by the American National Standards Institute Z136.1 Standard for the Safe Use of Lasers. These standards, although carefully conceived and based upon a large body of empirical information are neither complete nor final and should be updated as additional information is uncovered.

  17. The influence of dynamical change of optical properties on the thermomechanical response and damage threshold of noble metals under femtosecond laser irradiation

    NASA Astrophysics Data System (ADS)

    Tsibidis, George D.

    2018-02-01

    We present a theoretical investigation of the dynamics of the dielectric constant of noble metals following heating with ultrashort pulsed laser beams and the influence of the temporal variation of the associated optical properties on the thermomechanical response of the material. The effect of the electron relaxation time on the optical properties based on the use of a critical point model is thoroughly explored for various pulse duration values (i.e., from 110 fs to 8 ps). The proposed theoretical framework correlates the dynamical change in optical parameters, relaxation processes and induced strains-stresses. Simulations are presented by choosing gold as a test material, and we demonstrate that the consideration of the aforementioned factors leads to significant thermal effect changes compared to results when static parameters are assumed. The proposed model predicts a substantially smaller damage threshold and a large increase of the stress which firstly underlines the significant role of the temporal variation of the optical properties and secondly enhances its importance with respect to the precise determination of laser specifications in material micromachining techniques.

  18. Comparison of in-vivo skin models for near-infrared laser exposure

    NASA Astrophysics Data System (ADS)

    Eggleston, Thomas A.; Mitchell, Michael A.; Johnson, Thomas E.; Becker, Robert L., Jr.; Roach, William P.

    1999-06-01

    Current safety standards for lasers operating in the 1400 to 10,000 nm wavelength region are based on few observations at specific wavelengths using in vivo models that may not represent an accurate correlation to human integument. Based on experimental results conducted with Yorkshire pigs, these standards may not accurately reflect the potential for laser injury when humans are exposed to these wavelengths. It is our belief that one of the primary damage mechanisms involved in these laser injuries is due to energy absorption by skin pigmentation, or melanin. Qualitatively, Yorkshire pigs lack melanin in their skin when compared to a more highly pigmented animal, such as the Yucatan minipig. It is hypothesized that the Yucatan minipig is a more appropriate model for pigmented human skin. By comparing histologic samples taken from various locations on Yucatan minipigs and Yorkshire pigs, and comparing these to potential locations of skin exposure on humans, we present a discussion for the establishment of more appropriate locations for in vivo laser exposure studies.

  19. TEA CO2 laser machining of CFRP composite

    NASA Astrophysics Data System (ADS)

    Salama, A.; Li, L.; Mativenga, P.; Whitehead, D.

    2016-05-01

    Carbon fibre-reinforced polymer (CFRP) composites have found wide applications in the aerospace, marine, sports and automotive industries owing to their lightweight and acceptable mechanical properties compared to the commonly used metallic materials. Machining of CFRP composites using lasers can be challenging due to inhomogeneity in the material properties and structures, which can lead to thermal damages during laser processing. In the previous studies, Nd:YAG, diode-pumped solid-state, CO2 (continuous wave), disc and fibre lasers were used in cutting CFRP composites and the control of damages such as the size of heat-affected zones (HAZs) remains a challenge. In this paper, a short-pulsed (8 μs) transversely excited atmospheric pressure CO2 laser was used, for the first time, to machine CFRP composites. The laser has high peak powers (up to 250 kW) and excellent absorption by both the carbon fibre and the epoxy binder. Design of experiment and statistical modelling, based on response surface methodology, was used to understand the interactions between the process parameters such as laser fluence, repetition rate and cutting speed and their effects on the cut quality characteristics including size of HAZ, machining depth and material removal rate (MRR). Based on this study, process parameter optimization was carried out to minimize the HAZ and maximize the MRR. A discussion is given on the potential applications and comparisons to other lasers in machining CFRP.

  20. CO2 and diode laser for excisional biopsies of oral mucosal lesions. A pilot study evaluating clinical and histopathological parameters.

    PubMed

    Suter, Valérie G A; Altermatt, Hans Jörg; Sendi, Pedram; Mettraux, Gérald; Bornstein, Michael M

    2010-01-01

    The present pilot study evaluates the histopathological characteristics and suitability of CO2 and diode lasers for performing excisional biopsies in the buccal mucosa with special emphasis on the extent of the thermal damage zone created. 15 patients agreed to undergo surgical removal of their fibrous hyperplasias with a laser. These patients were randomly assigned to one diode or two CO2 laser groups. The CO2 laser was used in a continuous wave mode (cw) with a power of 5 W (Watts), and in a pulsed char-free mode (cf). Power settings for the diode laser were 5.12 W in a pulsed mode. The thermal damage zone of the three lasers and intraoperative and postoperative complications were assessed and compared. The collateral thermal damage zone on the borders of the excisional biopsies was significantly smaller with the CO, laser for both settings tested compared to the diode laser regarding values in pm or histopathological index scores. The only intraoperative complication encountered was bleeding, which had to be controlled with electrocauterization. No postoperative complications occurred in any of the three groups. The CO2 laser seems to be appropriate for excisional biopsies of benign oral mucosal lesions. The CO2 laser offers clear advantages in terms of smaller thermal damage zones over the diode laser. More study participants are needed to demonstrate potential differences between the two different CO2 laser settings tested.

  1. Laser Damage in Thin Film Optical Coatings

    DTIC Science & Technology

    1992-07-01

    10) using E- beam evaporation and laser tests performed to determine the effect of conditioning laser spot size and coating design on improvement in...1.06 pm) consisting of a 15 layer 3 quarter-wave design (HFO2/SiO 2 and ZrO2/SiO 2) were fabricated by E- beam evaporation. Sol-gel processing was used to... designers select laser damage resistant coatings for optical elements to be employed in military systems using lasers or encountering lasers used as

  2. Heat damage-free laser-microjet cutting achieves highest die fracture strength

    NASA Astrophysics Data System (ADS)

    Perrottet, Delphine; Housh, Roy; Richerzhagen, Bernold; Manley, John

    2005-04-01

    Unlike conventional laser-based technologies, the water jet guided laser does not generate heat damage and contamination is also very low. The negligible heat-affected zone is one reason why die fracture strength is higher than with sawing. This paper first presents the water jet guided laser technology and then explains how it differs from conventional dry laser cutting. Finally, it presents the results obtained by three recent studies conducted to determine die fracture strength after Laser-Microjet cutting.

  3. R-on-1 automatic mapping: A new tool for laser damage testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hue, J.; Garrec, P.; Dijon, J.

    1996-12-31

    Laser damage threshold measurement is statistical in nature. For a commercial qualification or for a user, the threshold determined by the weakest point is a satisfactory characterization. When a new coating is designed, threshold mapping is very useful. It enables the technology to be improved and followed more accurately. Different statistical parameters such as the minimum, maximum, average, and standard deviation of the damage threshold as well as spatial parameters such as the threshold uniformity of the coating can be determined. Therefore, in order to achieve a mapping, all the tested sites should give data. This is the major interestmore » of the R-on-1 test in spite of the fact that the laser damage threshold obtained by this method may be different from the 1-on-1 test (smaller or greater). Moreover, on the damage laser test facility, the beam size is smaller (diameters of a few hundred micrometers) than the characteristic sizes of the components in use (diameters of several centimeters up to one meter). Hence, a laser damage threshold mapping appears very interesting, especially for applications linked to large optical components like the Megajoule project or the National Ignition Facility (N.I.F). On the test bench used, damage detection with a Nomarski microscope and scattered light measurement are almost equivalent. Therefore, it becomes possible to automatically detect on line the first defects induced by YAG irradiation. Scattered light mappings and laser damage threshold mappings can therefore be achieved using a X-Y automatic stage (where the test sample is located). The major difficulties due to the automatic capabilities are shown. These characterizations are illustrated at 355 nm. The numerous experiments performed show different kinds of scattering curves, which are discussed in relation with the damage mechanisms.« less

  4. Selective removal of dental composite using a rapidly scanned carbon dioxide laser

    NASA Astrophysics Data System (ADS)

    Chan, Kenneth H.; Fried, Daniel

    2011-03-01

    Dental restorative materials are color matched to the tooth and are difficult to remove by mechanical means without excessive removal or damage to peripheral enamel and dentin. Lasers are ideally suited for selective ablation to minimize healthy tissue loss when replacing existing restorations, sealants or removing composite adhesives such as residual composite left after debonding orthodontic brackets. In this study a carbon dioxide laser operating at high laser pulse repetition rates integrated with a galvanometer based scanner was used to selectively remove composite from tooth surfaces. A diode array spectrometer was used to measure the plume emission after each laser pulse and determine if the ablated material was tooth mineral or composite. The composite was placed on tooth buccal and occlusal surfaces and the carbon dioxide laser was scanned across the surface to selectively remove the composite without excessive damage to the underlying sound enamel. The residual composite and the damage to the underlying enamel was evaluated using optical microscopy. The laser was able to rapidly remove the composites rapidly from both surfaces with minimal damage to the underlying sound enamel.

  5. Mitigation of laser damage on National Ignition Facility optics in volume production

    NASA Astrophysics Data System (ADS)

    Folta, James; Nostrand, Mike; Honig, John; Wong, Nan; Ravizza, Frank; Geraghty, Paul; Taranowski, Mike; Johnson, Gary; Larkin, Glenn; Ravizza, Doug; Peterson, John; Welday, Brian; Wegner, Paul

    2013-12-01

    The National Ignition Facility has recently achieved the milestone of delivering over 1.8 MJ and 500 TW of 351 nm laser energy and power on target, which required average fluences up to 9 J/cm2 (3 ns equivalent) in the final optics system. Commercial fused silica laser-grade UV optics typically have a maximum operating threshold of 5 J/cm2. We have developed an optics recycling process which enables NIF to operate above the laser damage initiation and growth thresholds. We previously reported a method to mitigate laser damage with laser ablation of the damage site to leave benign cone shaped pits. We have since developed a production facility with four mitigation systems capable of performing the mitigation protocols on full-sized (430 mm) optics in volume production. We have successfully repaired over 700 NIF optics (unique serial numbers), some of which have been recycled as many as 11 times. We describe the mitigation systems, the optics recycle loop process, and optics recycle production data.

  6. Application of Laser Based Ultrasound for NDE of Damage in Thick Stitched Composites

    NASA Technical Reports Server (NTRS)

    Anastasi, Robert F.; Friedman, Adam D.; Hinders, Mark K.; Madaras, Eric I.

    1997-01-01

    As design engineers implement new composite systems such as thick, load bearing composite structures, they must have certifiable confidence in structure s durability and worthiness. This confidence builds from understanding the structural response and failure characteristics of simple components loaded in testing machines to tests on full scale sections. Nondestructive evaluation is an important element which can provide quantitative information on the damage initiation, propagation, and final failure modes for the composite structural components. Although ultrasound is generally accepted as a test method, the use of conventional ultrasound for in-situ monitoring of damage during tests of large structures is not practical. The use of lasers to both generate and detect ultrasound extends the application of ultrasound to in- situ sensing of damage in a deformed structure remotely and in a non-contact manner. The goal of the present research is to utilize this technology to monitor damage progression during testing. The present paper describes the application of laser based ultrasound to quantify damage in thick stitched composite structural elements to demonstrate the method. This method involves using a Q-switched laser to generate a rapid, local linear thermal strain on the surface of the structure. This local strain causes the generation of ultrasonic waves into the material. A second laser used with a Fabry-Perot interferometer detects the surface deflections. The use of fiber optics provides for eye safety and a convenient method of delivering the laser over long distances to the specimens. The material for these structural elements is composed of several stacks of composite material assembled together by stitching through the laminate thickness that ranging from 0.5 to 0.8 inches. The specimens used for these nondestructive evaluation studies had either impact damage or skin/stiffener interlaminar failure. Although little or no visible surface damage existed, internal damage was detected by laser based ultrasound.

  7. Role of defects in laser-induced modifications of silica coatings and fused silica using picosecond pulses at 1053 nm: II Scaling laws and the density of precursors

    DOE PAGES

    Laurence, T. A.; Negres, R. A.; Ly, S.; ...

    2017-06-22

    Here, we investigate the role of defects in laser-induced damage of fused silica and of silica coatings produced by e-beam and PIAD processes which are used in damage resistant, multi-layer dielectric, reflective optics. We perform experiments using 1053 nm, 1–60 ps laser pulses with varying beam size, number of shots, and pulse widths in order to understand the characteristics of defects leading to laser-induced damage. This pulse width range spans a transition in mechanisms from intrinsic material ablation for short pulses to defect-dominated damage for longer pulses. We show that for pulse widths as short as 10 ps, laser-induced damagemore » properties of fused silica and silica films are dominated by isolated absorbers. The density of these precursors and their fluence dependence of damage initiation suggest a single photon process for initial energy absorption in these precursors. Higher density precursors that initiate close to the ablation threshold at shorter pulse widths are also observed in fused silica, whose fluence and pulse width scaling suggest a multiphoton initiation process. We also show that these initiated damage sites grow with subsequent laser pulses. We show that scaling laws obtained in more conventional ways depend on the beam size and on the definition of damage for ps pulses. For this reason, coupling scaling laws with the density of precursors are critical to understanding the damage limitations of optics in the ps regime.« less

  8. Role of defects in laser-induced modifications of silica coatings and fused silica using picosecond pulses at 1053 nm: II Scaling laws and the density of precursors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laurence, T. A.; Negres, R. A.; Ly, S.

    Here, we investigate the role of defects in laser-induced damage of fused silica and of silica coatings produced by e-beam and PIAD processes which are used in damage resistant, multi-layer dielectric, reflective optics. We perform experiments using 1053 nm, 1–60 ps laser pulses with varying beam size, number of shots, and pulse widths in order to understand the characteristics of defects leading to laser-induced damage. This pulse width range spans a transition in mechanisms from intrinsic material ablation for short pulses to defect-dominated damage for longer pulses. We show that for pulse widths as short as 10 ps, laser-induced damagemore » properties of fused silica and silica films are dominated by isolated absorbers. The density of these precursors and their fluence dependence of damage initiation suggest a single photon process for initial energy absorption in these precursors. Higher density precursors that initiate close to the ablation threshold at shorter pulse widths are also observed in fused silica, whose fluence and pulse width scaling suggest a multiphoton initiation process. We also show that these initiated damage sites grow with subsequent laser pulses. We show that scaling laws obtained in more conventional ways depend on the beam size and on the definition of damage for ps pulses. For this reason, coupling scaling laws with the density of precursors are critical to understanding the damage limitations of optics in the ps regime.« less

  9. Safety of cornea and iris in ocular surgery with 355-nm lasers.

    PubMed

    Wang, Jenny; Chung, Jae Lim; Schuele, Georg; Vankov, Alexander; Dalal, Roopa; Wiltberger, Michael; Palanker, Daniel

    2015-09-01

    A recent study showed that 355-nm nanosecond lasers cut cornea with similar precision to infrared femtosecond lasers. However, use of ultraviolet wavelength requires precise assessment of ocular safety to determine the range of possible ophthalmic applications. In this study, the 355-nm nanosecond laser was evaluated for corneal and iris damage in rabbit, porcine, and human donor eyes as determined by minimum visible lesion (MVL) observation, live/dead staining of the endothelium, and apoptosis assay. Single-pulse damage to the iris was evaluated on porcine eyes using live/dead staining. In live rabbits, the cumulative median effective dose (ED50) for corneal damage was 231 J/cm2, as seen by lesion observation. Appearance of endothelial damage in live/dead staining or apoptosis occurred at higher radiant exposure of 287 J/cm2. On enucleated rabbit and porcine corneas, ED50 was 87 and 52 J/cm2, respectively, by MVL, and 241 and 160 J/cm2 for endothelial damage. In human eyes, ED50 for MVL was 110 J/cm2 and endothelial damage at 453 J/cm2. Single-pulse iris damage occurred at ED 50 of 208 mJ/cm2. These values determine the energy permitted for surgical patterns and can guide development of ophthalmic laser systems. Lower damage threshold in corneas of enucleated eyes versus live rabbits is noted for future safety evaluation.

  10. Computational model of retinal photocoagulation and rupture

    NASA Astrophysics Data System (ADS)

    Sramek, Christopher; Paulus, Yannis M.; Nomoto, Hiroyuki; Huie, Phil; Palanker, Daniel

    2009-02-01

    In patterned scanning laser photocoagulation, shorter duration (< 20 ms) pulses help reduce thermal damage beyond the photoreceptor layer, decrease treatment time and minimize pain. However, safe therapeutic window (defined as the ratio of rupture threshold power to that of light coagulation) decreases for shorter exposures. To quantify the extent of thermal damage in the retina, and maximize the therapeutic window, we developed a computational model of retinal photocoagulation and rupture. Model parameters were adjusted to match measured thresholds of vaporization, coagulation, and retinal pigment epithelial (RPE) damage. Computed lesion width agreed with histological measurements in a wide range of pulse durations and power. Application of ring-shaped beam profile was predicted to double the therapeutic window width for exposures in the range of 1 - 10 ms.

  11. Intraocular laser surgical probe for membrane disruption by laser-induced breakdown.

    PubMed

    Hammer, D X; Noojin, G D; Thomas, R J; Clary, C E; Rockwell, B A; Toth, C A; Roach, W P

    1997-03-01

    A fiber probe has been designed as a surgical aid to cut intraocular membranes with laser-induced breakdown as the mechanism. The design of the intraocular laser surgical probe is discussed. A preliminary retinal damage distance has been calculated with breakdown threshold, spot size, and shielding measurements. Collateral mechanical-damage effects caused by shock wave and cavitation are discussed.

  12. Spatiotemporal modeling of laser tissue soldering using photothermal nanocomposites.

    PubMed

    Mushaben, Madaline; Urie, Russell; Flake, Tanner; Jaffe, Michael; Rege, Kaushal; Heys, Jeffrey

    2018-02-01

    Laser tissue soldering using photothermal solders is a technology that facilitates rapid sealing using heat-induced changes in the tissue and the solder material. The solder material is made of gold nanorods embedded in a protein matrix patch that can be placed over the tissue rupture site and heated with a laser. Although laser tissue soldering is an attractive approach for surgical repair, potential photothermal damage can limit the success of this approach. Development of predictive mathematical models of photothermal effects including cell death, can lead to more efficient approaches in laser-based tissue repair. We describe an experimental and modeling investigation into photothermal solder patches for sealing porcine and mouse cadaver intestine sections using near-infrared laser irradiation. Spatiotemporal changes in temperature were determined at the surface as well as various depths below the patch. A mathematical model, based on the finite element method, predicts the spatiotemporal temperature distribution in the patch and surrounding tissue, as well as concomitant cell death in the tissue is described. For both the porcine and mouse intestine systems, the model predicts temperatures that are quantitatively similar to the experimental measurements with the model predictions of temperature increase often being within a just a few degrees of experimental measurements. This mathematical model can be employed to identify optimal conditions for minimizing healthy cell death while still achieving a strong seal of the ruptured tissue using laser soldering. Lasers Surg. Med. 50:143-152, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  13. Thermal model for optimization of vascular laser tissue soldering.

    PubMed

    Bogni, Serge; Stumpp, Oliver; Reinert, Michael; Frenz, Martin

    2010-06-01

    Laser tissue soldering (LTS) is a promising technique for tissue fusion based on a heat-denaturation process of proteins. Thermal damage of the fused tissue during the laser procedure has always been an important and challenging problem. Particularly in LTS of arterial blood vessels strong heating of the endothelium should be avoided to minimize the risk of thrombosis. A precise knowledge of the temperature distribution within the vessel wall during laser irradiation is inevitable. The authors developed a finite element model (FEM) to simulate the temperature distribution within blood vessels during LTS. Temperature measurements were used to verify and calibrate the model. Different parameters such as laser power, solder absorption coefficient, thickness of the solder layer, cooling of the vessel and continuous vs. pulsed energy deposition were tested to elucidate their impact on the temperature distribution within the soldering joint in order to reduce the amount of further animal experiments. A pulsed irradiation with high laser power and high absorbing solder yields the best results. (c) 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Photothermal therapy to damage PC3 cancer cells: in vitro studies of a pulsed laser (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Zamora-Romero, Noe; Aguilar, Guillermo; Devia-Cruz, Luis F.; Banks, Darren; Zhang, Bin; Halaney, David L.

    2017-02-01

    Laser-nanoparticles interactions have been widely used for several years. In biomedicine, several in vitro and in vivo experiments have shown promising results for the detection and treatment of cancer. One of the techniques of interest to us, is the nanoparticle-assisted photothermal therapy (PTT), which consists of irradiating cancer cells incubated with nanoparticles with either a pulsed or continuous (cw) laser in order to damage the cells. However, there is still a debate over which type of laser is most effective for PTT for cancer treatment. On the one hand, cw lasers are minimally invasive and can be used for both detection and treatment of tumors. On the other hand, pulsed lasers offer great spatial precision and can deposit higher energy fluences than cw lasers, making them very efficient for inducing cavitation to damage cancer cells and tumors mechanically. The aim of this study is to investigate whether simultaneous application of cw and pulsed laser could offer a synergetic enhancement of PTT efficacy to damage cancer cells in vitro, compared to either laser applied individually. PTT efficacy is evaluated through cell viability tests following the irradiation of prostate cancer (PC3) cells incubated with gold nanorods (5.7 X10 10 p/ml). By irradiating the PC3-nanorod solution with the cw laser at 808 nm for 60 seconds, the temperature increases from 37.5 to 45°C, which damages some cancer cells via the heat shock response within the cells, and also could increase their sensitivity to the mechanical stress caused by the shock wave generated from inducing cavitation in the solution by the pulsed laser irradiation.

  15. Research on influence of parasitic resistance of InGaAs solar cells under continuous wave laser irradiation

    NASA Astrophysics Data System (ADS)

    Li, Guangji; Zhang, Hongchao; Zhou, Guanglong; Lu, Jian; Zhou, Dayong

    2017-06-01

    InGaAs solar cells were irradiated by 1060-1080nm continuous wave (CW) laser, and studied the laser-electrical conversion and damage experiment with the power density as 97mW/cm2 and 507W/cm2 respectively. The result indicated that there is no obvious damage phenomenon but air layer appeared in the damaged region, and there is no direct relationship between the area and the extent of damage. Moreover, the p-n junction in the damage zone was destroyed, lost the ability of photoelectric conversion. The region acts as a resistance between the two electrodes, resulting in an increase in the leakage current of the solar cells and a decrease in the parallel resistance, which is the main reason leading to the decline of open circuit voltage, short circuit current and conversion efficiency. This paper would provide a reference for wireless energy transmission and the subsequent laser damage of solar cells.

  16. Generation of Scratches and Their Effects on Laser Damage Performance of Silica Glass

    PubMed Central

    Li, Yaguo; Ye, Hui; Yuan, Zhigang; Liu, Zhichao; Zheng, Yi; Zhang, Zhe; Zhao, Shijie; Wang, Jian; Xu, Qiao

    2016-01-01

    Scratches are deleterious to precision optics because they can obscure and modulate incident laser light, which will increase the probability of damage to optical components. We here imitated the generation of brittle and ductile scratches during polishing process and endeavored to find out the possible influence of scratches on laser induced damage. Brittle scratches can be induced by spiking large sized abrasives and small abrasives may only generate ductile scratches. Both surface roughness and transmittivity are degraded due to the appearance of brittle scratches while ductile scratches make little difference to surface roughness and transmittance. However, ductile and brittle scratches greatly increase the density of damage about one order of magnitude relative to unscratched surface. In particular, ductile scratches also play an unignorable role in laser induced damage, which is different from previous knowledge. Furthermore, ZrO2 and Al2O3 polished surfaces appear to perform best in terms of damage density. PMID:27703218

  17. Few-cycle pulse laser induced damage threshold determination of ultra-broadband optics.

    PubMed

    Kafka, Kyle R P; Talisa, Noah; Tempea, Gabriel; Austin, Drake R; Neacsu, Catalin; Chowdhury, Enam A

    2016-12-12

    A systematic study of few-cycle pulse laser induced damage threshold (LIDT) determination was performed for commercially-available ultra-broadband optics, (i.e. chirped mirrors, silver mirrors, beamsplitters, etc.) in vacuum and in air, for single and multi-pulse regime (S-on-1). Multi-pulse damage morphology at fluences below the single-pulse LIDT was studied in order to investigate the mechanisms leading to the onset of damage. Stark morphological contrast was observed between multi-pulse damage sites formed in air versus those in vacuum. One effect of vacuum testing compared to air included suppression of laser-induced periodic surface structures (LIPSS) formation, possibly influenced by a reduced presence of damage debris. Another effect of vacuum was occasional lowering of LIDT, which appears to be due to the stress-strain performance of the coating design during laser irradiation and under the external stress of vacuum ambience. A fused silica substrate is also examined, and a non-LIPSS nanostructuring is observed on the surface. Possible mechanisms are discussed.

  18. Modelling debris and shrapnel generation in inertial confinement fusion experiments

    DOE PAGES

    Eder, D. C.; Fisher, A. C.; Koniges, A. E.; ...

    2013-10-24

    Modelling and mitigation of damage are crucial for safe and economical operation of high-power laser facilities. Experiments at the National Ignition Facility use a variety of targets with a range of laser energies spanning more than two orders of magnitude (~14 kJ to ~1.9 MJ). Low-energy inertial confinement fusion experiments are used to study early-time x-ray load symmetry on the capsule, shock timing, and other physics issues. For these experiments, a significant portion of the target is not completely vaporized and late-time (hundreds of ns) simulations are required to study the generation of debris and shrapnel from these targets. Damagemore » to optics and diagnostics from shrapnel is a major concern for low-energy experiments. Here, we provide the first full-target simulations of entire cryogenic targets, including the Al thermal mechanical package and Si cooling rings. We use a 3D multi-physics multi-material hydrodynamics code, ALE-AMR, for these late-time simulations. The mass, velocity, and spatial distribution of shrapnel are calculated for three experiments with laser energies ranging from 14 to 250 kJ. We calculate damage risk to optics and diagnostics for these three experiments. For the lowest energy re-emit experiment, we provide a detailed analysis of the effects of shrapnel impacts on optics and diagnostics and compare with observations of damage sites.« less

  19. Validity of reciprocity rule on mouse skin thermal damage due to CO2 laser irradiation

    NASA Astrophysics Data System (ADS)

    Parvin, P.; Dehghanpour, H. R.; Moghadam, M. S.; Daneshafrooz, V.

    2013-07-01

    CO2 laser (10.6 μm) is a well-known infrared coherent light source as a tool in surgery. At this wavelength there is a high absorbance coefficient (860 cm-1), because of vibration mode resonance of H2O molecules. Therefore, the majority of the irradiation energy is absorbed in the tissue and the temperature of the tissue rises as a function of power density and laser exposure duration. In this work, the tissue damage caused by CO2 laser (1-10 W, ˜40-400 W cm-2, 0.1-6 s) was measured using 30 mouse skin samples. Skin damage assessment was based on measurements of the depth of cut, mean diameter of the crater and the carbonized layer. The results show that tissue damage as assessed above parameters increased with laser fluence and saturated at 1000 J cm-2. Moreover, the damage effect due to high power density at short duration was not equivalent to that with low power density at longer irradiation time even though the energy delivered was identical. These results indicate the lack of validity of reciprocity (Bunsen-Roscoe) rule for the thermal damage.

  20. High precision laser sclerostomy

    NASA Astrophysics Data System (ADS)

    Góra, W. S.; Urich, A.; McIntosh, L.; Carter, R. M.; Wilson, C. G.; Dhillon, B.; Hand, D. P.; Shephard, J. D.

    2015-03-01

    Ultrafast lasers offer a possibility of removing soft ophthalmic tissue without introducing collateral damage at the ablation site or in the surrounding tissue. The potential for using ultrashort pico- and femtosecond pulse lasers for modification of ophthalmic tissue has been reported elsewhere and has resulted in the introduction of new, minimally invasive procedures into clinical practice. Our research aims to define the most efficient parameters to allow for the modification of scleral tissue without introducing collateral damage. Our experiments were carried out on hydrated porcine sclera in vitro. Porcine sclera, which has similar collagen organization, histology and water content (~70%) to human tissue was used. Supporting this work we present a 2D finite element blow-off model which employs a one-step heating process. It is assumed that the incident laser radiation that is not reflected is absorbed in the tissue according to the Beer-Lambert law and transformed into heat energy. The experimental setup uses an industrial picosecond laser (TRUMPF TruMicro 5x50) with 5.9 ps pulses at 1030 nm, with pulse energies up to 125 μJ and a focused spot diameter of 35 μm. Use of a beam steering scan head allows flexibility in designing complicated scanning patterns. In this study we have demonstrated that picosecond pulses are capable of removing scleral tissue without introducing any major thermal damage which offers a possible route for minimally invasive sclerostomy. In assessing this we have tested several different scanning patterns including single line ablation, square and circular cavity removal.

  1. Methods for improving the damage performance of fused silica polished by magnetorheological finishing

    DOE PAGES

    Kafka, Kyle R. P.; Hoffman, Brittany N.; Papernov, Semyon; ...

    2017-12-11

    The laser-induced damage threshold of fused-silica samples processed via magnetorheological finishing is investigated for polishing compounds depending on the type of abrasive material and the post-polishing surface roughness. The effectiveness of laser conditioning is examined using a ramped pre-exposure with the same 351-nm, 3-ns Gaussian pulses. Lastly, we examine chemical etching of the surface and correlate the resulting damage threshold to the etching protocol. A combination of etching and laser conditioning is found to improve the damage threshold by a factor of ~3, while maintaining <1-nm surface roughness.

  2. Methods for improving the damage performance of fused silica polished by magnetorheological finishing

    NASA Astrophysics Data System (ADS)

    Kafka, K. R. P.; Hoffman, B.; Papernov, S.; DeMarco, M. A.; Hall, C.; Marshall, K. L.; Demos, S. G.

    2017-12-01

    The laser-induced damage threshold of fused-silica samples processed via magnetorheological finishing is investigated for polishing compounds depending on the type of abrasive material and the post-polishing surface roughness. The effectiveness of laser conditioning is examined using a ramped pre-exposure with the same 351-nm, 3-ns Gaussian pulses. Finally, we examine chemical etching of the surface and correlate the resulting damage threshold to the etching protocol. A combination of etching and laser conditioning is found to improve the damage threshold by a factor of 3, while maintaining <1-nm surface roughness.

  3. Analysis of laser jamming to satellite-based detector

    NASA Astrophysics Data System (ADS)

    Wang, Si-wen; Guo, Li-hong; Guo, Ru-hai

    2009-07-01

    The reconnaissance satellite, communication satellite and navigation satellite used in the military applications have played more and more important role in the advanced technique wars and already become the significant support and aid system for military actions. With the development of all kinds of satellites, anti-satellite laser weapons emerge as the times require. The experiments and analyses of laser disturbing CCD (charge coupled detector) in near ground have been studied by many research groups, but their results are not suitable to the case that using laser disturbs the satellite-based detector. Because the distance between the satellite-based detector and the ground is very large, it is difficult to damage it directly. However the optical receive system of satellite detector has large optical gain, so laser disturbing satellite detector is possible. In order to determine its feasibility, the theoretical analyses and experimental study are carried out in the paper. Firstly, the influence factors of laser disturbing satellite detector are analyzed in detail, which including laser power density on the surface of the detector after long distance transmission, and laser power density threshold for disturbing etc. These factors are not only induced by the satellite orbit, but dependence on the following parameters: laser average power in the ground, laser beam quality, tracing and aiming precision and atmospheric transmission. A calculation model is developed by considering all factors which then the power density entering into the detector can be calculated. Secondly, the laser disturbing experiment is performed by using LD (laser diode) with the wavelength 808 nm disturbing CCD 5 kilometer away, which the disturbing threshold value is obtained as 3.55×10-4mW/cm2 that coincides with other researcher's results. Finally, using the theoretical model, the energy density of laser on the photosensitive surface of MSTI-3 satellite detector is estimated as about 100mW/cm2, which is largely exceed the disturbing threshold and therefore verify the feasibility of using this kind of laser disturbing the satellite-based detector. According to the results. using the similar laser power density absolutely saturate the requirements to laser disturbing satellite-based detector. If considering the peak power of pulsed laser, even decrease laser average power, it is also possible to damage the detector. This result will provide the reliable evidences to evaluate the effect of laser disturbing satellite-based detector.

  4. Precision machining of pig intestine using ultrafast laser pulses

    NASA Astrophysics Data System (ADS)

    Beck, Rainer J.; Góra, Wojciech S.; Carter, Richard M.; Gunadi, Sonny; Jayne, David; Hand, Duncan P.; Shephard, Jonathan D.

    2015-07-01

    Endoluminal surgery for the treatment of early stage colorectal cancer is typically based on electrocautery tools which imply restrictions on precision and the risk of harm through collateral thermal damage to the healthy tissue. As a potential alternative to mitigate these drawbacks we present laser machining of pig intestine by means of picosecond laser pulses. The high intensities of an ultrafast laser enable nonlinear absorption processes and a predominantly nonthermal ablation regime. Laser ablation results of square cavities with comparable thickness to early stage colorectal cancers are presented for a wavelength of 1030 nm using an industrial picosecond laser. The corresponding histology sections exhibit only minimal collateral damage to the surrounding tissue. The depth of the ablation can be controlled precisely by means of the pulse energy. Overall, the application of ultrafast lasers to ablate pig intestine enables significantly improved precision and reduced thermal damage to the surrounding tissue compared to conventional techniques.

  5. Micropulsed diode laser therapy: evolution and clinical applications.

    PubMed

    Sivaprasad, Sobha; Elagouz, Mohammed; McHugh, Dominic; Shona, Olajumoke; Dorin, Giorgio

    2010-01-01

    Many clinical trials have demonstrated the clinical efficacy of laser photocoagulation in the treatment of retinal vascular diseases, including diabetic retinopathy. There is, however, collateral iatrogenic retinal damage and functional loss after conventional laser treatment. Such side effects may occur even when the treatment is appropriately performed because of morphological damage caused by the visible endpoint, typically a whitening burn. The development of the diode laser with micropulsed emission has allowed subthreshold therapy without a visible burn endpoint. This greatly reduces the risk of structural and functional retinal damage, while retaining the therapeutic efficacy of conventional laser treatment. Studies using subthreshold micropulse laser protocols have reported successful outcomes for diabetic macular edema, central serous chorioretinopathy, macular edema secondary to retinal vein occlusion, and primary open angle glaucoma. The report includes the rationale and basic principles underlying micropulse diode laser therapy, together with a review of its current clinical applications. Copyright © 2010 Elsevier Inc. All rights reserved.

  6. Increase of bulk optical damage threshold fluences of KDP crystals by laser irradiation and heat treatment

    DOEpatents

    Swain, J.E.; Stokowski, S.E.; Milam, D.; Kennedy, G.C.; Rainer, F.

    1982-07-07

    The bulk optical damage threshold fluence of potassium dihydrogen phosphate (KDP) crystals is increased by irradiating the crystals with laser pulses of duration 1 to 20 nanoseconds of increasing fluence, below the optical damage threshold fluence for untreated crystals, or by baking the crystals for times of the order of 24 hours at temperatures of 110 to 165/sup 0/C, or by a combination of laser irradiation and baking.

  7. Efficacy and predictability of soft tissue ablation using a prototype Raman-shifted alexandrite laser

    NASA Astrophysics Data System (ADS)

    Kozub, John A.; Shen, Jin-H.; Joos, Karen M.; Prasad, Ratna; Shane Hutson, M.

    2015-10-01

    Previous research showed that mid-infrared free-electron lasers could reproducibly ablate soft tissue with little collateral damage. The potential for surgical applications motivated searches for alternative tabletop lasers providing thermally confined pulses in the 6- to-7-μm wavelength range with sufficient pulse energy, stability, and reliability. Here, we evaluate a prototype Raman-shifted alexandrite laser. We measure ablation thresholds, etch rates, and collateral damage in gelatin and cornea as a function of laser wavelength (6.09, 6.27, or 6.43 μm), pulse energy (up to 3 mJ/pulse), and spot diameter (100 to 600 μm). We find modest wavelength dependence for ablation thresholds and collateral damage, with the lowest thresholds and least damage for 6.09 μm. We find a strong spot-size dependence for all metrics. When the beam is tightly focused (˜100-μm diameter), ablation requires more energy, is highly variable and less efficient, and can yield large zones of mechanical damage (for pulse energies >1 mJ). When the beam is softly focused (˜300-μm diameter), ablation proceeded at surgically relevant etch rates, with reasonable reproducibility (5% to 12% within a single sample), and little collateral damage. With improvements in pulse-energy stability, this prototype laser may have significant potential for soft-tissue surgical applications.

  8. Efficacy and predictability of soft tissue ablation using a prototype Raman-shifted alexandrite laser

    PubMed Central

    Kozub, John A.; Shen, Jin-H.; Joos, Karen M.; Prasad, Ratna; Shane Hutson, M.

    2015-01-01

    Abstract. Previous research showed that mid-infrared free-electron lasers could reproducibly ablate soft tissue with little collateral damage. The potential for surgical applications motivated searches for alternative tabletop lasers providing thermally confined pulses in the 6- to-7-μm wavelength range with sufficient pulse energy, stability, and reliability. Here, we evaluate a prototype Raman-shifted alexandrite laser. We measure ablation thresholds, etch rates, and collateral damage in gelatin and cornea as a function of laser wavelength (6.09, 6.27, or 6.43  μm), pulse energy (up to 3  mJ/pulse), and spot diameter (100 to 600  μm). We find modest wavelength dependence for ablation thresholds and collateral damage, with the lowest thresholds and least damage for 6.09  μm. We find a strong spot-size dependence for all metrics. When the beam is tightly focused (∼100-μm diameter), ablation requires more energy, is highly variable and less efficient, and can yield large zones of mechanical damage (for pulse energies >1  mJ). When the beam is softly focused (∼300-μm diameter), ablation proceeded at surgically relevant etch rates, with reasonable reproducibility (5% to 12% within a single sample), and little collateral damage. With improvements in pulse-energy stability, this prototype laser may have significant potential for soft-tissue surgical applications. PMID:26456553

  9. Quantification of a thermal damage threshold for astrocytes using infrared laser generated heat gradients.

    PubMed

    Liljemalm, Rickard; Nyberg, Tobias

    2014-04-01

    The response of cells and tissues to elevated temperatures is highly important in several research areas, especially in the area of infrared neural stimulation. So far, only the heat response of neurons has been considered. In this study, primary rat astrocytes were exposed to infrared laser pulses of various pulse lengths and the resulting cell morphology changes and cell migration was studied using light microscopy. By using a finite element model of the experimental setup the temperature distribution was simulated and the temperatures and times to induce morphological changes and migration were extracted. These threshold temperatures were used in the commonly used first-order reaction model according to Arrhenius to extract the kinetic parameters, i.e., the activation energy, E a, and the frequency factor, A c, for the system. A damage signal ratio threshold was defined and calculated to be 6% for the astrocytes to change morphology and start migrating.

  10. In-process, non-destructive multimodal dynamic testing of high-speed composite rotors

    NASA Astrophysics Data System (ADS)

    Kuschmierz, Robert; Filippatos, Angelos; Langkamp, Albert; Hufenbach, Werner; Czarske, Jürgern W.; Fischer, Andreas

    2014-03-01

    Fibre reinforced plastic (FRP) rotors are lightweight and offer great perspectives in high-speed applications such as turbo machinery. Currently, novel rotor structures and materials are investigated for the purpose of increasing machine efficiency, lifetime and loading limits. Due to complex rotor structures, high anisotropy and non-linear behavior of FRP under dynamic loads, an in-process measurement system is necessary to monitor and to investigate the evolution of damages under real operation conditions. A non-invasive, optical laser Doppler distance sensor measurement system is applied to determine the biaxial deformation of a bladed FRP rotor with micron uncertainty as well as the tangential blade vibrations at surface speeds above 300 m/s. The laser Doppler distance sensor is applicable under vacuum conditions. Measurements at varying loading conditions are used to determine elastic and plastic deformations. Furthermore they allow to determine hysteresis, fatigue, Eigenfrequency shifts and loading limits. The deformation measurements show a highly anisotropic and nonlinear behavior and offer a deeper understanding of the damage evolution in FRP rotors. The experimental results are used to validate and to calibrate a simulation model of the deformation. The simulation combines finite element analysis and a damage mechanics model. The combination of simulation and measurement system enables the monitoring and prediction of damage evolutions of FRP rotors in process.

  11. Pilot study about dose-effect relationship of ocular injury in argon laser photocoagulation

    NASA Astrophysics Data System (ADS)

    Chen, P.; Zhang, C. P.; Fu, X. B.; Zhang, T. M.; Wang, C. Z.; Qian, H. W.; San, Q.

    2011-03-01

    The aim of this article was to study the injury effect of either convergent or parallel argon laser beam on rabbit retina, get the dose-effect relationship for the two types of laser beams, and calculate the damage threshold of argon laser for human retinas. An argon laser therapeutic instrument for ophthalmology was used in this study. A total of 80 rabbit eyes were irradiated for 600 lesions, half of which were treated by convergent laser and the other half were done with parallel laser beam. After irradiation, slit lamp microscope and fundus photography were used to observe the lesions, change and the incidence of injury was processed statistically to get the damage threshold of rabbit retina. Based on results from the experiments on animals and the data from clinical cases of laser treatment, the photocoagulation damage thresholds of human retinas for convergent and parallel argon laser were calculated to be 0.464 and 0.285 mJ respectively. These data provided biological reference for safely operation when employing laser photocoagulation in clinical practice and other fields.

  12. Ultrafast mid-IR laser scalpel: protein signals of the fundamental limits to minimally invasive surgery.

    PubMed

    Amini-Nik, Saeid; Kraemer, Darren; Cowan, Michael L; Gunaratne, Keith; Nadesan, Puviindran; Alman, Benjamin A; Miller, R J Dwayne

    2010-09-28

    Lasers have in principle the capability to cut at the level of a single cell, the fundamental limit to minimally invasive procedures and restructuring biological tissues. To date, this limit has not been achieved due to collateral damage on the macroscale that arises from thermal and shock wave induced collateral damage of surrounding tissue. Here, we report on a novel concept using a specifically designed Picosecond IR Laser (PIRL) that selectively energizes water molecules in the tissue to drive ablation or cutting process faster than thermal exchange of energy and shock wave propagation, without plasma formation or ionizing radiation effects. The targeted laser process imparts the least amount of energy in the remaining tissue without any of the deleterious photochemical or photothermal effects that accompanies other laser wavelengths and pulse parameters. Full thickness incisional and excisional wounds were generated in CD1 mice using the Picosecond IR Laser, a conventional surgical laser (DELight Er:YAG) or mechanical surgical tools. Transmission and scanning electron microscopy showed that the PIRL laser produced minimal tissue ablation with less damage of surrounding tissues than wounds formed using the other modalities. The width of scars formed by wounds made by the PIRL laser were half that of the scars produced using either a conventional surgical laser or a scalpel. Aniline blue staining showed higher levels of collagen in the early stage of the wounds produced using the PIRL laser, suggesting that these wounds mature faster. There were more viable cells extracted from skin using the PIRL laser, suggesting less cellular damage. β-catenin and TGF-β signalling, which are activated during the proliferative phase of wound healing, and whose level of activation correlates with the size of wounds was lower in wounds generated by the PIRL system. Wounds created with the PIRL systsem also showed a lower rate of cell proliferation. Direct comparison of wound healing responses to a conventional surgical laser, and standard mechanical instruments shows far less damage and near absence of scar formation by using PIRL laser. This new laser source appears to have achieved the long held promise of lasers in minimally invasive surgery.

  13. Nanoparticles for diagnostics and laser medical treatment of cartilage in orthopaedics

    NASA Astrophysics Data System (ADS)

    Baum, O. I.; Soshnikova, Yu. M.; Omelchenko, A. I.; Sobol, Emil

    2013-02-01

    Laser reconstruction of intervertebral disc (LRD) is a new technique which uses local, non-destructive laser irradiation for the controlled activation of regenerative processes in a targeted zone of damaged disc cartilage. Despite pronounced advancements of LRD, existing treatments may be substantially improved if laser radiation is absorbed near diseased and/or damaged regions in cartilage so that required thermomechanical stress and strain at chondrocytes may be generated and non-specific injury reduced or eliminated. The aims of the work are to study possibility to use nanoparticles (NPs) to provide spatial specificity for laser regeneration of cartilage. Two types of porcine joint cartilage have been impregnated with magnetite NPs: 1) fresh cartilage; 2) mechanically damaged cartilage. NPs distribution was studied using transition electron microscopy, dynamic light scattering and analytical ultracentrifugation techniques. Laser radiation and magnetic field have been applied to accelerate NPs impregnation. It was shown that NPs penetrate by diffusion into the mechanically damaged cartilage, but do not infiltrate healthy cartilage. Temperature dynamics in cartilage impregnated with NPs have been theoretically calculated and measurements using an IR thermo vision system have been performed. Laser-induced alterations of cartilage structure and cellular surviving have been studied for cartilage impregnated with NPs using histological and histochemical techniques. Results of our study suggest that magnetite NPs might be used to provide spatial specificity of laser regeneration. When damaged, the regions of cartilage impreganted with NPs have higher absorption of laser radiation than that for healthy areas. Regions containing NPs form target sites that can be used to generate laser-induced thermo mechanical stress leading to regeneration of cartilage of hyaline type.

  14. State of the art of CO laser angioplasty system

    NASA Astrophysics Data System (ADS)

    Arai, Tsunenori; Mizuno, Kyoichi; Miyamoto, Akira; Sakurada, Masami; Kikuchi, Makoto; Kurita, Akira; Nakamura, Haruo; Takaoka, Hidetsugu; Utsumi, Atsushi; Takeuchi, Kiyoshi

    1994-07-01

    A unique percutaneous transluminal coronary angioplasty system new IR therapy laser with IR glass fiber delivery under novel angioscope guidance was described. Carbon monoxide (CO) laser emission of 5 mm in wavelength was employed as therapy laser to achieve precise ablation of atheromatous plaque with a flexible As-S IR glass fiber for laser delivery. We developed the first medical CO laser as well as As-S IR glass fiber cable. We also developed 5.5 Fr. thin angioscope catheter with complete directional manipulatability at its tip. The system control unit could manage to prevent failure irradiations and fiber damages. This novel angioplasty system was evaluated by a stenosis model of mongrel dogs. We demonstrated the usefulness of our system to overcome current issues on laser angioplasty using multifiber catheter with over-the-guidewire system.

  15. Contamination and UV lasers: lessons learned

    NASA Astrophysics Data System (ADS)

    Daly, John G.

    2015-09-01

    Laser induced damage to optical elements has been a subject of significant research, development, and improvement, since the first lasers were built over the last 50 years. Better materials, with less absorption, impurities, and defects are available, as well as surface coatings with higher laser damage resistance. However, the presence of contamination (particles, surface deposition films, or airborne) can reduce the threshold for damage by several orders of magnitude. A brief review of the anticipated laser energy levels for damage free operation is presented as a lead into the problems associated with contamination for ultraviolet (UV) laser systems. As UV lasers become more common in applications especially in areas such as lithography, these problems have limited reliability and added to costs. This has been characterized as Airborne Molecular Contamination (AMC) in many published reports. Normal engineering guidelines such as screening materials within the optical compartment for low outgassing levels is the first step. The use of the NASA outgassing database (or similar test methods) with low Total Mass Loss (TML) and Condensed Collected Volatiles Collected Mass (CVCM) is a good baseline. Energetic UV photons are capable of chemical bond scission and interaction with surface contaminant or airborne materials results in deposition of obscuring film laser footprints that continue to degrade laser system performance. Laser systems with average powers less than 5 mW have been shown to exhibit aggressive degradation. Lessons learned over the past 15 years with UV laser contamination and steps to reduce risk will be presented.

  16. Low-power-laser therapy used in tendon damage

    NASA Astrophysics Data System (ADS)

    Strupinska, Ewa

    1996-03-01

    The following paper covers evaluation of low-power laser therapy results in chronic Achilles tendon damage and external Epicondylalia (tennis elbow). Fifty patients with Achilles damage (18 women and 32 men, age average 30, 24 plus or minus 10, 39 years) and fifty patients having external Epicondyalgiae (31 women and 19 men, age average 44, 36 plus or minus 10, 88 years) have been examined. The patients were irradiated by semiconductor infrared laser wavelength 904 nm separately or together with helium-neon laser wavelength 632.8 nm. The results of therapy have been based on the patient's interviews and examinations of patients as well as on the Laitinen pain questionnaire. The results prove analgesic effects in usage of low- power laser radiation therapy can be obtained.

  17. Adaptive laser conditioning of reflective thin film based on photo thermal lens probe

    NASA Astrophysics Data System (ADS)

    Liu, Zhichao; Zheng, Yi; Zhang, Qinghua; Pan, Feng; Wei, Yaowei; Wang, Jian; Xu, Qiao

    2017-12-01

    A novel laser conditioning (LC) concept that performs adaptive control of exposure fluence is proposed. As photo-thermal absorption effect can discover defects responsible for laser-induced damage of reflective thin film, in situ photo-thermal lens probe is introduced in conventional LC procedure to detect defects during raster-scanning. The absorptance signal is fed back to guide the adaptive control of exposure fluence. By this method, the damage risk accompanying with LC can be reduced to a rather low level. In order to test the performance of adaptive laser conditioning (ALC), an experimental setup has been built, and several film samples have been tested. The results show that ALC is effective at reducing laser damage risk.

  18. In situ analysis of DNA damage response and repair using laser microirradiation.

    PubMed

    Kim, Jong-Soo; Heale, Jason T; Zeng, Weihua; Kong, Xiangduo; Krasieva, Tatiana B; Ball, Alexander R; Yokomori, Kyoko

    2007-01-01

    A proper response to DNA damage is critical for the maintenance of genome integrity. However, it is difficult to study the in vivo kinetics and factor requirements of the damage recognition process in mammalian cells. In order to address how the cell reacts to DNA damage, we utilized a second harmonic (532 nm) pulsed Nd:YAG laser to induce highly concentrated damage in a small area in interphase cell nuclei and cytologically analyzed both protein recruitment and modification. Our results revealed for the first time the sequential recruitment of factors involved in two major DNA double-strand break (DSB) repair pathways, non-homologous end-joining (NHEJ) and homologous recombination (HR), and the cell cycle-specific recruitment of the sister chromatid cohesion complex cohesin to the damage site. In this chapter, the strategy developed to study the DNA damage response using the 532-nm Nd:YAG laser will be summarized.

  19. Kinetics of UV laser radiation defects in high performance glasses

    NASA Astrophysics Data System (ADS)

    Natura, U.; Feurer, T.; Ehrt, D.

    2000-05-01

    High purity fluoride phosphate glasses are attractive candidates as UV transmitting materials. The calculated values for the ultraviolet resonance wavelength are comparable with those of pure silica glass or fluoride single crystal CaF2. The formation of radiation-induced defect centers leads to additional absorption bands in the VUV-UV-vis range. The damage and the healing behavior by lamps and lasers are investigated in dependence on phosphate content and the content of impurities, mainly transition metals. Experiments were carried out using pulsed lasers with a duration of femto- and nanoseconds at a wavelength of 248 nm. The initial slope of the induced absorption shows a nonlinear dependence on the pulse energy density. Resonant and non-resonant two-photon mechanisms were observed. Two-photon-absorption coefficients at 248 nm for samples with different phosphate contents were measured. Models of the kinetics of the radiation-induced defects were developed. The inclusion of energy transfer was necessary to explain the difference in the damage behavior for nanosecond (248 nm, 193 nm) and femtosecond (248 nm) laser pulses.

  20. A New Femtosecond Laser-Based Three-Dimensional Tomography Technique

    NASA Astrophysics Data System (ADS)

    Echlin, McLean P.

    2011-12-01

    Tomographic imaging has dramatically changed science, most notably in the fields of medicine and biology, by producing 3D views of structures which are too complex to understand in any other way. Current tomographic techniques require extensive time both for post-processing and data collection. Femtosecond laser based tomographic techniques have been developed in both standard atmosphere (femtosecond laser-based serial sectioning technique - FSLSS) and in vacuum (Tri-Beam System) for the fast collection (10 5mum3/s) of mm3 sized 3D datasets. Both techniques use femtosecond laser pulses to selectively remove layer-by-layer areas of material with low collateral damage and a negligible heat affected zone. To the authors knowledge, femtosecond lasers have never been used to serial section and these techniques have been entirely and uniquely developed by the author and his collaborators at the University of Michigan and University of California Santa Barbara. The FSLSS was applied to measure the 3D distribution of TiN particles in a 4330 steel. Single pulse ablation morphologies and rates were measured and collected from literature. Simultaneous two-phase ablation of TiN and steel matrix was shown to occur at fluences of 0.9-2 J/cm2. Laser scanning protocols were developed minimizing surface roughness to 0.1-0.4 mum for laser-based sectioning. The FSLSS technique was used to section and 3D reconstruct titanium nitride (TiN) containing 4330 steel. Statistical analysis of 3D TiN particle sizes, distribution parameters, and particle density were measured. A methodology was developed to use the 3D datasets to produce statistical volume elements (SVEs) for toughness modeling. Six FSLSS TiN datasets were sub-sampled into 48 SVEs for statistical analysis and toughness modeling using the Rice-Tracey and Garrison-Moody models. A two-parameter Weibull analysis was performed and variability in the toughness data agreed well with Ruggieri et al. bulk toughness measurements. The Tri-Beam system combines the benefits of laser based material removal (speed, low-damage, automated) with detectors that collect chemical, structural, and topological information. Multi-modal sectioning information was collected after many laser scanning passes demonstrating the capability of the Tri-Beam system.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kafka, Kyle R. P.; Hoffman, Brittany N.; Papernov, Semyon

    The laser-induced damage threshold of fused-silica samples processed via magnetorheological finishing is investigated for polishing compounds depending on the type of abrasive material and the post-polishing surface roughness. The effectiveness of laser conditioning is examined using a ramped pre-exposure with the same 351-nm, 3-ns Gaussian pulses. Lastly, we examine chemical etching of the surface and correlate the resulting damage threshold to the etching protocol. A combination of etching and laser conditioning is found to improve the damage threshold by a factor of ~3, while maintaining <1-nm surface roughness.

  2. Laser Damage and Effects Bibliography. Part 1. Journal Literature through 1982

    DTIC Science & Technology

    1984-06-15

    F.; BROST , George ; SCHMID, Ansgar; KELLY, P. J. "The Role of Laser-Induced Primary Defect Formation in Optical Breakdown of NaCl" IEEE J. Quantum...Induced Damage in Optical Materials: 1980, Nat. Bur. Stands. (U.S.), Spec. ubl. 620 (Oct 81) 403-405 BRAUNLICH, Peter F.; BROST , George ; SCHMID...James; RITTER, George J. "Laser-Induced Damage in Copper Crystals" Appl. Phys. Lett. 9 (1 Oct 66) 272-273 PERESSINI, E. H. "Field Emission from Atoms in

  3. Impact of mechanical stress induced in silica vacuum windows on laser-induced damage.

    PubMed

    Gingreau, Clémence; Lanternier, Thomas; Lamaignère, Laurent; Donval, Thierry; Courchinoux, Roger; Leymarie, Christophe; Néauport, Jérôme

    2018-04-15

    At the interface between vacuum and air, optical windows must keep their optical properties, despite being subjected to mechanical stress. In this Letter, we investigate the impact of such stress on the laser-induced damage of fused silica windows at the wavelength of 351 nm in the nanosecond regime. Different stress values, from 1 to 30 MPa, both tensile and compressive, were applied. No effect of the stress on the laser-induced damage was evidenced.

  4. Post-processing of fused silica and its effects on damage resistance to nanosecond pulsed UV lasers.

    PubMed

    Ye, Hui; Li, Yaguo; Zhang, Qinghua; Wang, Wei; Yuan, Zhigang; Wang, Jian; Xu, Qiao

    2016-04-10

    HF-based (hydrofluoric acid) chemical etching has been a widely accepted technique to improve the laser damage performance of fused silica optics and ensure high-power UV laser systems at designed fluence. Etching processes such as acid concentration, composition, material removal amount, and etching state (etching with additional acoustic power or not) may have a great impact on the laser-induced damage threshold (LIDT) of treated sample surfaces. In order to find out the effects of these factors, we utilized the Taguchi method to determine the etching conditions that are helpful in raising the LIDT. Our results show that the most influential factors are concentration of etchants and the material etched away from the viewpoint of damage performance of fused silica optics. In addition, the additional acoustic power (∼0.6  W·cm-2) may not benefit the etching rate and damage performance of fused silica. Moreover, the post-cleaning procedure of etched samples is also important in damage performances of fused silica optics. Different post-cleaning procedures were, thus, experiments on samples treated under the same etching conditions. It is found that the "spraying + rinsing + spraying" cleaning process is favorable to the removal of etching-induced deposits. Residuals on the etched surface are harmful to surface roughness and optical transmission as well as laser damage performance.

  5. Role of tool marks inside spherical mitigation pit fabricated by micro-milling on repairing quality of damaged KH2PO4 crystal

    PubMed Central

    Chen, Ming-Jun; Cheng, Jian; Yuan, Xiao-Dong; Liao, Wei; Wang, Hai-Jun; Wang, Jing-He; Xiao, Yong; Li, Ming-Quan

    2015-01-01

    Repairing initial slight damage site into stable structures by engineering techniques is the leading strategy to mitigate the damage growth on large-size components used in laser-driven fusion facilities. For KH2PO4 crystals, serving as frequency converter and optoelectronic switch-Pockels cell, micro-milling has been proven the most promising method to fabricate these stable structures. However, tool marks inside repairing pit would be unavoidably introduced due to the wearing of milling cutter in actual repairing process. Here we quantitatively investigate the effect of tool marks on repairing quality of damaged crystal components by simulating its induced light intensification and testing the laser-induced damage threshold. We found that due to the formation of focusing hot spots and interference ripples, the light intensity is strongly enhanced with the presence of tool marks, especially for those on rear surfaces. Besides, the negative effect of tool marks is mark density dependent and multiple tool marks would aggravate the light intensification. Laser damage tests verified the role of tool marks as weak points, reducing the repairing quality. This work offers new criterion to comprehensively evaluate the quality of repaired optical surfaces to alleviate the bottleneck issue of low laser damage threshold for optical components in laser-driven fusion facilities. PMID:26399624

  6. Surface damage of thin AlN films with increased oxygen content by nanosecond and femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Gruzdev, Vitaly; Salakhutdinov, Ildar; Chen, J. K.; Danylyuk, Yuriy; McCullen, Erik; Auner, Gregory

    2009-10-01

    AlN films deposited on sapphire substrates were damaged by single UV nanosecond (at 248 nm) and IR femtosecond (at 775 nm) laser pulses in air at normal pressure. The films had high (27-35 atomic %) concentration of oxygen introduced into thin surface layer (5-10 nm thickness). We measured damage threshold and studied morphology of the damage sites with atomic force and Nomarski optical microscopes with the objective to determine a correlation between damage processes and oxygen content. The damage produced by nanosecond pulses was accompanied by significant thermal effects with evident signatures of melting, chemical modification of the film surface, and specific redistribution of micro-defect rings around the damage spots. The nanosecond-damage threshold exhibited pronounced increase with increase of the oxygen content. In contrast to that, the femtosecond pulses produced damage without any signs of thermal, thermo-mechanical or chemical effects. No correlation between femtosecond-damage threshold and oxygen content as well as presence of defects within the laser-damage spot was found. We discuss the influence of the oxygen contamination on film properties and related mechanisms responsible for the specific damage effects and morphology of the damage sites observed in the experiments.

  7. Effects of natto extract on endothelial injury in a rat model.

    PubMed

    Chang, Chin-Hsien; Chen, Kuo-Ti; Lee, Tsong-Hai; Wang, Chao-Hung; Kuo, Yi-Wen; Chiu, Ya-Huang; Hsieh, Ching-Liang; Wu, Chang-Jer; Chang, Yen-Lin

    2010-12-01

    Vascular endothelial damage has been found to be associated with thrombus formation, which is considered to be a risk factor for cardiovascular disease. A diet of natto leads to a low prevalence of cardiovascular disease. The aim of the present study was to investigate the effects of natto extract on vascular endothelia damage with exposure to laser irradiation. Endothelial damage both in vitro and in vivo was induced by irradiation of rose bengal using a DPSS green laser. Cell viability was determined by MTS assay, and the intimal thickening was verified by a histological approach. The antioxidant content of natto extract was determined for the free radical scavenging activity. Endothelial cells were injured in the presence of rose bengal irradiated in a dose-dependent manner. Natto extract exhibits high levels of antioxidant activity compared with purified natto kinase. Apoptosis of laser-injured endothelial cells was significantly reduced in the presence of natto extract. Both the natto extract and natto kinase suppressed intimal thickening in rats with endothelial injury. The present findings suggest that natto extract suppresses vessel thickening as a synergic effect attributed to its antioxidant and anti-apoptosis properties.

  8. History of Laser Weapon Research

    DTIC Science & Technology

    2012-01-01

    designed to damage, disable, or destroy targets with little or no collateral damage. Airborne Laser (ABL) (CO2) Chemical Oxygen The ABL C-130H aircraft ...mirrors. Weapons systems based on lasers and “ray guns,” long a staple of science fiction, have captured the imagination of people everywhere. But...waves (millimeters to centimeters), with wavelengths 10,000 times longer than lasers. Diffraction of any electromagnetic radia- tion beam is based

  9. Automated laser-based barely visible impact damage detection in honeycomb sandwich composite structures

    NASA Astrophysics Data System (ADS)

    Girolamo, D.; Girolamo, L.; Yuan, F. G.

    2015-03-01

    Nondestructive evaluation (NDE) for detection and quantification of damage in composite materials is fundamental in the assessment of the overall structural integrity of modern aerospace systems. Conventional NDE systems have been extensively used to detect the location and size of damages by propagating ultrasonic waves normal to the surface. However they usually require physical contact with the structure and are time consuming and labor intensive. An automated, contactless laser ultrasonic imaging system for barely visible impact damage (BVID) detection in advanced composite structures has been developed to overcome these limitations. Lamb waves are generated by a Q-switched Nd:YAG laser, raster scanned by a set of galvano-mirrors over the damaged area. The out-of-plane vibrations are measured through a laser Doppler Vibrometer (LDV) that is stationary at a point on the corner of the grid. The ultrasonic wave field of the scanned area is reconstructed in polar coordinates and analyzed for high resolution characterization of impact damage in the composite honeycomb panel. Two methodologies are used for ultrasonic wave-field analysis: scattered wave field analysis (SWA) and standing wave energy analysis (SWEA) in the frequency domain. The SWA is employed for processing the wave field and estimate spatially dependent wavenumber values, related to discontinuities in the structural domain. The SWEA algorithm extracts standing waves trapped within damaged areas and, by studying the spectrum of the standing wave field, returns high fidelity damage imaging. While the SWA can be used to locate the impact damage in the honeycomb panel, the SWEA produces damage images in good agreement with X-ray computed tomographic (X-ray CT) scans. The results obtained prove that the laser-based nondestructive system is an effective alternative to overcome limitations of conventional NDI technologies.

  10. Small Optics Laser Damage Test Procedure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolfe, Justin

    2017-10-19

    This specification defines the requirements and procedure for laser damage testing of coatings and bare surfaces designated for small optics in the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL).

  11. Investigation of Laser-Induced Retinal Damage: Wavelength and Pulsewidth Dependent Mechanisms

    DTIC Science & Technology

    1994-08-31

    transformation. Biochim Biophys Acta 1991; 1072:129-57. 2. Artuc M, Ramshad M, Kappus H. Studies on acute toxic effects to keratinocytes induced by...hematoporphyrin derivatives and laser light Arch Dermatol Res 1989;281:491-4. 3. Artuc M, Ramshad M, Reinhold C, Kappus H. DNA damage caused by laser light

  12. Combined advanced finishing and UV laser conditioning process for producing damage resistant optics

    DOEpatents

    Menapace, Joseph A.; Peterson, John E.; Penetrante, Bernardino M.; Miller, Philip E.; Parham, Thomas G.; Nichols, Michael A.

    2005-07-26

    A method for reducing the density of sites on the surface of fused silica optics that are prone to the initiation of laser-induced damage, resulting in optics which have far fewer catastrophic defects, and are better capable of resisting optical deterioration upon exposure to a high-power laser beam.

  13. The effect of laser ablation parameters on optical limiting properties of silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Gursoy, Irmak; Yaglioglu, Halime Gul

    2017-09-01

    This paper presents the effect of laser ablation parameters on optical limiting properties of silver nanoparticles. The current applications of lasers such as range finding, guidance, detection, illumination and designation have increased the potential of damaging optical imaging systems or eyes temporary or permanently. The applications of lasers introduce risks for sensors or eyes, when laser power is higher than damage threshold of the detection system. There are some ways to protect these systems such as neutral density (nd) filters, shutters, etc. However, these limiters reduce the total amount of light that gets into the system. Also, response time of these limiters may not be fast enough to prevent damage and cause precipitation in performance due to deprivation of transmission or contrast. Therefore, optical limiting filters are needed that is transparent for low laser intensities and limit or block the high laser intensities. Metal nanoparticles are good candidates for such optical limiting filters for ns pulsed lasers or CW lasers due to their high damage thresholds. In this study we investigated the optical limiting performances of silver nanoparticles produced by laser ablation technique. A high purity silver target immersed in pure water was ablated with a Nd:YAG nanosecond laser at 532 nm. The effect of altering laser power and ablation time on laser ablation efficiency of nanoparticles was investigated experimentally and optimum values were specified. Open aperture Zscan experiment was used to investigate the effect of laser ablation parameters on the optical limiting performances of silver nanoparticles in pure water. It was found that longer ablation time decreases the optical limiting threshold. These results are useful for silver nanoparticles solutions to obtain high performance optical limiters.

  14. Synchronous digitization for high dynamic range lock-in amplification in beam-scanning microscopy

    PubMed Central

    Muir, Ryan D.; Sullivan, Shane Z.; Oglesbee, Robert A.; Simpson, Garth J.

    2014-01-01

    Digital lock-in amplification (LIA) with synchronous digitization (SD) is shown to provide significant signal to noise (S/N) and linear dynamic range advantages in beam-scanning microscopy measurements using pulsed laser sources. Direct comparisons between SD-LIA and conventional LIA in homodyne second harmonic generation measurements resulted in S/N enhancements consistent with theoretical models. SD-LIA provided notably larger S/N enhancements in the limit of low light intensities, through the smooth transition between photon counting and signal averaging developed in previous work. Rapid beam scanning instrumentation with up to video rate acquisition speeds minimized photo-induced sample damage. The corresponding increased allowance for higher laser power without sample damage is advantageous for increasing the observed signal content. PMID:24689588

  15. Tm:fiber laser ablation with real-time temperature monitoring for minimizing collateral thermal damage: ex vivo dosimetry for ovine brain.

    PubMed

    Tunc, Burcu; Gulsoy, Murat

    2013-01-01

    The thermal damage of the surrounding tissue can be an unwanted result of continuous-wave laser irradiations. In order to propose an effective alternative to conventional surgical techniques, photothermal damage must be taken under control by a detailed dose study. Real-time temperature monitoring can be also an effective way to get rid of these negative effects. The aim of the present study is to investigate the potential of a new laser-thermoprobe, which consists of a continuous-wave 1,940-nm Tm:fiber laser and a thermocouple measurement system for brain surgery in an ex vivo study. A laser-thermoprobe was designed for using the near-by tissue temperature as a real-time reference for the applicator. Fresh lamb brain tissues were used for experiments. 320 laser shots were performed on both cortical and subcortical tissue. The relationship between laser parameters, temperature changes, and ablation (removal of tissue) efficiency was determined. The correlation between rate of temperature change and ablation efficiency was calculated. Laser-thermoprobe leads us to understand the basic laser-tissue interaction mechanism in a very cheap and easy way, without making a change in the experimental design. It was also shown that the ablation and coagulation (thermally irreversible damage) diameters could be predicted, and carbonization can be avoided by temperature monitoring. Copyright © 2013 Wiley Periodicals, Inc.

  16. Extensive tissue damage of bovine ovaries after bipolar ovarian drilling compared to monopolar electrocoagulation or carbon dioxide laser.

    PubMed

    Hendriks, Marja-Liisa; van der Valk, Paul; Lambalk, Cornelis B; Broeckaert, Mark A M; Homburg, Roy; Hompes, Peter G A

    2010-02-01

    To evaluate the size of ovarian damage caused by ovarian drilling in polycystic ovary syndrome, the amount of inflicted damage was assessed for the most frequently used ovarian drilling techniques. Experimental prospective design. University clinic. Six fresh bovine ovaries per technique. Carbon dioxide (CO(2)) laser, monopolar electrocoagulation, and bipolar electrocoagulation were used for in vitro ovarian drilling. Amount of inflicted ovarian damage per procedure. Bipolar electrocoagulation resulted in significantly more destruction per burn than the CO(2) laser and monopolar electrocoagulation (287.6 versus 24.0 and 70.0 mm(3), respectively). The damage found per lesion was multiplied by the regularly applied number of punctures per procedure in daily practice (based on the literature). Again, the bipolar electrocoagulation resulted in significantly more tissue damage than the CO(2) laser and monopolar coagulation (2,876 versus 599 and 700 mm(3), respectively). Ovarian drilling, especially bipolar electrocoagulation, causes extensive destruction of the ovary. Given the same clinical effectiveness of the various procedures, it is essential to use the lowest possible dose that works; thus, the first choice should be CO(2) laser or monopolar electrocoagulation. Copyright 2010 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  17. Alternative approach for cavitation damage study utilizing repetitive laser pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Fei; Wang, Jy-An John; Wang, Hong

    2010-01-01

    Cavitation is a common phenomenon in fluid systems that can lead to dramatic degradation of solid materials surface in contact with the cavitating media. Study of cavitation damage has great significance in many engineering fields. Current techniques for cavitation damage study either require large scale equipments or tend to introduce damages from other mechanisms. In this project, we utilized the cavitation phenomenon induced by laser optical breakdown and developed a prototype apparatus for cavitation damage study. In our approach, cavitation was generated by the repetitive pressure waves induced by high-power laser pulses. As proof of principal study, stainless steel andmore » aluminum samples were tested using the novel apparatus. Surface characterization via scanning electron microscopy revealed damages such as indentation and surface pitting, which were similar to those reported in literature using other state-of-the-art techniques. These preliminary results demonstrated the new device was capable of generating cavitation damages and could be used as an alternative method for cavitation damage study.« less

  18. The free-radical scavenger, edaravone, augments NO release from vascular cells and platelets after laser-induced, acute endothelial injury in vivo.

    PubMed

    Yamashita, T; Shoge, M; Oda, E; Yamamoto, Y; Giddings, J C; Kashiwagi, S; Suematsu, M; Yamamoto, J

    2006-05-01

    In vitro and in vivo experimental models have demonstrated that vascular endothelial function is significantly impaired as a result of oxidative stress, mediated by the generation of oxygen-derived free radicals in response to chronic or acute inflammation. In particular, super-oxide () at specific concentrations leads to the impairment of nitric oxide (NO) bioactivity, and it is known that NO plays a fundamental role in the maintenance of vascular homeostasis. The relationship between reactive oxygen species (ROS) and NO release in thrombosis-related endothelial damage in the peripheral microvasculature remains unclear, however. The purpose of the present study was to investigate the effect of the free-radical scavenger, edaravone, on NO synthesis and thrombotic potential in arterioles after exposure to laser irradiation. Highly sensitive electrochemical NO microsensors were positioned in femoral arterioles of mice, and the kinetics of NO release were recorded in response to standardized laser irradiation in vivo. In addition, images of NO release from damaged vascular cells were investigated in a similar rat model using the NO-sensitive dye 4,5-diaminofluorescein diacetate (DAF-2DA). Thrombogenesis was assessed in carotid arterioles by continuous video microscopy using image analysis software. Laser irradiation led to NO release from perturbed endothelial cells and from platelet-rich thrombi. Edaravone had no significant effect on NO release in non-laser treated, intact endothelium compared with placebo. In contrast, edaravone demonstrated a dose-dependent effect on NO release and thrombogenicity. At a concentration of 10.5 mg/kg per h, edaravone promoted a 5-fold increase in NO and a reduction in platelet-rich thrombus volume to 58% of the placebo values. Our data provide direct evidence to confirm that acute endothelial damage in peripheral microvessels initially induces NO release and that the free-radical scavenger, edaravone, augments NO synthesis leading to suppression of platelet thrombus formation.

  19. Damage resistant optics for a mega-joule solid-state laser

    NASA Astrophysics Data System (ADS)

    Campbell, J. H.; Rainer, F.; Kozlowski, M. R.; Wolfe, C. R.; Thomas, I.; Milanovich, F.

    1990-12-01

    Research on Inertial Confinement Fusion (ICF) has progressed rapidly in the past several years. As a consequence, LLNL is developing plans to upgrade the current 120 kJ solid state (Nd3+ phosphate glass) Nova laser to a 1.5 to 2 megajoule system with the goal of achieving fusion ignition. The design of the planned Nova Upgrade is briefly discussed. Because of recent improvements in the damage resistance of optical materials it is now technically and economically feasible to build a megajoule-class solid state laser. Specifically, the damage threshold of Nd(+3)-doped phosphate laser glass, multilayer dielectric coatings, and non-linear optical crystals (e.g., KDP) have been dramatically improved. These materials now meet the fluence requirements for a 1.5 to 2 MJ Nd(+3)-glass laser operating at 1054 and 351 nm and at a pulse length of 3 ns. The recent improvements in damage thresholds are reviewed; threshold data at both 1064 and 355 nm and the measured pulse length scaling are presented.

  20. Damage resistant optics for a megajoule solid state laser

    NASA Astrophysics Data System (ADS)

    Campbell, Jack H.; Rainer, Frank; Kozlowski, Mark R.; Wolfe, C. Robert; Thomas, Ian M.; Milanovich, Fred P.

    1991-06-01

    Research on Inertial Confinement Fusion (ICF) has progressed rapidly in the past several years. As a consequence LLNL is developing plans to upgrade the current 120 kJ solid state (Nd3-phosphate glass) Nova laser to a 1 . 5 to 2 megajoule system with the goal of achieving fusion ignition. The design of the planned Nova Upgrade is briefly discussed. Because of recent improvements in the damage resistance of optical materials it is now technically and economically feasible to build a megajoule-class solid state laser. Specifically the damage threshold of Nd3- doped phosphate laser glass muliilayer dielectric coatings and non-linear optical crystals (e. g. KDP) have been dramatically improved. These materials now meet the fluence requirements for a 1. 5-2 MJ Nd3-glass laser operating at 1054 and 351 nm and at a pulse length of 3 ns. The recent improvements in damage thresholds are reviewed threshold data at both 1064 and 355 nm and the measured pulse length scaling are presented. 1.

  1. Thulium fiber laser damage to the ureter

    NASA Astrophysics Data System (ADS)

    Wilson, Christopher R.; Hardy, Luke A.; Irby, Pierce B.; Fried, Nathaniel M.

    2015-07-01

    Our laboratory is studying experimental thulium fiber laser (TFL) as a potential alternative lithotripter to the clinical gold standard Holmium:YAG laser. Safety studies characterizing undesirable Holmium laser-induced damage to ureter tissue have been previously reported. Similarly, this study characterizes TFL induced ureter and stone basket damage. A TFL beam with pulse energy of 35 mJ, pulse duration of 500 μs, and pulse rates of 150-500 Hz was delivered through a 100-μm-core, low-OH, silica optical fiber to the porcine ureter wall, in vitro. Ureter perforation times were measured and gross, histological, and optical coherence tomography images of the ablation zone were acquired. TFL operation at 150, 300, and 500 Hz produced mean ureter perforation times of 7.9, 3.8, and 1.8 s, respectively. Collateral damage averaged 510, 370, and 310 μm. TFL mean perforation time exceeded 1 s at each setting, which is a greater safety margin than previously reported during Holmium laser ureter perforation studies.

  2. Long-Distance Signals Are Required for Morphogenesis of the Regenerating Xenopus Tadpole Tail, as Shown by Femtosecond-Laser Ablation

    PubMed Central

    Mondia, Jessica P.; Levin, Michael; Omenetto, Fiorenzo G.; Orendorff, Ryan D.; Branch, Mary Rose; Adams, Dany Spencer

    2011-01-01

    Background With the goal of learning to induce regeneration in human beings as a treatment for tissue loss, research is being conducted into the molecular and physiological details of the regeneration process. The tail of Xenopus laevis tadpoles has recently emerged as an important model for these studies; we explored the role of the spinal cord during tadpole tail regeneration. Methods and Results Using ultrafast lasers to ablate cells, and Geometric Morphometrics to quantitatively analyze regenerate morphology, we explored the influence of different cell populations. For at least twenty-four hours after amputation (hpa), laser-induced damage to the dorsal midline affected the morphology of the regenerated tail; damage induced 48 hpa or later did not. Targeting different positions along the anterior-posterior (AP) axis caused different shape changes in the regenerate. Interestingly, damaging two positions affected regenerate morphology in a qualitatively different way than did damaging either position alone. Quantitative comparison of regenerate shapes provided strong evidence against a gradient and for the existence of position-specific morphogenetic information along the entire AP axis. Conclusions We infer that there is a conduit of morphology-influencing information that requires a continuous dorsal midline, particularly an undamaged spinal cord. Contrary to expectation, this information is not in a gradient and it is not localized to the regeneration bud. We present a model of morphogenetic information flow from tissue undamaged by amputation and conclude that studies of information coming from far outside the amputation plane and regeneration bud will be critical for understanding regeneration and for translating fundamental understanding into biomedical approaches. PMID:21949803

  3. Damage Characterization of EBC-SiCSiC Ceramic Matrix Composites Under Imposed Thermal Gradient Testing

    NASA Technical Reports Server (NTRS)

    Appleby, Matthew P.; Morscher, Gregory N.; Zhu, Dongming

    2014-01-01

    Due to their high temperature capabilities, Ceramic Matrix Composite (CMC) components are being developed for use in hot-section aerospace engine applications. Harsh engine environments have led to the development of Environmental Barrier Coatings (EBCs) for silicon-based CMCs to further increase thermal and environmental capabilities. This study aims at understanding the damage mechanisms associated with these materials under simulated operating conditions. A high heat-flux laser testing rig capable of imposing large through-thickness thermal gradients by means of controlled laser beam heating and back-side air cooling is used. Tests are performed on uncoated composites, as well as CMC substrates that have been coated with state-of-the-art ceramic EBC systems. Results show that the use of the EBCs may help increase temperature capability and creep resistance by reducing the effects of stressed oxidation and environmental degradation. Also, the ability of electrical resistance (ER) and acoustic emission (AE) measurements to monitor material condition and damage state during high temperature testing is shown; suggesting their usefulness as a valuable health monitoring technique. Micromechanics models are used to describe the localized stress state of the composite system, which is utilized along with ER modeling concepts to develop an electromechanical model capable of characterizing material behavior.

  4. Laser debonding of ceramic brackets: a comprehensive review.

    PubMed

    Azzeh, Ezz; Feldon, Paul J

    2003-01-01

    Since the invention of the ruby laser in the early 1960s, tremendous advances have been made in optic laser technology. Orthodontists have found various uses for lasers, including the debonding of ceramic brackets. Laser energy degrades the adhesive resin used to bond brackets. Consequently, lower forces can be used than when mechanical debonding is performed, reducing the risk of enamel damage. However, the heat produced by some lasers can damage the tooth pulp. Selecting the appropriate laser, resin, and bracket combination can minimize risks and make debonding more efficient. The purpose of this article is to give the clinician an up-to-date, comprehensive literature review about the clinical characteristics of debonding ceramic brackets with lasers.

  5. Laser induced non-monotonic degradation in short-circuit current of triple-junction solar cells

    NASA Astrophysics Data System (ADS)

    Dou, Peng-Cheng; Feng, Guo-Bin; Zhang, Jian-Min; Song, Ming-Ying; Zhang, Zhen; Li, Yun-Peng; Shi, Yu-Bin

    2018-06-01

    In order to study the continuous wave (CW) laser radiation effects and mechanism of GaInP/GaAs/Ge triple-junction solar cells (TJSCs), 1-on-1 mode irradiation experiments were carried out. It was found that the post-irradiation short circuit current (ISC) of the TJSCs initially decreased and then increased with increasing of irradiation laser power intensity. To explain this phenomenon, a theoretical model had been established and then verified by post-damage tests and equivalent circuit simulations. Conclusion was drawn that laser induced alterations in the surface reflection and shunt resistance were the main causes for the observed non-monotonic decrease in the ISC of the TJSCs.

  6. The effect of dynamical Bloch oscillations on optical-field-induced current in a wide-gap dielectric

    NASA Astrophysics Data System (ADS)

    Földi, P.; Benedict, M. G.; Yakovlev, V. S.

    2013-06-01

    We consider the motion of charge carriers in a bulk wide-gap dielectric interacting with a few-cycle laser pulse. A semiclassical model based on Bloch equations is applied to describe the emerging time-dependent macroscopic currents for laser intensities close to the damage threshold. At such laser intensities, electrons can reach edges of the first Brillouin zone even for electron-phonon scattering rates as high as those known for SiO2. We find that, whenever this happens, Bragg-like reflections of electron waves, also known as Bloch oscillations, affect the dependence of the charge displaced by the laser pulse on its carrier-envelope phase.

  7. Thermal Stimulation of the Retina Reduces Bruch's Membrane Thickness in Age Related Macular Degeneration Mouse Models.

    PubMed

    Tode, Jan; Richert, Elisabeth; Koinzer, Stefan; Klettner, Alexa; von der Burchard, Claus; Brinkmann, Ralf; Lucius, Ralph; Roider, Johann

    2018-05-01

    To investigate the effect of thermal stimulation of the retina (TS-R) on Bruch's membrane (BrM) thickness in age-related macular degeneration (AMD) mouse models as a novel concept for the prophylaxis and treatment of dry AMD. Two knockout AMD mouse models, B6.129P2-Apoe tm1Unc /J (ApoE-/-) and B6.129X1-Nfe2I2 tm1Ywk /J (NRF2-/-), were chosen. One randomized eye of each mouse in four different groups (two of different age, two of different genotype) of five mice was treated by TS-R (532 nm, 10-ms duration, 50-μm spot size), the fellow eye served as control. Laser power was titrated to barely visible laser burns, then reduced by 70% to guarantee for thermal elevation without damage to the neuroretina, then applied uniformly to the murine retina. Fundus, optical coherence tomography (OCT), and fluorescein angiography (FLA) images were obtained at the day of treatment and 1 month after treatment. Eyes were enucleated thereafter to analyze BrM thickness by transmission electron microscopy (TEM) in a standardized blinded manner. Fundus images revealed that all ApoE-/- and NRF2-/- mice had AMD associated retinal alterations. BrM thickness was increased in untreated controls of both mouse models. Subvisible TS-R laser spots were not detectable by fundus imaging, OCT, or FLA 2 hours or 1 month after laser treatment. TEM revealed a significant reduction of BrM thickness in laser-treated eyes of all four groups compared to their fellow control eyes. TS-R reduces BrM thickness in AMD mouse models ApoE-/- and NRF2-/- without damage to the neuroretina. It may become a prophylactic or even therapeutic treatment option for dry AMD. TS-R may become a prophylactic or even therapeutic treatment option for dry AMD.

  8. Damage Threshold of In Vivo Rabbit Cornea by 2 micron Laser Irradiation

    DTIC Science & Technology

    2007-01-01

    in laser injury experiments? Implications for human exposure limits. Health Phys 2002; 82(3):335-347. 11. Siegman AE, Sasnett MW, Johnston TF. Choice... Laser Irradiation DISTRIBUTION: Approved for public release, distribution unlimited This paper is part of the following report: TITLE: Conference on...part numbers comprise the compilation report: ADP023676 thru ADP023710 UNCLASSIFIED Damage Threshold of In Vivo Rabbit Cornea by 2 gm Laser Irradiation

  9. Damage Considerations of a Flexible Micro Air Vehicle Wing Using 3-D Laser Vibrometry

    DTIC Science & Technology

    2007-06-01

    AIR VEHICLE WING USING 3-D LASER VIBROMETRY THESIS Leo L. Mendoza Jr., ENS, USN AFIT/GAE/ENY/07-J13 DEPARTMENT OF THE AIR FORCE AIR ...3-D LASER VIBROMETRY THESIS Presented to the Faculty Department of Aeronautical and Astronautical Engineering Air Force...DISTRIBUTION UNLIMITED AFIT/GAE/ENY/07-J13 DAMAGE CONSIDERATIONS OF A FLEXIBLE MICRO AIR VEHICLE WING USING 3-D LASER VIBROMETRY

  10. Study of diamond film growth and properties

    NASA Technical Reports Server (NTRS)

    Albin, Sacharial

    1990-01-01

    The objective was to study diamond film growth and its properties in order to enhance the laser damage threshold of substrate materials. Calculations were performed to evaluate laser induced thermal stress parameter, R(sub T) of diamond. It is found that diamond has several orders of magnitude higher in value for R(sub T) compared to other materials. Thus, the laser induced damage threshold (LIDT) of diamond is much higher. Diamond films were grown using a microwave plasma enhanced chemical vapor deposition (MPECVD) system at various conditions of gas composition, pressure, temperature, and substrate materials. A 0.5 percent CH4 in H2 at 20 torr were ideal conditions for growing of high quality diamond films on substrates maintained at 900 C. The diamond films were polycrystalline which were characterized by scanning electron microscopy (SEM) and Raman scattering spectroscopy. The top surface of the growing film is always rough due to the facets of polycrystalline film while the back surface of the film replicates the substrate surface. An analytical model based on two dimensional periodic heat flow was developed to calculate the effective in-plane (face parallel) diffusivity of a two layer system. The effective diffusivity of diamond/silicon samples was measured using a laser pulse technique. The thermal conductivity of the films was measured to be 13.5 W/cm K, which is better than that of a type Ia natural diamond. Laser induced damage experiments were performed on bare Si substrates, diamond film coated Si, and diamond film windows. Significant improvements in the LIDT were obtained for diamond film coated Si compared to the bare Si.

  11. Micro/nanostructured surface modification using femtosecond laser pulses on minimally invasive electrosurgical devices.

    PubMed

    Lin, Chia-Cheng; Lin, Hao-Jan; Lin, Yun-Ho; Sugiatno, Erwan; Ruslin, Muhammad; Su, Chen-Yao; Ou, Keng-Liang; Cheng, Han-Yi

    2017-05-01

    The purpose of the present study was to examine thermal damage and a sticking problem in the tissue after the use of a minimally invasive electrosurgical device with a nanostructured surface treatment that uses a femtosecond laser pulse (FLP) technique. To safely use an electrosurgical device in clinical surgery, it is important to decrease thermal damage to surrounding tissues. The surface characteristics and morphology of the FLP layer were evaluated using optical microscopy, scanning electron microscopy, and transmission electron microscopy; element analysis was performed using energy-dispersive X-ray spectroscopy, grazing incidence X-ray diffraction, and X-ray photoelectron spectroscopy. In the animal model, monopolar electrosurgical devices were used to create lesions in the legs of 30 adult rats. Animals were sacrificed for investigations at 0, 3, 7, 14, and 28 days postoperatively. Results indicated that the thermal damage and sticking situations were reduced significantly when a minimally invasive electrosurgical instrument with an FLP layer was used. Temperatures decreased while film thickness increased. Thermographic data revealed that surgical temperatures in an animal model were significantly lower in the FLP electrosurgical device compared with that in the untreated one. Furthermore, the FLP device created a relatively small area of thermal damage. As already mentioned, the biomedical nanostructured layer reduced thermal damage and promoted the antisticking property with the use of a minimally invasive electrosurgical device. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 865-873, 2017. © 2016 Wiley Periodicals, Inc.

  12. Detector Damage at X-Ray Free-Electron Laser Sources

    NASA Astrophysics Data System (ADS)

    Blaj, G.; Carini, G.; Carron, S.; Haller, G.; Hart, P.; Hasi, J.; Herrmann, S.; Kenney, C.; Segal, J.; Stan, C. A.; Tomada, A.

    2016-06-01

    Free-electron lasers (FELs) opened a new window on imaging the motion of atoms and molecules. At SLAC, FEL experiments are performed at LCLS using 120 Hz pulses with 1012 to 1013 photons in 10 fs (billions of times brighter than at the most powerful synchrotrons). Concurrently, users and staff operate under high pressure due to flexible and often rapidly changing setups and low tolerance for system malfunction. This extreme detection environment raises unique challenges, from obvious to surprising, and leads to treating detectors as consumables. We discuss in detail the detector damage mechanisms observed in 7 years of operation at LCLS, together with the corresponding damage mitigation strategies and their effectiveness. Main types of damage mechanisms already identified include: (1) x-ray radiation damage (from “catastrophic” to “classical”), (2) direct and indirect damage caused by optical lasers, (3) sample induced damage, (4) vacuum related damage, (5) high-pressure environment. In total, 19 damage mechanisms have been identified. We also present general strategies for reducing damage risk or minimizing the impact of detector damage on the science program. These include availability of replacement parts and skilled operators and also careful planning, incident investigation resulting in updated designs, procedures and operator training.

  13. Laser damage initiation and growth of antireflection coated S-FAP crystal surfaces prepared by pitch lap and magnetorheological finishing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stolz, C J; Menapace, J A; Schaffers, K I

    Antireflection (AR) coatings typically damage at the interface between the substrate and coating. Therefore the substrate finishing technology can have an impact on the laser resistance of the coating. For this study, AR coatings were deposited on Yb:S-FAP [Yb{sup 3+}:Sr{sub 5}(PO{sub 4}){sub 3}F] crystals that received a final polish by both conventional pitch lap finishing as well as magnetorheological finishing (MRF). SEM images of the damage morphology reveals laser damage originates at scratches and at substrate coating interfacial absorbing defects. Previous damage stability tests on multilayer mirror coatings and bare surfaces revealed damage growth can occur at fluences below themore » initiation fluence. The results from this study suggest the opposite trend for AR coatings. Investigation of unstable HR and uncoated surface damage morphologies reveals significant radial cracking that is not apparent with AR damage due to AR delamination from the coated surface with few apparent cracks at the damage boundary. Damage stability tests show that coated Yb:S-FAP crystals can operate at 1057 nm at fluences around 20 J/cm{sup 2} at 10 ns; almost twice the initiation damage threshold.« less

  14. The role of mesoscopic modelling in understanding the response of dental enamel to mid-infrared radiation

    NASA Astrophysics Data System (ADS)

    Vila Verde, A.; Ramos, M. M. D.; Stoneham, A. M.

    2007-05-01

    Human dental enamel has a porous mesostructure at the nanometre to micrometre scales that affects its thermal and mechanical properties relevant to laser treatment. We exploit finite-element models to investigate the response of this mesostructured enamel to mid-infrared lasers (CO2 at 10.6 µm and Er:YAG at 2.94 µm). Our models might easily be adapted to investigate ablation of other brittle composite materials. The studies clarify the role of pore water in ablation, and lead to an understanding of the different responses of enamel to CO2 and Er:YAG lasers, even though enamel has very similar average properties at the two wavelengths. We are able to suggest effective operating parameters for dental laser ablation, which should aid the introduction of minimally-invasive laser dentistry. In particular, our results indicate that, if pulses of ap10 µs are used, the CO2 laser can ablate dental enamel without melting, and with minimal damage to the pulp of the tooth. Our results also suggest that pulses with 0.1-1 µs duration can induce high stress transients which may cause unwanted cracking.

  15. 355-nm, nanosecond laser mirror thin film damage competition

    NASA Astrophysics Data System (ADS)

    Negres, Raluca A.; Stolz, Christopher J.; Thomas, Michael D.; Caputo, Mark

    2017-11-01

    This competition aimed to survey state-of-the-art UV high reflectors. The requirements of the coatings are a minimum reflection of 99.5% at 45 degrees incidence angle for P-polarized light at 355-nm. The choice of coating materials, design, and deposition method were left to the participants. Laser damage testing was performed at a single testing facility using the raster scan method with a 5-ns pulse length laser system operating at 10 Hz in a single longitudinal mode. A double blind test assured sample and submitter anonymity. In addition to the laser damage resistance results, details of the deposition processes, cleaning method, coating materials and layer count are also shared.

  16. Creation of backdoors in quantum communications via laser damage

    NASA Astrophysics Data System (ADS)

    Makarov, Vadim; Bourgoin, Jean-Philippe; Chaiwongkhot, Poompong; Gagné, Mathieu; Jennewein, Thomas; Kaiser, Sarah; Kashyap, Raman; Legré, Matthieu; Minshull, Carter; Sajeed, Shihan

    2016-09-01

    Practical quantum communication (QC) protocols are assumed to be secure provided implemented devices are properly characterized and all known side channels are closed. We show that this is not always true. We demonstrate a laser-damage attack capable of modifying device behavior on demand. We test it on two practical QC systems for key distribution and coin tossing, and show that newly created deviations lead to side channels. This reveals that laser damage is a potential security risk to existing QC systems, and necessitates their testing to guarantee security.

  17. The improvement of laser induced damage resistance of optical workpiece surface by hydrodynamic effect polishing

    NASA Astrophysics Data System (ADS)

    Peng, Wenqiang; Guan, Chaoliang; Li, Shengyi; Wang, Zhuo

    2016-10-01

    Surface and subsurface damage in optical element will greatly decrease the laser induced damage threshold (LIDT) in the intense laser optical system. Processing damage on the workpiece surface can be inevitably caused when the material is removed in brittle or plastic mode. As a non-contact polishing technology, hydrodynamic effect polishing (HEP) shows very good performance on generating an ultra-smooth surface without damage. The material is removed by chemisorption between nanoparticle and workpiece surface in the elastic mode in HEP. The subsurface damage and surface scratches can be effectively removed after the polishing process. Meanwhile ultra-smooth surface with atomic level surface roughness can be achieved. To investigate the improvement of LIDT of optical workpiece, polishing experiment was conducted on a magnetorheological finishing (MRF) silica glass sample. AFM measurement results show that all the MRF directional plastic marks have been removed clearly and the root-mean-square (rms) surface roughness has decreased from 0.673nm to 0.177nm after HEP process. Laser induced damage experiment was conducted with laser pulse of 1064nm wavelength and 10ns time width. Compared with the original state, the LEDT of the silica glass sample polished by HEP has increased from 29.78J/cm2 to 45.47J/cm2. It demonstrates that LIDT of optical element treated by HEP can be greatly improved for ultra low surface roughness and nearly defect-free surface/subsurface.

  18. Optical cell cleaning with NIR femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Uchugonova, Aisada; Breunig, Hans Georg; Batista, Ana; König, Karsten

    2015-03-01

    Femtosecond laser microscopes have been used as both micro and nanosurgery tools. The optical knock-out of undesired cells in multiplex cell clusters shall be further reported on in this study. Femtosecond laser-induced cell death is beneficial due to the reduced collateral side effects and therefore can be used to selectively destroy target cells within monolayers, as well as within 3D tissues, all the while preserving cells of interest. This is an important characteristic for the application in stem cell research and cancer treatment. Non-precise damage compromises the viability of neighboring cells by inducing side effects such as stress to the cells surrounding the target due to the changes in the microenvironment, resulting from both the laser and laser-exposed cells. In this study, optimum laser parameters for optical cleaning by isolating single cells and cell colonies are exploited through the use of automated software control. Physiological equilibrium and cellular responses to the laser induced damages are also investigated. Cell death dependence on laser focus, determination and selectivity of intensity/dosage, controllable damage and cell recovery mechanisms are discussed.

  19. DNA Damage in Bone Marrow Cells Induced by Femtosecond and Nanosecond Ultraviolet Laser Pulses.

    PubMed

    Morkunas, Vaidotas; Gabryte, Egle; Vengris, Mikas; Danielius, Romualdas; Danieliene, Egle; Ruksenas, Osvaldas

    2015-12-01

    The purpose of this study was to investigate the possible genotoxic impact of new generation 205 nm femtosecond solid-state laser irradiation on the DNA of murine bone marrow cells in vitro, and to compare the DNA damage caused by both femtosecond and nanosecond UV laser pulses. Recent experiments of corneal stromal ablation in vitro and in vivo applying femtosecond UV pulses showed results comparable with or superior to those obtained using nanosecond UV lasers. However, the possible genotoxic effect of ultrashort laser pulses was not investigated. Mouse bone marrow cells were exposed to different doses of 205 nm femtosecond, 213 and 266 nm nanosecond lasers, and 254 nm UV lamp irradiation. The comet assay was used for the evaluation of DNA damage. All types of irradiation demonstrated intensity-dependent genotoxic impact. The DNA damage induced depended mainly upon wavelength rather than on other parameters such as pulse duration, repetition rate, or beam delivery to a target. Both 205 nm femtosecond and clinically applied 213 nm nanosecond lasers' pulses induced a comparable amount of DNA breakage in cells exposed to the same irradiation dose. To further evaluate the suitability of femtosecond UV laser sources for microsurgery, a separate investigation of the genotoxic and mutagenic effects on corneal cells in vitro and, particularly, in vivo is needed.

  20. Plasma spectrum peak extraction algorithm of laser film damage

    NASA Astrophysics Data System (ADS)

    Zhao, Dan; Su, Jun-hong; Xu, Jun-qi

    2012-10-01

    The plasma spectrometry is an emerging method to distinguish the thin-film laser damage. Laser irradiation film surface occurrence of flash, using the spectrometer receives the flash spectrum, extracting the spectral peak, and by means of the spectra of the thin-film materials and the atmosphere has determine the difference, as a standard to determine the film damage. Plasma spectrometry can eliminate the miscarriage of justice which caused by atmospheric flashes, and distinguish high accuracy. Plasma spectra extraction algorithm is the key technology of Plasma spectrometry. Firstly, data de noising and smoothing filter is introduced in this paper, and then during the peak is detecting, the data packet is proposed, and this method can increase the stability and accuracy of the spectral peak recognition. Such algorithm makes simultaneous measurement of Plasma spectrometry to detect thin film laser damage, and greatly improves work efficiency.

  1. Comparison of epidermal/dermal damage between the long-pulsed 1064 nm Nd:YAG and 755 nm alexandrite lasers under relatively high fluence conditions: quantitative and histological assessments.

    PubMed

    Lee, Ju Hwan; Park, So Ra; Jo, Jeong Ho; Park, Sung Yun; Seo, Young Kwon; Kim, Sung Min

    2014-07-01

    The purpose of this study was to compare degrees of epidermal/dermal tissue damage quantitatively and histologically after laser irradiation, to find ideal treatment conditions with relatively high fluence for skin rejuvenation. A number of recent studies have evaluated the clinical efficacy and safety of therapeutic lasers under relatively low fluence conditions. We transmitted the long-pulsed 1064 nm Nd:YAG and 755 nm Alexandrite lasers into pig skin according to different fluences and spot diameters, and estimated epidermal/dermal temperatures. Pig skin specimens were stained with hematoxylin and eosin for histological assessments. The fluence conditions comprised 26, 30, and 36 J/cm2, and the spot diameter conditions were 5, 8, and 10 mm. Pulse duration was 30 ms for all experiments. Both lasers produced reliable thermal damage on the dermis without any serious epidermal injuries, under relatively high fluence conditions. The 1064 nm laser provided more active fibrous formations than the 755 nm laser, while higher risks for tissue damages simultaneously occurred. The ideal treatment conditions for skin rejuvenation were 8 mm diameter with 30 J/cm2 and 10 mm diameter with 26 J/cm2 for the 1064 nm laser, and 8 mm diameter with 36 J/cm2 and 10 mm diameter with 26 J/cm2 for the 755 nm laser.

  2. The characterization of neural tissue ablation rate and corresponding heat affected zone of a 2 micron Tm3+ doped fiber laser(Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Marques, Andrew J.; Jivraj, Jamil; Reyes, Robnier; Ramjist, Joel; Gu, Xijia J.; Yang, Victor X. D.

    2017-02-01

    Tissue removal using electrocautery is standard practice in neurosurgery since tissue can be cut and cauterized simultaneously. Thermally mediated tissue ablation using lasers can potentially possess the same benefits but with increased precision. However, given the critical nature of the spine, brain, and nerves, the effects of direct photo-thermal interaction on neural tissue needs to be known, yielding not only high precision of tissue removal but also increased control of peripheral heat damage. The proposed use of lasers as a neurosurgical tool requires that a common ground is found between ablation rates and resulting peripheral heat damage. Most surgical laser systems rely on the conversion of light energy into heat resulting in both desirable and undesirable thermal damage to the targeted tissue. Classifying the distribution of thermal energy in neural tissue, and thus characterizing the extent of undesirable thermal damage, can prove to be exceptionally challenging considering its highly inhomogenous composition when compared to other tissues such as muscle and bone. Here we present the characterization of neural tissue ablation rate and heat affected zone of a 1.94 micron thulium doped fiber laser for neural tissue ablation. In-Vivo ablation of porcine cerebral cortex is performed. Ablation volumes are studied in association with laser parameters. Histological samples are taken and examined to characterize the extent of peripheral heat damage.

  3. Laser speckle contrast imaging: monitoring blood flow dynamics and vascular structure of photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Liu, Qian; Zhou, Sibo; Zhang, Zhihong; Luo, Qingming

    2005-01-01

    Laser speckle contrast imaging (LSCI) is a noninvasive optical image technique that has been developed for imaging in vivo blood flow dynamics and vascular structure with high spatial and temporal resolution. It records the full-field spatio-temporal characteristics of microcirculation in real time without the need of laser beam flying. In this paper applications of this technique for monitoring changes of blood flow and vascular structure following photodynamic therapy (PDT) in vivo model were demonstrated. In this study, an in vivo model of chick chorioallantoic membrane (CAM) at embryo age (EA) of 10~13 days, was observed following PDT irradiated by a power tunable laser diode (λ = 656.5 nm). Laser intensity incident on the treatment site was maintained at 40 mW/cm2 and photosensitizer of Pyropheophorbide Acid (Pyro-Acid) was used. CAM was adopted in PDT since it is a transparent in vivo model and the irradiated lights of laser can penetrate tumor with greater depth. The laser delivered through fiber bundle to the treatment site in PDT also acted as the coherent light source of LSCI. This study shows that LSCI can be used to assess the efficacy of peripheral vessels damage of tumor in PDT by monitoring changes of blood flow and vascular structure.

  4. ALD anti-reflection coatings at 1ω, 2ω, 3ω, and 4ω for high-power ns-laser application

    NASA Astrophysics Data System (ADS)

    Liu, Hao; Jensen, Lars; Ma, Ping; Ristau, Detlev

    2018-04-01

    Atomic layer deposition (ALD) facilitates the deposition of coatings with precise thickness, high surface conformity, structural uniformity, and nodular-free structure, which are properties desired in high-power laser coatings. ALD was studied to produce uniform and stable Al2O3 and HfO2 single layers and was employed to produce anti-reflection coatings for the harmonics (1ω, 2ω, 3ω, and 4ω) of the Nd:YAG laser. In order to qualify the ALD films for high-power laser applications, the band gap energy, absorption, and element content of single layers were characterized. The damage tests of anti-reflection coatings were carried out with a laser system operated at 1ω, 2ω, 3ω, and 4ω, respectively. The damage mechanism was discussed by analyzing the damage morphology and electric field intensity difference. ALD coatings exhibit stable growth rates, low absorption, and rather high laser-induced damage threshold (LIDT). The LIDT is limited by HfO2 as the employed high-index material. These properties indicate the high versatility of ALD films for applications in high-power coatings.

  5. Spatiotemporal dynamics of DNA repair proteins following laser microbeam induced DNA damage – When is a DSB not a DSB?☆

    PubMed Central

    Reynolds, Pamela; Botchway, Stanley W.; Parker, Anthony W.; O’Neill, Peter

    2013-01-01

    The formation of DNA lesions poses a constant threat to cellular stability. Repair of endogenously and exogenously produced lesions has therefore been extensively studied, although the spatiotemporal dynamics of the repair processes has yet to be fully understood. One of the most recent advances to study the kinetics of DNA repair has been the development of laser microbeams to induce and visualize recruitment and loss of repair proteins to base damage in live mammalian cells. However, a number of studies have produced contradictory results that are likely caused by the different laser systems used reflecting in part the wavelength dependence of the damage induced. Additionally, the repair kinetics of laser microbeam induced DNA lesions have generally lacked consideration of the structural and chemical complexity of the DNA damage sites, which are known to greatly influence their reparability. In this review, we highlight the key considerations when embarking on laser microbeam experiments and interpreting the real time data from laser microbeam irradiations. We compare the repair kinetics from live cell imaging with biochemical and direct quantitative cellular measurements for DNA repair. PMID:23688615

  6. 980 nm diode laser with automatic power control mode for dermatological applications

    NASA Astrophysics Data System (ADS)

    Belikov, Andrey V.; Gelfond, Mark L.; Shatilova, Ksenia V.; Sosenkova, Svetlana A.; Lazareva, Anastasia A.

    2015-07-01

    Results of nevus, papilloma, dermatofibroma, and basal cell skin cancer removal by a 980+/-10 nm diode laser with "blackened" tip operating in continuous (CW) mode and automatic power control (APC) mode are compared. It was demonstrated that using APC mode decreases the width of collateral damage at removing of these nosological neoplasms of human skin. The mean width of collateral damage reached 0.846+/-0.139 mm for patient group with nevus removing by 980 nm diode laser operating in CW mode, papilloma - 0.443+/-0.312 mm, dermatofibroma - 0.923+/-0.271 mm, and basal cell skin cancer - 0.787+/-0.325 mm. The mean width of collateral damage reached 0.592+/-0.197 mm for patient group with nevus removing by 980 nm diode laser operating in APC mode, papilloma - 0.191+/-0.162 mm, dermatofibroma - 0.476+/-0.366 mm, and basal cell skin cancer - 0.517+/-0.374 mm. It was found that the percentage of laser wounds with collateral damage less than 300 μm of quantity of removed nosological neoplasms in APC mode is 50%, that significantly higher than the percentage of laser wounds obtained using CW mode (13.4%).

  7. Research on Splicing Method of Digital Relic Fragment Model

    NASA Astrophysics Data System (ADS)

    Yan, X.; Hu, Y.; Hou, M.

    2018-04-01

    In the course of archaeological excavation, a large number of pieces of cultural relics were unearthed, and the restoration of these fragments was done manually by traditional arts and crafts experts. In this process, cultural relics experts often try to splice the existing cultural relics, and then use adhesive to stick together the fragments of correct location, which will cause irreversible secondary damage to cultural relics. In order to minimize such damage, the surveyors combine 3D laser scanning with computer technology, and use the method of establishing digital cultural relics fragments model to make virtual splicing of cultural relics. The 3D software on the common market can basically achieve the model translation and rotation, using this two functions can be achieved manually splicing between models, mosaic records after the completion of the specific location of each piece of fragments, so as to effectively reduce the damage to the relics had tried splicing process.

  8. OCDR guided laser ablation device

    DOEpatents

    Dasilva, Luiz B.; Colston, Jr., Bill W.; James, Dale L.

    2002-01-01

    A guided laser ablation device. The device includes a mulitmode laser ablation fiber that is surrounded by one or more single mode optical fibers that are used to image in the vicinity of the laser ablation area to prevent tissue damage. The laser ablation device is combined with an optical coherence domain reflectometry (OCDR) unit and with a control unit which initializes the OCDR unit and a high power laser of the ablation device. Data from the OCDR unit is analyzed by the control unit and used to control the high power laser. The OCDR images up to about 3 mm ahead of the ablation surface to enable a user to see sensitive tissue such as a nerve or artery before damaging it by the laser.

  9. Nanosecond multi-pulse laser milling for certain area removal of metal coating on plastics surface

    NASA Astrophysics Data System (ADS)

    Zhao, Kai; Jia, Zhenyuan; Ma, Jianwei; Liu, Wei; Wang, Ling

    2014-12-01

    Metal coating with functional pattern on engineering plastics surface plays an important role in industry applications; it can be obtained by adding or removing certain area of metal coating on engineering plastics surface. However, the manufacturing requirements are improved continuously and the plastic substrate presents three-dimensional (3D) structure-many of these parts cannot be fabricated by conventional processing methods, and a new manufacturing method is urgently needed. As the laser-processing technology has many advantages like high machining accuracy and constraints free substrate structure, the machining of the parts is studied through removing certain area of metal coating based on the nanosecond multi-pulse laser milling. To improve the edge quality of the functional pattern, generation mechanism and corresponding avoidance strategy of the processing defects are studied. Additionally, a prediction model for the laser ablation depth is proposed, which can effectively avoid the existence of residual metal coating and reduces the damage of substrate. With the optimal machining parameters, an equiangular spiral pattern on copper-clad polyimide (CCPI) is machined based on the laser milling at last. The experimental results indicate that the edge of the pattern is smooth and consistent, the substrate is flat and without damage. The achievements in this study could be applied in industrial production.

  10. Measurement and calculation of ternary oxide mixtures for thin films for ultra short pulse laser optics

    NASA Astrophysics Data System (ADS)

    Jupé, M.; Mende, M.; Kolleck, C.; Ristau, D.; Gallais, L.; Mangote, B.

    2011-12-01

    The femto-second technology gains of increasing importance in industrial applications. In this context, a new generation of compact and low cost laser sources has to be provided on a commercial basis. Typical pulse durations of these sources are specified in the range from a few hundred femtoup to some pico-seconds, and typical wavelengths are centered around 1030-1080nm. As a consequence, also the demands imposed on high power optical components for these laser sources are rapidly increasing, especially in respect to their power handling capability in the ultra-short pulse range. The present contribution is dedicated to some aspects for improving this quality parameter of optical coatings. The study is based on a set of hafnia and silica mixtures with different compositions and optical band gaps. This material combination displays under ultra-short pulse laser irradiation effects, which are typically for thermal processes. For instance, melting had been observed in the morphology of damaged sides. In this context, models for a prediction of the laser damage thresholds and scaling laws are scrutinized, and have been modified calculating the energy of the electron ensemble. Furthermore, a simple first order approach for the calculation of the temperature was included.

  11. Infrared laser sealing of porcine vascular tissues using a 1,470 nm diode laser: Preliminary in vivo studies.

    PubMed

    Cilip, Christopher M; Kerr, Duane; Latimer, Cassandra A; Rosenbury, Sarah B; Giglio, Nicholas C; Hutchens, Thomas C; Nau, William H; Fried, Nathaniel M

    2017-04-01

    Infrared (IR) lasers are being explored as an alternative to radiofrequency (RF) and ultrasonic (US) devices for rapid hemostasis with minimal collateral zones of thermal damage and tissue necrosis. Previously, a 1,470 nm IR laser sealed and cut ex vivo porcine renal arteries of 1-8 mm diameter in 2 seconds, yielding burst pressures greater than 1,200 mmHg and thermal coagulation zones less than 3 mm. This preliminary study describes in vivo testing of a handheld laser probe in a porcine model. A handheld prototype with vessel/tissue clasping mechanism was tested on 73 blood vessels less than 6 mm diameter using 1,470 nm laser power of 35 W for 1-5 seconds. Device power settings, irradiation time, tissue type, vessel diameter, and histology sample number were recorded for each procedure. The probe was evaluated for hemostasis after sealing isolated and bundled arteriole/venous (A/V) vasculature of porcine abdomen and hind leg. Sealed vessel samples were collected for histological analysis of lateral thermal damage. Hemostasis was achieved in 57 of 73 seals (78%). The probe consistently sealed vasculature in small bowel mesentery, mesometrium, and gastrosplenic and epiploic regions. Seal performance was less consistent on hind leg vasculature including saphenous arteries/bundles and femoral and iliac arteries. Collagen denaturation averaged 1.6 ± 0.9 mm in eight samples excised for histologic examination. A handheld laser probe sealed porcine vessels, in vivo. Further probe development and laser parameter optimization is necessary before infrared lasers may be evaluated as an alternative to RF and US vessel sealing devices. Lasers Surg. Med. 49:366-371, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  12. Laser Cutting of Multilayered Kevlar Plates

    NASA Astrophysics Data System (ADS)

    Yilbas, B. S.; Al-Sulaiman, F.; Karakas, C.; Ahsan, M.

    2007-12-01

    Laser cutting of Kevlar plates, consisting of multilayered laminates, with different thicknesses are carried out. A mathematical model is developed to predict the kerf width, thermal efficiency, and specific energy requirements during cutting. Optical microscopy and Scanning Electron Microscopy (SEM) are employed to obtain the micrographs of the cutting sections. The kerf width size is measured and compared with the predictions. A factorial analysis is carried out to assess the affecting parameters on the mean kerf width and dimensionless damage sizes. It is found that the kerf width and damage sizes changes sharply when increasing cutting speed from 0.03 to 0.08 m/s. Thermal efficiency of the cutting process increases with increasing thickness and cutting speed while specific energy reduces with increasing thickness. The main effects of cutting parameters are found to be significant on the mean kerf width and dimensionless damage sizes, which is more pronounced for the workpiece bottom surface, where locally distributed char formation and sideways burning are observed.

  13. Evaluation damage threshold of optical thin-film using an amplified spontaneous emission source

    NASA Astrophysics Data System (ADS)

    Zhou, Qiong; Sun, Mingying; Zhang, Zhixiang; Yao, Yudong; Peng, Yujie; Liu, Dean; Zhu, Jianqiang

    2014-10-01

    An accurate evaluation method with an amplified spontaneous emission (ASE) as the irradiation source has been developed for testing thin-film damage threshold. The partial coherence of the ASE source results in a very smooth beam profile in the near-field and a uniform intensity distribution of the focal spot in the far-field. ASE is generated by an Nd: glass rod amplifier in SG-II high power laser facility, with pulse duration of 9 ns and spectral width (FWHM) of 1 nm. The damage threshold of the TiO2 high reflection film is 14.4J/cm2 using ASE as the irradiation source, about twice of 7.4 J/cm2 that tested by a laser source with the same pulse duration and central wavelength. The damage area induced by ASE is small with small-scale desquamation and a few pits, corresponding to the defect distribution of samples. Large area desquamation is observed in the area damaged by laser, as the main reason that the non-uniformity of the laser light. The ASE damage threshold leads to more accurate evaluations of the samples damage probability by reducing the influence of hot spots in the irradiation beam. Furthermore, the ASE source has a great potential in the detection of the defect distribution of the optical elements.

  14. Optical damage observed in the LHMEL II output coupler

    NASA Astrophysics Data System (ADS)

    Eric, John J.; Bagford, John O.; Devlin, Christie L. H.; Hull, Robert J.; Seibert, Daniel B.

    2008-01-01

    During the annual NIST calibration testing done at the LHMEL facility in FY06 on its high energy Carbon-Dioxide lasers, the LHMEL II device suffered severe damage to the internal surface of its ZnSe output coupler optics. The damage occurred during a high power, short duration run and it was believed to have been the result of a significant amount of surface contaminants interacting with the LHMEL cavity beam. Initial theories as to the source of the contamination led to the inspection of the vacuum grease that seals the piping that supplies the source gases to the laser cavity. Other contamination sources were considered, and analysis was conducted in an effort to identify the material found at the damage sites on the optic, but the tests were mainly inconclusive. Some procedure changes were initiated to identify possible contamination before high energy laser operation in an attempt to mitigate and possibly prevent the continued occurrence of damage to the output coupler window. This paper is to illustrate the type and extent of the damage encountered, highlight some of the theories as to the contamination source, and serve as a notice as to the severity and consequences of damage that is possible even due to small amounts of foreign material in a high energy laser environment.

  15. Probabilistic Model for Laser Damage to the Human Retina

    DTIC Science & Technology

    2012-03-01

    the beam. Power density may be measured in radiant exposure, J cm2 , or by irradiance , W cm2 . In the experimental database used in this study and...to quan- tify a binary response, either lethal or non-lethal, within a population such as insects or rats. In directed energy research, probit...value of the normalized Arrhenius damage integral. In a one-dimensional simulation, the source term is determined as a spatially averaged irradiance (W

  16. Holmium: YAG laser-induced liquid jet knife: possible novel method for dissection.

    PubMed

    Nakagawa, Atsuhiro; Hirano, Takayuki; Komatsu, Makoto; Sato, Mariko; Uenohara, Hiroshi; Ohyama, Hideki; Kusaka, Yasuko; Shirane, Reizo; Takayama, Kazuyoshi; Yoshimoto, Takashi

    2002-01-01

    Making surgical incisions in vessel-rich organs without causing bleeding is difficult. Thus, it is necessary to develop new devices for this purpose, especially for surgery involving small vessels as in neurosurgery, where damage against even small cerebral vessels result in severe neurological deficits. A laser-induced liquid jet was generated by irradiating pulsed Holmium Yttrium-Aluminum-Garnet (Ho: YAG) laser (beams of 350 microseconds pulse width) within a copper tube (internal diameter, 1 mm) with pure water (150 ml /hour). Ho: YAG laser beams were irradiated through an optical fiber (core diameter, 0.4 mm). The influence of the input of laser energy, structure of the nozzle, and the stand-off distance between the optical fiber tip and nozzle exit on the jet velocity was measured by a high-speed video camera to evaluate controllability of jet. The effect on artificial organs made of 10 and 30%(w/v) gelatin, each of which represent features of soft tissue and blood vessels. Jet velocity increased in proportion to gain in laser energy input, and maximum penetration depth into 10%(w/v) gelatin was 35 mm by single exposure at 350 mJ/pulse without impairing a vessel model. Shapes of nozzle also modified jet velocity with optimal nozzle/tube area ratio of 0.25. The laser-induced liquid jet has excellent potential as a new tool for removing soft tissue without damaging vital structures. Copyright 2002 Wiley-Liss, Inc.

  17. Laser induced periodic surface structure formation in germanium by strong field mid IR laser solid interaction at oblique incidence.

    PubMed

    Austin, Drake R; Kafka, Kyle R P; Trendafilov, Simeon; Shvets, Gennady; Li, Hui; Yi, Allen Y; Szafruga, Urszula B; Wang, Zhou; Lai, Yu Hang; Blaga, Cosmin I; DiMauro, Louis F; Chowdhury, Enam A

    2015-07-27

    Laser induced periodic surface structures (LIPSS or ripples) were generated on single crystal germanium after irradiation with multiple 3 µm femtosecond laser pulses at a 45° angle of incidence. High and low spatial frequency LIPSS (HSFL and LSFL, respectively) were observed for both s- and p-polarized light. The measured LSFL period for p-polarized light was consistent with the currently established LIPSS origination model of coupling between surface plasmon polaritons (SPP) and the incident laser pulses. A vector model of SPP coupling is introduced to explain the formation of s-polarized LSFL away from the center of the damage spot. Additionally, a new method is proposed to determine the SPP propagation length from the decay in ripple depth. This is used along with the measured LSFL period to estimate the average electron density and Drude collision time of the laser-excited surface. Finally, full-wave electromagnetic simulations are used to corroborate these results while simultaneously offering insight into the nature of LSFL formation.

  18. Damage threshold from large retinal spot size repetitive-pulse laser exposures.

    PubMed

    Lund, Brian J; Lund, David J; Edsall, Peter R

    2014-10-01

    The retinal damage thresholds for large spot size, multiple-pulse exposures to a Q-switched, frequency doubled Nd:YAG laser (532 nm wavelength, 7 ns pulses) have been measured for 100 μm and 500 μm retinal irradiance diameters. The ED50, expressed as energy per pulse, varies only weakly with the number of pulses, n, for these extended spot sizes. The previously reported threshold for a multiple-pulse exposure for a 900 μm retinal spot size also shows the same weak dependence on the number of pulses. The multiple-pulse ED50 for an extended spot-size exposure does not follow the n dependence exhibited by small spot size exposures produced by a collimated beam. Curves derived by using probability-summation models provide a better fit to the data.

  19. Obtaining Cross-Sections of Paint Layers in Cultural Artifacts Using Femtosecond Pulsed Lasers

    PubMed Central

    Harada, Takaaki; Spence, Stephanie; Margiolakis, Athanasios; Deckoff-Jones, Skylar; Ploeger, Rebecca; Shugar, Aaron N.; Hamm, James F.; Dani, Keshav M.; Dani, Anya R.

    2017-01-01

    Recently, ultrafast lasers exhibiting high peak powers and extremely short pulse durations have created a new paradigm in materials processing. The precision and minimal thermal damage provided by ultrafast lasers in the machining of metals and dielectrics also suggests a novel application in obtaining precise cross-sections of fragile, combustible paint layers in artwork and cultural heritage property. Cross-sections of paint and other decorative layers on artwork provide critical information into its history and authenticity. However, the current methodology which uses a scalpel to obtain a cross-section can cause further damage, including crumbling, delamination, and paint compression. Here, we demonstrate the ability to make controlled cross-sections of paint layers with a femtosecond pulsed laser, with minimal damage to the surrounding artwork. The femtosecond laser cutting overcomes challenges such as fragile paint disintegrating under scalpel pressure, or oxidation by the continuous-wave (CW) laser. Variations in laser power and translational speed of the laser while cutting exhibit different benefits for cross-section sampling. The use of femtosecond lasers in studying artwork also presents new possibilities in analyzing, sampling, and cleaning of artwork with minimal destructive effects. PMID:28772468

  20. Pulmonary resections: cytostructural effects of different-wavelength lasers versus electrocautery.

    PubMed

    Scanagatta, Paolo; Pelosi, Giuseppe; Leo, Francesco; Furia, Simone; Duranti, Leonardo; Fabbri, Alessandra; Manfrini, Aldo; Villa, Antonello; Vergani, Barbara; Pastorino, Ugo

    2012-01-01

    There are few papers on the cytostructural effects of surgical instruments used during pulmonary resections. The aim of the present study was to evaluate the parenchymal damage caused by different surgical instruments: a new generation electrosurgical scalpel and two different-wavelength lasers. Six surgical procedures of pulmonary resection for nodules were performed using a new generation electrosurgical scalpel, a 1318 nm neodymium (Nd:YAG) laser or a 2010 nm thulium laser (two procedures for each instrument). Specimens were analyzed using optical microscopy and scansion electronic microscopy. Severe cytostructural damage was found to be present in an average of 1.25 mm in depth from the cutting surface in the patients treated using electrosurgical cautery. The depth of this zone dropped to less than 1 mm in patients treated by laser, being as small as 0.2 mm using the laser with a 2010 nm-wavelength and 0.6 mm with the 1318 nm-wavelength laser. These preliminary findings support the use of laser to perform conservative pulmonary resections (i.e., metastasectomies), since it is more likely to avoid damage to surrounding structures. Controlled randomized trials are needed to support the clinical usefulness and feasibility of new types of lasers for pulmonary resections.

  1. Obtaining Cross-Sections of Paint Layers in Cultural Artifacts Using Femtosecond Pulsed Lasers.

    PubMed

    Harada, Takaaki; Spence, Stephanie; Margiolakis, Athanasios; Deckoff-Jones, Skylar; Ploeger, Rebecca; Shugar, Aaron N; Hamm, James F; Dani, Keshav M; Dani, Anya R

    2017-01-26

    Recently, ultrafast lasers exhibiting high peak powers and extremely short pulse durations have created a new paradigm in materials processing. The precision and minimal thermal damage provided by ultrafast lasers in the machining of metals and dielectrics also suggests a novel application in obtaining precise cross-sections of fragile, combustible paint layers in artwork and cultural heritage property. Cross-sections of paint and other decorative layers on artwork provide critical information into its history and authenticity. However, the current methodology which uses a scalpel to obtain a cross-section can cause further damage, including crumbling, delamination, and paint compression. Here, we demonstrate the ability to make controlled cross-sections of paint layers with a femtosecond pulsed laser, with minimal damage to the surrounding artwork. The femtosecond laser cutting overcomes challenges such as fragile paint disintegrating under scalpel pressure, or oxidation by the continuous-wave (CW) laser. Variations in laser power and translational speed of the laser while cutting exhibit different benefits for cross-section sampling. The use of femtosecond lasers in studying artwork also presents new possibilities in analyzing, sampling, and cleaning of artwork with minimal destructive effects.

  2. Modeling Laser Damage Thresholds Using the Thompson-Gerstman Model

    DTIC Science & Technology

    2014-10-01

    Gerstman model was intended to be a modular tool fit for integration into other computational models. This adds usability to the standalone code...Advanced Study Institute, Series A – Life Sciences, Vol. 34, pp. 77-97. New York: Plenum Press . 4. Birngruber, R., V.-P. Gabel and F. Hillenkamp...Random granule placement - varies with melnum. ; ii. Depth averaging or shadowing - varies with melnum. ; iii. T(r,t) single granule calc

  3. Comparison of heat induced damage at the saphenofemoral junction after ablation with 1,470 nm laser or radiofrequency.

    PubMed

    Ozcinar, Evren; Cakici, Mehmet; Korun, Oktay; Han, Unsal; Kiziltepe, Ugursay

    2017-03-01

    The aim of this study was to evaluate the heat induced damage at the saphenofemoral junction level according to histopathological changes after radiofrequency or 1,470 nm radial tip laser ablation. Varicose vein segments of 6-10 mm in diameter were exposed to radiofrequency (Closure Fast catheter, 7 cm heat segment, one cycle, 15 seconds, 10 Watt, 120 °C) or laser ablation (1,470 nm radial tip, continuous wave, vein diameter: 6 cm/8 cm/10 cm-power: 10 Watt-pullback speed: 2.2 mm/s, 1.7 mm/s, 1.3 mm/s-LEED: 45J/cm, 60J/cm, 75J/cm-EFE 25J/cm 2 , respectively). Approximate 2 cm segments of the vein were left untreated, then histopathological examinations of the untouched segments (5 slices: level 1 - furthest segment, level 2 - nearest segment) for heat induced damage were performed. A total damage scoring system was established, including the presence of endothelial swelling, intimal thickening, cellular vacuolisation in the muscle layer, oedema in the tunica media, and extent of necrosis. At level 1, the furthest segment of the specimen, there was no significant difference between the laser and control group, while the total damage score of the radiofrequency group was significantly higher than the control group (p < 0.01). Radiofrequency group had higher total damage score compared to the laser group at level 1 (p < 0.01), 2 (p < 0.01), and 5 (p < 0.01); while no significant difference was observed at level 3 (p = 0.46) and 4 (p = 0.13). Significant heat induced damage may be seen even if the 2 cm segment of the vessel is left unablated. Radiofrequency ablation seems to cause more histological damage than laser ablation in this ex vivo study. Further in vivo studies are necessary, in order to validate these findings.

  4. Using synchrotron X-ray phase-contrast micro-computed tomography to study tissue damage by laser irradiation.

    PubMed

    Robinson, Alan M; Stock, Stuart R; Soriano, Carmen; Xiao, Xianghui; Richter, Claus-Peter

    2016-11-01

    The aim of this study was to determine if X-ray micro-computed tomography could be used to locate and characterize tissue damage caused by laser irradiation and to describe its advantages over classical histology for this application. A surgical CO 2 laser, operated in single pulse mode (100 milliseconds) at different power settings, was used to ablate different types of cadaveric animal tissues. Tissue samples were then harvested and imaged with synchrotron X-ray phase-contrast and micro-computed tomography to generate stacks of virtual sections of the tissues. Subsequently, Fiji (ImageJ) software was used to locate tissue damage, then to quantify volumes of laser ablation cones and thermal coagulation damage from 3D renderings of tissue image stacks. Visual comparisons of tissue structures in X-ray images with those visible by classic light microscopy histology were made. We demonstrated that micro-computed tomography could be used to rapidly identify areas of surgical laser ablation, vacuolization, carbonization, and thermally coagulated tissue. Quantification and comparison of the ablation crater, which represents the volume of ablated tissue, and the thermal coagulation zone volumes were performed faster than we could by classical histology. We demonstrated that these procedures can be performed on fresh hydrated and non-sectioned plastic embedded tissue. We demonstrated that the application of non-destructive micro-computed tomography to the visualization and analysis of laser induced tissue damage without tissue sectioning is possible. This will improve evaluation of new surgical lasers and their corresponding effect on tissues. Lasers Surg. Med. 48:866-877, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  5. Harmonic technology versus neodymium-doped yttrium aluminium garnet laser and electrocautery for lung metastasectomy: an experimental study.

    PubMed

    Fiorelli, Alfonso; Accardo, Marina; Carelli, Emanuele; Del Prete, Assunta; Messina, Gaetana; Reginelli, Alfonso; Berritto, Daniela; Papale, Ferdinando; Armenia, Emilia; Chiodini, Paolo; Grassi, Roberto; Santini, Mario

    2016-07-01

    We compared the efficacy of non-anatomical lung resections with that of three other techniques: monopolar electrocautery; neodymium-doped yttrium aluminium garnet laser and harmonic technology. We hypothesized that the thermal damage with harmonic technology could be reduced because of the lower temperatures generated by harmonic technology compared with that of other devices. Initial studies were performed in 13 isolated pig lungs for each group. A 1.5-cm capsule was inserted within the lung to mimic a tumour and a total of 25 non-anatomical resections were performed with each device. The damage of the resected lung surface and of the tumour border were evaluated according to the colour (ranging from 0-pink colour to 4-black colour), histological (ranging from Score 0-no changes to Score 3-presence of necrotic tissue) and radiological (ranging from Score 0-isointense T2 signal at magnetic resonance imaging to Score 3-hyperintense T2 signal) criteria. A total of seven non-anatomical resections with harmonic technology were also performed in two live pigs to assess if ex vivo results could be reproducible in live pigs with particular attention to haemostatic and air-tightness properties. In the ex vivo lung, there was a statistical significant difference between depth of thermal damage (P < 0.0001) in electrocautery (1.3 [1.2-1.4]), laser (0.9 [0.6-0.9]) and harmonic (0.4 [0.3-0.5]) groups. Electrocautery had a higher depth of thermal damage compared with that of the laser (P = 0.01) and harmonic groups (P = 0.0005). The harmonic group had a less depth of thermal damage than that of the laser group (P = 0.01). Also, histological damages of tumour borders (P < 0.001) and resected lung surface (P < 0.001), radiological damage of tumour borders (P < 0.001) and resected lung surface (P < 0.001) and colour changes (P < 0.001) were statistically different between three study groups. Resections of in vivo pig lungs showed no bleeding; 2 of 7 cases of low air leaks were found; however, they ceased by sealing lung parenchyma with harmonic technology. Our experimental data support the resections performed with the use of harmonic technology. The lack of severe tissue alterations could favour healing of parenchyma, assure air tightness and preserve functional lung parenchyma. However, randomized controlled studies are needed in an in vivo model to corroborate our findings. © The Author 2016. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  6. The optical effect of a semiconductor laser on protecting wheat from UV-B radiation damage.

    PubMed

    Qiu, Zong-Bo; Zhu, Xin-Jun; Li, Fang-Min; Liu, Xiao; Yue, Ming

    2007-07-01

    Lasers have been widely used in the field of biology along with the development of laser technology, but the mechanism of the bio-effect of lasers is not explicit. The objective of this paper was to test the optical effect of a laser on protecting wheat from UV-B damage. A patent instrument was employed to emit semiconductor laser (wavelength 650 nm) and incoherent red light, which was transformed from the semiconductor laser. The wavelength, power and lightfleck diameter of the incoherent red light are the same as those of the semiconductor laser. The semiconductor laser (wavelength 650 nm, power density 3.97 mW mm(-2)) and incoherent red light (wavelength 650 nm, power density 3.97 mW mm(-2)) directly irradiated the embryo of wheat seeds for 3 min respectively, and when the seedlings were 12-day-old they were irradiated by UV-B radiation (10.08 kJ m(-2)) for 12 h in the dark. Changes in the concentration of malondialdehyde (MDA), hydrogen peroxide (H(2)O(2)), glutathione (GSH), ascorbate (AsA), carotenoids (CAR), the production rate of superoxide radical (O(2)(-)), the activities of peroxidase (POD), catalase (CAT), superoxide dismutase (SOD) and the growth parameters of seedlings (plant height, leaf area and fresh weight) were measured to test the optical effect of the laser. The results showed that the incoherent red light treatment could not enhance the activities of SOD, POD and CAT and the concentration of AsA and CAR. When the plant cells were irradiated by UV-B, the incoherent red light treatment could not eliminate active oxygen and prevent lipid peroxidation in wheat. The results also clearly demonstrate that the plant DNA was damaged by UV-B radiation and semiconductor laser irradiance had the capability to protect plants from UV-B-induced DNA damage, while the incoherent red light could not. This is the first investigation reporting the optical effect of a semiconductor laser on protecting wheat from UV-B radiation damage.

  7. Proximal fiber tip damage during Holmium:YAG and thulium fiber laser ablation of kidney stones

    NASA Astrophysics Data System (ADS)

    Wilson, Christopher R.; Hardy, Luke A.; Irby, Pierce B.; Fried, Nathaniel M.

    2016-02-01

    The Thulium fiber laser (TFL) is being studied as an alternative to Holmium:YAG laser for lithotripsy. TFL beam originates within an 18-μm-core thulium doped silica fiber, and its near single mode, Gaussian beam profile enables transmission of higher laser power through smaller fibers than possible during Holmium laser lithotripsy. This study examines whether TFL beam profile also reduces proximal fiber tip damage compared to Holmium laser multimodal beam. TFL beam at wavelength of 1908 nm was coupled into 105-μm-core silica fibers, with 35-mJ energy, 500-μs pulse duration, and pulse rates of 50-500 Hz. For each pulse rate, 500,000 pulses were delivered. Magnified images of proximal fiber surfaces were taken before and after each trial. For comparison, 20 single-use, 270-μm-core fibers were collected after clinical Holmium laser lithotripsy procedures using standard settings (600 mJ, 350 μs, 6 Hz). Total laser energy, number of laser pulses, and laser irradiation time were recorded, and fibers were rated for damage. For TFL studies, output power was stable, and no proximal fiber damage was observed after delivery of 500,000 pulses at settings up to 35 mJ, 500 Hz, and 17.5 W average power. In contrast, confocal microscopy images of fiber tips after Holmium lithotripsy showed proximal fiber tip degradation in all 20 fibers. The proximal fiber tip of a 105-μm-core fiber transmitted 17.5 W of TFL power without degradation, compared to degradation of 270-μm-core fibers after transmission of 3.6 W of Holmium laser power. The smaller and more uniform TFL beam profile may improve fiber lifetime, and potentially reduce costs for the surgical disposables as well.

  8. Physical mechanisms of SiN{sub x} layer structuring with ultrafast lasers by direct and confined laser ablation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rapp, S., E-mail: rapp@hm.edu; Erlangen Graduate School in Advanced Optical Technologies; Heinrich, G.

    2015-03-14

    In the production process of silicon microelectronic devices and high efficiency silicon solar cells, local contact openings in thin dielectric layers are required. Instead of photolithography, these openings can be selectively structured with ultra-short laser pulses by confined laser ablation in a fast and efficient lift off production step. Thereby, the ultrafast laser pulse is transmitted by the dielectric layer and absorbed at the substrate surface leading to a selective layer removal in the nanosecond time domain. Thermal damage in the substrate due to absorption is an unwanted side effect. The aim of this work is to obtain a deepermore » understanding of the physical laser-material interaction with the goal of finding a damage-free ablation mechanism. For this, thin silicon nitride (SiN{sub x}) layers on planar silicon (Si) wafers are processed with infrared fs-laser pulses. Two ablation types can be distinguished: The known confined ablation at fluences below 300 mJ/cm{sup 2} and a combined partial confined and partial direct ablation at higher fluences. The partial direct ablation process is caused by nonlinear absorption in the SiN{sub x} layer in the center of the applied Gaussian shaped laser pulses. Pump-probe investigations of the central area show ultra-fast reflectivity changes typical for direct laser ablation. Transmission electron microscopy results demonstrate that the Si surface under the remaining SiN{sub x} island is not damaged by the laser ablation process. At optimized process parameters, the method of direct laser ablation could be a good candidate for damage-free selective structuring of dielectric layers on absorbing substrates.« less

  9. Optimising the efficiency of pulsed diode pumped Yb:YAG laser amplifiers for ns pulse generation.

    PubMed

    Ertel, K; Banerjee, S; Mason, P D; Phillips, P J; Siebold, M; Hernandez-Gomez, C; Collier, J C

    2011-12-19

    We present a numerical model of a pulsed, diode-pumped Yb:YAG laser amplifier for the generation of high energy ns-pulses. This model is used to explore how optical-to-optical efficiency depends on factors such as pump duration, pump spectrum, pump intensity, doping concentration, and operating temperature. We put special emphasis on finding ways to achieve high efficiency within the practical limitations imposed by real-world laser systems, such as limited pump brightness and limited damage fluence. We show that a particularly advantageous way of improving efficiency within those constraints is operation at cryogenic temperature. Based on the numerical findings we present a concept for a scalable amplifier based on an end-pumped, cryogenic, gas-cooled multi-slab architecture.

  10. Real-time optical coherence tomography observation of retinal tissue damage during laser photocoagulation therapy on ex-vivo porcine samples

    NASA Astrophysics Data System (ADS)

    Steiner, P.; Považay, B.; Stoller, M.; Morgenthaler, P.; Inniger, D.; Arnold, P.; Sznitman, R.; Meier, Ch.

    2015-07-01

    Retinal laser photocoagulation represents a widely used treatment for retinal pathologies such as diabetic chorioretinopathy or diabetic edema. For effective treatment, an appropriate choice of the treatment energy dose is crucial to prevent excessive tissue damage caused by over-irradiation of the retina. In this manuscript we investigate simultaneous and time-resolved optical coherence tomography for its applicability to provide feedback to the ophthalmologist about the introduced retinal damage during laser photocoagulation. Time-resolved and volumetric optical coherence tomography data of 96 lesions on ex-vivo porcine samples, set with a 577 nm laser prototype and irradiance of between 300 and 8800 W=cm2 were analyzed. Time-resolved scans were compared to volumetric scans of the lesion and correlated with ophthalmoscopic visibility. Lastly, image parameters extracted from optical coherence tomography Mscans, suitable for lesion classification were identified. Results presented in this work support the hypothesis that simultaneous optical coherence tomography provides valuable information about the extent of retinal tissue damage and may be used to guide retinal laser photocoagulation in the future.

  11. Atomic layer deposition for fabrication of HfO2/Al2O3 thin films with high laser-induced damage thresholds.

    PubMed

    Wei, Yaowei; Pan, Feng; Zhang, Qinghua; Ma, Ping

    2015-01-01

    Previous research on the laser damage resistance of thin films deposited by atomic layer deposition (ALD) is rare. In this work, the ALD process for thin film generation was investigated using different process parameters such as various precursor types and pulse duration. The laser-induced damage threshold (LIDT) was measured as a key property for thin films used as laser system components. Reasons for film damaged were also investigated. The LIDTs for thin films deposited by improved process parameters reached a higher level than previously measured. Specifically, the LIDT of the Al2O3 thin film reached 40 J/cm(2). The LIDT of the HfO2/Al2O3 anti-reflector film reached 18 J/cm(2), the highest value reported for ALD single and anti-reflect films. In addition, it was shown that the LIDT could be improved by further altering the process parameters. All results show that ALD is an effective film deposition technique for fabrication of thin film components for high-power laser systems.

  12. 355-nm, nanosecond laser mirror thin film damage competition

    DOE PAGES

    Negres, Raluca A.; Stolz, Christopher J.; Thomas, Michael D.; ...

    2017-11-23

    Here, this competition aimed to survey state-of-the-art UV high reflectors. The requirements of the coatings are a minimum reflection of 99.5% at 45 degrees incidence angle for P-polarized light at 355-nm. The choice of coating materials, design, and deposition method were left to the participants. Laser damage testing was performed at a single testing facility using the raster scan method with a 5-ns pulse length laser system operating at 10 Hz in a single longitudinal mode. A double blind test assured sample and submitter anonymity. Finally, in addition to the laser damage resistance results, details of the deposition processes, cleaningmore » method, coating materials and layer count are also shared.« less

  13. Documenting Bronze Age Akrotiri on Thera Using Laser Scanning, Image-Based Modelling and Geophysical Prospection

    NASA Astrophysics Data System (ADS)

    Trinks, I.; Wallner, M.; Kucera, M.; Verhoeven, G.; Torrejón Valdelomar, J.; Löcker, K.; Nau, E.; Sevara, C.; Aldrian, L.; Neubauer, E.; Klein, M.

    2017-02-01

    The excavated architecture of the exceptional prehistoric site of Akrotiri on the Greek island of Thera/Santorini is endangered by gradual decay, damage due to accidents, and seismic shocks, being located on an active volcano in an earthquake-prone area. Therefore, in 2013 and 2014 a digital documentation project has been conducted with support of the National Geographic Society in order to generate a detailed digital model of Akrotiri's architecture using terrestrial laser scanning and image-based modeling. Additionally, non-invasive geophysical prospection has been tested in order to investigate its potential to explore and map yet buried archaeological remains. This article describes the project and the generated results.

  14. LIDT test coupled with gamma radiation degraded optics

    NASA Astrophysics Data System (ADS)

    IOAN, M.-R.

    2016-06-01

    A laser can operate in regular but also in nuclear ionizing radiation environments. This paper presents the results of a real time measuring method used to detect the laser induced damage threshold (LIDT) in the optical surfaces/volumes of TEMPAX borosilicate glasses operating in high gamma rays fields. The laser damage quantification technique is applied by using of an automated station intended to measure the damage threshold of optical components, according to the International Standard ISO 21254. Single and multiple pulses laser damage thresholds were determined. For an optical material, life time when it is subjected to multiple pulses of high power laser radiation can be predicted. A few ns pulses shooting laser, operating in regular conditions, inflects damage to a target by its intense electrical component but also in a lower manner by local absorption of its transported thermal energy. When the beam is passing thru optical glass elements affected by ionizing radiation fields, the thermal component is starting to have a more important role, because of the increased thermal absorption in the material's volume caused by the radiation induced color centers. LIDT results on TEMPAX optical glass windows, with the contribution due to the gamma radiation effects (ionization mainly by Compton effect in this case), are presented. This contribution was highlighted and quantified. Energetic, temporal and spatial beam characterizations (according to ISO 11554 standards) and LIDT tests were performed using a high power Nd: YAG laser (1064 nm), before passing the beam through each irradiated glass sample (0 kGy, 1.3 kGy and 21.2 kGy).

  15. Accurate macromolecular structures using minimal measurements from X-ray free-electron lasers

    PubMed Central

    Hattne, Johan; Echols, Nathaniel; Tran, Rosalie; Kern, Jan; Gildea, Richard J.; Brewster, Aaron S.; Alonso-Mori, Roberto; Glöckner, Carina; Hellmich, Julia; Laksmono, Hartawan; Sierra, Raymond G.; Lassalle-Kaiser, Benedikt; Lampe, Alyssa; Han, Guangye; Gul, Sheraz; DiFiore, Dörte; Milathianaki, Despina; Fry, Alan R.; Miahnahri, Alan; White, William E.; Schafer, Donald W.; Seibert, M. Marvin; Koglin, Jason E.; Sokaras, Dimosthenis; Weng, Tsu-Chien; Sellberg, Jonas; Latimer, Matthew J.; Glatzel, Pieter; Zwart, Petrus H.; Grosse-Kunstleve, Ralf W.; Bogan, Michael J.; Messerschmidt, Marc; Williams, Garth J.; Boutet, Sébastien; Messinger, Johannes; Zouni, Athina; Yano, Junko; Bergmann, Uwe; Yachandra, Vittal K.; Adams, Paul D.; Sauter, Nicholas K.

    2014-01-01

    X-ray free-electron laser (XFEL) sources enable the use of crystallography to solve three-dimensional macromolecular structures under native conditions and free from radiation damage. Results to date, however, have been limited by the challenge of deriving accurate Bragg intensities from a heterogeneous population of microcrystals, while at the same time modeling the X-ray spectrum and detector geometry. Here we present a computational approach designed to extract statistically significant high-resolution signals from fewer diffraction measurements. PMID:24633409

  16. Subthreshold and micropulse diode laser photocoagulation.

    PubMed

    Dorin, Giorgio

    2003-09-01

    Retinal laser photocoagulation is a proven, effective treatment for various retinal disorders. Common clinical protocols use intra-operatively visible endpoints that cause iatrogenic chorioretinal damage. For this reason, laser therapy is normally limited to levels of disease severity for which the benefit-to-risk ratio justifies its application. The use of 810 nm diode lasers in the MicroPulse mode offers the surgeon the possibility to minimize iatrogenic retinal damage. A less destructive laser therapy with a more favorable benefit-to-risk ratio could justify treatment earlier in the course of the disease, allowing for stabilization or improvement of less compromised visual functions.

  17. Potassium titanyl phosphate laser tissue ablation: development and experimental validation of a new numerical model.

    PubMed

    Elkhalil, Hossam; Akkin, Taner; Pearce, John; Bischof, John

    2012-10-01

    The photoselective vaporization of prostate (PVP) green light (532 nm) laser is increasingly being used as an alternative to the transurethral resection of prostate (TURP) for treatment of benign prostatic hyperplasia (BPH) in older patients and those who are poor surgical candidates. In order to achieve the goals of increased tissue removal volume (i.e., "ablation" in the engineering sense) and reduced collateral thermal damage during the PVP green light treatment, a two dimensional computational model for laser tissue ablation based on available parameters in the literature has been developed and compared to experiments. The model is based on the control volume finite difference and the enthalpy method with a mechanistically defined energy necessary to ablate (i.e., physically remove) a volume of tissue (i.e., energy of ablation E(ab)). The model was able to capture the general trends experimentally observed in terms of ablation and coagulation areas, their ratio (therapeutic index (TI)), and the ablation rate (AR) (mm(3)/s). The model and experiment were in good agreement at a smaller working distance (WD) (distance from the tissue in mm) and a larger scanning speed (SS) (laser scan speed in mm/s). However, the model and experiment deviated somewhat with a larger WD and a smaller SS; this is most likely due to optical shielding and heat diffusion in the laser scanning direction, which are neglected in the model. This model is a useful first step in the mechanistic prediction of PVP based BPH laser tissue ablation. Future modeling efforts should focus on optical shielding, heat diffusion in the laser scanning direction (i.e., including 3D effects), convective heat losses at the tissue boundary, and the dynamic optical, thermal, and coagulation properties of BPH tissue.

  18. Pulse duration determines levels of Hsp70 induction in tissues following laser irradiation

    NASA Astrophysics Data System (ADS)

    Mackanos, Mark A.; Contag, Christopher H.

    2011-07-01

    Induction of heat shock protein (Hsp) expression correlates with cytoprotection, reduced tissue damage, and accelerated healing in animal models. Since Hsps are transcriptionally activated in response to stress, they can act as stress indicators in burn injury or surgical procedures that produce heat and thermal change. A fast in vivo readout for induction of Hsp transcription in tissues would allow for the study of these proteins as therapeutic effect mediators and reporters of thermal stress/damage. We used a transgenic reporter mouse in which a luciferase expression is controlled by the regulatory region of the inducible 70 kilodalton (kDa) Hsp as a rapid readout of cellular responses to laser-mediated thermal stress/injury in mouse skin. We assessed the pulse duration dependence of the Hsp70 expression after irradiation with a CO2 laser at 10.6 μm in wavelength over a range of 1000 to 1 ms. Hsp70 induction varied with changes in laser pulse durations and radiant exposures, which defined the ranges at which thermal activation of Hsp70 can be used to protect cells from subsequent stress, and reveals the window of thermal stress that tissues can endure.

  19. Impact of storage induced outgassing organic contamination on laser induced damage of silica optics at 351 nm.

    PubMed

    Bien-Aimé, K; Belin, C; Gallais, L; Grua, P; Fargin, E; Néauport, J; Tovena-Pecault, I

    2009-10-12

    The impact of storage conditions on laser induced damage density at 351 nm on bare fused polished silica samples has been studied. Intentionally outgassing of polypropylene pieces on silica samples was done. We evidenced an important increase of laser induced damage density on contaminated samples demonstrating that storage could limit optics lifetime performances. Atomic Force Microscopy (AFM) and Gas Chromatography -Mass Spectrometry (GC-MS) have been used to identify the potential causes of this effect. It shows that a small quantity of organic contamination deposited on silica surface is responsible for this degradation. Various hypotheses are proposed to explain the damage mechanism. The more likely hypothesis is a coupling between surface defects of optics and organic contaminants.

  20. Measuring single-shot, picosecond optical damage threshold in Ge, Si, and sapphire with a 5.1-μm laser

    DOE PAGES

    Agustsson, R.; Pogorelsky, I.; Arab, E.; ...

    2015-11-18

    Optical photonic structures driven by picosecond, GW-class lasers are emerging as promising novel sources of electron beams and high quality X-rays. Due to quadratic dependence on wavelength of the laser ponderomotive potential, the performance of such sources scales very favorably towards longer drive laser wavelengths. However, to take full advantage of photonic structures at mid-IR spectral region, it is important to determine optical breakdown limits of common optical materials. To this end, an experimental study was carried out at a wavelength of 5 µm, using a frequency-doubled CO 2 laser source, with 5 ps pulse length. Single-shot optical breakdowns weremore » detected and characterized at different laser intensities, and damage threshold values of 0.2, 0.3, and 7.0 J/cm 2, were established for Ge, Si, and sapphire, respectively. As a result, the measured damage threshold values were stable and repeatable within individual data sets, and across varying experimental conditions.« less

  1. Measuring single-shot, picosecond optical damage threshold in Ge, Si, and sapphire with a 5.1-μm laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agustsson, R.; Pogorelsky, I.; Arab, E.

    Optical photonic structures driven by picosecond, GW-class lasers are emerging as promising novel sources of electron beams and high quality X-rays. Due to quadratic dependence on wavelength of the laser ponderomotive potential, the performance of such sources scales very favorably towards longer drive laser wavelengths. However, to take full advantage of photonic structures at mid-IR spectral region, it is important to determine optical breakdown limits of common optical materials. To this end, an experimental study was carried out at a wavelength of 5 µm, using a frequency-doubled CO 2 laser source, with 5 ps pulse length. Single-shot optical breakdowns weremore » detected and characterized at different laser intensities, and damage threshold values of 0.2, 0.3, and 7.0 J/cm 2, were established for Ge, Si, and sapphire, respectively. As a result, the measured damage threshold values were stable and repeatable within individual data sets, and across varying experimental conditions.« less

  2. Optimizing heat shock protein expression induced by prostate cancer laser therapy through predictive computational models

    NASA Astrophysics Data System (ADS)

    Rylander, Marissa N.; Feng, Yusheng; Zhang, Yongjie; Bass, Jon; Stafford, Roger J.; Hazle, John D.; Diller, Kenneth R.

    2006-07-01

    Thermal therapy efficacy can be diminished due to heat shock protein (HSP) induction in regions of a tumor where temperatures are insufficient to coagulate proteins. HSP expression enhances tumor cell viability and imparts resistance to chemotherapy and radiation treatments, which are generally employed in conjunction with hyperthermia. Therefore, an understanding of the thermally induced HSP expression within the targeted tumor must be incorporated into the treatment plan to optimize the thermal dose delivery and permit prediction of the overall tissue response. A treatment planning computational model capable of predicting the temperature, HSP27 and HSP70 expression, and damage fraction distributions associated with laser heating in healthy prostate tissue and tumors is presented. Measured thermally induced HSP27 and HSP70 expression kinetics and injury data for normal and cancerous prostate cells and prostate tumors are employed to create the first HSP expression predictive model and formulate an Arrhenius damage model. The correlation coefficients between measured and model predicted temperature, HSP27, and HSP70 were 0.98, 0.99, and 0.99, respectively, confirming the accuracy of the model. Utilization of the treatment planning model in the design of prostate cancer thermal therapies can enable optimization of the treatment outcome by controlling HSP expression and injury.

  3. Thermally ruggedized ITO transparent electrode films for high power optoelectronics.

    PubMed

    Yoo, Jae-Hyuck; Matthews, Manyalibo; Ramsey, Phil; Barrios, Antonio Correa; Carter, Austin; Lange, Andrew; Bude, Jeff; Elhadj, Selim

    2017-10-16

    We present two strategies to minimize laser damage in transparent conductive films. The first consists of improving heat dissipation by selection of substrates with high thermal diffusivity or by addition of capping layer heatsinks. The second is reduction of bulk energy absorption by lowering free carrier density and increasing mobility, while maintaining film conductance with thicker films. Multi-pulse laser damage tests were performed on tin-doped indium oxide (ITO) films configured to improve optical lifetime damage performance. Conditions where improvements were not observed are also described. When bulk heating is not the dominant damage process, discrete defect-induced damage limits damage behavior.

  4. Investigation of possible fs-LASIK induced retinal damage

    NASA Astrophysics Data System (ADS)

    Schumacher, S.; Sander, M.; Stolte, A.; Doepke, C.; Baumgaertner, W.; Lubatschowski, H.

    2006-02-01

    Rapid development of new laser technologies enabled the application of ultra short lasers in refractive surgery. Focused ultra short laser pulses in near-infrared spectral range can generate a laser induced breakdown (LIB) in the cornea, which will disrupt the tissue. Cutting depth and position can be established by varying the laser focus. The fs-LASIK technique allows both flap and lenticule to be formed by using fs-pulses without the presence of any mechanical impact. During the cutting process not all of the pulse energy is deposited into the cornea; approximately half of the remaining energy propagates through the eye and reaches the retina. Though defocused, the transmitted energy can still induce damage to the retina due to absorption by the retinal pigment epithelium and the transfer of thermal energy to surrounding tissue. The fs-LASIK process was simulated with two laser systems; one continous-wave and one in the fs-regime. For the simulation the exposure time and focusing numerical aperature which defines the retinal spot size were varied. The Damage thresholds of the laser beam exposed eyes were determined in terms of ophthalmoscopic and histopathologic observations.

  5. Silicon Dioxide Planarization: Impacts on Optical Coatings for High Energy Laser

    NASA Astrophysics Data System (ADS)

    Day, Travis E.

    The work of this thesis is devoted to examining the impact of silicon dioxide (silica or SiO2) planarization on the optical properties and laser damage resistance of thin-film coatings. SiO2 planarization is a process to smooth out fluence limiting nodular defects within multilayer coatings for high-energy laser applications. Mitigating these defects will improve the power handling abilities and improve the lifetime of laser coatings. Presented here is a combination of work with the aim of evaluating the optical and laser damage properties of SiO2 planarization within single layers, bilayers, and multilayers. As compared to control (non-planarized) samples, a 2-3x increase in the thin-film absorption, which decreases with post-process annealing, was discovered for SiO2 planarized samples. This suggests that planarization creates oxygen-related defects which can be annealed out and little impurity implantation. Investigations of laser damage resistance were carried out at lambda = 1030nm and pulse durations of tau = 220ps and 9ps. The laser damage of single and bilayer coatings is known to be dependent on the substrate-coating interface and this is further evidenced within this thesis. This is because the effects of planarization are masked by the extrinsic laser damage processes within the single and bilayers. Slight change (< 15%) in the laser induced damage threshold (LIDT) at 220ps and 9ps was observed for planarized single and bilayers. Depending on coating design, post-process annealing was shown to increase the LIDT by 10% to 75% at 220ps and 10% to 45% at 9ps. Although the fused silica substrate surface LIDT was shown to follow the √tau pulse scaling law for pulses above 10ps, the single and bilayer coatings do not follow this pulse scaling. The divergence from the √tau pulse scaling on the coatings suggests a variation in the laser damage initiation mechanisms between 220ps and 9ps. Multilayer high-reflecting (HR) mirrors with varying planarization design were also damage tested. A 6-7 J/cm2 LIDT, with 220ps, was observed for HR coatings with SiO2 planarization layers within high electric-field areas within the coating. However, SiO2 planarization at the substrate-coating interface, where the electric-field is minimal, and control (non-planarized) was shown to have a LIDT of 63 +/- 1.2 J/cm 2 and 21.5 +/- 0.5 J/cm2 for 220ps, respectively. At 9ps, the LIDT varied less than 90% difference between the various planarization designs. The substrate-coating planarization multilayer and control coating had an equal LIDT of 9.6 +/- .3 J/cm2 at 9ps.

  6. [Experimental liver and kidney surgery with CO2, CO, holmium, and neodym lasers. Cutting effect, hemostasis, histopathology, and healing (author's transl)].

    PubMed

    Karbe, E; Königsmann, G; Beck, R

    1980-01-01

    Various laser devices (CO2, CO, Nd: YAG, and holmium: YAG lasers) have been used on pig livers and on dog kidneys for comparison with conventional surgical instruments (electroscalpel, cryoscalpel, and scalpel). CO2 and CO lasers caused the least tissue damage, followed by the holmium laser; severe damage was caused by the Nd: YAG laser. The order was reverse for coagulative effect. The conventional reference instruments showed a weaker hemostatic effect. Surfaces cut by laser healed in four to eight weeks without complications. Remnants of charred tissue in various quantities could still be detected after eight weeks in all cases where CO2, CO, and Nd: YAG lasers had been used. This obviously did not affect scar formation.

  7. Effects of stress waves on cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, H L; Da Silva, L B; Visuri, S R

    Laser induced stress waves are being used in a variety of medical applications, including drug delivery and targeted tissue disruption. Stress waves can also be an undesirable side effect in laser procedures such as ophthalmology and angioplasty. Thus, a study of the effects of stress waves on a cellular level is useful. Thermoelastic stress waves were produced using a Q-switched frequency-doubled Nd:YAG laser (@.=532nm) with a pulse duration of 4 ns. The laser radiation was delivered to an absorbing media. A thermoelastic stress wave was produced in the absorbing media and propagated into plated cells. The energy per pulse deliveredmore » to a sample and the spot size were varied. Stress waves were quantified. We assayed for cell viability and damage using two methods. The laser parameters within which cells maintain viability were investigated and thresholds for cell damage were defined. A comparison of cell damage thresholds for different cell lines was made.« less

  8. High Power Spark Delivery System Using Hollow Core Kagome Lattice Fibers

    PubMed Central

    Dumitrache, Ciprian; Rath, Jordan; Yalin, Azer P.

    2014-01-01

    This study examines the use of the recently developed hollow core kagome lattice fibers for delivery of high power laser pulses. Compared to other photonic crystal fibers (PCFs), the hollow core kagome fibers have larger core diameter (~50 µm), which allows for higher energy coupling in the fiber while also maintaining high beam quality at the output (M2 = 1.25). We have conducted a study of the maximum deliverable energy versus laser pulse duration using a Nd:YAG laser at 1064 nm. Pulse energies as high as 30 mJ were transmitted for 30 ns pulse durations. This represents, to our knowledge; the highest laser pulse energy delivered using PCFs. Two fiber damage mechanisms were identified as damage at the fiber input and damage within the bulk of the fiber. Finally, we have demonstrated fiber delivered laser ignition on a single-cylinder gasoline direct injection engine. PMID:28788155

  9. Comparison of the effect of UV laser radiation and of a radiomimetic substance on chromatin

    NASA Astrophysics Data System (ADS)

    Radulescu, Irina; Radu, Liliana; Serbanescu, Ruxandra; Nelea, V. D.; Martin, C.; Mihailescu, Ion N.

    1998-07-01

    The damages of the complex of deoxyribonucleic acid (DNA) and proteins from chromatin, produced by the UV laser radiation and/or by treatment with a radiomimetic substance, bleomycin, were compared. The laser radiation and bleomycin effects on chromatin structure were determined by the static and dynamic fluorimetry of chromatin complexes with the DNA specific ligand-- proflavine and by the analysis of tryptophan chromatin intrinsic fluorescence. Time resolved spectroscopy is a sensitive technique which allows to determine the excited state lifetimes of chromatin--proflavine complexes. Also, the percentage contributions to the fluorescence of proflavine, bound and unbound to chromatin DNA, were evaluated. The damages produced by the UV laser radiation on chromatin are similar with those of radiomimetic substance action and consists in DNA and proteins destruction. The DNA damage degree has been determined. The obtained results may constitute some indications in the laser utilization in radiochimiotherapy.

  10. Effect of hydrogen concentration in conventional and IAD coatings on the absorption and laser-induced damage at 10.6 μm

    NASA Astrophysics Data System (ADS)

    Rahe, Manfred; Ristau, Detlev; Schmidt, Holger

    1993-06-01

    In this paper, data of single layers of YbF3, BaF2, YF3, and NaF and multilayer coatings produced by conventional thermal evaporation (boat, e-beam) and ion assisted deposition (IAD) are compared. Hydrogen concentration depth profiling was performed using nuclear reaction analysis based on the reaction 1H(15N, (alpha) (gamma) )12C. Absorption was measured with the aid of a laser calorimeter and a cw CO2 laser. A computer-controlled test facility with a TEA CO2 laser was used for determining the 1-on-1 damage thresholds of the coatings. The results point out that the absorption and damage behavior of coatings for the CO2 laser wavelength are related to the total amount of species containing hydrogen. Most of the IAD coatings exhibit a lower hydrogen contamination than conventional thin films.

  11. Ultrashort Laser Retinal Damage Threshold Mechanisms

    DTIC Science & Technology

    2010-01-15

    epithelium . Below one nanosecond both stress-confinement in melanosomes and self-focusing reduce the threshold for damage as measured in corneal radiant... epithelium (RPE). Below 1 ns, both stress confinement in melanosomes and self-focusing reduce the threshold for damage as measured in corneal radiant...collimated laser light is focused to a very small spot on the retina. The retinal pigment epithelium (RPE) contains melanosomes, which are the primary

  12. Assessing Capabilities of the High Energy Liquid Laser Area Defense System through Combat Simulations

    DTIC Science & Technology

    2008-03-01

    it to strike targets with minimal collateral damage from a range of 15 kilometers. This stand -off type attack, made capable by the ATL, enables...levels they release a photon or quantum of light. This process continues until the light waves ’ strength builds and passes through the medium...mission level model. Lastly these models are classified by durability as standing models, or legacy models. Standing models are legacy models which have

  13. Qualification and Testing of Quantum Cascade Lasers for Harsh Environments

    NASA Astrophysics Data System (ADS)

    Brauer, C. S.; Myers, T. L.; Cannon, B. D.; Anderson, C. G.; Crowther, B. G.; Hansen, S.

    2014-12-01

    Quantum cascade lasers (QCLs) offer the potential for the development of novel, laser-based instruments for both terrestrial and space applications. In order to withstand harsh conditions encountered in these environments, lasers must be robust, and rigorous testing is required before new systems can be utilized. A particular concern for space applications is the potential damage to laser performance caused by radiation exposure. While the effects of radiation exposure in diode lasers have been studied extensively, the effect on QCLs, which are fundamentally different from diode lasers, is not well known. We thus present work to quantify the performance of QCLs after exposure to moderate and high levels of radiation from different sources, including protons and gamma rays, to determine the effects of radiation damage.

  14. Comparison of Epidermal/Dermal Damage Between the Long-Pulsed 1064 nm Nd:YAG and 755 nm Alexandrite Lasers Under Relatively High Fluence Conditions: Quantitative and Histological Assessments

    PubMed Central

    Lee, Ju Hwan; Park, So Ra; Jo, Jeong Ho; Park, Sung Yun; Seo, Young Kwon

    2014-01-01

    Abstract Objective: The purpose of this study was to compare degrees of epidermal/dermal tissue damage quantitatively and histologically after laser irradiation, to find ideal treatment conditions with relatively high fluence for skin rejuvenation. Background data: A number of recent studies have evaluated the clinical efficacy and safety of therapeutic lasers under relatively low fluence conditions. Methods: We transmitted the long-pulsed 1064 nm Nd:YAG and 755 nm Alexandrite lasers into pig skin according to different fluences and spot diameters, and estimated epidermal/dermal temperatures. Pig skin specimens were stained with hematoxylin and eosin for histological assessments. The fluence conditions comprised 26, 30, and 36 J/cm2, and the spot diameter conditions were 5, 8, and 10 mm. Pulse duration was 30 ms for all experiments. Results: Both lasers produced reliable thermal damage on the dermis without any serious epidermal injuries, under relatively high fluence conditions. The 1064 nm laser provided more active fibrous formations than the 755 nm laser, while higher risks for tissue damages simultaneously occurred. Conclusions: The ideal treatment conditions for skin rejuvenation were 8 mm diameter with 30 J/cm2 and 10 mm diameter with 26 J/cm2 for the 1064 nm laser, and 8 mm diameter with 36 J/cm2 and 10 mm diameter with 26 J/cm2 for the 755 nm laser. PMID:24992273

  15. Retinotomy using an erbium:YAG laser on human autopsy eyes

    NASA Astrophysics Data System (ADS)

    Ellsworth, Lansing G.; Kramer, Theresa R.; Noecker, Robert J.; Snyder, Robert W.; Yarborough, J. Michael

    1994-06-01

    Mid-IR lasers that operate near the absorption peak of water have a short penetration depth in ocular tissues. Ablation of tissue can be accomplished with minimal coagulative damage to underlying structures. We used an erbium:YAG laser equipped with a contact probe to create retinotomy sites in the human retina of eye bank eyes. An erbium:YAG laser (2.94 micrometers ) equipped with an infrared transmitting glass fiber and a sapphire tip (400 micrometers ) was used to directly ablate the surface of the retina. We administered both single and multiple pulses to the macula and peripheral retina using energy levels from 4 to 16 mJ per pulse. The retinas were then examined histopathologically to evaluate the extent of ablation and coagulative damage. Single pulses at low energy levels were noted to cause ablative damage to the nerve fiber layer and ganglion cell layer without a notable coagulative effect. The mean ablation depth at lower energy levels was less than the mean ablation depth at higher energy levels. Extensive laser application produced disruption of the retinal pigment epithelium, choroid and sclera. the erbium:YAG laser equipped with a contact probe is an effective means of creating retinotomies in human autopsy eyes. When used in the single pulse mode at lower energy levels, the erbium:YAG laser appears capable of removing superficial retinal layers without damaging deeper structures.

  16. THz polariton laser using an intracavity Mg:LiNbO3 crystal with protective Teflon coating.

    PubMed

    Ortega, Tiago A; Pask, Helen M; Spence, David J; Lee, Andrew J

    2017-02-20

    An enhancement in the performance of a THz polariton laser based on an intracavity magnesium-doped lithium niobate crystal (Mg:LiNbO3) in surface-emitted (SE) configuration is demonstrated resulting from the deposition of a protective Teflon coating on the total internal reflection surface of the crystal. In this cavity geometry the resonating fields undergo total internal reflection (TIR) inside the lithium niobate, and laser damage to that surface can be a limiting factor in performance. The protective layer prevents laser damage to the crystal surface, enabling higher pump power, yielding higher THz output power and wider frequency tuning range. With the unprotected crystal, narrow-band THz output tunable from 1.50 to 2.81 THz was produced, with maximum average output power of 20.1 µW at 1.76 THz for 4 W diode pump power (limited by laser damage to the crystal). With the Teflon coating, no laser damage to the crystal was observed, and the system produced narrow-band THz output tunable from 1.46 to 3.84 THz, with maximum average output power of 56.8 µW at 1.76 THz for 6.5 W diode pump power. This is the highest average output power and the highest diode-to-terahertz conversion efficiency ever reported for an intracavity terahertz polariton laser.

  17. Optoacoustic monitoring of cutting efficiency and thermal damage during laser ablation.

    PubMed

    Bay, Erwin; Douplik, Alexandre; Razansky, Daniel

    2014-05-01

    Successful laser surgery is characterized by a precise cut and effective hemostasis with minimal collateral thermal damage to the adjacent tissues. Consequently, the surgeon needs to control several parameters, such as power, pulse repetition rate, and velocity of movements. In this study we propose utilizing optoacoustics for providing the necessary real-time feedback of cutting efficiency and collateral thermal damage. Laser ablation was performed on a bovine meat slab using a Q-switched Nd-YAG laser (532 nm, 4 kHz, 18 W). Due to the short pulse duration of 7.6 ns, the same laser has also been used for generation of optoacoustic signals. Both the shockwaves, generated due to tissue removal, as well as the normal optoacoustic responses from the surrounding tissue were detected using a single broadband piezoelectric transducer. It has been observed that the rapid reduction in the shockwave amplitude occurs as more material is being removed, indicating decrease in cutting efficiency, whereas gradual decrease in the optoacoustic signal likely corresponds to coagulation around the ablation crater. Further heating of the surrounding tissue leads to carbonization accompanied by a significant shift in the optoacoustic spectra. Our results hold promise for real-time monitoring of cutting efficiency and collateral thermal damage during laser surgery. In practice, this could eventually facilitate development of automatic cut-off mechanisms that will guarantee an optimal tradeoff between cutting and heating while avoiding severe thermal damage to the surrounding tissues.

  18. Fiber optic cables for transmission of high-power laser pulses in spaceflight applications

    NASA Astrophysics Data System (ADS)

    Thomes, W. J.; Ott, M. N.; Chuska, R. F.; Switzer, R. C.; Blair, D. E.

    2017-11-01

    Lasers with high peak power pulses are commonly used in spaceflight missions for a wide range of applications, from LIDAR systems to optical communications. Due to the high optical power needed, the laser has to be located on the exterior of the satellite or coupled through a series of free space optics. This presents challenges for thermal management, radiation resistance, and mechanical design. Future applications will require multiple lasers located close together, which further complicates the design. Coupling the laser energy into a fiber optic cable allows the laser to be relocated to a more favorable position on the spacecraft. Typical fiber optic termination procedures are not sufficient for injection of these high-power laser pulses without catastrophic damage to the fiber endface. In the current study, we will review the causes of fiber damage during high-power injection and discuss our new manufacturing procedures that overcome these issues to permit fiber use with high reliability in these applications. We will also discuss the proper methods for launching the laser pulses into the fiber to avoid damage and how this is being implemented for current spaceflight missions.

  19. Fiber Optic Cables for Transmission of High-Power Laser Pulses in Spaceflight Applications

    NASA Technical Reports Server (NTRS)

    Thomes, W. J., Jr.; Ott, M. N.; Chuska, R. F.; Switzer, R. C.; Blair, D. E.

    2010-01-01

    Lasers with high peak power pulses are commonly used in spaceflight missions for a wide range of applications, from LIDAR systems to optical communications. Due to the high optical power needed, the laser has to be located on the exterior of the satellite or coupled through a series of free space optics. This presents challenges for thermal management, radiation resistance, and mechanical design. Future applications will require multiple lasers located close together, which further complicates the design. Coupling the laser energy into a fiber optic cable allows the laser to be relocated to a more favorable position on the spacecraft. Typical fiber optic termination procedures are not sufficient for injection of these high-power laser pulses without catastrophic damage to the fiber endface. In the current study, we will review the causes of fiber damage during high-power injection and discuss our new manufacturing procedures that overcome these issues to permit fiber use with high reliability in these applications. We will also discuss the proper methods for launching the laser pulses into the fiber to avoid damage and how this is being implemented for current spaceflight missions.

  20. Ocular hazards of Q-switched near-infrared lasers

    NASA Astrophysics Data System (ADS)

    Lund, David J.; Edsall, Peter R.; Stuck, Bruce E.

    2003-06-01

    The threshold for laser-induced retinal damage in the rhesus eye was determined for wavelengths between 900 nm and 1300 nm. The laser source was a tunable Optical Parametric Oscillator (OPO) pumped by the 3rd harmonic of a Nd:YAG laser. The laser pulse duration was 3.5 ns. The wavelength dependence of the injury threshold is consistent with the prediction of a model based on the transmission of the preretinal ocular media, absorption in the retinal pigment epithelium, and variation of irradiance diameter resulting from chromatic aberration of the eye optics for wavelengths shorter than 1150 nm but was less consistent for longer wavelengths. The threshold for 24-hour observation was slightly lower than the threshold for 1-hour observation. These data form a basis for reexamination of the currently defined MPEs for wavelengths longer than 1100 nm.

  1. New counter-countermeasure techniques for laser anti-dazzling spectacles

    NASA Astrophysics Data System (ADS)

    Donval, Ariela; Partouche, Eran; Lipman, Ofir; Gross, Noam; Fisher, Tali; Oron, Moshe

    2016-05-01

    Aviation, commercial and military, is new area in optics that is suffering from laser threats in the last years. Dazzling and damage to pilot's eyes by laser pointers is a common threat lately. Under certain conditions, laser light, directed at aircraft can be hazardous. The most likely scenario is when bright visible laser light causes distraction and/or temporary flash blindness to the pilot, during a critical phase of flight like landing or takeoff. It is also possible, that a visible or invisible beam could cause permanent damage to a pilot's eyes. This paper presents a novel technology for protection of the human eye against laser threats in the visible range.

  2. In vitro laser nerve repair: protein solder strip irradiation or irradiation alone?

    PubMed

    Trickett, I; Dawes, J M; Knowles, D S; Lanzetta, M; Owen, E R

    1997-01-01

    This study investigated the potential of sutureless nerve repair using two promising laser fusion methods: direct 2 microns irradiation of the epineurium, and protein solder assisted epineurial fusion using a 800 nm laser. Laser anastomosis of the rat sciatic nerve was performed in vitro without stay sutures in two groups of six animals. In the first group, direct laser fusion used a pulsed Cr, Tm: YAG laser. In the second group an albumin-based fluid solder containing the dye indocyanine green was applied to the epineurium, then irradiated with a diode laser. These two techniques were compared with regards to coaptation success and axonal damage. Direct laser welding produced weak bonds despite microscopic investigation of the irradiated nerves showing fusion of the epineurium. The unsatisfactory bonding can be attributed to poor tissue overlap and insufficient protein in the thin epineurium denaturation of underlying axons was also observed. In contrast, the laser solder method produced successful welds with greatly reduced axonal damage, and significantly improved the tensile strength. This study confirmed the technical possibilities of sutureless nerve anastomosis. Laser activated solders enable stronger bonds, by the addition of protein to the anastomosis site, and less thermal damage to underlying tissue through selective absorption of laser energy by dye in the solder. Further in vivo studies are required before drawing final conclusions.

  3. A feasibility study of damage detection in beams using high-speed camera (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Wan, Chao; Yuan, Fuh-Gwo

    2017-04-01

    In this paper a method for damage detection in beam structures using high-speed camera is presented. Traditional methods of damage detection in structures typically involve contact (i.e., piezoelectric sensor or accelerometer) or non-contact sensors (i.e., laser vibrometer) which can be costly and time consuming to inspect an entire structure. With the popularity of the digital camera and the development of computer vision technology, video cameras offer a viable capability of measurement including higher spatial resolution, remote sensing and low-cost. In the study, a damage detection method based on the high-speed camera was proposed. The system setup comprises a high-speed camera and a line-laser which can capture the out-of-plane displacement of a cantilever beam. The cantilever beam with an artificial crack was excited and the vibration process was recorded by the camera. A methodology called motion magnification, which can amplify subtle motions in a video is used for modal identification of the beam. A finite element model was used for validation of the proposed method. Suggestions for applications of this methodology and challenges in future work will be discussed.

  4. Retinal Information Processing for Minimum Laser Lesion Detection and Cumulative Damage

    DTIC Science & Technology

    1992-09-17

    TAL3Unaqr~orJ:ccd [] J ,;--Wicic tion --------------... MYRON....... . ................... ... ....... ...........................MYRON L. WOLBARSHT B D ist...possible beneficial visual function of the small retinal image movements. B . Visual System Models Prior models of visual system information processing have...against standard secondary sources whose calibrations can be traced to the National Bureau of Standards. B . Electrophysiological Techniques Extracellular

  5. Thermal lensing in ocular media

    NASA Astrophysics Data System (ADS)

    Vincelette, Rebecca Lee

    2009-12-01

    This research was a collaborative effort between the Air Force Research Laboratory (AFRL) and the University of Texas to examine the laser-tissue interaction of thermal lensing induced by continuous-wave, CW, near-infrared, NIR, laser radiation in the eye and its influence on the formation of a retinal lesion from said radiation. CW NIR laser radiation can lead to a thermal lesion induced on the retina given sufficient power and exposure duration as related to three basic parameters; the percent of transmitted energy to, the optical absorption of, and the size of the laser-beam created at the retina. Thermal lensing is a well-known phenomenon arising from the optical absorption, and subsequent temperature rise, along the path of the propagating beam through a medium. Thermal lensing causes the laser-beam profile delivered to the retina to be time dependent. Analysis of a dual-beam, multidimensional, high-frame rate, confocal imaging system in an artificial eye determined the rate of thermal lensing in aqueous media exposed to 1110, 1130, 1150 and 1318-nm wavelengths was related to the power density created along the optical axis and linear absorption coefficient of the medium. An adaptive optics imaging system was used to record the aberrations induced by the thermal lens at the retina in an artificial eye during steady-state. Though the laser-beam profiles changed over the exposure time, the CW NIR retinal damage thresholds between 1110--1319-nm were determined to follow conventional fitting algorithms which neglected thermal lensing. A first-order mathematical model of thermal lensing was developed by conjoining an ABCD beam propagation method, Beer's law of attenuation, and a solution to the heat-equation with respect to radial diffusion. The model predicted that thermal lensing would be strongest for small (< 4-mm) 1/e2 laser-beam diameters input at the corneal plane and weakly transmitted wavelengths where less than 5% of the energy is delivered to the retina. The model predicted thermal lensing would cause the retinal damage threshold for wavelengths above 1300-nm to increase with decreasing beam-diameters delivered to the corneal plane, a behavior which was opposite of equivalent conditions simulated without thermal lensing.

  6. Thermal modeling of head disk interface system in heat assisted magnetic recording

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vemuri, Sesha Hari; Seung Chung, Pil; Jhon, Myung S., E-mail: mj3a@andrew.cmu.edu

    2014-05-07

    A thorough understanding of the temperature profiles introduced by the heat assisted magnetic recording is required to maintain the hotspot at the desired location on the disk with minimal heat damage to other components. Here, we implement a transient mesoscale modeling methodology termed lattice Boltzmann method (LBM) for phonons (which are primary carriers of energy) in the thermal modeling of the head disk interface (HDI) components, namely, carbon overcoat (COC). The LBM can provide more accurate results compared to conventional Fourier methodology by capturing the nanoscale phenomena due to ballistic heat transfer. We examine the in-plane and out-of-plane heat transfermore » in the COC via analyzing the temperature profiles with a continuously focused and pulsed laser beam on a moving disk. Larger in-plane hotspot widening is observed in continuously focused laser beam compared to a pulsed laser. A pulsed laser surface develops steeper temperature gradients compared to continuous hotspot. Furthermore, out-of-plane heat transfer from the COC to the media is enhanced with a continuous laser beam then a pulsed laser, while the temperature takes around 140 fs to reach the bottom surface of the COC. Our study can lead to a realistic thermal model describing novel HDI material design criteria for the next generation of hard disk drives with ultra high recording densities.« less

  7. Optical control of filamentation-induced damage to DNA by intense, ultrashort, near-infrared laser pulses

    PubMed Central

    Dharmadhikari, J. A.; Dharmadhikari, A. K.; Kasuba, K. C.; Bharambe, H.; D’Souza, J. S.; Rathod, K. D.; Mathur, D.

    2016-01-01

    We report on damage to DNA in an aqueous medium induced by ultrashort pulses of intense laser light of 800 nm wavelength. Focusing of such pulses, using lenses of various focal lengths, induces plasma formation within the aqueous medium. Such plasma can have a spatial extent that is far in excess of the Rayleigh range. In the case of water, the resulting ionization and dissociation gives rise to in situ generation of low-energy electrons and OH-radicals. Interactions of these with plasmid DNA produce nicks in the DNA backbone: single strand breaks (SSBs) are induced as are, at higher laser intensities, double strand breaks (DSBs). Under physiological conditions, the latter are not readily amenable to repair. Systematic quantification of SSBs and DSBs at different values of incident laser energy and under different external focusing conditions reveals that damage occurs in two distinct regimes. Numerical aperture is the experimental handle that delineates the two regimes, permitting simple optical control over the extent of DNA damage. PMID:27279565

  8. Effects of γ-ray irradiation on optical absorption and laser damage performance of KDP crystals containing arsenic impurities.

    PubMed

    Guo, D C; Jiang, X D; Huang, J; Wang, F R; Liu, H J; Xiang, X; Yang, G X; Zheng, W G; Zu, X T

    2014-11-17

    The effects of γ-irradiation on potassium dihydrogen phosphate crystals containing arsenic impurities are investigated with different optical diagnostics, including UV-VIS absorption spectroscopy, photo-thermal common-path interferometer and photoluminescence spectroscopy. The optical absorption spectra indicate that a new broad absorption band near 260 nm appears after γ-irradiation. It is found that the intensity of absorption band increases with the increasing irradiation dose and arsenic impurity concentration. The simulation of radiation defects show that this absorption is assigned to the formation of AsO₄⁴⁻ centers due to arsenic ions substituting for phosphorus ions. Laser-induced damage threshold test is conducted by using 355 nm nanosecond laser pulses. The correlations between arsenic impurity concentration and laser induced damage threshold are presented. The results indicate that the damage performance of the material decreases with the increasing arsenic impurity concentration. Possible mechanisms of the irradiation-induced defects formation under γ-irradiation of KDP crystals are discussed.

  9. Rapid and Selective Removal of Composite From Tooth Surfaces With a 9.3 μm CO2 Laser Using Spectral Feedback

    PubMed Central

    Chan, Kenneth H.; Hirasuna, Krista; Fried, Daniel

    2015-01-01

    Objective Dental composite restorative materials are color matched to the tooth and are difficult to remove by mechanical means without excessive removal or damage to peripheral enamel and dentin. Lasers are ideally suited for selective ablation to minimize healthy tissue loss when replacing existing restorations, sealants, or removing composite adhesives such as residual composite left after debonding orthodontic brackets. Methods In this study, a carbon dioxide laser operating at 9.3-μm with a pulse duration of 10–20-microsecond and a pulse repetition rate of ~200 Hz was integrated with a galvanometer based scanner and used to selectively remove composite from tooth surfaces. Spectra of the plume emission were acquired after each laser pulse and used to differentiate between the ablation of dental enamel or composite. Microthermocouples were used to monitor the temperature rise in the pulp chamber during composite removal. The composite was placed on tooth buccal and occlusal surfaces and the carbon dioxide laser beam was scanned across the surface to selectively remove the composite without excessive damage to the underlying sound enamel. The residual composite and the damage to the underlying enamel was evaluated using optical microscopy. Results The laser was able to rapidly remove composite from tooth buccal and occlusal surfaces with minimal damage to the underlying sound enamel and without excessive heat accumulation in the tooth. Conclusion This study demonstrated that composite can be selectively removed from tooth surfaces at clinically relevant rates using a CO2 laser operating at 9.3-μm with high pulse repetition rates with minimal heat deposition and damage to the underlying enamel. PMID:21956630

  10. Rapid and selective removal of composite from tooth surfaces with a 9.3 µm CO2 laser using spectral feedback.

    PubMed

    Chan, Kenneth H; Hirasuna, Krista; Fried, Daniel

    2011-09-01

    Dental composite restorative materials are color matched to the tooth and are difficult to remove by mechanical means without excessive removal or damage to peripheral enamel and dentin. Lasers are ideally suited for selective ablation to minimize healthy tissue loss when replacing existing restorations, sealants, or removing composite adhesives such as residual composite left after debonding orthodontic brackets. In this study, a carbon dioxide laser operating at 9.3-µm with a pulse duration of 10-20-microsecond and a pulse repetition rate of ∼200 Hz was integrated with a galvanometer based scanner and used to selectively remove composite from tooth surfaces. Spectra of the plume emission were acquired after each laser pulse and used to differentiate between the ablation of dental enamel or composite. Microthermocouples were used to monitor the temperature rise in the pulp chamber during composite removal. The composite was placed on tooth buccal and occlusal surfaces and the carbon dioxide laser beam was scanned across the surface to selectively remove the composite without excessive damage to the underlying sound enamel. The residual composite and the damage to the underlying enamel was evaluated using optical microscopy. The laser was able to rapidly remove composite from tooth buccal and occlusal surfaces with minimal damage to the underlying sound enamel and without excessive heat accumulation in the tooth. This study demonstrated that composite can be selectively removed from tooth surfaces at clinically relevant rates using a CO(2) laser operating at 9.3-µm with high pulse repetition rates with minimal heat deposition and damage to the underlying enamel. Copyright © 2011 Wiley-Liss, Inc.

  11. Diode laser (808 nm) applied to oral soft tissue lesions: a retrospective study to assess histopathological diagnosis and evaluate physical damage.

    PubMed

    Angiero, Francesca; Parma, Luisa; Crippa, Rolando; Benedicenti, Stefano

    2012-03-01

    The diode laser is today widely used in oral pathology to excise lesions; however, some controversy surrounds laser surgery, specifically the accuracy of pathological diagnosis and the control over thermal tissue damage. This study aimed to establish if physical damage induced by the diode laser could affect the histopathological diagnosis and to evaluate the damage caused to the resection margins. Between 2005 and 2010, at S. Gerardo Hospital, Milan, 608 cases of soft tissue lesions localized in the oral cavity (cheek, gingiva, buccal mucosa, tongue, and lips) were examined. Specimens were excised with an 808-nm diode laser, output 1.6-2.7 W, in continuous-wave mode with fibers of 320 μm. Specimens were fixed in 10% buffered formalin solution and examined separately under an optical microscope by two pathologists. In all of the specimens, changes to the epithelium, connective tissue and blood vessels, shape of incision damage, and overall width of modified tissues were evaluated. The data for specimens larger than 3 mm excised with the diode laser were not significant in terms of stromal changes or vascular stasis, while epithelial and stromal changes were significantly more frequent in specimens with a mean size below 3 mm; the diagnosis was not achievable in 46.15%. Our data show that the diode laser is a valid therapeutic instrument for excising oral lesions larger than 3 mm in diameter, but induces serious thermal effects in small lesions (mean size below 3 mm). However, from a clinical standpoint, it is suggested necessary that the specimens taken have in vivo a diameter of at least 5 mm in order to have a reliable reading of the histological sample.

  12. The effects of the Er:YAG laser on trabecular bone micro-architecture: Comparison with conventional dental drilling by micro-computed tomographic and histological techniques

    PubMed Central

    Zeitouni, Jihad; Clough, Bret; Zeitouni, Suzanne; Saleem, Mohammed; Al Aisami, Kenan; Gregory, Carl

    2017-01-01

    Background: The use of lasers has become increasingly common in the field of medicine and dentistry, and there is a growing need for a deeper understanding of the procedure and its effects on tissue. The aim of this study was to compare the erbium-doped yttrium aluminium garnet (Er:YAG) laser and conventional drilling techniques, by observing the effects on trabecular bone microarchitecture and the extent of thermal and mechanical damage. Methods: Ovine femoral heads were employed to mimic maxillofacial trabecular bone, and cylindrical osteotomies were generated to mimic implant bed preparation. Various laser parameters were tested, as well as a conventional dental drilling technique. The specimens were then subjected to micro-computed tomographic (μCT) histomorphometic analysis and histology. Results: Herein, we demonstrate that mCT measurements of trabecular porosity provide quantitative evidence that laser-mediated cutting preserves the trabecular architecture and reduces thermal and mechanical damage at the margins of the cut. We confirmed these observations with histological studies. In contrast with laser-mediated cutting, conventional drilling resulted in trabecular collapse, reduction of porosity at the margin of the cut and histological signs of thermal damage. Conclusions: This study has demonstrated, for the first time, that mCT and quantification of porosity at the margin of the cut provides a quantitative insight into damage caused by bone cutting techniques. We further show that with laser-mediated cutting, the marrow remains exposed to the margins of the cut, facilitating cellular infiltration and likely accelerating healing. However, with drilling, trabecular collapse and thermal damage is likely to delay healing by restricting the passage of cells to the site of injury and causing localized cell death. PMID:29416849

  13. Pulse Compression Techniques for Laser Generated Ultrasound

    NASA Technical Reports Server (NTRS)

    Anastasi, R. F.; Madaras, E. I.

    1999-01-01

    Laser generated ultrasound for nondestructive evaluation has an optical power density limit due to rapid high heating that causes material damage. This damage threshold limits the generated ultrasound amplitude, which impacts nondestructive evaluation inspection capability. To increase ultrasound signal levels and improve the ultrasound signal-to-noise ratio without exceeding laser power limitations, it is possible to use pulse compression techniques. The approach illustrated here uses a 150mW laser-diode modulated with a pseudo-random sequence and signal correlation. Results demonstrate the successful generation of ultrasonic bulk waves in aluminum and graphite-epoxy composite materials using a modulated low-power laser diode and illustrate ultrasound bandwidth control.

  14. Computational Modeling and Real-Time Control of Patient-Specific Laser Treatment of Cancer

    PubMed Central

    Fuentes, D.; Oden, J. T.; Diller, K. R.; Hazle, J. D.; Elliott, A.; Shetty, A.; Stafford, R. J.

    2014-01-01

    An adaptive feedback control system is presented which employs a computational model of bioheat transfer in living tissue to guide, in real-time, laser treatments of prostate cancer monitored by magnetic resonance thermal imaging (MRTI). The system is built on what can be referred to as cyberinfrastructure - a complex structure of high-speed network, large-scale parallel computing devices, laser optics, imaging, visualizations, inverse-analysis algorithms, mesh generation, and control systems that guide laser therapy to optimally control the ablation of cancerous tissue. The computational system has been successfully tested on in-vivo, canine prostate. Over the course of an 18 minute laser induced thermal therapy (LITT) performed at M.D. Anderson Cancer Center (MDACC) in Houston, Texas, the computational models were calibrated to intra-operative real time thermal imaging treatment data and the calibrated models controlled the bioheat transfer to within 5°C of the predetermined treatment plan. The computational arena is in Austin, Texas and managed at the Institute for Computational Engineering and Sciences (ICES). The system is designed to control the bioheat transfer remotely while simultaneously providing real-time remote visualization of the on-going treatment. Post operative histology of the canine prostate reveal that the damage region was within the targeted 1.2cm diameter treatment objective. PMID:19148754

  15. Computational modeling and real-time control of patient-specific laser treatment of cancer.

    PubMed

    Fuentes, D; Oden, J T; Diller, K R; Hazle, J D; Elliott, A; Shetty, A; Stafford, R J

    2009-04-01

    An adaptive feedback control system is presented which employs a computational model of bioheat transfer in living tissue to guide, in real-time, laser treatments of prostate cancer monitored by magnetic resonance thermal imaging. The system is built on what can be referred to as cyberinfrastructure-a complex structure of high-speed network, large-scale parallel computing devices, laser optics, imaging, visualizations, inverse-analysis algorithms, mesh generation, and control systems that guide laser therapy to optimally control the ablation of cancerous tissue. The computational system has been successfully tested on in vivo, canine prostate. Over the course of an 18 min laser-induced thermal therapy performed at M.D. Anderson Cancer Center (MDACC) in Houston, Texas, the computational models were calibrated to intra-operative real-time thermal imaging treatment data and the calibrated models controlled the bioheat transfer to within 5 degrees C of the predetermined treatment plan. The computational arena is in Austin, Texas and managed at the Institute for Computational Engineering and Sciences (ICES). The system is designed to control the bioheat transfer remotely while simultaneously providing real-time remote visualization of the on-going treatment. Post-operative histology of the canine prostate reveal that the damage region was within the targeted 1.2 cm diameter treatment objective.

  16. Lasers | RadTown USA | US EPA

    EPA Pesticide Factsheets

    2018-05-01

    Laser light is an intense, focused beam of visible light radiation. Lasers are used in many workplaces, including construction, surveying and medicine. High-powered laser light can cause severe skin burns and permanent eye damage.

  17. Er,CR:YSGG lasers induce fewer dysplastic-like epithelial artefacts than CO2 lasers: an in vivo experimental study on oral mucosa.

    PubMed

    González-Mosquera, A; Seoane, J; García-Caballero, L; López-Jornet, P; García-Caballero, T; Varela-Centelles, P

    2012-09-01

    Our aim was to assess wounds made by lasers (CO(2) and Er,Cr:YSGG) for their epithelial architectural changes and width of damage. We allocated 60 Sprague-Dawley(®) rats into groups: glossectomy by CO(2) laser at 3 different wattages (n=10 in each); glossectomy by Er,Cr:YSGG laser at two different emissions (n=10 in each), and a control group (n=10). Histological examination assessed both prevalence and site of thermal artefacts for each group. Both lasers (CO(2) and Er,Cr:YSGG) caused the same type of cytological artefacts. The 3W Er,Cr:YSGG laser produced the fewest cytological artefacts/specimen, and was significantly different from the other experimental groups: 3W CO(2) laser (95% CI=0.8 to 1.0); the 6W CO(2) laser (95% CI=0.1 to 2.0) and the 10W CO(2) laser (95% CI=1.1 to 3.0). CO(2) lasers (3-10W) generate epithelial damage that can simulate dysplastic changes with cytological atypia that affects mainly the basal and suprabasal layers. Irradiation with Er,CR:YSGG laser (2-4W) produces significantly fewer cellular artefacts and less epithelial damage, which may be potentially useful for biopsy of oral mucosa. Copyright © 2011 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  18. Laser damage helps the eavesdropper in quantum cryptography.

    PubMed

    Bugge, Audun Nystad; Sauge, Sebastien; Ghazali, Aina Mardhiyah M; Skaar, Johannes; Lydersen, Lars; Makarov, Vadim

    2014-02-21

    We propose a class of attacks on quantum key distribution (QKD) systems where an eavesdropper actively engineers new loopholes by using damaging laser illumination to permanently change properties of system components. This can turn a perfect QKD system into a completely insecure system. A proof-of-principle experiment performed on an avalanche photodiode-based detector shows that laser damage can be used to create loopholes. After ∼1  W illumination, the detectors' dark count rate reduces 2-5 times, permanently improving single-photon counting performance. After ∼1.5  W, the detectors switch permanently into the linear photodetection mode and become completely insecure for QKD applications.

  19. Laser pulse power transmission limits of silica fibers with antireflective coating

    NASA Astrophysics Data System (ADS)

    Meister, St.; Wosniok, A.; Seewald, G.; Scharfenorth, Ch.; Eichler, H. J.

    2005-04-01

    Multimode optical fibers are used for the transmission of high power laser pulses and as phase conjugated mirrors by stimulated Brillouin scattering. Both applications are enhanced by antireflection coatings on the fiber end-faces. Fiber transmissions reach more than 99.5% for pulse energies below the threshold of stimulated Brillouin scattering. Laser-induced damage thresholds of the fibers coated with Ta2O5 / SiO2 were measured at 1064 nm and 24 ns pulse duration. A damage threshold of up to 101 J/cm2 could be achieved. The damage morphology was investigated using atomic force microscopy and scanning electron microscopy.

  20. Retinal damage from a Q-switched YAG laser.

    PubMed

    Jampol, L M; Goldberg, M F; Jednock, N

    1983-09-01

    A 42-year-old woman with sickle cell anemia and proliferative retinopathy underwent neodymium-YAG laser therapy for a taut posterior hyaloid membrane causing peripapillary and peripheral traction detachment of the retina. Vitrectomy was not done because the patient required anticoagulation. A Q-switched YAG laser was capable of cutting holes in the taut membrane, but treatment 2 to 3 mm from the retina resulted in microperforation of a retinal vein and focal areas of damage to the retinal pigment epithelium. The damage to the retinal pigment epithelium was not immediately apparent, and ophthalmoscopically visible lesions were seen only when the patient was reexamined 48 hours later.

  1. Ultrafast laser machining of porcine sclera

    NASA Astrophysics Data System (ADS)

    Góra, W. S.; Carter, R. M.; Dhillon, B.; Hand, D. P.; Shephard, J. D.

    2015-07-01

    The use of ultrafast lasers (pulsed lasers with pulse lengths of a few picoseconds or less) offers the possibility for minimally invasive removal of soft ophthalmic tissue. The potential for using pico- and femtosecond pulses for modification of scleral tissue has been reported elsewhere [1-6] and has resulted in the introduction of new, minimally invasive, procedures into clinical practice [3, 5-10]. Our research is focused on finding optimal parameters for picosecond laser machining of scleral tissue without introducing any unwanted collateral damage to the tissue. Experiments were carried out on hydrated porcine sclera in vitro, which has similar collagen organization, histology and water content (~70%) to human tissue. In this paper we present a 2D finite element ablation model which employs a one-step heating process. It is assumed that the incident laser radiation that is not reflected is absorbed in the tissue according to the Beer-Lambert law and transformed into heat energy. The experimental setup uses an industrial picosecond laser (TRUMPF TruMicro 5x50) with 5.9 ps pulses at 1030 nm, with pulse energies up to 125 μJ and a focused spot diameter of 35 μm. The use of a scan head allows flexibility in designing various scanning patterns. We show that picosecond pulses are capable of modifying scleral tissue without introducing collateral damage. This offers a possible route for minimally invasive sclerostomy. Many scanning patterns including single line ablation, square and circular cavity removal were tested.

  2. Thermally ruggedized ITO transparent electrode films for high power optoelectronics

    DOE PAGES

    Yoo, Jae-Hyuck; Matthews, Manyalibo; Ramsey, Phil; ...

    2017-10-06

    Here, we present two strategies to minimize laser damage in transparent conductive films. The first consists of improving heat dissipation by selection of substrates with high thermal diffusivity or by addition of capping layer heatsinks. The second is reduction of bulk energy absorption by lowering free carrier density and increasing mobility, while maintaining film conductance with thicker films. Multi-pulse laser damage tests were performed on tin-doped indium oxide (ITO) films configured to improve optical lifetime damage performance. Conditions where improvements were not observed are also described. Finally, when bulk heating is not the dominant damage process, discrete defect-induced damage limitsmore » damage behavior.« less

  3. Laser-induced micropore formation and modification of cartilage structure in osteoarthritis healing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sobol, Emil; Baum, Olga; Shekhter, Anatoly

    Pores are vital for functioning of avascular tissues. Laser-induced pores play an important role in the process of cartilage regeneration. The aim of any treatment for osteoarthritis is to repair hyaline-type cartilage. The aims of this study are to answer two questions: (1) How do laser-assisted pores affect the cartilaginous cells to synthesize hyaline cartilage (HC)? and (2) How can the size distribution of pores arising in the course of laser radiation be controlled? We have shown that in cartilage, the pores arise predominately near chondrocytes, which promote nutrition of cells and signal molecular transfer that activates regeneration of cartilage.more » In vivo laser treatment of damaged cartilage of miniature pig joints provides cellular transformation and formation of HC. We propose a simple model of pore formation in biopolymers that paves the way for going beyond the trial-anderror approach when choosing an optimal laser treatment regime. Our findings support the approach toward laser healing of osteoarthritis.« less

  4. Laser-induced micropore formation and modification of cartilage structure in osteoarthritis healing.

    PubMed

    Sobol, Emil; Baum, Olga; Shekhter, Anatoly; Wachsmann-Hogiu, Sebastian; Shnirelman, Alexander; Alexandrovskaya, Yulia; Sadovskyy, Ivan; Vinokur, Valerii

    2017-09-01

    Pores are vital for functioning of avascular tissues. Laser-induced pores play an important role in the process of cartilage regeneration. The aim of any treatment for osteoarthritis is to repair hyaline-type cartilage. The aims of this study are to answer two questions: (1) How do laser-assisted pores affect the cartilaginous cells to synthesize hyaline cartilage (HC)? and (2) How can the size distribution of pores arising in the course of laser radiation be controlled? We have shown that in cartilage, the pores arise predominately near chondrocytes, which promote nutrition of cells and signal molecular transfer that activates regeneration of cartilage. In vivo laser treatment of damaged cartilage of miniature pig joints provides cellular transformation and formation of HC. We propose a simple model of pore formation in biopolymers that paves the way for going beyond the trial-and-error approach when choosing an optimal laser treatment regime. Our findings support the approach toward laser healing of osteoarthritis.

  5. Laser-induced micropore formation and modification of cartilage structure in osteoarthritis healing

    NASA Astrophysics Data System (ADS)

    Sobol, Emil; Baum, Olga; Shekhter, Anatoly; Wachsmann-Hogiu, Sebastian; Shnirelman, Alexander; Alexandrovskaya, Yulia; Sadovskyy, Ivan; Vinokur, Valerii

    2017-09-01

    Pores are vital for functioning of avascular tissues. Laser-induced pores play an important role in the process of cartilage regeneration. The aim of any treatment for osteoarthritis is to repair hyaline-type cartilage. The aims of this study are to answer two questions: (1) How do laser-assisted pores affect the cartilaginous cells to synthesize hyaline cartilage (HC)? and (2) How can the size distribution of pores arising in the course of laser radiation be controlled? We have shown that in cartilage, the pores arise predominately near chondrocytes, which promote nutrition of cells and signal molecular transfer that activates regeneration of cartilage. In vivo laser treatment of damaged cartilage of miniature pig joints provides cellular transformation and formation of HC. We propose a simple model of pore formation in biopolymers that paves the way for going beyond the trial-and-error approach when choosing an optimal laser treatment regime. Our findings support the approach toward laser healing of osteoarthritis.

  6. Use of near infrared femtosecond lasers as sub-micron radiation microbeam for cell DNA damage and repair studies.

    PubMed

    Botchway, S W; Reynolds, P; Parker, A W; O'Neill, P

    2010-01-01

    Laser induced radiation microbeam technology for radiobiology research is undergoing rapid growth because of the increased availability and ease of use of femtosecond laser sources. The main processes involved are multiphoton absorption and/or plasma formation. The high peak powers these lasers generate make them ideal tools for depositing sub-micrometer size radiant energy within a region of a living cell nucleus to activate ionising and/or photochemically driven processes. The technique allows questions relating to the effects of low doses of radiation, the propagation and treatment of deoxyribonucleic acid (DNA) damage and repair in individual live cells as well as non-targeted cell to cell effects to be addressed. This mini-review focuses on the use of near infrared (NIR) ca. 800nm radiation to induce damage that is radically different from the early and subsequent ultraviolet microbeam techniques. Ultrafast pulsed NIR instrumentation has many benefits including the ability to eliminate issues of unspecific UV absorption by the many materials prevalent within cells. The multiphoton interaction volume also permits energy deposition beyond the diffraction limit. Work has established that the fundamental process of the damage induced by the ultrashort laser pulses is different to those induced from continuous wave light sources. Pioneering work has demonstrated that NIR laser microbeam radiation can mimic ionising radiation via multiphoton absorption within the 3D femtolitre volume of the highly focused Gaussian beam. This light-matter interaction phenomenon provides a novel optical microbeam probe for mimicking both complex ionising and UV radiation-type cell damage including double strand breaks (DSBs) and base damage. A further advantage of the pulsed laser technique is that it provides further scope for time-resolved experiments. Recently the NIR laser microbeam technique has been used to investigate the recruitment of repair proteins to the sub-micrometre size area of damage in viable cells using both immuno-fluorescent staining of gamma-H2AX (a marker for DSBs) and real-time imaging of GFP-labelled repair proteins including ATM, p53 binding protein 1 (53BP1), RAD51 and Ku 70/80 to elucidate the interaction of the two DNA DSB repair pathways, homologous recombination and the non-homologous end joining pathway. 2010 Elsevier B.V. All rights reserved.

  7. Thermal effects of Ho: YAG laser lithotripsy: real-time evaluation in an in vitro model.

    PubMed

    Hein, Simon; Petzold, Ralf; Schoenthaler, Martin; Wetterauer, Ulrich; Miernik, Arkadiusz

    2018-04-24

    To evaluate the thermal effect of Ho:YAG laser lithotripsy in a standardized in vitro model via real-time temperature measurement. Our model comprised a 20 ml test tube simulating the renal pelvis that was immersed in a 37 °C water bath. Two different laser fibers [FlexiFib (15-45 W), RigiFib 1000 (45-100 W), LISA laser products OHG, Katlenburg-Lindau, Germany] were placed in the test tube. An Ho:YAG 100 W laser was used in all experiments (LISA). Each experiment involved 120 s of continuous laser application, and was repeated five times. Different laser settings (high vs. low frequency, high vs. low energy, and long vs. short pulse duration), irrigation rates (0 up to 100 ml/min, realized by several pumps), and human calcium oxalate stone samples were analyzed. Temperature data were acquired by a real-time data logger with thermocouples (PICO Technology, Cambridgeshire, UK). Real-time measurements were assessed using MatLab ® . Laser application with no irrigation results in a rapid increase in temperature up to ∆28 K, rising to 68 °C at 100 W. Low irrigation rates yield significantly higher temperature outcomes. Higher irrigation rates result immediately in a lower temperature rise. High irrigation rates of 100 ml/min result in a temperature rise of 5 K at the highest laser power setting (100 W). Ho:YAG laser lithotripsy might be safe provided that there is sufficient irrigation. However, high power and low irrigation resulted in potentially tissue-damaging temperatures. Laser devices should, therefore, always be applied in conjunction with continuous, closely monitored irrigation whenever performing Ho:YAG laser lithotripsy.

  8. Thermal damage study of beryllium windows used as vacuum barriers in synchrotron radiation beamlines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holdener, F.R.; Johnson, G.L.; Karpenko, V.P.

    An experimental study to investigate thermal-induced damage to SSRL-designed beryllium foil windows was performed at LLNL's Laser Welding Research Facility. The primary goal of this study was to determine the threshold at which thermal-stress-induced damage occurs in these commonly used vacuum barriers. An Nd:Yag pulsed laser with cylindrical optics and a carefully designed test cell provided a test environment that closely resembles the actual beamline conditions at SSRL. Tests performed on two beryllium window geometries, with different vertical aperture dimensions but equal foil thicknesses of 0.254 mm, resulted in two focused total-power thresholds at which incipient damage was determined. Formore » a beam spot size similar to that of the Beamline-X Wiggler Line, onset of surface damage for a 5-mm by 25-mm aperture window was observed at 170 W after 174,000 laser pulses (1.2-ms pulse at 100 pps). A second window with double the vertical aperture dimension (10 mm by 25 mm) was observed to have surface cracking after 180,000 laser pulses with 85 W impinging its front surface. It failed after approximately 1,000,000 pulses. Another window of the same type (10 mm by 25 mm) received 2,160,000 laser pulses at 74.4 W, and subsequent metallographic sectioning revealed no signs of through-thickness damage. Comparison of windows with equal foil thicknesses and aperture dimensions has effectively identified the heat flux limit for incipient failure. The data show that halving the aperture's vertical dimension allows doubling the total incident power for equivalent onsets of thermal-induced damage.« less

  9. Thermo-mechanical modeling of laser treatment on titanium cold-spray coatings

    NASA Astrophysics Data System (ADS)

    Paradiso, V.; Rubino, F.; Tucci, F.; Astarita, A.; Carlone, P.

    2018-05-01

    Titanium coatings are very attractive to several industrial fields, especially aeronautics, due to the enhanced corrosion resistance and wear properties as well as improved compatibility with carbon fiber reinforced plastic (CFRP) materials. Cold sprayed titanium coatings, among the others deposition processes, are finding a widespread use in high performance applications, whereas post-deposition treatments are often used to modify the microstructure of the cold-sprayed layer. Laser treatments allow one to noticeably increase the superficial properties of titanium coatings when the process parameters are properly set. On the other hand, the high heat input required to melt titanium particles may result in excessive temperature increase even in the substrate. This paper introduces a thermo-mechanical model to simulate the laser treatment effects on a cold sprayed titanium coating as well as the aluminium substrate. The proposed thermo-mechanical finite element model considers the transient temperature field due to the laser source and applied boundary conditions using them as input loads for the subsequent stress-strain analysis. Numerical outcomes highlighted the relevance of thermal gradients and thermally induced stresses and strains in promoting the damage of the coating.

  10. Dynamics-based damage inspection of an aircraft wing panel

    NASA Astrophysics Data System (ADS)

    Pai, P. F.; Kim, Byeong-Seok; Chung, Jaycee H.

    2003-08-01

    This paper presents the dynamic characteristics and damage detection of an aircraft wing panel using a scanning laser vibrometer. The panel has an irregular shape with side lengths 16.44" x 14.82" x 11.10" x 5.38" x 14.22", different values of thickness (0.059" to 0.110"), and seven ribs on its backside. An in-house finite element code GESA is used to model the panel using 528 DKT plate elements and to obtain mode shapes and natural frequencies, and Operational Deflection Shapes (ODS) are measured using a scanning laser vibrometer. Results show that numerical dynamic characteristics agree well with the experimental ones. Six defects are created in the panel, including four small nuts glued on the backside and two small slots cut by electron discharge machining. Detection of the six defects is performed using the distributions of RMS velocities under high-frequency broadband periodic chirp excitations provided by a PZT patch and damage locating curves obtained by processing experimental ODSs using a newly developed BOudnary Effect Evaluation (BEE) method. The BEE method is non-destructive and model-independent; it processes experimental ODSs to reveal local boundary effects caused by defects. Experimental results show that the six small defects in the panel can be pinpointed using the approach.

  11. Injury thresholds for topical-cream-coated skin of hairless guinea pigs (cavia porcellus) in the near-infrared region

    NASA Astrophysics Data System (ADS)

    Pocock, Ginger M.; Zohner, Justin J.; Stolarski, David J.; Buchanan, Kelvin C.; Jindra, Nichole M.; Figueroa, Manuel A.; Chavey, Lucas J.; Imholte, Michelle L.; Thomas, Robert J.; Rockwell, Benjamin A.

    2006-02-01

    The reflectance and absorption of the skin plays a vital role in determining how much radiation will be absorbed by human tissue. Any substance covering the skin would change the way radiation is reflected and absorbed and thus the extent of thermal injury. Hairless guinea pigs (cavia porcellus) in vivo were used to evaluate how the minimum visible lesion threshold for single-pulse laser exposure is changed with a topical agent applied to the skin. The ED 50 for visible lesions due to an Er: glass laser at 1540-nm with a pulse width of 50-ns was determined, and the results were compared with model predictions using a skin thermal model. The ED50 is compared with the damage threshold of skin coated with a highly absorbing topical cream at 1540 nm to determine its effect on damage pathology and threshold. The ED 50 for the guinea pig was then compared to similar studies using Yucatan minipigs and Yorkshire pigs at 1540-nm and nanosecond pulse duration. 1,2 The damage threshold at 24-hours of a Yorkshire pig for a 2.5-3.5-mm diameter beam for 100 ns was 3.2 Jcm -2; very similar to our ED 50 of 3.00 Jcm -2 for the hairless guinea pigs.

  12. A Visualization Method for Corrosion Damage on Aluminum Plates Using an Nd:YAG Pulsed Laser Scanning System

    PubMed Central

    Lee, Inbok; Zhang, Aoqi; Lee, Changgil; Park, Seunghee

    2016-01-01

    This paper proposes a non-contact nondestructive evaluation (NDE) technique that uses laser-induced ultrasonic waves to visualize corrosion damage in aluminum alloy plate structures. The non-contact, pulsed-laser ultrasonic measurement system generates ultrasonic waves using a galvanometer-based Q-switched Nd:YAG laser and measures the ultrasonic waves using a piezoelectric (PZT) sensor. During scanning, a wavefield can be acquired by changing the excitation location of the laser point and measuring waves using the PZT sensor. The corrosion damage can be detected in the wavefield snapshots using the scattering characteristics of the waves that encounter corrosion. The structural damage is visualized by calculating the logarithmic values of the root mean square (RMS), with a weighting parameter to compensate for the attenuation caused by geometrical spreading and dispersion of the waves. An intact specimen is used to conduct a comparison with corrosion at different depths and sizes in other specimens. Both sides of the plate are scanned with the same scanning area to observe the effect of the location where corrosion has formed. The results show that the damage can be successfully visualized for almost all cases using the RMS-based functions, whether it formed on the front or back side. Also, the system is confirmed to have distinguished corroded areas at different depths. PMID:27999252

  13. A Visualization Method for Corrosion Damage on Aluminum Plates Using an Nd:YAG Pulsed Laser Scanning System.

    PubMed

    Lee, Inbok; Zhang, Aoqi; Lee, Changgil; Park, Seunghee

    2016-12-16

    This paper proposes a non-contact nondestructive evaluation (NDE) technique that uses laser-induced ultrasonic waves to visualize corrosion damage in aluminum alloy plate structures. The non-contact, pulsed-laser ultrasonic measurement system generates ultrasonic waves using a galvanometer-based Q-switched Nd:YAG laser and measures the ultrasonic waves using a piezoelectric (PZT) sensor. During scanning, a wavefield can be acquired by changing the excitation location of the laser point and measuring waves using the PZT sensor. The corrosion damage can be detected in the wavefield snapshots using the scattering characteristics of the waves that encounter corrosion. The structural damage is visualized by calculating the logarithmic values of the root mean square (RMS), with a weighting parameter to compensate for the attenuation caused by geometrical spreading and dispersion of the waves. An intact specimen is used to conduct a comparison with corrosion at different depths and sizes in other specimens. Both sides of the plate are scanned with the same scanning area to observe the effect of the location where corrosion has formed. The results show that the damage can be successfully visualized for almost all cases using the RMS-based functions, whether it formed on the front or back side. Also, the system is confirmed to have distinguished corroded areas at different depths.

  14. Flat-top beam for laser-stimulated pain

    NASA Astrophysics Data System (ADS)

    McCaughey, Ryan; Nadeau, Valerie; Dickinson, Mark

    2005-04-01

    One of the main problems during laser stimulation in human pain research is the risk of tissue damage caused by excessive heating of the skin. This risk has been reduced by using a laser beam with a flattop (or superGaussian) intensity profile, instead of the conventional Gaussian beam. A finite difference approximation to the heat conduction equation has been applied to model the temperature distribution in skin as a result of irradiation by flattop and Gaussian profile CO2 laser beams. The model predicts that a 15 mm diameter, 15 W, 100 ms CO2 laser pulse with an order 6 superGaussian profile produces a maximum temperature 6 oC less than a Gaussian beam with the same energy density. A superGaussian profile was created by passing a Gaussian beam through a pair of zinc selenide aspheric lenses which refract the more intense central region of the beam towards the less intense periphery. The profiles of the lenses were determined by geometrical optics. In human pain trials the superGaussian beam required more power than the Gaussian beam to reach sensory and pain thresholds.

  15. Design and optimization of a flexible high-peak-power laser-to-fiber coupled illumination system used in digital particle image velocimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, Ronald A.; Ilev, Ilko K.

    We present a study on the design and parameter optimization of a flexible high-peak-power fiber-optic laser delivery system using commercially available solid-core silica fibers and an experimental glass hollow waveguide (HW). The fiber-optic delivery system provides a flexible, safe, and easily and precisely positioned laser irradiation for many applications including uniform illumination for digital particle image velocimetry (DPIV). The delivery fibers, when coupled through a line-generating lens, produce a uniform thin laser sheet illumination for accurate and repeatable DPIV two-dimensional velocity measurements. We report experimental results on homogenizing the laser beam profile using various mode-mixing techniques. Furthermore, because a fundamentalmore » problem for fiber-optic-based high-peak-power laser delivery systems is the possible damage effects of the fiber material, we determine experimentally the peak power density damage threshold of various delivery fibers designed for the visible spectral range at a typical DPIV laser wavelength of 532 nm. In the case of solid-core silica delivery fibers using conventional lens-based laser-to-fiber coupling, the damage threshold varies from 3.7 GW/cm{sup 2} for a 100-{mu}m-core-diameter high-temperature fiber to 3.9 GW/cm{sup 2} for a 200-{mu}m-core-diameter high-power delivery fiber, with a total output laser energy delivered of at least 3-10 mJ for those respective fibers. Therefore, these fibers are marginally suitable for most macro-DPIV applications. However, to improve the high-power delivery capability for close-up micro-DPIV applications, we propose and validate an experimental fiber link with much higher laser power delivery capability than the solid-core fiber links. We use an uncoated grazing-incidence-based tapered glass funnel coupled to a glass HW with hollow air-core diameter of 700 {mu}m, a low numerical aperture of 0.05, and a thin inside cladding of cyclic olefin polymer coating for optimum transmission at 532 nm. Because of the mode homogenizing effect and lower power density, the taper-waveguide laser delivery technique ensured high damage threshold for the delivery HW, and as a result, no damage occurred at the maximum measured input laser energy of 33 mJ used in this study.« less

  16. Silver-free solar cell interconnection by laser spot welding of thin aluminum layers: analysis of process limits for ns- and μs-lasers

    NASA Astrophysics Data System (ADS)

    Schulte-Huxel, H.; Blankemeyer, S.; Kajari-Schröder, S.; Brendel, R.

    2014-03-01

    We investigate a laser welding process for contacting aluminum metallized crystalline silicon solar cells to a 10-μm-thick aluminum layers on a glass substrate. The reduction of the solar cell metallization thickness is analyzed with respect to laser induced damage using SiNx passivated silicon wafers. Additionally, we measure the mechanical stress of the laser welds by perpendicular tear-off as well as the electrical contact resistance. We apply two types of laser processes; one uses one to eight 20-ns-laser pulses at 355 nm with fluences between 12 and 40 J/cm2 and the other single 1.2-μs-laser pulses at 1064 nm with 33 to 73 J/cm2. Ns laser pulses can contact down to 1-μm-thick aluminum layers on silicon without inducing laser damage to the silicon and lead to sufficient strong mechanical contact. In case of μs laser pulses the limiting thickness is 2 μm.

  17. A high-throughput comparative characterization of laser-induced soft tissue damage using 3D digital microscopy.

    PubMed

    Das, Debobrato; Reed, Stephanie; Klokkevold, Perry R; Wu, Benjamin M

    2013-02-01

    3D digital microscopy was used to develop a rapid alternative approach to quantify the effects of specific laser parameters on soft tissue ablation and charring in vitro without the use of conventional tissue processing techniques. Two diode lasers operating at 810 and 980 nm wavelengths were used to ablate three tissue types (bovine liver, turkey breast, and bovine muscle) at varying laser power (0.3, 1.0, and 2.0 W) and velocities (1-50 mm/s). Spectrophotometric analyses were performed on each tissue to determine tissue-specific absorption coefficients and were considered in creating wavelength-dependent energy attenuation models to evaluate minimum heat of tissue ablations. 3D surface contour profiles characterizing tissue damage revealed that ablation depth and tissue charring increased with laser power and decreased with lateral velocity independent of wavelength and tissue type. While bovine liver ablation and charring were statistically higher at 810 than 980 nm (p < 0.05), turkey breast and bovine muscle ablated and charred more at 980 than 810 nm (p < 0.05). Spectrophotometric analysis revealed that bovine liver tissue had a greater tissue-specific absorption coefficient at 810 than 980 nm, while turkey breast and bovine muscle had a larger absorption coefficient at 980 nm (p < 0.05). This rapid 3D microscopic analysis of robot-driven laser ablation yielded highly reproducible data that supported well-defined trends related to laser-tissue interactions and enabled high throughput characterization of many laser-tissue permutations. Since 3D microscopy quantifies entire lesions without altering the tissue specimens, conventional and immunohistologic techniques can be used, if desired, to further interrogate specific sections of the digitized lesions.

  18. Ultrafast laser-induced modifications of energy bands of non-metal crystals

    NASA Astrophysics Data System (ADS)

    Gruzdev, Vitaly

    2009-10-01

    Ultrafast laser-induced variations of electron energy bands of transparent solids significantly influence ionization and conduction-band electron absorption driving the initial stage of laser-induced damage (LID). The mechanisms of the variations are attributed to changing electron functions from bonding to anti-bonding configuration via laser-induced ionization; laser-driven electron oscillations in quasi-momentum space; and direct distortion of the inter-atomic potential by electric field of laser radiation. The ionization results in the band-structure modification via accumulation of broken chemical bonds between atoms and provides significant contribution to the overall modification only when enough excited electrons are accumulated in the conduction band. The oscillations are associated with modification of electron energy by pondermotive potential of the oscillations. The direct action of radiation's electric field leads to specific high-frequency Franz-Keldysh effect (FKE) spreading the allowed electron states into the bands of forbidden energy. Those processes determine the effective band gap that is a laser-driven energy gap between the modified electron energy bands. Among those mechanisms, the latter two provide reversible band-structure modification that takes place from the beginning of the ionization and are, therefore, of special interest due to their strong influence on the initial stage of the ionization. The pondermotive potential results either in monotonous increase or oscillatory variations of the effective band gap that has been taken into account in some ionization models. The classical FKE provides decrease of the band gap. We analyzing the competition between those two opposite trends of the effective-band-gap variations and discuss applications of those effects for considerations of the laser-induced damage and its threshold in transparent solids.

  19. Three-Dimensional Characterization and Modeling of Microstructural Weak Links for Spall Damage in FCC Metals

    DOE PAGES

    Krishnan, Kapil; Brown, Andrew; Wayne, Leda; ...

    2014-11-25

    Local microstructural weak links for spall damage were investigated using three-dimensional (3-D) characterization in multicrystalline copper samples (grain size ≈ 450 µm) shocked with laser-driven plates at low pressures (2 to 4 GPa). The thickness of samples and flyer plates, approximately 1000 and 500 µm respectively, led to short pressure pulses that allowed isolating microstructure effects on local damage characteristics. Electron Backscattering Diffraction and optical microscopy were used to relate the presence, size, and shape of porosity to local microstructure. The experiments were complemented with 3-D finite element simulations of individual grain boundaries (GBs) that resulted in large damage volumesmore » using crystal plasticity coupled with a void nucleation and growth model. Results from analysis of these damage sites show that the presence of a GB-affected zone, where strain concentration occurs next to a GB, correlates strongly with damage localization at these sites, most likely due to the inability of maintaining strain compatibility across these interfaces, with additional effects due to the inclination of the GB with respect to the shock. Results indicate that strain compatibility plays an important role on intergranular spall damage in metallic materials.« less

  20. Open data set of live cyanobacterial cells imaged using an X-ray laser

    NASA Astrophysics Data System (ADS)

    van der Schot, Gijs; Svenda, Martin; Maia, Filipe R. N. C.; Hantke, Max F.; Deponte, Daniel P.; Seibert, M. Marvin; Aquila, Andrew; Schulz, Joachim; Kirian, Richard A.; Liang, Mengning; Stellato, Francesco; Bari, Sadia; Iwan, Bianca; Andreasson, Jakob; Timneanu, Nicusor; Bielecki, Johan; Westphal, Daniel; Nunes de Almeida, Francisca; Odić, Duško; Hasse, Dirk; Carlsson, Gunilla H.; Larsson, Daniel S. D.; Barty, Anton; Martin, Andrew V.; Schorb, Sebastian; Bostedt, Christoph; Bozek, John D.; Carron, Sebastian; Ferguson, Ken; Rolles, Daniel; Rudenko, Artem; Epp, Sascha W.; Foucar, Lutz; Rudek, Benedikt; Erk, Benjamin; Hartmann, Robert; Kimmel, Nils; Holl, Peter; Englert, Lars; Loh, N. Duane; Chapman, Henry N.; Andersson, Inger; Hajdu, Janos; Ekeberg, Tomas

    2016-08-01

    Structural studies on living cells by conventional methods are limited to low resolution because radiation damage kills cells long before the necessary dose for high resolution can be delivered. X-ray free-electron lasers circumvent this problem by outrunning key damage processes with an ultra-short and extremely bright coherent X-ray pulse. Diffraction-before-destruction experiments provide high-resolution data from cells that are alive when the femtosecond X-ray pulse traverses the sample. This paper presents two data sets from micron-sized cyanobacteria obtained at the Linac Coherent Light Source, containing a total of 199,000 diffraction patterns. Utilizing this type of diffraction data will require the development of new analysis methods and algorithms for studying structure and structural variability in large populations of cells and to create abstract models. Such studies will allow us to understand living cells and populations of cells in new ways. New X-ray lasers, like the European XFEL, will produce billions of pulses per day, and could open new areas in structural sciences.

  1. Confocal laser scanning microscopy to estimate nanoparticles' human skin penetration in vitro.

    PubMed

    Zou, Ying; Celli, Anna; Zhu, Hanjiang; Elmahdy, Akram; Cao, Yachao; Hui, Xiaoying; Maibach, Howard

    2017-01-01

    With rapid development of nanotechnology, there is increasing interest in nanoparticle (NP) application and its safety and efficacy on human skin. In this study, we utilized confocal laser scanning microscopy to estimate NP skin penetration. Three different-sized polystyrene NPs marked with red fluorescence were applied to human skin, and Calcium Green 5N was used as a counterstain. Dimethyl sulfoxide (DMSO) and ethanol were used as alternative vehicles for NPs. Tape stripping was utilized as a barrier-damaged skin model. Skin biopsies dosed with NPs were incubated at 4°C or 37°C for 24 hours and imaged using confocal laser scanning microscopy. NPs were localized in the stratum corneum (SC) and hair follicles without penetrating the epidermis/dermis. Barrier alteration with tape stripping and change in incubation temperature did not induce deeper penetration. DMSO enhanced NP SC penetration but ethanol did not. Except with DMSO vehicle, these hydrolyzed polystyrene NPs did not penetrate intact or barrier-damaged human "viable" epidermis. For further clinical relevance, in vivo human skin studies and more sensitive analytic chemical methodology are suggested.

  2. Open data set of live cyanobacterial cells imaged using an X-ray laser.

    PubMed

    van der Schot, Gijs; Svenda, Martin; Maia, Filipe R N C; Hantke, Max F; DePonte, Daniel P; Seibert, M Marvin; Aquila, Andrew; Schulz, Joachim; Kirian, Richard A; Liang, Mengning; Stellato, Francesco; Bari, Sadia; Iwan, Bianca; Andreasson, Jakob; Timneanu, Nicusor; Bielecki, Johan; Westphal, Daniel; Nunes de Almeida, Francisca; Odić, Duško; Hasse, Dirk; Carlsson, Gunilla H; Larsson, Daniel S D; Barty, Anton; Martin, Andrew V; Schorb, Sebastian; Bostedt, Christoph; Bozek, John D; Carron, Sebastian; Ferguson, Ken; Rolles, Daniel; Rudenko, Artem; Epp, Sascha W; Foucar, Lutz; Rudek, Benedikt; Erk, Benjamin; Hartmann, Robert; Kimmel, Nils; Holl, Peter; Englert, Lars; Loh, N Duane; Chapman, Henry N; Andersson, Inger; Hajdu, Janos; Ekeberg, Tomas

    2016-08-01

    Structural studies on living cells by conventional methods are limited to low resolution because radiation damage kills cells long before the necessary dose for high resolution can be delivered. X-ray free-electron lasers circumvent this problem by outrunning key damage processes with an ultra-short and extremely bright coherent X-ray pulse. Diffraction-before-destruction experiments provide high-resolution data from cells that are alive when the femtosecond X-ray pulse traverses the sample. This paper presents two data sets from micron-sized cyanobacteria obtained at the Linac Coherent Light Source, containing a total of 199,000 diffraction patterns. Utilizing this type of diffraction data will require the development of new analysis methods and algorithms for studying structure and structural variability in large populations of cells and to create abstract models. Such studies will allow us to understand living cells and populations of cells in new ways. New X-ray lasers, like the European XFEL, will produce billions of pulses per day, and could open new areas in structural sciences.

  3. Open data set of live cyanobacterial cells imaged using an X-ray laser

    PubMed Central

    van der Schot, Gijs; Svenda, Martin; Maia, Filipe R.N.C.; Hantke, Max F.; DePonte, Daniel P.; Seibert, M. Marvin; Aquila, Andrew; Schulz, Joachim; Kirian, Richard A.; Liang, Mengning; Stellato, Francesco; Bari, Sadia; Iwan, Bianca; Andreasson, Jakob; Timneanu, Nicusor; Bielecki, Johan; Westphal, Daniel; Nunes de Almeida, Francisca; Odić, Duško; Hasse, Dirk; Carlsson, Gunilla H.; Larsson, Daniel S.D.; Barty, Anton; Martin, Andrew V.; Schorb, Sebastian; Bostedt, Christoph; Bozek, John D.; Carron, Sebastian; Ferguson, Ken; Rolles, Daniel; Rudenko, Artem; Epp, Sascha W.; Foucar, Lutz; Rudek, Benedikt; Erk, Benjamin; Hartmann, Robert; Kimmel, Nils; Holl, Peter; Englert, Lars; Loh, N. Duane; Chapman, Henry N.; Andersson, Inger; Hajdu, Janos; Ekeberg, Tomas

    2016-01-01

    Structural studies on living cells by conventional methods are limited to low resolution because radiation damage kills cells long before the necessary dose for high resolution can be delivered. X-ray free-electron lasers circumvent this problem by outrunning key damage processes with an ultra-short and extremely bright coherent X-ray pulse. Diffraction-before-destruction experiments provide high-resolution data from cells that are alive when the femtosecond X-ray pulse traverses the sample. This paper presents two data sets from micron-sized cyanobacteria obtained at the Linac Coherent Light Source, containing a total of 199,000 diffraction patterns. Utilizing this type of diffraction data will require the development of new analysis methods and algorithms for studying structure and structural variability in large populations of cells and to create abstract models. Such studies will allow us to understand living cells and populations of cells in new ways. New X-ray lasers, like the European XFEL, will produce billions of pulses per day, and could open new areas in structural sciences. PMID:27479514

  4. Theoretical model of an optothermal microactuator directly driven by laser beams

    NASA Astrophysics Data System (ADS)

    Han, Xu; Zhang, Haijun; Xu, Rui; Wang, Shuying; Qin, Chun

    2015-07-01

    This paper proposes a novel method of optothermal microactuation based on single and dual laser beams (spots). The theoretical model of the optothermal temperature distribution of an expansion arm is established and simulated, indicating that the maximum temperature of the arm irradiated by dual laser spots, at the same laser power level, is much lower than that irradiated by one single spot, and thus the risk of burning out and damaging the optothermal microactuator (OTMA) can be effectively avoided. To verify the presented method, a 750 μm long OTMA with a 100 μm wide expansion arm is designed and microfabricated, and single/dual laser beams with a wavelength of 650 nm are adopted to carry out experiments. The experimental results showed that the optothermal deflection of the OTMA under the irradiation of dual laser spots is larger than that under the irradiation of a single spot with the same power, which is in accordance with theoretical prediction. This method of optothermal microactuation may expand the practical applications of microactuators, which serve as critical units in micromechanical devices and micro-opto-electro-mechanical systems (MOEMS).

  5. Terminal Deoxynucleotidyl Transferase-Mediated Deoxyuridine Triphosphate Nick End Labeling (TUNEL) Assay to Characterize Histopathologic Changes Following Thermal Injury

    PubMed Central

    Lee, Ji Min; Park, Ji Hyun; Kim, Bo Young

    2018-01-01

    Background Despite the wide application of lasers and radiofrequency (RF) surgery in dermatology, it is difficult to find studies showing the extent of damage dependent on cell death. Objective We evaluated histopathologic changes following in vivo thermal damage generated by CO2 laser, 1,444 nm long-pulsed neodymium:yttrium-aluminum-garnet (LP Nd:YAG) laser and RF emitting electrosurgical unit. Methods Thermal damage was induced by the above instruments on ventral skin of rat. Specimens were stained with hematoxylin and eosin, along with a terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labeling (TUNEL) assay, to highlight the degree of irreversible cellular injury. Results The volume of vaporization was largest with the CO2 laser. Area of cell death area identified by TUNEL assay, when arranged from widest to narrowest, was 1,444 nm LP Nd:YAG laser, CO2 laser, and RF emitting electrosurgical unit. Conclusion This histopathologic evaluation of the acute characterization of injury across devices may be advantageous for attaining better treatment outcomes. PMID:29386831

  6. Evaluation of effectiveness of Er,Cr:YSGG laser for root canal disinfection: theoretical simulation of temperature elevations in root dentin.

    PubMed

    Zhu, L; Tolba, M; Arola, D; Salloum, M; Meza, F

    2009-07-01

    Erbium, chromium: yttrium, scandium, gallium, garnet (Er,Cr:YSGG) lasers are currently being investigated for disinfecting the root canal system. Prior to using laser therapy, it is important to understand the temperature distribution and to assess thermal damage to the surrounding tissue. In this study, a theoretical simulation using the Pennes bioheat equation is conducted to evaluate how heat spreads from the canal surface using an Er,Cr:YSGG laser. Results of the investigation show that some of the proposed treatment protocols for killing bacteria in the deep dentin are ineffective, even for long heating durations. Based on the simulation, an alternative treatment protocol is identified that has improved effectiveness and is less likely to introduce collateral damage to the surrounding tissue. The alternative protocol uses 350 mW laser power with repeating laser tip movement to achieve bacterial disinfection in the deep dentin (800 microm lateral from the canal surface), while avoiding thermal damage to the surrounding tissue (T<47 degrees C). The alternative treatment protocol has the potential to not only achieve bacterial disinfection of deep dentin but also shorten the treatment time, thereby minimizing potential patient discomfort during laser procedures.

  7. Modeling ultrafast laser-induced nanocavitation around plasmonic nanoparticles (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Meunier, Michel; Dagallier, Adrien; Lachaine, Rémi; Boutopoulos, Christos; Boulais, Étienne

    2017-03-01

    Vapor nanobubbles generated around plasmonic nanoparticles (NPs) by ultrafast laser irradiation are efficient for inducing localized damage to living cells. Killing targeted cancer cells or gene delivery can therefore be envisioned using this new technology [1,2]. The extent of the damage and its non-lethal character are linked to the size of the nanobubble. Precise understanding of the mechanisms leading to bubble formation around plasmonic nanostructures is necessary to optimize the technique. In this presentation, we present a complete model that successfully describes all interactions occurring during the irradiation of plasmonics nanostructures by an ultrafast laser of various pulse widths and fluences. Nanoavitation is caused by the interplay between heat conduction at the NP-medium interface and non-linear plasmon-enhanced photoionization of a nanoplasma in the near-field [3-5], the former being dominant for in-resonance and the latter for off-resonance irradiation. Modeling of the whole laser-nanoparticle interaction, together with the help of the shadowgraphic imaging and scattering techniques [3-5], give valuable insight on the mechanisms of cavitation at the nanoscale, leading to possible optimization of the nanostructure for bubble-based nanomedicine applications. 1- E. Boulais, R. Lachaine, A. Hatef, and M. Meunier, Journal of Photochemistry and Photobiology C: Photochemistry Reviews 17, 26-49 (2013). 2- E. Bergeron, S. Patskovsky, D. Rioux, and M. Meunier, Nanoscale 7,17836-17847 (2015). 3- E. Boulais, R. Lachaine, and M. Meunier, Nano Letters 12, 4763-4769 (2012). 4- R. Lachaine, E. Boulais, and M. Meunier, ACS Photonics 1, 331-336 (2014). 5- C. Boutopoulos, A. Hatef, M. Fortin-Deschênes, and M. Meunier Nanoscale 7,11758-11765 (2015).

  8. Damage identification of beam structures using free response shapes obtained by use of a continuously scanning laser Doppler vibrometer system

    NASA Astrophysics Data System (ADS)

    Xu, Y. F.; Chen, Da-Ming; Zhu, W. D.

    2017-08-01

    Spatially dense operating deflection shapes and mode shapes can be rapidly obtained by use of a continuously scanning laser Doppler vibrometer (CSLDV) system, which sweeps its laser spot over a vibrating structure surface. This paper introduces a new type of vibration shapes called a free response shape (FRS) that can be obtained by use of a CSLDV system, and a new damage identification methodology using FRSs is developed for beam structures. An analytical expression of FRSs of a damped beam structure is derived, and FRSs from the analytical expression compare well with those from a finite element model. In the damage identification methodology, a free-response damage index (FRDI) is proposed, and damage regions can be identified near neighborhoods with consistently high values of FRDIs associated with different modes; an auxiliary FRDI is defined to assist identification of the neighborhoods. A FRDI associated with a mode consists of differences between curvatures of FRSs associated with the mode in a number of half-scan periods of a CSLDV system and those from polynomials that fit the FRSs with properly determined orders. A convergence index is proposed to determine the proper order of a polynomial fit. One advantage of the methodology is that the FRDI does not require any baseline information of an undamaged beam structure, if it is geometrically smooth and made of materials that have no stiffness and mass discontinuities. Another advantage is that FRDIs associated with multiple modes can be obtained using free response of a beam structure measured by a CSLDV system in one scan. The number of half-scan periods for calculation of the FRDI associated with a mode can be determined by use of the short-time Fourier transform. The proposed methodology was numerically and experimentally applied to identify damage in beam structures; effects of the scan frequency of a CSLDV system on qualities of obtained FRSs were experimentally investigated.

  9. Use of a microsecond Er:YAG laser in laryngeal surgery reduces collateral thermal injury in comparison to superpulsed CO2 laser.

    PubMed

    Böttcher, Arne; Jowett, Nathan; Kucher, Stanislav; Reimer, Rudolph; Schumacher, Udo; Knecht, Rainald; Wöllmer, Wolfgang; Münscher, Adrian; Dalchow, Carsten V

    2014-05-01

    Despite causing significant thermocoagulative insult, use of the carbon dioxide (CO2) laser is considered gold standard in surgery for early stage larynx carcinoma. Limited attention has been paid to the use of the erbium:yttrium-aluminium-garnet (Er:YAG) laser in laryngeal surgery as a means to reduce thermal tissue injury. The objective of this study is to compare the extent of thermal injury and precision of vocal fold incisions made using microsecond Er:YAG and superpulsed CO2 lasers. In the optics laboratory ex vivo porcine vocal folds were incised using Er:YAG and CO2 lasers. Lateral epithelial and subepithelial thermal damage zones and cutting gap widths were histologically determined. Environmental scanning electron microscopy (ESEM) images were examined for signs of carbonization. Temperature rise during Er:YAG laser incisions was determined using infrared thermography (IRT). In comparison to the CO2 laser, Er:YAG laser incisions showed significantly decreased epithelial (236.44 μm) and subepithelial (72.91 μm) damage zones (p < 0.001). Cutting gaps were significantly narrower for CO2 (878.72 μm) compared to Er:YAG (1090.78 μm; p = 0.027) laser. ESEM revealed intact collagen fibres along Er:YAG laser cutting edges without obvious carbonization, in comparison to diffuse carbonization and tissue melting seen for CO2 laser incisions. IRT demonstrated absolute temperature rise below 70 °C for Er:YAG laser incisions. This study has demonstrated significantly reduced lateral thermal damage zones with wider basal cutting gaps for vocal fold incisions made using Er:YAG laser in comparison to those made using CO2 laser.

  10. Ablation-cooled material removal with ultrafast bursts of pulses

    NASA Astrophysics Data System (ADS)

    Kerse, Can; Kalaycıoğlu, Hamit; Elahi, Parviz; Çetin, Barbaros; Kesim, Denizhan K.; Akçaalan, Önder; Yavaş, Seydi; Aşık, Mehmet D.; Öktem, Bülent; Hoogland, Heinar; Holzwarth, Ronald; Ilday, Fatih Ömer

    2016-09-01

    The use of femtosecond laser pulses allows precise and thermal-damage-free removal of material (ablation) with wide-ranging scientific, medical and industrial applications. However, its potential is limited by the low speeds at which material can be removed and the complexity of the associated laser technology. The complexity of the laser design arises from the need to overcome the high pulse energy threshold for efficient ablation. However, the use of more powerful lasers to increase the ablation rate results in unwanted effects such as shielding, saturation and collateral damage from heat accumulation at higher laser powers. Here we circumvent this limitation by exploiting ablation cooling, in analogy to a technique routinely used in aerospace engineering. We apply ultrafast successions (bursts) of laser pulses to ablate the target material before the residual heat deposited by previous pulses diffuses away from the processing region. Proof-of-principle experiments on various substrates demonstrate that extremely high repetition rates, which make ablation cooling possible, reduce the laser pulse energies needed for ablation and increase the efficiency of the removal process by an order of magnitude over previously used laser parameters. We also demonstrate the removal of brain tissue at two cubic millimetres per minute and dentine at three cubic millimetres per minute without any thermal damage to the bulk.

  11. Ablation-cooled material removal with ultrafast bursts of pulses.

    PubMed

    Kerse, Can; Kalaycıoğlu, Hamit; Elahi, Parviz; Çetin, Barbaros; Kesim, Denizhan K; Akçaalan, Önder; Yavaş, Seydi; Aşık, Mehmet D; Öktem, Bülent; Hoogland, Heinar; Holzwarth, Ronald; Ilday, Fatih Ömer

    2016-09-01

    The use of femtosecond laser pulses allows precise and thermal-damage-free removal of material (ablation) with wide-ranging scientific, medical and industrial applications. However, its potential is limited by the low speeds at which material can be removed and the complexity of the associated laser technology. The complexity of the laser design arises from the need to overcome the high pulse energy threshold for efficient ablation. However, the use of more powerful lasers to increase the ablation rate results in unwanted effects such as shielding, saturation and collateral damage from heat accumulation at higher laser powers. Here we circumvent this limitation by exploiting ablation cooling, in analogy to a technique routinely used in aerospace engineering. We apply ultrafast successions (bursts) of laser pulses to ablate the target material before the residual heat deposited by previous pulses diffuses away from the processing region. Proof-of-principle experiments on various substrates demonstrate that extremely high repetition rates, which make ablation cooling possible, reduce the laser pulse energies needed for ablation and increase the efficiency of the removal process by an order of magnitude over previously used laser parameters. We also demonstrate the removal of brain tissue at two cubic millimetres per minute and dentine at three cubic millimetres per minute without any thermal damage to the bulk.

  12. Luminescence in the fluoride-containing phosphate-based glasses: A possible origin of their high resistance to nanosecond pulse laser-induced damage

    PubMed Central

    Wang, Pengfei; Lu, Min; Gao, Fei; Guo, Haitao; Xu, Yantao; Hou, Chaoqi; Zhou, Zhiwei; Peng, Bo

    2015-01-01

    Fusion power offers the prospect of an almost inexhaustible source of energy for future generations. It was reported that fusion fuel gains exceeding unity on the National Ignition Facility (NIF) were achieved, but so far great deal of scientific and engineering challenges have to be overcome for realizing fusion power generation. There is a bottleneck for color-separation gratings in NIF and other similar inertial confinement fusion (ICF) lasers. Here we show a series of high performance phosphate-based glasses that can transmit the third harmonic frequency (3ω) laser light with high efficiency meanwhile filter the fundamental (1ω) and the second harmonic frequency (2ω) laser lights through direct absorption, and especially they exhibit excellent damage threshold induced by nanosecond pulse laser compared with that of the fused silica used in NIF. Yellowish-orange fluorescence emits during the laser-material interaction process, and it can be tailored through regulating the glass structure. Study on its structural origin suggests that the fluorescence emission is a key factor that conduces to the high laser-induced damage resistance of these glasses. The results also indicated the feasibility of utilizing these high performance glasses in novel color separation optics, allowing novel design for the final optics assembly in ICF lasers. PMID:25716328

  13. Luminescence in the fluoride-containing phosphate-based glasses: a possible origin of their high resistance to nanosecond pulse laser-induced damage.

    PubMed

    Wang, Pengfei; Lu, Min; Gao, Fei; Guo, Haitao; Xu, Yantao; Hou, Chaoqi; Zhou, Zhiwei; Peng, Bo

    2015-02-26

    Fusion power offers the prospect of an almost inexhaustible source of energy for future generations. It was reported that fusion fuel gains exceeding unity on the National Ignition Facility (NIF) were achieved, but so far great deal of scientific and engineering challenges have to be overcome for realizing fusion power generation. There is a bottleneck for color-separation gratings in NIF and other similar inertial confinement fusion (ICF) lasers. Here we show a series of high performance phosphate-based glasses that can transmit the third harmonic frequency (3ω) laser light with high efficiency meanwhile filter the fundamental (1ω) and the second harmonic frequency (2ω) laser lights through direct absorption, and especially they exhibit excellent damage threshold induced by nanosecond pulse laser compared with that of the fused silica used in NIF. Yellowish-orange fluorescence emits during the laser-material interaction process, and it can be tailored through regulating the glass structure. Study on its structural origin suggests that the fluorescence emission is a key factor that conduces to the high laser-induced damage resistance of these glasses. The results also indicated the feasibility of utilizing these high performance glasses in novel color separation optics, allowing novel design for the final optics assembly in ICF lasers.

  14. Thermal imaging of high power diode lasers subject to back-irradiance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, C.; Pipe, K. P.; Cao, C.

    In this study, CCD-based thermoreflectance imaging and finite element modeling are used to study the two-dimensional (2D) temperature profile of a junction-down broad-area diode laser facet subject to back-irradiance. By determining the temperature rise in the active region (ΔΤAR) at different diode laser optical powers, back-irradiance reflectance levels, and back-irradiance spot locations, we find that ΔΤAR increases by nearly a factor of three when the back-irradiance spot is centered in the absorbing substrate approximately 5 μm away from the active region, a distance roughly equal to half of the back-irradiance spot FWHM (9 μm). This corroborates prior work studying themore » relationship between the back-irradiance spot location and catastrophic optical damage, suggesting a strong thermal basis for reduced laser lifetime in the presence of back-irradiance for diode lasers fabricated on absorbing substrates.« less

  15. Experimental study on heat transmission to the vestibule during CO2 laser use in revision stapes surgery.

    PubMed

    Szymański, M; Morshed, K; Mills, R

    2007-01-01

    We studied the transmission of heat to the vestibule during revision stapes surgery with a piston in situ, using a CO2 laser, in an in vitro model. A type K thermocouple was placed around the medial end of stainless steel and fluoroplastic wire pistons in a 'vestibule' filled with saline. The effect of laser hits on fluoroplastic wire and stainless steel stapes prostheses was investigated. The effect of introducing a vein graft to seal the stapedotomy was also examined. Greater temperature rises occurred with stainless steel than with fluoroplastic wire pistons. The addition of the vein graft reduced heat transmission. Application of the CO2 laser to fluoroplastic wire pistons, using the power settings suggested by the manufacturer, is not likely to damage the inner-ear structures. Application of 6 W laser energy to stainless steel pistons can potentially disturb the inner-ear function.

  16. Thermal imaging of high power diode lasers subject to back-irradiance

    DOE PAGES

    Li, C.; Pipe, K. P.; Cao, C.; ...

    2018-03-07

    In this study, CCD-based thermoreflectance imaging and finite element modeling are used to study the two-dimensional (2D) temperature profile of a junction-down broad-area diode laser facet subject to back-irradiance. By determining the temperature rise in the active region (ΔΤAR) at different diode laser optical powers, back-irradiance reflectance levels, and back-irradiance spot locations, we find that ΔΤAR increases by nearly a factor of three when the back-irradiance spot is centered in the absorbing substrate approximately 5 μm away from the active region, a distance roughly equal to half of the back-irradiance spot FWHM (9 μm). This corroborates prior work studying themore » relationship between the back-irradiance spot location and catastrophic optical damage, suggesting a strong thermal basis for reduced laser lifetime in the presence of back-irradiance for diode lasers fabricated on absorbing substrates.« less

  17. Laser debonding of ceramic orthodontic brackets: a theoretical approach

    NASA Astrophysics Data System (ADS)

    Kearney, Kristine L.; Marangoni, Roy D.; Rickabaugh, Jeff L.

    1992-06-01

    Ceramic brackets are an esthetic substitute for conventional stainless steel brackets in orthodontic patients. However, ceramic brackets are more brittle and have higher bond strengths which can lead to bracket breakage and enamel damage during debonding. It has been demonstrated that various lasers can facilitate ceramic bracket removal. One mechanism with the laser is through the softening of the bracket adhesive. The high energy density from the laser on the bracket and adhesive can have a resultant deleterious thermal effect on the pulp of the tooth which may lead to pulpal death. A theoretical computer model of bracket, adhesive, enamel and dentin has been generated for predicting heat flow through this system. Heat fluxes at varying intensities and modes have been input into the program and the resultant temperatures at various points or nodes were determined. Further pursuit should lead to optimum parameters for laser debonding which would have minimal effects on the pulp.

  18. Near-Infrared Laser Adjuvant for Influenza Vaccine

    PubMed Central

    Kashiwagi, Satoshi; Yuan, Jianping; Forbes, Benjamin; Hibert, Mathew L.; Lee, Eugene L. Q.; Whicher, Laura; Goudie, Calum; Yang, Yuan; Chen, Tao; Edelblute, Beth; Collette, Brian; Edington, Laurel; Trussler, James; Nezivar, Jean; Leblanc, Pierre; Bronson, Roderick; Tsukada, Kosuke; Suematsu, Makoto; Dover, Jeffrey; Brauns, Timothy; Gelfand, Jeffrey; Poznansky, Mark C.

    2013-01-01

    Safe and effective immunologic adjuvants are often essential for vaccines. However, the choice of adjuvant for licensed vaccines is limited, especially for those that are administered intradermally. We show that non-tissue damaging, near-infrared (NIR) laser light given in short exposures to small areas of skin, without the use of additional chemical or biological agents, significantly increases immune responses to intradermal influenza vaccination without augmenting IgE. The NIR laser-adjuvanted vaccine confers increased protection in a murine influenza lethal challenge model as compared to unadjuvanted vaccine. We show that NIR laser treatment induces the expression of specific chemokines in the skin resulting in recruitment and activation of dendritic cells and is safe to use in both mice and humans. The NIR laser adjuvant technology provides a novel, safe, low-cost, simple-to-use, potentially broadly applicable and clinically feasible approach to enhancing vaccine efficacy as an alternative to chemical and biological adjuvants. PMID:24349390

  19. Thermal imaging of high power diode lasers subject to back-irradiance

    NASA Astrophysics Data System (ADS)

    Li, C.; Pipe, K. P.; Cao, C.; Thiagarajan, P.; Deri, R. J.; Leisher, P. O.

    2018-03-01

    CCD-based thermoreflectance imaging and finite element modeling are used to study the two-dimensional (2D) temperature profile of a junction-down broad-area diode laser facet subject to back-irradiance. By determining the temperature rise in the active region (ΔΤAR) at different diode laser optical powers, back-irradiance reflectance levels, and back-irradiance spot locations, we find that ΔΤAR increases by nearly a factor of three when the back-irradiance spot is centered in the absorbing substrate approximately 5 μm away from the active region, a distance roughly equal to half of the back-irradiance spot FWHM (9 μm). This corroborates prior work studying the relationship between the back-irradiance spot location and catastrophic optical damage, suggesting a strong thermal basis for reduced laser lifetime in the presence of back-irradiance for diode lasers fabricated on absorbing substrates.

  20. Laser treatments of deep-seated brain lesions

    NASA Astrophysics Data System (ADS)

    Ward, Helen A.

    1997-06-01

    The five year survival rate of deep-seated malignant brain tumors after surgery/radiotherapy is virtually 100 percent mortality. Special problems include: (1) Lesions often present late. (2) Position: lesion overlies vital structures, so complete surgical/radiotherapy lesion destruction can damage vital brain-stem functions. (3) Difficulty in differentiating normal brain form malignant lesions. This study aimed to use the unique properties of the laser: (a) to minimize damage during surgical removal of deep-seated brain lesions by operating via fine optic fibers; and (b) to employ the propensity of certain lasers for absorption of dyes and absorption and induction of fluorescence in some brain substances, to differentiate borders of malignant and normal brain, for more complete tumor removal. In the method a fine laser endoscopic technique was devised for removal of brain lesions. The results of this technique, were found to minimize and accurately predict the extent of thermal damage and shock waves to within 1-2mm of the surgical laser beam. Thereby it eliminated the 'popcorn' effect.

  1. Method to reduce damage to backing plate

    DOEpatents

    Perry, Michael D.; Banks, Paul S.; Stuart, Brent C.

    2001-01-01

    The present invention is a method for penetrating a workpiece using an ultra-short pulse laser beam without causing damage to subsequent surfaces facing the laser. Several embodiments are shown which place holes in fuel injectors without damaging the back surface of the sack in which the fuel is ejected. In one embodiment, pulses from an ultra short pulse laser remove about 10 nm to 1000 nm of material per pulse. In one embodiment, a plasma source is attached to the fuel injector and initiated by common methods such as microwave energy. In another embodiment of the invention, the sack void is filled with a solid. In one other embodiment, a high viscosity liquid is placed within the sack. In general, high-viscosity liquids preferably used in this invention should have a high damage threshold and have a diffusing property.

  2. A review of the physiological and histological effects of laser osteotomy.

    PubMed

    Rajitha Gunaratne, G D; Khan, Riaz; Fick, Daniel; Robertson, Brett; Dahotre, Narendra; Ironside, Charlie

    2017-01-01

    Osteotomy is the surgical cutting of bone. Some obstacles to laser osteotomy have been melting, carbonisation and subsequent delayed healing. New cooled scanning techniques have resulted in effective bone cuts without the strong thermal side effects, which were observed by inappropriate irradiation techniques with continuous wave and long pulsed lasers. With these new techniques, osteotomy gaps histologically healed with new bone formation without any noticeable or minimum thermal damage. No significant cellular differences in bone healing between laser and mechanical osteotomies were noticed. Some studies even suggest that the healing rate may be enhanced following laser osteotomy compared to conventional mechanical osteotomy. Additional research is necessary to evaluate different laser types with appropriate laser setting variables to increase ablation rates, with control of depth, change in bone type and damage to adjacent soft tissue. Laser osteotomy has the potential to become incorporated into the armamentarium of bone surgery.

  3. Skin-safe photothermal therapy enabled by responsive release of acid-activated membrane-disruptive polymer from polydopamine nanoparticle upon very low laser irradiation.

    PubMed

    Zhu, Rui; Gao, Feng; Piao, Ji-Gang; Yang, Lihua

    2017-07-25

    How to ablate tumor without damaging skin is a challenge for photothermal therapy. We, herein, report skin-safe photothermal cancer therapy provided by the responsive release of acid-activated hemolytic polymer (aHLP) from the photothermal polydopamine (PDA) nanoparticle upon irradiation at very low dosage. Upon skin-permissible irradiation (via an 850 nm laser irradiation at the power density of 0.4 W cm -2 ), the nanoparticle aHLP-PDA generates sufficient localized-heat to bring about mild hyperthermia treatment and consequently, responsively sheds off the aHLP polymer from its PDA nanocore; this leads to selective cytotoxicity to cancer cells under the acidic conditions of the extracellular microenvironment of tumor. As a result, our aHLP-PDA nanoparticle upon irradiation at a low dosage effectively inhibits tumor growth without damaging skin, as demonstrated using animal models. Effective in mitigating the otherwise inevitable skin damage in tumor photothermal therapy, the nanosystem reported herein offers an efficient pathway towards skin-safe photothermal therapy.

  4. Development of high damage threshold multilayer thin film beam combiner for laser application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nand, Mangla, E-mail: mnand@rrcat.gov.in; Babita,; Jena, S.

    2016-05-23

    A polarized wavelength multiplexer with high laser induced damage threshold has been developed to combine two laser beam of high peak power in the visible region. The present wavelength multiplexer is a multilayer thin film device deposited by reactive electron beam evaporation. The developed device is capable of combining two p-polarized laser beams of peak power density of 1.7 GW/cm{sup 2} at an angle of incidence of 45°. High transmission (T> 90%) in high pass region and high reflection (R> 99%) in stop band region have been achieved.

  5. Development of high damage threshold multilayer thin film beam combiner for laser application

    NASA Astrophysics Data System (ADS)

    Nand, Mangla; Babita, Jena, S.; Tokas, R. B.; Rajput, P.; Mukharjee, C.; Thakur, S.; Jha, S. N.; Sahoo, N. K.

    2016-05-01

    A polarized wavelength multiplexer with high laser induced damage threshold has been developed to combine two laser beam of high peak power in the visible region. The present wavelength multiplexer is a multilayer thin film device deposited by reactive electron beam evaporation. The developed device is capable of combining two p-polarized laser beams of peak power density of 1.7 GW/cm2 at an angle of incidence of 45°. High transmission (T> 90%) in high pass region and high reflection (R> 99%) in stop band region have been achieved.

  6. Dentinal temperature transients caused by exposure to CO2 laser irradiation and possible pulpal damage.

    PubMed

    Jeffrey, I W; Lawrenson, B; Saunders, E M; Longbottom, C

    1990-02-01

    An investigation is described that attempts to establish, in vitro, the characteristics of heat transference following laser irradiation of bovine dentinal tissue and the relationship with the periodicity of radiation. The results of this study appear to indicate that at depths of overlying dentine of up to 3 mm, laser-induced thermal injury to the pulp is a definite possibility. Fail-safe facilities to prevent build up of heat must be incorporated into the design of dental lasers to allow their beneficial effects to be utilized without the risk of iatrogenic damage.

  7. Wavelength dependence of nanosecond laser induced surface damage in fused silica from 260 to 1550 nm

    NASA Astrophysics Data System (ADS)

    Cao, Ming; Cao, Jianjun; Liu, Mian; Sun, Yuan; Wu, Meng; Guo, Shiming; Gao, Shumei

    2018-04-01

    The wavelength dependence of laser induced surface damage in fused silica is experimentally studied in a wide wavelength range from 260 to 1550 nm. An optical parametric oscillator system is used to provide the tunable laser pulses with a duration of 5 ns. In the experiments, the exit surface of the silica slice is observed to be damaged prior to the entrance surface. The damage threshold decreases gradually as the wavelength decreases from 1550 to 324 nm and drops suddenly at 324 nm, which corresponds to a half of 7.66 eV. This wavelength dependence can be explained by a defect assisted multiphoton absorption mechanism. By fitting the experimental data with a power law equation, the damage threshold is found to be proportional to the 3.47-th power of wavelength in the range of 325-685 nm and 1.1-th power of wavelength in the range of 260-1550 nm.

  8. Photothermal effects of laser tissue soldering.

    PubMed

    McNally, K M; Sorg, B S; Welch, A J; Dawes, J M; Owen, E R

    1999-04-01

    Low-strength anastomoses and thermal damage of tissue are major concerns in laser tissue welding techniques where laser energy is used to induce thermal changes in the molecular structure of the tissues being joined, hence allowing them to bond together. Laser tissue soldering, on the other hand, is a bonding technique in which a protein solder is applied to the tissue surfaces to be joined, and laser energy is used to bond the solder to the tissue surfaces. The addition of protein solders to augment tissue repair procedures significantly reduces the problems of low strength and thermal damage associated with laser tissue welding techniques. Investigations were conducted to determine optimal solder and laser parameters for tissue repair in terms of tensile strength, temperature rise and damage and the microscopic nature of the bonds formed. An in vitro study was performed using an 808 nm diode laser in conjunction with indocyanine green (ICG)-doped albumin protein solders to repair bovine aorta specimens. Liquid and solid protein solders prepared from 25% and 60% bovine serum albumin (BSA), respectively, were compared. The efficacy of temperature feedback control in enhancing the soldering process was also investigated. Increasing the BSA concentration from 25% to 60% greatly increased the tensile strength of the repairs. A reduction in dye concentration from 2.5 mg ml(-1) to 0.25 mg ml(-1) was also found to result in an increase in tensile strength. Increasing the laser irradiance and thus surface temperature resulted in an increased severity of histological injury. Thermal denaturation of tissue collagen and necrosis of the intimal layer smooth muscle cells increased laterally and in depth with higher temperatures. The strongest repairs were produced with an irradiance of 6.4 W cm(-2) using a solid protein solder composed of 60% BSA and 0.25 mg ml(-1) ICG. Using this combination of laser and solder parameters, surface temperatures were observed to reach 85+/-5 degrees C with a maximum temperature difference through the 150 microm thick solder strips of about 15 degrees C. Histological examination of the repairs formed using these parameters showed negligible evidence of collateral thermal damage to the underlying tissue. Scanning electron microscopy suggested albumin intertwining within the tissue collagen matrix and subsequent fusion with the collagen as the mechanism for laser tissue soldering. The laser tissue soldering technique is shown to be an effective method for producing repairs with improved tensile strength and minimal collateral thermal damage over conventional laser tissue welding techniques.

  9. Effect of varying chromophores used in light-activated protein solders on tensile strength and thermal damage profile of repairs.

    PubMed

    Hoffman, Grant T; Byrd, Brian D; Soller, Eric C; Heintzelman, Douglas L; McNally-Heintzelman, Karen M

    2003-01-01

    Clinical adoption of laser tissue welding (LTW) techniques has been beleaguered by problems associated with thermal damage of tissue and insufficient strength of the resulting tissue bond. The magnitude of these problems has been significantly reduced with the incorporation of indocyanine green (ICG)-doped protein solders into the LTW procedure to form a new technique known as laser tissue soldering (LTS). With the addition of ICG, a secondary concern has arisen relating to the potential harmful effects of the degradation products of the chromophore upon thermal denaturation of the protein solder with a laser. In this study, two different food colorings were investigated, including blue #1 and green consisting of yellow #5 and blue #1, as alternative chromophores for use in LTS techniques. Food coloring has been found to have a suitable stability and safety profile for enteral use when heated to temperatures above 200 degrees C; thus, it is a promising candidate chromophore for LTS which typically requires temperatures between 50 degrees C and 100 degrees C. Experimental investigations were conducted to test the tensile strength of ex vivo repairs formed using solders doped with these alternative chromophores in a bovine model. Two commonly used chromophores, ICG and methylene blue (MB), were investigated as a reference. In addition, the temperature rise, depth of thermal coagulation in the protein solder, and the extent of thermal damage in the surrounding tissue were measured. Temperature rise at the solder/tissue interface, and consequently the degree of solder coagulation and collateral tissue thermal damage, was directly related to the penetration depth of laser light in the protein solder. Variation of the chromophore concentration such that the laser light penetrated to a depth approximately equal to half the thickness of the solder resulted in uniform results between each group of chromophores investigated. Optimal tensile strength of repairs was achieved by optimizing laser and solder parameters to obtain a temperature of approximately 65 degrees C at the solder/tissue interface. The two alternative chromophores tested in this study show considerable promise for application in LTS techniques, with equivalent tensile strength to solders doped with ICG or MB, and the potential advantage of eliminating the risks associated with harmful byproducts.

  10. Investigation of Laser-Induced Retinal Damage: Wavelength and Pulsewidth Dependent Mechanisms

    DTIC Science & Technology

    1994-06-30

    Jun, Fos and the AP-1 complex in cell-proliferation and transformation. Biochim Biophys Acta 1991;1072:129-57. 2. Artuc M, Ramshad M, Kappus H. Studies...M, Reinhold C, Kappus H. DNA damage caused by laser light activated hematoporphyrin derivatives in isolated nuclei of human melanoma cells. Arch

  11. Improvement of optical damage in specialty fiber at 266 nm wavelength

    NASA Astrophysics Data System (ADS)

    Tobisch, T.; Ohlmeyer, H.; Zimmermann, H.; Prein, S.; Kirchhof, J.; Unger, S.; Belz, M.; Klein, K.-F.

    2014-02-01

    Improved multimode UV-fibers with core diameters ranging from 70 to 600 μm diameter have been manufactured based on novel preform modifications and fiber processing techniques. Only E'-centers at 214 nm and NBOHC at 260 nm are generated in these fibers. A new generation of inexpensive laser-systems have entered the market and generated a multitude of new and attractive applications in the bio-life science, chemical and material processing field. However, for example pulsed 355 nm Nd:YAG lasers generate significant UV-damages in commercially available fibers. For lower wavelengths, no results on suitable multi-mode or low-mode fibers with high UV resistance at 266 nm wavelength (pulsed 4th harmonic Nd:YAG laser) have been published. In this report, double-clad fibers with 70 μm or 100 μm core diameter and a large claddingto- core ratio will be recommended. Laser-induced UV-damages will be compared between these new fiber type and traditional UV fibers with similar core sizes. Finally, experimental results will be cross compared against broadband cw deuterium lamp damage standards.

  12. Study of laser interaction with aluminum contaminant on fused silica

    NASA Astrophysics Data System (ADS)

    Palmier, S.; Tovena, I.; Lamaignère, L.; Rullier, J. L.; Capoulade, J.; Bertussi, B.; Natoli, J. Y.; Servant, L.

    2005-12-01

    One of the major issues met in the operating of high power lasers concerns the cleanliness of laser components. In this context, in order to assess laser-induced damage in presence of metallic particulate contamination, we study the behaviour of aluminum on a silica substrate. Model samples containing calibrated aluminum square dots of 50 x 50 μ2 have been deposited by photolithography on a silica substrate. The sample was irradiated by a Nd:YAG laser at 1064 nm with different fluences and also different numbers of shots on each dot. Then the initial aluminum dot zone and the surrounding silica were analyzed using Nomarski microscopy, profilometry and photothermal microscopy. Laser fluence is revealed to be a very important parameter for the behaviour of aluminum dots. For example, it is possible to find a fluence of irradiation where aluminum dots are blown off the substrate and only small modifications occur to silica. In this case, increasing the number of shots doesn't significantly affect the silica surface.

  13. Power amplification for petawatt Ti: Sapphire lasers: New strategies for high fluence pumping

    NASA Astrophysics Data System (ADS)

    Canova, F.; Chambaret, J.-P.

    2006-06-01

    One of the major bottlenecks when we pump large Ti:Sapphire crystals, to reach Petawatt level laser amplification, is the careful control of the spatial energy distribution of Nd:Glass pump lasers. Commercially available nanosecond Nd:Glass and Nd:YAG lasers exhibit poor spatial profile quality especially in the near and in the intermediate field, which can lead to local hot spots, responsible of damages in crystals, and parasitic transverse lasing enhancement, strongly dependent on the profile of the pump beam . For these reasons, it is mandatory to keep the pump beam intensity profile as flat as possible on the pumped crystal. To guarantee the best pumping conditions we are investigating the combined use of DOE (diffractive optical elements) and optical smoothing techniques. In parallel we are starting a study on laser induced damages mechanisms in crystal. With DOE and microlens arrays we plan to guarantee to the beam a supergaussian shape. Simulation and first experiments with both optical systems show that a flat top spatial profile with less than 10% fluctuations and a 8th order supergaussian is possible with the present technology.Optical smoothing will keep the beam free of hot spots. We especially focused on the smoothing techniques involving optical fibers. This is the first time to our knowledge that this technique is applied to the pumping beams for Ti:Sapphire systems. A deep study of laser-crystal interaction will allow us to fully understand the damages created by hot spots. The knowledge of the phenomena involved in laser damages on Ti:Sapphire is mandatory to control the pumping processes and thresholds. In conclusion, mixing the advantages of these different approaches to overcome this bottleneck will allow us to amplify in a safety way femtosecond laser beams to the Petawatt level using Ti:Sapphire crystals.

  14. Thermal effects in laser-assisted embryo hatching

    NASA Astrophysics Data System (ADS)

    Douglas-Hamilton, Diarmaid H.; Conia, Jerome D.

    2000-08-01

    Diode lasers [(lambda) equals 1480 nm] are used with in-vitro fertilization [IVF] as a promoter of embryo hatching. A focused laser beam is applied in vitro to form a channel in the zona pellucida (shell) of the pre-embryo. After transfer into the uterus, the embryo hatches: it extrudes itself through the channel and implants into the uterine wall. Laser-assisted hatching can result in improving implantation and pregnancy success rates. We present examples of zone pellucida ablation using animal models. In using the laser it is vital not to damage pre-embryo cells, e.g. by overheating. In order to define safe regimes we have derived some thermal side-effects of zona pellucida removal. The temperature profile in the beam and vicinity is predicted as function of laser pulse duration and power. In a crossed-beam experiment a HeNe laser probe detects the temperature-induced change in refractive index. We find that the diode laser beam produces superheated water approaching 200 C on the beam axis. Thermal histories during and following the laser pulse are given for regions in the neighborhood of the beam. We conclude that an optimum regime exists with pulse duration

  15. Visual System Neural Responses to Laser Exposure from Local Q-Switched Pulses and Extended Source CW Speckle Patterns.

    DTIC Science & Technology

    1985-09-30

    layers of the retina as seen in retinitis pigmentosa (Wolbarsht & Landers, 1980; Stefansson et al, 1981 a). Those are all long-term effects with a delay...block numoer) FIELD GROUP SUB-GROUP retinal damage center-surround 20 05 laser injury cat retina 20 06 visual perception N02 anesthesia 19. ABSTRACT...Continue on reverse if necessary and identify by block number) The reports of retinal damage from exposure to short pulse laser energy without any

  16. Thermal damage control of dye-assisted laser tissue welding: effect of dye concentration

    NASA Astrophysics Data System (ADS)

    Xie, Hua; Buckley, Lisa A.; Prahl, Scott A.; Shaffer, Brian S.; Gregory, Kenton W.

    2001-05-01

    Successful laser-assisted tissue welding was implemented to provide proper weld strength with minimized tissue thermal injury. We investigated and compared the weld strengths and morphologic changes in porcine small intestinal submucose (SIS) and porcine ureteral tissues with various concentration of indocyanine green (ICG) and with a solid albumin sheet. The study showed that the tissues were welded at lower ICG concentration (0.05 mM) with minimized tissue thermal damage using an 800-nm wavelength diode laser.

  17. Laser induced damage in optical materials: tenth ASTM symposium.

    PubMed

    Glass, A J; Guenther, A H

    1979-07-01

    The tenth annual Symposium on Optical Materials for High Power Lasers (Boulder Damage Symposium) was held at the National Bureau of Standards in Boulder, Colorado, 12-14 September 1978. The symposium was held under the auspices of ASTM Committee F-1, Subcommittee on Laser Standards, with the joint sponsorship of NBS, the Defense Advanced Research Project Agency, the Department of Energy, and the Office of Naval Research. About 175 scientists attended, including representatives of the United Kingdom, France, Canada, Japan, West Germany, and the Soviet Union. The symposium was divided into sessions concerning the measurement of absorption characteristics, bulk material properties, mirrors and surfaces, thin film damage, coating materials and design, and breakdown phenomena. As in previous years, the emphasis of the papers presented was directed toward new frontiers and new developments. Particular emphasis was given to materials for use from 10.6 microm to the UV region. Highlights included surface characterization, thin film-substrate boundaries, and advances in fundamental laser-matter threshold interactions and mechanisms. The scaling of damage thresholds with pulse duration, focal area, and wavelength was also discussed. In commemoration of the tenth symposium in this series, a number of comprehensive review papers were presented to assess the state of the art in various facets of laser induced damage in optical materials. Alexander J. Glass of Lawrence Livermore Laboratory and Arthur H. Guenther of the Air Force Weapons Laboratory were co-chairpersons. The eleventh annual symposium is scheduled for 30-31 October 1979 at the National Bureau of Standards, Boulder, Colorado.

  18. Modeling the effect of laser heating on the strength and failure of 7075-T6 aluminum

    DOE PAGES

    Florando, J. N.; Margraf, J. D.; Reus, J. F.; ...

    2015-06-06

    The effect of rapid laser heating on the response of 7075-T6 aluminum has been characterized using 3-D digital image correlation and a series of thermocouples. The experimental results indicate that as the samples are held under a constant load, the heating from the laser profile causes non-uniform temperature and strain fields, and the strain-rate increases dramatically as the sample nears failure. Simulations have been conducted using the LLNL multi-physics code ALE3D, and compared to the experiments. The strength and failure of the material was modeled using the Johnson–Cook strength and damage models. Here, in order to capture the response, amore » dual-condition criterion was utilized which calibrated one set of parameters to low temperature quasi-static strain rate data, while the other parameter set is calibrated to high temperature high strain rate data. The thermal effects were captured using temperature dependent thermal constants and invoking thermal transport with conduction, convection, and thermal radiation.« less

  19. Heat localization for targeted tumor treatment with nanoscale near-infrared radiation absorbers

    PubMed Central

    Xie, Bin; Singh, Ravi; Torti, F. M.; Keblinski, Pawel; Torti, Suzy

    2012-01-01

    Focusing heat delivery while minimizing collateral damage to normal tissues is essential for successful nanoparticle-mediated laser-induced thermal cancer therapy. We present thermal maps obtained via magnetic resonance imaging (MRI) characterizing laser heating of a phantom tissue containing a multiwalled carbon nanotube inclusion. The data demonstrate that heating continuously over tens of seconds leads to poor localization (~ 0.5 cm) of the elevated temperature region. By contrast, for the same energy input, heat localization can be reduced to the millimeter rather than centimeter range by increasing the laser power and shortening the pulse duration. The experimental data can be well understood within a simple diffusive heat conduction model. Analysis of the model indicates that to achieve 1 mm or better resolution, heating pulses of ~ 2s or less need to be used with appropriately higher heating power. Modeling these data using a diffusive heat conduction analysis predicts parameters for optimal targeted delivery of heat for ablative therapy. PMID:22948207

  20. Comparison of retina damage thresholds simulating the femtosecond-laser in situ keratomileusis (fs-LASIK) process with two laser systems in the CW- and fs-regime

    NASA Astrophysics Data System (ADS)

    Sander, M.; Minet, O.; Zabarylo, U.; Müller, M.; Tetz, M. R.

    2012-04-01

    The femtosecond-laser in situ keratomileusis procedure affords the opportunity to correct ametropia by cutting transparent corneal tissue with ultra-short laser pulses. Thereby the tissue cut is generated by a laser-induced optical breakdown in the cornea with ultra-short laser pulses in the near-infrared range. Compared to standard procedures such as photorefractive keratectomy and laser in-situ keratomileusis with the excimer laser, where the risk potential for the eye is low due to the complete absorption of ultraviolet irradiation from corneal tissue, only a certain amount of the pulse energy is deposited in the cornea during the fs-LASIK process. The remaining energy propagates through the eye and interacts with the retina and the strong absorbing tissue layers behind. The objective of the presented study was to determine and compare the retina damage thresholds during the fs-LASIK process simulated with two various laser systems in the CW- and fs-regime.

Top