Science.gov

Sample records for model locust visual

  1. A stochastic lattice model for locust outbreak

    NASA Astrophysics Data System (ADS)

    Kizaki, Shinya; Katori, Makoto

    The locust is a kind of grasshoppers. Gregarious locusts form swarms and can migrate over large distances and they spread and damage a large area (locust outbreak). When the density is low, each of locusts behaves as an individual insect (solitary phase). As locusts become crowded, they become to act as a part of a group (gregarious phase) as a result of interactions among them. Modeling of this phenomenon is a challenging problem of statistical physics. We introduce a stochastic cellular automaton model of locust population-dynamics on lattices. Change of environmental conditions by seasonal migration is a key factor in gregarisation of locusts and we take it into account by changing the lattice size periodically. We study this model by computer simulations and discuss the locust outbreak as a cooperative phenomena.

  2. Assaying Visual Memory in the Desert Locust.

    PubMed

    Dillen, Senne; Chen, Ziwei; Broeck, Jozef Vanden

    2015-04-20

    The involvement of associative learning cues has been demonstrated in several stages of feeding and food selection. Short neuropeptide F (sNPF), an insect neuropeptide whose effects on feeding behavior have previously been well established, may be one of the factors bridging feeding and learning behavior. Recently, it was shown in Drosophila melanogaster that the targeted reduction of Drome-sNPF transcript levels significantly reduced sugar-rewarded olfactory memory. While Drosophila mainly relies on olfactory perception in its food searching behavior, locust foraging behavior is likely to be more visually orientated. Furthermore, a feeding-dependent regulation of Schgr-sNPF transcript levels has previously been observed in the optic lobes of the locust brain, suggesting a possible involvement in visual perception of food and visual associative memory in this insect species. In this study, we describe the development of a robust and reproducible assay allowing visual associative memory to be studied in the desert locust, Schistocerca gregaria. Furthermore, we performed an exploratory series of experiments, studying the role of Schgr-sNPF in this complex process.

  3. [Comparative investigation of locust's phototactic visual spectrum effect and phototactic response to spectral illumination].

    PubMed

    Liu, Qi-Hang; Zhou, Qiang

    2014-07-01

    To provide theoretical support for determining locust's phototactic spectrum, and explore locust's phototactic mechanism stimulated by light, utilizing AvaSpec fiber-optic spectrometer system and AvaLight-DHS, the investigation of locust's phototactic visual spectrum effect after light energy stimulated locust's vision system was carried out and on this basis, utilizing the investigated device of locust's phototactic response to spectral illumination, the discrepancy of locust's phototactic response to spectral illumination was certificated comparatively. The results show that the degree of locust's vision system absorbing the single spectrum photon of 430, 545 and 610 nm is significant and there exists difference, and the behavioral response to orange, violet, green, and blue spectral light has the difference in selective sensitivity, with the intensity of response to violet light being the strongest. The degree of response to orange light is the maximum, simultaneously, locust's vision system absorbing spectral photon energy has selective difference and requirement of illumination time, moreover, the sensitive degree of locust's visual system to spectrum and the strength of the lighting energy, influencing locust's phototactic response degree, and the micro-response of locust's phototactic vision physiology, led by the photoelectric effect of locust absorbing sensitive photon and converting photon energy, is the reason for locust's phototactic orientation response. In addition, locust's phototactic visual spectrum effect, only when the biological photoelectric effect of locust's visual system is stimulated by spectral illumination, can present the sensitivity of the spectral absorption effect, so, using the stronger ultraviolet stimulation characteristic of violet light, the different sensitive stimulation of orange, green, blue spectral light on locust's phototactic vision, and combining orange, violet, green, blue spectral light field mechanism reasonably, can

  4. Locust Collective Motion and Its Modeling

    PubMed Central

    Ariel, Gil; Ayali, Amir

    2015-01-01

    Over the past decade, technological advances in experimental and animal tracking techniques have motivated a renewed theoretical interest in animal collective motion and, in particular, locust swarming. This review offers a comprehensive biological background followed by comparative analysis of recent models of locust collective motion, in particular locust marching, their settings, and underlying assumptions. We describe a wide range of recent modeling and simulation approaches, from discrete agent-based models of self-propelled particles to continuous models of integro-differential equations, aimed at describing and analyzing the fascinating phenomenon of locust collective motion. These modeling efforts have a dual role: The first views locusts as a quintessential example of animal collective motion. As such, they aim at abstraction and coarse-graining, often utilizing the tools of statistical physics. The second, which originates from a more biological perspective, views locust swarming as a scientific problem of its own exceptional merit. The main goal should, thus, be the analysis and prediction of natural swarm dynamics. We discuss the properties of swarm dynamics using the tools of statistical physics, as well as the implications for laboratory experiments and natural swarms. Finally, we stress the importance of a combined-interdisciplinary, biological-theoretical effort in successfully confronting the challenges that locusts pose at both the theoretical and practical levels. PMID:26656851

  5. Arousal Facilitates Collision Avoidance Mediated by a Looming Sensitive Visual Neuron in a Flying Locust

    PubMed Central

    Rind, F. Claire; Santer, Roger D.; Wright, Geraldine A.

    2008-01-01

    Locusts have two large collision-detecting neurons, the descending contralateral movement detectors (DCMDs) that signal object approach and trigger evasive glides during flight. We sought to investigate whether vision for action, when the locust is in an aroused state rather than a passive viewer, significantly alters visual processing in this collision-detecting pathway. To do this we used two different approaches to determine how the arousal state of a locust affects the prolonged periods of high-frequency spikes typical of the DCMD response to approaching objects that trigger evasive glides. First, we manipulated arousal state in the locust by applying a brief mechanical stimulation to the hind leg; this type of change of state occurs when gregarious locusts accumulate in high-density swarms. Second, we examined DCMD responses during flight because flight produces a heightened physiological state of arousal in locusts. When arousal was induced by either method we found that the DCMD response recovered from a previously habituated state; that it followed object motion throughout approach; and—most important—that it was significantly more likely to generate the maintained spike frequencies capable of evoking gliding dives even with extremely short intervals (1.8 s) between approaches. Overall, tethered flying locusts responded to 41% of simulated approaching objects (sets of 6 with 1.8 s ISI). When we injected epinastine, the neuronal octopamine receptor antagonist, into the hemolymph responsiveness declined to 12%, suggesting that octopamine plays a significant role in maintaining responsiveness of the DCMD and the locust to visual stimuli during flight. PMID:18509080

  6. Arousal facilitates collision avoidance mediated by a looming sensitive visual neuron in a flying locust.

    PubMed

    Rind, F Claire; Santer, Roger D; Wright, Geraldine A

    2008-08-01

    Locusts have two large collision-detecting neurons, the descending contralateral movement detectors (DCMDs) that signal object approach and trigger evasive glides during flight. We sought to investigate whether vision for action, when the locust is in an aroused state rather than a passive viewer, significantly alters visual processing in this collision-detecting pathway. To do this we used two different approaches to determine how the arousal state of a locust affects the prolonged periods of high-frequency spikes typical of the DCMD response to approaching objects that trigger evasive glides. First, we manipulated arousal state in the locust by applying a brief mechanical stimulation to the hind leg; this type of change of state occurs when gregarious locusts accumulate in high-density swarms. Second, we examined DCMD responses during flight because flight produces a heightened physiological state of arousal in locusts. When arousal was induced by either method we found that the DCMD response recovered from a previously habituated state; that it followed object motion throughout approach; and--most important--that it was significantly more likely to generate the maintained spike frequencies capable of evoking gliding dives even with extremely short intervals (1.8 s) between approaches. Overall, tethered flying locusts responded to 41% of simulated approaching objects (sets of 6 with 1.8 s ISI). When we injected epinastine, the neuronal octopamine receptor antagonist, into the hemolymph responsiveness declined to 12%, suggesting that octopamine plays a significant role in maintaining responsiveness of the DCMD and the locust to visual stimuli during flight.

  7. Motion detectors in the locust visual system: From biology to robot sensors.

    PubMed

    Rind, F Claire

    2002-02-15

    Motion detectors in the locust optic lobe and brain fall into two categories: neurones that respond selectively to approaching vs. receding objects and neurones that respond selectively to a particular pattern of image motion over a substantial part of the eye, generated by the locust's own movements through its environment. Neurones from the two categories can be differentiated on the basis of their response to motion at a constant velocity at a fixed distance from the locust: neurones of the first category respond equally well to motion in any direction whereas neurones in the second category respond selectively to one preferred direction of motion. Several of the motion detectors of the first category, responding to approaching objects, share the same input organisation, suggesting that it is important in generating a tuning for approaching objects. Anatomical, physiological, and modelling studies have revealed how the selectivity of the response is generated. The selectivity arises as a result of a critical race between excitation, generated when image edges move out over the eye and delayed inhibition, generated by the same edge movements. For excitation to build up, the velocity and extent of edge motion over the eye must increase rapidly. The ultrastructure of the afferent inputs onto the dendrites of collision sensitive neurones reveals a possible substrate for the interaction between excitation and inhibition. This interpretation is supported by both physiological and immunocytochemical evidence. The input organisation of these neurones has been incorporated into the control structure of a small mobile robot, which successfully avoids collisions with looming objects. The ecological role of motion detectors of the second category that respond to image motion over a substantial part of the visual field, is discussed as is the input organisation that generates this selective response. The broad tuning of these neurones, particularly at low velocities (<0

  8. Field Verification of the Prediction Model on Desert Locust Adult Phase Status From Density and Vegetation.

    PubMed

    Cissé, S; Ghaout, S; Babah Ebbe, M A; Kamara, S; Piou, C

    2016-01-01

    Previous studies investigated the effect of vegetation on density thresholds of adult Desert Locust gregarization from historical data in Mauritania. We examine here the prediction of locust phase based on adult density and vegetation conditions using the statistical model from Cisse et al. compared with actual behavior of Desert Locust adults observed in the field in Mauritania. From the 130 sites where adult locusts were found, the model predicted the phase of Desert Locust adults with a relatively small error of prediction of 6.1%. Preventive locust control should be rational, based on a risk assessment. The staff involved in implementation of the preventive control strategy needs specific indicators for when or where chemical treatment should be done. In this respect, we show here that the statistical model of Cisse et al. may be appropriate.

  9. Field Verification of the Prediction Model on Desert Locust Adult Phase Status From Density and Vegetation

    PubMed Central

    Cissé, S.; Ghaout, S.; Babah Ebbe, M. A; Kamara, S; Piou, C.

    2016-01-01

    Previous studies investigated the effect of vegetation on density thresholds of adult Desert Locust gregarization from historical data in Mauritania. We examine here the prediction of locust phase based on adult density and vegetation conditions using the statistical model from Cisse et al. compared with actual behavior of Desert Locust adults observed in the field in Mauritania. From the 130 sites where adult locusts were found, the model predicted the phase of Desert Locust adults with a relatively small error of prediction of 6.1%. Preventive locust control should be rational, based on a risk assessment. The staff involved in implementation of the preventive control strategy needs specific indicators for when or where chemical treatment should be done. In this respect, we show here that the statistical model of Cisse et al. may be appropriate. PMID:27432351

  10. Looming detection by identified visual interneurons during larval development of the locust Locusta migratoria.

    PubMed

    Simmons, Peter J; Sztarker, Julieta; Rind, F Claire

    2013-06-15

    Insect larvae clearly react to visual stimuli, but the ability of any visual neuron in a newly hatched insect to respond selectively to particular stimuli has not been directly tested. We characterised a pair of neurons in locust larvae that have been extensively studied in adults, where they are known to respond selectively to objects approaching on a collision course: the lobula giant motion detector (LGMD) and its postsynaptic partner, the descending contralateral motion detector (DCMD). Our physiological recordings of DCMD axon spikes reveal that at the time of hatching, the neurons already respond selectively to objects approaching the locust and they discriminate between stimulus approach speeds with differences in spike frequency. For a particular approaching stimulus, both the number and peak frequency of spikes increase with instar. In contrast, the number of spikes in responses to receding stimuli decreases with instar, so performance in discriminating approaching from receding stimuli improves as the locust goes through successive moults. In all instars, visual movement over one part of the visual field suppresses a response to movement over another part. Electron microscopy demonstrates that the anatomical substrate for the selective response to approaching stimuli is present in all larval instars: small neuronal processes carrying information from the eye make synapses both onto LGMD dendrites and with each other, providing pathways for lateral inhibition that shape selectivity for approaching objects.

  11. Onset of collective motion in locusts is captured by a minimal model

    NASA Astrophysics Data System (ADS)

    Dyson, Louise; Yates, Christian A.; Buhl, Jerome; McKane, Alan J.

    2015-11-01

    We present a minimal model to describe the onset of collective motion seen when a population of locusts are placed in an annular arena. At low densities motion is disordered, while at high densities locusts march in a common direction, which may reverse during the experiment. The data are well captured by an individual-based model, in which demographic noise leads to the observed density-dependent effects. By fitting the model parameters to equation-free coefficients, we give a quantitative comparison, showing time series, stationary distributions, and the mean switching times between states.

  12. Nonlinear time-periodic models of the longitudinal flight dynamics of desert locusts Schistocerca gregaria.

    PubMed

    Taylor, Graham K; Zbikowski, Rafał

    2005-06-22

    Previous studies of insect flight control have been statistical in approach, simply correlating wing kinematics with body kinematics or force production. Kinematics and forces are linked by Newtonian mechanics, so adopting a dynamics-based approach is necessary if we are to place the study of insect flight on its proper physical footing. Here we develop semi-empirical models of the longitudinal flight dynamics of desert locusts Schistocerca gregaria. We use instantaneous force-moment measurements from individual locusts to parametrize the nonlinear rigid body equations of motion. Since the instantaneous forces are approximately periodic, we represent them using Fourier series, which are embedded in the equations of motion to give a nonlinear time-periodic (NLTP) model. This is a proper mathematical generalization of an earlier linear-time invariant (LTI) model of locust flight dynamics, developed using previously published time-averaged versions of the instantaneous force recordings. We perform various numerical simulations, within the fitted range of the model, and across the range of body angles used by free-flying locusts, to explore the likely behaviour of the locusts upon release from the tether. Solutions of the NLTP models are compared with solutions of the nonlinear time-invariant (NLTI) models to which they reduce when the periodic terms are dropped. Both sets of models are unstable and therefore fail to explain locust flight stability fully. Nevertheless, whereas the measured forces include statistically significant harmonic content up to about the eighth harmonic, the simulated flight trajectories display no harmonic content above the fundamental forcing frequency. Hence, manoeuvre control in locusts will not directly reflect subtle changes in the higher harmonics of the wing beat, but must operate on a coarser time-scale. A state-space analysis of the NLTP models reveals orbital trajectories that are impossible to capture in the LTI and NLTI models, and

  13. Coding of odors by temporal binding within a model network of the locust antennal lobe

    PubMed Central

    Patel, Mainak J.; Rangan, Aaditya V.; Cai, David

    2013-01-01

    The locust olfactory system interfaces with the external world through antennal receptor neurons (ORNs), which represent odors in a distributed, combinatorial manner. ORN axons bundle together to form the antennal nerve, which relays sensory information centrally to the antennal lobe (AL). Within the AL, an odor generates a dynamically evolving ensemble of active cells, leading to a stimulus-specific temporal progression of neuronal spiking. This experimental observation has led to the hypothesis that an odor is encoded within the AL by a dynamically evolving trajectory of projection neuron (PN) activity that can be decoded piecewise to ascertain odor identity. In order to study information coding within the locust AL, we developed a scaled-down model of the locust AL using Hodgkin–Huxley-type neurons and biologically realistic connectivity parameters and current components. Using our model, we examined correlations in the precise timing of spikes across multiple neurons, and our results suggest an alternative to the dynamic trajectory hypothesis. We propose that the dynamical interplay of fast and slow inhibition within the locust AL induces temporally stable correlations in the spiking activity of an odor-dependent neural subset, giving rise to a temporal binding code that allows rapid stimulus detection by downstream elements. PMID:23630495

  14. A Locust Phase Change Model with Multiple Switching States and Random Perturbation

    NASA Astrophysics Data System (ADS)

    Xiang, Changcheng; Tang, Sanyi; Cheke, Robert A.; Qin, Wenjie

    2016-12-01

    Insects such as locusts and some moths can transform from a solitarious phase when they remain in loose populations and a gregarious phase, when they may swarm. Therefore, the key to effective management of outbreaks of species such as the desert locust Schistocercagregaria is early detection of when they are in the threshold state between the two phases, followed by timely control of their hopper stages before they fledge because the control of flying adult swarms is costly and often ineffective. Definitions of gregarization thresholds should assist preventive control measures and avoid treatment of areas that might not lead to gregarization. In order to better understand the effects of the threshold density which represents the gregarization threshold on the outbreak of a locust population, we developed a model of a discrete switching system. The proposed model allows us to address: (1) How frequently switching occurs from solitarious to gregarious phases and vice versa; (2) When do stable switching transients occur, the existence of which indicate that solutions with larger amplitudes can switch to a stable attractor with a value less than the switching threshold density?; and (3) How does random perturbation influence the switching pattern? Our results show that both subsystems have refuge equilibrium points, outbreak equilibrium points and bistable equilibria. Further, the outbreak equilibrium points and bistable equilibria can coexist for a wide range of parameters and can switch from one to another. This type of switching is sensitive to the intrinsic growth rate and the initial values of the locust population, and may result in locust population outbreaks and phase switching once a small perturbation occurs. Moreover, the simulation results indicate that the switching transient patterns become identical after some generations, suggesting that the evolving process of the perturbation system is not related to the initial value after some fixed number of

  15. Dynamic model and performance analysis of landing buffer for bionic locust mechanism

    NASA Astrophysics Data System (ADS)

    Chen, Dian-Sheng; Zhang, Zi-Qiang; Chen, Ke-Wei

    2016-06-01

    The landing buffer is an important problem in the research on bionic locust jumping robots, and the different modes of landing and buffering can affect the dynamic performance of the buffering process significantly. Based on an experimental observation, the different modes of landing and buffering are determined, which include the different numbers of landing legs and different motion modes of legs in the buffering process. Then a bionic locust mechanism is established, and the springs are used to replace the leg muscles to achieve a buffering effect. To reveal the dynamic performance in the buffering process of the bionic locust mechanism, a dynamic model is established with different modes of landing and buffering. In particular, to analyze the buffering process conveniently, an equivalent vibration dynamic model of the bionic locust mechanism is proposed. Given the support forces of the ground to the leg links, which can be obtained from the dynamic model, the spring forces of the legs and the impact resistance of each leg are the important parameters affecting buffering performance, and evaluation principles for buffering performance are proposed according to the aforementioned parameters. Based on the dynamic model and these evaluation principles, the buffering performances are analyzed and compared in different modes of landing and buffering on a horizontal plane and an inclined plane. The results show that the mechanism with the ends of the legs sliding can obtain a better dynamic performance. This study offers primary theories for buffering dynamics and an evaluation of landing buffer performance, and it establishes a theoretical basis for studies and engineering applications.

  16. Locusts as model organisms in which to study immunogen-induced anorectic behaviour.

    PubMed

    Goldsworthy, Graham

    2010-08-01

    When injected into adult or nymphal Locusta that have been deprived of food for 2h, immunogens such as laminarin and bacterial LPS can induce an almost immediate dose-dependent state of anorexia for at least 1h. Such anorexia is a component of a medley of physiological and behavioural changes called collectively 'sickness behaviour' that occurs in a wide range of animals in response to infection or immune challenge. Sub-optimal amounts of injected laminarin allow some locusts to feed, but with a longer latency than in controls, although the length of the first meal is unaffected. The feeding behaviour of fifth instar nymphs is more sensitive to laminarin than that of adults, but both stages respond to amounts of immunogen that are lower than those required to activate the phenoloxidase cascade. Injection of adipokinetic hormone (AKH) before the period of food deprivation prevents the anorexigenic action of the laminarin in adults but not in nymphs. It is argued that the effect of the AKH may be indirect, through its lipid-mobilising action. The insecticide pymetrozine increases the latency to feed but also reduces the length of the first meal, and its anorexigenic activity is not affected by injection of AKH. The present data support the concept that laminarin-induced anorexia involves a central lack of motivation to eat, rather than a 'stop eating' signal. Others have shown that the mechanism of action of pymetrozine involves the serotonergic system and can be blocked by mianserin, so it is intriguing that in the present study injection of mianserin prior to that of laminarin modulates the anorexigenic effect of the immunogen. This suggests that biogenic amines are involved in the control of appetitive behaviour in locusts, as they are in vertebrates. The possible usefulness of the locust model in studying sickness-induced anorexia is discussed briefly. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  17. Slow motor neuron stimulation of locust skeletal muscle: model and measurement.

    PubMed

    Wilson, Emma; Rustighi, Emiliano; Newland, Philip L; Mace, Brian R

    2013-06-01

    The isometric force response of the locust hind leg extensor tibia muscle to stimulation of a slow extensor tibia motor neuron is experimentally investigated, and a mathematical model describing the response presented. The measured force response was modelled by considering the ability of an existing model, developed to describe the response to the stimulation of a fast extensor tibia motor neuron and to also model the response to slow motor neuron stimulation. It is found that despite large differences in the force response to slow and fast motor neuron stimulation, which could be accounted for by the differing physiology of the fibres they innervate, the model is able to describe the response to both fast and slow motor neuron stimulation. Thus, the presented model provides a potentially generally applicable, robust, simple model to describe the isometric force response of a range of muscles.

  18. Synaptic connections of first-stage visual neurons in the locust Schistocerca gregaria extend evolution of tetrad synapses back 200 million years.

    PubMed

    Wernitznig, Stefan; Rind, Frances Claire; Pölt, Peter; Zankel, Armin; Pritz, Elisabeth; Kolb, Dagmar; Bock, Elisabeth; Leitinger, Gerd

    2015-02-01

    The small size of some insects, and the crystalline regularity of their eyes, have made them ideal for large-scale reconstructions of visual circuits. In phylogenetically recent muscomorph flies, like Drosophila, precisely coordinated output to different motion-processing pathways is delivered by photoreceptors (R cells), targeting four different postsynaptic cells at each synapse (tetrad). Tetrads were linked to the evolution of aerial agility. To reconstruct circuits for vision in the larger brain of a locust, a phylogenetically old, flying insect, we adapted serial block-face scanning electron microscopy (SBEM). Locust lamina monopolar cells, L1 and L2, were the main targets of the R cell pathway, L1 and L2 each fed a different circuit, only L1 providing feedback onto R cells. Unexpectedly, 40% of all locust R cell synapses onto both L1 and L2 were tetrads, revealing the emergence of tetrads in an arthropod group present 200 million years before muscomorph flies appeared, coinciding with the early evolution of flight.

  19. Retinally-generated saccadic suppression of a locust looming-detector neuron: investigations using a robot locust.

    PubMed

    Santer, R D; Stafford, R; Rind, F C

    2004-11-22

    A fundamental task performed by many visual systems is to distinguish apparent motion caused by eye movements from real motion occurring within the environment. During saccadic eye movements, this task is achieved by inhibitory signals of central and retinal origin that suppress the output of motion-detecting neurons. To investigate the retinally-generated component of this suppression, we used a computational model of a locust looming-detecting pathway that experiences saccadic suppression. This model received input from the camera of a mobile robot that performed simple saccade-like movements, allowing the model's response to simplified real stimuli to be tested. Retinally-generated saccadic suppression resulted from two inhibitory mechanisms within the looming-detector's input architecture. One mechanism fed inhibition forward through the network, inhibiting the looming-detector's initial response to movement. The second spread inhibition laterally within the network, suppressing the looming-detector's maintained response to movement. These mechanisms prevent a looming-detector model response to whole-field visual stimuli. In the locust, this mechanism of saccadic suppression may operate in addition to centrally-generated suppression. Because lateral inhibition is a common feature of early visual processing in many organisms, we discuss whether the mechanism of retinally-generated saccadic suppression found in the locust looming-detector model may also operate in these species.

  20. Retinally-generated saccadic suppression of a locust looming-detector neuron: investigations using a robot locust.

    PubMed Central

    Santer, R. D.; Stafford, R.; Rind, F. C.

    2004-01-01

    A fundamental task performed by many visual systems is to distinguish apparent motion caused by eye movements from real motion occurring within the environment. During saccadic eye movements, this task is achieved by inhibitory signals of central and retinal origin that suppress the output of motion-detecting neurons. To investigate the retinally-generated component of this suppression, we used a computational model of a locust looming-detecting pathway that experiences saccadic suppression. This model received input from the camera of a mobile robot that performed simple saccade-like movements, allowing the model's response to simplified real stimuli to be tested. Retinally-generated saccadic suppression resulted from two inhibitory mechanisms within the looming-detector's input architecture. One mechanism fed inhibition forward through the network, inhibiting the looming-detector's initial response to movement. The second spread inhibition laterally within the network, suppressing the looming-detector's maintained response to movement. These mechanisms prevent a looming-detector model response to whole-field visual stimuli. In the locust, this mechanism of saccadic suppression may operate in addition to centrally-generated suppression. Because lateral inhibition is a common feature of early visual processing in many organisms, we discuss whether the mechanism of retinally-generated saccadic suppression found in the locust looming-detector model may also operate in these species. PMID:16849153

  1. The Locust Borer

    Treesearch

    Jimmy R. Galford

    1984-01-01

    The locust borer, Megacyllene robiniae (Forst.), is a native insect. Its original range probably coincided with that of its host tree, the black locust, which once grew only along the Allegheny Mountains from Pennsylvania to Georgia and in the Ozark Mountain region.

  2. Molecular mechanisms of phase change in locusts.

    PubMed

    Wang, Xianhui; Kang, Le

    2014-01-01

    Phase change in locusts is an ideal model for studying the genetic architectures and regulatory mechanisms associated with phenotypic plasticity. The recent development of genomic and metabolomic tools and resources has furthered our understanding of the molecular basis of phase change in locusts. Thousands of phase-related genes and metabolites have been highlighted using large-scale expressed sequence tags, microarrays, high-throughput transcriptomic sequences, or metabolomic approaches. However, only several key factors, including genes, metabolites, and pathways, have a critical role in phase transition in locusts. For example, CSP (chemosensory protein) and takeout genes, the dopamine pathway, protein kinase A, and carnitines were found to be involved in the regulation of behavioral phase change and gram-negative bacteria-binding proteins in prophylaxical disease resistance of gregarious locusts. Epigenetic mechanisms including small noncoding RNAs and DNA methylation have been implicated. We review these new advances in the molecular basis of phase change in locusts and present some challenges that need to be addressed.

  3. Biomechanical and dynamic mechanism of locust take-off

    NASA Astrophysics Data System (ADS)

    Chen, Dian-Sheng; Yin, Jun-Mao; Chen, Ke-Wei; Li, Zhen

    2014-10-01

    The biomimetic locust robot hopping vehicle has promising applications in planet exploration and reconnaissance. This paper explores the bionic dynamics model of locust jumping by using high-speed video and force analysis. This paper applies hybrid rigid-flexible mechanisms to bionic locust hopping and studies its dynamics with emphasis laid on the relationship between force and jumping performance. The hybrid rigid-flexible model is introduced in the analysis of locust mechanism to address the principles of dynamics that govern locust joints and mechanisms during energy storage and take-off. The dynamic response of the biomimetic mechanism is studied by considering the flexibility according to the locust jumping dynamics mechanism. A multi-rigid-body dynamics model of locust jumping is established and analyzed based on Lagrange method; elastic knee and tarsus mechanisms that were proposed in previous works are analyzed alongside the original bionic joint configurations and their machinery principles. This work offers primary theories for take-off dynamics and establishes a theoretical basis for future studies and engineering applications.

  4. Individual Pause-and-Go Motion Is Instrumental to the Formation and Maintenance of Swarms of Marching Locust Nymphs

    PubMed Central

    Ariel, Gil; Ophir, Yotam; Levi, Sagi; Ben-Jacob, Eshel; Ayali, Amir

    2014-01-01

    The principal interactions leading to the emergence of order in swarms of marching locust nymphs was studied both experimentally, using small groups of marching locusts in the lab, and using computer simulations. We utilized a custom tracking algorithm to reveal fundamental animal-animal interactions leading to collective motion. Uncovering this behavior introduced a new agent-based modeling approach in which pause-and-go motion is pivotal. The behavioral and modeling findings are largely based on motion-related visual sensory inputs obtained by the individual locust. Results suggest a generic principle, in which intermittent animal motion can be considered as a sequence of individual decisions as animals repeatedly reassess their situation and decide whether or not to swarm. This interpretation implies, among other things, some generic characteristics regarding the build-up and emergence of collective order in swarms: in particular, that order and disorder are generic meta-stable states of the system, suggesting that the emergence of order is kinetic and does not necessarily require external environmental changes. This work calls for further experimental as well as theoretical investigation of the neural mechanisms underlying locust coordinative behavior. PMID:24988464

  5. Role of wing pronation in evasive steering of locusts.

    PubMed

    Ribak, Gal; Rand, David; Weihs, Daniel; Ayali, Amir

    2012-07-01

    Evasive steering is crucial for flying in a crowded environment such as a locust swarm. We investigated how flying locusts alter wing-flapping symmetry in response to a looming object approaching from the side. Desert locusts (Schistocerca gregaria) were tethered to a rotatable shaft that allowed them to initiate a banked turn. A visual stimulus of an expending disk on one side of the locust was used to evoke steering while recording the change in wingbeat kinematics and electromyography (EMG) of metathoracic wing depressors. Locusts responded to the looming object by rolling to the contralateral direction. During turning, EMG of hindwing depressors showed an omission of one action potential in the subalar depressor (M129) of the hindwing inside the turn. This omission was associated with increased pronation of the same wing, reducing its angle-of-attack during the downstroke. The link between spike-omission in M129 and wing pronation was verified by stimulating the hindwing depressor muscles with an artificial motor pattern that included the misfire of M129. These results suggest that hindwing pronation is instrumental in rotating the body to the side opposite of the approaching threat. Turning away from the threat would be highly adaptive for collision avoidance when flying in dense swarms.

  6. Locust dynamics: behavioral phase change and swarming.

    PubMed

    Topaz, Chad M; D'Orsogna, Maria R; Edelstein-Keshet, Leah; Bernoff, Andrew J

    2012-01-01

    Locusts exhibit two interconvertible behavioral phases, solitarious and gregarious. While solitarious individuals are repelled from other locusts, gregarious insects are attracted to conspecifics and can form large aggregations such as marching hopper bands. Numerous biological experiments at the individual level have shown how crowding biases conversion towards the gregarious form. To understand the formation of marching locust hopper bands, we study phase change at the collective level, and in a quantitative framework. Specifically, we construct a partial integrodifferential equation model incorporating the interplay between phase change and spatial movement at the individual level in order to predict the dynamics of hopper band formation at the population level. Stability analysis of our model reveals conditions for an outbreak, characterized by a large scale transition to the gregarious phase. A model reduction enables quantification of the temporal dynamics of each phase, of the proportion of the population that will eventually gregarize, and of the time scale for this to occur. Numerical simulations provide descriptions of the aggregation's structure and reveal transiently traveling clumps of gregarious insects. Our predictions of aggregation and mass gregarization suggest several possible future biological experiments.

  7. Locusts and remote sensing: a review

    NASA Astrophysics Data System (ADS)

    Latchininsky, Alexandre V.

    2013-01-01

    A dozen species of locusts (Orthoptera: Acrididae) are a major threat to food security worldwide. Their outbreaks occur on every continent except Antarctica, threatening the livelihood of 10% of the world's population. The locusts are infamous for their voracity, polyphagy, and capacity for long-distance migrations. Decades of research revealed very complex bio-ecology of locusts. They exist in two, inter-convertible and density-dependent states, or "phases." Despite the evident progress in understanding locust behavior, our ability to predict and manage locust outbreaks remains insufficient, as evidenced by locust plagues still occurring during the 21st century. One of the main reasons is that locusts typically inhabit remote and scarcely populated areas, and their distribution ranges often spread across continents. This creates tremendous obstacles for locust population monitoring and control. Traditional ground locust surveys are inadequate to address the enormous spatial scale of the locust problem in a limited window of time dictated by the pest's development. Remote sensing (satellite information) appears a promising tool in locust monitoring. Satellite data are increasingly used for monitoring and forecasting two locust species, the desert and the Australian plague locust. However, applications of this geospatial technology to other locust species remain rare.

  8. Photoreceptor projections and receptive fields in the dorsal rim area and main retina of the locust eye.

    PubMed

    Schmeling, Fabian; Tegtmeier, Jennifer; Kinoshita, Michiyo; Homberg, Uwe

    2015-05-01

    In many insect species, photoreceptors of a small dorsal rim area of the eye are specialized for sensitivity to the oscillation plane of polarized skylight and, thus, serve a role in sky compass orientation. To further understand peripheral mechanisms of polarized-light processing in the optic lobe, we have studied the projections of photoreceptors and their receptive fields in the main eye and dorsal rim area of the desert locust, a model system for polarization vision analysis. In both eye regions, one photoreceptor per ommatidium, R7, has a long visual fiber projecting through the lamina to the medulla. Axonal fibers from R7 receptors of the dorsal rim area have short side branches throughout the depth of the dorsal lamina and maintain retinotopic projections to the dorsal medulla following the first optic chiasma. Receptive fields of dorsal rim photoreceptors are considerably larger (average acceptance angle 33°) than those of the main eye (average acceptance angle 2.04°) and, taken together, cover almost the entire sky. The data challenge previous reports of two long visual fibers per ommatidium in the main eye of the locust and provide data for future analysis of peripheral networks underlying polarization opponency in the locust brain.

  9. Surgical lesion of the anterior optic tract abolishes polarotaxis in tethered flying locusts, Schistocerca gregaria.

    PubMed

    Mappes, Martina; Homberg, Uwe

    2007-01-01

    Many insects can detect the polarization pattern of the blue sky and rely on polarization vision for sky compass orientation. In laboratory experiments, tethered flying locusts perform periodic changes in flight behavior under a slowly rotating polarizer even if one eye is painted black. Anatomical tracing studies and intracellular recordings have suggested that the polarization vision pathway in the locust brain involves the anterior optic tract and tubercle, the lateral accessory lobe, and the central complex of the brain. To investigate whether visual pathways through the anterior optic tract mediate polarotaxis in the desert locust, we transected the tract on one side and tested polarotaxis (1) with both eyes unoccluded and (2) with the eye of the intact hemisphere painted black. In the second group of animals, but not in the first group, polarotaxis was abolished. Sham operations did not impair polarotaxis. The experiments show that the anterior optic tract is an indispensable part of visual pathways mediating polarotaxis in the desert locust.

  10. Types, numbers and distribution of synapses on the dendritic tree of an identified visual interneuron in the brain of the locust.

    PubMed

    Killmann, F; Gras, H; Schürmann, F

    1999-06-01

    The descending contralateral movement detector (DCMD), an identified descending interneuron in the brain of the locust Schistocerca gregaria has been investigated by using light and electron microscopy. We describe the fine structure, distribution and numbers of synapses that it receives from another identified brain neuron, the lobular giant movement detector (LGMD), and from unidentified neurons. The DCMD dendrites emerging from the integrative segment vary in form and number between individuals and sexes but always form a flattened dendritic domain. The arborizations and the integrative segment appear to be exclusively postsynaptic. Two types of synaptic contacts (Type 1 and 2) onto the DCMD can be discerned as having either round (Type 1) or pleiomorphic synaptic vesicles (Type 2) and by large (Type 1) or small (Type 2) subsynaptic appositions. Contact zones of Type 1 synapses are smaller than those of Type 2. LGMD-synapses are of Type 1 and occur intermingled with presynaptic sites of unidentified units. Some branches of the DCMD receiving input from unidentified units are devoid of contacting LGMD processes. Synapses of both types are randomly distributed over the DCMD integrative segment and at fibres with similar sizes. Type 1 synapses are much more frequent than Type 2 synapses and their number is negatively correlated with fibre diameter. For a whole DCMD dendritic arborization, a total of 8500 active zones of chemical synapses has been calculated, including a minimum of 2250 LGMD-synapses and about 1000 Type 2 synapses. The DCMD may thus receive a considerable amount of input from as yet unidentified neurons.

  11. Assessing the carbon sequestration potential of poplar and black locust short rotation coppices on mine reclamation sites in Eastern Germany - Model development and application.

    PubMed

    Quinkenstein, A; Jochheim, H

    2016-03-01

    In the temperate zone short rotation coppice systems for the production of woody biomass (SRC) have gained great interest as they offer a pathway to both sustainable bioenergy production and the potential sequestration of CO2 within the biomass and the soil. This study used the carbon model SHORTCAR to assess the carbon cycle of a poplar (Populus suaveolens Fisch. x Populus trichocarpa Torr. et Gray cv. Androscoggin) and a black locust (Robinia pseudoacacia L.) SRC. The model was calibrated using data from established SRC plantations on reclaimed mine sites in northeast Germany and validated through the determination of uncertainty ranges of selected model parameters and a sensitivity analysis. In addition to a 'reference scenario', representing the actual site conditions, 7 hypothetical scenarios, which varied in climate conditions, rotation intervals, runtimes, and initial soil organic carbon (SOC) stocks, were defined for each species. Estimates of carbon accumulation within the biomass, the litter layer, and the soil were compared to field data and previously published results. The model was sensitive to annual stem growth and initial soil organic carbon stocks. In the reference scenario net biome production for SRC on reclaimed sites in Lusatia, Germany amounted to 64.5 Mg C ha(-1) for R. pseudoacacia and 8.9 Mg C ha(-1) for poplar, over a period of 36 years. These results suggest a considerable potential of SRC for carbon sequestration at least on marginal sites. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Phenomenological model of visual acuity

    NASA Astrophysics Data System (ADS)

    Gómez-Pedrero, José A.; Alonso, José

    2016-12-01

    We propose in this work a model for describing visual acuity (V) as a function of defocus and pupil diameter. Although the model is mainly based on geometrical optics, it also incorporates nongeometrical effects phenomenologically. Compared to similar visual acuity models, the proposed one considers the effect of astigmatism and the variability of best corrected V among individuals; it also takes into account the accommodation and the "tolerance to defocus," the latter through a phenomenological parameter. We have fitted the model to the V data provided in the works of Holladay et al. and Peters, showing the ability of this model to accurately describe the variation of V against blur and pupil diameter. We have also performed a comparison between the proposed model and others previously published in the literature. The model is mainly intended for use in the design of ophthalmic compensations, but it can also be useful in other fields such as visual ergonomics, design of visual tests, and optical instrumentation.

  13. A broadly tuned odorant receptor in neurons of trichoid sensilla in locust, Locusta migratoria.

    PubMed

    You, Yinwei; Smith, Dean P; Lv, Mingyue; Zhang, Long

    2016-12-01

    Insects have evolved sophisticated olfactory reception systems to sense exogenous chemical signals. Odorant receptors (ORs) on the membrane of chemosensory neurons are believed to be key molecules in sensing exogenous chemical cues. ORs in different species of insects are diverse and should tune a species to its own specific semiochemicals relevant to their survival. The orthopteran insect, locust (Locusta migratoria), is a model hemimetabolous insect. There is very limited knowledge on the functions of locust ORs although many locust OR genes have been identified in genomic sequencing experiments. In this paper, a locust OR, LmigOR3 was localized to neurons housed in trichoid sensilla by in situ hybridization. LmigOR3 was expressed as a transgene in Drosophila trichoid olfactory neurons (aT1) lacking the endogenous receptor Or67d and the olfactory tuning curve and dose-response curves were established for this locust receptor. The results show that LmigOR3 sensitizes neurons to ketones, esters and heterocyclic compounds, indicating that LmigOR3 is a broadly tuned receptor. LmigOR3 is the first odorant receptor from Orthoptera that has been functionally analyzed in the Drosophila aT1 system. This work demonstrates the utility of the Drosophila aT1 system for functional analysis of locust odorant receptors and suggests that LmigOR3 may be involved in detecting food odorants, or perhaps locust body volatiles that may help us to develop new control methods for locusts.

  14. A broadly tuned odorant receptor in neurons of trichoid sensilla in locust, Locusta migratoria.

    PubMed

    You, Yinwei; Smith, Dean P; Lv, Mingyue; Zhang, Long

    2016-10-27

    Insects have evolved sophisticated olfactory reception systems to sense exogenous chemical signals. Odorant receptors (ORs) on the membrane of chemosensory neurons are believed to be key molecules in sensing exogenous chemical cues. ORs in different species of insects are diverse and should tune a species to its own specific semiochemicals relevant to their survival. The orthopteran insect, locust (Locusta migratoria), is a model hemimetabolous insect. There is very limited knowledge on the functions of locust ORs although many locust OR genes have been identified in genomic sequencing experiments. In this paper, a locust OR, LmigOR3 was localized to neurons housed in trichoid sensilla by in situ hybridization. LmigOR3 was expressed as a transgene in Drosophila trichoid olfactory neurons (aT1) lacking the endogenous receptor Or67d and the olfactory tuning curve and dose-response curves were established for this locust receptor. The results show that LmigOR3 sensitizes neurons to ketones, esters and heterocyclic compounds, indicating that LmigOR3 is a broadly tuned receptor. LmigOR3 is the first odorant receptor from Orthoptera that has been functionally analyzed in the Drosophila aT1 system. This work demonstrates the utility of the Drosophila aT1 system for functional analysis of locust odorant receptors and suggests that LmigOR3 may be involved in detecting food odorants, or perhaps locust body volatiles that may help us to develop new control methods for locusts.

  15. Locust Leafminer, Odonatata dorsalis (Thunb.) (Pest Alert)

    Treesearch

    USDA Forest Service

    2001-01-01

    The locust leafminer is primarily a pest of black locust. Adults skeletonize and eat holes in the leaves; whereas, larvae mine the tissue between the upper and lower-leaf surface (mining damage is the most destructive). Under outbreak conditions, whole hillsides turn gray or brown, often suggesting fall color change. Outbreaks of the locust leafminer are generally more...

  16. Cannibalism can drive the evolution of behavioural phase polyphenism in locusts.

    PubMed

    Guttal, Vishwesha; Romanczuk, Pawel; Simpson, Stephen J; Sword, Gregory A; Couzin, Iain D

    2012-10-01

    During outbreaks, locust swarms can contain millions of insects travelling thousands of kilometers while devastating vegetation and crops. Such large-scale spatial organization is preceded locally by a dramatic density-dependent phenotypic transition in multiple traits. Behaviourally, low-density 'solitarious' individuals avoid contact with one another; above a critical local density, they undergo a rapid behavioural transition to the 'gregarious phase' whereby they exhibit mutual attraction. Although proximate causes of this phase polyphenism have been widely studied, the ultimate driving factors remain unclear. Using an individual-based evolutionary model, we reveal that cannibalism, a striking feature of locust ecology, could lead to the evolution of density-dependent behavioural phase-change in juvenile locusts. We show that this behavioural strategy minimizes risk associated with cannibalistic interactions and may account for the empirically observed persistence of locust groups during outbreaks. Our results provide a parsimonious explanation for the evolution of behavioural plasticity in locusts.

  17. Visual Modelling of Learning Processes

    ERIC Educational Resources Information Center

    Copperman, Elana; Beeri, Catriel; Ben-Zvi, Nava

    2007-01-01

    This paper introduces various visual models for the analysis and description of learning processes. The models analyse learning on two levels: the dynamic level (as a process over time) and the functional level. Two types of model for dynamic modelling are proposed: the session trace, which documents a specific learner in a particular learning…

  18. Visual Modelling of Learning Processes

    ERIC Educational Resources Information Center

    Copperman, Elana; Beeri, Catriel; Ben-Zvi, Nava

    2007-01-01

    This paper introduces various visual models for the analysis and description of learning processes. The models analyse learning on two levels: the dynamic level (as a process over time) and the functional level. Two types of model for dynamic modelling are proposed: the session trace, which documents a specific learner in a particular learning…

  19. Predator versus Prey: Locust Looming-Detector Neuron and Behavioural Responses to Stimuli Representing Attacking Bird Predators

    PubMed Central

    Santer, Roger D.; Rind, F. Claire; Simmons, Peter J.

    2012-01-01

    Many arthropods possess escape-triggering neural mechanisms that help them evade predators. These mechanisms are important neuroethological models, but they are rarely investigated using predator-like stimuli because there is often insufficient information on real predator attacks. Locusts possess uniquely identifiable visual neurons (the descending contralateral movement detectors, DCMDs) that are well-studied looming motion detectors. The DCMDs trigger ‘glides’ in flying locusts, which are hypothesised to be appropriate last-ditch responses to the looms of avian predators. To date it has not been possible to study glides in response to stimuli simulating bird attacks because such attacks have not been characterised. We analyse video of wild black kites attacking flying locusts, and estimate kite attack speeds of 10.8±1.4 m/s. We estimate that the loom of a kite’s thorax towards a locust at these speeds should be characterised by a relatively low ratio of half size to speed (l/|v|) in the range 4–17 ms. Peak DCMD spike rate and gliding response occurrence are known to increase as l/|v| decreases for simple looming shapes. Using simulated looming discs, we investigate these trends and show that both DCMD and behavioural responses are strong to stimuli with kite-like l/|v| ratios. Adding wings to looming discs to produce a more realistic stimulus shape did not disrupt the overall relationships of DCMD and gliding occurrence to stimulus l/|v|. However, adding wings to looming discs did slightly reduce high frequency DCMD spike rates in the final stages of object approach, and slightly delay glide initiation. Looming discs with or without wings triggered glides closer to the time of collision as l/|v| declined, and relatively infrequently before collision at very low l/|v|. However, the performance of this system is in line with expectations for a last-ditch escape response. PMID:23209660

  20. Phenomenological model of visual acuity.

    PubMed

    Gómez-Pedrero, José A; Alonso, José

    2016-12-01

    We propose in this work a model for describing visual acuity (V) as a function of defocus and pupil diameter. Although the model is mainly based on geometrical optics, it also incorporates nongeometrical effects phenomenologically. Compared to similar visual acuity models, the proposed one considers the effect of astigmatism and the variability of best corrected V among individuals; it also takes into account the accommodation and the “tolerance to defocus,” the latter through a phenomenological parameter. We have fitted the model to the V data provided in the works of Holladay et al. and Peters, showing the ability of this model to accurately describe the variation of V against blur and pupil diameter. We have also performed a comparison between the proposed model and others previously published in the literature. The model is mainly intended for use in the design of ophthalmic compensations, but it can also be useful in other fields such as visual ergonomics, design of visual tests, and optical instrumentation.

  1. Neuromechanical simulation of the locust jump

    PubMed Central

    Cofer, D.; Cymbalyuk, G.; Heitler, W. J.; Edwards, D. H.

    2010-01-01

    The neural circuitry and biomechanics of kicking in locusts have been studied to understand their roles in the control of both kicking and jumping. It has been hypothesized that the same neural circuit and biomechanics governed both behaviors but this hypothesis was not testable with current technology. We built a neuromechanical model to test this and to gain a better understanding of the role of the semi-lunar process (SLP) in jump dynamics. The jumping and kicking behaviors of the model were tested by comparing them with a variety of published data, and were found to reproduce the results from live animals. This confirmed that the kick neural circuitry can produce the jump behavior. The SLP is a set of highly sclerotized bands of cuticle that can be bent to store energy for use during kicking and jumping. It has not been possible to directly test the effects of the SLP on jump performance because it is an integral part of the joint, and attempts to remove its influence prevent the locust from being able to jump. Simulations demonstrated that the SLP can significantly increase jump distance, power, total energy and duration of the jump impulse. In addition, the geometry of the joint enables the SLP force to assist leg flexion when the leg is flexed, and to assist extension once the leg has begun to extend. PMID:20228342

  2. A locust-inspired miniature jumping robot.

    PubMed

    Zaitsev, Valentin; Gvirsman, Omer; Ben Hanan, Uri; Weiss, Avi; Ayali, Amir; Kosa, Gabor

    2015-11-25

    Unmanned ground vehicles are mostly wheeled, tracked, or legged. These locomotion mechanisms have a limited ability to traverse rough terrain and obstacles that are higher than the robot's center of mass. In order to improve the mobility of small robots it is necessary to expand the variety of their motion gaits. Jumping is one of nature's solutions to the challenge of mobility in difficult terrain. The desert locust is the model for the presented bio-inspired design of a jumping mechanism for a small mobile robot. The basic mechanism is similar to that of the semilunar process in the hind legs of the locust, and is based on the cocking of a torsional spring by wrapping a tendon-like wire around the shaft of a miniature motor. In this study we present the jumping mechanism design, and the manufacturing and performance analysis of two demonstrator prototypes. The most advanced jumping robot demonstrator is power autonomous, weighs 23 gr, and is capable of jumping to a height of 3.35 m, covering a distance of 1.37 m.

  3. Epigenetic remodelling of brain, body and behaviour during phase change in locusts.

    PubMed

    Burrows, Malcolm; Rogers, Stephen M; Ott, Swidbert R

    2011-07-26

    The environment has a central role in shaping developmental trajectories and determining the phenotype so that animals are adapted to the specific conditions they encounter. Epigenetic mechanisms can have many effects, with changes in the nervous and musculoskeletal systems occurring at different rates. How is the function of an animal maintained whilst these transitions happen? Phenotypic plasticity can change the ways in which animals respond to the environment and even how they sense it, particularly in the context of social interactions between members of their own species. In the present article, we review the mechanisms and consequences of phenotypic plasticity by drawing upon the desert locust as an unparalleled model system. Locusts change reversibly between solitarious and gregarious phases that differ dramatically in appearance, general physiology, brain function and structure, and behaviour. Solitarious locusts actively avoid contact with other locusts, but gregarious locusts may live in vast, migrating swarms dominated by competition for scarce resources and interactions with other locusts. Different phase traits change at different rates: some behaviours take just a few hours, colouration takes a lifetime and the muscles and skeleton take several generations. The behavioural demands of group living are reflected in gregarious locusts having substantially larger brains with increased space devoted to higher processing. Phase differences are also apparent in the functioning of identified neurons and circuits. The whole transformation process of phase change pivots on the initial and rapid behavioural decision of whether or not to join with other locusts. The resulting positive feedback loops from the presence or absence of other locusts drives the process to completion. Phase change is accompanied by dramatic changes in neurochemistry, but only serotonin shows a substantial increase during the critical one- to four-hour window during which gregarious

  4. Visualization and Modeling Working Group

    SciTech Connect

    Fernandez, S.J.; Dodrill, K.A.

    2007-03-01

    During the 2005 Hurricane season, many consequence predictions were available from 36 to 96 hours before landfalls, via the Department of Energy’s Visualization and Modeling Working Group (VMWG). Real-time data can be tapped by local officials and utilities, and can also be accessed for post-event regulatory audits. An overview of VMWG’s models, results and uses will be presented.

  5. Grip and detachment of locusts on inverted sandpaper substrates.

    PubMed

    Han, Longbao; Wang, Zhouyi; Ji, Aihong; Dai, Zhendong

    2011-12-01

    Locusts (Locusta migratoria manilensis) are characterized by their strong flying and grasping ability. Research on the grasping mechanism and behaviour of locusts on sloping substrates plays an important role in elucidating the mechanics of hexapod locomotion. Data on the maximum angles of slope at which locusts can grasp stably (critical angles of detachment) were obtained from high-speed video recordings at 215 fps. The grasping forces were collected by using two sensors, in situations where all left legs were standing on one and the right legs on the other sensor plate. These data were used to illustrate the grasping ability of locusts on slopes with varying levels of roughness. The grasping morphologies of locusts' bodies and tarsi were observed, and the surface roughness as well as diameters of their claw tips was measured under a microscope to account for the grasping mechanism of these insects on the sloping substrate. The results showed that the claw tips and part of the pads were in contact with the inverted substrate when the mean particle diameter was in the range of 15.3-40.5 µm. The interaction between pads and substrates may improve the stability of contact, and claw tips may play a key role in keeping the attachment reliable. A model was developed to explain the significant effects of the relative size of claw tips and mean particle diameter on grasping ability as well as the observed increase in lateral force (2.09-4.05 times greater than the normal force during detachment) with increasing slope angle, which indicates that the lateral force may be extremely important in keeping the contact reliable. This research lays the groundwork for the probable design and development of biomimetic robotics.

  6. Dynamics and stability of directional jumps in the desert locust

    PubMed Central

    Gvirsman, Omer

    2016-01-01

    Locusts are known for their ability to jump large distances to avoid predation. The jump also serves to launch the adult locust into the air in order to initiate flight. Various aspects of this important behavior have been studied extensively, from muscle physiology and biomechanics, to the energy storage systems involved in powering the jump, and more. Less well understood are the mechanisms participating in control of the jump trajectory. Here we utilise video monitoring and careful analysis of experimental directional jumps by adult desert locusts, together with dynamic computer simulation, in order to understand how the locusts control the direction and elevation of the jump, the residual angular velocities resulting from the jump and the timing of flapping-flight initiation. Our study confirms and expands early findings regarding the instrumental role of the initial body position and orientation. Both real-jump video analysis and simulations based on our expanded dynamical model demonstrate that the initial body coordinates of position (relative to the hind-legs ground-contact points) are dominant in predicting the jumps’ azimuth and elevation angles. We also report a strong linear correlation between the jumps’ pitch-angular-velocity and flight initiation timing, such that head downwards rotations lead to earlier wing opening. In addition to offering important insights into the bio-mechanical principles of locust jumping and flight initiation, the findings from this study will be used in designing future prototypes of a bio-inspired miniature jumping robot that will be employed in animal behaviour studies and environmental monitoring applications. PMID:27703846

  7. 21 CFR 184.1343 - Locust (carob) bean gum.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Locust (carob) bean gum. 184.1343 Section 184.1343... Listing of Specific Substances Affirmed as GRAS § 184.1343 Locust (carob) bean gum. (a) Locust (carob) bean gum is primarily the macerated endosperm of the seed of the locust (carob) bean tree, Ceratonia...

  8. 21 CFR 184.1343 - Locust (carob) bean gum.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Locust (carob) bean gum. 184.1343 Section 184.1343... GRAS § 184.1343 Locust (carob) bean gum. (a) Locust (carob) bean gum is primarily the macerated endosperm of the seed of the locust (carob) bean tree, Ceratonia siliqua (Linne), a leguminous evergreen...

  9. 21 CFR 184.1343 - Locust (carob) bean gum.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Locust (carob) bean gum. 184.1343 Section 184.1343... Listing of Specific Substances Affirmed as GRAS § 184.1343 Locust (carob) bean gum. (a) Locust (carob) bean gum is primarily the macerated endosperm of the seed of the locust (carob) bean tree, Ceratonia...

  10. 21 CFR 184.1343 - Locust (carob) bean gum.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Locust (carob) bean gum. 184.1343 Section 184.1343... Listing of Specific Substances Affirmed as GRAS § 184.1343 Locust (carob) bean gum. (a) Locust (carob) bean gum is primarily the macerated endosperm of the seed of the locust (carob) bean tree, Ceratonia...

  11. 21 CFR 184.1343 - Locust (carob) bean gum.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Locust (carob) bean gum. 184.1343 Section 184.1343... Listing of Specific Substances Affirmed as GRAS § 184.1343 Locust (carob) bean gum. (a) Locust (carob) bean gum is primarily the macerated endosperm of the seed of the locust (carob) bean tree, Ceratonia...

  12. Neurobiology of polarization vision in the locust Schistocerca gregaria.

    PubMed

    Homberg, U; Hofer, Sabine; Mappes, Martina; Vitzthum, H; Pfeiffer, K; Gebhardt, S; Müller, Monika; Paech, Agnes

    2004-01-01

    The polarization pattern of the blue sky serves as an important reference for spatial orientation in insects. To understand the neural mechanisms involved in sky compass orientation we have analyzed the polarization vision system in the locust Schistocerca gregaria. As in other insects, photoreceptors adapted for the detection of sky polarization are concentrated in a dorsal rim area (DRA) of the compound eye. Stationary flying locusts show polarotactic yaw-torque responses when illuminated through a rotating polarizer from above. This response is abolished after painting the DRAs. Central stages of the polarization vision system, revealed through tracing studies, include dorsal areas in the lamina and medulla, the anterior lobe of the lobula, the anterior optic tubercle, the lateral accessory lobe and the central complex. Physiological analysis of polarization-sensitive (POL) neurons has focussed on the optic tubercle and on the central complex. Each POL neuron was maximally excited at a certain e-vector (phimax) and was maximally inhibited at an e-vector perpendicular to phimax. The neurons had large visual fields, and many neurons received input from both eyes. The neuronal organization of the central complex suggests a role as a spatial compass within the locust brain.

  13. A Model for Visual Attention.

    DTIC Science & Technology

    1988-04-01

    from one visual display (say, left of fixation) to a second RSVP display (say, at the right). The timing of the attention shift is controlled by the...characters was unchanged. The ’action’ in the model stems from the bell-shaped time course of the attention shift, first towards, and then away from, the...still. In a further test, the subject is required to shift attention to the RSVP display at the same time that he executes a saccade in the opposite

  14. An Enhanced Visualization Process Model for Incremental Visualization.

    PubMed

    Schulz, Hans-Jorg; Angelini, Marco; Santucci, Giuseppe; Schumann, Heidrun

    2016-07-01

    With today's technical possibilities, a stable visualization scenario can no longer be assumed as a matter of course, as underlying data and targeted display setup are much more in flux than in traditional scenarios. Incremental visualization approaches are a means to address this challenge, as they permit the user to interact with, steer, and change the visualization at intermediate time points and not just after it has been completed. In this paper, we put forward a model for incremental visualizations that is based on the established Data State Reference Model, but extends it in ways to also represent partitioned data and visualization operators to facilitate intermediate visualization updates. In combination, partitioned data and operators can be used independently and in combination to strike tailored compromises between output quality, shown data quantity, and responsiveness-i.e., frame rates. We showcase the new expressive power of this model by discussing the opportunities and challenges of incremental visualization in general and its usage in a real world scenario in particular.

  15. Predicting avian distributions to evaluate spatiotemporal overlap with locust control operations in eastern Australia.

    PubMed

    Szabo, Judit K; Davy, Pamela J; Hooper, Michael J; Astheimer, Lee B

    2009-12-01

    Locusts and grasshoppers cause considerable economic damage to agriculture worldwide. The Australian Plague Locust Commission uses multiple pesticides to control locusts in eastern Australia. Avian exposure to agricultural pesticides is of conservation concern, especially in the case of rare and threatened species. The aim of this study was to evaluate the probability of pesticide exposure of native avian species during operational locust control based on knowledge of species occurrence in areas and times of application. Using presence-absence data provided by the Birds Australia Atlas for 1998 to 2002, we developed a series of generalized linear models to predict avian occurrences on a monthly basis in 0.5 degrees grid cells for 280 species over 2 million km2 in eastern Australia. We constructed species-specific models relating occupancy patterns to survey date and location, rainfall, and derived habitat preference. Model complexity depended on the number of observations available. Model output was the probability of occurrence for each species at times and locations of past locust control operations within the 5-year study period. Given the high spatiotemporal variability of locust control events, the variability in predicted bird species presence was high, with 108 of the total 280 species being included at least once in the top 20 predicted species for individual space-time events. The models were evaluated using field surveys collected between 2000 and 2005, at sites with and without locust outbreaks. Model strength varied among species. Some species were under- or over-predicted as times and locations of interest typically did not correspond to those in the prediction data set and certain species were likely attracted to locusts as a food source. Field surveys demonstrated the utility of the spatially explicit species lists derived from the models but also identified the presence of a number of previously unanticipated species. These results also emphasize

  16. Motion dazzle: a locust's eye view.

    PubMed

    Santer, Roger D

    2013-01-01

    Motion dazzle describes high-contrast patterns (e.g. zigzags on snakes and dazzle paint on World War I ships) that do not conceal an object, but inhibit an observer's perception of its motion. However, there is limited evidence for this phenomenon. Locusts have a pair of descending contralateral movement detector (DCMD) neurons which respond to predator-like looming objects and trigger escape responses. Within the network providing input to a DCMD, separate channels are excited when moving edges cause areas of the visual field to brighten or darken, respectively, and these stimuli interact antagonistically. When a looming square has an upper half and lower half that are both darker than background, it elicits a stronger DCMD response than the upper half does alone. However, when a looming square has a darker-than-background upper half and a brighter-than-background lower half, it elicits a weaker DCMD response than its upper half does alone. This effect allows high-contrast patterns to weaken and delay DCMD response parameters implicated in escape decisions, and is analogous to motion dazzle. However, the motion dazzle effect does not provide the best means of motion camouflage, because uniform bright squares, or low-contrast squares, elicit weaker DCMD responses than high-contrast, half dark, half bright squares.

  17. Locust bean gum: a versatile biopolymer.

    PubMed

    Prajapati, Vipul D; Jani, Girish K; Moradiya, Naresh G; Randeria, Narayan P; Nagar, Bhanu J

    2013-05-15

    Biopolymers or natural polymers are an attractive class of biodegradable polymers since they are derived from natural sources, easily available, relatively cheap and can be modified by suitable reagent. Locust bean gum is one of them that have a wide potentiality in drug formulations due to its extensive application as food additive and its recognized lack of toxicity. It can be tailored to suit its demands of applicants in both the pharmaceutical and biomedical areas. Locust bean gum has a wide application either in the field of novel drug delivery system as rate controlling excipients or in tissue engineering as scaffold formation. Through keen references of reported literature on locust bean gum, in this review, we have described critical aspects of locust bean gum, its manufacturing process, physicochemical properties and applications in various drug delivery systems.

  18. A Computational Model of Spatial Visualization Capacity

    ERIC Educational Resources Information Center

    Lyon, Don R.; Gunzelmann, Glenn; Gluck, Kevin A.

    2008-01-01

    Visualizing spatial material is a cornerstone of human problem solving, but human visualization capacity is sharply limited. To investigate the sources of this limit, we developed a new task to measure visualization accuracy for verbally-described spatial paths (similar to street directions), and implemented a computational process model to…

  19. A Computational Model of Spatial Visualization Capacity

    ERIC Educational Resources Information Center

    Lyon, Don R.; Gunzelmann, Glenn; Gluck, Kevin A.

    2008-01-01

    Visualizing spatial material is a cornerstone of human problem solving, but human visualization capacity is sharply limited. To investigate the sources of this limit, we developed a new task to measure visualization accuracy for verbally-described spatial paths (similar to street directions), and implemented a computational process model to…

  20. Visualization tools: Models, representations and knowledge integration

    NASA Astrophysics Data System (ADS)

    Foley, Brian John

    Learning science requires students to make inferences and draw conclusions about concepts that are abstract, invisible or otherwise difficult to imagine. Scientific visualization is one way to make science and scientific thinking more visible to students. This dissertation investigates how visualization can be utilized for science education by studying how students integrate information from visualizations into their thinking. For this study, I developed a series of computer visualizations depicting thermodynamic phenomena. Thermodynamics is a topic that is both fundamental for several branches of science and difficult for many students to master (Linn & Songer, 1991). The design of the visualizations was learner centered. Pilot studies suggested that a dot-density representation of temperature would present a visual analogy of temperature as a measure of heat energy density. Energy density is a powerful model that can help students explain everyday heating and cooling phenomena. Dot-density computer visualizations were introduced into a public middle school science class studying thermodynamics (N = 178). Half of the students used the visualizations, while the other half served as a control. Interviews, classwork and tests were collected from the students in order to determine how the visualizations affected students' learning. Although there were not significant differences in the posttests for the groups, the classwork during the semester showed that the visualizations did affect how students envisioned heat and temperature. Students could often apply the energy density model in their reasoning during visualization activities, but when the visualizations were unavailable, many students applied less useful models. The interviews illustrated several difficulties that students had in learning from the visualizations. Some students interpreted the visualizations to support their existing conceptions of heat. Other students needed to have a visualization present to

  1. Visual Performance Prediction Using Schematic Eye Models

    NASA Astrophysics Data System (ADS)

    Schwiegerling, James Theodore

    The goal of visual modeling is to predict the visual performance or a change in performance of an individual from a model of the human visual system. In designing a model of the human visual system, two distinct functions are considered. The first is the production of an image incident on the retina by the optical system of the eye, and the second is the conversion of this image into a perceived image by the retina and brain. The eye optics are evaluated using raytracing techniques familiar to the optical engineer. The effect of the retinal and brain function are combined with the raytracing results by analyzing the modulation of the retinal image. Each of these processes is important far evaluating the performance of the entire visual system. Techniques for converting the abstract system performance measures used by optical engineers into clinically -applicable measures such as visual acuity and contrast sensitivity are developed in this dissertation. Furthermore, a methodology for applying videokeratoscopic height data to the visual model is outlined. These tools are useful in modeling the visual effects of corrective lenses, ocular maladies and refractive surgeries. The modeling techniques are applied to examples of soft contact lenses, keratoconus, radial keratotomy, photorefractive keratectomy and automated lamellar keratoplasty. The modeling tools developed in this dissertation are meant to be general and modular. As improvements to the measurements of the properties and functionality of the various visual components are made, the new information can be incorporated into the visual system model. Furthermore, the examples discussed here represent only a small subset of the applications of the visual model. Additional ocular maladies and emerging refractive surgeries can be modeled as well.

  2. Locusts for Lunch: Connecting Mathematics, Science, and Literature

    ERIC Educational Resources Information Center

    Austin, Richard A.; Thompson, Denisse R.; Beckmann, Charlene E.

    2006-01-01

    This article connects three disciplines while exploring how students computed tons of food consumed by both locusts and people. Included with this article are two worksheets "How Much Does a Locust Eat?" and "Can You Eat Those Locusts?". (Contains 3 figures.)

  3. Bristly locust: Establishment success in an emulated organic silvopasture

    USDA-ARS?s Scientific Manuscript database

    Bristly locust (Robinia hispida) is a native tree legume found throughout much of the US, but it has received relatively little attention as a potential crop. While only 2-10 ft tall, bristly locust somewhat resembles black locust, produces pink flowers, and the stems are covered by soft, inoffensiv...

  4. Control of ovarian steroidogenesis in insects: a locust neurohormone is active in vitro on blowfly ovaries.

    PubMed

    Manière, G; Vanhems, E; Rondot, I; Delbecque, J P

    2009-09-15

    Ovarian steroidogenesis controlling insect reproduction is mainly regulated by brain gonadotropins liberated from corpora cardiaca (CC). Till now, different neurohormones have been identified in two insect groups only, locusts and mosquitoes, and it is unknown whether they could be active in other insects. In order to complete previous observations on the control of ovarian steroidogenesis in the blowfly, Phormia regina, we examined whether neuropeptides isolated from locust CC have an effect in vitro on ovarian steroidogenesis in our dipteran model. Our experiments showed that crude extracts from locust CC efficiently stimulated steroidogenesis in blowfly isolated previtellogenic ovaries. However, such an activity was observed neither with authenticated neuroparsins (NPs), the putative homologs of the ovarian ecdysteroidogenic hormone of mosquitoes, nor with ovarian maturing peptide (OMP), the putative locust steroidogenic neurohormone. Partial purifications of CC extracts were then performed using methanol and/or acidic ethanol extractions followed by reverse phase HPLC and collected fractions were assayed in vitro. A significant steroidogenic activity was found in a single group of acidic fractions, well separated from OMP and NPs, which was associated to slight but significant anti-insulin immunoreactivity. In conclusion, a locust CC neurohormone, different from NPs and OMP, is able to stimulate ecdysteroidogenesis in blowfly ovaries. Though this active factor has not been fully characterized, its behavior during extraction or HPLC and its immunoreactivity strongly suggest it could be an insulin-like peptide. This is in agreement with previous studies demonstrating the role of such peptides as steroidogenic gonadotropins in blowflies and several other insects.

  5. Metabolomic analysis reveals that carnitines are key regulatory metabolites in phase transition of the locusts.

    PubMed

    Wu, Rui; Wu, Zeming; Wang, Xianhui; Yang, Pengcheng; Yu, Dan; Zhao, Chunxia; Xu, Guowang; Kang, Le

    2012-02-28

    Phenotypic plasticity occurs prevalently and plays a vital role in adaptive evolution. However, the underlying molecular mechanisms responsible for the expression of alternate phenotypes remain unknown. Here, a density-dependent phase polyphenism of Locusta migratoria was used as the study model to identify key signaling molecules regulating the expression of phenotypic plasticity. Metabolomic analysis, using high-performance liquid chromatography and gas chromatography-mass spectrometry, showed that solitarious and gregarious locusts have distinct metabolic profiles in hemolymph. A total of 319 metabolites, many of which are involved in lipid metabolism, differed significantly in concentration between the phases. In addition, the time course of changes in the metabolic profiles of locust hemolymph that accompany phase transition was analyzed. Carnitine and its acyl derivatives, which are involved in the lipid β-oxidation process, were identified as key differential metabolites that display robust correlation with the time courses of phase transition. RNAi silencing of two key enzymes from the carnitine system, carnitine acetyltransferase and palmitoyltransferase, resulted in a behavioral transition from the gregarious to solitarious phase and the corresponding changes of metabolic profiles. In contrast, the injection of exogenous acetylcarnitine promoted the acquisition of gregarious behavior in solitarious locusts. These results suggest that carnitines mediate locust phase transition possibly through modulating lipid metabolism and influencing the nervous system of the locusts.

  6. Illustrative visualization of 3D city models

    NASA Astrophysics Data System (ADS)

    Doellner, Juergen; Buchholz, Henrik; Nienhaus, Marc; Kirsch, Florian

    2005-03-01

    This paper presents an illustrative visualization technique that provides expressive representations of large-scale 3D city models, inspired by the tradition of artistic and cartographic visualizations typically found in bird"s-eye view and panoramic maps. We define a collection of city model components and a real-time multi-pass rendering algorithm that achieves comprehensible, abstract 3D city model depictions based on edge enhancement, color-based and shadow-based depth cues, and procedural facade texturing. Illustrative visualization provides an effective visual interface to urban spatial information and associated thematic information complementing visual interfaces based on the Virtual Reality paradigm, offering a huge potential for graphics design. Primary application areas include city and landscape planning, cartoon worlds in computer games, and tourist information systems.

  7. Predictors of Visualization: A Structural Equation Model.

    ERIC Educational Resources Information Center

    Robichaux, Rebecca R.; Guarino, A. J.

    This study tested a causal model of the development of spatial visualization based on a synthesis of past and present research. During the summer and fall of 1999, 117 third- and fourth-year undergraduates majoring in architecture, mathematics, mathematics education, and mechanical engineering completed a spatial visualization test and a…

  8. Unveiling the mechanism by which microsporidian parasites prevent locust swarm behavior

    PubMed Central

    Shi, Wangpeng; Guo, Yang; Xu, Chuan; Tan, Shuqian; Miao, Jing; Feng, Yanjie; Zhao, Hong; St. Leger, Raymond J.; Fang, Weiguo

    2014-01-01

    Locusts are infamous for their ability to aggregate into gregarious migratory swarms that pose a major threat to food security. Aggregation is elicited by an interplay of visual, tactile, and chemical stimuli, but the aggregation pheromone in feces is particularly important. Infection by the microsporidian parasite Paranosema (Nosema) locustae is known to inhibit aggregation of solitary Locusta migratoria manilensis and to induce gregarious locusts to shift back to solitary behavior. Here we suggest that P. locustae achieves this effect by acidifying the hindgut and modulating the locust immune response, which suppresses the growth of the hindgut bacteria that produce aggregation pheromones. This in turn reduces production of the neurotransmitter serotonin that initiates gregarious behavior. Healthy L. migratoria manilensis exposed to olfactory stimuli from parasite-infected locusts also produced significantly less serotonin, reducing gregarization. P. locustae also suppresses biosynthesis of the neurotransmitter dopamine that maintains gregarization. Our findings reveal the mechanisms by which P. locustae reduces production of aggregation pheromone and blocks the initiation and maintainence of gregarious behavior. PMID:24474758

  9. Monitoring the intensity of locust damage to vegetation using hyper-spectra data obtained at ground surface

    NASA Astrophysics Data System (ADS)

    Ni, Shaoxiang; Wu, Tong

    2007-09-01

    Since 1980s of the last century, outbreak of Oriental Migratory Locust (Locusta migratoria manilensis Meyen) has rampantly emerged again in some regions of China. It is extremely important to monitor efficiently the locust damage to vegetation in order to control this kind of insect pest. In this paper, taking Huanghua County of Hebei province, China as the study area and based on the in situ hyper-spectral data, the differences in canopy reflectance spectra and the characteristic parameters of hyper-spectra were analyzed and compared for the reeds at normal growing and for those under encroaching from locusts. In addition, five models were developed to simulate the relations between the characteristic parameters of hyper-spectra and Leaf Area Index (LAI) of reeds. The result showed that among those indices the locust damage spectra index (LDSI) is mostly applicable to reflect the intensity of locust damage in the study area. Finally, a scheme for the intensity distinction of locust damage to reeds was suggested based on LDSI data, i.e., no damage if LDSI is over 62.856, slightly damage if LDSI is between 41.254 and 59.496, and seriously damage if LDSI is less than 41.254.

  10. VISUAL PLUMES MIXING ZONE MODELING SOFTWARE

    EPA Science Inventory

    The U.S. Environmental Protection Agency has a long history of both supporting plume model development and providing mixing zone modeling software. The Visual Plumes model is the most recent addition to the suite of public-domain models available through the EPA-Athens Center f...

  11. VISUAL PLUMES MIXING ZONE MODELING SOFTWARE

    EPA Science Inventory

    The US Environmental Protection Agency has a history of developing plume models and providing technical assistance. The Visual Plumes model (VP) is a recent addition to the public-domain models available on the EPA Center for Exposure Assessment Modeling (CEAM) web page. The Wind...

  12. VISUAL PLUMES MIXING ZONE MODELING SOFTWARE

    EPA Science Inventory

    The U.S. Environmental Protection Agency has a long history of both supporting plume model development and providing mixing zone modeling software. The Visual Plumes model is the most recent addition to the suite of public-domain models available through the EPA-Athens Center f...

  13. VISUAL PLUMES MIXING ZONE MODELING SOFTWARE

    EPA Science Inventory

    The US Environmental Protection Agency has a history of developing plume models and providing technical assistance. The Visual Plumes model (VP) is a recent addition to the public-domain models available on the EPA Center for Exposure Assessment Modeling (CEAM) web page. The Wind...

  14. Knowledge Generation Model for Visual Analytics.

    PubMed

    Sacha, Dominik; Stoffel, Andreas; Stoffel, Florian; Kwon, Bum Chul; Ellis, Geoffrey; Keim, Daniel A

    2014-12-01

    Visual analytics enables us to analyze huge information spaces in order to support complex decision making and data exploration. Humans play a central role in generating knowledge from the snippets of evidence emerging from visual data analysis. Although prior research provides frameworks that generalize this process, their scope is often narrowly focused so they do not encompass different perspectives at different levels. This paper proposes a knowledge generation model for visual analytics that ties together these diverse frameworks, yet retains previously developed models (e.g., KDD process) to describe individual segments of the overall visual analytic processes. To test its utility, a real world visual analytics system is compared against the model, demonstrating that the knowledge generation process model provides a useful guideline when developing and evaluating such systems. The model is used to effectively compare different data analysis systems. Furthermore, the model provides a common language and description of visual analytic processes, which can be used for communication between researchers. At the end, our model reflects areas of research that future researchers can embark on.

  15. Large Terrain Modeling and Visualization for Planets

    NASA Technical Reports Server (NTRS)

    Myint, Steven; Jain, Abhinandan; Cameron, Jonathan; Lim, Christopher

    2011-01-01

    Physics-based simulations are actively used in the design, testing, and operations phases of surface and near-surface planetary space missions. One of the challenges in realtime simulations is the ability to handle large multi-resolution terrain data sets within models as well as for visualization. In this paper, we describe special techniques that we have developed for visualization, paging, and data storage for dealing with these large data sets. The visualization technique uses a real-time GPU-based continuous level-of-detail technique that delivers multiple frames a second performance even for planetary scale terrain model sizes.

  16. Large Terrain Modeling and Visualization for Planets

    NASA Technical Reports Server (NTRS)

    Myint, Steven; Jain, Abhinandan; Cameron, Jonathan; Lim, Christopher

    2011-01-01

    Physics-based simulations are actively used in the design, testing, and operations phases of surface and near-surface planetary space missions. One of the challenges in realtime simulations is the ability to handle large multi-resolution terrain data sets within models as well as for visualization. In this paper, we describe special techniques that we have developed for visualization, paging, and data storage for dealing with these large data sets. The visualization technique uses a real-time GPU-based continuous level-of-detail technique that delivers multiple frames a second performance even for planetary scale terrain model sizes.

  17. Simulation models of early visual processes

    NASA Technical Reports Server (NTRS)

    Ahumada, Albert J., Jr.; Watson, Andrew B.

    1988-01-01

    Several areas of early visual processes are studied using computer models. These models include retinal cone placement, cone color arrangement, development of geniculate receptive fields, cortical simple cells, and motion field extraction. The receptive field of a model cortical unit is indicated schematically.

  18. Allometry and biomass of pollarded black locust

    Treesearch

    David M. Burner; Daniel H. Pote; Adrian Ares

    2006-01-01

    Climatic constraints can cause forage deficits in the summer in west-central Arkansas, necessitating expensive, supplemental hay feeding. Black locust could be used for summer browse, but the temporal distribution of foliar biomass has not been adequately tested. Our objective was to determine effects of harvest date, fertilization (0 and 600 kg P ha-1...

  19. The Locust Jump: An Integrated Laboratory Investigation

    ERIC Educational Resources Information Center

    Scott, Jon

    2005-01-01

    The locust is well known for its ability to jump large distances to avoid predation. This class sets out a series of investigations into the mechanisms underlying the jump enabling students to bring together information from biomechanics, muscle physiology, and anatomy. The nature of the investigation allows it to be undertaken at a number of…

  20. The Locust Jump: An Integrated Laboratory Investigation

    ERIC Educational Resources Information Center

    Scott, Jon

    2005-01-01

    The locust is well known for its ability to jump large distances to avoid predation. This class sets out a series of investigations into the mechanisms underlying the jump enabling students to bring together information from biomechanics, muscle physiology, and anatomy. The nature of the investigation allows it to be undertaken at a number of…

  1. Visual automated macromolecular model building.

    PubMed

    Langer, Gerrit G; Hazledine, Saul; Wiegels, Tim; Carolan, Ciaran; Lamzin, Victor S

    2013-04-01

    Automated model-building software aims at the objective interpretation of crystallographic diffraction data by means of the construction or completion of macromolecular models. Automated methods have rapidly gained in popularity as they are easy to use and generate reproducible and consistent results. However, the process of model building has become increasingly hidden and the user is often left to decide on how to proceed further with little feedback on what has preceded the output of the built model. Here, ArpNavigator, a molecular viewer tightly integrated into the ARP/wARP automated model-building package, is presented that directly controls model building and displays the evolving output in real time in order to make the procedure transparent to the user.

  2. A Visual Detection Learning Model

    NASA Technical Reports Server (NTRS)

    Beard, Bettina L.; Ahumada, Albert J., Jr.; Trejo, Leonard (Technical Monitor)

    1998-01-01

    Our learning model has memory templates representing the target-plus-noise and noise-alone stimulus sets. The best correlating template determines the response. The correlations and the feedback participate in the additive template updating rule. The model can predict the relative thresholds for detection in random, fixed and twin noise.

  3. Deer prefer pine seedlings growing near black locust

    Treesearch

    Walter H. Davidson

    1970-01-01

    The presence of volunteer black locust seems to make some pine species on a bituminous coal spoil more palatable to white-tailed deer. Seedlings of jack pine, pitch pine, and Austrian pine were browsed more heavily when within 10 feet of a black locust than when farther away. The nitrogen produced by the black locust may have caused more succulent tissue in the pines....

  4. Computer Modeling and Visualization in Design Technology: An Instructional Model.

    ERIC Educational Resources Information Center

    Guidera, Stan

    2002-01-01

    Design visualization can increase awareness of issues related to perceptual and psychological aspects of design that computer-assisted design and computer modeling may not allow. A pilot university course developed core skills in modeling and simulation using visualization. Students were consistently able to meet course objectives. (Contains 16…

  5. Integrating Visualizations into Modeling NEST Simulations

    PubMed Central

    Nowke, Christian; Zielasko, Daniel; Weyers, Benjamin; Peyser, Alexander; Hentschel, Bernd; Kuhlen, Torsten W.

    2015-01-01

    Modeling large-scale spiking neural networks showing realistic biological behavior in their dynamics is a complex and tedious task. Since these networks consist of millions of interconnected neurons, their simulation produces an immense amount of data. In recent years it has become possible to simulate even larger networks. However, solutions to assist researchers in understanding the simulation's complex emergent behavior by means of visualization are still lacking. While developing tools to partially fill this gap, we encountered the challenge to integrate these tools easily into the neuroscientists' daily workflow. To understand what makes this so challenging, we looked into the workflows of our collaborators and analyzed how they use the visualizations to solve their daily problems. We identified two major issues: first, the analysis process can rapidly change focus which requires to switch the visualization tool that assists in the current problem domain. Second, because of the heterogeneous data that results from simulations, researchers want to relate data to investigate these effectively. Since a monolithic application model, processing and visualizing all data modalities and reflecting all combinations of possible workflows in a holistic way, is most likely impossible to develop and to maintain, a software architecture that offers specialized visualization tools that run simultaneously and can be linked together to reflect the current workflow, is a more feasible approach. To this end, we have developed a software architecture that allows neuroscientists to integrate visualization tools more closely into the modeling tasks. In addition, it forms the basis for semantic linking of different visualizations to reflect the current workflow. In this paper, we present this architecture and substantiate the usefulness of our approach by common use cases we encountered in our collaborative work. PMID:26733860

  6. Visualizing ultrasound through computational modeling

    NASA Technical Reports Server (NTRS)

    Guo, Theresa W.

    2004-01-01

    The Doppler Ultrasound Hematocrit Project (DHP) hopes to find non-invasive methods of determining a person s blood characteristics. Because of the limits of microgravity and the space travel environment, it is important to find non-invasive methods of evaluating the health of persons in space. Presently, there is no well developed method of determining blood composition non-invasively. This projects hopes to use ultrasound and Doppler signals to evaluate the characteristic of hematocrit, the percentage by volume of red blood cells within whole blood. These non-invasive techniques may also be developed to be used on earth for trauma patients where invasive measure might be detrimental. Computational modeling is a useful tool for collecting preliminary information and predictions for the laboratory research. We hope to find and develop a computer program that will be able to simulate the ultrasound signals the project will work with. Simulated models of test conditions will more easily show what might be expected from laboratory results thus help the research group make informed decisions before and during experimentation. There are several existing Matlab based computer programs available, designed to interpret and simulate ultrasound signals. These programs will be evaluated to find which is best suited for the project needs. The criteria of evaluation that will be used are 1) the program must be able to specify transducer properties and specify transmitting and receiving signals, 2) the program must be able to simulate ultrasound signals through different attenuating mediums, 3) the program must be able to process moving targets in order to simulate the Doppler effects that are associated with blood flow, 4) the program should be user friendly and adaptable to various models. After a computer program is chosen, two simulation models will be constructed. These models will simulate and interpret an RF data signal and a Doppler signal.

  7. Phenotypic transformation affects associative learning in the desert locust.

    PubMed

    Simões, Patrício M V; Niven, Jeremy E; Ott, Swidbert R

    2013-12-02

    In desert locusts, increased population densities drive phenotypic transformation from the solitarious to the gregarious phase within a generation [1-4]. Here we show that when presented with odor-food associations, the two extreme phases differ in aversive but not appetitive associative learning, with solitarious locusts showing a conditioned aversion more quickly than gregarious locusts. The acquisition of new learned aversions was blocked entirely in acutely crowded solitarious (transiens) locusts, whereas appetitive learning and prior learned associations were unaffected. These differences in aversive learning support phase-specific feeding strategies. Associative training with hyoscyamine, a plant alkaloid found in the locusts' habitat [5, 6], elicits a phase-dependent odor preference: solitarious locusts avoid an odor associated with hyoscyamine, whereas gregarious locusts do not. Remarkably, when solitarious locusts are crowded and then reconditioned with the odor-hyoscyamine pairing as transiens, the specific blockade of aversive acquisition enables them to override their prior aversive memory with an appetitive one. Under fierce food competition, as occurs during crowding in the field, this provides a neuroecological mechanism enabling locusts to reassign an appetitive value to an odor that they learned previously to avoid.

  8. A Model for Visual Attention

    DTIC Science & Technology

    1989-10-01

    observer’s reports) is determined by the presentation times of the items, the amount of attention they receive while being gated into memory, and a weighted...with few parameters. A prediction of the model is that the attention shift should follow the same time course, controlled by the gating signal, no...the time of gate-opening into short-term memory should be independent of the spatial positions of the streams. That is, attention operates to turn on a

  9. Distribution and specific central projections of mechanoreceptors in the thorax and proximal leg joints of locusts.

    PubMed

    Hustert, R; Pflüger, J H; Bräunig, P

    1981-01-01

    Campaniform sensilla (CS) of the locust proximal leg segments are arranged predominantly as homologous groups on the trochantera and femora. Their number is reduced in the more specialized jumping legs. The specific projections of the primary afferent axons from single groups of CS are visualized after backfilling them with CoCl2 introduced through the dendritic area in the cuticle. The majority of central branching patterns reveal a high degree of uniformity if compared within a population, between populations of one segment, and between populations of different legs. All projections bifurcate close to the peripheral root of the leg nerve and are restricted to the ipsilateral hemiganglion of the segments. These projections seem to differ in their extent more or less from those campaniform sensilla in other parts of the locust and in other insects.

  10. Modeling and visual simulation of Microalgae photobioreactor

    NASA Astrophysics Data System (ADS)

    Zhao, Ming; Hou, Dapeng; Hu, Dawei

    Microalgae is a kind of nutritious and high photosynthetic efficiency autotrophic plant, which is widely distributed in the land and the sea. It can be extensively used in medicine, food, aerospace, biotechnology, environmental protection and other fields. Photobioreactor which is important equipment is mainly used to cultivate massive and high-density microalgae. In this paper, based on the mathematical model of microalgae which grew under different light intensity, three-dimensional visualization model was built and implemented in 3ds max, Virtools and some other three dimensional software. Microalgae is photosynthetic organism, it can efficiently produce oxygen and absorb carbon dioxide. The goal of the visual simulation is to display its change and impacting on oxygen and carbon dioxide intuitively. In this paper, different temperatures and light intensities were selected to control the photobioreactor, and dynamic change of microalgal biomass, Oxygen and carbon dioxide was observed with the aim of providing visualization support for microalgal and photobioreactor research.

  11. Numerical modeling of eastern connecticut's visual resources

    Treesearch

    Daniel L. Civco

    1979-01-01

    A numerical model capable of accurately predicting the preference for landscape photographs of selected points in eastern Connecticut is presented. A function of the social attitudes expressed toward thirty-two salient visual landscape features serves as the independent variable in predicting preferences. A technique for objectively assigning adjectives to landscape...

  12. A conceptual method for monitoring locust habitat

    USGS Publications Warehouse

    Howard, Stephen M.; Loveland, Thomas R.; Ohlen, Donald O.; Moore, Donald G.; Gallo, Kevin P.; Olsson, Jonathon

    1987-01-01

    A procedure to map and monitor vegetation conditions in near-real time was developed at the United States Geological Survey;s Earth Resources Observation Systems Data Center for use in locust control efforts. Meteorological satellite dat were acquired daily for 3 weeks in October and November 1986 over a 1.4-million-square-kilometer study area centered on Botswana in southern Africa. Advanced Very High Resolution Radiometer data were screened to remove cloud-contaminated data and registered to a 1-kilometer geographic base. Each day the normalized difference vegetation index (NDVI) was calculated to determine the presence and relative amounts of green vegetation in the area. Over a 10-day cycle, subsequent dates of NDVI data were composited to fill in data removed by the cloud-screening process. At any pixel location, the maximum NDVI value was retained. At the end of the 10-day cycle, a composite vegetation-greenness map was produced and another cycle started. Greenness-change maps were produced by comparing two 10-day composite greenness images. Automated map production procedures were used to merge the NDVI image data with cartographic data (boundaries, roads, tick marks) digitized from 1:1,000,000-scale operational navigation charts. The vegetation-greenness map shoes the current distribution of vegetation in the region and can be used to locate potential locust breeding area. The change map shows areas where increases and decreases in greenness have occurred between processing cycles. Significant areas of locust damage in remote regions are characterized by an unexpected decrease in greenness. These maps can be used by locust control teams to efficiently target areas for reconnaissance. In general, the procedures and products have utility for resource managers who are required to monitor vegetation resources over large geographic regions.

  13. Predictive Models of Human Visual Processes in Aerosystems.

    DTIC Science & Technology

    1977-07-01

    predict ive models , theoretical work has been focused on control sites for specific visual functions. At present models of visual transduction In human...currently in progress on a model of visual acuity based upon the spatial modulation transfer function of neurons in the primary visual cortex. 3...System III. Models . . . . . . . . . 11 1. VIsual Transduction 2. Visua l Acuity IV. Projections . . . . . . . . 19 V. Bibliography . . . . . . 21 L

  14. Data Visualization Saliency Model: A Tool for Evaluating Abstract Data Visualizations

    DOE PAGES

    Matzen, Laura E.; Haass, Michael J.; Divis, Kristin M.; ...

    2017-08-29

    Evaluating the effectiveness of data visualizations is a challenging undertaking and often relies on one-off studies that test a visualization in the context of one specific task. Researchers across the fields of data science, visualization, and human-computer interaction are calling for foundational tools and principles that could be applied to assessing the effectiveness of data visualizations in a more rapid and generalizable manner. One possibility for such a tool is a model of visual saliency for data visualizations. Visual saliency models are typically based on the properties of the human visual cortex and predict which areas of a scene havemore » visual features (e.g. color, luminance, edges) that are likely to draw a viewer's attention. While these models can accurately predict where viewers will look in a natural scene, they typically do not perform well for abstract data visualizations. In this paper, we discuss the reasons for the poor performance of existing saliency models when applied to data visualizations. We introduce the Data Visualization Saliency (DVS) model, a saliency model tailored to address some of these weaknesses, and we test the performance of the DVS model and existing saliency models by comparing the saliency maps produced by the models to eye tracking data obtained from human viewers. In conclusion, we describe how modified saliency models could be used as general tools for assessing the effectiveness of visualizations, including the strengths and weaknesses of this approach.« less

  15. Data Visualization Saliency Model: A Tool for Evaluating Abstract Data Visualizations.

    PubMed

    Matzen, Laura E; Haass, Michael J; Divis, Kristin M; Wang, Zhiyuan; Wilson, Andrew T

    2017-08-29

    Evaluating the effectiveness of data visualizations is a challenging undertaking and often relies on one-off studies that test a visualization in the context of one specific task. Researchers across the fields of data science, visualization, and human-computer interaction are calling for foundational tools and principles that could be applied to assessing the effectiveness of data visualizations in a more rapid and generalizable manner. One possibility for such a tool is a model of visual saliency for data visualizations. Visual saliency models are typically based on the properties of the human visual cortex and predict which areas of a scene have visual features (e.g. color, luminance, edges) that are likely to draw a viewer's attention. While these models can accurately predict where viewers will look in a natural scene, they typically do not perform well for abstract data visualizations. In this paper, we discuss the reasons for the poor performance of existing saliency models when applied to data visualizations. We introduce the Data Visualization Saliency (DVS) model, a saliency model tailored to address some of these weaknesses, and we test the performance of the DVS model and existing saliency models by comparing the saliency maps produced by the models to eye tracking data obtained from human viewers. Finally, we describe how modified saliency models could be used as general tools for assessing the effectiveness of visualizations, including the strengths and weaknesses of this approach.

  16. Variable rewards and discrimination ability in an insect herbivore: what and how does a hungry locust learn?

    PubMed

    Behmer, Spencer T; Belt, Corlisa E; Shapiro, Martin S

    2005-09-01

    With the exception of honeybees, there have been few good invertebrate models for associative learning. Grasshoppers and locusts (Orthoptera: Acrididae) possess a number of characteristics that make them excellent candidates for such studies, and in this paper we present a novel protocol, based on a Y-maze, that is specifically designed for studying their learning and choice behaviour. Three separate experiments were conducted using individual gregarious forms of the desert locust, Schistocerca gregaria. In our first experiment, coloured arms of a two-sided Y-maze provided a large or small amount of wheat for nine choice-trials. In the second experiment, locusts discriminated odours with wheat rewards for nine choice-trials. The odour-wheat reward combinations were then reversed for an additional nine choice-trials. For the third experiment, the locusts again discriminated odours, but here we used artificial foods and the rewards differed in their concentration of protein and digestible carbohydrate. The results indicate that, in addition to showing good acquisition of choice performance, the locusts also took less time to reach the larger-rewarded option. The data indicate that our protocol is highly sensitive for recording choice behaviour in acridids and reveals the potential they have for advancing our current understanding of associative learning and the field of learning in general.

  17. Interactive Visual Analysis within Dynamic Ocean Models

    NASA Astrophysics Data System (ADS)

    Butkiewicz, T.

    2012-12-01

    The many observation and simulation based ocean models available today can provide crucial insights for all fields of marine research and can serve as valuable references when planning data collection missions. However, the increasing size and complexity of these models makes leveraging their contents difficult for end users. Through a combination of data visualization techniques, interactive analysis tools, and new hardware technologies, the data within these models can be made more accessible to domain scientists. We present an interactive system that supports exploratory visual analysis within large-scale ocean flow models. The currents and eddies within the models are illustrated using effective, particle-based flow visualization techniques. Stereoscopic displays and rendering methods are employed to ensure that the user can correctly perceive the complex 3D structures of depth-dependent flow patterns. Interactive analysis tools are provided which allow the user to experiment through the introduction of their customizable virtual dye particles into the models to explore regions of interest. A multi-touch interface provides natural, efficient interaction, with custom multi-touch gestures simplifying the otherwise challenging tasks of navigating and positioning tools within a 3D environment. We demonstrate the potential applications of our visual analysis environment with two examples of real-world significance: Firstly, an example of using customized particles with physics-based behaviors to simulate pollutant release scenarios, including predicting the oil plume path for the 2010 Deepwater Horizon oil spill disaster. Secondly, an interactive tool for plotting and revising proposed autonomous underwater vehicle mission pathlines with respect to the surrounding flow patterns predicted by the model; as these survey vessels have extremely limited energy budgets, designing more efficient paths allows for greater survey areas.

  18. The modeling of miniature UAV flight visualization simulation platform

    NASA Astrophysics Data System (ADS)

    Li, Dong-hui; Li, Xin; Yang, Le-le; Li, Xiong

    2015-12-01

    This paper combines virtual technology with visualization visual simulation theory, construct the framework of visual simulation platform, apply open source software FlightGear simulator combined with GoogleEarth design a small UAV flight visual simulation platform. Using software AC3D to build 3D models of aircraft and complete the model loading based on XML configuration, the design and simulation of visualization modeling visual platform is presented. By using model-driven and data transforming in FlightGear , the design of data transmission module is realized based on Visual Studio 2010 development platform. Finally combined with GoogleEarth it can achieve the tracking and display.

  19. Exploring Population Pharmacokinetic Modeling with Resampling Visualization

    PubMed Central

    Zuo, Fenghua

    2014-01-01

    Background. In the last decade, population pharmacokinetic (PopPK) modeling has spread its influence in the whole process of drug research and development. While targeting the construction of the dose-concentration of a drug based on a population of patients, it shows great flexibility in dealing with sparse samplings and unbalanced designs. The resampling approach has been considered an important statistical tool to assist in PopPK model validation by measuring the uncertainty of parameter estimates and evaluating the influence of individuals. Methods. The current work describes a graphical diagnostic approach for PopPK models by visualizing resampling statistics, such as case deletion and bootstrap. To examine resampling statistics, we adapted visual methods from multivariate analysis, parallel coordinate plots, and multidimensional scaling. Results. Multiple models were fitted, the information of parameter estimates and diagnostics were extracted, and the results were visualized. With careful scaling, the dependencies between different statistics are revealed. Using typical examples, the approach proved to have great capacity to identify influential outliers from the statistical perspective, which deserves special attention in a dosing regimen. Discussion. By combining static graphics with interactive graphics, we are able to explore the multidimensional data from an integrated and systematic perspective. Complementary to current approaches, our proposed method provides a new way for PopPK modeling analysis. PMID:24877118

  20. 21 CFR 582.7343 - Locust bean gum.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Locust bean gum. 582.7343 Section 582.7343 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... bean gum. (a) Product. Locust (carob) bean gum. (b) Conditions of use. This substance is generally...

  1. 21 CFR 582.7343 - Locust bean gum.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Locust bean gum. 582.7343 Section 582.7343 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... bean gum. (a) Product. Locust (carob) bean gum. (b) Conditions of use. This substance is generally...

  2. 21 CFR 582.7343 - Locust bean gum.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Locust bean gum. 582.7343 Section 582.7343 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... bean gum. (a) Product. Locust (carob) bean gum. (b) Conditions of use. This substance is generally...

  3. 21 CFR 582.7343 - Locust bean gum.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Locust bean gum. 582.7343 Section 582.7343 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... bean gum. (a) Product. Locust (carob) bean gum. (b) Conditions of use. This substance is generally...

  4. 21 CFR 582.7343 - Locust bean gum.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Locust bean gum. 582.7343 Section 582.7343 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... bean gum. (a) Product. Locust (carob) bean gum. (b) Conditions of use. This substance is generally...

  5. A Locust Cage and Hatchery from Plastic Aquarium Tanks

    ERIC Educational Resources Information Center

    Stoneman, C. F.; And Others

    1973-01-01

    Describes how to construct a locust cage from two plastic aquaria and four coffee jars with plastic lids. Its advantages over a conventional locust cage include the inexpensive cost, lack of breakable glass, ease of cleaning, and visibility from all angles. (JR)

  6. A Locust Cage and Hatchery from Plastic Aquarium Tanks

    ERIC Educational Resources Information Center

    Stoneman, C. F.; And Others

    1973-01-01

    Describes how to construct a locust cage from two plastic aquaria and four coffee jars with plastic lids. Its advantages over a conventional locust cage include the inexpensive cost, lack of breakable glass, ease of cleaning, and visibility from all angles. (JR)

  7. Percussion as an alternative scarification for New Mexico locust and black locust seeds

    Treesearch

    Nabil Khadduri; John T. Harrington; Lee S. Rosner; David R. Dreesen

    2002-01-01

    Hot water and sulfuric acid soaks are traditional treatments for seeds of many temperate woody legumes, including locusts. However, these scarification techniques often produce inconsistent germination. Percussion scarification, where seeds are repeatedly propelled against a hard surface, was compared with hot water scarification to evaluate treatment efficacy for New...

  8. Pilot's visual attention allocation modeling under fatigue.

    PubMed

    Wu, Xu; Wanyan, Xiaoru; Zhuang, Damin

    2015-01-01

    Human factors involved with visual attention mechanism and fatigue are critical causes of modern aviation accidents. To investigate the connection between attention and flight fatigue, a mathematical model of pilot's visual attention allocation was established based on information processing channels. Multi-task condition and current psychophysical state were taken into account as well. Sixteen participants were recruited to perform a long-term dual-task in a Boeing 737-800 flight simulator. The primary task was an envelope flight task and the secondary was an unusual attitude (UA) recovery task. Reaction time of the secondary task was recorded as a behavior performance index, while heart rate and respiration rate were measured as physiological indices as well as fixation distribution as attention allocation index. The experiment results showed a significant affect of experiment time that indicated the occurrence and influence of fatigue. Eye movement tracking also revealed good agreement with the predictable model and hence verified its effectiveness. Moreover, applicability of the model was validated under flight fatigue and multiple tasks condition. The current study provided a quantitative connection between pilot's visual attention allocation and flight fatigue, which was verified in the ergonomics experiment.

  9. An interference model of visual working memory.

    PubMed

    Oberauer, Klaus; Lin, Hsuan-Yu

    2017-01-01

    The article introduces an interference model of working memory for information in a continuous similarity space, such as the features of visual objects. The model incorporates the following assumptions: (a) Probability of retrieval is determined by the relative activation of each retrieval candidate at the time of retrieval; (b) activation comes from 3 sources in memory: cue-based retrieval using context cues, context-independent memory for relevant contents, and noise; (c) 1 memory object and its context can be held in the focus of attention, where it is represented with higher precision, and partly shielded against interference. The model was fit to data from 4 continuous-reproduction experiments testing working memory for colors or orientations. The experiments involved variations of set size, kind of context cues, precueing, and retro-cueing of the to-be-tested item. The interference model fit the data better than 2 competing models, the Slot-Averaging model and the Variable-Precision resource model. The interference model also fared well in comparison to several new models incorporating alternative theoretical assumptions. The experiments confirm 3 novel predictions of the interference model: (a) Nontargets intrude in recall to the extent that they are close to the target in context space; (b) similarity between target and nontarget features improves recall, and (c) precueing-but not retro-cueing-the target substantially reduces the set-size effect. The success of the interference model shows that working memory for continuous visual information works according to the same principles as working memory for more discrete (e.g., verbal) contents. Data and model codes are available at https://osf.io/wgqd5/. (PsycINFO Database Record

  10. Human visual performance model for crewstation design

    NASA Technical Reports Server (NTRS)

    Larimer, James; Prevost, Michael; Arditi, Aries; Azueta, Steven; Bergen, James; Lubin, Jeffrey

    1991-01-01

    An account is given of a Visibility Modeling Tool (VMT) which furnishes a crew-station designer with the means to assess configurational tradeoffs, with a view to the impact of various options on the unambiguous access of information to the pilot. The interactive interface of the VMT allows the manipulation of cockpit geometry, ambient lighting, pilot ergonomics, and the displayed symbology. Performance data can be displayed in the form of 3D contours into the crewstation graphic model, thereby yielding an indication of the operator's visual capabilities.

  11. Human visual performance model for crewstation design

    NASA Technical Reports Server (NTRS)

    Larimer, James; Prevost, Michael; Arditi, Aries; Azueta, Steven; Bergen, James; Lubin, Jeffrey

    1991-01-01

    An account is given of a Visibility Modeling Tool (VMT) which furnishes a crew-station designer with the means to assess configurational tradeoffs, with a view to the impact of various options on the unambiguous access of information to the pilot. The interactive interface of the VMT allows the manipulation of cockpit geometry, ambient lighting, pilot ergonomics, and the displayed symbology. Performance data can be displayed in the form of 3D contours into the crewstation graphic model, thereby yielding an indication of the operator's visual capabilities.

  12. Bayesian model of Snellen visual acuity.

    PubMed

    Nestares, Oscar; Navarro, Rafael; Antona, Beatriz

    2003-07-01

    A Bayesian model of Snellen visual acuity (VA) has been developed that, as far as we know, is the first one that includes the three main stages of VA: (1) optical degradations, (2) neural image representation and contrast thresholding, and (3) character recognition. The retinal image of a Snellen test chart is obtained from experimental wave-aberration data. Then a subband image decomposition with a set of visual channels tuned to different spatial frequencies and orientations is applied to the retinal image, as in standard computational models of early cortical image representation. A neural threshold is applied to the contrast responses to include the effect of the neural contrast sensitivity. The resulting image representation is the base of a Bayesian pattern-recognition method robust to the presence of optical aberrations. The model is applied to images containing sets of letter optotypes at different scales, and the number of correct answers is obtained at each scale; the final output is the decimal Snellen VA. The model has no free parameters to adjust. The main input data are the eye's optical aberrations, and standard values are used for all other parameters, including the Stiles-Crawford effect, visual channels, and neural contrast threshold, when no subject specific values are available. When aberrations are large, Snellen VA involving pattern recognition differs from grating acuity, which is based on a simpler detection (or orientation-discrimination) task and hence is basically unaffected by phase distortions introduced by the optical transfer function. A preliminary test of the model in one subject produced close agreement between actual measurements and predicted VA values. Two examples are also included: (1) application of the method to the prediction of the VAin refractive-surgery patients and (2) simulation of the VA attainable by correcting ocular aberrations.

  13. Bayesian model of Snellen visual acuity

    NASA Astrophysics Data System (ADS)

    Nestares, Oscar; Navarro, Rafael; Antona, Beatriz

    2003-07-01

    A Bayesian model of Snellen visual acuity (VA) has been developed that, as far as we know, is the first one that includes the three main stages of VA: (1) optical degradations, (2) neural image representation and contrast thresholding, and (3) character recognition. The retinal image of a Snellen test chart is obtained from experimental wave-aberration data. Then a subband image decomposition with a set of visual channels tuned to different spatial frequencies and orientations is applied to the retinal image, as in standard computational models of early cortical image representation. A neural threshold is applied to the contrast responses to include the effect of the neural contrast sensitivity. The resulting image representation is the base of a Bayesian pattern-recognition method robust to the presence of optical aberrations. The model is applied to images containing sets of letter optotypes at different scales, and the number of correct answers is obtained at each scale; the final output is the decimal Snellen VA. The model has no free parameters to adjust. The main input data are the eyes optical aberrations, and standard values are used for all other parameters, including the StilesCrawford effect, visual channels, and neural contrast threshold, when no subject specific values are available. When aberrations are large, Snellen VA involving pattern recognition differs from grating acuity, which is based on a simpler detection (or orientation-discrimination) task and hence is basically unaffected by phase distortions introduced by the optical transfer function. A preliminary test of the model in one subject produced close agreement between actual measurements and predicted VA values. Two examples are also included: (1) application of the method to the prediction of the VA in refractive-surgery patients and (2) simulation of the VA attainable by correcting ocular aberrations. 2003 Optical Society of America

  14. A model for visual memory encoding.

    PubMed

    Nenert, Rodolphe; Allendorfer, Jane B; Szaflarski, Jerzy P

    2014-01-01

    Memory encoding engages multiple concurrent and sequential processes. While the individual processes involved in successful encoding have been examined in many studies, a sequence of events and the importance of modules associated with memory encoding has not been established. For this reason, we sought to perform a comprehensive examination of the network for memory encoding using data driven methods and to determine the directionality of the information flow in order to build a viable model of visual memory encoding. Forty healthy controls ages 19-59 performed a visual scene encoding task. FMRI data were preprocessed using SPM8 and then processed using independent component analysis (ICA) with the reliability of the identified components confirmed using ICASSO as implemented in GIFT. The directionality of the information flow was examined using Granger causality analyses (GCA). All participants performed the fMRI task well above the chance level (>90% correct on both active and control conditions) and the post-fMRI testing recall revealed correct memory encoding at 86.33 ± 5.83%. ICA identified involvement of components of five different networks in the process of memory encoding, and the GCA allowed for the directionality of the information flow to be assessed, from visual cortex via ventral stream to the attention network and then to the default mode network (DMN). Two additional networks involved in this process were the cerebellar and the auditory-insular network. This study provides evidence that successful visual memory encoding is dependent on multiple modules that are part of other networks that are only indirectly related to the main process. This model may help to identify the node(s) of the network that are affected by a specific disease processes and explain the presence of memory encoding difficulties in patients in whom focal or global network dysfunction exists.

  15. Digital image watermarking using visual models

    NASA Astrophysics Data System (ADS)

    Podilchuk, Christine I.; Zeng, Wenjun

    1997-06-01

    The huge success of the Internet permits the transmission and wide distribution and access of electronic data in an effortless manner. Content providers are faced with the challenge of how to protect their electronic data. This problem has generated a flurry of recent research activity in the area of digital watermarking of electronic content for copyright protection. Unlike the traditional visible watermark found on paper, the challenge here is to introduce a digital watermark that does not alter the perceived quality of the electronic content while being extremely robust to attack. For instance, in the case of image data, editing the picture or illegal tampering should not destroy or alter the watermark. Equally important, the watermark should not alter the perceived visual quality of the image. From a signal processing viewpoint, the two basic requirements for an effective watermarking scheme, robustness and transparency, conflict with each other. We propose a watermarking technique for digital images that is based on utilizing visual models which have been developed in the context of image compression. Specifically, we propose a watermarking scheme where visual models are used to determine image dependent modulation masks for watermark insertion. In other words, for each image we can determine the maximum amount of watermark signal that each portion of the image can tolerate without affecting the visual quality of the image. This allow us to provide the maximum strength watermark which in turn, is extremely robust to common image processing and editing such as JPEG compression, rescaling, and cropping. We have watermarking results in a DCT framework as well as a wavelet framework. The DCT framework allows the direct insertion of watermarks to JPEG -- compressed data whereas the wavelet based scheme provides a framework where we can take advantage of both a local and global approach. Our scheme is shown to provide dramatic improvement over the current state

  16. Visualization Skills: A Prerequisite to Advanced Solid Modeling

    ERIC Educational Resources Information Center

    Gow, George

    2007-01-01

    Many educators believe that solid modeling software has made teaching two- and three-dimensional visualization skills obsolete. They claim that the visual tools built into the solid modeling software serve as a replacement for the CAD operator's personal visualization skills. They also claim that because solid modeling software can produce…

  17. Visualization Skills: A Prerequisite to Advanced Solid Modeling

    ERIC Educational Resources Information Center

    Gow, George

    2007-01-01

    Many educators believe that solid modeling software has made teaching two- and three-dimensional visualization skills obsolete. They claim that the visual tools built into the solid modeling software serve as a replacement for the CAD operator's personal visualization skills. They also claim that because solid modeling software can produce…

  18. Evaluation of honey locust (Gleditsia triacanthos Linn.) gum as sustaining material in tablet dosage forms.

    PubMed

    Uner, Melike; Altinkurt, Turan

    2004-07-01

    In this study, honey locust gum (HLG) obtained from Gleditsia triacanthos (honey locust) beans was investigated as a hydrophilic matrix material in the tablets prepared at different concentrations (5% and 10%) by wet granulation method. Theophylline was chosen as a model drug. The matrix tablets containing hydroxyethylcellulose and hydroxypropyl methylcellulose as sustaining polymers at the same concentrations were prepared and a commercial sustained release (CSR) tablet containing 200 mg theophylline was examined for comparison of HLG performance. Physical analysis on CSR tablet, matrix tablets and their granules before compression were performed. According to the results obtained from dissolution studies in distilled water, pH 1.2 HCl buffer and pH 7.2 phosphate buffer, no significant difference was found between CSR tablet and the matrix tablet containing 10% HLG in each medium (P > 0.05) and these tablets showed zero-order kinetic model in all the mediums.

  19. Resource distribution mediates synchronization of physiological rhythms in locust groups

    PubMed Central

    Despland, Emma; Simpson, Stephen J

    2006-01-01

    Synchronized behaviour is common in animal groups. In ant colonies, synchronization occurs because active ants stimulate their neighbours to activity. We use oscillator theory to explain how stimulation from active neighbours synchronizes activity in groups of solitarious locusts via entrainment of internal physiological rhythms. We also show that the spatial distribution of food resources controls coupling between individual locusts and the emergence of synchronized activity. In locusts (Schistocerca gregaria), individual schedules of activity and quiescence arise from an irregular physiological oscillation in feeding excitation (i.e. hunger). We show that contact with an active neighbour increases the probability that a locust becomes active. This entrained activity decreases the time until the locust feeds, shifting the phase of its hunger oscillation. The locusts' internal physiological rhythms are thus brought into alignment and their activity becomes synchronized. When food resources are clumped, contact with active locusts increases, and this increase in the strength of coupling between individuals leads to greater synchronization of behaviour. Activity synchronization might have functional significance in inhibiting swarming when resources are dispersed and accelerating it in more favourable clumped environments. PMID:16777746

  20. Visual Basic and Excel in Chemical Modeling

    NASA Astrophysics Data System (ADS)

    Kaess, Michael; Easter, Jesse; Cohn, Kim

    1998-05-01

    A series of modules were prepared to model some topics in molecular mechanics and computational chemistry. In order to make modules that would be useful in personal, academic or professional situations and to make them easy to use on both IBM and Macintosh compatible computers as well as require little or no computational, advanced mathematical or programming skills we settled on Microsoft Excel as the program of choice. The release of Excel 5.0 incorporates Visual Basic. This allows the use of custom commands, menus, dialog boxes, buttons and custom on-line help.

  1. Color appearance models and complex visual stimuli.

    PubMed

    Fairchild, Mark D

    2010-01-01

    Teeth in a patient's mouth in a dental office, or in the natural environment, represent very complex stimuli for the human color vision system. Predicting their perceived color is a daunting task at best. Colorimetry is designed mainly for the evaluation of uniform, flat, opaque, materials of fairly large size viewed on a medium-grey background under near-daylight sources of fairly high luminance. On the contrary, in situ teeth vary spatially, are curved and ridged, translucent, relatively small, and viewed against a variable background under nonuniform, and typically nonstandard, illumination. These differences in stimuli and viewing conditions summarize the difficulty in predicting the color appearance of teeth. The field of color science has extended basic colorimetry, as represented by CIE XYZ and CIELAB coordinates, to more complex visual stimuli and viewing environments. The CIECAM02 color appearance model accurately addresses issues of chromatic adaptation, luminance effects and adaptation, background and surround effects, and the higher dimensionality of color appearance. Such models represent a significant advance and are used successfully in a variety of applications. However, many stimuli vary in space and time at scales not addressed by typical color appearance models. For example, high-definition video images would fall into such a category and so would in situ human teeth. More recently, color appearance models and image quality metrics have been combined to create image appearance models for even more complex visual stimuli. This paper provides an overview of fundamental and advanced colorimetry leading up to color appearance and image appearance models and their potential application in dentistry. Copyright © 2010 Elsevier Ltd. All rights reserved.

  2. Boxes of Model Building and Visualization.

    PubMed

    Turk, Dušan

    2017-01-01

    Macromolecular crystallography and electron microscopy (single-particle and in situ tomography) are merging into a single approach used by the two coalescing scientific communities. The merger is a consequence of technical developments that enabled determination of atomic structures of macromolecules by electron microscopy. Technological progress in experimental methods of macromolecular structure determination, computer hardware, and software changed and continues to change the nature of model building and visualization of molecular structures. However, the increase in automation and availability of structure validation are reducing interactive manual model building to fiddling with details. On the other hand, interactive modeling tools increasingly rely on search and complex energy calculation procedures, which make manually driven changes in geometry increasingly powerful and at the same time less demanding. Thus, the need for accurate manual positioning of a model is decreasing. The user's push only needs to be sufficient to bring the model within the increasing convergence radius of the computing tools. It seems that we can now better than ever determine an average single structure. The tools work better, requirements for engagement of human brain are lowered, and the frontier of intellectual and scientific challenges has moved on. The quest for resolution of new challenges requires out-of-the-box thinking. A few issues such as model bias and correctness of structure, ongoing developments in parameters defining geometric restraints, limitations of the ideal average single structure, and limitations of Bragg spot data are discussed here, together with the challenges that lie ahead.

  3. Role of remote sensing in desert locust early warning

    NASA Astrophysics Data System (ADS)

    Cressman, Keith

    2013-01-01

    Desert locust (Schistocerca gregaria, Forskål) plagues have historically had devastating consequences on food security in Africa and Asia. The current strategy to reduce the frequency of plagues and manage desert locust infestations is early warning and preventive control. To achieve this, the Food and Agriculture Organization of the United Nations operates one of the oldest, largest, and best-known migratory pest monitoring systems in the world. Within this system, remote sensing plays an important role in detecting rainfall and green vegetation. Despite recent technological advances in data management and analysis, communications, and remote sensing, monitoring desert locusts and preventing plagues in the years ahead will continue to be a challenge from a geopolitical and financial standpoint for affected countries and the international donor community. We present an overview of the use of remote sensing in desert locust early warning.

  4. Occurrence and metabolism of scylloinositol in the locust.

    PubMed

    Candy, D J

    1967-06-01

    1. scylloInositol has been identified as a component of locust haemolymph, where it occurs in concentrations of 0.2-0.4mg./ml. 2. A simple method for the identification of scylloinositol is described. This has been used to demonstrate the presence of scylloinositol in five other insect species. 3. Locust phospholipids contain myoinositol but no scylloinositol. 4. Radioactivity from [(14)C]glucose is incorporated into myoinositol and scylloinositol by the locust in vivo. 5. Extracts of locust fat body catalyse the conversion of myoinositol into scylloinositol. This seems to take place by a two-step process in which myoinositol is first oxidized with NAD(+) to myoinosose-2, and the myoinosose-2 is stereospecifically reduced with NADPH to scylloinositol.

  5. Occurrence and metabolism of scylloinositol in the locust

    PubMed Central

    Candy, D. J.

    1967-01-01

    1. scylloInositol has been identified as a component of locust haemolymph, where it occurs in concentrations of 0·2–0·4mg./ml. 2. A simple method for the identification of scylloinositol is described. This has been used to demonstrate the presence of scylloinositol in five other insect species. 3. Locust phospholipids contain myoinositol but no scylloinositol. 4. Radioactivity from [14C]glucose is incorporated into myoinositol and scylloinositol by the locust in vivo. 5. Extracts of locust fat body catalyse the conversion of myoinositol into scylloinositol. This seems to take place by a two-step process in which myoinositol is first oxidized with NAD+ to myoinosose-2, and the myoinosose-2 is stereospecifically reduced with NADPH to scylloinositol. PMID:4383051

  6. Statistical modeling for visualization evaluation through data fusion.

    PubMed

    Chen, Xiaoyu; Jin, Ran

    2017-11-01

    There is a high demand of data visualization providing insights to users in various applications. However, a consistent, online visualization evaluation method to quantify mental workload or user preference is lacking, which leads to an inefficient visualization and user interface design process. Recently, the advancement of interactive and sensing technologies makes the electroencephalogram (EEG) signals, eye movements as well as visualization logs available in user-centered evaluation. This paper proposes a data fusion model and the application procedure for quantitative and online visualization evaluation. 15 participants joined the study based on three different visualization designs. The results provide a regularized regression model which can accurately predict the user's evaluation of task complexity, and indicate the significance of all three types of sensing data sets for visualization evaluation. This model can be widely applied to data visualization evaluation, and other user-centered designs evaluation and data analysis in human factors and ergonomics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Interactive Model Visualization for NET-VISA

    NASA Astrophysics Data System (ADS)

    Kuzma, H. A.; Arora, N. S.

    2013-12-01

    NET-VISA is a probabilistic system developed for seismic network processing of data measured on the International Monitoring System (IMS) of the Comprehensive nuclear Test Ban Treaty Organization (CTBTO). NET-VISA is composed of a Generative Model (GM) and an Inference Algorithm (IA). The GM is an explicit mathematical description of the relationships between various factors in seismic network analysis. Some of the relationships inside the GM are deterministic and some are statistical. Statistical relationships are described by probability distributions, the exact parameters of which (such as mean and standard deviation) are found by training NET-VISA using recent data. The IA uses the GM to evaluate the probability of various events and associations, searching for the seismic bulletin which has the highest overall probability and is consistent with a given set of measured arrivals. An Interactive Model Visualization tool (IMV) has been developed which makes 'peeking into' the GM simple and intuitive through a web-based interfaced. For example, it is now possible to access the probability distributions for attributes of events and arrivals such as the detection rate for each station for each of 14 phases. It also clarifies the assumptions and prior knowledge that are incorporated into NET-VISA's event determination. When NET-VISA is retrained, the IMV will be a visual tool for quality control both as a means of testing that the training has been accomplished correctly and that the IMS network has not changed unexpectedly. A preview of the IMV will be shown at this poster presentation. Homepage for the IMV IMV shows current model file and reference image.

  8. Microarray-based annotation of the gut transcriptome of the migratory locust, Locusta migratoria.

    PubMed

    Spit, J; Badisco, L; Vergauwen, L; Knapen, D; Vanden Broeck, J

    2016-12-01

    The migratory locust, Locusta migratoria, is a serious agricultural pest and important insect model in the study of insect digestion and feeding behaviour. The gut is one of the primary interfaces between the insect and its environment. Nevertheless, knowledge on the gut transcriptome of L. migratoria is still very limited. Here, 48 802 expressed sequence tags were extracted from publicly available databases and their expression in larval gut and/or brain tissue was determined using microarray hybridization. Our data show 2765 transcripts predominantly or exclusively expressed in the gut. Many transcripts had putative functions closely related to the physiological functions of the gut as a muscular digestive organ and as the first barrier against microorganisms and a wide range of toxins. By means of a ranking procedure based on the relative signal intensity, we estimated 15% of the transcripts to show high expression levels, the highest belonging to diverse digestive enzymes and muscle-related proteins. We also found evidence for very high expression of an allergen protein, which could have important implications, as locusts form a traditional food source in various parts of the world, and were also recently added to the list of insects fit for human consumption in Europe. Interestingly, many highly expressed sequences have as yet unknown functions. Taken together, the present data provide significant insight into locust larval gut physiology, and will be valuable for future studies on the insect gut.

  9. Jump stabilization and landing control by wing-spreading of a locust-inspired jumper.

    PubMed

    Beck, Avishai; Zaytsev, Valentin; Ben-Hanan, Uri; Kosa, Gabor; Ayali, Amir; Weiss, Avi

    2017-09-15

    Bio-inspired robotics is a promising design strategy for mobile robots. Jumping is an energy efficient locomotion gait for traversing difficult terrain. Inspired by the jumping and flying behavior of the desert locust, we have recently developed a miniature jumping robot that can jump over 3.5 m high. However, much like the non-adult locust, it rotates while in the air and lands uncontrollably. Inspired by the winged adult locust, we have added spreading wings and a tail to the jumper. After the robot leaps, at the apex of the trajectory, the wings unfold and it glides to the ground. The advantages of this maneuver are the stabilization of the robot when airborne, the reduction of velocity at landing, the control of the landing angle and the potential to change the robot's orientation and control its flight trajectory. The new upgraded robot is capable of jumping to a still impressive height of 1.7 m eliminating airborne rotation and reducing landing velocity. Here, we analyze the dynamic and aerodynamic models of the robot, discuss the robot's design, and validate its ability to perform a jump-glide in a stable trajectory, land safely and change its orientation while in the air. © 2017 IOP Publishing Ltd.

  10. An insect-inspired model for visual binding II: functional analysis and visual attention.

    PubMed

    Northcutt, Brandon D; Higgins, Charles M

    2017-04-01

    We have developed a neural network model capable of performing visual binding inspired by neuronal circuitry in the optic glomeruli of flies: a brain area that lies just downstream of the optic lobes where early visual processing is performed. This visual binding model is able to detect objects in dynamic image sequences and bind together their respective characteristic visual features-such as color, motion, and orientation-by taking advantage of their common temporal fluctuations. Visual binding is represented in the form of an inhibitory weight matrix which learns over time which features originate from a given visual object. In the present work, we show that information represented implicitly in this weight matrix can be used to explicitly count the number of objects present in the visual image, to enumerate their specific visual characteristics, and even to create an enhanced image in which one particular object is emphasized over others, thus implementing a simple form of visual attention. Further, we present a detailed analysis which reveals the function and theoretical limitations of the visual binding network and in this context describe a novel network learning rule which is optimized for visual binding.

  11. The olfactory co-receptor Orco from the migratory locust (Locusta migratoria) and the desert locust (Schistocerca gregaria): identification and expression pattern.

    PubMed

    Yang, Ying; Krieger, Jürgen; Zhang, Long; Breer, Heinz

    2012-01-01

    In locusts, olfaction plays a crucial role for initiating and controlling behaviours, including food seeking and aggregation with conspecifics, which underlie the agricultural pest capacity of the animals. In this context, the molecular basis of olfaction in these insects is of particular interest. Here, we have identified genes of two orthopteran species, Locusta migratoria and Schistocera gregaria, which encode the olfactory receptor co-receptor (Orco). It was found that the sequences of LmigOrco and SgreOrco share a high degree of identity to each other and also to Orco proteins from different insect orders. The Orco-expressing cells in the antenna of S. gregaria and L. migratoria were visualized by in situ hybridization. Orco expression could be assigned to clusters of cells in sensilla basiconica and few cells in sensilla trichodea, most likely representing olfactory sensory neurons. No Orco-positive cells were detected in sensilla coeloconica and sensilla chaetica. Orco expression was found already in all nymphal stages and was verified in some other tissues which are equipped with chemosensory hairs (mouthparts, tarsi, wings). Together, the results support the notion for a decisive role of Orco in locust olfaction.

  12. Human visual performance model for crewstation design

    NASA Astrophysics Data System (ADS)

    Larimer, James O.; Prevost, Michael P.; Arditi, Aries R.; Azueta, Steven; Bergen, James R.; Lubin, Jeffrey

    1991-08-01

    In a cockpit, the crewstation of an airplane, the ability of the pilot to unambiguously perceive rapidly changing information both internal and external to the crewstation is critical. To assess the impact of crewstation design decisions on the pilot''s ability to perceive information, the designer needs a means of evaluating the trade-offs that result from different designs. The Visibility Modeling Tool (VMT) provides the designer with a CAD tool for assessing these trade-offs. It combines the technologies of computer graphics, computational geometry, human performance modeling and equipment modeling into a computer-based interactive design tool. Through a simple interactive interface, a designer can manipulate design parameters such as the geometry of the cockpit, environmental factors such as ambient lighting, pilot parameters such as point of regard and adaptation state, and equipment parameters such as the location of displays, their size and the contrast of displayed symbology. VMT provides an end-to-end analysis that answers questions such as ''Will the pilot be able to read the display?'' Performance data can be projected, in the form of 3D contours, into the crewstation graphic model, providing the designer with a footprint of the operator''s visual capabilities, defining, for example, the regions in which fonts of a particular type, size and contrast can be read without error. Geometrical data such as the pilot''s volume field of view, occlusions caused by facial geometry, helmet margins, and objects in the crewstation can also be projected into the crewstation graphic model with respect to the coordinates of the aviator''s eyes and fixation point. The intersections of the projections with objects in the crewstation, delineate the area of coverage, masking, or occlusion associated with the objects. Objects in the crewstation space can be projected onto models of the operator''s retinas. These projections can be used to provide the designer with the

  13. Development of a locust bean processing device.

    PubMed

    Owolarafe, Oseni Kehinde; Adetan, Dare Aderibigbe; Olatunde, Gbenga Adebayo; Ajayi, Adebowale Oladeji; Okoh, Ile Kehinde

    2013-04-01

    A locust bean steaming, dehulling and separating machine was designed in this study by simulating the traditional processing operations. The machine consist of pressure cooking pot (as the cooking device) mounted on a separate stand and equipped with rocker- arm system to facilitate discharge of contents, a hopper made of mild steel sheet, the dehulling unit made of screwed shaft and abrasive barrel, a conical-shaped separating section equipped with paddles (made of aluminum material) and a standing frame to support the whole arrangement. The machine was evaluated by processing seed at cooking times of 30, 45, 60 and 90 min. The result indicated increase in dehulling efficiency with increase in cooking time from 30 to 60 min while it dropped at 90 min. The highest dehulling efficiency of 82% was obtained at cooking time of 60 min. The separation efficiency obtained at this optimal cooking time was 79%.

  14. Monitoring the plague of oriental migratory locust using multi-temporal Landsat TM imagery

    NASA Astrophysics Data System (ADS)

    Liu, Zhenbo; Ni, Shaoxiang; Zha, Yong; Shi, Xuezheng

    2006-03-01

    Locust plague is a kind of the world-wide biological calamity to agriculture. In China's history, more than 90% of locust plagues were caused by the oriental migratory locust, Locusta migratoria manilensis (Meyen). At the present time, it is difficult for monitoring and forecasting systems in this country to provide real time information of locust plague outbreak in large area. In order to adopt timely measures for prevention and control of locust outbreak, it is necessary to apply advanced remote sensing technology for monitoring and forecasting locust outbreak This paper introduces a case study on monitoring oriental migratory locust plague with remote sensing technology in 3 pilot sites, namely, Huangzao, Yangguangzhuang, and Tengnan, which were the 3 major locust damaged areas in Huanghua City, Hebei Province, China during the period of large scale oriental migratory locust breakout in 2002. In this study, locust damage intensity, areas with various damage intensities and their distribution in pilot sites are determined by means of comparison between Landsat ETM+ image of locust damaged vegetation on 31st May, 2002 and TM image of healthy vegetation before damage on 23rd May, 2002. Then, information of various locust distribution density in pilot sites is extracted by establishing the Locust Density Index (LDI).

  15. Visual Saliency Models for Text Detection in Real World.

    PubMed

    Gao, Renwu; Uchida, Seiichi; Shahab, Asif; Shafait, Faisal; Frinken, Volkmar

    2014-01-01

    This paper evaluates the degree of saliency of texts in natural scenes using visual saliency models. A large scale scene image database with pixel level ground truth is created for this purpose. Using this scene image database and five state-of-the-art models, visual saliency maps that represent the degree of saliency of the objects are calculated. The receiver operating characteristic curve is employed in order to evaluate the saliency of scene texts, which is calculated by visual saliency models. A visualization of the distribution of scene texts and non-texts in the space constructed by three kinds of saliency maps, which are calculated using Itti's visual saliency model with intensity, color and orientation features, is given. This visualization of distribution indicates that text characters are more salient than their non-text neighbors, and can be captured from the background. Therefore, scene texts can be extracted from the scene images. With this in mind, a new visual saliency architecture, named hierarchical visual saliency model, is proposed. Hierarchical visual saliency model is based on Itti's model and consists of two stages. In the first stage, Itti's model is used to calculate the saliency map, and Otsu's global thresholding algorithm is applied to extract the salient region that we are interested in. In the second stage, Itti's model is applied to the salient region to calculate the final saliency map. An experimental evaluation demonstrates that the proposed model outperforms Itti's model in terms of captured scene texts.

  16. Visual Saliency Models for Text Detection in Real World

    PubMed Central

    Gao, Renwu; Uchida, Seiichi; Shahab, Asif; Shafait, Faisal; Frinken, Volkmar

    2014-01-01

    This paper evaluates the degree of saliency of texts in natural scenes using visual saliency models. A large scale scene image database with pixel level ground truth is created for this purpose. Using this scene image database and five state-of-the-art models, visual saliency maps that represent the degree of saliency of the objects are calculated. The receiver operating characteristic curve is employed in order to evaluate the saliency of scene texts, which is calculated by visual saliency models. A visualization of the distribution of scene texts and non-texts in the space constructed by three kinds of saliency maps, which are calculated using Itti's visual saliency model with intensity, color and orientation features, is given. This visualization of distribution indicates that text characters are more salient than their non-text neighbors, and can be captured from the background. Therefore, scene texts can be extracted from the scene images. With this in mind, a new visual saliency architecture, named hierarchical visual saliency model, is proposed. Hierarchical visual saliency model is based on Itti's model and consists of two stages. In the first stage, Itti's model is used to calculate the saliency map, and Otsu's global thresholding algorithm is applied to extract the salient region that we are interested in. In the second stage, Itti's model is applied to the salient region to calculate the final saliency map. An experimental evaluation demonstrates that the proposed model outperforms Itti's model in terms of captured scene texts. PMID:25494196

  17. Reconstruction of a 1,910-y-long locust series reveals consistent associations with climate fluctuations in China

    PubMed Central

    Tian, Huidong; Stige, Leif C.; Cazelles, Bernard; Kausrud, Kyrre Linne; Svarverud, Rune; Stenseth, Nils C.; Zhang, Zhibin

    2011-01-01

    It is becoming increasingly clear that global warming is taking place; however, its long-term effects on biological populations are largely unknown due to lack of long-term data. Here, we reconstructed a 1,910-y-long time series of outbreaks of Oriental migratory locusts (Locusta migratoria manilensis) in China, on the basis of information extracted from >8,000 historical documents. First by analyzing the most recent period with the best data quality using generalized additive models, we found statistically significant associations between the reconstructed locust abundance and indexes of precipitation and temperature at both annual (A.D. 1512–1911) and decadal (A.D. 1000–1900) scales: There were more locusts under dry and cold conditions and when locust abundance was high in the preceding year or decade. Second, by exploring locust–environment correlations using a 200-y moving window, we tested whether these associations also hold further back in time. The locust–precipitation correlation was found to hold at least as far back as to A.D. 500, supporting the robustness of this link as well as the quality of both reconstructions. The locust–temperature correlation was weaker and less consistent, which may reflect this link being indirect and thus more easily moderated by other factors. We anticipate that further analysis of this unique time series now available to the scientific community will continue to provide insights into biological consequences of climate change in the years to come. PMID:21876131

  18. Background visual motion affects responses of an insect motion-sensitive neuron to objects deviating from a collision course.

    PubMed

    Yakubowski, Jasmine M; McMillan, Glyn A; Gray, John R

    2016-05-01

    Stimulus complexity affects the response of looming sensitive neurons in a variety of animal taxa. The Lobula Giant Movement Detector/Descending Contralateral Movement Detector (LGMD/DCMD) pathway is well-characterized in the locust visual system. It responds to simple objects approaching on a direct collision course (i.e., looming) as well as complex motion defined by changes in stimulus velocity, trajectory, and transitions, all of which are affected by the presence or absence of background visual motion. In this study, we focused on DCMD responses to objects transitioning away from a collision course, which emulates a successful locust avoidance behavior. We presented each of 20 locusts with a sequence of complex three-dimensional visual stimuli in simple, scattered, and progressive flow field backgrounds while simultaneously recording DCMD activity extracellularly. DCMD responses to looming stimuli were generally characteristic irrespective of stimulus background. However, changing background complexity affected, peak firing rates, peak time, and caused changes in peak rise and fall phases. The DCMD response to complex object motion also varied with the azimuthal approach angle and the dynamics of object edge expansion. These data fit with an existing correlational model that relates expansion properties to firing rate modulation during trajectory changes. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  19. Population Coding of Visual Space: Modeling

    PubMed Central

    Lehky, Sidney R.; Sereno, Anne B.

    2011-01-01

    We examine how the representation of space is affected by receptive field (RF) characteristics of the encoding population. Spatial responses were defined by overlapping Gaussian RFs. These responses were analyzed using multidimensional scaling to extract the representation of global space implicit in population activity. Spatial representations were based purely on firing rates, which were not labeled with RF characteristics (tuning curve peak location, for example), differentiating this approach from many other population coding models. Because responses were unlabeled, this model represents space using intrinsic coding, extracting relative positions amongst stimuli, rather than extrinsic coding where known RF characteristics provide a reference frame for extracting absolute positions. Two parameters were particularly important: RF diameter and RF dispersion, where dispersion indicates how broadly RF centers are spread out from the fovea. For large RFs, the model was able to form metrically accurate representations of physical space on low-dimensional manifolds embedded within the high-dimensional neural population response space, suggesting that in some cases the neural representation of space may be dimensionally isomorphic with 3D physical space. Smaller RF sizes degraded and distorted the spatial representation, with the smallest RF sizes (present in early visual areas) being unable to recover even a topologically consistent rendition of space on low-dimensional manifolds. Finally, although positional invariance of stimulus responses has long been associated with large RFs in object recognition models, we found RF dispersion rather than RF diameter to be the critical parameter. In fact, at a population level, the modeling suggests that higher ventral stream areas with highly restricted RF dispersion would be unable to achieve positionally-invariant representations beyond this narrow region around fixation. PMID:21344012

  20. Collision-avoidance behaviors of minimally restrained flying locusts to looming stimuli

    PubMed Central

    Chan, R. WM.; Gabbiani, F.

    2013-01-01

    SUMMARY Visually guided collision avoidance is of paramount importance in flight, for instance to allow escape from potential predators. Yet, little is known about the types of collision-avoidance behaviors that may be generated by flying animals in response to an impending visual threat. We studied the behavior of minimally restrained locusts flying in a wind tunnel as they were subjected to looming stimuli presented to the side of the animal, simulating the approach of an object on a collision course. Using high-speed movie recordings, we observed a wide variety of collision-avoidance behaviors including climbs and dives away from – but also towards – the stimulus. In a more restrained setting, we were able to relate kinematic parameters of the flapping wings with yaw changes in the trajectory of the animal. Asymmetric wing flapping was most strongly correlated with changes in yaw, but we also observed a substantial effect of wing deformations. Additionally, the effect of wing deformations on yaw was relatively independent of that of wing asymmetries. Thus, flying locusts exhibit a rich range of collision-avoidance behaviors that depend on several distinct aerodynamic characteristics of wing flapping flight. PMID:23364572

  1. Three-dimensional visualization for large models

    NASA Astrophysics Data System (ADS)

    Roth, Michael W.

    2001-09-01

    High-resolution (0.3-1 m) digital-elevation data is widely available from commercial sources. Whereas the production of two-dimensional (2D) mapping products from such data is standard practice, the visualization of such three-dimensional (3D) data has been problematic. The basis for this problem is the same as that for the large-model problem in computer graphics-- large amounts of geometry are difficult for current rendering algorithms and hardware. This paper describes a cost-effective solution to this problem that has two parts. First is the employment of the latest in cost-effective 3D chips and video boards that have recently emerged. The second part is the employment of quad-tree data structures for efficient data storage and retrieval during rendering. The result is the capability for real-time display of large (over tens of millions of samples) digital elevation models on modest PC-based systems. This paper shows several demonstrations of this approach using airborne lidar data. The implication of this work is a paradigm shift for geo-spatial information systems--3D data can now be as easy to use as 2D data.

  2. Visual discrimination modeling of lesion detectability

    NASA Astrophysics Data System (ADS)

    Johnson, Jeffrey P.; Lubin, Jeffrey; Nafziger, John S.; Chakraborty, Dev P.

    2002-04-01

    The Sarnoff JNDmetrix visual discrimination model (VDM) was applied to predict human psychophysical performance in the detection of simulated mammographic lesions. Contrast thresholds for the detection of synthetic Gaussian masses on mean backgrounds and simulated mammographic backgrounds were measured in two-alternative, forced-choice (2AFC) trials. Experimental thresholds for 2-D Gaussian signal detection decreased with increasing signal size on mean backgrounds and on 1/f3 filtered noise images presented with identical (paired) backgrounds. For 2AFC presentations of different (unpaired) filtered noise backgrounds, detection thresholds increased with increasing signal diameter, consistent with a decreasing signal-to-noise ratio. Thresholds for mean and paired filtered noise backgrounds were used to calibrate a new low-pass, spatial-frequency channel in the VDM. The calibrated VDM was able to predict accurate detection thresholds for Gaussian signals on mean and paired 1/f3 filtered noise backgrounds. To simulate noise-limited detection thresholds for unpaired backgrounds, an approach is outlined for the development of a VDM-based model observer based on statistical decision theory.

  3. Promoting Visualization Skills through Deconstruction Using Physical Models and a Visualization Activity Intervention

    NASA Astrophysics Data System (ADS)

    Schiltz, Holly Kristine

    Visualization skills are important in learning chemistry, as these skills have been shown to correlate to high ability in problem solving. Students' understanding of visual information and their problem-solving processes may only ever be accessed indirectly: verbalization, gestures, drawings, etc. In this research, deconstruction of complex visual concepts was aligned with the promotion of students' verbalization of visualized ideas to teach students to solve complex visual tasks independently. All instructional tools and teaching methods were developed in accordance with the principles of the theoretical framework, the Modeling Theory of Learning: deconstruction of visual representations into model components, comparisons to reality, and recognition of students' their problemsolving strategies. Three physical model systems were designed to provide students with visual and tangible representations of chemical concepts. The Permanent Reflection Plane Demonstration provided visual indicators that students used to support or invalidate the presence of a reflection plane. The 3-D Coordinate Axis system provided an environment that allowed students to visualize and physically enact symmetry operations in a relevant molecular context. The Proper Rotation Axis system was designed to provide a physical and visual frame of reference to showcase multiple symmetry elements that students must identify in a molecular model. Focus groups of students taking Inorganic chemistry working with the physical model systems demonstrated difficulty documenting and verbalizing processes and descriptions of visual concepts. Frequently asked student questions were classified, but students also interacted with visual information through gestures and model manipulations. In an effort to characterize how much students used visualization during lecture or recitation, we developed observation rubrics to gather information about students' visualization artifacts and examined the effect instructors

  4. Opsin expression, physiological characterization and identification of photoreceptor cells in the dorsal rim area and main retina of the desert locust, Schistocerca gregaria.

    PubMed

    Schmeling, Fabian; Wakakuwa, Motohiro; Tegtmeier, Jennifer; Kinoshita, Michiyo; Bockhorst, Tobias; Arikawa, Kentaro; Homberg, Uwe

    2014-10-01

    For compass orientation many insects rely on the pattern of sky polarization, but some species also exploit the sky chromatic contrast. Desert locusts, Schistocerca gregaria, detect polarized light through a specialized dorsal rim area (DRA) in their compound eye. To better understand retinal mechanisms underlying visual navigation, we compared opsin expression, spectral and polarization sensitivities and response-stimulus intensity functions in the DRA and main retina of the locust. In addition to previously characterized opsins of long-wavelength-absorbing (Lo1) and blue-absorbing visual pigments (Lo2), we identified an opsin of an ultraviolet-absorbing visual pigment (LoUV). DRA photoreceptors exclusively expressed Lo2, had peak spectral sensitivities at 441 nm and showed high polarization sensitivity (PS 1.3-31.7). In contrast, ommatidia in the main eye co-expressed Lo1 and Lo2 in five photoreceptors, expressed Lo1 in two proximal photoreceptors, and Lo2 or LoUV in one distal photoreceptor. Correspondingly, we found broadband blue- and green-peaking spectral sensitivities in the main eye and one narrowly tuned UV peaking receptor. Polarization sensitivity in the main retina was low (PS 1.3-3.8). V-log I functions in the DRA were steeper than in the main retina, supporting a role in polarization vision. Desert locusts occur as two morphs, a day-active gregarious and a night-active solitarious form. In solitarious locusts, sensitivities in the main retina were generally shifted to longer wavelengths, particularly in ventral eye regions, supporting a nocturnal lifestyle at low light levels. The data support the role of the DRA in polarization vision and suggest trichromatic colour vision in the desert locust. © 2014. Published by The Company of Biologists Ltd.

  5. Visual Methods for Model and Grid Validation

    NASA Technical Reports Server (NTRS)

    Pang, Alex

    1998-01-01

    This joint research interchange proposal allowed us to contribute in two directions that are of interest to NASA. These are: (a) data level comparative visualization of experimental and computational fluid flow, and (b) visualization tools for analysis of adaptively refined Cartesian grids.

  6. Visual Methods for Model and Grid Validation

    NASA Technical Reports Server (NTRS)

    Pang, Alex

    1998-01-01

    This joint research interchange proposal allowed us to contribute in two directions that are of interest to NASA. These are: (a) data level comparative visualization of experimental and computational fluid flow, and (b) visualization tools for analysis of adaptively refined Cartesian grids.

  7. Estimation of biological nitrogen fixation by black locust in short-rotation forests using natural 15N abundance method

    NASA Astrophysics Data System (ADS)

    Veste, M.; Böhm, C.; Quinckenstein, A.; Freese, D.

    2012-04-01

    The importance of short rotation forests and agroforestry systems for woody biomass production for bioenergy will increase in Central Europe within the next decades. In this context, black locust (Robinia pseudoacacia) has a high growth potential especially at marginal, drought-susceptible sites such as occur in Brandenburg State (Eastern Germany). As a pioneer tree species black locust grows under a wide range of site conditions. The native range of black locust in Northern America is classified by a humid to sub-humid climate with a mean annual precipitation of 1020 to 1830 mm. In Central and Eastern Europe, this species is cultivated in a more continental climate with an annual precipitation often below 600 mm. Therefore, black locust is known to be relatively drought tolerant compared to other temperate, deciduous tree species. Because of its N2-fixation ability black locust plays generally an important role for the improvement of soil fertility. This effect is of particular interest at marginal sites in the post-mining landscapes. In order to estimate the N2-fixation potential of black locust at marginal sites leaf samples were taken from black locust trees in short rotation plantations planted between 1995 and 2007 in post-mining sites south of Cottbus (Brandenburg, NE Germany). The variation of the natural 15N abundance was measured to evaluate the biological nitrogen fixation. The nitrogen derived from the atmosphere can be calculated using a two-pool model from the quotient of the natural 15N abundances of the N2-fixing plant and the plant available soil N. Because representatively determining the plant available soil N is difficult, a non-N2-fixing reference plant growing at the same site with a similar root system and temporal N uptake pattern to the N2-fixing plant is often used. In our case we used red oak (Quercus rubra) as a reference. The average nitrogen content in the leaves of black locust ranged from 3.1% (C/N 14.8) in 15 years old trees to 3

  8. Modeling and evaluating user behavior in exploratory visual analysis

    SciTech Connect

    Reda, Khairi; Johnson, Andrew E.; Papka, Michael E.; Leigh, Jason

    2016-10-01

    Empirical evaluation methods for visualizations have traditionally focused on assessing the outcome of the visual analytic process as opposed to characterizing how that process unfolds. There are only a handful of methods that can be used to systematically study how people use visualizations, making it difficult for researchers to capture and characterize the subtlety of cognitive and interaction behaviors users exhibit during visual analysis. To validate and improve visualization design, however, it is important for researchers to be able to assess and understand how users interact with visualization systems under realistic scenarios. This paper presents a methodology for modeling and evaluating the behavior of users in exploratory visual analysis. We model visual exploration using a Markov chain process comprising transitions between mental, interaction, and computational states. These states and the transitions between them can be deduced from a variety of sources, including verbal transcripts, videos and audio recordings, and log files. This model enables the evaluator to characterize the cognitive and computational processes that are essential to insight acquisition in exploratory visual analysis, and reconstruct the dynamics of interaction between the user and the visualization system. We illustrate this model with two exemplar user studies, and demonstrate the qualitative and quantitative analytical tools it affords.

  9. Modeling, Simulation and Visualization of Aerocapture

    NASA Astrophysics Data System (ADS)

    leszcynski, Zigmond V.

    1998-12-01

    A vehicle travelling from Earth to another planet on a ballistic trajectory approaches that planet at hyperbolic velocity. Upon arrival, the vehicle must significantly reduce its speed for orbit insertion. Traditionally, this deceleration has been achieved by propulsive capture, which consumes a large amount of propellant. Aerocapture offers a more fuel-efficient alternative by exploiting vehicular drag in the planet's atmosphere. However, this technique generates extreme heat, necessitating a special thermal protection shield (TPS). Performing a trade study between the propellant mass required for propulsive capture and the TPS mass required for aerocapture can help determine which method is more desirable for a particular mission. The research objective of this thesis was to analyze aerocapture dynamics for the advancement of this trade study process. The result was an aerocapture simulation tool (ACAPS) developed in MATLAB with SIMULINK, emphasizing code validation, upgradeability, user-friendliness and trajectory visualization. The current version, ACAPS 1.1, is a three- degrees-of-freedom point mass simulation model that incorporates a look-up table for the Mars atmosphere. ACAPS is expected to supplement the National Aeronautics and Space Administration (NASA) Jet Propulsion Laboratory (JPL) Project Design Center (PDC) toolkit as preliminary design software for the Mars 2005 Sample Return (MSR) Mission, Mars 2007 Mission, Mars Micromissions, Neptune/Triton Mission, and Human Mars Mission.

  10. A pandemic influenza modeling and visualization tool

    SciTech Connect

    Maciejewski, Ross; Livengood, Philip; Rudolph, Stephen; Collins, Timothy F.; Ebert, David S.; Brigantic, Robert T.; Corley, Courtney D.; Muller, George A.; Sanders, Stephen W.

    2011-08-01

    The National Strategy for Pandemic Influenza outlines a plan for community response to a potential pandemic. In this outline, state and local communities are charged with enhancing their preparedness. In order to help public health officials better understand these charges, we have developed a modeling and visualization toolkit (PanViz) for analyzing the effect of decision measures implemented during a simulated pandemic influenza scenario. Spread vectors based on the point of origin and distance traveled over time are calculated and the factors of age distribution and population density are taken into effect. Healthcare officials are able to explore the effects of the pandemic on the population through a spatiotemporal view, moving forward and backward through time and inserting decision points at various days to determine the impact. Linked statistical displays are also shown, providing county level summaries of data in terms of the number of sick, hospitalized and dead as a result of the outbreak. Currently, this tool has been deployed in Indiana State Department of Health planning and preparedness exercises, and as an educational tool for demonstrating the impact of social distancing strategies during the recent H1N1 (swine flu) outbreak.

  11. Measuring and Modeling Shared Visual Attention

    NASA Technical Reports Server (NTRS)

    Mulligan, Jeffrey B.; Gontar, Patrick

    2016-01-01

    Multi-person teams are sometimes responsible for critical tasks, such as flying an airliner. Here we present a method using gaze tracking data to assess shared visual attention, a term we use to describe the situation where team members are attending to a common set of elements in the environment. Gaze data are quantized with respect to a set of N areas of interest (AOIs); these are then used to construct a time series of N dimensional vectors, with each vector component representing one of the AOIs, all set to 0 except for the component corresponding to the currently fixated AOI, which is set to 1. The resulting sequence of vectors can be averaged in time, with the result that each vector component represents the proportion of time that the corresponding AOI was fixated within the given time interval. We present two methods for comparing sequences of this sort, one based on computing the time-varying correlation of the averaged vectors, and another based on a chi-square test testing the hypothesis that the observed gaze proportions are drawn from identical probability distributions. We have evaluated the method using synthetic data sets, in which the behavior was modeled as a series of "activities," each of which was modeled as a first-order Markov process. By tabulating distributions for pairs of identical and disparate activities, we are able to perform a receiver operating characteristic (ROC) analysis, allowing us to choose appropriate criteria and estimate error rates. We have applied the methods to data from airline crews, collected in a high-fidelity flight simulator (Haslbeck, Gontar & Schubert, 2014). We conclude by considering the problem of automatic (blind) discovery of activities, using methods developed for text analysis.

  12. Measuring and Modeling Shared Visual Attention

    NASA Technical Reports Server (NTRS)

    Mulligan, Jeffrey B.

    2016-01-01

    Multi-person teams are sometimes responsible for critical tasks, such as flying an airliner. Here we present a method using gaze tracking data to assess shared visual attention, a term we use to describe the situation where team members are attending to a common set of elements in the environment. Gaze data are quantized with respect to a set of N areas of interest (AOIs); these are then used to construct a time series of N dimensional vectors, with each vector component representing one of the AOIs, all set to 0 except for the component corresponding to the currently fixated AOI, which is set to 1. The resulting sequence of vectors can be averaged in time, with the result that each vector component represents the proportion of time that the corresponding AOI was fixated within the given time interval. We present two methods for comparing sequences of this sort, one based on computing the time-varying correlation of the averaged vectors, and another based on a chi-square test testing the hypothesis that the observed gaze proportions are drawn from identical probability distributions.We have evaluated the method using synthetic data sets, in which the behavior was modeled as a series of activities, each of which was modeled as a first-order Markov process. By tabulating distributions for pairs of identical and disparate activities, we are able to perform a receiver operating characteristic (ROC) analysis, allowing us to choose appropriate criteria and estimate error rates.We have applied the methods to data from airline crews, collected in a high-fidelity flight simulator (Haslbeck, Gontar Schubert, 2014). We conclude by considering the problem of automatic (blind) discovery of activities, using methods developed for text analysis.

  13. An interaction model for visualizations beyond the desktop.

    PubMed

    Jansen, Yvonne; Dragicevic, Pierre

    2013-12-01

    We present an interaction model for beyond-desktop visualizations that combines the visualization reference model with the instrumental interaction paradigm. Beyond-desktop visualizations involve a wide range of emerging technologies such as wall-sized displays, 3D and shape-changing displays, touch and tangible input, and physical information visualizations. While these technologies allow for new forms of interaction, they are often studied in isolation. New conceptual models are needed to build a coherent picture of what has been done and what is possible. We describe a modified pipeline model where raw data is processed into a visualization and then rendered into the physical world. Users can explore or change data by directly manipulating visualizations or through the use of instruments. Interactions can also take place in the physical world outside the visualization system, such as when using locomotion to inspect a large scale visualization. Through case studies we illustrate how this model can be used to describe both conventional and unconventional interactive visualization systems, and compare different design alternatives.

  14. Data visualization optimization via computational modeling of perception.

    PubMed

    Pineo, Daniel; Ware, Colin

    2012-02-01

    We present a method for automatically evaluating and optimizing visualizations using a computational model of human vision. The method relies on a neural network simulation of early perceptual processing in the retina and primary visual cortex. The neural activity resulting from viewing flow visualizations is simulated and evaluated to produce a metric of visualization effectiveness. Visualization optimization is achieved by applying this effectiveness metric as the utility function in a hill-climbing algorithm. We apply this method to the evaluation and optimization of 2D flow visualizations, using two visualization parameterizations: streaklet-based and pixel-based. An emergent property of the streaklet-based optimization is head-to-tail streaklet alignment. It had been previously hypothesized the effectiveness of head-to-tail alignment results from the perceptual processing of the visual system, but this theory had not been computationally modeled. A second optimization using a pixel-based parameterization resulted in a LIC-like result. The implications in terms of the selection of primitives is discussed. We argue that computational models can be used for optimizing complex visualizations. In addition, we argue that they can provide a means of computationally evaluating perceptual theories of visualization, and as a method for quality control of display methods.

  15. Visual computing model for immune system and medical system.

    PubMed

    Gong, Tao; Cao, Xinxue; Xiong, Qin

    2015-01-01

    Natural immune system is an intelligent self-organizing and adaptive system, which has a variety of immune cells with different types of immune mechanisms. The mutual cooperation between the immune cells shows the intelligence of this immune system, and modeling this immune system has an important significance in medical science and engineering. In order to build a comprehensible model of this immune system for better understanding with the visualization method than the traditional mathematic model, a visual computing model of this immune system was proposed and also used to design a medical system with the immune system, in this paper. Some visual simulations of the immune system were made to test the visual effect. The experimental results of the simulations show that the visual modeling approach can provide a more effective way for analyzing this immune system than only the traditional mathematic equations.

  16. Comparative Isoenzyme Electrophoreses between the Brown-Spotted Locust, Cyrtacanthacris tatarica, and the Desert Locust, Schistocerca gregaria

    PubMed Central

    Elsayed, G.; Amer, S. A. M.

    2014-01-01

    The desert locust, Schistocerca gregaria (Forskål) (Orthoptera: Acrididae), and the brownspotted locust, Cyrtacanthacris tatarica (Linné) (Orthoptera: Acrididae), were collected from Saudi Arabia to investigate their relationships. Native polyacrylamide gel electrophoreses of five arbitrarily chosen metabolic enzymes extracted from the leg muscles of the two locust taxa were conducted. These enzymes were acid phosphatase (Acph), alcohol dehydrogenase (Adh), β esterase (β est), malic enzyme (Mal) and malate dehydrogenase (Mdh). Twenty presumptive gene loci and 26 polymorphic alleles were recorded. Acph did not discriminate between the two locust species, while the other four isoenzymes discriminated between them. Most of the alleles were monomeric, but Mal and Mdh exhibited dimeric alleles in the samples of C. tatarica. β est fractions were more expressed in C. tatarica, and the three enzymes β est, Mal, and Mdh discriminated clearly between the two species. The similarity coefficient that was calculated according to the number of sharing alleles between the two locusts was found to be 0.69. The isoenzyme variation presented herein seemed to reflect either their physiological adaptation or the taxonomic consequences between the two taxa. Collecting more isoenzymes for more samples could have taxonomic value. PMID:25373167

  17. Modeling visual working memory with the MemToolbox.

    PubMed

    Suchow, Jordan W; Brady, Timothy F; Fougnie, Daryl; Alvarez, George A

    2013-08-20

    The MemToolbox is a collection of MATLAB functions for modeling visual working memory. In support of its goal to provide a full suite of data analysis tools, the toolbox includes implementations of popular models of visual working memory, real and simulated data sets, Bayesian and maximum likelihood estimation procedures for fitting models to data, visualizations of data and fit, validation routines, model comparison metrics, and experiment scripts. The MemToolbox is released under the permissive BSD license and is available at http://memtoolbox.org.

  18. Computational model of stereoscopic 3D visual saliency.

    PubMed

    Wang, Junle; Da Silva, Matthieu Perreira; Le Callet, Patrick; Ricordel, Vincent

    2013-06-01

    Many computational models of visual attention performing well in predicting salient areas of 2D images have been proposed in the literature. The emerging applications of stereoscopic 3D display bring an additional depth of information affecting the human viewing behavior, and require extensions of the efforts made in 2D visual modeling. In this paper, we propose a new computational model of visual attention for stereoscopic 3D still images. Apart from detecting salient areas based on 2D visual features, the proposed model takes depth as an additional visual dimension. The measure of depth saliency is derived from the eye movement data obtained from an eye-tracking experiment using synthetic stimuli. Two different ways of integrating depth information in the modeling of 3D visual attention are then proposed and examined. For the performance evaluation of 3D visual attention models, we have created an eye-tracking database, which contains stereoscopic images of natural content and is publicly available, along with this paper. The proposed model gives a good performance, compared to that of state-of-the-art 2D models on 2D images. The results also suggest that a better performance is obtained when depth information is taken into account through the creation of a depth saliency map, rather than when it is integrated by a weighting method.

  19. Structural organization of the presynaptic density at identified synapses in the locust central nervous system.

    PubMed

    Leitinger, Gerd; Masich, Sergej; Neumüller, Josef; Pabst, Maria Anna; Pavelka, Margit; Rind, F Claire; Shupliakov, Oleg; Simmons, Peter J; Kolb, Dagmar

    2012-02-01

    In a synaptic active zone, vesicles aggregate around a densely staining structure called the presynaptic density. We focus on its three-dimensional architecture and a major molecular component in the locust. We used electron tomography to study the presynaptic density in synapses made in the brain by identified second-order neuron of the ocelli. Here, vesicles close to the active zone are organized in two rows on either side of the presynaptic density, a level of organization not previously reported in insect central synapses. The row of vesicles that is closest to the density's base includes vesicles docked with the presynaptic membrane and thus presumably ready for release, whereas the outer row of vesicles does not include any that are docked. We show that a locust ortholog of the Drosophila protein Bruchpilot is localized to the presynaptic density, both in the ocellar pathway and compound eye visual neurons. An antibody recognizing the C-terminus of the Bruchpilot ortholog selectively labels filamentous extensions of the presynaptic density that reach out toward vesicles. Previous studies on Bruchpilot have focused on its role in neuromuscular junctions in Drosophila, and our study shows it is also a major functional component of presynaptic densities in the central nervous system of an evolutionarily distant insect. Our study thus reveals Bruchpilot executes similar functions in synapses that can sustain transmission of small graded potentials as well as those relaying large, spike-evoked signals.

  20. Structural Organization of the Presynaptic Density at Identified Synapses in the Locust Central Nervous System

    PubMed Central

    Leitinger, Gerd; Masich, Sergej; Neumüller, Josef; Pabst, Maria Anna; Pavelka, Margit; Rind, F Claire; Shupliakov, Oleg; Simmons, Peter J; Kolb, Dagmar

    2012-01-01

    In a synaptic active zone, vesicles aggregate around a densely staining structure called the presynaptic density. We focus on its three-dimensional architecture and a major molecular component in the locust. We used electron tomography to study the presynaptic density in synapses made in the brain by identified second-order neuron of the ocelli. Here, vesicles close to the active zone are organized in two rows on either side of the presynaptic density, a level of organization not previously reported in insect central synapses. The row of vesicles that is closest to the density's base includes vesicles docked with the presynaptic membrane and thus presumably ready for release, whereas the outer row of vesicles does not include any that are docked. We show that a locust ortholog of the Drosophila protein Bruchpilot is localized to the presynaptic density, both in the ocellar pathway and compound eye visual neurons. An antibody recognizing the C-terminus of the Bruchpilot ortholog selectively labels filamentous extensions of the presynaptic density that reach out toward vesicles. Previous studies on Bruchpilot have focused on its role in neuromuscular junctions in Drosophila, and our study shows it is also a major functional component of presynaptic densities in the central nervous system of an evolutionarily distant insect. Our study thus reveals Bruchpilot executes similar functions in synapses that can sustain transmission of small graded potentials as well as those relaying large, spike-evoked signals. J. Comp. Neurol. 520:384–400, 2012. © 2011 Wiley Periodicals, Inc. PMID:21826661

  1. Dopaminergic modulation of phase reversal in desert locusts

    PubMed Central

    Alessi, Ahmad M.; O'Connor, Vincent; Aonuma, Hitoshi; Newland, Philip L.

    2014-01-01

    Phenotypic plasticity allows animals to modify their behavior, physiology, and morphology to adapt to environmental change. The global pest, the desert locust, shows two extreme phenotypes; a solitarious phase that is relatively harmless and a gregarious phase that forms swarms and causes extensive agricultural and economic damage. In the field, environmental conditions can drive isolated animals into crowded populations and previous studies have identified the biogenic amine serotonin as a key determinant of this transition. Here we take an integrated approach to investigate the neurochemical, physiological, and behavioral correlates defined by a laboratory based paradigm that mimics facets of swarm break down as gregarious locusts become isolated. Following isolation there was an increased propensity of locusts to avoid conspecifics, and show a reduced locomotion. Changes in choice behavior occurred within 1 h of isolation although isolation-related changes progressed with increased isolation time. Isolation was accompanied by changes in the levels of the biogenic amines dopamine, octopamine, and serotonin within the CNS within 1 h. Dopamine levels were higher in isolated animals and we focused on the role played by this transmitter in synaptic changes that may underpin solitarization. Dopamine reduced synaptic efficacy at a key central synapse between campaniform sensilla (CS) and a fast extensor tibiae motor neuron that is involved in limb movement. We also show that dopamine injection into the haemocoel was sufficient to induce solitarious-like behavior in otherwise gregarious locusts. Further, injection of a dopamine antagonist, fluphenazine, into isolated locusts induced gregarious-like behavior. This highlights that dopaminergic modulation plays an important role in the plasticity underpinning phase transition and sets a context to deepen the understanding of the complementary role that distinct neuromodulators play in polyphenism in locusts. PMID:25426037

  2. Identification of the short neuropeptide F precursor in the desert locust: evidence for an inhibitory role of sNPF in the control of feeding.

    PubMed

    Dillen, Senne; Verdonck, Rik; Zels, Sven; Van Wielendaele, Pieter; Vanden Broeck, Jozef

    2014-03-01

    Peptides of the short neuropeptide F (sNPF) family have been shown to modulate feeding behavior in a wide variety of insect species. While these peptides stimulate feeding and food-searching behavior in Drosophila melanogaster and Apis mellifera, an opposite effect has recently been demonstrated in the desert locust, Schistocerca gregaria. In this study, we elaborate on these observations with the identification of the nucleotide sequence encoding the Schgr-sNPF precursor and the study of its role in the regulation of locust feeding behavior. We confirm that both Schgr-sNPF-like peptides, previously identified in mass spectrometric studies, are genuine precursor-encoded peptides. RNA interference mediated silencing of the Schgr-sNPF precursor transcript generates novel evidence for an inhibitory role of Schgr-sNPF in the regulation of feeding in S. gregaria. Furthermore, we show that starvation reduces the Schgr-sNPF precursor transcript level in the optic lobes, the primary visual centers of the locust brain. Our data indicate that Schgr-sNPF exerts an inhibitory effect on food uptake in the desert locust, which contrasts with effects of sNPF reported for several other insect species.

  3. Locust bean gum: Exploring its potential for biopharmaceutical applications.

    PubMed

    Dionísio, Marita; Grenha, Ana

    2012-07-01

    Polysaccharides have been finding, in the last decades, very interesting and useful applications in the biomedical and, specifically, in the biopharmaceutical field. Locust bean gum is a polysaccharide belonging to the group of galactomannans, being extracted from the seeds of the carob tree (Ceratonia siliqua). This polymer displays a number of appealing characteristics for biopharmaceutical applications, among which its high gelling capacity should be highlighted. In this review, we describe critical aspects of locust bean gum, contributing for its role in biopharmaceutical applications. Physicochemical properties, as well as strong and effective synergies with other biomaterials are described. The potential for in vivo biodegradation is explored and the specific biopharmaceutical applications are discussed.

  4. Energy localization and frequency analysis in the locust ear.

    PubMed

    Malkin, Robert; McDonagh, Thomas R; Mhatre, Natasha; Scott, Thomas S; Robert, Daniel

    2014-01-06

    Animal ears are exquisitely adapted to capture sound energy and perform signal analysis. Studying the ear of the locust, we show how frequency signal analysis can be performed solely by using the structural features of the tympanum. Incident sound waves generate mechanical vibrational waves that travel across the tympanum. These waves shoal in a tsunami-like fashion, resulting in energy localization that focuses vibrations onto the mechanosensory neurons in a frequency-dependent manner. Using finite element analysis, we demonstrate that two mechanical properties of the locust tympanum, distributed thickness and tension, are necessary and sufficient to generate frequency-dependent energy localization.

  5. Anatomy of the lobula complex in the brain of the praying mantis compared to the lobula complexes of the locust and cockroach.

    PubMed

    Rosner, Ronny; von Hadeln, Joss; Salden, Tobias; Homberg, Uwe

    2017-07-01

    The praying mantis is an insect which relies on vision for capturing prey, avoiding being eaten and for spatial orientation. It is well known for its ability to use stereopsis for estimating the distance of objects. The neuronal substrate mediating visually driven behaviors, however, is not very well investigated. To provide a basis for future functional studies, we analyzed the anatomical organization of visual neuropils in the brain of the praying mantis Hierodula membranacea and provide supporting evidence from a second species, Rhombodera basalis, with particular focus on the lobula complex (LOX). Neuropils were three-dimensionally reconstructed from synapsin-immunostained whole mount brains. The neuropil organization and the pattern of γ-aminobutyric acid immunostaining of the medulla and LOX were compared between the praying mantis and two related polyneopteran species, the Madeira cockroach and the desert locust. The investigated visual neuropils of the praying mantis are highly structured. Unlike in most insects the LOX of the praying mantis consists of five nested neuropils with at least one neuropil not present in the cockroach or locust. Overall, the mantis LOX is more similar to the LOX of the locust than the more closely related cockroach suggesting that the sensory ecology plays a stronger role than the phylogenetic distance of the three species in structuring this center of visual information processing. © 2017 The Authors The Journal of Comparative Neurology Published by Wiley Periodicals, Inc.

  6. Anatomy of the lobula complex in the brain of the praying mantis compared to the lobula complexes of the locust and cockroach

    PubMed Central

    von Hadeln, Joss; Salden, Tobias; Homberg, Uwe

    2017-01-01

    Abstract The praying mantis is an insect which relies on vision for capturing prey, avoiding being eaten and for spatial orientation. It is well known for its ability to use stereopsis for estimating the distance of objects. The neuronal substrate mediating visually driven behaviors, however, is not very well investigated. To provide a basis for future functional studies, we analyzed the anatomical organization of visual neuropils in the brain of the praying mantis Hierodula membranacea and provide supporting evidence from a second species, Rhombodera basalis, with particular focus on the lobula complex (LOX). Neuropils were three‐dimensionally reconstructed from synapsin‐immunostained whole mount brains. The neuropil organization and the pattern of γ‐aminobutyric acid immunostaining of the medulla and LOX were compared between the praying mantis and two related polyneopteran species, the Madeira cockroach and the desert locust. The investigated visual neuropils of the praying mantis are highly structured. Unlike in most insects the LOX of the praying mantis consists of five nested neuropils with at least one neuropil not present in the cockroach or locust. Overall, the mantis LOX is more similar to the LOX of the locust than the more closely related cockroach suggesting that the sensory ecology plays a stronger role than the phylogenetic distance of the three species in structuring this center of visual information processing. PMID:28295329

  7. Computational Model of Primary Visual Cortex Combining Visual Attention for Action Recognition

    PubMed Central

    Shu, Na; Gao, Zhiyong; Chen, Xiangan; Liu, Haihua

    2015-01-01

    Humans can easily understand other people’s actions through visual systems, while computers cannot. Therefore, a new bio-inspired computational model is proposed in this paper aiming for automatic action recognition. The model focuses on dynamic properties of neurons and neural networks in the primary visual cortex (V1), and simulates the procedure of information processing in V1, which consists of visual perception, visual attention and representation of human action. In our model, a family of the three-dimensional spatial-temporal correlative Gabor filters is used to model the dynamic properties of the classical receptive field of V1 simple cell tuned to different speeds and orientations in time for detection of spatiotemporal information from video sequences. Based on the inhibitory effect of stimuli outside the classical receptive field caused by lateral connections of spiking neuron networks in V1, we propose surround suppressive operator to further process spatiotemporal information. Visual attention model based on perceptual grouping is integrated into our model to filter and group different regions. Moreover, in order to represent the human action, we consider the characteristic of the neural code: mean motion map based on analysis of spike trains generated by spiking neurons. The experimental evaluation on some publicly available action datasets and comparison with the state-of-the-art approaches demonstrate the superior performance of the proposed model. PMID:26132270

  8. Computational Model of Primary Visual Cortex Combining Visual Attention for Action Recognition.

    PubMed

    Shu, Na; Gao, Zhiyong; Chen, Xiangan; Liu, Haihua

    2015-01-01

    Humans can easily understand other people's actions through visual systems, while computers cannot. Therefore, a new bio-inspired computational model is proposed in this paper aiming for automatic action recognition. The model focuses on dynamic properties of neurons and neural networks in the primary visual cortex (V1), and simulates the procedure of information processing in V1, which consists of visual perception, visual attention and representation of human action. In our model, a family of the three-dimensional spatial-temporal correlative Gabor filters is used to model the dynamic properties of the classical receptive field of V1 simple cell tuned to different speeds and orientations in time for detection of spatiotemporal information from video sequences. Based on the inhibitory effect of stimuli outside the classical receptive field caused by lateral connections of spiking neuron networks in V1, we propose surround suppressive operator to further process spatiotemporal information. Visual attention model based on perceptual grouping is integrated into our model to filter and group different regions. Moreover, in order to represent the human action, we consider the characteristic of the neural code: mean motion map based on analysis of spike trains generated by spiking neurons. The experimental evaluation on some publicly available action datasets and comparison with the state-of-the-art approaches demonstrate the superior performance of the proposed model.

  9. Modeling Spatial and Temporal Aspects of Visual Backward Masking

    ERIC Educational Resources Information Center

    Hermens, Frouke; Luksys, Gediminas; Gerstner, Wulfram; Herzog, Michael H.; Ernst, Udo

    2008-01-01

    Visual backward masking is a versatile tool for understanding principles and limitations of visual information processing in the human brain. However, the mechanisms underlying masking are still poorly understood. In the current contribution, the authors show that a structurally simple mathematical model can explain many spatial and temporal…

  10. Modeling Spatial and Temporal Aspects of Visual Backward Masking

    ERIC Educational Resources Information Center

    Hermens, Frouke; Luksys, Gediminas; Gerstner, Wulfram; Herzog, Michael H.; Ernst, Udo

    2008-01-01

    Visual backward masking is a versatile tool for understanding principles and limitations of visual information processing in the human brain. However, the mechanisms underlying masking are still poorly understood. In the current contribution, the authors show that a structurally simple mathematical model can explain many spatial and temporal…

  11. Integrating visual learning within a model-based ATR system

    NASA Astrophysics Data System (ADS)

    Carlotto, Mark; Nebrich, Mark

    2017-05-01

    Automatic target recognition (ATR) systems, like human photo-interpreters, rely on a variety of visual information for detecting, classifying, and identifying manmade objects in aerial imagery. We describe the integration of a visual learning component into the Image Data Conditioner (IDC) for target/clutter and other visual classification tasks. The component is based on an implementation of a model of the visual cortex developed by Serre, Wolf, and Poggio. Visual learning in an ATR context requires the ability to recognize objects independent of location, scale, and rotation. Our method uses IDC to extract, rotate, and scale image chips at candidate target locations. A bootstrap learning method effectively extends the operation of the classifier beyond the training set and provides a measure of confidence. We show how the classifier can be used to learn other features that are difficult to compute from imagery such as target direction, and to assess the performance of the visual learning process itself.

  12. A novel visualization model for web search results.

    PubMed

    Nguyen, Tien N; Zhang, Jin

    2006-01-01

    This paper presents an interactive visualization system, named WebSearchViz, for visualizing the Web search results and acilitating users' navigation and exploration. The metaphor in our model is the solar system with its planets and asteroids revolving around the sun. Location, color, movement, and spatial distance of objects in the visual space are used to represent the semantic relationships between a query and relevant Web pages. Especially, the movement of objects and their speeds add a new dimension to the visual space, illustrating the degree of relevance among a query and Web search results in the context of users' subjects of interest. By interacting with the visual space, users are able to observe the semantic relevance between a query and a resulting Web page with respect to their subjects of interest, context information, or concern. Users' subjects of interest can be dynamically changed, redefined, added, or deleted from the visual space.

  13. A Developmental Model of Infant Visual Accommodation.

    ERIC Educational Resources Information Center

    Banks, Martin S.; Leitner, Edward F.

    This paper reports the major findings and interprets the results of longitudinal and cross-sectional exPeriments concerning the development of visual accommodation in infants 1 to 3 months of age. The stimulus was a high-contrast, random checkerboard which was presented at three different distances from the infants (25, 50 or 100 cm). The physical…

  14. Terminology model discovery using natural language processing and visualization techniques.

    PubMed

    Zhou, Li; Tao, Ying; Cimino, James J; Chen, Elizabeth S; Liu, Hongfang; Lussier, Yves A; Hripcsak, George; Friedman, Carol

    2006-12-01

    Medical terminologies are important for unambiguous encoding and exchange of clinical information. The traditional manual method of developing terminology models is time-consuming and limited in the number of phrases that a human developer can examine. In this paper, we present an automated method for developing medical terminology models based on natural language processing (NLP) and information visualization techniques. Surgical pathology reports were selected as the testing corpus for developing a pathology procedure terminology model. The use of a general NLP processor for the medical domain, MedLEE, provides an automated method for acquiring semantic structures from a free text corpus and sheds light on a new high-throughput method of medical terminology model development. The use of an information visualization technique supports the summarization and visualization of the large quantity of semantic structures generated from medical documents. We believe that a general method based on NLP and information visualization will facilitate the modeling of medical terminologies.

  15. Data-driven approach to dynamic visual attention modelling

    NASA Astrophysics Data System (ADS)

    Culibrk, Dubravko; Sladojevic, Srdjan; Riche, Nicolas; Mancas, Matei; Crnojevic, Vladimir

    2012-06-01

    Visual attention deployment mechanisms allow the Human Visual System to cope with an overwhelming amount of visual data by dedicating most of the processing power to objects of interest. The ability to automatically detect areas of the visual scene that will be attended to by humans is of interest for a large number of applications, from video coding, video quality assessment to scene understanding. Due to this fact, visual saliency (bottom-up attention) models have generated significant scientific interest in recent years. Most recent work in this area deals with dynamic models of attention that deal with moving stimuli (videos) instead of traditionally used still images. Visual saliency models are usually evaluated against ground-truth eye-tracking data collected from human subjects. However, there are precious few recently published approaches that try to learn saliency from eyetracking data and, to the best of our knowledge, no approaches that try to do so when dynamic saliency is concerned. The paper attempts to fill this gap and describes an approach to data-driven dynamic saliency model learning. A framework is proposed that enables the use of eye-tracking data to train an arbitrary machine learning algorithm, using arbitrary features derived from the scene. We evaluate the methodology using features from a state-of-the art dynamic saliency model and show how simple machine learning algorithms can be trained to distinguish between visually salient and non-salient parts of the scene.

  16. Descriptive Linear modeling of steady-state visual evoked response

    NASA Technical Reports Server (NTRS)

    Levison, W. H.; Junker, A. M.; Kenner, K.

    1986-01-01

    A study is being conducted to explore use of the steady state visual-evoke electrocortical response as an indicator of cognitive task loading. Application of linear descriptive modeling to steady state Visual Evoked Response (VER) data is summarized. Two aspects of linear modeling are reviewed: (1) unwrapping the phase-shift portion of the frequency response, and (2) parsimonious characterization of task-loading effects in terms of changes in model parameters. Model-based phase unwrapping appears to be most reliable in applications, such as manual control, where theoretical models are available. Linear descriptive modeling of the VER has not yet been shown to provide consistent and readily interpretable results.

  17. A bird's-eye view on the modern genetics workflow and its potential applicability to the locust problem.

    PubMed

    Bakkali, Mohammed

    2013-08-01

    Genetics is an immense science and the current developments in its methods and techniques as well as the fast emerging tools make it one of the most powerful biological sciences. Indeed, from taxonomy and ecology to physiology and molecular biology, every biological science makes use of genetics techniques and methods at one time or another. In fact, development in genetics is such that it is now possible to characterize and analyze the expression of the whole set of genes of virtually every living organism, even if it is a non-model one. Locusts are notorious for the damage they cause to the ecosystems and economies of the areas affected by their recurrent population outbreaks. To prevent and deal with these outbreaks, we now count on both biological as well as chemical agents that are proving to be successful in reducing the damage that otherwise locust population outbreaks might cause. However, a better, efficient and environmentally friendly solution is still a hoped-for target. In my opinion, the ideal future pesticide should be both environmentally friendly, risk free and species-specific. To reach the knowledge needed for the development of such species-specific anti-locust agent, deep and accurate knowledge of the locusts' genetics and molecular biology is a must. Since genes and their expression levels lie at the bottom of every biological phenomenon, any species-specific solution to the locust problem requires a good knowledge of these organisms' genes as well as the quantitative and spatio-temporal dynamics of their expression. To reach such knowledge, collaborative work is needed as well as a clear workflow that, given the fast development in the genetics tools, is not always clear to all research groups. For this reason, here I describe a genetics workflow that should allow taking advantage of the most recent genetics tools and techniques to answer question relating to locust biology. My hope is that the adoption of this and other work strategies by

  18. Retinal degeneration in animal models with a defective visual cycle

    PubMed Central

    Maeda, Akiko; Palczewski, Krzysztof

    2014-01-01

    Continuous generation of visual chromophore through the visual (retinoid) cycle is essential to maintain eyesight and retinal heath. Impairments in this cycle and related pathways adversely affect vision. In this review, we summarize the chemical reactions of vitamin A metabolites involved in the retinoid cycle and describe animal models of associated human diseases. Development of potential therapies for retinal disorders in these animal models is also introduced. PMID:25210527

  19. Visual performance modeling in the human operator simulator

    NASA Technical Reports Server (NTRS)

    Strieb, M. I.

    1979-01-01

    A brief description of the history of the development of the human operator simulator (HOS) model is presented. Features of the HOS micromodels that impact on the obtainment of visual performance data are discussed along with preliminary details on a HOS pilot model designed to predict the results of visual performance workload data obtained through oculometer studies on pilots in real and simulated approaches and landings.

  20. Locust sprouts reduce growth of yellow-poplar seedlings

    Treesearch

    Donald E. Beck; Charles E. McGee

    1974-01-01

    Dense thickets of black locust which often appear after clearcutting in the Southern Appalachians and Piedmont, can severely reduce growth of other desirable hardwoods. Released yellow-poplar seedlings were 51 percent taller and 79 percent larger in diameter than unreleased ones 6 years after treatment.

  1. Cellulolytic activity and structure of symbiotic bacteria in locust guts.

    PubMed

    Su, L-J; Liu, H; Li, Y; Zhang, H-F; Chen, M; Gao, X-H; Wang, F-Q; Song, A-D

    2014-09-29

    Locusts are able to digest the cellulose of Gramineae plants, resulting in their being considered as major crop pests. To illustrate the mechanism involved in cellulose digestion, the cellulolytic activity and zymography in the gut contents of 16 locust species were determined using carboxymethyl cellulose (CMC) as substrate. The diversity of gut symbiotic bacteria was studied using denaturing gradient gel electrophoresis (DGGE). The results showed that high CMC activity was present in Acrididae gut fluid (mean 356.4 U/g proteins). Of the 5 locust species, Oxya chinensis had the highest diversity of intestinal symbiotic bacteria, characterized by the DGGE profile containing more than 20 bands of 16S rRNA. Klebsiella pneumoniae, in the gut of Locusta migratoria manilensis, was identified as the most abundant symbiotic bacterium by DNA sequencing, with a relative abundance of 19.74%. In comparison, Methylobacterium sp was the most dominant species in the Atractomorpha sinensis gut, with a relative abundance of 29.04%. The results indicated that the cellulolytic enzymes and gut microbial communities probably reflected their phylogenetic relationship with different locust species and associated feeding strategies.

  2. Evidence for a pheromone in the locust borer

    Treesearch

    Jimmy R. Galford

    1977-01-01

    Laboratory studies have suggested the existence of a pheromone in the locust borer. Male beetles spent more time on bolts of wood exposed to virgin females than on control bolts. The females apparently deposited the pheromone on the bolts of wood and filter paper.

  3. Visualization and dissemination of global crustal models on virtual globes

    NASA Astrophysics Data System (ADS)

    Zhu, Liang-feng; Pan, Xin; Sun, Jian-zhong

    2016-05-01

    Global crustal models, such as CRUST 5.1 and its descendants, are very useful in a broad range of geoscience applications. The current method for representing the existing global crustal models relies heavily on dedicated computer programs to read and work with those models. Therefore, it is not suited to visualize and disseminate global crustal information to non-geological users. This shortcoming is becoming obvious as more and more people from both academic and non-academic institutions are interested in understanding the structure and composition of the crust. There is a pressing need to provide a modern, universal and user-friendly method to represent and visualize the existing global crustal models. In this paper, we present a systematic framework to easily visualize and disseminate the global crustal structure on virtual globes. Based on crustal information exported from the existing global crustal models, we first create a variety of KML-formatted crustal models with different levels of detail (LODs). And then the KML-formatted models can be loaded into a virtual globe for 3D visualization and model dissemination. A Keyhole Markup Language (KML) generator (Crust2KML) is developed to automatically convert crustal information obtained from the CRUST 1.0 model into KML-formatted global crustal models, and a web application (VisualCrust) is designed to disseminate and visualize those models over the Internet. The presented framework and associated implementations can be conveniently exported to other applications to support visualizing and analyzing the Earth's internal structure on both regional and global scales in a 3D virtual-globe environment.

  4. Channelized model observer using a visual discrimination model

    NASA Astrophysics Data System (ADS)

    Johnson, Jeffrey P.; Lubin, Jeffrey; Nafziger, John S.; Krupinski, Elizabeth A.; Roehrig, Hans

    2005-04-01

    Previous studies in which the JNDmetrix visual discrimination model (VDM) was applied to predict effects of image display and processing factors on lesion detectability have shown promising results for mammographic images with microcalcification clusters. In those studies, just-noticeable-difference (JND) metrics were computed for signal-present and signal-absent image pairs with the same background. When this "paired discriminability" method was applied to Gaussian signals in 1/f3 filtered noise, however, it was unable to predict detection thresholds measured in 2AFC trials for different backgrounds. We suggested previously (SPIE 2002) that a statistical model observer using channel responses from "single-ended" VDM simulations could predict detection performance with different backgrounds. The implementation and evaluation of that VDM-channelized model observer is described in this paper. Model performance was computed for sets of signal and noise images from two observer performance studies involving the detection of simulated or real breast masses. For the first study, the VDM-channelized model observer was able to predict the dependence of detection thresholds on signal size (contrast-detail slope) for 2AFC detection of Gaussian signals on different 1/f3 noise backgrounds. Variations in the detectability of masses in mammograms from the second study correlated well with model performance as a function of display type (LCD vs. CRT) and viewing angle (on-axis vs. 45° off-axis). The performance of the VDM-channelized model observer was superior to results obtained using either the VDM paired discriminability method or a conventional nonprewhitening model observer.

  5. Ecosystem carbon exchange in response to locust outbreaks in a temperate steppe.

    PubMed

    Song, Jian; Wu, Dandan; Shao, Pengshuai; Hui, Dafeng; Wan, Shiqiang

    2015-06-01

    It is predicted that locust outbreaks will occur more frequently under future climate change scenarios, with consequent effects on ecological goods and services. A field manipulative experiment was conducted to examine the responses of gross ecosystem productivity (GEP), net ecosystem carbon dioxide (CO2) exchange (NEE), ecosystem respiration (ER), and soil respiration (SR) to locust outbreaks in a temperate steppe of northern China from 2010 to 2011. Two processes related to locust outbreaks, natural locust feeding and carcass deposition, were mimicked by clipping 80 % of aboveground biomass and adding locust carcasses, respectively. Ecosystem carbon (C) exchange (i.e., GEP, NEE, ER, and SR) was suppressed by locust feeding in 2010, but stimulated by locust carcass deposition in both years (except SR in 2011). Experimental locust outbreaks (i.e., clipping plus locust carcass addition) decreased GEP and NEE in 2010 whereas they increased GEP, NEE, and ER in 2011, leading to neutral changes in GEP, NEE, and SR across the 2 years. The responses of ecosystem C exchange could have been due to the changes in soil ammonium nitrogen, community cover, and aboveground net primary productivity. Our findings of the transient and neutral changes in ecosystem C cycling under locust outbreaks highlight the importance of resistance, resilience, and stability of the temperate steppe in maintaining reliable ecosystem services, and facilitate the projections of ecosystem functioning in response to natural disturbance and climate change.

  6. VCMM: a visual tool for continuum molecular modeling.

    PubMed

    Bai, Shiyang; Lu, Benzhuo

    2014-05-01

    This paper describes the design and function of a visualization tool, VCMM, for visualizing and analyzing data, and interfacing solvers for generic continuum molecular modeling. In particular, an emphasis of the program is to treat the data set based on unstructured mesh as used in finite/boundary element simulations, which largely enhances the capabilities of current visualization tools in this area that only support structured mesh. VCMM is segmented into molecular, meshing and numerical modules. The capabilities of molecular module include molecular visualization and force field assignment. Meshing module contains mesh generation, analysis and visualization tools. Numerical module currently provides a few finite/boundary element solvers of continuum molecular modeling, and contains several common visualization tools for the numerical result such as line and plane interpolations, surface probing, volume rendering and stream rendering. Three modules can exchange data with each other and carry out a complete process of modeling. Interfaces are also designed in order to facilitate usage of other mesh generation tools and numerical solvers. We develop a technique to accelerate data retrieval and have combined many graphical techniques in visualization. VCMM is highly extensible, and users can obtain more powerful functions by introducing relevant plug-ins. VCMM can also be useful in other fields such as computational quantum chemistry, image processing, and material science.

  7. Anoxia induces thermotolerance in the locust flight system.

    PubMed

    Wu, B S; Lee, J K; Thompson, K M; Walker, V K; Moyes, C D; Robertson, R M

    2002-03-01

    Heat shock and anoxia are environmental stresses that are known to trigger similar cellular responses. In this study, we used the locust to examine stress cross-tolerance by investigating the consequences of a prior anoxic stress on the effects of a subsequent high-temperature stress. Anoxic stress and heat shock induced thermotolerance by increasing the ability of intact locusts to survive normally lethal temperatures. To determine whether induced thermotolerance observed in the intact animal was correlated with electrophysiological changes, we measured whole-cell K(+) currents and action potentials from locust neurons. K(+) currents recorded from thoracic neuron somata were reduced after anoxic stress and decreased with increases in temperature. Prior anoxic stress and heat shock increased the upper temperature limit for generation of an action potential during a subsequent heat stress. Although anoxia induced thermotolerance in the locust flight system, a prior heat shock did not protect locusts from a subsequent anoxic stress. To determine whether changes in bioenergetic status were implicated in whole-animal cross-tolerance, phosphagen levels and rates of mitochondrial respiration were assayed. Heat shock alone had no effect on bioenergetic status. Prior heat shock allowed rapid recovery after normally lethal heat stress but afforded no protection after a subsequent anoxic stress. Heat shock also afforded no protection against disruption of bioenergetic status after a subsequent exercise stress. These metabolite studies are consistent with the electrophysiological data that demonstrate that a prior exposure to anoxia can have protective effects against high-temperature stress but that heat shock does not induce tolerance to anoxia.

  8. A Dynamic Systems Theory Model of Visual Perception Development

    ERIC Educational Resources Information Center

    Coté, Carol A.

    2015-01-01

    This article presents a model for understanding the development of visual perception from a dynamic systems theory perspective. It contrasts to a hierarchical or reductionist model that is often found in the occupational therapy literature. In this proposed model vision and ocular motor abilities are not foundational to perception, they are seen…

  9. Making It Visual: Creating a Model of the Atom

    ERIC Educational Resources Information Center

    Pringle, Rose M.

    2004-01-01

    This article describes a lesson in which students construct Bohr's planetary model of the atom. Niels Bohr's atomic model provides a framework for discussing with middle and high school students the historical development of our understanding of the structure of the atom. The model constructed in this activity will enable students to visualize the…

  10. Making It Visual: Creating a Model of the Atom

    ERIC Educational Resources Information Center

    Pringle, Rose M.

    2004-01-01

    This article describes a lesson in which students construct Bohr's planetary model of the atom. Niels Bohr's atomic model provides a framework for discussing with middle and high school students the historical development of our understanding of the structure of the atom. The model constructed in this activity will enable students to visualize the…

  11. Pilot/vehicle model analysis of visually guided flight

    NASA Technical Reports Server (NTRS)

    Zacharias, Greg L.

    1991-01-01

    Information is given in graphical and outline form on a pilot/vehicle model description, control of altitude with simple terrain clues, simulated flight with visual scene delays, model-based in-cockpit display design, and some thoughts on the role of pilot/vehicle modeling.

  12. A Dynamic Systems Theory Model of Visual Perception Development

    ERIC Educational Resources Information Center

    Coté, Carol A.

    2015-01-01

    This article presents a model for understanding the development of visual perception from a dynamic systems theory perspective. It contrasts to a hierarchical or reductionist model that is often found in the occupational therapy literature. In this proposed model vision and ocular motor abilities are not foundational to perception, they are seen…

  13. Effect of Microgravity on Several Visual Functions During STS Shuttle Missions: Visual Function Tester-model 1 (VFT-1)

    NASA Technical Reports Server (NTRS)

    Oneal, Melvin R.; Task, H. Lee; Genco, Louis V.

    1992-01-01

    Viewgraphs on the effect of microgravity on several visual functions during STS shuttle missions are presented. The purpose, methods, results, and discussion are discussed. The visual function tester model 1 is used.

  14. Effect of microgravity on visual contrast threshold during STS Shuttle missions: Visual Function Tester-Model 2 (VFT-2)

    NASA Technical Reports Server (NTRS)

    Oneal, Melvin R.; Task, H. Lee; Genco, Louis V.

    1992-01-01

    Viewgraphs on effect of microgravity on visual contrast threshold during STS shuttle missions are presented. The purpose, methods, and results are discussed. The visual function tester model 2 is used.

  15. Spatial uncertainty model for visual features using a Kinect™ sensor.

    PubMed

    Park, Jae-Han; Shin, Yong-Deuk; Bae, Ji-Hun; Baeg, Moon-Hong

    2012-01-01

    This study proposes a mathematical uncertainty model for the spatial measurement of visual features using Kinect™ sensors. This model can provide qualitative and quantitative analysis for the utilization of Kinect™ sensors as 3D perception sensors. In order to achieve this objective, we derived the propagation relationship of the uncertainties between the disparity image space and the real Cartesian space with the mapping function between the two spaces. Using this propagation relationship, we obtained the mathematical model for the covariance matrix of the measurement error, which represents the uncertainty for spatial position of visual features from Kinect™ sensors. In order to derive the quantitative model of spatial uncertainty for visual features, we estimated the covariance matrix in the disparity image space using collected visual feature data. Further, we computed the spatial uncertainty information by applying the covariance matrix in the disparity image space and the calibrated sensor parameters to the proposed mathematical model. This spatial uncertainty model was verified by comparing the uncertainty ellipsoids for spatial covariance matrices and the distribution of scattered matching visual features. We expect that this spatial uncertainty model and its analyses will be useful in various Kinect™ sensor applications.

  16. Visual Attention Model Based on Statistical Properties of Neuron Responses

    PubMed Central

    Duan, Haibin; Wang, Xiaohua

    2015-01-01

    Visual attention is a mechanism of the visual system that can select relevant objects from a specific scene. Interactions among neurons in multiple cortical areas are considered to be involved in attentional allocation. However, the characteristics of the encoded features and neuron responses in those attention related cortices are indefinite. Therefore, further investigations carried out in this study aim at demonstrating that unusual regions arousing more attention generally cause particular neuron responses. We suppose that visual saliency is obtained on the basis of neuron responses to contexts in natural scenes. A bottom-up visual attention model is proposed based on the self-information of neuron responses to test and verify the hypothesis. Four different color spaces are adopted and a novel entropy-based combination scheme is designed to make full use of color information. Valuable regions are highlighted while redundant backgrounds are suppressed in the saliency maps obtained by the proposed model. Comparative results reveal that the proposed model outperforms several state-of-the-art models. This study provides insights into the neuron responses based saliency detection and may underlie the neural mechanism of early visual cortices for bottom-up visual attention. PMID:25747859

  17. Conceptual model for adaptable and extensible visual data exploration

    NASA Astrophysics Data System (ADS)

    Ferreira de Oliveira, Maria C.; Shimabukuro, Milton H.

    2004-06-01

    Interactive visual representations complement traditional statistical and machine learning techniques for data analysis, allowing users to play a more active role in a knowledge discovery process and making the whole process more understandable. Though visual representations are applicable to several stages of the knowledge discovery process, a common use of visualization is in the initial stages to explore and organize a sometimes unknown and complex data set. In this context, the integrated and coordinated-that is, user actions should be capable of affecting multiple visualizations when desired-use of multiple graphical representations allows data to be observed from several perspectives and offers richer information than isolated representations. In this paper we propose an underlying model for an extensible and adaptable environment that allows independently developed visualization components to be gradually integrated into a user configured knowledge discovery application. Because a major requirement when using multiple visual techniques is the ability to link amongst them, so that user actions executed on a representation propagate to others if desired, the model also allows runtime configuration of coordinated user actions over different visual representations. We illustrate how this environment is being used to assist data exploration and organization in a climate classification problem.

  18. Texture synthesis models and material perception in the visual periphery

    NASA Astrophysics Data System (ADS)

    Balas, Benjamin

    2015-03-01

    The feature vocabularies used to support texture synthesis algorithms are increasingly being used to examine various aspects of human visual perception. These algorithms offer both a rich set of features that are typically sufficient to capture the appearance of complex natural inputs and a means of carrying out psychophysical experiments using synthetic textures as a proxy for the transformations ostensibly carried out by the visual system when processing natural images using summary statistics. Texture synthesis algorithms have recently been successfully applied to a wide range of visual tasks including texture perception, visual crowding, visual search, among others. Presently, we used both nonparametric and parametric texture synthesis models to investigate the nature of material perception in the visual periphery. We asked participants to classify images of four natural materials (metal, stone, water, and wood) when briefly presented in the visual periphery and compared the errors made under these viewing conditions to the errors made when judging the material category of synthetic images made from the original targets. We found that the confusions made under these two scenarios were substantially different, suggesting that these particular models do not appear to account for material perception in the periphery.

  19. Visual modeling shows that avian host parents use multiple visual cues in rejecting parasitic eggs

    PubMed Central

    Spottiswoode, Claire N.; Stevens, Martin

    2010-01-01

    One of the most striking outcomes of coevolution between species is egg mimicry by brood parasitic birds, resulting from rejection behavior by discriminating host parents. Yet, how exactly does a host detect a parasitic egg? Brood parasitism and egg rejection behavior provide a model system for exploring the relative importance of different visual cues used in a behavioral task. Although hosts are discriminating, we do not know exactly what cues they use, and to answer this it is crucial to account for the receiver's visual perception. Color, luminance (“perceived lightness”) and pattern information have never been simultaneously quantified and experimentally tested through a bird's eye. The cuckoo finch Anomalospiza imberbis and its hosts show spectacular polymorphisms in egg appearance, providing a good opportunity for investigating visual discrimination owing to the large range of patterns and colors involved. Here we combine field experiments in Africa with modeling of avian color vision and pattern discrimination to identify the specific visual cues used by hosts in making rejection decisions. We found that disparity between host and foreign eggs in both color and several aspects of pattern (dispersion, principal marking size, and variability in marking size) were important predictors of rejection, especially color. These cues correspond exactly to the principal differences between host and parasitic eggs, showing that hosts use the most reliable available cues in making rejection decisions, and select for parasitic eggs that are increasingly mimetic in a range of visual attributes. PMID:20421497

  20. Modeling and visualizing borehole information on virtual globes using KML

    NASA Astrophysics Data System (ADS)

    Zhu, Liang-feng; Wang, Xi-feng; Zhang, Bing

    2014-01-01

    Advances in virtual globes and Keyhole Markup Language (KML) are providing the Earth scientists with the universal platforms to manage, visualize, integrate and disseminate geospatial information. In order to use KML to represent and disseminate subsurface geological information on virtual globes, we present an automatic method for modeling and visualizing a large volume of borehole information. Based on a standard form of borehole database, the method first creates a variety of borehole models with different levels of detail (LODs), including point placemarks representing drilling locations, scatter dots representing contacts and tube models representing strata. Subsequently, the level-of-detail based (LOD-based) multi-scale representation is constructed to enhance the efficiency of visualizing large numbers of boreholes. Finally, the modeling result can be loaded into a virtual globe application for 3D visualization. An implementation program, termed Borehole2KML, is developed to automatically convert borehole data into KML documents. A case study of using Borehole2KML to create borehole models in Shanghai shows that the modeling method is applicable to visualize, integrate and disseminate borehole information on the Internet. The method we have developed has potential use in societal service of geological information.

  1. Paternal epigenetic effects of population density on locust phase-related characteristics associated with heat-shock protein expression.

    PubMed

    Chen, Bing; Li, Shaoqin; Ren, Qiang; Tong, Xiwen; Zhang, Xia; Kang, Le

    2015-02-01

    Many species exhibit transgenerational plasticity by which environmental cues experienced by either parent can be transmitted to their offspring, resulting in phenotypic variants in offspring to match ancestral environments. However, the manner by which paternal experiences affect offspring plasticity through epigenetic inheritance in animals generally remains unclear. In this study, we examined the transgenerational effects of population density on phase-related traits in the migratory locust Locusta migratoria. Using an experimental design that explicitly controls genetic background, we found that the effects of crowd or isolation rearing on phase plasticity could be inherited to the offspring. The isolation of gregarious locusts resulted in reduced weight in offspring eggs and altered morphometric traits in hatchlings, whereas crowding of solitarious locusts exhibited opposite effects. The consequences of density changes were transmitted by both maternal and paternal inheritance, although the expression of paternal effects was not as pronounced as that of maternal effects. Prominent expression of heat-shock proteins (Hsps), such as Hsp90, Hsp70 and Hsp20.6, could be triggered by density changes. Hsps were significantly upregulated upon crowding but downregulated upon isolation. The variation in parental Hsp expression was also transmitted to the offspring, in which the pattern of inheritance was consistent with that of phase characteristics. These results revealed a paternal effect on phase polyphenism and Hsp expression induced by population density, and defined a model system that could be used to study the paternal epigenetic inheritance of environmental changes.

  2. Development of histamine-immunoreactivity in the Central nervous system of the two locust species Schistocerca gregaria and Locusta migratoria.

    PubMed

    Pätschke, Arne; Bicker, Gerd

    2011-10-01

    Locusts are attractive model preparations for cellular investigations of neurodevelopment. In this study, we investigate the immunocytochemical localization of histamine in the developing ventral nerve cord of two locust species, Schistocerca gregaria and Locusta migratoria. Histamine is the fast neurotransmitter of photoreceptor neurons in the compound eye of insects, but it is also synthesized in interneurons of the central nervous system. In the locust ventral nerve cord, the pattern of histamine-immunoreactive neurons follows a relatively simple bauplan. The histaminergic system comprises a set of single, ascending projection neurons that are segmentally arranged in almost every neuromere. The neurons send out their axons anteriorly, forming branches and varicosities throughout the adjacent ganglia. In the suboesophageal ganglion, the cell bodies lie in a posteriolateral position. The prothoracic ganglion lacks histaminergic neurons. In the posterior ganglia of the ventral nerve cord, the somata of the histaminergic neurons are ventromedially positioned. Histamine-immunoreactivity starts around 50% of embryonic development in interneurons of the brain. Subsequently, the neurons of the more posterior ganglia of the ventral nerve cord become immunoreactive. From 60% embryonic development, the pattern of soma staining in the nerve cord appears mature. Around 65% of embryonic development, the photoreceptor cells show histamine-immunoreactivity. The histaminergic innervation of the neuropile develops from the central branches toward the periphery of the ganglia and is completed right before hatching.

  3. Developmental Visual Dysfunction: Models for Assessment and Management.

    ERIC Educational Resources Information Center

    Erhardt, Rhoda Priest

    This book describes transdisciplinary management of multiply disabled children with vision problems and presents four theoretical models of visual assessment and three illustrative case studies in a sequence appropriate to the learning process. The first three models are intended to lead to assessment and management of the child and the last to…

  4. Visual Modeling as a Motivation for Studying Mathematics and Art

    ERIC Educational Resources Information Center

    Sendova, Evgenia; Grkovska, Slavica

    2005-01-01

    The paper deals with the possibility of enriching the curriculum in mathematics, informatics and art by means of visual modeling of abstract paintings. The authors share their belief that in building a computer model of a construct, one gains deeper insight into the construct, and is motivated to elaborate one's knowledge in mathematics and…

  5. Visual Modeling as a Motivation for Studying Mathematics and Art

    ERIC Educational Resources Information Center

    Sendova, Evgenia; Grkovska, Slavica

    2005-01-01

    The paper deals with the possibility of enriching the curriculum in mathematics, informatics and art by means of visual modeling of abstract paintings. The authors share their belief that in building a computer model of a construct, one gains deeper insight into the construct, and is motivated to elaborate one's knowledge in mathematics and…

  6. Developmental Visual Dysfunction: Models for Assessment and Management.

    ERIC Educational Resources Information Center

    Erhardt, Rhoda Priest

    This book describes transdisciplinary management of multiply disabled children with vision problems and presents four theoretical models of visual assessment and three illustrative case studies in a sequence appropriate to the learning process. The first three models are intended to lead to assessment and management of the child and the last to…

  7. Detection of visual signals by rats: A computational model

    EPA Science Inventory

    We applied a neural network model of classical conditioning proposed by Schmajuk, Lam, and Gray (1996) to visual signal detection and discrimination tasks designed to assess sustained attention in rats (Bushnell, 1999). The model describes the animals’ expectation of receiving fo...

  8. Detection of visual signals by rats: A computational model

    EPA Science Inventory

    We applied a neural network model of classical conditioning proposed by Schmajuk, Lam, and Gray (1996) to visual signal detection and discrimination tasks designed to assess sustained attention in rats (Bushnell, 1999). The model describes the animals’ expectation of receiving fo...

  9. Mutualism between the desert locust Schistocerca gregaria and its gut microbiota.

    PubMed

    Dillon, Rod; Charnley, Keith

    2002-10-01

    The desert locust Schistocerca gregaria contains a relatively simple but abundant gut microbiota which originated from the insect's diet. The gut bacterial population is dominated by Enterobacteriaceae with a major component of enterococci. Microbial metabolism of secondary plant chemicals in the locust gut produces phenolics useful to the locust host. Some products are antimicrobial and contribute to host defense against pathogens, others are employed by the host as components of the aggregation pheromone. This dual benefit suggests a closer degree of integration between the locust and its microbial community than was previously suspected.

  10. Receptive fields of locust brain neurons are matched to polarization patterns of the sky.

    PubMed

    Bech, Miklós; Homberg, Uwe; Pfeiffer, Keram

    2014-09-22

    Many animals, including insects, are able to use celestial cues as a reference for spatial orientation and long-distance navigation [1]. In addition to direct sunlight, the chromatic gradient of the sky and its polarization pattern are suited to serve as orientation cues [2-5]. Atmospheric scattering of sunlight causes a regular pattern of E vectors in the sky, which are arranged along concentric circles around the sun [5, 6]. Although certain insects rely predominantly on sky polarization for spatial orientation [7], it has been argued that detection of celestial E vector orientation may not suffice to differentiate between solar and antisolar directions [8, 9]. We show here that polarization-sensitive (POL) neurons in the brain of the desert locust Schistocerca gregaria can overcome this ambiguity. Extracellular recordings from POL units in the central complex and lateral accessory lobes revealed E vector tunings arranged in concentric circles within large receptive fields, matching the sky polarization pattern at certain solar positions. Modeling of neuronal responses under an idealized sky polarization pattern (Rayleigh sky) suggests that these "matched filter" properties allow locusts to unambiguously determine the solar azimuth by relying solely on the sky polarization pattern for compass navigation.

  11. Extra Molting and Selection on Nymphal Growth in the Desert Locust

    PubMed Central

    Piou, Cyril; Jourdan-Pineau, Hélène; Pagès, Christine; Blondin, Laurence; Chapuis, Marie-Pierre

    2016-01-01

    In insects, extra-molting has been viewed as a compensatory mechanism for nymphal growth that contributes to optimize body weight for successful reproduction. However, little is known on the capacity of extra-molting to evolve in natural populations, which limits our understanding of how selection acts on nymphal growth. We used a multi-generational pedigree, individual monitoring and quantitative genetics models to investigate the evolution of extra-molting and its impact on nymphal growth in a solitarious population of the desert locust, Schistocerca gregaria. Growth compensation via extra-molting was observed for 46% of the females, whose adult weight exceeded by 4% that of other females, at a cost of a 22% longer development time. We found a null heritability for body weight threshold only, and the highest and a strongly female-biased heritability for extra molting. Our genetic estimates show that (1) directional selection can act on growth rate, development time and extra-molting to optimize body weight threshold, the target of stabilizing selection, (2) extra-molting can evolve in natural populations, and (3) a genetic conflict, due to sexually antagonistic selection on extra-molting, might prevent its fixation. Finally, we discuss how antagonistic selection between solitarious and gregarious environments and/or genetic correlations between growth and phase traits might also impact the evolution of extra-molting in locusts. PMID:27227885

  12. Symbolic modeling of human anatomy for visualization and simulation

    NASA Astrophysics Data System (ADS)

    Pommert, Andreas; Schubert, Rainer; Riemer, Martin; Schiemann, Thomas; Tiede, Ulf; Hoehne, Karl H.

    1994-09-01

    Visualization of human anatomy in a 3D atlas requires both spatial and more abstract symbolic knowledge. Within our 'intelligent volume' model which integrates these two levels, we developed and implemented a semantic network model for describing human anatomy. Concepts for structuring (abstraction levels, domains, views, generic and case-specific modeling, inheritance) are introduced. Model, tools for generation and exploration and applications in our 3D anatomical atlas are presented and discussed.

  13. Visualizations and Mental Models - The Educational Implications of GEOWALL

    NASA Astrophysics Data System (ADS)

    Rapp, D.; Kendeou, P.

    2003-12-01

    Work in the earth sciences has outlined many of the faulty beliefs that students possess concerning particular geological systems and processes. Evidence from educational and cognitive psychology has demonstrated that students often have difficulty overcoming their na‹ve beliefs about science. Prior knowledge is often remarkably resistant to change, particularly when students' existing mental models for geological principles may be faulty or inaccurate. Figuring out how to help students revise their mental models to include appropriate information is a major challenge. Up until this point, research has tended to focus on whether 2-dimensional computer visualizations are useful tools for helping students develop scientifically correct models. Research suggests that when students are given the opportunity to use dynamic computer-based visualizations, they are more likely to recall the learned information, and are more likely to transfer that knowledge to novel settings. Unfortunately, 2-dimensional visualization systems are often inadequate representations of the material that educators would like students to learn. For example, a 2-dimensional image of the Earth's surface does not adequately convey particular features that are critical for visualizing the geological environment. This may limit the models that students can construct following these visualizations. GEOWALL is a stereo projection system that has attempted to address this issue. It can display multidimensional static geologic images and dynamic geologic animations in a 3-dimensional format. Our current research examines whether multidimensional visualization systems such as GEOWALL may facilitate learning by helping students to develop more complex mental models. This talk will address some of the cognitive issues that influence the construction of mental models, and the difficulty of updating existing mental models. We will also discuss our current work that seeks to examine whether GEOWALL is an

  14. A local correlation based visual saliency model

    NASA Astrophysics Data System (ADS)

    Li, Yang; Mou, Xuanqin

    2016-09-01

    We propose a novel local correlation based saliency model that is friendly to application of video coding. The proposed model is developed in YCbCr color space. We extract feature maps with local mean and local contrast of each channel image and its Gaussian blurred image, and produce rarity maps by calculating the correlation between the feature maps of the original and blurred channels. The proposed saliency map is produced by a combination of the local mean rarity maps and the local contrast rarity maps across all the channels. Experiments validate that the proposed model works with excellent performance.

  15. Automation of Scientific Modeling and Visualization Using Model5D and ModelPOV Software

    NASA Astrophysics Data System (ADS)

    Artemov, Yuri; Schwartz, Brian

    2000-03-01

    When scientists try to visualize complex phenomena, they often choose to do programming on their own. Although such powerful packages as Mathematica or Matlab are convenient in small to medium size simulations, they do not perform well in massive 3D computations, and they have very limited ability of volume rendering and animation of 3D data. Such programs as Bob and Vis5D are specifically tailored to visualization of volume data. However, learning data file formats of these programs is time consuming and error prone task. In this report we present Model5D software, which greatly simplifies the process of calculation of scalar multi-variable time-dependent 3D data and its preparation for visualization in Bob or Vis5D. Numerical model of any kind intended for calculation on a regular 3D grid can be implemented as an 'engine' (dynamic link library, actually performing calculation) and a 'model' (collection of parameters, etc.). Engine and model are implemented as small modules, which can be easily exchanged over the Internet. The model functionality is incorporated into engine by using the templates provided and a C++ compiler. The calculations can be performed in a batch mode. ModelPOV, which prepares data for popular ray tracer POV-Ray, is to Model5D as vector graphics to bitmapped graphics. ModelPOV is especially useful for visualization of large number of particles. Example of using these tools for visualization of vortices in superconductors is discussed.

  16. Self-paced model learning for robust visual tracking

    NASA Astrophysics Data System (ADS)

    Huang, Wenhui; Gu, Jason; Ma, Xin; Li, Yibin

    2017-01-01

    In visual tracking, learning a robust and efficient appearance model is a challenging task. Model learning determines both the strategy and the frequency of model updating, which contains many details that could affect the tracking results. Self-paced learning (SPL) has recently been attracting considerable interest in the fields of machine learning and computer vision. SPL is inspired by the learning principle underlying the cognitive process of humans, whose learning process is generally from easier samples to more complex aspects of a task. We propose a tracking method that integrates the learning paradigm of SPL into visual tracking, so reliable samples can be automatically selected for model learning. In contrast to many existing model learning strategies in visual tracking, we discover the missing link between sample selection and model learning, which are combined into a single objective function in our approach. Sample weights and model parameters can be learned by minimizing this single objective function. Additionally, to solve the real-valued learning weight of samples, an error-tolerant self-paced function that considers the characteristics of visual tracking is proposed. We demonstrate the robustness and efficiency of our tracker on a recent tracking benchmark data set with 50 video sequences.

  17. Visual prosthesis wireless energy transfer system optimal modeling.

    PubMed

    Li, Xueping; Yang, Yuan; Gao, Yong

    2014-01-16

    Wireless energy transfer system is an effective way to solve the visual prosthesis energy supply problems, theoretical modeling of the system is the prerequisite to do optimal energy transfer system design. On the basis of the ideal model of the wireless energy transfer system, according to visual prosthesis application condition, the system modeling is optimized. During the optimal modeling, taking planar spiral coils as the coupling devices between energy transmitter and receiver, the effect of the parasitic capacitance of the transfer coil is considered, and especially the concept of biological capacitance is proposed to consider the influence of biological tissue on the energy transfer efficiency, resulting in the optimal modeling's more accuracy for the actual application. The simulation data of the optimal model in this paper is compared with that of the previous ideal model, the results show that under high frequency condition, the parasitic capacitance of inductance and biological capacitance considered in the optimal model could have great impact on the wireless energy transfer system. The further comparison with the experimental data verifies the validity and accuracy of the optimal model proposed in this paper. The optimal model proposed in this paper has a higher theoretical guiding significance for the wireless energy transfer system's further research, and provide a more precise model reference for solving the power supply problem in visual prosthesis clinical application.

  18. Locust bean gum: Exploring its potential for biopharmaceutical applications

    PubMed Central

    Dionísio, Marita; Grenha, Ana

    2012-01-01

    Polysaccharides have been finding, in the last decades, very interesting and useful applications in the biomedical and, specifically, in the biopharmaceutical field. Locust bean gum is a polysaccharide belonging to the group of galactomannans, being extracted from the seeds of the carob tree (Ceratonia siliqua). This polymer displays a number of appealing characteristics for biopharmaceutical applications, among which its high gelling capacity should be highlighted. In this review, we describe critical aspects of locust bean gum, contributing for its role in biopharmaceutical applications. Physicochemical properties, as well as strong and effective synergies with other biomaterials are described. The potential for in vivo biodegradation is explored and the specific biopharmaceutical applications are discussed. PMID:22923958

  19. The evaluative imaging of mental models - Visual representations of complexity

    NASA Technical Reports Server (NTRS)

    Dede, Christopher

    1989-01-01

    The paper deals with some design issues involved in building a system that could visually represent the semantic structures of training materials and their underlying mental models. In particular, hypermedia-based semantic networks that instantiate classification problem solving strategies are thought to be a useful formalism for such representations; the complexity of these web structures can be best managed through visual depictions. It is also noted that a useful approach to implement in these hypermedia models would be some metrics of conceptual distance.

  20. The evaluative imaging of mental models - Visual representations of complexity

    NASA Technical Reports Server (NTRS)

    Dede, Christopher

    1989-01-01

    The paper deals with some design issues involved in building a system that could visually represent the semantic structures of training materials and their underlying mental models. In particular, hypermedia-based semantic networks that instantiate classification problem solving strategies are thought to be a useful formalism for such representations; the complexity of these web structures can be best managed through visual depictions. It is also noted that a useful approach to implement in these hypermedia models would be some metrics of conceptual distance.

  1. Modeling DNA structure and processes through animation and kinesthetic visualizations

    NASA Astrophysics Data System (ADS)

    Hager, Christine

    There have been many studies regarding the effectiveness of visual aids that go beyond that of static illustrations. Many of these have been concentrated on the effectiveness of visual aids such as animations and models or even non-traditional visual aid activities like role-playing activities. This study focuses on the effectiveness of three different types of visual aids: models, animation, and a role-playing activity. Students used a modeling kit made of Styrofoam balls and toothpicks to construct nucleotides and then bond nucleotides together to form DNA. Next, students created their own animation to depict the processes of DNA replication, transcription, and translation. Finally, students worked in teams to build proteins while acting out the process of translation. Students were given a pre- and post-test that measured their knowledge and comprehension of the four topics mentioned above. Results show that there was a significant gain in the post-test scores when compared to the pre-test scores. This indicates that the incorporated visual aids were effective methods for teaching DNA structure and processes.

  2. Visual prosthesis wireless energy transfer system optimal modeling

    PubMed Central

    2014-01-01

    Background Wireless energy transfer system is an effective way to solve the visual prosthesis energy supply problems, theoretical modeling of the system is the prerequisite to do optimal energy transfer system design. Methods On the basis of the ideal model of the wireless energy transfer system, according to visual prosthesis application condition, the system modeling is optimized. During the optimal modeling, taking planar spiral coils as the coupling devices between energy transmitter and receiver, the effect of the parasitic capacitance of the transfer coil is considered, and especially the concept of biological capacitance is proposed to consider the influence of biological tissue on the energy transfer efficiency, resulting in the optimal modeling’s more accuracy for the actual application. Results The simulation data of the optimal model in this paper is compared with that of the previous ideal model, the results show that under high frequency condition, the parasitic capacitance of inductance and biological capacitance considered in the optimal model could have great impact on the wireless energy transfer system. The further comparison with the experimental data verifies the validity and accuracy of the optimal model proposed in this paper. Conclusions The optimal model proposed in this paper has a higher theoretical guiding significance for the wireless energy transfer system’s further research, and provide a more precise model reference for solving the power supply problem in visual prosthesis clinical application. PMID:24428906

  3. Visualization and model building in medical imaging.

    PubMed

    McDonald, J P; Siebert, J P; Fryer, R J; Urquhart, C W

    1994-01-01

    We present technologies and ideas, developed from the JFIT 'Active Stereo Probe Project', which are applicable to problems within medical measurement and monitoring. Two related areas are considered. The first concerns patient body surface modelling. During the project two state-of-the-art non-contact surface measurement techniques have been developed which are applicable to medical situations requiring dense and accurate body surface modelling. Such applications include, for example, prosthetic appliance fabrication, presurgical planning and non-invasive deformity analysis. The second is concerned with overlay projection. Using this enabling technology the information content of a scene can be enhanced as an aid to medical personnel. Results and illustrative applications of the newly developed technology are presented.

  4. Behavioral analysis of polarization vision in tethered flying locusts.

    PubMed

    Mappes, M; Homberg, U

    2004-01-01

    For spatial navigation many insects rely on compass information derived from the polarization pattern of the sky. We demonstrate that tethered flying desert locusts (Schistocerca gregaria) show e-vector-dependent yaw-torque responses to polarized light presented from above. A slowly rotating polarizer (5.3 degrees s(-1)) induced periodic changes in yaw torque corresponding to the 180 degrees periodicity of the stimulus. Control experiments with a rotating diffuser, a weak intensity pattern, and a stationary polarizer showed that the response is not induced by intensity gradients in the stimulus. Polarotaxis was abolished after painting the dorsal rim areas of the compound eyes black, but remained unchanged after painting the eyes except the dorsal rim areas. During rotation of the polarizer, two e-vectors (preferred and avoided e-vector) induced no turning responses: they were broadly distributed from 0 to 180 degrees but, for a given animal, were perpendicular to each other. The data demonstrate polarization vision in the desert locust, as shown previously for bees, flies, crickets, and ants. Polarized light is perceived through the dorsal rim area of the compound eye, suggesting that polarization vision plays a role in compass navigation of the locust.

  5. Visual analytics for model selection in time series analysis.

    PubMed

    Bögl, Markus; Aigner, Wolfgang; Filzmoser, Peter; Lammarsch, Tim; Miksch, Silvia; Rind, Alexander

    2013-12-01

    Model selection in time series analysis is a challenging task for domain experts in many application areas such as epidemiology, economy, or environmental sciences. The methodology used for this task demands a close combination of human judgement and automated computation. However, statistical software tools do not adequately support this combination through interactive visual interfaces. We propose a Visual Analytics process to guide domain experts in this task. For this purpose, we developed the TiMoVA prototype that implements this process based on user stories and iterative expert feedback on user experience. The prototype was evaluated by usage scenarios with an example dataset from epidemiology and interviews with two external domain experts in statistics. The insights from the experts' feedback and the usage scenarios show that TiMoVA is able to support domain experts in model selection tasks through interactive visual interfaces with short feedback cycles.

  6. Geological and hydrological visualization models for Digital Earth representation

    NASA Astrophysics Data System (ADS)

    Ziolkowska, Jadwiga R.; Reyes, Reuben

    2016-09-01

    This paper presents techniques and interactive models for multi-dimensional analyses and geospatial visualization in virtual globes based on three application examples: (1) earthquakes around the world, (2) groundwater well levels in Texas, and (3) geothermal subsurface heat indexes in Texas. While studies are known that represent multi-dimensional geospatial data points, we develop and suggest multi-dimensional models for virtual globes using KML and KMZ (compressed KML files) with a complete and static time series data set. The benefit of this approach for the user is the ability to view and analyze time-based correlations interactively over the entire time span in one instance, which is not possible with animated (dynamic) models. The methods embedded in our models include: (a) depth layered cueing within subsurface Earth visualization for a better orientation when maneuvering below the ground, (b) a technique with Ternary Visual Shape Logic (TVSL) as a quick indicator of change over time, and (c) different visual representations of multiple dimensions for the addressed case study examples. The models can be applied to a variety of problems in different disciplines, especially to support decision-making processes.

  7. Stereoscopic display of 3D models for design visualization

    NASA Astrophysics Data System (ADS)

    Gilson, Kevin J.

    2006-02-01

    Advances in display technology and 3D design visualization applications have made real-time stereoscopic visualization of architectural and engineering projects a reality. Parsons Brinkerhoff (PB) is a transportation consulting firm that has used digital visualization tools from their inception and has helped pioneer the application of those tools to large scale infrastructure projects. PB is one of the first Architecture/Engineering/Construction (AEC) firms to implement a CAVE- an immersive presentation environment that includes stereoscopic rear-projection capability. The firm also employs a portable stereoscopic front-projection system, and shutter-glass systems for smaller groups. PB is using commercial real-time 3D applications in combination with traditional 3D modeling programs to visualize and present large AEC projects to planners, clients and decision makers in stereo. These presentations create more immersive and spatially realistic presentations of the proposed designs. This paper will present the basic display tools and applications, and the 3D modeling techniques PB is using to produce interactive stereoscopic content. The paper will discuss several architectural and engineering design visualizations we have produced.

  8. Modeling Visual Symptoms and Visual Skills to Measure Functional Binocular Vision

    NASA Astrophysics Data System (ADS)

    Powers, M. K.; Fisher, W. P., Jr.; Massof, R. W.

    2016-11-01

    Obtaining a clear image of the world depends on good eye coordination (“binocular vision”). Yet no standard exists by which to determine a threshold for good vs poor binocular vision, as exists for the eye chart and visual acuity. We asked whether data on the signs and symptoms related to binocular vision are sufficiently consistent with children's self-reported visual symptoms to substantiate a construct model of Functional Binocular Vision (FBV), and then whether that model can be used to aggregate clinical and survey observations into a meaningful diagnostic measure. Data on visual symptoms from 1,100 children attending school in Los Angeles were obtained using the Convergence Insufficiency Symptom Survey (CISS); and for more than 300 students in that sample, 35 additional measures were taken, including acuity, cover test near and far, near point of convergence, near point of accommodation, accommodative facility, vergence ranges, tracking ability, and oral reading fluency. A preliminary analysis of data from the 15-item, 5-category CISS and 15 clinical variables from 103 grade school students who reported convergence problems (CISS scores of 16 or higher) suggests that the clinical and survey observations will be optimally combined in a multidimensional model.

  9. An insect-inspired model for visual binding I: learning objects and their characteristics.

    PubMed

    Northcutt, Brandon D; Dyhr, Jonathan P; Higgins, Charles M

    2017-04-01

    Visual binding is the process of associating the responses of visual interneurons in different visual submodalities all of which are responding to the same object in the visual field. Recently identified neuropils in the insect brain termed optic glomeruli reside just downstream of the optic lobes and have an internal organization that could support visual binding. Working from anatomical similarities between optic and olfactory glomeruli, we have developed a model of visual binding based on common temporal fluctuations among signals of independent visual submodalities. Here we describe and demonstrate a neural network model capable both of refining selectivity of visual information in a given visual submodality, and of associating visual signals produced by different objects in the visual field by developing inhibitory neural synaptic weights representing the visual scene. We also show that this model is consistent with initial physiological data from optic glomeruli. Further, we discuss how this neural network model may be implemented in optic glomeruli at a neuronal level.

  10. Next Generation, 4-D Distributed Modeling and Visualization of Battlefield

    DTIC Science & Technology

    2006-07-14

    dtsn.darpa.mil/ixo/programs.asp?id=86 o Program managers: Dr. Tom Stratt Dr. Brian Leininger • Start up founded by post-doc supported by this Muri...3D models for developing 3D holographic displays o DARPA SBIR on 3D display visualization under Tom Stratt and Brian Leininger • Google Earth

  11. Visualization of 3D Geological Models on Google Earth

    NASA Astrophysics Data System (ADS)

    Choi, Y.; Um, J.; Park, M.

    2013-05-01

    Google Earth combines satellite imagery, aerial photography, thematic maps and various data sets to make a three-dimensional (3D) interactive image of the world. Currently, Google Earth is a popular visualization tool in a variety of fields and plays an increasingly important role not only for private users in daily life, but also for scientists, practitioners, policymakers and stakeholders in research and application. In this study, a method to visualize 3D geological models on Google Earth is presented. COLLAborative Design Activity (COLLADA, an open standard XML schema for establishing interactive 3D applications) was used to represent different 3D geological models such as borehole, fence section, surface-based 3D volume and 3D grid by triangle meshes (a set of triangles connected by their common edges or corners). In addition, we designed Keyhole Markup Language (KML, the XML-based scripting language of Google Earth) codes to import the COLLADA files into the 3D render window of Google Earth. The method was applied to the Grosmont formation in Alberta, Canada. The application showed that the combination of COLLADA and KML enables Google Earth to effectively visualize 3D geological structures and properties.; Visualization of the (a) boreholes, (b) fence sections, (c) 3D volume model and (d) 3D grid model of Grossmont formation on Google Earth

  12. Modelling Subjectivity in Visual Perception of Orientation for Image Retrieval.

    ERIC Educational Resources Information Center

    Sanchez, D.; Chamorro-Martinez, J.; Vila, M. A.

    2003-01-01

    Discussion of multimedia libraries and the need for storage, indexing, and retrieval techniques focuses on the combination of computer vision and data mining techniques to model high-level concepts for image retrieval based on perceptual features of the human visual system. Uses fuzzy set theory to measure users' assessments and to capture users'…

  13. The Spatial Coding Model of Visual Word Identification

    ERIC Educational Resources Information Center

    Davis, Colin J.

    2010-01-01

    Visual word identification requires readers to code the identity and order of the letters in a word and match this code against previously learned codes. Current models of this lexical matching process posit context-specific letter codes in which letter representations are tied to either specific serial positions or specific local contexts (e.g.,…

  14. Modelling Subjectivity in Visual Perception of Orientation for Image Retrieval.

    ERIC Educational Resources Information Center

    Sanchez, D.; Chamorro-Martinez, J.; Vila, M. A.

    2003-01-01

    Discussion of multimedia libraries and the need for storage, indexing, and retrieval techniques focuses on the combination of computer vision and data mining techniques to model high-level concepts for image retrieval based on perceptual features of the human visual system. Uses fuzzy set theory to measure users' assessments and to capture users'…

  15. Visualization of RNA structure models within the Integrative Genomics Viewer.

    PubMed

    Busan, Steven; Weeks, Kevin M

    2017-07-01

    Analyses of the interrelationships between RNA structure and function are increasingly important components of genomic studies. The SHAPE-MaP strategy enables accurate RNA structure probing and realistic structure modeling of kilobase-length noncoding RNAs and mRNAs. Existing tools for visualizing RNA structure models are not suitable for efficient analysis of long, structurally heterogeneous RNAs. In addition, structure models are often advantageously interpreted in the context of other experimental data and gene annotation information, for which few tools currently exist. We have developed a module within the widely used and well supported open-source Integrative Genomics Viewer (IGV) that allows visualization of SHAPE and other chemical probing data, including raw reactivities, data-driven structural entropies, and data-constrained base-pair secondary structure models, in context with linear genomic data tracks. We illustrate the usefulness of visualizing RNA structure in the IGV by exploring structure models for a large viral RNA genome, comparing bacterial mRNA structure in cells with its structure under cell- and protein-free conditions, and comparing a noncoding RNA structure modeled using SHAPE data with a base-pairing model inferred through sequence covariation analysis. © 2017 Busan and Weeks; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  16. Elementary Teachers' Selection and Use of Visual Models

    NASA Astrophysics Data System (ADS)

    Lee, Tammy D.; Gail Jones, M.

    2017-07-01

    As science grows in complexity, science teachers face an increasing challenge of helping students interpret models that represent complex science systems. Little is known about how teachers select and use models when planning lessons. This mixed methods study investigated the pedagogical approaches and visual models used by elementary in-service and preservice teachers in the development of a science lesson about a complex system (e.g., water cycle). Sixty-seven elementary in-service and 69 elementary preservice teachers completed a card sort task designed to document the types of visual models (e.g., images) that teachers choose when planning science instruction. Quantitative and qualitative analyses were conducted to analyze the card sort task. Semistructured interviews were conducted with a subsample of teachers to elicit the rationale for image selection. Results from this study showed that both experienced in-service teachers and novice preservice teachers tended to select similar models and use similar rationales for images to be used in lessons. Teachers tended to select models that were aesthetically pleasing and simple in design and illustrated specific elements of the water cycle. The results also showed that teachers were not likely to select images that represented the less obvious dimensions of the water cycle. Furthermore, teachers selected visual models more as a pedagogical tool to illustrate specific elements of the water cycle and less often as a tool to promote student learning related to complex systems.

  17. Modeling and Visualizing Flow of Chemical Agents Across Complex Terrain

    NASA Technical Reports Server (NTRS)

    Kao, David; Kramer, Marc; Chaderjian, Neal

    2005-01-01

    Release of chemical agents across complex terrain presents a real threat to homeland security. Modeling and visualization tools are being developed that capture flow fluid terrain interaction as well as point dispersal downstream flow paths. These analytic tools when coupled with UAV atmospheric observations provide predictive capabilities to allow for rapid emergency response as well as developing a comprehensive preemptive counter-threat evacuation plan. The visualization tools involve high-end computing and massive parallel processing combined with texture mapping. We demonstrate our approach across a mountainous portion of North California under two contrasting meteorological conditions. Animations depicting flow over this geographical location provide immediate assistance in decision support and crisis management.

  18. Modeling and Visualizing Flow of Chemical Agents Across Complex Terrain

    NASA Technical Reports Server (NTRS)

    Kao, David; Kramer, Marc; Chaderjian, Neal

    2005-01-01

    Release of chemical agents across complex terrain presents a real threat to homeland security. Modeling and visualization tools are being developed that capture flow fluid terrain interaction as well as point dispersal downstream flow paths. These analytic tools when coupled with UAV atmospheric observations provide predictive capabilities to allow for rapid emergency response as well as developing a comprehensive preemptive counter-threat evacuation plan. The visualization tools involve high-end computing and massive parallel processing combined with texture mapping. We demonstrate our approach across a mountainous portion of North California under two contrasting meteorological conditions. Animations depicting flow over this geographical location provide immediate assistance in decision support and crisis management.

  19. [Phosphorus transfer between mixed poplar and black locust seedlings].

    PubMed

    He, Wei; Jia, Liming; Hao, Baogang; Wen, Xuejun; Zhai, Mingpu

    2003-04-01

    In this paper, the 32P radio-tracer technique was applied to study the ways of phosphorus transfer between poplar (Populus euramericana cv. 'I-214') and black locust (Robinia pseudoacacia). A five compartment root box (18 cm x 18 cm x 26 cm) was used for testing the existence of the hyphal links between the roots of two tree species when inoculated with vesicular-arbuscular (VA) mycorrhizal fungus (Glomus mosseae). Populus I-214 (donor) and Robinia pseudoacacia (receiver) were grown in two terminal compartments, separated by a 2 cm root-free soil layer. The root compartments were lined with bags of nylon mesh (38 microns) that allowed the passage of hyphae but not roots. The top soil of a mixed stand of poplar and black locust, autoclaved at 121 degrees C for one hour, was used for growing seedlings for testing. In 5 compartment root box, mycorrhizal root colonization of poplar was 34%, in which VA mycorrhizal fungus was inoculated, whereas 26% mycorrhizal root colonization was observed in black locust, the other terminal compartment, 20 weeks after planting. No root colonization was observed in non-inoculated plant pairs. This indicated that the mycorrhizal root colonization of black locust was caused by hyphal spreading from the poplar. Test of tracer isotope of 32P showed that the radioactivity of the treatment significantly higher than that of the control (P < 0.05), 14 days from the tracer applied, to 27 days after, when VA mycorrhizal fungus was inoculated in poplar root. Furthermore, mycorrhizal interconnections between the roots of poplar and black locust seedlings was observed in situ by binocular in root box. All these experiments showed that the hyphal links was formed between the roots of two species of trees inoculated by VA mycorrhizal fungus. Four treatments were designed according to if there were two nets (mesh 38 microns), 2 cm apart, between the poplar and black locust, and if the soil in root box was pasteurized. Most significant differences of

  20. Visual backward masking: Modeling spatial and temporal aspects

    PubMed Central

    Hermens, Frouke; Ernst, Udo

    2008-01-01

    In modeling visual backward masking, the focus has been on temporal effects. More specifically, an explanation has been sought as to why strongest masking can occur when the mask is delayed with respect to the target. Although interesting effects of the spatial layout of the mask have been found, only a few attempts have been made to model these phenomena. Here, we elaborate a structurally simple model which employs lateral excitation and inhibition together with different neural time scales to explain many spatial and temporal aspects of backward masking. We argue that for better understanding of visual masking, it is vitally important to consider the interplay of spatial and temporal factors together in one single model. PMID:20517501

  1. The visual system’s internal model of the world

    PubMed Central

    Lee, Tai Sing

    2015-01-01

    The Bayesian paradigm has provided a useful conceptual theory for understanding perceptual computation in the brain. While the detailed neural mechanisms of Bayesian inference are not fully understood, recent computational and neurophysiological works have illuminated the underlying computational principles and representational architecture. The fundamental insights are that the visual system is organized as a modular hierarchy to encode an internal model of the world, and that perception is realized by statistical inference based on such internal model. In this paper, I will discuss and analyze the varieties of representational schemes of these internal models and how they might be used to perform learning and inference. I will argue for a unified theoretical framework for relating the internal models to the observed neural phenomena and mechanisms in the visual cortex. PMID:26566294

  2. Visualization and communication of pharmacometric models with berkeley madonna.

    PubMed

    Krause, A; Lowe, P J

    2014-05-28

    Population or other pharmacometric models are a useful means to describe, succinctly, the relationships between drug administration, exposure (concentration), and downstream changes in pharmacodynamic (PD) biomarkers and clinical endpoints, including the mixed effects of patient factors and random interpatient variation (fixed and random effects). However, showing a set of covariate equations to a drug development team is perhaps not the best way to get a message across. Visualization of the consequences of the knowledge encapsulated within the model is the key component. Yet in many instances, it can take hours, perhaps days, to collect ideas from teams, write scripts, and run simulations before presenting the results-by which time they have moved on. How much better, then, to seize the moment and work interactively to decide on a course of action, guided by the model. We exemplify here the visualization of pharmacometric models using the Berkeley Madonna software with a particular focus on interactive sessions. The examples are provided as Supplementary Material.

  3. Visual Modelling of Data Warehousing Flows with UML Profiles

    NASA Astrophysics Data System (ADS)

    Pardillo, Jesús; Golfarelli, Matteo; Rizzi, Stefano; Trujillo, Juan

    Data warehousing involves complex processes that transform source data through several stages to deliver suitable information ready to be analysed. Though many techniques for visual modelling of data warehouses from the static point of view have been devised, only few attempts have been made to model the data flows involved in a data warehousing process. Besides, each attempt was mainly aimed at a specific application, such as ETL, OLAP, what-if analysis, data mining. Data flows are typically very complex in this domain; for this reason, we argue, designers would greatly benefit from a technique for uniformly modelling data warehousing flows for all applications. In this paper, we propose an integrated visual modelling technique for data cubes and data flows. This technique is based on UML profiling; its feasibility is evaluated by means of a prototype implementation.

  4. Visual information processing in primate cone pathways. I. A model.

    PubMed

    Shah, S; Levine, M D

    1996-01-01

    At the retinal level, the strategies utilized by biological visual systems allow them to outperform machine vision systems, serving to motivate the design of electronic or "smart" sensors based on similar principles. Design of such sensors in silicon first requires a model of retinal information processing which captures the essential features exhibited by biological retinas. In this paper, a simple retinal model is presented, which qualitatively accounts for the achromatic information processing in the primate cone system. The computer retina model exhibits many of the properties found in biological retinas such as data reduction through nonuniform sampling, adaptation to a large dynamic range of illumination levels, variation of visual acuity with illumination level, and enhancement of spatiotemporal contrast information. The main emphasis of the model presented here is to demonstrate how different adaptation mechanisms play a role in extending the operating range of the primate retina.

  5. The visual system's internal model of the world.

    PubMed

    Lee, Tai Sing

    2015-08-01

    The Bayesian paradigm has provided a useful conceptual theory for understanding perceptual computation in the brain. While the detailed neural mechanisms of Bayesian inference are not fully understood, recent computational and neurophysiological works have illuminated the underlying computational principles and representational architecture. The fundamental insights are that the visual system is organized as a modular hierarchy to encode an internal model of the world, and that perception is realized by statistical inference based on such internal model. In this paper, I will discuss and analyze the varieties of representational schemes of these internal models and how they might be used to perform learning and inference. I will argue for a unified theoretical framework for relating the internal models to the observed neural phenomena and mechanisms in the visual cortex.

  6. The hind wing of the desert locust (Schistocerca gregaria Forskål). III. A finite element analysis of a deployable structure.

    PubMed

    Herbert, R C; Young, P G; Smith, C W; Wootton, R J; Evans, K E

    2000-10-01

    Finite element analysis is used to model the automatic cambering of the locust hind wing during promotion: the umbrella effect. It was found that the model required a high degree of sophistication before replicating the deformations found in vivo. The model has been validated using experimental data and the deformations recorded both in vivo and ex vivo. It predicts that even slight modifications to the geometrical description used can lead to significant changes in the deformations observed in the anal fan. The model agrees with experimental data and produces deformations very close to those seen in free-flying locusts. The validated model may be used to investigate the varying geometries found in orthopteran anal fans and the stresses found throughout the wing when loaded.

  7. Psyplot: Visualizing rectangular and triangular Climate Model Data with Python

    NASA Astrophysics Data System (ADS)

    Sommer, Philipp

    2016-04-01

    The development and use of climate models often requires the visualization of geo-referenced data. Creating visualizations should be fast, attractive, flexible, easily applicable and easily reproducible. There is a wide range of software tools available for visualizing raster data, but they often are inaccessible to many users (e.g. because they are difficult to use in a script or have low flexibility). In order to facilitate easy visualization of geo-referenced data, we developed a new framework called "psyplot," which can aid earth system scientists with their daily work. It is purely written in the programming language Python and primarily built upon the python packages matplotlib, cartopy and xray. The package can visualize data stored on the hard disk (e.g. NetCDF, GeoTIFF, any other file format supported by the xray package), or directly from the memory or Climate Data Operators (CDOs). Furthermore, data can be visualized on a rectangular grid (following or not following the CF Conventions) and on a triangular grid (following the CF or UGRID Conventions). Psyplot visualizes 2D scalar and vector fields, enabling the user to easily manage and format multiple plots at the same time, and to export the plots into all common picture formats and movies covered by the matplotlib package. The package can currently be used in an interactive python session or in python scripts, and will soon be developed for use with a graphical user interface (GUI). Finally, the psyplot framework enables flexible configuration, allows easy integration into other scripts that uses matplotlib, and provides a flexible foundation for further development.

  8. An assessment of black locust in northern U.S. forests

    Treesearch

    Cassandra M. Kurtz; Mark H. Hansen

    2017-01-01

    Black locust (Robinia pseudoacacia), a tree of the legume family (Fabaceae), is native to the southern Appalachian Mountains (Pennsylvania to Alabama), Ozark Plateau, and mid-south (Fig. 1). Black locust wood is utilized for firewood, fence posts, and building due to its strength and durability. The prolific pealike blossoms are aesthetically...

  9. Mass spectral determination of phenylacetonitrile (PAN) levels in body tissues of adult desert locust, Schistocerca gregaria

    USDA-ARS?s Scientific Manuscript database

    : Wings and legs of the gregarious desert locust, Schistocerca gregaria have been shown to be release sites of phenylacetonitrile (PAN), the major adult male-produced pheromone. However, there is limited information on the distribution of PAN within the locust. Here we show, using gas chromatograph...

  10. Motor neurone responses during a postural reflex in solitarious and gregarious desert locusts.

    PubMed

    Blackburn, Laura M; Ott, Swidbert R; Matheson, Tom; Burrows, Malcolm; Rogers, Stephen M

    2010-08-01

    Desert locusts show extreme phenotypic plasticity and can change reversibly between two phases that differ radically in morphology, physiology and behaviour. Solitarious locusts are cryptic in appearance and behaviour, walking slowly with the body held close to the ground. Gregarious locusts are conspicuous in appearance and much more active, walking rapidly with the body held well above the ground. During walking, the excursion of the femoro-tibial (F-T) joint of the hind leg is smaller in solitarious locusts, and the joint is kept more flexed throughout an entire step. Under open loop conditions, the slow extensor tibiae (SETi) motor neurone of solitarious locusts shows strong tonic activity that increases at more extended F-T angles. SETi of gregarious locusts by contrast showed little tonic activity. Simulated flexion of the F-T joint elicits resistance reflexes in SETi in both phases, but regardless of the initial and final position of the leg, the spiking rate of SETi during these reflexes was twice as great in solitarious compared to gregarious locusts. This increased sensory-motor gain in the neuronal networks controlling postural reflexes in solitarious locusts may be linked to the occurrence of pronounced behavioural catalepsy in this phase similar to other cryptic insects such as stick insects.

  11. Survival of bristly locust (Robinia hispida L.) in an emulated organic silvopasture

    USDA-ARS?s Scientific Manuscript database

    Bristly locust (Robinia hispida L.), a native tree legume which has received relatively little scientific attention from an agronomic perspective, could have value as livestock browse. The objective of this research was to assess transplant survival of bristly locust in an experimental silvopasture...

  12. Survival of bristly locust (Robinia hispida) in an emulated organic silvopasture

    USDA-ARS?s Scientific Manuscript database

    Bristly locust is a native tree legume with an extensive range throughout much of the eastern US and Canada. Bristly locust is about 3 m tall, produces pink flowers, and the branches, petioles, flower stalks, and fruits are covered by soft, inoffensive bristles. Little agronomic research has been co...

  13. IdentityMap Visualization of the Super Identity Model

    SciTech Connect

    2015-04-15

    The Super Identity Model is a collaboration with six United Kingdom universities to develop use cases used to piece together a person's identity across biological, cyber, psychological, and biographical domains. PNNL visualized the model in a web-based application called IdentityMap. This is the first step in a promising new field of research. Interested future collaborators are welcome to find out more by emailing superid@pnnl.gov.

  14. IdentityMap Visualization of the Super Identity Model

    ScienceCinema

    None

    2016-07-12

    The Super Identity Model is a collaboration with six United Kingdom universities to develop use cases used to piece together a person's identity across biological, cyber, psychological, and biographical domains. PNNL visualized the model in a web-based application called IdentityMap. This is the first step in a promising new field of research. Interested future collaborators are welcome to find out more by emailing superid@pnnl.gov.

  15. Image categorization based on spatial visual vocabulary model

    NASA Astrophysics Data System (ADS)

    Wang, Yuxin; He, Changqin; Guo, He; Feng, Zhen; Jia, Qi

    2010-08-01

    In this paper, we propose an approach to recognize scene categories by means of a novel method named spatial visual vocabulary. Firstly, we hierarchically divide images into sub regions and construct the spatial visual vocabulary by grouping the low-level features collected from every corresponding spatial sub region into a specified number of clusters using k-means algorithm. To recognize the category of a scene, the visual vocabulary distributions of all spatial sub regions are concatenated to form a global feature vector. The classification is obtained using LIBSVM, a support vector machine classifier. Our goal is to find a universal framework which is applicable to various types of features, so two kinds of features are used in the experiments: "V1-like" filters and PACT features. In almost all experimental cases, the proposed model achieves superior results. Source codes are available by email.

  16. Dynamic Scene Stitching Driven by Visual Cognition Model

    PubMed Central

    2014-01-01

    Dynamic scene stitching still has a great challenge in maintaining the global key information without missing or deforming if multiple motion interferences exist in the image acquisition system. Object clips, motion blurs, or other synthetic defects easily occur in the final stitching image. In our research work, we proceed from human visual cognitive mechanism and construct a hybrid-saliency-based cognitive model to automatically guide the video volume stitching. The model consists of three elements of different visual stimuli, that is, intensity, edge contour, and scene depth saliencies. Combined with the manifold-based mosaicing framework, dynamic scene stitching is formulated as a cut path optimization problem in a constructed space-time graph. The cutting energy function for column width selections is defined according to the proposed visual cognition model. The optimum cut path can minimize the cognitive saliency difference throughout the whole video volume. The experimental results show that it can effectively avoid synthetic defects caused by different motion interferences and summarize the key contents of the scene without loss. The proposed method gives full play to the role of human visual cognitive mechanism for the stitching. It is of high practical value to environmental surveillance and other applications. PMID:24688451

  17. Modeling and Simulation. II. Specificity Models for Visual Cortex Development.

    DTIC Science & Technology

    1986-12-12

    Excitation and Inhibition Excit at ion in VC comesvia 3 1 * the specific thialamic afferents. * spiny stellate interneurons , * *0 collaterals of local p...D., Receptive field p~rolperties of EPSPs and IPSPs in cat visual cortex, Soc. Neurosci. Abstr. 10, 521;- 1984. * 32. Freeman, P. D. and A. B. Bonds

  18. Enhanced visualization of angiograms using 3D models

    NASA Astrophysics Data System (ADS)

    Marovic, Branko S.; Duckwiler, Gary R.; Villablanca, Pablo; Valentino, Daniel J.

    1999-05-01

    The 3D visualization of intracranial vasculature can facilitate the planning of endovascular therapy and the evaluation of interventional result. To create 3D visualizations, volumetric datasets from x-ray computed tomography angiography (CTA) and magnetic resonance angiography (MRA) are commonly rendered using maximum intensity projection (MIP), volume rendering, or surface rendering techniques. However, small aneurysms and mild stenoses are very difficult to detect using these methods. Furthermore, the instruments used during endovascular embolization or surgical treatment produce artifacts that typically make post-intervention CTA inapplicable, and the presence of magnetic material prohibits the use of MRA. Therefore, standard digital angiography is typically used. In order to address these problems, we developed a visualization and modeling system that displays 2D and 3D angiographic images using a simple Web-based interface. Polygonal models of vasculature were generated from CT and MR data using 3D segmentation of bones and vessels and polygonal surface extraction and simplification. A web-based 3D environment was developed for interactive examination of reconstructed surface models, creation of oblique cross- sections and maximum intensity projections, and distance measurements and annotations. This environment uses a multi- tier client/server approach employing VRML and Java. The 3D surface model and angiographic images can be aligned and displayed simultaneously to permit better perception of complex vasculature and to determine optical viewing positions and angles before starting an angiographic sessions. Polygonal surface reconstruction allows interactive display of complex spatial structures on inexpensive platforms such as personal computers as well as graphic workstations. The aneurysm assessment procedure demonstrated the utility of web-based technology for clinical visualization. The resulting system facilitated the treatment of serious vascular

  19. A neural network model for visual selection and shifting.

    PubMed

    Qiao, Yuanhua; Liu, Xiaojie; Miao, Jun; Duan, Lijuan

    2016-09-01

    In this paper, a two-layer network is built to simulate the mechanism of visual selection and shifting based on the mapping dynamic model for instantaneous frequency. Unlike the differential equation model using limit cycle to simulate neuron oscillation, we build an instantaneous frequency mapping dynamic model to describe the change of the neuron frequency to avoid the difficulty of generating limit cycle. The activity of the neuron is rebuilt based on the instantaneous frequency and in this work, we use the first layer of neurons to implement image segmentation and the second layer of neurons to act as visual selector. The frequency of the second neuron (central neuron) is always changing, while central neuron resonates with the neurons corresponding to an object, the object is selected, then with the central neuron frequency changing, the selected object loses attention, the process goes on.

  20. BALLView: An object-oriented molecular visualization and modeling framework

    NASA Astrophysics Data System (ADS)

    Moll, Andreas; Hildebrandt, Andreas; Lenhof, Hans-Peter; Kohlbacher, Oliver

    2005-11-01

    We present BALLView, an extensible tool for visualizing and modeling bio-molecular structures. It provides a variety of different models for bio-molecular visualization, e.g. ball-and-stick models, molecular surfaces, or ribbon models. In contrast to most existing visualization tools, BALLView also offers rich functionality for molecular modeling and simulation, including molecular mechanics methods (AMBER and CHARMM force fields), continuum electrostatics methods employing a Finite-Difference Poisson Boltzmann solver, and secondary structure calculation. Results of these computations can be exported as publication quality images or as movies. Even unexperienced users have direct access to this functionality through an intuitive graphical user interface, which makes BALLView particularly useful for teaching. For more advanced users, BALLView is extensible in different ways. Owing to its framework design, extension on the level of C‰+‰‰+ code is very convenient. In addition, an interface to the scripting language Python allows the interactive rapid prototyping of new methods. BALLView is portable and runs on all major platforms (Windows, MacOS X, Linux, most Unix flavors). It is available free of charge under the GNU Public License (GPL) from our website http://www.ballview.org.

  1. Neurons in the brain of the desert locust Schistocerca gregaria sensitive to polarized light at low stimulus elevations.

    PubMed

    Jerome Beetz, M; Pfeiffer, Keram; Homberg, Uwe

    2016-11-01

    Desert locusts (Schistocerca gregaria) sense the plane of dorsally presented polarized light through specialized dorsal eye regions that are likely adapted to exploit the polarization pattern of the blue sky for spatial orientation. Receptive fields of these dorsal rim photoreceptors and polarization-sensitive interneurons are directed toward the upper sky but may extend to elevations below 30°. Behavioral data, however, suggests that S. gregaria is even able to detect polarized light from ventral directions but physiological evidence for this is still lacking. In this study we characterized neurons in the locust brain showing polarization sensitivity at low elevations down to the horizon. In most neurons polarization sensitivity was absent or weak when stimulating from the zenith. All neurons, including projection and commissural neurons of the optic lobe and local interneurons of the central brain, are novel cell types, distinct from polarization-sensitive neurons studied so far. Painting dorsal rim areas in both eyes black to block visual input had no effect on the polarization sensitivity of these neurons, suggesting that they receive polarized light input from the main eye. A possible role of these neurons in flight stabilization or the perception of polarized light reflected from bodies of water or vegetation is discussed.

  2. Tomographic particle image velocimetry of desert locust wakes: instantaneous volumes combine to reveal hidden vortex elements and rapid wake deformation.

    PubMed

    Bomphrey, Richard J; Henningsson, Per; Michaelis, Dirk; Hollis, David

    2012-12-07

    Aerodynamic structures generated by animals in flight are unstable and complex. Recent progress in quantitative flow visualization has advanced our understanding of animal aerodynamics, but measurements have hitherto been limited to flow velocities at a plane through the wake. We applied an emergent, high-speed, volumetric fluid imaging technique (tomographic particle image velocimetry) to examine segments of the wake of desert locusts, capturing fully three-dimensional instantaneous flow fields. We used those flow fields to characterize the aerodynamic footprint in unprecedented detail and revealed previously unseen wake elements that would have gone undetected by two-dimensional or stereo-imaging technology. Vortex iso-surface topographies show the spatio-temporal signature of aerodynamic force generation manifest in the wake of locusts, and expose the extent to which animal wakes can deform, potentially leading to unreliable calculations of lift and thrust when using conventional diagnostic methods. We discuss implications for experimental design and analysis as volumetric flow imaging becomes more widespread.

  3. Tomographic particle image velocimetry of desert locust wakes: instantaneous volumes combine to reveal hidden vortex elements and rapid wake deformation

    PubMed Central

    Bomphrey, Richard J.; Henningsson, Per; Michaelis, Dirk; Hollis, David

    2012-01-01

    Aerodynamic structures generated by animals in flight are unstable and complex. Recent progress in quantitative flow visualization has advanced our understanding of animal aerodynamics, but measurements have hitherto been limited to flow velocities at a plane through the wake. We applied an emergent, high-speed, volumetric fluid imaging technique (tomographic particle image velocimetry) to examine segments of the wake of desert locusts, capturing fully three-dimensional instantaneous flow fields. We used those flow fields to characterize the aerodynamic footprint in unprecedented detail and revealed previously unseen wake elements that would have gone undetected by two-dimensional or stereo-imaging technology. Vortex iso-surface topographies show the spatio-temporal signature of aerodynamic force generation manifest in the wake of locusts, and expose the extent to which animal wakes can deform, potentially leading to unreliable calculations of lift and thrust when using conventional diagnostic methods. We discuss implications for experimental design and analysis as volumetric flow imaging becomes more widespread. PMID:22977102

  4. New Frontiers in Fault Model Visualization and Interaction

    NASA Astrophysics Data System (ADS)

    van Aalsburg, J.; Yikilmaz, M. B.; Kreylos, O.; Kellogg, L. H.; Rundle, J. B.

    2009-12-01

    Previously we introduced an interactive, 3D fault editor for virtual reality (VR) environments. This application is designed to provide an intuitive environment for visualizing and editing fault model data. It is being developed at the UC Davis W.M. Keck Center for Active Visualization in the Earth Sciences (KeckCAVES, http://www.keckcaves.org). By utilizing high resolution Digital Elevation Models (DEM), georeferenced active tectonic fault maps and earthquake hypocenters, users can accurately position fault-segments including the dip angle. Once a model has been created or modified it can be written to an XML file; from there the data may be easily converted into various formats required by the analysis software or simulation. To demonstrate this we have written a simple program which generates a KML file from the program output for visualization of the model in Google Earth. Our current research has focused on the addition of new tools which enable the user to associate meta-data with individual fault segments or group of segments (i.e. slip rate). We have also added enhanced mapping abilities such as creating closed polygons for defining geologic formations. The program is designed to take full advantage of immersive environments such as a CAVE (walk-in VR environment), but works in a wide range of other environments including desktop systems and GeoWalls. This software is open-source can be freely downloaded (debian packages are also available).

  5. Spatially congruent model for the striate visual cortex

    NASA Astrophysics Data System (ADS)

    da Fontoura Costa, Luciano

    1994-05-01

    A spatially congruent new model for the striate visual cortex (SVC) is proposed which accounts for some of the known functional and organizational properties of the superior mammalian SVC. Even though there is a broad consensus that the topographical representation of the visual field is one of the principal structuring principles underlying the SVC organization, the orientation maps in the SVC have often been described as non-topographical maps. In the present model, the adopted foot-of-normal representation of straight lines has allowed full congruency between the visual field topographic map and the orientation maps in the SVC. The proposed computational model includes three neural layers and assumes that the ocular dominance columns are already established at birth; three possibilities of neural mechanisms leading to orientation encoding are outlined and discussed. The model provides reasonable explanation to some of the most intriguing recently verified properties of the SVC such as the increased neural activity at the cytochrome oxidase blobs, the reduced orientation selectivity at these same places, and the pinwheel-like organization of the orientation selectivity in the SVC.

  6. Interactive 4D Visualization of Sediment Transport Models

    NASA Astrophysics Data System (ADS)

    Butkiewicz, T.; Englert, C. M.

    2013-12-01

    Coastal sediment transport models simulate the effects that waves, currents, and tides have on near-shore bathymetry and features such as beaches and barrier islands. Understanding these dynamic processes is integral to the study of coastline stability, beach erosion, and environmental contamination. Furthermore, analyzing the results of these simulations is a critical task in the design, placement, and engineering of coastal structures such as seawalls, jetties, support pilings for wind turbines, etc. Despite the importance of these models, there is a lack of available visualization software that allows users to explore and perform analysis on these datasets in an intuitive and effective manner. Existing visualization interfaces for these datasets often present only one variable at a time, using two dimensional plan or cross-sectional views. These visual restrictions limit the ability to observe the contents in the proper overall context, both in spatial and multi-dimensional terms. To improve upon these limitations, we use 3D rendering and particle system based illustration techniques to show water column/flow data across all depths simultaneously. We can also encode multiple variables across different perceptual channels (color, texture, motion, etc.) to enrich surfaces with multi-dimensional information. Interactive tools are provided, which can be used to explore the dataset and find regions-of-interest for further investigation. Our visualization package provides an intuitive 4D (3D, time-varying) visualization of sediment transport model output. In addition, we are also integrating real world observations with the simulated data to support analysis of the impact from major sediment transport events. In particular, we have been focusing on the effects of Superstorm Sandy on the Redbird Artificial Reef Site, offshore of Delaware Bay. Based on our pre- and post-storm high-resolution sonar surveys, there has significant scour and bedform migration around the

  7. Interpenetrating polymer network of locust bean gum-poly (vinyl alcohol) for controlled release drug delivery.

    PubMed

    Kaity, Santanu; Isaac, Jinu; Ghosh, Animesh

    2013-04-15

    A novel interpenetrating polymer network (IPN) microspheres of locust bean gum (LBG) and poly (vinyl alcohol) (PVA) was developed for oral controlled release of buflomedil hydrochloride (BH) by emulsion crosslinking method using glutaraldehyde as crosslinker. The effects of gum-polymer ratio, concentration of crosslinker and internal phase viscosity were evaluated thoroughly. Drug entrapment efficiency, particle size distribution, swelling property and in vitro release characteristics with kinetic modelling of microspheres were evaluated. The microspheres were characterised by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), solid state C(13) NMR, X-ray diffraction study (XRD) and differential scanning colorimetry (DSC). The microspheres showed control release property without showing any incompatibility in IPN device. Hence, IPN microspheres of LBG and PVA can be used as a potential carrier for controlled oral delivery of highly water soluble drugs like BH.

  8. Visual Modeling for Aqua Ventus I off Monhegan Island, ME

    SciTech Connect

    Hanna, Luke A.; Whiting, Jonathan M.; Copping, Andrea E.

    2013-11-27

    To assist the University of Maine in demonstrating a clear pathway to project completion, PNNL has developed visualization models of the Aqua Ventus I project that accurately depict the Aqua Ventus I turbines from various points on Monhegain Island, ME and the surrounding area. With a hub height of 100 meters, the Aqua Ventus I turbines are large and may be seen from many areas on Monhegan Island, potentially disrupting important viewsheds. By developing these visualization models, which consist of actual photographs taken from Monhegan Island and the surrounding area with the Aqua Ventus I turbines superimposed within each photograph, PNNL intends to support the project’s siting and permitting process by providing the Monhegan Island community and various other stakeholders with a probable glimpse of how the Aqua Ventus I project will appear.

  9. Modeling vision: computational science for understanding human visual perception.

    PubMed

    Mrowka, Ralf; Freytag, Alexander; Reuter, Stefanie

    2017-03-25

    Human visual perception system is complex and involves a considerable portion of the brain's cortex. Hence, the wish to understand complex neuronal function is obvious, and the idea to model this by means of artificial neuronal networks might have been born at the time when first computational machines were constructed (Alan Turing, Intelligent machinery, 1948, h t t p: //www.npl.co.uk/about/history/notable-individuals/turing/intelligent-machinery) This article is protected by copyright. All rights reserved.

  10. Designing visual displays and system models for safe reactor operations

    SciTech Connect

    Brown-VanHoozer, S.A.

    1995-12-31

    The material presented in this paper is based on two studies involving the design of visual displays and the user`s prospective model of a system. The studies involve a methodology known as Neuro-Linguistic Programming and its use in expanding design choices from the operator`s perspective image. The contents of this paper focuses on the studies and how they are applicable to the safety of operating reactors.

  11. A Two Process Model of Infant Visual Attention.

    ERIC Educational Resources Information Center

    Cohen, Leslie B.

    A two-process model of infant visual attention is constructed based on research using the modified Berlyne technique with three- to five-month olds. The length of time an infant fixated a pattern was examined along with what caused him to turn to the pattern at all. The study was based both on a re-examination of previous research and on new…

  12. Emergence of a 'visual number sense' in hierarchical generative models.

    PubMed

    Stoianov, Ivilin; Zorzi, Marco

    2012-01-08

    Numerosity estimation is phylogenetically ancient and foundational to human mathematical learning, but its computational bases remain controversial. Here we show that visual numerosity emerges as a statistical property of images in 'deep networks' that learn a hierarchical generative model of the sensory input. Emergent numerosity detectors had response profiles resembling those of monkey parietal neurons and supported numerosity estimation with the same behavioral signature shown by humans and animals.

  13. Modeling the shape hierarchy for visually guided grasping

    PubMed Central

    Rezai, Omid; Kleinhans, Ashley; Matallanas, Eduardo; Selby, Ben; Tripp, Bryan P.

    2014-01-01

    The monkey anterior intraparietal area (AIP) encodes visual information about three-dimensional object shape that is used to shape the hand for grasping. We modeled shape tuning in visual AIP neurons and its relationship with curvature and gradient information from the caudal intraparietal area (CIP). The main goal was to gain insight into the kinds of shape parameterizations that can account for AIP tuning and that are consistent with both the inputs to AIP and the role of AIP in grasping. We first experimented with superquadric shape parameters. We considered superquadrics because they occupy a role in robotics that is similar to AIP, in that superquadric fits are derived from visual input and used for grasp planning. We also experimented with an alternative shape parameterization that was based on an Isomap dimension reduction of spatial derivatives of depth (i.e., distance from the observer to the object surface). We considered an Isomap-based model because its parameters lacked discontinuities between similar shapes. When we matched the dimension of the Isomap to the number of superquadric parameters, the superquadric model fit the AIP data somewhat more closely. However, higher-dimensional Isomaps provided excellent fits. Also, we found that the Isomap parameters could be approximated much more accurately than superquadric parameters by feedforward neural networks with CIP-like inputs. We conclude that Isomaps, or perhaps alternative dimension reductions of visual inputs to AIP, provide a promising model of AIP electrophysiology data. Further work is needed to test whether such shape parameterizations actually provide an effective basis for grasp control. PMID:25386134

  14. Dynamic flight stability in the desert locust Schistocerca gregaria.

    PubMed

    Taylor, Graham K; Thomas, Adrian L R

    2003-08-01

    Here we provide the first formal quantitative analysis of dynamic stability in a flying animal. By measuring the longitudinal static stability derivatives and mass distribution of desert locusts Schistocerca gregaria, we find that their static stability and static control responses are insufficient to provide asymptotic longitudinal dynamic stability unless they are sensitive to pitch attitude (measured with respect to an inertial or earth-fixed frame) as well as aerodynamic incidence (measured relative to the direction of flight). We find no evidence for a 'constant-lift reaction', previously supposed to keep lift production constant over a range of body angles, and show that such a reaction would be inconsequential because locusts can potentially correct for pitch disturbances within a single wingbeat. The static stability derivatives identify three natural longitudinal modes of motion: one stable subsidence mode, one unstable divergence mode, and one stable oscillatory mode (which is present with or without pitch attitude control). The latter is identified with the short period mode of aircraft, and shown to consist of rapid pitch oscillations with negligible changes in forward speed. The frequency of the short period mode (approx. 10 Hz) is only half the wingbeat frequency (approx. 22 Hz), so the mode would become coupled with the flapping cycle without adequate damping. Pitch rate damping is shown to be highly effective for this purpose - especially at the small scales associated with insect flight - and may be essential in stabilising locust flight. Although having a short period mode frequency close to the wingbeat frequency risks coupling, it is essential for control inputs made at the level of a single wingbeat to be effective. This is identified as a general constraint on flight control in flying animals.

  15. 3D web visualization of huge CityGML models

    NASA Astrophysics Data System (ADS)

    Prandi, F.; Devigili, F.; Soave, M.; Di Staso, U.; De Amicis, R.

    2015-08-01

    Nowadays, rapid technological development into acquiring geo-spatial information; joined to the capabilities to process these data in a relative short period of time, allows the generation of detailed 3D textured city models that will become an essential part of the modern city information infrastructure (Spatial Data Infrastructure) and, can be used to integrate various data from different sources for public accessible visualisation and many other applications. One of the main bottlenecks, which at the moment limit the use of these datasets to few experts, is a lack on efficient visualization systems through the web and interoperable frameworks that allow standardising the access to the city models. The work presented in this paper tries to satisfy these two requirements developing a 3D web-based visualization system based on OGC standards and effective visualization concepts. The architectural framework, based on Services Oriented Architecture (SOA) concepts, provides the 3D city data to a web client designed to support the view process in a very effective way. The first part of the work is to design a framework compliant to the 3D Portrayal Service drafted by the of the Open Geospatial Consortium (OGC) 3D standardization working group. The latter is related to the development of an effective web client able to render in an efficient way the 3D city models.

  16. The marmoset monkey as a model for visual neuroscience.

    PubMed

    Mitchell, Jude F; Leopold, David A

    2015-04-01

    The common marmoset (Callithrix jacchus) has been valuable as a primate model in biomedical research. Interest in this species has grown recently, in part due to the successful demonstration of transgenic marmosets. Here we examine the prospects of the marmoset model for visual neuroscience research, adopting a comparative framework to place the marmoset within a broader evolutionary context. The marmoset's small brain bears most of the organizational features of other primates, and its smooth surface offers practical advantages over the macaque for areal mapping, laminar electrode penetration, and two-photon and optical imaging. Behaviorally, marmosets are more limited at performing regimented psychophysical tasks, but do readily accept the head restraint that is necessary for accurate eye tracking and neurophysiology, and can perform simple discriminations. Their natural gaze behavior closely resembles that of other primates, with a tendency to focus on objects of social interest including faces. Their immaturity at birth and routine twinning also makes them ideal for the study of postnatal visual development. These experimental factors, together with the theoretical advantages inherent in comparing anatomy, physiology, and behavior across related species, make the marmoset an excellent model for visual neuroscience. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  17. The marmoset monkey as a model for visual neuroscience

    PubMed Central

    Mitchell, Jude F.; Leopold, David A.

    2015-01-01

    The common marmoset (Callithrix jacchus) has been valuable as a primate model in biomedical research. Interest in this species has grown recently, in part due to the successful demonstration of transgenic marmosets. Here we examine the prospects of the marmoset model for visual neuroscience research, adopting a comparative framework to place the marmoset within a broader evolutionary context. The marmoset’s small brain bears most of the organizational features of other primates, and its smooth surface offers practical advantages over the macaque for areal mapping, laminar electrode penetration, and two-photon and optical imaging. Behaviorally, marmosets are more limited at performing regimented psychophysical tasks, but do readily accept the head restraint that is necessary for accurate eye tracking and neurophysiology, and can perform simple discriminations. Their natural gaze behavior closely resembles that of other primates, with a tendency to focus on objects of social interest including faces. Their immaturity at birth and routine twinning also makes them ideal for the study of postnatal visual development. These experimental factors, together with the theoretical advantages inherent in comparing anatomy, physiology, and behavior across related species, make the marmoset an excellent model for visual neuroscience. PMID:25683292

  18. An elbow joint movement control model with visual feedback.

    PubMed

    Xiao, S; Li, X

    1997-01-01

    A motor program generator control model is proposed to simulate neuromuscular control. Three muscles (Biceps, Triceps, Brachialis) driving elbow joint flexion in a plane are simulated by integrating their nonlinear dynamic property and spinal neural circuitry. The motor descending commands are described by a visual feedback signal from the joint and an excitation signal for the motor neuron pool. The visual feedback signal mimics the gamma command whereas the excitation signal mimics another descending co-activation command. The gamma command is expressed as the output of a PID controller with the visual feedback error signal as the input. The gamma command and the motoneuron pool background activity are the inputs to the motoneuron pool model coupled with the Renshaw cell recurrent inhibitions. The output of the motoneuron pool model mimics the alpha command feeding directly to the muscle dynamics. A movement is produced by reducing the error signal between goal position and actual position and altering excitation signal properly. The simulation results show that a burst pattern of excitation signal and a PID controller can accurately trace the terminal goal and generate a smooth movement with a bell shaped velocity profile. The muscle activation signals have the characteristic similar to the smoothed EMG. Changing different parameters of the PID can cause the same effects as the stimulus pulse intensity or duration modulation.

  19. Machine Visual Motion Detection Modeled On Vertebrate Retina

    NASA Astrophysics Data System (ADS)

    Blackburn, M. R.; Nguyen, H. G.; Kaomea, P. K.

    1988-12-01

    Real-time motion analysis would be very useful for autonomous undersea vehicle (AUV) navigation, target tracking, homing, and obstacle avoidance. The perception of motion is well developed in animals from insects to man, providing solutions to similar problems. We have therefore applied a model of the motion analysis subnetwork in the vertebrate retina to visual navigation in the AUV. The model is currently implemented in the C programming language as a discrete- time serial approximation of a continuous-time parallel process. Running on an IBM-PC/AT with digitized video camera images, the system can detect and describe motion in a 16 by 16 receptor field at the rate of 4 updates per second. The system responds accurately with direction and speed information to images moving across the visual field at velocities less than 8 degrees of visual angle per second at signal-to-noise ratios greater than 3. The architecture is parallel and its sparse connections do not require long-term modifications. The model is thus appropriate for implementation in VLSI optoelectronics.

  20. Common and Innovative Visuals: A sparsity modeling framework for video.

    PubMed

    Abdolhosseini Moghadam, Abdolreza; Kumar, Mrityunjay; Radha, Hayder

    2014-05-02

    Efficient video representation models are critical for many video analysis and processing tasks. In this paper, we present a framework based on the concept of finding the sparsest solution to model video frames. To model the spatio-temporal information, frames from one scene are decomposed into two components: (i) a common frame, which describes the visual information common to all the frames in the scene/segment, and (ii) a set of innovative frames, which depicts the dynamic behaviour of the scene. The proposed approach exploits and builds on recent results in the field of compressed sensing to jointly estimate the common frame and the innovative frames for each video segment. We refer to the proposed modeling framework by CIV (Common and Innovative Visuals). We show how the proposed model can be utilized to find scene change boundaries and extend CIV to videos from multiple scenes. Furthermore, the proposed model is robust to noise and can be used for various video processing applications without relying on motion estimation and detection or image segmentation. Results for object tracking, video editing (object removal, inpainting) and scene change detection are presented to demonstrate the efficiency and the performance of the proposed model.

  1. Interactive Visualizations of Complex Seismic Data and Models

    NASA Astrophysics Data System (ADS)

    Chai, C.; Ammon, C. J.; Maceira, M.; Herrmann, R. B.

    2016-12-01

    The volume and complexity of seismic data and models have increased dramatically thanks to dense seismic station deployments and advances in data modeling and processing. Seismic observations such as receiver functions and surface-wave dispersion are multidimensional: latitude, longitude, time, amplitude and latitude, longitude, period, and velocity. Three-dimensional seismic velocity models are characterized with three spatial dimensions and one additional dimension for the speed. In these circumstances, exploring the data and models and assessing the data fits is a challenge. A few professional packages are available to visualize these complex data and models. However, most of these packages rely on expensive commercial software or require a substantial time investment to master, and even when that effort is complete, communicating the results to others remains a problem. A traditional approach during the model interpretation stage is to examine data fits and model features using a large number of static displays. Publications include a few key slices or cross-sections of these high-dimensional data, but this prevents others from directly exploring the model and corresponding data fits. In this presentation, we share interactive visualization examples of complex seismic data and models that are based on open-source tools and are easy to implement. Model and data are linked in an intuitive and informative web-browser based display that can be used to explore the model and the features in the data that influence various aspects of the model. We encode the model and data into HTML files and present high-dimensional information using two approaches. The first uses a Python package to pack both data and interactive plots in a single file. The second approach uses JavaScript, CSS, and HTML to build a dynamic webpage for seismic data visualization. The tools have proven useful and led to deeper insight into 3D seismic models and the data that were used to construct them

  2. Rheological and kinetic study of the ultrasonic degradation of locust bean gum in aqueous saline and salt-free solutions.

    PubMed

    Li, Ruoshi; Feke, Donald L

    2015-11-01

    The ultrasonic degradation of locust bean gum (LBG) in aqueous solutions has been studied at 25°C for ultrasonication times up to 120 min. Although LBG is not a polyelectrolyte, the degradation extent and kinetics were found to be somewhat sensitive to the ionic conditions in solution, and this is attributed to changes in molecular conformation that can occur in different salt environments. Ultrasonic degradation was tracked by rheological measurements that lead to the determination of intrinsic viscosity for the LBG molecules. A kinetic model was also developed and successfully applied to characterize and predict the degradation results.

  3. Non-Linear Neuronal Responses as an Emergent Property of Afferent Networks: A Case Study of the Locust Lobula Giant Movement Detector

    PubMed Central

    Bermúdez i Badia, Sergi; Bernardet, Ulysses; Verschure, Paul F. M. J.

    2010-01-01

    In principle it appears advantageous for single neurons to perform non-linear operations. Indeed it has been reported that some neurons show signatures of such operations in their electrophysiological response. A particular case in point is the Lobula Giant Movement Detector (LGMD) neuron of the locust, which is reported to locally perform a functional multiplication. Given the wide ramifications of this suggestion with respect to our understanding of neuronal computations, it is essential that this interpretation of the LGMD as a local multiplication unit is thoroughly tested. Here we evaluate an alternative model that tests the hypothesis that the non-linear responses of the LGMD neuron emerge from the interactions of many neurons in the opto-motor processing structure of the locust. We show, by exposing our model to standard LGMD stimulation protocols, that the properties of the LGMD that were seen as a hallmark of local non-linear operations can be explained as emerging from the dynamics of the pre-synaptic network. Moreover, we demonstrate that these properties strongly depend on the details of the synaptic projections from the medulla to the LGMD. From these observations we deduce a number of testable predictions. To assess the real-time properties of our model we applied it to a high-speed robot. These robot results show that our model of the locust opto-motor system is able to reliably stabilize the movement trajectory of the robot and can robustly support collision avoidance. In addition, these behavioural experiments suggest that the emergent non-linear responses of the LGMD neuron enhance the system's collision detection acuity. We show how all reported properties of this neuron are consistently reproduced by this alternative model, and how they emerge from the overall opto-motor processing structure of the locust. Hence, our results propose an alternative view on neuronal computation that emphasizes the network properties as opposed to the local

  4. Progressive Learning of Topic Modeling Parameters: A Visual Analytics Framework.

    PubMed

    El-Assady, Mennatallah; Sevastjanova, Rita; Sperrle, Fabian; Keim, Daniel; Collins, Christopher

    2017-08-29

    Topic modeling algorithms are widely used to analyze the thematic composition of text corpora but remain difficult to interpret and adjust. Addressing these limitations, we present a modular visual analytics framework, tackling the understandability and adaptability of topic models through a user-driven reinforcement learning process which does not require a deep understanding of the underlying topic modeling algorithms. Given a document corpus, our approach initializes two algorithm configurations based on a parameter space analysis that enhances document separability. We abstract the model complexity in an interactive visual workspace for exploring the automatic matching results of two models, investigating topic summaries, analyzing parameter distributions, and reviewing documents. The main contribution of our work is an iterative decision-making technique in which users provide a document-based relevance feedback that allows the framework to converge to a user-endorsed topic distribution. We also report feedback from a two-stage study which shows that our technique results in topic model quality improvements on two independent measures.

  5. The effect of changing topography on the coordinated marching of locust nymphs

    PubMed Central

    Amichay, Guy; Ariel, Gil

    2016-01-01

    Collective motion has traditionally been studied in the lab in homogeneous, obstacle-free environments, with little work having been conducted with changing landscapes or topography. Here, the impact of spatial heterogeneity on the collective motion exhibited by marching desert locust nymphs was studied under controlled lab conditions. Our experimental circular arenas, incorporating a funnel-like narrowing followed by re-widening, did not constitute a major barrier to the locusts but, rather, mimicked a changing topography in the natural environment. We examined its effects on macroscopic features of the locust collective behavior, as well as the any changes in their marching kinematics. A major finding was that of the limited extent to which the changing topography affected system-level features of the marching locust group, such as the order parameter and the fraction of walking individuals, despite increased crowding at the funnel. Overall, marching kinematics was also very little affected, suggesting that locust marching bands adjust to the environment, with little effect on the overall dynamics of the group. These findings are in contrast to recent theoretical results predicting that environmental heterogeneities qualitatively alter the dynamics of collectively moving particles; and highlight the crucial role of rapid individual plasticity and adaptability in the dynamics of flocks and swarms. Our study has revealed other important features of the marching behavior of the desert locust in addition to its robustness: the locusts demonstrated both, clear thigmotaxis and a tendency to spread-out and fill the available space. PMID:27994966

  6. MicroRNA-276 promotes egg-hatching synchrony by up-regulating brm in locusts

    PubMed Central

    He, Jing; Chen, Qianquan; Wei, Yuanyuan; Jiang, Feng; Yang, Meiling; Hao, Shuguang; Guo, Xiaojiao; Chen, Dahua; Kang, Le

    2016-01-01

    Developmental synchrony, the basis of uniform swarming, migration, and sexual maturation, is an important strategy for social animals to adapt to variable environments. However, the molecular mechanisms underlying developmental synchrony are largely unexplored. The migratory locust exhibits polyphenism between gregarious and solitarious individuals, with the former displaying more synchronous sexual maturation and migration than the latter. Here, we found that the egg-hatching time of gregarious locusts was more uniform compared with solitarious locusts and that microRNA-276 (miR-276) was expressed significantly higher in both ovaries and eggs of gregarious locusts than in solitarious locusts. Interestingly, inhibiting miR-276 in gregarious females and overexpressing it in solitarious females, respectively, caused more heterochronic and synchronous hatching of progeny eggs. Moreover, miR-276 directly targeted a transcription coactivator gene, brahma (brm), resulting in its up-regulation. Knockdown of brm not only resulted in asynchronous egg hatching in gregarious locusts but also impaired the miR-276–induced synchronous egg hatching in solitarious locusts. Mechanistically, miR-276 mediated brm activation in a manner that depended on the secondary structure of brm, namely, a stem-loop around the binding site of miR-276. Collectively, our results unravel a mechanism by which miR-276 enhances brm expression to promote developmental synchrony and provide insight into regulation of developmental homeostasis and population sustaining that are closely related to biological synchrony. PMID:26729868

  7. Terrain Modelling for Immersive Visualization for the Mars Exploration Rovers

    NASA Technical Reports Server (NTRS)

    Wright, J.; Hartman, F.; Cooper, B.; Maxwell, S.; Yen, J.; Morrison, J.

    2004-01-01

    Immersive environments are being used to support mission operations at the Jet Propulsion Laboratory. This technology contributed to the Mars Pathfinder Mission in planning sorties for the Sojourner rover and is being used for the Mars Exploration Rover (MER) missions. The stereo imagery captured by the rovers is used to create 3D terrain models, which can be viewed from any angle, to provide a powerful and information rich immersive visualization experience. These technologies contributed heavily to both the mission success and the phenomenal level of public outreach achieved by Mars Pathfinder and MER. This paper will review the utilization of terrain modelling for immersive environments in support of MER.

  8. Artistic Visualization of Trajectory Data Using Cloud Model

    NASA Astrophysics Data System (ADS)

    Wu, T.; Zhou, Y.; Zhang, L.

    2017-09-01

    Rapid advance of location acquisition technologies boosts the generation of trajectory data, which track the traces of moving objects. A trajectory is typically represented by a sequence of timestamped geographical locations. Data visualization is an efficient means to represent distributions and structures of datasets and reveal hidden patterns in the data. In this paper, we explore a cloud model-based method for the generation of stylized renderings of trajectory data. The artistic visualizations of the proposed method do not have the goal to allow for data mining tasks or others but instead show the aesthetic effect of the traces of moving objects in a distorted manner. The techniques used to create the images of traces of moving objects include the uncertain line using extended cloud model, stroke-based rendering of geolocation in varying styles, and stylistic shading with aesthetic effects for print or electronic displays, as well as various parameters to be further personalized. The influence of different parameters on the aesthetic qualities of various painted images is investigated, including step size, types of strokes, colour modes, and quantitative comparisons using four aesthetic measures are also involved into the experiment. The experimental results suggest that the proposed method is with advantages of uncertainty, simplicity and effectiveness, and it would inspire professional graphic designers and amateur users who may be interested in playful and creative exploration of artistic visualization of trajectory data.

  9. Visual model of human blur perception for scene adaptive capturing

    NASA Astrophysics Data System (ADS)

    Kim, Sung-Su; Chung, DaeSu; Park, Byung-Kwan; Kim, Jung-Bae; Lee, Seong-Deok

    2009-01-01

    Despite fast spreading of digital cameras, many people cannot take pictures of high quality, they want, due to lack of photography. To help users under the unfavorable capturing environments, e.g. 'Night', 'Backlighting', 'Indoor', or 'Portrait', the automatic mode of cameras provides parameter sets by manufactures. Unfortunately, this automatic functionality does not give pleasing image quality in general. Especially, length of exposure (shutter speed) is critical factor in taking high quality pictures in the night. One of key factors causing this bad quality in the night is the image blur, which mainly comes from hand-shaking in long capturing. In this study, to circumvent this problem and to enhance image quality of automatic cameras, we propose an intelligent camera processing core having BASE (Scene Adaptive Blur Estimation) and VisBLE (Visual Blur Limitation Estimation). SABE analyzes the high frequency component in the DCT (Discrete Cosine Transform) domain. VisBLE determines acceptable blur level on the basis of human visual tolerance and Gaussian model. This visual tolerance model is developed on the basis of human perception physiological mechanism. In the experiments proposed method outperforms existing imaging systems by general users and photographers, as well.

  10. Multisensor monitoring system for assessment of locust hazard risk in the Lake Balkhash drainage basin.

    PubMed

    Propastin, Pavel

    2012-12-01

    Satellite and ground-based data were combined in a monitoring system to quantify the link between climate conditions and the risk of locust infestations in the southern part of Lake Balkhash's drainage basin in the Republic of Kazakhstan. In this monitoring system, the Normalized Difference Vegetation Index (NDVI), derived from the SPOT-VGT satellite, was used for mapping potential locust habitats and monitoring their area throughout 1998 to 2007. TOPEX/Poseidon and Jason 1 altimeter data were used to track the interannual dynamics of water level in Balkhash Lake. Climate conditions were represented by weather records for air temperature and precipitation during the same period. The classification procedure, based on an analysis of multitemporal dynamics of SPOT-VGT NDVI values observed by individual vegetation classes, generated annual areas of ten land-cover types, which were then categorized as areas with low, medium, and high risk for locust infestation. Statistical analyses showed significant influences of the climatic parameters and the Balkhash Lake hydrological regime on the spatial extend of annual areas of potential locust habitats. The results also indicate that the linkages between locust infestation risk and environmental factors are characterized by time lags. The expansion of locust risk areas are usually preceded by dry, hot years and lower water levels in Balkhash Lake when larger areas of reed grass are free from seasonal flooding. Years with such conditions are favourable for locust outbreaks due to expansion of the habitat areas suitable for locust oviposition and nymphal development. In contrast, years with higher water levels in Balkhash Lake and lower temperature decrease the potential locust habitat area.

  11. Pharmacological blockade of gap junctions induces repetitive surging of extracellular potassium within the locust CNS.

    PubMed

    Spong, Kristin E; Robertson, R Meldrum

    2013-10-01

    The maintenance of cellular ion homeostasis is crucial for optimal neural function and thus it is of great importance to understand its regulation. Glial cells are extensively coupled by gap junctions forming a network that is suggested to serve as a spatial buffer for potassium (K(+)) ions. We have investigated the role of glial spatial buffering in the regulation of extracellular K(+) concentration ([K(+)]o) within the locust metathoracic ganglion by pharmacologically inhibiting gap junctions. Using K(+)-sensitive microelectrodes, we measured [K(+)]o near the ventilatory neuropile while simultaneously recording the ventilatory rhythm as a model of neural circuit function. We found that blockade of gap junctions with either carbenoxolone (CBX), 18β-glycyrrhetinic acid (18β-GA) or meclofenamic acid (MFA) reliably induced repetitive [K(+)]o surges and caused a progressive impairment in the ability to maintain baseline [K(+)]o levels throughout the treatment period. We also show that a low dose of CBX that did not induce surging activity increased the vulnerability of locust neural tissue to spreading depression (SD) induced by Na(+)/K(+)-ATPase inhibition with ouabain. CBX pre-treatment increased the number of SD events induced by ouabain and hindered the recovery of [K(+)]o back to baseline levels between events. Our results suggest that glial spatial buffering through gap junctions plays an essential role in the regulation of [K(+)]o under normal conditions and also contributes to a component of [K(+)]o clearance following physiologically elevated levels of [K(+)]o. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Interaction of compass sensing and object-motion detection in the locust central complex.

    PubMed

    Bockhorst, Tobias; Homberg, Uwe

    2017-07-01

    Goal-directed behavior is often complicated by unpredictable events, such as the appearance of a predator during directed locomotion. This situation requires adaptive responses like evasive maneuvers followed by subsequent reorientation and course correction. Here we study the possible neural underpinnings of such a situation in an insect, the desert locust. As in other insects, its sense of spatial orientation strongly relies on the central complex, a group of midline brain neuropils. The central complex houses sky compass cells that signal the polarization plane of skylight and thus indicate the animal's steering direction relative to the sun. Most of these cells additionally respond to small moving objects that drive fast sensory-motor circuits for escape. Here we investigate how the presentation of a moving object influences activity of the neurons during compass signaling. Cells responded in one of two ways: in some neurons, responses to the moving object were simply added to the compass response that had adapted during continuous stimulation by stationary polarized light. By contrast, other neurons disadapted, i.e., regained their full compass response to polarized light, when a moving object was presented. We propose that the latter case could help to prepare for reorientation of the animal after escape. A neuronal network based on central-complex architecture can explain both responses by slight changes in the dynamics and amplitudes of adaptation to polarized light in CL columnar input neurons of the system.NEW & NOTEWORTHY Neurons of the central complex in several insects signal compass directions through sensitivity to the sky polarization pattern. In locusts, these neurons also respond to moving objects. We show here that during polarized-light presentation, responses to moving objects override their compass signaling or restore adapted inhibitory as well as excitatory compass responses. A network model is presented to explain the variations of these

  13. 3D shape modeling by integration visual and tactile cues

    NASA Astrophysics Data System (ADS)

    Xiong, Hanwei; Xu, Jun; Xu, Chenxi; Pan, Ming

    2015-10-01

    With the progress in CAD (Computer Aided Design) systems, many mechanical components can be designed efficiently with high precision. But, such a system is unfit for some organic shapes, for example, a toy. In this paper, an easy way to dealing with such shapes is presented, combing visual perception with tangible interaction. The method is divided into three phases: two tangible interaction phases and one visual reconstruction. In the first tangible phase, a clay model is used to represent the raw shape, and the designer can change the shape intuitively with his hands. Then the raw shape is scanned into a digital volume model through a low cost vision system. In the last tangible phase, a desktop haptic device from SensAble is used to refine the scanned volume model and convert it into a surface model. A physical clay model and a virtual clay mode are all used in this method to deal with the main shape and the details respectively, and the vision system is used to bridge the two tangible phases. The vision reconstruction system is only made of a camera to acquire raw shape through shape from silhouettes method. All of the systems are installed on a single desktop, make it convenient for designers. The vision system details and a design example are presented in the papers.

  14. A visual analytics approach for models of heterogeneous cell populations

    PubMed Central

    2012-01-01

    In recent years, cell population models have become increasingly common. In contrast to classic single cell models, population models allow for the study of cell-to-cell variability, a crucial phenomenon in most populations of primary cells, cancer cells, and stem cells. Unfortunately, tools for in-depth analysis of population models are still missing. This problem originates from the complexity of population models. Particularly important are methods to determine the source of heterogeneity (e.g., genetics or epigenetic differences) and to select potential (bio-)markers. We propose an analysis based on visual analytics to tackle this problem. Our approach combines parallel-coordinates plots, used for a visual assessment of the high-dimensional dependencies, and nonlinear support vector machines, for the quantification of effects. The method can be employed to study qualitative and quantitative differences among cells. To illustrate the different components, we perform a case study using the proapoptotic signal transduction pathway involved in cellular apoptosis. PMID:22651376

  15. An Integrated Biomechanical Model for Microgravity-Induced Visual Impairment

    NASA Technical Reports Server (NTRS)

    Nelson, Emily S.; Best, Lauren M.; Myers, Jerry G.; Mulugeta, Lealem

    2012-01-01

    When gravitational unloading occurs upon entry to space, astronauts experience a major shift in the distribution of their bodily fluids, with a net headward movement. Measurements have shown that intraocular pressure spikes, and there is a strong suspicion that intracranial pressure also rises. Some astronauts in both short- and long-duration spaceflight develop visual acuity changes, which may or may not reverse upon return to earth gravity. To date, of the 36 U.S. astronauts who have participated in long-duration space missions on the International Space Station, 15 crew members have developed minor to severe visual decrements and anatomical changes. These ophthalmic changes include hyperopic shift, optic nerve distension, optic disc edema, globe flattening, choroidal folds, and elevated cerebrospinal fluid pressure. In order to understand the physical mechanisms behind these phenomena, NASA is developing an integrated model that appropriately captures whole-body fluids transport through lumped-parameter models for the cerebrospinal and cardiovascular systems. This data feeds into a finite element model for the ocular globe and retrobulbar subarachnoid space through time-dependent boundary conditions. Although tissue models and finite element representations of the corneo-scleral shell, retina, choroid and optic nerve head have been integrated to study pathological conditions such as glaucoma, the retrobulbar subarachnoid space behind the eye has received much less attention. This presentation will describe the development and scientific foundation of our holistic model.

  16. Locust bean gum: processing, properties and food applications--a review.

    PubMed

    Barak, Sheweta; Mudgil, Deepak

    2014-05-01

    Locust bean gum or carob gum is a galactomannan obtained from seed endosperm of carob tree i.e. Ceratonia siliqua. It is widely utilized as an additive in various industries such as food, pharmaceuticals, paper, textile, oil well drilling and cosmetics. Industrial applications of locust bean gum are due to its ability to form hydrogen bonding with water molecule. It is also beneficial in the control of many health problems like diabetes, bowel movements, heart disease and colon cancer due to its dietary fiber action. This article focuses on production, processing, composition, properties, food applications and health benefits of locust bean gum.

  17. The mechanics of elevation control in locust jumping.

    PubMed

    Sutton, G P; Burrows, M

    2008-06-01

    How do animals control the trajectory of ballistic motions like jumping? Targeted jumps by a locust, which are powered by a rapid extension of the tibiae of both hind legs, require control of the take-off angle and speed. To determine how the locust controls these parameters, we used high speed images of jumps and mechanical analysis to reach three conclusions: (1) the extensor tibiae muscle applies equal and opposite torques to the femur and tibia, which ensures that tibial extension accelerates the centre of mass of the body along a straight line; (2) this line is parallel to a line drawn from the distal end of the tibia through the proximal end of the femur; (3) the slope of this line (the angle of elevation) is not affected if the two hind legs extend asynchronously. The mechanics thus uncouple the control of elevation and speed, allowing simplified and independent control mechanisms. Jump elevation is controlled mechanically by the initial positions of the hind legs and jump speed is determined by the energy stored within their elastic processes, which allows us to then propose which proprioceptors are involved in controlling these quantities.

  18. The regulation of glycolysis in perfused locust flight muscle

    PubMed Central

    Ford, W. C. L.; Candy, D. J.

    1972-01-01

    Concentrations of glycolytic intermediates, amino acids and possible regulator substances were measured in extracts from locust thoracic muscles perfused under different conditions. The conversion of [14C]glucose into intermediates and CO2 by muscle preparations was also followed. When muscles perfused with glucose were made anaerobic changes in metabolite concentrations occurred that could be accounted for by an activation of phosphofructokinase and pyruvate kinase. When butyrate and glucose were present in the perfusion medium the rate of glycolytic flux was lower than with glucose alone, and the aldolase reaction appeared to be inhibited. When butyrate alone was supplied to the muscle the concentrations of most glycolytic intermediates were similar to those found when glucose was supplied. Iodoacetate caused changes in concentrations of intermediates that appeared to result from inhibition of glyceraldehyde 3-phosphate dehydrogenase. Fluoroacetate-poisoned muscles showed a high citrate concentration, but no obvious site of inhibition by citrate was apparent in the glycolytic pathway. Mechanisms for control of glycolysis in locust flight muscle are discussed and related to the known properties of isolated enzymes. It is proposed that trehalase, hexokinase, phosphofructokinase, aldolase, and pyruvate kinase may be control enzymes in this tissue. PMID:4266373

  19. Visualization of a Deterministic Radiation Transport Model Using Standard Visualization Tools

    SciTech Connect

    James A. Galbraith; L. Eric Greenwade

    2004-05-01

    Output from a deterministic radiation transport code running on a CRAY SV1 is imported into a standard distributed, parallel, visualization tool for analysis. Standard output files, consisting of tetrahedral meshes, are imported to the visualization tool through the creation of a application specific plug-in module. Visualization samples are included, providing visualization of steady state results. Different plot types and operators are utilized to enhance the analysis and assist in reporting the results of the analysis.

  20. Hardware acceleration of image recognition through a visual cortex model

    NASA Astrophysics Data System (ADS)

    Rice, Kenneth L.; Taha, Tarek M.; Vutsinas, Christopher N.

    2008-09-01

    Recent findings in neuroscience have led to the development of several new models describing the processes in the neocortex. These models excel at cognitive applications such as image analysis and movement control. This paper presents a hardware architecture to speed up image content recognition through a recently proposed model of the visual cortex. The system is based on a set of parallel computation nodes implemented in an FPGA. The design was optimized for hardware by reducing the data storage requirements, and removing the need for multiplies and divides. The reconfigurable logic hardware implementation running at 121 MHz provided a speedup of 148 times over a 2 GHz AMD Opteron processor. The results indicate the feasibility of specialized hardware to accelerate larger biological scale implementations of the model.

  1. Computational modeling and elementary process analysis in visual word recognition.

    PubMed

    Forster, K I

    1994-12-01

    An attempt is made to isolate the assumptions that make a connectionist approach to visual word recognition distinctive. These include the commitment to distributed representations, the claim that there is no distinction between lexical and nonlexical systems in the naming task, and the claim that it is possible to map from orthography to meaning without using localized representations. It is argued that merely demonstrating that a network model can perform these tasks is not sufficient and that a detailed theory of how the network performs its tasks must accompany the simulation, because a simulation is not equivalent to an explanation. It is argued that further progress requires detailed modeling and experimental study of the elementary processes assumed to be involved in networks and that it is premature to dismiss alternative models of lexical access such as serial search models.

  2. Visualization and Communication of Pharmacometric Models With Berkeley Madonna

    PubMed Central

    Krause, A; Lowe, P J

    2014-01-01

    Population or other pharmacometric models are a useful means to describe, succinctly, the relationships between drug administration, exposure (concentration), and downstream changes in pharmacodynamic (PD) biomarkers and clinical endpoints, including the mixed effects of patient factors and random interpatient variation (fixed and random effects). However, showing a set of covariate equations to a drug development team is perhaps not the best way to get a message across. Visualization of the consequences of the knowledge encapsulated within the model is the key component. Yet in many instances, it can take hours, perhaps days, to collect ideas from teams, write scripts, and run simulations before presenting the results—by which time they have moved on. How much better, then, to seize the moment and work interactively to decide on a course of action, guided by the model. We exemplify here the visualization of pharmacometric models using the Berkeley Madonna software with a particular focus on interactive sessions. The examples are provided as Supplementary Material. PMID:24872204

  3. Visibility Equalizer Cutaway Visualization of Mesoscopic Biological Models

    PubMed Central

    Le Muzic, M.; Mindek, P.; Sorger, J.; Autin, L.; Goodsell, D.; Viola, I.

    2017-01-01

    In scientific illustrations and visualization, cutaway views are often employed as an effective technique for occlusion management in densely packed scenes. We propose a novel method for authoring cutaway illustrations of mesoscopic biological models. In contrast to the existing cutaway algorithms, we take advantage of the specific nature of the biological models. These models consist of thousands of instances with a comparably smaller number of different types. Our method constitutes a two stage process. In the first step, clipping objects are placed in the scene, creating a cutaway visualization of the model. During this process, a hierarchical list of stacked bars inform the user about the instance visibility distribution of each individual molecular type in the scene. In the second step, the visibility of each molecular type is fine-tuned through these bars, which at this point act as interactive visibility equalizers. An evaluation of our technique with domain experts confirmed that our equalizer-based approach for visibility specification was valuable and effective for both, scientific and educational purposes. PMID:28344374

  4. Reading visually embodied meaning from the brain: Visually grounded computational models decode visual-object mental imagery induced by written text.

    PubMed

    Anderson, Andrew James; Bruni, Elia; Lopopolo, Alessandro; Poesio, Massimo; Baroni, Marco

    2015-10-15

    Embodiment theory predicts that mental imagery of object words recruits neural circuits involved in object perception. The degree of visual imagery present in routine thought and how it is encoded in the brain is largely unknown. We test whether fMRI activity patterns elicited by participants reading objects' names include embodied visual-object representations, and whether we can decode the representations using novel computational image-based semantic models. We first apply the image models in conjunction with text-based semantic models to test predictions of visual-specificity of semantic representations in different brain regions. Representational similarity analysis confirms that fMRI structure within ventral-temporal and lateral-occipital regions correlates most strongly with the image models and conversely text models correlate better with posterior-parietal/lateral-temporal/inferior-frontal regions. We use an unsupervised decoding algorithm that exploits commonalities in representational similarity structure found within both image model and brain data sets to classify embodied visual representations with high accuracy (8/10) and then extend it to exploit model combinations to robustly decode different brain regions in parallel. By capturing latent visual-semantic structure our models provide a route into analyzing neural representations derived from past perceptual experience rather than stimulus-driven brain activity. Our results also verify the benefit of combining multimodal data to model human-like semantic representations. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Blood Flow: Multi-scale Modeling and Visualization (July 2011)

    SciTech Connect

    2011-01-01

    Multi-scale modeling of arterial blood flow can shed light on the interaction between events happening at micro- and meso-scales (i.e., adhesion of red blood cells to the arterial wall, clot formation) and at macro-scales (i.e., change in flow patterns due to the clot). Coupled numerical simulations of such multi-scale flow require state-of-the-art computers and algorithms, along with techniques for multi-scale visualizations. This animation presents early results of two studies used in the development of a multi-scale visualization methodology. The fisrt illustrates a flow of healthy (red) and diseased (blue) blood cells with a Dissipative Particle Dynamics (DPD) method. Each blood cell is represented by a mesh, small spheres show a sub-set of particles representing the blood plasma, while instantaneous streamlines and slices represent the ensemble average velocity. In the second we investigate the process of thrombus (blood clot) formation, which may be responsible for the rupture of aneurysms, by concentrating on the platelet blood cells, observing as they aggregate on the wall of an aneruysm. Simulation was performed on Kraken at the National Institute for Computational Sciences. Visualization was produced using resources of the Argonne Leadership Computing Facility at Argonne National Laboratory.

  6. Scientific Visualization & Modeling for Earth Systems Science Education

    NASA Technical Reports Server (NTRS)

    Chaudhury, S. Raj; Rodriguez, Waldo J.

    2003-01-01

    Providing research experiences for undergraduate students in Earth Systems Science (ESS) poses several challenges at smaller academic institutions that might lack dedicated resources for this area of study. This paper describes the development of an innovative model that involves students with majors in diverse scientific disciplines in authentic ESS research. In studying global climate change, experts typically use scientific visualization techniques applied to remote sensing data collected by satellites. In particular, many problems related to environmental phenomena can be quantitatively addressed by investigations based on datasets related to the scientific endeavours such as the Earth Radiation Budget Experiment (ERBE). Working with data products stored at NASA's Distributed Active Archive Centers, visualization software specifically designed for students and an advanced, immersive Virtual Reality (VR) environment, students engage in guided research projects during a structured 6-week summer program. Over the 5-year span, this program has afforded the opportunity for students majoring in biology, chemistry, mathematics, computer science, physics, engineering and science education to work collaboratively in teams on research projects that emphasize the use of scientific visualization in studying the environment. Recently, a hands-on component has been added through science student partnerships with school-teachers in data collection and reporting for the GLOBE Program (GLobal Observations to Benefit the Environment).

  7. A Model for Human Visual Processing Which Explains Perceptions of Motion-After-Effects.

    DTIC Science & Technology

    1982-12-01

    rates of 3 Primary Visual Cortex Area 17 [_PercT t Aea 18 eprioptijon Pattern Recognition i/& Other Functions Semi-Circular Neck Canals Muscles...both. Funcional monents DI Visual Procesng As shown in the model at Figure 1, the visual stimulus is received at either or both of the two eyes. The...The inputs are sent nearly unaltered to the primary visual cortex. 6 Area 17 of the primary visual cortex is believed to hold a homeomorphic mapping of

  8. Three Dimensional Visualization of a Coastal Mesoscale Model

    DTIC Science & Technology

    1993-12-01

    thankful to Karen, my wife, who managed to keep the faith as well as grow a beautiful daughter, Danielle Tayler Sampson -- our first. Danielle, I ...No I I TITLE (include secutray class•ncarronii Three Dimensional Visualization of a Coastal Mesoscale Model 12 PERSONAl. AUTHOR(S) Sampson, R. Mark 1...3a TYPE OF REPORT 13b TIME COVERED 114 DATE OF REPORT (year, monA daiv; I PAGE COUN.NT Master’s Thesis Fr To 93 December 70 16 SUPPLEMENTARY NOTATION

  9. An open science approach to modeling and visualizing ...

    EPA Pesticide Factsheets

    It is expected that cyanobacteria blooms will increase in frequency, duration, and severity as inputs of nutrients increase and the impacts of climate change are realized. Partly in response to this, federal, state, and local entities have ramped up efforts to better understand blooms which has resulted in new life for old datasets, new monitoring programs, and novel uses for non-traditional sources of data. To fully benefit from these datasets, it is also imperative that the full body of work including data, code, and manuscripts be openly available (i.e., open science). This presentation will provide several examples of our work which occurs at the intersection of open science and research on cyanobacetria blooms in lakes and ponds. In particular we will discuss 1) why open science is particularly important for environmental human health issues; 2) the lakemorpho and elevatr R packages and how we use those to model lake morphometry; 3) Shiny server applications to visualize data collected as part of the Cyanobacteria Monitoring Collaborative; and 4) distribution of our research and models via open access publications and as R packages on GitHub. Modelling and visualizing information on cyanobacteria blooms is important as it provides estimates of the extent of potential problems associated with these blooms. Furthermore, conducting this work in the open allows others to access our code, data, and results. In turn, this allows for a greater impact because the

  10. The mouse model of Down syndrome Ts65Dn presents visual deficits as assessed by pattern visual evoked potentials.

    PubMed

    Scott-McKean, Jonah Jacob; Chang, Bo; Hurd, Ronald E; Nusinowitz, Steven; Schmidt, Cecilia; Davisson, Muriel T; Costa, Alberto C S

    2010-06-01

    The Ts65Dn mouse is the most complete widely available animal model of Down syndrome (DS). Quantitative information was generated about visual function in the Ts65Dn mouse by investigating their visual capabilities by means of electroretinography (ERG) and patterned visual evoked potentials (pVEPs). pVEPs were recorded directly from specific regions of the binocular visual cortex of anesthetized mice in response to horizontal sinusoidal gratings of different spatial frequency, contrast, and luminance generated by a specialized video card and presented on a 21-in. computer display suitably linearized by gamma correction. ERG assessments indicated no significant deficit in retinal physiology in Ts65Dn mice compared with euploid control mice. The Ts65Dn mice were found to exhibit deficits in luminance threshold, spatial resolution, and contrast threshold, compared with the euploid control mice. The behavioral counterparts of these parameters are luminance sensitivity, visual acuity, and the inverse of contrast sensitivity, respectively. DS includes various phenotypes associated with the visual system, including deficits in visual acuity, accommodation, and contrast sensitivity. The present study provides electrophysiological evidence of visual deficits in Ts65Dn mice that are similar to those reported in persons with DS. These findings strengthen the role of the Ts65Dn mouse as a model for DS. Also, given the historical assumption of integrity of the visual system in most behavioral assessments of Ts65Dn mice, such as the hidden-platform component of the Morris water maze, the visual deficits described herein may represent a significant confounding factor in the interpretation of results from such experiments.

  11. Regeneration of axotomized olfactory neurons in young and adult locusts quantified by fasciclin I immunofluorescence.

    PubMed

    Wasser, Hannah; Biller, Alexandra; Antonopoulos, Georgios; Meyer, Heiko; Bicker, Gerd; Stern, Michael

    2017-04-01

    The olfactory pathway of the locust Locusta migratoria is characterized by a multiglomerular innervation of the antennal lobe (AL) by olfactory receptor neurons (ORNs). After crushing the antenna and thereby severing ORN axons, changes in the AL were monitored. First, volume changes were measured at different times post-crush with scanning laser optical tomography in 5th instar nymphs. AL volume decreased significantly to a minimum volume at 4 days post-crush, followed by an increase. Second, anterograde labeling was used to visualize details in the AL and antennal nerve (AN) during de- and regeneration. Within 24 h post-crush (hpc) the ORN fragments distal to the lesion degenerated. After 48 hpc, regenerating fibers grew through the crush site. In the AL, labeled ORN projections disappeared completely and reappeared after a few days. A weak topographic match between ORN origin on the antenna and the position of innervated glomeruli that was present in untreated controls did not reappear after regeneration. Third, the cell surface marker fasciclin I that is expressed in ORNs was used for quantifying purposes. Immunofluorescence was measured in the AL during de- and regeneration in adults and 5th instar nymphs: after a rapid but transient, decrease, it reappeared. Both processes happen faster in 5th instar nymphs than in adults.

  12. ERTS surveys a 500 km squared locust breeding site in Saudi Arabia. [Red Sea coastal plain

    NASA Technical Reports Server (NTRS)

    Pedgley, D. E.

    1974-01-01

    From September 1972 to January 1973, ERTS-1 precisely located a 500 sq km area on the Red Sea coastal plain of Saudi Arabia within which the Desert Locust (Schistocerca gregaria, Forsk.) bred successfully and produced many small swarms. Growth of vegetation shown by satellite imagery was confirmed from ground surveys and raingauge data. The experiment demonstrates the feasibility of detecting potential locust breeding sites by satellite, and shows that an operational satellite would be a powerful tool for routine survey of the 3 x 10 to the 7th power sq km invasion area of the Desert Locust in Africa and Asia, as well as of other locust species in the arid and semi-arid tropics.

  13. Form vision in the insect dorsal ocelli: an anatomical and optical analysis of the Locust Ocelli.

    PubMed

    Berry, Richard P; Warrant, Eric J; Stange, Gert

    2007-05-01

    The dorsal ocelli are commonly considered to be incapable of form vision, primarily due to underfocused dioptrics. We investigate the extent to which this is true of the ocelli of the locust Locusta migratoria. Locust ocelli contain thick lenses with a pronounced concavity on the inner surface, and a deep clear zone separating retina and lens. In agreement with previous research, locust ocellar lenses were found to be decidedly underfocused with respect to the retina. Nevertheless, the image formed at the level of the retina contains substantial information that may be extractable by individual photoreceptors. Contrary to the classical view it is concluded that some capacity for resolution is present in the locust ocelli.

  14. Diversity of gut microbiota increases with aging and starvation in the desert locust.

    PubMed

    Dillon, Rod J; Webster, Gordon; Weightman, Andrew J; Keith Charnley, A

    2010-01-01

    Here we report the effects of starvation and insect age on the diversity of gut microbiota of adult desert locusts, Schistocerca gregaria, using denaturing gradient gel electrophoretic (DGGE) analysis of bacterial 16S rRNA genes. Sequencing of excised DGGE bands revealed the presence of only one potentially novel uncultured member of the Gammaproteobacteria in the guts of fed, starved, young or old locusts. Most of the 16S rRNA gene sequences were closely related to known cultured bacterial species. DGGE profiles suggested that bacterial diversity increased with insect age and did not provide evidence for a characteristic locust gut bacterial community. Starved insects are often more prone to disease, probably because they compromise on immune defence. However, the increased diversity of Gammaproteobacteria in starved locusts shown here may improve defence against enteric threats because of the role of gut bacteria in colonization resistance.

  15. Enhanced Visual-Attention Model for Perceptually Improved 3D Object Modeling in Virtual Environments

    NASA Astrophysics Data System (ADS)

    Chagnon-Forget, Maude; Rouhafzay, Ghazal; Cretu, Ana-Maria; Bouchard, Stéphane

    2016-12-01

    Three-dimensional object modeling and interactive virtual environment applications require accurate, but compact object models that ensure real-time rendering capabilities. In this context, the paper proposes a 3D modeling framework employing visual attention characteristics in order to obtain compact models that are more adapted to human visual capabilities. An enhanced computational visual attention model with additional saliency channels, such as curvature, symmetry, contrast and entropy, is initially employed to detect points of interest over the surface of a 3D object. The impact of the use of these supplementary channels is experimentally evaluated. The regions identified as salient by the visual attention model are preserved in a selectively-simplified model obtained using an adapted version of the QSlim algorithm. The resulting model is characterized by a higher density of points in the salient regions, therefore ensuring a higher perceived quality, while at the same time ensuring a less complex and more compact representation for the object. The quality of the resulting models is compared with the performance of other interest point detectors incorporated in a similar manner in the simplification algorithm. The proposed solution results overall in higher quality models, especially at lower resolutions. As an example of application, the selectively-densified models are included in a continuous multiple level of detail (LOD) modeling framework, in which an original neural-network solution selects the appropriate size and resolution of an object.

  16. Beyond Plum Pudding: A Multi Level Visual Model for Concept Formation

    ERIC Educational Resources Information Center

    Adams, J. Michael; Schindler, Charles

    1974-01-01

    Multilevel visual models can make teaching and learning theories more easily understood. The idea of graphic visualizationas developed in this model utilizes three stages of abstract concept formation dealing with concrete visualization, abstract visualization, and abstract generalization, which would provide the learner with an intuitive grasp of…

  17. Coupling Advanced Modeling and Visualization to Improve High-Impact Tropical Weather Prediction

    NASA Technical Reports Server (NTRS)

    Shen, Bo-Wen; Tao, Wei-Kuo; Green, Bryan

    2009-01-01

    To meet the goals of extreme weather event warning, this approach couples a modeling and visualization system that integrates existing NASA technologies and improves the modeling system's parallel scalability to take advantage of petascale supercomputers. It also streamlines the data flow for fast processing and 3D visualizations, and develops visualization modules to fuse NASA satellite data.

  18. Beyond Plum Pudding: A Multi Level Visual Model for Concept Formation

    ERIC Educational Resources Information Center

    Adams, J. Michael; Schindler, Charles

    1974-01-01

    Multilevel visual models can make teaching and learning theories more easily understood. The idea of graphic visualizationas developed in this model utilizes three stages of abstract concept formation dealing with concrete visualization, abstract visualization, and abstract generalization, which would provide the learner with an intuitive grasp of…

  19. Coupling Advanced Modeling and Visualization to Improve High-Impact Tropical Weather Prediction

    NASA Technical Reports Server (NTRS)

    Shen, Bo-Wen; Tao, Wei-Kuo; Green, Bryan

    2009-01-01

    To meet the goals of extreme weather event warning, this approach couples a modeling and visualization system that integrates existing NASA technologies and improves the modeling system's parallel scalability to take advantage of petascale supercomputers. It also streamlines the data flow for fast processing and 3D visualizations, and develops visualization modules to fuse NASA satellite data.

  20. Performance Measurement, Visualization and Modeling of Parallel and Distributed Programs

    NASA Technical Reports Server (NTRS)

    Yan, Jerry C.; Sarukkai, Sekhar R.; Mehra, Pankaj; Lum, Henry, Jr. (Technical Monitor)

    1994-01-01

    This paper presents a methodology for debugging the performance of message-passing programs on both tightly coupled and loosely coupled distributed-memory machines. The AIMS (Automated Instrumentation and Monitoring System) toolkit, a suite of software tools for measurement and analysis of performance, is introduced and its application illustrated using several benchmark programs drawn from the field of computational fluid dynamics. AIMS includes (i) Xinstrument, a powerful source-code instrumentor, which supports both Fortran77 and C as well as a number of different message-passing libraries including Intel's NX Thinking Machines' CMMD, and PVM; (ii) Monitor, a library of timestamping and trace -collection routines that run on supercomputers (such as Intel's iPSC/860, Delta, and Paragon and Thinking Machines' CM5) as well as on networks of workstations (including Convex Cluster and SparcStations connected by a LAN); (iii) Visualization Kernel, a trace-animation facility that supports source-code clickback, simultaneous visualization of computation and communication patterns, as well as analysis of data movements; (iv) Statistics Kernel, an advanced profiling facility, that associates a variety of performance data with various syntactic components of a parallel program; (v) Index Kernel, a diagnostic tool that helps pinpoint performance bottlenecks through the use of abstract indices; (vi) Modeling Kernel, a facility for automated modeling of message-passing programs that supports both simulation -based and analytical approaches to performance prediction and scalability analysis; (vii) Intrusion Compensator, a utility for recovering true performance from observed performance by removing the overheads of monitoring and their effects on the communication pattern of the program; and (viii) Compatibility Tools, that convert AIMS-generated traces into formats used by other performance-visualization tools, such as ParaGraph, Pablo, and certain AVS/Explorer modules.

  1. Performance Measurement, Visualization and Modeling of Parallel and Distributed Programs

    NASA Technical Reports Server (NTRS)

    Yan, Jerry C.; Sarukkai, Sekhar R.; Mehra, Pankaj; Lum, Henry, Jr. (Technical Monitor)

    1994-01-01

    This paper presents a methodology for debugging the performance of message-passing programs on both tightly coupled and loosely coupled distributed-memory machines. The AIMS (Automated Instrumentation and Monitoring System) toolkit, a suite of software tools for measurement and analysis of performance, is introduced and its application illustrated using several benchmark programs drawn from the field of computational fluid dynamics. AIMS includes (i) Xinstrument, a powerful source-code instrumentor, which supports both Fortran77 and C as well as a number of different message-passing libraries including Intel's NX Thinking Machines' CMMD, and PVM; (ii) Monitor, a library of timestamping and trace -collection routines that run on supercomputers (such as Intel's iPSC/860, Delta, and Paragon and Thinking Machines' CM5) as well as on networks of workstations (including Convex Cluster and SparcStations connected by a LAN); (iii) Visualization Kernel, a trace-animation facility that supports source-code clickback, simultaneous visualization of computation and communication patterns, as well as analysis of data movements; (iv) Statistics Kernel, an advanced profiling facility, that associates a variety of performance data with various syntactic components of a parallel program; (v) Index Kernel, a diagnostic tool that helps pinpoint performance bottlenecks through the use of abstract indices; (vi) Modeling Kernel, a facility for automated modeling of message-passing programs that supports both simulation -based and analytical approaches to performance prediction and scalability analysis; (vii) Intrusion Compensator, a utility for recovering true performance from observed performance by removing the overheads of monitoring and their effects on the communication pattern of the program; and (viii) Compatibility Tools, that convert AIMS-generated traces into formats used by other performance-visualization tools, such as ParaGraph, Pablo, and certain AVS/Explorer modules.

  2. Visualization of Protein Folding Funnels in Lattice Models

    PubMed Central

    Oliveira, Antonio B.; Fatore, Francisco M.; Paulovich, Fernando V.; Oliveira, Osvaldo N.; Leite, Vitor B. P.

    2014-01-01

    Protein folding occurs in a very high dimensional phase space with an exponentially large number of states, and according to the energy landscape theory it exhibits a topology resembling a funnel. In this statistical approach, the folding mechanism is unveiled by describing the local minima in an effective one-dimensional representation. Other approaches based on potential energy landscapes address the hierarchical structure of local energy minima through disconnectivity graphs. In this paper, we introduce a metric to describe the distance between any two conformations, which also allows us to go beyond the one-dimensional representation and visualize the folding funnel in 2D and 3D. In this way it is possible to assess the folding process in detail, e.g., by identifying the connectivity between conformations and establishing the paths to reach the native state, in addition to regions where trapping may occur. Unlike the disconnectivity maps method, which is based on the kinetic connections between states, our methodology is based on structural similarities inferred from the new metric. The method was developed in a 27-mer protein lattice model, folded into a 3×3×3 cube. Five sequences were studied and distinct funnels were generated in an analysis restricted to conformations from the transition-state to the native configuration. Consistent with the expected results from the energy landscape theory, folding routes can be visualized to probe different regions of the phase space, as well as determine the difficulty in folding of the distinct sequences. Changes in the landscape due to mutations were visualized, with the comparison between wild and mutated local minima in a single map, which serves to identify different trapping regions. The extension of this approach to more realistic models and its use in combination with other approaches are discussed. PMID:25010343

  3. A visual detection model for DCT coefficient quantization

    NASA Technical Reports Server (NTRS)

    Ahumada, Albert J., Jr.; Watson, Andrew B.

    1994-01-01

    The discrete cosine transform (DCT) is widely used in image compression and is part of the JPEG and MPEG compression standards. The degree of compression and the amount of distortion in the decompressed image are controlled by the quantization of the transform coefficients. The standards do not specify how the DCT coefficients should be quantized. One approach is to set the quantization level for each coefficient so that the quantization error is near the threshold of visibility. Results from previous work are combined to form the current best detection model for DCT coefficient quantization noise. This model predicts sensitivity as a function of display parameters, enabling quantization matrices to be designed for display situations varying in luminance, veiling light, and spatial frequency related conditions (pixel size, viewing distance, and aspect ratio). It also allows arbitrary color space directions for the representation of color. A model-based method of optimizing the quantization matrix for an individual image was developed. The model described above provides visual thresholds for each DCT frequency. These thresholds are adjusted within each block for visual light adaptation and contrast masking. For given quantization matrix, the DCT quantization errors are scaled by the adjusted thresholds to yield perceptual errors. These errors are pooled nonlinearly over the image to yield total perceptual error. With this model one may estimate the quantization matrix for a particular image that yields minimum bit rate for a given total perceptual error, or minimum perceptual error for a given bit rate. Custom matrices for a number of images show clear improvement over image-independent matrices. Custom matrices are compatible with the JPEG standard, which requires transmission of the quantization matrix.

  4. 3D Building Evacuation Route Modelling and Visualization

    NASA Astrophysics Data System (ADS)

    Chan, W.; Armenakis, C.

    2014-11-01

    The most common building evacuation approach currently applied is to have evacuation routes planned prior to these emergency events. These routes are usually the shortest and most practical path from each building room to the closest exit. The problem with this approach is that it is not adaptive. It is not responsively configurable relative to the type, intensity, or location of the emergency risk. Moreover, it does not provide any information to the affected persons or to the emergency responders while not allowing for the review of simulated hazard scenarios and alternative evacuation routes. In this paper we address two main tasks. The first is the modelling of the spatial risk caused by a hazardous event leading to choosing the optimal evacuation route for a set of options. The second is to generate a 3D visual representation of the model output. A multicriteria decision making (MCDM) approach is used to model the risk aiming at finding the optimal evacuation route. This is achieved by using the analytical hierarchy process (AHP) on the criteria describing the different alternative evacuation routes. The best route is then chosen to be the alternative with the least cost. The 3D visual representation of the model displays the building, the surrounding environment, the evacuee's location, the hazard location, the risk areas and the optimal evacuation pathway to the target safety location. The work has been performed using ESRI's ArcGIS. Using the developed models, the user can input the location of the hazard and the location of the evacuee. The system then determines the optimum evacuation route and displays it in 3D.

  5. Two dopamine receptors play different roles in phase change of the migratory locust.

    PubMed

    Guo, Xiaojiao; Ma, Zongyuan; Kang, Le

    2015-01-01

    The migratory locust, Locusta migratoria, shows remarkable phenotypic plasticity at behavioral, physiological, and morphological levels in response to fluctuation in population density. Our previous studies demonstrated that dopamine (DA) and the genes in the dopamine metabolic pathway mediate phase change in Locusta. However, the functions of different dopamine receptors in modulating locust phase change have not been fully explored. In the present study, DA concentration in the brain increased during crowding and decreased during isolation. The expression level of dopamine receptor 1 (Dop1) increased from 1 to 4 h of crowding, but remained unchanged during isolation. Injection of Dop1 agonist SKF38393 into the brains of solitary locusts promoted gregarization, induced conspecific attraction-response and increased locomotion. RNAi knockdown of Dop1 and injection of antagonist SCH23390 in gregarious locusts induced solitary behavior, promoted the shift to repulsion-response and reduced locomotion. By contrast, the expression level of dopamine receptor 2 (Dop2) gradually increased during isolation, but remained stable during crowding. During the isolation of gregarious locusts, injection of Dop2 antagonist S(-)-sulpiride or RNAi knockdown of Dop2 inhibited solitarization, maintained conspecific attraction-response and increased locomotion; by comparison, the isolated controls displayed conspecific repulsion-response and weaker motility. Activation of Dop2 in solitary locusts through injection of agonist, R(-)-TNPA, did not affect their behavioral state. Thus, DA-Dop1 signaling in the brain of Locusta induced the gregariousness, whereas DA-Dop2 signaling mediated the solitariness. Our study demonstrated that Dop1 and Dop2 modulated locust phase change in two different directions. Further investigation of Locusta Dop1 and Dop2 functions in modulating phase change will improve our understanding of the molecular mechanism underlying phenotypic plasticity in locusts.

  6. 3D-printer visualization of neuron models

    PubMed Central

    McDougal, Robert A.; Shepherd, Gordon M.

    2015-01-01

    Neurons come in a wide variety of shapes and sizes. In a quest to understand this neuronal diversity, researchers have three-dimensionally traced tens of thousands of neurons; many of these tracings are freely available through online repositories like NeuroMorpho.Org and ModelDB. Tracings can be visualized on the computer screen, used for statistical analysis of the properties of different cell types, used to simulate neuronal behavior, and more. We introduce the use of 3D printing as a technique for visualizing traced morphologies. Our method for generating printable versions of a cell or group of cells is to expand dendrite and axon diameters and then to transform the tracing into a 3D object with a neuronal surface generating algorithm like Constructive Tessellated Neuronal Geometry (CTNG). We show that 3D printed cells can be readily examined, manipulated, and compared with other neurons to gain insight into both the biology and the reconstruction process. We share our printable models in a new database, 3DModelDB, and encourage others to do the same with cells that they generate using our code or other methods. To provide additional context, 3DModelDB provides a simulatable version of each cell, links to papers that use or describe it, and links to associated entries in other databases. PMID:26175684

  7. 3D-printer visualization of neuron models.

    PubMed

    McDougal, Robert A; Shepherd, Gordon M

    2015-01-01

    Neurons come in a wide variety of shapes and sizes. In a quest to understand this neuronal diversity, researchers have three-dimensionally traced tens of thousands of neurons; many of these tracings are freely available through online repositories like NeuroMorpho.Org and ModelDB. Tracings can be visualized on the computer screen, used for statistical analysis of the properties of different cell types, used to simulate neuronal behavior, and more. We introduce the use of 3D printing as a technique for visualizing traced morphologies. Our method for generating printable versions of a cell or group of cells is to expand dendrite and axon diameters and then to transform the tracing into a 3D object with a neuronal surface generating algorithm like Constructive Tessellated Neuronal Geometry (CTNG). We show that 3D printed cells can be readily examined, manipulated, and compared with other neurons to gain insight into both the biology and the reconstruction process. We share our printable models in a new database, 3DModelDB, and encourage others to do the same with cells that they generate using our code or other methods. To provide additional context, 3DModelDB provides a simulatable version of each cell, links to papers that use or describe it, and links to associated entries in other databases.

  8. A Biophysical Neural Model To Describe Spatial Visual Attention

    SciTech Connect

    Hugues, Etienne; Jose, Jorge V.

    2008-02-14

    Visual scenes have enormous spatial and temporal information that are transduced into neural spike trains. Psychophysical experiments indicate that only a small portion of a spatial image is consciously accessible. Electrophysiological experiments in behaving monkeys have revealed a number of modulations of the neural activity in special visual area known as V4, when the animal is paying attention directly towards a particular stimulus location. The nature of the attentional input to V4, however, remains unknown as well as to the mechanisms responsible for these modulations. We use a biophysical neural network model of V4 to address these issues. We first constrain our model to reproduce the experimental results obtained for different external stimulus configurations and without paying attention. To reproduce the known neuronal response variability, we found that the neurons should receive about equal, or balanced, levels of excitatory and inhibitory inputs and whose levels are high as they are in in vivo conditions. Next we consider attentional inputs that can induce and reproduce the observed spiking modulations. We also elucidate the role played by the neural network to generate these modulations.

  9. A Biophysical Neural Model To Describe Spatial Visual Attention

    NASA Astrophysics Data System (ADS)

    Hugues, Etienne; José, Jorge V.

    2008-02-01

    Visual scenes have enormous spatial and temporal information that are transduced into neural spike trains. Psychophysical experiments indicate that only a small portion of a spatial image is consciously accessible. Electrophysiological experiments in behaving monkeys have revealed a number of modulations of the neural activity in special visual area known as V4, when the animal is paying attention directly towards a particular stimulus location. The nature of the attentional input to V4, however, remains unknown as well as to the mechanisms responsible for these modulations. We use a biophysical neural network model of V4 to address these issues. We first constrain our model to reproduce the experimental results obtained for different external stimulus configurations and without paying attention. To reproduce the known neuronal response variability, we found that the neurons should receive about equal, or balanced, levels of excitatory and inhibitory inputs and whose levels are high as they are in in vivo conditions. Next we consider attentional inputs that can induce and reproduce the observed spiking modulations. We also elucidate the role played by the neural network to generate these modulations.

  10. The mechanism for microsporidian parasite suppression of the hindgut bacteria of the migratory locust Locusta migratoria manilensis.

    PubMed

    Tan, Shu-Qian; Zhang, Kai-Qi; Chen, Hong-Xing; Ge, Yang; Ji, Rong; Shi, Wang-Peng

    2015-11-27

    Locusts aggregate into bands of nymphs and swarms of adults that can pose a major threat to crop. Previous studies have shown that infection by the microsporidian parasite Paranosema locustae prevents locust aggregation behavior and we show that gut bacteria, which produce components of locust aggregation pheromones, are substantially reduced in locusts infected with P. locustae. We found that P. locustae could reduce the diversity, abundance and community composition of Locusta migratoria's gut bacteria. The parasite infection was also shown to interrupt the peroxidase activity of locust hindgut. Genome-wide expression analysis showed that the parasite infection suppressed peroxidase mRNA relative expression of locust hindgut, but had no effects on attacin expression and superoxide dismutase at 16 d post-inoculation with 20,000 P. locustae spores. Our findings reveal the mechanisms by which P. locustae impairs bacterial diversity and community structure of Locusta migratoria's gut bacteria.

  11. The mechanism for microsporidian parasite suppression of the hindgut bacteria of the migratory locust Locusta migratoria manilensis

    PubMed Central

    Tan, Shu-qian; Zhang, Kai-qi; Chen, Hong-xing; Ge, Yang; Ji, Rong; Shi, Wang-peng

    2015-01-01

    Locusts aggregate into bands of nymphs and swarms of adults that can pose a major threat to crop. Previous studies have shown that infection by the microsporidian parasite Paranosema locustae prevents locust aggregation behavior and we show that gut bacteria, which produce components of locust aggregation pheromones, are substantially reduced in locusts infected with P. locustae. We found that P. locustae could reduce the diversity, abundance and community composition of Locusta migratoria’s gut bacteria. The parasite infection was also shown to interrupt the peroxidase activity of locust hindgut. Genome-wide expression analysis showed that the parasite infection suppressed peroxidase mRNA relative expression of locust hindgut, but had no effects on attacin expression and superoxide dismutase at 16 d post-inoculation with 20,000 P. locustae spores. Our findings reveal the mechanisms by which P. locustae impairs bacterial diversity and community structure of Locusta migratoria’s gut bacteria. PMID:26612678

  12. Argonaute 1 is indispensable for juvenile hormone mediated oogenesis in the migratory locust, Locusta migratoria.

    PubMed

    Song, Jiasheng; Guo, Wei; Jiang, Feng; Kang, Le; Zhou, Shutang

    2013-09-01

    Juvenile hormone (JH) is the primary hormone controlling vitellogenesis and oocyte maturation in the migratory locust Locusta migratoria, an evolutionarily primitive insect species with panoistic ovaries. However, molecular mechanisms of locust oogenesis remain unclear and the role of microRNA (miRNA) in JH mediated locust vitellogenesis and oocyte maturation has not been explored. Using miRNA sequencing and quantification with small RNA libraries derived from fat bodies of JH-deprived versus JH analog-exposed female adult locusts, we have identified 83 JH up-regulated and 60 JH down-regulated miRNAs. QRT-PCR validation has confirmed that transcription of selected miRNAs responded to JH administration and correlated with changes in endogenous hemolymph JH titers. Depletion of Argonaute 1 (Ago1), a key regulator of miRNA biogenesis and function by RNAi in female adult locusts dramatically decreased the expression of vitellogenin (Vg) and severely impaired follicular epithelium development, terminal oocyte maturation and ovarian growth. Our data indicate that Ago1 and Ago1-dependent miRNAs play a crucial role in locust vitellogenesis and egg production.

  13. Listening to the environment: hearing differences from an epigenetic effect in solitarious and gregarious locusts

    PubMed Central

    Gordon, Shira D.; Jackson, Joseph C.; Rogers, Stephen M.; Windmill, James F. C.

    2014-01-01

    Locusts display a striking form of phenotypic plasticity, developing into either a lone-living solitarious phase or a swarming gregarious phase depending on population density. The two phases differ extensively in appearance, behaviour and physiology. We found that solitarious and gregarious locusts have clear differences in their hearing, both in their tympanal and neuronal responses. We identified significant differences in the shape of the tympana that may be responsible for the variations in hearing between locust phases. We measured the nanometre mechanical responses of the ear's tympanal membrane to sound, finding that solitarious animals exhibit greater displacement. Finally, neural experiments signified that solitarious locusts have a relatively stronger response to high frequencies. The enhanced response to high-frequency sounds in the nocturnally flying solitarious locusts suggests greater investment in detecting the ultrasonic echolocation calls of bats, to which they are more vulnerable than diurnally active gregarious locusts. This study highlights the importance of epigenetic effects set forth during development and begins to identify how animals are equipped to match their immediate environmental needs. PMID:25274362

  14. Listening to the environment: hearing differences from an epigenetic effect in solitarious and gregarious locusts.

    PubMed

    Gordon, Shira D; Jackson, Joseph C; Rogers, Stephen M; Windmill, James F C

    2014-11-22

    Locusts display a striking form of phenotypic plasticity, developing into either a lone-living solitarious phase or a swarming gregarious phase depending on population density. The two phases differ extensively in appearance, behaviour and physiology. We found that solitarious and gregarious locusts have clear differences in their hearing, both in their tympanal and neuronal responses. We identified significant differences in the shape of the tympana that may be responsible for the variations in hearing between locust phases. We measured the nanometre mechanical responses of the ear's tympanal membrane to sound, finding that solitarious animals exhibit greater displacement. Finally, neural experiments signified that solitarious locusts have a relatively stronger response to high frequencies. The enhanced response to high-frequency sounds in the nocturnally flying solitarious locusts suggests greater investment in detecting the ultrasonic echolocation calls of bats, to which they are more vulnerable than diurnally active gregarious locusts. This study highlights the importance of epigenetic effects set forth during development and begins to identify how animals are equipped to match their immediate environmental needs.

  15. Phylocomposer and phylodirector: analysis and visualization of transducer indel models.

    PubMed

    Holmes, Ian

    2007-12-01

    Finite-state string transducers are probabilistic tools similar to Hidden Markov Models that can be systematically extended to large number of sequences related by indel and substitution processes on phylogenetic trees. The number of states in such models grows exponentially with the number of nodes in the tree, with the consequence that even quite small trees can be difficult to analyze or visualize. Here, we present two tools, phylocomposer and phylodirector, for working with string transducers. The former tool implements previously described composition algorithms for extending transducers to arbitrary tree topologies, while the latter generates short animations for arbitrary input alignments and phylogenetic trees, illustrating the state path through the composed transducer. Phylocomposer and phylodirector are freely available at http://biowiki.org/PhyloComposer and http://biowiki.org/PhyloDirector

  16. A model of visual detection of angular speed for bees.

    PubMed

    Riabinina, Olena; Philippides, Andrew O

    2009-03-07

    A fly or bee's responses to widefield image motion depend on two basic parameters: temporal frequency and angular speed. Rotational optic flow is monitored using temporal frequency analysers, whereas translational optic flow seems to be monitored in terms of angular speed. Here we present a possible model of an angular speed detector which processes input signals through two parallel channels. The output of the detector is taken as the ratio of the two channels' outputs. This operation amplifies angular speed sensitivity and depresses temporal frequency tuning. We analyse the behaviour of two versions of this model with different filtering properties in response to a variety of input signals. We then embody the detector in a simulated agent's visual system and explore its behaviour in experiments on speed control and odometry. The latter leads us to suggest a new algorithm for optic flow driven odometry.

  17. Experimental test of contemporary mathematical models of visual letter recognition.

    PubMed

    Townsend, J T; Ashby, F G

    1982-12-01

    A letter confusion experiment that used brief durations manipulated payoffs across the four stimulus letters, which were composed of line segments equal in length. The observers were required to report the features they perceived as well as to give a letter response. The early feature-sampling process is separated from the later letter-decision process in the substantive feature models, and predictions are thus obtained for the frequencies of feature report as well as letter report. Four substantive visual feature-processing models are developed and tested against one another and against three models of a more descriptive nature. The substantive models predict the decisional letter report phase much better than they do the feature-sampling phase, but the best overall 4 X 4 letter confusion matrix fits are obtained with one of the descriptive models, the similarity choice model. The present and other recent results suggest that the assumption that features are sampled in a stochastically independent manner may not be generally valid. The traditional high-threshold conceptualization of feature sampling is also falsified by the frequent reporting by observers of features not contained in the stimulus letter.

  18. Development of a human eye model for visual performance assessment

    NASA Astrophysics Data System (ADS)

    Jiang, Chong-Jhih; Chen, Yi-Chun; Yang, Tsung-Hsun; Sun, Ching-Cherng

    2009-08-01

    A biometry-based human eye model was developed by using the empirical anatomic and optical data of ocular parameters. The gradient refractive index of the crystalline lens was modeled by concentric conicoid isoindical surfaces and was adaptive to accommodation and age. The chromatic dispersion of homogeneous ocular media was described by Cauchy equations. The gradient equations for the refractive index of crystalline lens were modified at particular wavelengths according to the same dispersion model. Mie scattering was introduced to simulate volumetric light scattering in the crystalline lens. The optical performance of the eye model was evaluated in CodeV and ASAP and presented by the modulation transfer function (MTF) at single and multiple wavelengths. The chromatic optical powers obtained from this model matched that of physiological eyes. The scattering property was assessed by means of glare veiling luminance and compared with CIE general disability glare equation. This model is highly potential for investigating visual performance in ordinary lighting and display conditions and under the influence of glare sources.

  19. Bone morphing with statistical shape models for enhanced visualization

    NASA Astrophysics Data System (ADS)

    Rajamani, Kumar T.; Hug, Johannes; Nolte, Lutz P.; Styner, Martin

    2004-05-01

    This paper addresses the problem of extrapolating extremely sparse three-dimensional set of digitized landmarks and bone surface points to obtain a complete surface representation. The extrapolation is done using a statistical principal component analysis (PCA) shape model similar to earlier approaches by Fleute et al. This extrapolation procedure called Bone-Morphing is highly useful for intra-operative visualization of bone structures in image-free surgeries. We developed a novel morphing scheme operating directly in the PCA shape space incorporating the full set of possible variations including additional information such as patient height, weight and age. Shape information coded by digitized points is iteratively removed from the PCA model. The extrapolated surface is computed as the most probable surface in the shape space given the data. Interactivity is enhanced, as additional bone surface points can be incorporated in real-time. The expected accuracy can be visualized at any stage of the procedure. In a feasibility study, we applied the proposed scheme to the proximal femur structure. 14 CT scans were segmented and a sequence of correspondence establishing methods was employed to compute the optimal PCA model. Three anatomical landmarks, the femoral notch and the upper and the lower trochanter are digitized to register the model to the patient anatomy. Our experiments show that the overall shape information can be captured fairly accurately by a small number of control points. The added advantage is that it is fast, highly interactive and needs only a small number of points to be digitized intra-operatively.

  20. Incorporating Spatial Models in Visual Field Test Procedures

    PubMed Central

    Rubinstein, Nikki J.; McKendrick, Allison M.; Turpin, Andrew

    2016-01-01

    Purpose To introduce a perimetric algorithm (Spatially Weighted Likelihoods in Zippy Estimation by Sequential Testing [ZEST] [SWeLZ]) that uses spatial information on every presentation to alter visual field (VF) estimates, to reduce test times without affecting output precision and accuracy. Methods SWeLZ is a maximum likelihood Bayesian procedure, which updates probability mass functions at VF locations using a spatial model. Spatial models were created from empirical data, computational models, nearest neighbor, random relationships, and interconnecting all locations. SWeLZ was compared to an implementation of the ZEST algorithm for perimetry using computer simulations on 163 glaucomatous and 233 normal VFs (Humphrey Field Analyzer 24-2). Output measures included number of presentations and visual sensitivity estimates. Results There was no significant difference in accuracy or precision of SWeLZ for the different spatial models relative to ZEST, either when collated across whole fields or when split by input sensitivity. Inspection of VF maps showed that SWeLZ was able to detect localized VF loss. SWeLZ was faster than ZEST for normal VFs: median number of presentations reduced by 20% to 38%. The number of presentations was equivalent for SWeLZ and ZEST when simulated on glaucomatous VFs. Conclusions SWeLZ has the potential to reduce VF test times in people with normal VFs, without detriment to output precision and accuracy in glaucomatous VFs. Translational Relevance SWeLZ is a novel perimetric algorithm. Simulations show that SWeLZ can reduce the number of test presentations for people with normal VFs. Since many patients have normal fields, this has the potential for significant time savings in clinical settings. PMID:26981329

  1. Construction of a Hypervirulent and Specific Mycoinsecticide for Locust Control

    PubMed Central

    Fang, Weiguo; Lu, Hsiao-Ling; King, Glenn F.; St. Leger, Raymond J.

    2014-01-01

    Locusts and grasshoppers (acridids) are among the worst pests of crops and grasslands worldwide. Metarhizium acridum, a fungal pathogen that specifically infects acridids, has been developed as a control agent but its utility is limited by slow kill time and greater expense than chemical insecticides. We found that expression of four insect specific neurotoxins improved the efficacy of M. acridum against acridids by reducing lethal dose, time to kill and food consumption. Coinoculating recombinant strains expressing AaIT1(a sodium channel blocker) and hybrid-toxin (a blocker of both potassium and calcium channels), produced synergistic effects, including an 11.5-fold reduction in LC50, 43% reduction in LT50 and a 78% reduction in food consumption. However, specificity was retained as the recombinant strains did not cause disease in non-acridids. Our results identify a repertoire of toxins with different modes of action that improve the utility of fungi as specific control agents of insects. PMID:25475694

  2. Blood Flow: Multi-scale Modeling and Visualization

    SciTech Connect

    2010-01-01

    Multi-scale modeling of arterial blood flow can shed light on the interaction between events happening at micro- and meso-scales (i.e., adhesion of red blood cells to the arterial wall, clot formation) and at macro-scales (i.e., change in flow patterns due to the clot). Coupled numerical simulations of such multi-scale flow require state-of-the-art computers and algorithms. Along with developing methods for multi-scale computations, techniques for multi-scale visualizations must be designed. This animation presents early results of joint efforts of teams from Brown University and Argonne National Laboratory to develop a multi-scale visualization methodology. It illustrates a flow of healthy (red) and diseased (blue) blood cells with a Dissipative Particle Dynamics (DPD) method. Each blood cell is represented by a mesh made of 500 DPD-particles, and small spheres show a sub-set of the DPD particles representing the blood plasma, while instantaneous streamlines and slices represent the ensemble average velocity. Credits: Science: Leopold Grinberg and George Karniadakis, Brown University Visualization: Joseph A. Insley and Michael E. Papka, Argonne National Laboratory This research used resources of the Argonne Leadership Computing Facility at Argonne National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under contract DE-AC02-06CH11357. This research was supported in part by the National Science Foundation through the PetaApps program and used TeraGrid resources provided by National Institute for Computational Sciences.

  3. Planetary subsurface investigation by 3D visualization model .

    NASA Astrophysics Data System (ADS)

    Seu, R.; Catallo, C.; Tragni, M.; Abbattista, C.; Cinquepalmi, L.

    Subsurface data analysis and visualization represents one of the main aspect in Planetary Observation (i.e. search for water or geological characterization). The data are collected by subsurface sounding radars as instruments on-board of deep space missions. These data are generally represented as 2D radargrams in the perspective of space track and z axes (perpendicular to the subsurface) but without direct correlation to other data acquisition or knowledge on the planet . In many case there are plenty of data from other sensors of the same mission, or other ones, with high continuity in time and in space and specially around the scientific sites of interest (i.e. candidate landing areas or particular scientific interesting sites). The 2D perspective is good to analyse single acquisitions and to perform detailed analysis on the returned echo but are quite useless to compare very large dataset as now are available on many planets and moons of solar system. The best way is to approach the analysis on 3D visualization model generated from the entire stack of data. First of all this approach allows to navigate the subsurface in all directions and analyses different sections and slices or moreover navigate the iso-surfaces respect to a value (or interval). The last one allows to isolate one or more iso-surfaces and remove, in the visualization mode, other data not interesting for the analysis; finally it helps to individuate the underground 3D bodies. Other aspect is the needs to link the on-ground data, as imaging, to the underground one by geographical and context field of view.

  4. Increased muscular volume and cuticular specialisations enhance jump velocity in solitarious compared with gregarious desert locusts, Schistocerca gregaria.

    PubMed

    Rogers, Stephen M; Riley, Joanna; Brighton, Caroline; Sutton, Gregory P; Cullen, Darron A; Burrows, Malcolm

    2016-03-01

    The desert locust, Schistocerca gregaria, shows a strong phenotypic plasticity. It can develop, depending upon population density, into either a solitarious or gregarious phase that differs in many aspects of behaviour, physiology and morphology. Prominent amongst these differences is that solitarious locusts have proportionately longer hind femora than gregarious locusts. The hind femora contain the muscles and energy-storing cuticular structures that propel powerful jumps using a catapult-like mechanism. We show that solitarious locusts jump on average 23% faster and 27% further than gregarious locusts, and attribute this improved performance to three sources: first, a 17.5% increase in the relative volume of their hind femur, and hence muscle volume; second, a 24.3% decrease in the stiffness of the energy-storing semi-lunar processes of the distal femur; and third, a 4.5% decrease in the stiffness of the tendon of the extensor tibiae muscle. These differences mean that solitarious locusts can generate more power and store more energy in preparation for a jump than can gregarious locusts. This improved performance comes at a cost: solitarious locusts expend nearly twice the energy of gregarious locusts during a single jump and the muscular co-contraction that energises the cuticular springs takes twice as long. There is thus a trade-off between achieving maximum jump velocity in the solitarious phase against the ability to engage jumping rapidly and repeatedly in the gregarious phase.

  5. Active vision in marmosets: a model system for visual neuroscience.

    PubMed

    Mitchell, Jude F; Reynolds, John H; Miller, Cory T

    2014-01-22

    The common marmoset (Callithrix jacchus), a small-bodied New World primate, offers several advantages to complement vision research in larger primates. Studies in the anesthetized marmoset have detailed the anatomy and physiology of their visual system (Rosa et al., 2009) while studies of auditory and vocal processing have established their utility for awake and behaving neurophysiological investigations (Lu et al., 2001a,b; Eliades and Wang, 2008a,b; Osmanski and Wang, 2011; Remington et al., 2012). However, a critical unknown is whether marmosets can perform visual tasks under head restraint. This has been essential for studies in macaques, enabling both accurate eye tracking and head stabilization for neurophysiology. In one set of experiments we compared the free viewing behavior of head-fixed marmosets to that of macaques, and found that their saccadic behavior is comparable across a number of saccade metrics and that saccades target similar regions of interest including faces. In a second set of experiments we applied behavioral conditioning techniques to determine whether the marmoset could control fixation for liquid reward. Two marmosets could fixate a central point and ignore peripheral flashing stimuli, as needed for receptive field mapping. Both marmosets also performed an orientation discrimination task, exhibiting a saturating psychometric function with reliable performance and shorter reaction times for easier discriminations. These data suggest that the marmoset is a viable model for studies of active vision and its underlying neural mechanisms.

  6. Predictive Models of Human Visual Processes in Aerosystems.

    DTIC Science & Technology

    1979-11-01

    g f i P SECURITY CLASSIFICATION OF THIS PAGE(Uh# DelE, h •.J) 7The theoretical reconstruction of the response profile of a visual target is...adaptations in their visual systems. These species most probably having evolved from nocturnal, solitary visual predators (Cartmill, 1974; Polyak , 1957) into...Cortex-46 Ginsburg, A. P., 1979. Visual perception based on spatial filters constrained by biological data. Proceedings of the International Conference on

  7. XML-based 3D model visualization and simulation framework for dynamic models

    NASA Astrophysics Data System (ADS)

    Kim, Taewoo; Fishwick, Paul A.

    2002-07-01

    Relatively recent advances in computer technology enable us to create three-dimensional (3D) dynamic models and simulate them within a 3D web environment. The use of such models is especially valuable when teaching simulation, and the concepts behind dynamic models, since the models are made more accessible to the students. Students tend to enjoy a construction process in which they are able to employ their own cultural and aesthetic forms. The challenge is to create a language that allows for a grammar for modeling, while simultaneously permitting arbitrary presentation styles. For further flexibility, we need an effective way to represent and simulate dynamic models that can be shared by modelers over the Internet. We present an Extensible Markup Language (XML)-based framework that will guide a modeler in creating personalized 3D models, visualizing its dynamic behaviors, and simulating the created models. A model author will use XML files to represent geometries and topology of a dynamic model. Model Fusion Engine, written in Extensible Stylesheet Language Transformation (XSLT), expedites the modeling process by automating the creation of dynamic models with the user-defined XML files. Modelers can also link simulation programs with a created model to analyze the characteristics of the model. The advantages of this system lie in the education of modeling and simulating dynamic models, and in the exploitation of visualizing the dynamic model behaviors.

  8. Algorithms, Visualization, and Mental Models: High School Students' Interactions with a Relative Motion Simulation.

    ERIC Educational Resources Information Center

    Monaghan, James M.; Clement, John

    2000-01-01

    Hypothesizes that the construction of visual models, resolution of these visual models with numeric models and, in many cases, rejection of commitments such as the belief in one true velocity, are necessary for students to form integrated mental models of relative motion events. Studies high school students' relative motion problem solving.…

  9. Identifying the breeding areas of locusts in the Yellow River estuary using Landsat ETM+ imagery

    NASA Astrophysics Data System (ADS)

    Liu, Qingsheng; Liu, Gaohuan; Yang, Yuzhen; Liu, Peng; Huang, Jianjie

    2006-03-01

    The Yellow River Estuary became an important plague region of locusts because of its special geographic location. Many years' survey data showed that the environment was the chief factor that influenced locust pest occurring. In the recent years, because the amount of water from the Yellow River and precipitation reduced and distributed asymmetrically, and soil salinization became serious much more, and many farmlands went out of cultivation, which improved the habitats for locusts, the plague of locusts happened frequently under condign climate. The field survey data from 1991 to 2000 showed that the plague of locust became more aggravating year after year. Therefore, it is important to monitor and control the plague of locusts. According to many years' investigation data analysis, got the condign habitat conditions for Locusta Migratoria Manilensis (Meyen) in the Yellow River Estuary. So the breeding areas of locusts monitoring with remote sensing imagery was to identify those regions according to the condign habitat conditions. Landsat ETM+ imagery (2000-05-02) data was chosen to identify the breeding areas of locusts in the Yellow River Estuary. Firstly classified Landsat TM imagery (2000-5-2) and extract reed lands and lawn lands and slightly salinized soils. Secondly made mask images through transforming these three raster classes into vector layers, then calculated a anti-atmospheric visible light vegetation index VARIg = (B2-B3)/(B2+B3-B1). According to field investigation data of vegetation fractional cover in 2000, got the relationship between vegetation fractional cover and VARIg values, 70% to 3.0, 50% to 2.3. As a result, the infrequent areas were where VARIg values were great than 3.0, and the moderate areas were where VARIg values were between 2.3 and 3.0, and frequent areas were where VARIg values were under 2.3. According to statistical analysis, the infrequent areas were percent 10 of the lands that have the condign soil salt content for locust

  10. Statistical modeling and visualization of localized prostate cancer

    NASA Astrophysics Data System (ADS)

    Wang, Yue J.; Xuan, Jianhua; Sesterhenn, Isabell A.; Hayes, Wendelin S.; Ebert, David S.; Lynch, John H.; Mun, Seong K.

    1997-05-01

    In this paper, a statistically significant master model of localized prostate cancer is developed with pathologically- proven surgical specimens to spatially guide specific points in the biopsy technique for a higher rate of prostate cancer detection and the best possible representation of tumor grade and extension. Based on 200 surgical specimens of the prostates, we have developed a surface reconstruction technique to interactively visualize in the clinically significant objects of interest such as the prostate capsule, urethra, seminal vesicles, ejaculatory ducts and the different carcinomas, for each of these cases. In order to investigate the complex disease pattern including the tumor distribution, volume, and multicentricity, we created a statistically significant master model of localized prostate cancer by fusing these reconstructed computer models together, followed by a quantitative formulation of the 3D finite mixture distribution. Based on the reconstructed prostate capsule and internal structures, we have developed a technique to align all surgical specimens through elastic matching. By labeling the voxels of localized prostate cancer by '1' and the voxels of other internal structures by '0', we can generate a 3D binary image of the prostate that is simply a mutually exclusive random sampling of the underlying distribution f cancer to gram of localized prostate cancer characteristics. In order to quantify the key parameters such as distribution, multicentricity, and volume, we used a finite generalized Gaussian mixture to model the histogram, and estimate the parameter values through information theoretical criteria and a probabilistic self-organizing mixture. Utilizing minimally-immersive and stereoscopic interactive visualization, an augmented reality can be developed to allow the physician to virtually hold the master model in one hand and use the dominant hand to probe data values and perform a simulated needle biopsy. An adaptive self- organizing

  11. A self-organizing model of perisaccadic visual receptive field dynamics in primate visual and oculomotor system

    PubMed Central

    Mender, Bedeho M. W.; Stringer, Simon M.

    2015-01-01

    We propose and examine a model for how perisaccadic visual receptive field dynamics, observed in a range of primate brain areas such as LIP, FEF, SC, V3, V3A, V2, and V1, may develop through a biologically plausible process of unsupervised visually guided learning. These dynamics are associated with remapping, which is the phenomenon where receptive fields anticipate the consequences of saccadic eye movements. We find that a neural network model using a local associative synaptic learning rule, when exposed to visual scenes in conjunction with saccades, can account for a range of associated phenomena. In particular, our model demonstrates predictive and pre-saccadic remapping, responsiveness shifts around the time of saccades, and remapping from multiple directions. PMID:25717301

  12. Visual-search models for location-known detection tasks

    NASA Astrophysics Data System (ADS)

    Gifford, H. C.; Karbaschi, Z.; Banerjee, K.; Das, M.

    2017-03-01

    Lesion-detection studies that analyze a fixed target position are generally considered predictive of studies involving lesion search, but the extent of the correlation often goes untested. The purpose of this work was to develop a visual-search (VS) model observer for location-known tasks that, coupled with previous work on localization tasks, would allow efficient same-observer assessments of how search and other task variations can alter study outcomes. The model observer featured adjustable parameters to control the search radius around the fixed lesion location and the minimum separation between suspicious locations. Comparisons were made against human observers, a channelized Hotelling observer and a nonprewhitening observer with eye filter in a two-alternative forced-choice study with simulated lumpy background images containing stationary anatomical and quantum noise. These images modeled single-pinhole nuclear medicine scans with different pinhole sizes. When the VS observer's search radius was optimized with training images, close agreement was obtained with human-observer results. Some performance differences between the humans could be explained by varying the model observer's separation parameter. The range of optimal pinhole sizes identified by the VS observer was in agreement with the range determined with the channelized Hotelling observer.

  13. Stochastic sensitivity of a bistable energy model for visual perception

    NASA Astrophysics Data System (ADS)

    Pisarchik, Alexander N.; Bashkirtseva, Irina; Ryashko, Lev

    2017-01-01

    Modern trends in physiology, psychology and cognitive neuroscience suggest that noise is an essential component of brain functionality and self-organization. With adequate noise the brain as a complex dynamical system can easily access different ordered states and improve signal detection for decision-making by preventing deadlocks. Using a stochastic sensitivity function approach, we analyze how sensitive equilibrium points are to Gaussian noise in a bistable energy model often used for qualitative description of visual perception. The probability distribution of noise-induced transitions between two coexisting percepts is calculated at different noise intensity and system stability. Stochastic squeezing of the hysteresis range and its transition from positive (bistable regime) to negative (intermittency regime) are demonstrated as the noise intensity increases. The hysteresis is more sensitive to noise in the system with higher stability.

  14. Physical Models that Provide Guidance in Visualization Deconstruction in an Inorganic Context

    ERIC Educational Resources Information Center

    Schiltz, Holly K.; Oliver-Hoyo, Maria T.

    2012-01-01

    Three physical model systems have been developed to help students deconstruct the visualization needed when learning symmetry and group theory. The systems provide students with physical and visual frames of reference to facilitate the complex visualization involved in symmetry concepts. The permanent reflection plane demonstration presents an…

  15. Physical Models that Provide Guidance in Visualization Deconstruction in an Inorganic Context

    ERIC Educational Resources Information Center

    Schiltz, Holly K.; Oliver-Hoyo, Maria T.

    2012-01-01

    Three physical model systems have been developed to help students deconstruct the visualization needed when learning symmetry and group theory. The systems provide students with physical and visual frames of reference to facilitate the complex visualization involved in symmetry concepts. The permanent reflection plane demonstration presents an…

  16. Soil moisture assessments for brown locust Locustana pardalina breeding potential using synthetic aperture radar

    NASA Astrophysics Data System (ADS)

    Crooks, William T. S.; Cheke, Robert A.

    2014-01-01

    Synthetic aperture radar (SAR) imagery was collected over a brown locust Locustana pardalina outbreak area to estimate soil moisture relevant to egg development. ERS-2/RadarSat overpasses and field studies enabled parameterization of surface roughness, volumetric soil moisture, soil texture, and vegetation cover. Data were analyzed both when the target area was assessed as nonvegetated and when treated as vegetated. For the former, using the integral equation model (IEM) and soil surface data combined with the sensitivity of the IEM to changes in surface roughness introduced an error of ˜±0.06 cm3 cm-3 in volumetric soil moisture. Comparison of the IEM modeling results with backscatter responses from the ERS-2/RadarSat imagery revealed errors as high as ±0.14 cm3 cm-3, mostly due to IEM calibration problems and the impact of vegetation. Two modified versions of the water cloud model (WCM) were parameterized, one based on measurements of vegetation moisture and the other on vegetation biomass. A sensitivity analysis of the resulting model revealed a positive relationship between increases in both vegetation biomass and vegetation moisture and the backscatter responses from the ERS-2 and RadarSat sensors. The WCM was able to explain up to 80% of the variability found when the IEM was used alone.

  17. Visual-spatial exploration of thematic spaces: a comparative study of three visualization models

    NASA Astrophysics Data System (ADS)

    Cribbin, Timothy; Chen, Chaomei

    2001-05-01

    Scatter graphs are a popular medium for visualizing spatial- semantic structures derived from abstract information spaces. For small spaces such graphs can be an effective means of reducing high-dimensional information into two or three spatial dimensions. As dimensionally increases, representing the thematic diversity of documents using spatial proximity alone becomes less and less effective. This paper reports an experiment designed to determine whether, for larger spaces, benefits are to be gained from adding visual links between document nodes as an additional means of representing the most important semantic relationships. Two well known algorithms, minimum spanning trees (MST) and pathfinder associative networks (PFNET), were tested against both a scatter graph visualization, derived from factor analysis, and a traditional list-based hypertext interface. It was hypothesized that visual links would facilitate users' comprehension of the information space with corresponding gains in information space with corresponding gains in information seeking performance. Navigation performance and user impression were analyzed across a range of different search tasks. Results indicate both significant performance gains and more positive user feedback for MST and PFNET visualizations over scatter graphs. Performance on all visualizations was generally poorer and never better than that achieved on the text list interface although the magnitude of these differences was found to be highly task dependent.

  18. The Locust Standard Brain: A 3D Standard of the Central Complex as a Platform for Neural Network Analysis

    PubMed Central

    el Jundi, Basil; Heinze, Stanley; Lenschow, Constanze; Kurylas, Angela; Rohlfing, Torsten; Homberg, Uwe

    2009-01-01

    Many insects use the pattern of polarized light in the sky for spatial orientation and navigation. We have investigated the polarization vision system in the desert locust. To create a common platform for anatomical studies on polarization vision pathways, Kurylas et al. (2008) have generated a three-dimensional (3D) standard brain from confocal microscopy image stacks of 10 male brains, using two different standardization methods, the Iterative Shape Averaging (ISA) procedure and the Virtual Insect Brain (VIB) protocol. Comparison of both standardization methods showed that the VIB standard is ideal for comparative volume analysis of neuropils, whereas the ISA standard is the method of choice to analyze the morphology and connectivity of neurons. The central complex is a key processing stage for polarization information in the locust brain. To investigate neuronal connections between diverse central-complex neurons, we generated a higher-resolution standard atlas of the central complex and surrounding areas, using the ISA method based on brain sections from 20 individual central complexes. To explore the usefulness of this atlas, two central-complex neurons, a polarization-sensitive columnar neuron (type CPU1a) and a tangential neuron that is activated during flight, the giant fan-shaped (GFS) neuron, were reconstructed 3D from brain sections. To examine whether the GFS neuron is a candidate to contribute to synaptic input to the CPU1a neuron, we registered both neurons into the standardized central complex. Visualization of both neurons revealed a potential connection of the CPU1a and GFS neurons in layer II of the upper division of the central body. PMID:20161763

  19. Bilateral flight muscle activity predicts wing kinematics and 3-dimensional body orientation of locusts responding to looming objects.

    PubMed

    McMillan, Glyn A; Loessin, Vicky; Gray, John R

    2013-09-01

    We placed locusts in a wind tunnel using a loose tether design that allowed for motion in all three rotational degrees of freedom during presentation of a computer-generated looming disc. High-speed video allowed us to extract wing kinematics, abdomen position and 3-dimensional body orientation. Concurrent electromyographic (EMG) recordings monitored bilateral activity from the first basalar depressor muscles (m97) of the forewings, which are implicated in flight steering. Behavioural responses to a looming disc included cessation of flight (wings folded over the body), glides and active steering during sustained flight in addition to a decrease and increase in wingbeat frequency prior to and during, respectively, an evasive turn. Active steering involved shifts in bilateral m97 timing, wing asymmetries and whole-body rotations in the yaw (ψ), pitch (χ) and roll (η) planes. Changes in abdomen position and hindwing asymmetries occurred after turns were initiated. Forewing asymmetry and changes in η were most highly correlated with m97 spike latency. Correlations also increased as the disc approached, peaking prior to collision. On the inside of a turn, m97 spikes occurred earlier relative to forewing stroke reversal and bilateral timing corresponded to forewing asymmetry as well as changes in whole-body rotation. Double spikes in each m97 occurred most frequently at or immediately prior to the time the locusts turned, suggesting a behavioural significance. These data provide information on mechanisms underlying 3-dimensional flight manoeuvres and will be used to drive a closed loop flight simulator to study responses of motion-sensitive visual neurons during production of realistic behaviours.

  20. Characterization and comparative profiling of the small RNA transcriptomes in two phases of locust

    PubMed Central

    Wei, Yuanyuan; Chen, Shuang; Yang, Pengcheng; Ma, Zongyuan; Kang, Le

    2009-01-01

    Background All the reports on insect small RNAs come from holometabolous insects whose genome sequence data are available. Therefore, study of hemimetabolous insect small RNAs could provide more insights into evolution and function of small RNAs in insects. The locust is an important, economically harmful hemimetabolous insect. Its phase changes, as a phenotypic plasticity, result from differential gene expression potentially regulated at both the post-transcriptional level, mediated by small RNAs, and the transcriptional level. Results Here, using high-throughput sequencing, we characterize the small RNA transcriptome in the locust. We identified 50 conserved microRNA families by similarity searching against miRBase, and a maximum of 185 potential locust-specific microRNA family candidates were identified using our newly developed method independent of locust genome sequence. We also demonstrate conservation of microRNA*, and evolutionary analysis of locust microRNAs indicates that the generation of miRNAs in locusts is concentrated along three phylogenetic tree branches: bilaterians, coelomates, and insects. Our study identified thousands of endogenous small interfering RNAs, some of which were of transposon origin, and also detected many Piwi-interacting RNA-like small RNAs. Comparison of small RNA expression patterns of the two phases showed that longer small RNAs were expressed more abundantly in the solitary phase and that each category of small RNAs exhibited different expression profiles between the two phases. Conclusions The abundance of small RNAs in the locust might indicate a long evolutionary history of post-transcriptional gene expression regulation, and differential expression of small RNAs between the two phases might further disclose the molecular mechanism of phase changes. PMID:19146710

  1. Late Pliocene and Quaternary Eurasian locust infestations in the Canary Archipelago

    USGS Publications Warehouse

    Meco, J.; Muhs, D.R.; Fontugne, M.; Ramos, A.J.; Lomoschitz, A.; Patterson, D.

    2011-01-01

    The Canary Archipelago has long been a sensitive location to record climate changes of the past. Interbedded with its basalt lavas are marine deposits from the principal Pleistocene interglacials, as well as aeolian sands with intercalated palaeosols. The palaeosols contain African dust and innumerable relict egg pods of a temperate-region locust (cf. Dociostaurus maroccanusThunberg 1815). New ecological and stratigraphical information reveals the geological history of locust plagues (or infestations) and their palaeoclimatic significance. Here, we show that the first arrival of the plagues to the Canary Islands from Africa took place near the end of the Pliocene, ca. 3Ma, and reappeared with immense strength during the middle Late Pleistocene preceding MIS (marine isotope stage) 11 (ca. 420ka), MIS 5.5 (ca. 125ka) and probably during other warm interglacials of the late Middle Pleistocene and the Late Pleistocene. During the Early Holocene, locust plagues may have coincided with a brief cool period in the current interglacial. Climatically, locust plagues on the Canaries are a link in the chain of full-glacial arid-cold climate (calcareous dunes), early interglacial arid-sub-humid climate (African dust inputs and locust plagues), peak interglacial warm-humid climate (marine deposits with Senegalese fauna), transitional arid-temperate climate (pedogenic calcretes), and again full-glacial arid-cold climate (calcareous dunes) oscillations. During the principal interglacials of the Pleistocene, the Canary Islands recorded the migrations of warm Senegalese marine faunas to the north, crossing latitudes in the Euro-African Atlantic. However, this northward marine faunal migration was preceded in the terrestrial realm by interglacial infestations of locusts. ??? Locust plagues, Canary Islands, Late Pliocene, Pleistocene, Holocene, palaeoclimatology. ?? 2010 The Authors, Lethaia ?? 2010 The Lethaia Foundation.

  2. KENO3D Visualization Tool for KENO V.a and KENO-VI Geometry Models

    SciTech Connect

    Horwedel, J.E.; Bowman, S.M.

    2000-06-01

    Criticality safety analyses often require detailed modeling of complex geometries. Effective visualization tools can enhance checking the accuracy of these models. This report describes the KENO3D visualization tool developed at the Oak Ridge National Laboratory (ORNL) to provide visualization of KENO V.a and KENO-VI criticality safety models. The development of KENO3D is part of the current efforts to enhance the SCALE (Standardized Computer Analyses for Licensing Evaluations) computer software system.

  3. Visual Analysis of Residuals from Data-Based Models in Complex Industrial Processes

    NASA Astrophysics Data System (ADS)

    Ordoñez, Daniel G.; Cuadrado, Abel A.; Díaz, Ignacio; García, Francisco J.; Díez, Alberto B.; Fuertes, Juan J.

    2012-10-01

    The use of data-based models for visualization purposes in an industrial background is discussed. Results using Self-Organizing Maps (SOM) show how through a good design of the model and a proper visualization of the residuals generated by the model itself, the behavior of essential parameters of the process can be easily tracked in a visual way. Real data from a cold rolling facility have been used to prove the advantages of these techniques.

  4. Composition and emission dynamics of migratory locust volatiles in response to changes in developmental stages and population density.

    PubMed

    Wei, Jianing; Shao, Wenbo; Wang, Xianhui; Ge, Jin; Chen, Xiangyong; Yu, Dan; Kang, Le

    2017-02-01

    Chemical communication plays an important role in density-dependent phase change in locusts. However, the volatile components and emission patterns of the migratory locust, Locusta migratoria, are largely unknown. In this study, we identified the chemical compositions and emission dynamics of locust volatiles from the body and feces and associated them with developmental stages, sexes and phase changes. The migratory locust shares a number of volatile components with the desert locust (Schistocerca gregaria), but the emission dynamics of the two locust species are significantly different. The body odors of the gregarious nymphs in the migratory locust consisted of phenylacetonitrile (PAN), benzaldehyde, guaiacol, phenol, aliphatic acids and 2,3-butanediol, and PAN was the dominant volatile. Volatiles from the fecal pellets of the nymphs primarily consist of guaiacol and phenol. Principal component analysis (PCA) showed significant differences in the volatile profiles between gregarious and solitary locusts. PAN and 4-vinylanisole concentrations were significantly higher in gregarious individuals than in solitary locusts. Gregarious mature males released significantly higher amounts of PAN and 4-vinylanisole during adulthood than mature females and immature adults of both sexes. Furthermore, PAN and 4-vinylanisole were completely lost in gregarious nymphs during the solitarization process, but were obtained by solitary nymphs during gregarization. The amounts of benzaldehyde, guaiacol and phenol only unidirectionally decreased from solitary to crowded treatment. Aliphatic aldehydes (C7 to C10), which were previously reported as locust volatiles, are now identified as environmental contaminants. Therefore, our results illustrate the precise odor profiles of migratory locusts during developmental stages, sexes and phase change. However, the function and role of PAN and other aromatic compounds during phase transition need further investigation. © 2016 Institute of

  5. An analysis of the contrasting fates of locust swarms on the plains of North America and East Asia

    NASA Astrophysics Data System (ADS)

    Yu, G.; Ke, X.; Shen, H. D.; Li, Y. F.

    2013-03-01

    Prior to ~1880 AD locust swarms periodically raged across both the North American Plains (NAP) and East Asian Plains (EAP). After this date, locust outbreaks almost never recurred on the NAP but have continued to cause problems on the EAP. The large quantities of pesticides used in the major agriculture regions of the NAP in the late 1870s have been suggested as a possible reason for the disappearance of locust outbreaks in this area. Extensive applications of modern, i.e. more effective, chemical pesticides were also used in the granary regions of the EAP in the 1950s in an effort to reduce pest outbreaks. However, locust swarms returned again in many areas of China in the 1960s. Therefore, locust extinction on the NAP still remains a puzzle. Frequent locust outbreaks on the EAP over the past 130 yr may offer clues to the key factors that control the disappearance of locust outbreaks on the NAP. This study analysed the climate extremes and monthly temperature-precipitation combinations for the NAP and EAP, and found that differences in the frequencies of these climate combinations resulted in the contrasting locust fates in the two regions: restricting locust outbreaks in the NAP but inducing such events in the EAP. Validation shows that severe EAP locust outbreak years were coincidental with extreme climate-combination years. Therefore, we suggest that changes in frequency, extremes and trends in climate can explain why the fate of locust outbreaks in the EAP was different from that in the NAP. The results also suggest that, with present global warming trends, precautionary measures should be taken to make sure other similar pest infestations do not occur in either region.

  6. Dynamics of neurons controlling movements of a locust hind leg. III. Extensor tibiae motor neurons.

    PubMed

    Newland, P L; Kondoh, Y

    1997-06-01

    Imposed movements of the apodeme of the femoral chordotonal organ (FeCO) of the locust hind leg elicit resistance reflexes in extensor and flexor tibiae motor neurons. The synaptic responses of the fast and slow extensor tibiae motor neurons (FETi and SETi, respectively) and the spike responses of SETi were analyzed with the use of the Wiener kernel white noise method to determine their response properties. The first-order Wiener kernels computed from soma recordings were essentially monophasic, or low passed, indicating that the motor neurons were primarily sensitive to the position of the tibia about the femorotibial joint. The responses of both extensor motor neurons had large nonlinear components. The second-order kernels of the synaptic responses of FETi and SETi had large on-diagonal peaks with two small off-diagonal valleys. That of SETi had an additional elongated valley on the diagonal, which was accompanied by two off-diagonal depolarizing peaks at a cutoff frequency of 58 Hz. These second-order components represent a half-wave rectification of the position-sensitive depolarizing response in FETi and SETi, and a delayed inhibitory input to SETi, indicating that both motor neurons were directionally sensitive. Model predictions of the responses of the motor neurons showed that the first-order (linear) characterization poorly predicted the actual responses of FETi and SETi to FeCO stimulation, whereas the addition of the second-order (nonlinear) term markedly improved the performance of the model. Simultaneous recordings from the soma and a neuropilar process of FETi showed that its synaptic responses to FeCO stimulation were phase delayed by about -30 degrees at 20 Hz, and reduced in amplitude by 30-40% when recorded in the soma. Similar configurations of the first and second-order kernels indicated that the primary process of FETi acted as a low-pass filter. Cross-correlation between a white noise stimulus and a unitized spike discharge of SETi again

  7. Visualization of cardiac dynamics using physics-based deformable model

    NASA Astrophysics Data System (ADS)

    Lin, Wei-te; Robb, Richard A.

    2000-04-01

    Modeling of moving anatomic structures is complicated by the complexity of motion intrinsic and extrinsic to the structures. However when motion is cyclical, such as in heart, effective dynamic modeling can be approached using modern fast imaging techniques, which provide 3D structural data. Data may be acquired as a sequence of 3D volume images throughout the cardiac cycle. To model the intricate non- linear motion of the heart, we created a physics-based surface model which can realistically deform between successive time points in the cardiac cycle, yielding a dynamic 4D model of cardiac motion. Sequences of fifteen 3D volume images of intact canine beating hearts were acquired during compete cardiac cycles using the Dynamic Spatial Reconstructor and the Electron Beam CT. The chambers of the heart were segmented at successive time points, typically at 1/15-second intervals. The left ventricle of the first item point was reconstructed as an initial triangular mesh. A mass-spring physics-based deformable model, which can expand and shrink with local contraction and stretching forces distributed in an anatomically accurate simulation of cardiac motion, was applied to the initial mesh and allowed the initial mesh to deform to fit the left ventricle in successive time increments of the sequence. The resultant 4D model can be interactively transformed and displayed with associated regional electrical activity mapped onto the anatomic surfaces, producing a 5D mode, which faithfully exhibits regional cardiac contraction and relaxation patterns over the entire heart. For acquisition systems that may provide only limited 4D data, the model can provide interpolated anatomic shape between time points. This physics-based deformable model accurately represents dynamic cardiac structural changes throughout the cardiac cycle. Such models provides the framework for minimizing the number of time points required to usefully depict regional motion of myocardium and allowing

  8. Water adsorption isotherms of carboxymethyl cellulose, guar, locust bean, tragacanth and xanthan gums.

    PubMed

    Torres, María D; Moreira, Ramón; Chenlo, Francisco; Vázquez, María J

    2012-06-20

    Water adsorption isotherms of carboxymethyl cellulose (CMC), guar gum (GG), locust bean gum (LBG), tragacanth gum (TG) and xanthan gum (XG) were determined at different temperatures (20, 35, 50, and 65°C) using a gravimetric method. Several saturated salt solutions were selected to obtain different water activities in the range from 0.09 to 0.91. Water adsorption isotherms of tested hydrocolloids were classified like type II isotherms. In all cases, equilibrium moisture content decreased with increasing temperature at each water activity value. Three-parameter Guggenheim-Anderson-de Boer (GAB) model was employed to fit the experimental data in the water activity range and statistical analysis indicated that this model gave satisfactory results. CMC and GG were the most and the least hygroscopic gums, respectively. Sorption heats decreased with increasing moisture content. Monolayer moisture content evaluated with GAB model was consistent with equilibrium conditions of maximum stability calculated from thermodynamic analysis of net integral entropy. Values of equilibrium relative humidity at 20°C are proposed to storage adequately the tested gums.

  9. Knee surgery assistance: patient model construction, motion simulation, and biomechanical visualization.

    PubMed

    Chen, J X; Wechsler, H; Pullen, J M; Zhu, Y; MacMahon, E B

    2001-09-01

    We present a new system that integrates computer graphics, physics-based modeling, and interactive visualization to assist knee study and surgical operation. First, we discuss generating patient-specific three-dimensional (3-D) knee models from patient's magnetic resonant images (MRIs). The 3-D model is obtained by deforming a reference model to match the MRI dataset. Second, we present simulating knee motion that visualizes patient-specific motion data on the patient-specific knee model. Third, we introduce visualizing biomechanical information on a patient-specific model. The focus is on visualizing contact area, contact forces, and menisci deformation. Traditional methods have difficulty in visualizing knee contact area without using invasive methods. The approach presented here provides an alternative of visualizing the knee contact area and forces without any risk to the patient. Finally, a virtual surgery can be performed. The constructed 3-D knee model is the basis of motion simulation, biomechanical visualization, and virtual surgery. Knee motion simulation determines the knee rotation angles as well as knee contact points. These parameters are used to solve the biomechanical model. Our results integrate 3-D construction, motion simulation, and biomechanical visualization into one system. Overall, the methodologies here are useful elements for future virtual medical systems where all the components of visualization, automated model generation, and surgery simulation come together.

  10. A computational model for the neurobiological substrates of visual attention.

    PubMed

    de Carvalho, L A; Roitman, V L

    1995-01-01

    Two interesting and complex tasks are performed by the brain in the process of perception: the integration of characteristics leading to an easier recognition of a pattern as a whole (binding), and the extraction of properties that need to be detailed and analyzed (attention). Attention seems to have a reciprocal relation with binding, inasmuch as the latter promotes the composition of features and their dependencies, while the former selects a single characteristic independently of the remainder. Classically, binding is viewed as a process whereby sets of properties are gathered in representative entities, which are themselves linked to form higher level structures, in a sequence that culminates in the total integration of the pattern features in a localized construct. The convergent axonal projections from one cortical area to another would be the neurobiological mechanism through which binding is achieved. Attention comprises the selective excitation of neuronal networks or pathways that stand for specific pattern properties. The thalamus and its reticular nucleus would then be the anatomical substrate of the attentional focus. In this paper we propose a computational model aiming at bringing together the main (and apparently diverging) ideas about binding and attention. Based on experimental data, a neuronal network representing cortical pyramidal cells is assembled, and its structure and function are related to the binding and attention phenomena. Actually, the convergent projections that enlarge the visual receptive field are associated to binding, while a specific change in the pyramidal cell behavior is responsible for attention. Computer simulations are shown which reproduce the electrophysiology of pyramidal cells and mimic some interesting experimental results in visual attention. We conclude by conjecturing that attention is a driven interruption in the regular process of binding.

  11. A case study of the Australian Plague Locust Commission and environmental due diligence: why mere legislative compliance is no longer sufficient for environmentally responsible locust control in Australia.

    PubMed

    Story, Paul G; Walker, Paul W; McRae, Heath; Hamilton, John G

    2005-07-01

    The Australian Plague Locust Commission (APLC) manages locust populations across 2 million square kilometers of eastern Australia using the aerial application of chemical and biological control agents to protect agricultural production. This occurs via a preventative control strategy involving ultralow-volume spray equipment to distribute small droplets of control agent over a target area. The economic costs of, and potential gains stemming from, locust control are well documented. The application of insecticides, however, to fragile arid and semiarid ecosystems is a task that brings with it both real and perceived environmental issues. The APLC is proactive in addressing these issues through a combination of targeted environmental operational research, an ISO-14001-aligned Environmental Management System (EMS), and links with environmental regulatory and research institutions. Increasing due diligence components within Australian environmental legislation dictate that mere legislative compliance is no longer sufficient for industries to ensure that they meet their environmental obligations. The development of external research links and the formulation of an EMS for locust control have enabled the APLC to identify environmental issues and trends, quantify objective environmental targets and strategies, and facilitate continuous improvement in its environmental performance, while maintaining stakeholder support. This article outlines the environmental issues faced by the APLC, the research programs in place to address these issues, and the procedures in place to incorporate research findings into the organization's operational structure.

  12. Insects in relation to black locust culture on surface-mine spoil in Kentucky, with emphasis on the locust twig borer, Ecdytolopha insiticiana Zell. (Lepidoptera: Tortricidae)

    SciTech Connect

    Thoeny, W.T.

    1986-01-01

    This research evaluated the impacts of herbivorous insects, emphasizing the locust twig borer, Ecdytolopha insiticiana Zeller, on black locust, Robinia pseudoacacia L., coppice production on a coal surface-mine spoil site in southeastern Kentucky. The natural history of E. insiticiana was also studied. The locust twig borer was a persistent and damaging pest in first-year coppice, which provided suitable larval habitat throughout the growing season. The locust leafminer, Odontota dorsalis (Thunberg), fed minimally on first-year coppice foliage except during 1983, when trees were severely drought-stressed. Soil-applied granular carbofuran significantly reduced infestations. Lindane stem treatments were not effective, but entire-tree applications did reduce herbivory. Stump sprouts with reduced levels of herbivory grew significantly taller than controls at both spacings in 1983, but only at the more dense spacing in 1984. Blacklight trap collections revealed two generations/year, and adults were present from early May until late August. Four species of hymenopterous and two species of dipterous parasitoids were recovered from E. insiticiana larvae.

  13. Model-Based Reasoning: Using Visual Tools to Reveal Student Learning

    ERIC Educational Resources Information Center

    Luckie, Douglas; Harrison, Scott H.; Ebert-May, Diane

    2011-01-01

    Using visual models is common in science and should become more common in classrooms. Our research group has developed and completed studies on the use of a visual modeling tool, the Concept Connector. This modeling tool consists of an online concept mapping Java applet that has automatic scoring functions we refer to as Robograder. The Concept…

  14. A Mouse Model of Visual Perceptual Learning Reveals Alterations in Neuronal Coding and Dendritic Spine Density in the Visual Cortex

    PubMed Central

    Wang, Yan; Wu, Wei; Zhang, Xian; Hu, Xu; Li, Yue; Lou, Shihao; Ma, Xiao; An, Xu; Liu, Hui; Peng, Jing; Ma, Danyi; Zhou, Yifeng; Yang, Yupeng

    2016-01-01

    Visual perceptual learning (VPL) can improve spatial vision in normally sighted and visually impaired individuals. Although previous studies of humans and large animals have explored the neural basis of VPL, elucidation of the underlying cellular and molecular mechanisms remains a challenge. Owing to the advantages of molecular genetic and optogenetic manipulations, the mouse is a promising model for providing a mechanistic understanding of VPL. Here, we thoroughly evaluated the effects and properties of VPL on spatial vision in C57BL/6J mice using a two-alternative, forced-choice visual water task. Briefly, the mice underwent prolonged training at near the individual threshold of contrast or spatial frequency (SF) for pattern discrimination or visual detection for 35 consecutive days. Following training, the contrast-threshold trained mice showed an 87% improvement in contrast sensitivity (CS) and a 55% gain in visual acuity (VA). Similarly, the SF-threshold trained mice exhibited comparable and long-lasting improvements in VA and significant gains in CS over a wide range of SFs. Furthermore, learning largely transferred across eyes and stimulus orientations. Interestingly, learning could transfer from a pattern discrimination task to a visual detection task, but not vice versa. We validated that this VPL fully restored VA in adult amblyopic mice and old mice. Taken together, these data indicate that mice, as a species, exhibit reliable VPL. Intrinsic signal optical imaging revealed that mice with perceptual training had higher cut-off SFs in primary visual cortex (V1) than those without perceptual training. Moreover, perceptual training induced an increase in the dendritic spine density in layer 2/3 pyramidal neurons of V1. These results indicated functional and structural alterations in V1 during VPL. Overall, our VPL mouse model will provide a platform for investigating the neurobiological basis of VPL. PMID:27014004

  15. The Development of Hand-Centered Visual Representations in the Primate Brain: A Computer Modeling Study Using Natural Visual Scenes.

    PubMed

    Galeazzi, Juan M; Minini, Loredana; Stringer, Simon M

    2015-01-01

    Neurons that respond to visual targets in a hand-centered frame of reference have been found within various areas of the primate brain. We investigate how hand-centered visual representations may develop in a neural network model of the primate visual system called VisNet, when the model is trained on images of the hand seen against natural visual scenes. The simulations show how such neurons may develop through a biologically plausible process of unsupervised competitive learning and self-organization. In an advance on our previous work, the visual scenes consisted of multiple targets presented simultaneously with respect to the hand. Three experiments are presented. First, VisNet was trained with computerized images consisting of a realistic image of a hand and a variety of natural objects, presented in different textured backgrounds during training. The network was then tested with just one textured object near the hand in order to verify if the output cells were capable of building hand-centered representations with a single localized receptive field. We explain the underlying principles of the statistical decoupling that allows the output cells of the network to develop single localized receptive fields even when the network is trained with multiple objects. In a second simulation we examined how some of the cells with hand-centered receptive fields decreased their shape selectivity and started responding to a localized region of hand-centered space as the number of objects presented in overlapping locations during training increases. Lastly, we explored the same learning principles training the network with natural visual scenes collected by volunteers. These results provide an important step in showing how single, localized, hand-centered receptive fields could emerge under more ecologically realistic visual training conditions.

  16. The Development of Hand-Centered Visual Representations in the Primate Brain: A Computer Modeling Study Using Natural Visual Scenes

    PubMed Central

    Galeazzi, Juan M.; Minini, Loredana; Stringer, Simon M.

    2015-01-01

    Neurons that respond to visual targets in a hand-centered frame of reference have been found within various areas of the primate brain. We investigate how hand-centered visual representations may develop in a neural network model of the primate visual system called VisNet, when the model is trained on images of the hand seen against natural visual scenes. The simulations show how such neurons may develop through a biologically plausible process of unsupervised competitive learning and self-organization. In an advance on our previous work, the visual scenes consisted of multiple targets presented simultaneously with respect to the hand. Three experiments are presented. First, VisNet was trained with computerized images consisting of a realistic image of a hand and a variety of natural objects, presented in different textured backgrounds during training. The network was then tested with just one textured object near the hand in order to verify if the output cells were capable of building hand-centered representations with a single localized receptive field. We explain the underlying principles of the statistical decoupling that allows the output cells of the network to develop single localized receptive fields even when the network is trained with multiple objects. In a second simulation we examined how some of the cells with hand-centered receptive fields decreased their shape selectivity and started responding to a localized region of hand-centered space as the number of objects presented in overlapping locations during training increases. Lastly, we explored the same learning principles training the network with natural visual scenes collected by volunteers. These results provide an important step in showing how single, localized, hand-centered receptive fields could emerge under more ecologically realistic visual training conditions. PMID:26696876

  17. An information integration model of the primary visual cortex under grating stimulations.

    PubMed

    Wang, Zhizhong; Shi, Li; Wan, Hong; Niu, Xiaoke

    2011-09-16

    During the course of information processing, a visual system extracts characteristic information of the visual image and integrates the spatial and temporal visual information simultaneously. In this study, we investigate the integration effect of neurons in the primary visual cortex (V1 area) under the grating stimulation. First, an information integration model was established based on the receptive field properties of the extracted features of the visual images features, the interaction between neurons and the nonlinear integration of those neurons. Then the neuropsychological experiments were designed both to provide parameters for the model and to verify its effect. The experimental results with factual visual image were largely consistent with the model's forecast output. This demonstrates that our model can truly reflect the integration effect of the primary visual system when being subjected to grating stimulations with different orientations. Our results indicate the primary visual system integrates the visual information in the following manner: it first extracts visual information through different types of receptive field, and then its neurons interact with each other in a non-linear manner, finally the neurons fire spikes recorded as responses to the visual stimulus.

  18. Timing-dependent LTP and LTD in mouse primary visual cortex following different visual deprivation models

    PubMed Central

    Chen, Xia; Fu, Junhong; Cheng, Wenbo; Song, Desheng; Qu, Xiaolei; Yang, Zhuo; Zhao, Kanxing

    2017-01-01

    Visual deprivation during the critical period induces long-lasting changes in cortical circuitry by adaptively modifying neuro-transmission and synaptic connectivity at synapses. Spike timing-dependent plasticity (STDP) is considered a strong candidate for experience-dependent changes. However, the visual deprivation forms that affect timing-dependent long-term potentiation(LTP) and long-term depression(LTD) remain unclear. Here, we demonstrated the temporal window changes of tLTP and tLTD, elicited by coincidental pre- and post-synaptic firing, following different modes of 6-day visual deprivation. Markedly broader temporal windows were found in robust tLTP and tLTD in the V1M of the deprived visual cortex in mice after 6-day MD and DE. The underlying mechanism for the changes seen with visual deprivation in juvenile mice using 6 days of dark exposure or monocular lid suture involves an increased fraction of NR2b-containing NMDAR and the consequent prolongation of NMDAR-mediated response duration. Moreover, a decrease in NR2A protein expression at the synapse is attributable to the reduction of the NR2A/2B ratio in the deprived cortex. PMID:28520739

  19. Visual Environment for Rich Data Interpretation (VERDI) program for environmental modeling systems

    EPA Pesticide Factsheets

    VERDI is a flexible, modular, Java-based program used for visualizing multivariate gridded meteorology, emissions and air quality modeling data created by environmental modeling systems such as the CMAQ model and WRF.

  20. A new model to study visual attention in zebrafish.

    PubMed

    Braida, Daniela; Ponzoni, Luisa; Martucci, Roberta; Sala, Mariaelvina

    2014-12-03

    The major part of cognitive tasks applied to zebrafish has not fully assessed their attentional ability, a process by which the nervous system learns, organizes sensory input and generates coordinated behaviour. In an attempt to maximize the value of zebrafish as an animal model of cognition, we tested the possibility to apply a modified version of novel object recognition test named virtual object recognition test (VORT) using 2D geometrical shapes (square, triangle, circle, cross, etc.) on two iPod 3.5-inch widescreen displays, located on two opposite walls of the water tank. Each fish was subjected to a familiarization trial (T1), and after different time delays (from 5 min to 96 h) to a novel shape recognition trial (T2). A progressive decrease, across time, of memory performance, in terms of mean discrimination index and mean exploration time, was shown. The predictive validity was tested using cholinergic drugs. Nicotine (0.02 mg/kg intraperitoneally, IP) significantly increased, while scopolamine (0.025 mg/kg IP) and mecamylamine decreased, mean discrimination index. Zebrafish discriminated different movements (vertical, horizontal, oblique) and the discrimination index increased significantly when moving poorly discriminated shapes were presented, thus increasing visual attention. Taken together these findings demonstrate that VORT is a viable, fast and useful model to evaluate sustained attention in zebrafish and for predicting the efficacy of pharmacotherapies for cognitive disorders.

  1. Adapting internal statistical models for interpreting visual cues to depth

    PubMed Central

    Seydell, Anna; Knill, David C.; Trommershäuser, Julia

    2010-01-01

    The informativeness of sensory cues depends critically on statistical regularities in the environment. However, statistical regularities vary between different object categories and environments. We asked whether and how the brain changes the prior assumptions about scene statistics used to interpret visual depth cues when stimulus statistics change. Subjects judged the slants of stereoscopically presented figures by adjusting a virtual probe perpendicular to the surface. In addition to stereoscopic disparities, the aspect ratio of the stimulus in the image provided a “figural compression” cue to slant, whose reliability depends on the distribution of aspect ratios in the world. As we manipulated this distribution from regular to random and back again, subjects’ reliance on the compression cue relative to stereoscopic cues changed accordingly. When we randomly interleaved stimuli from shape categories (ellipses and diamonds) with different statistics, subjects gave less weight to the compression cue for figures from the category with more random aspect ratios. Our results demonstrate that relative cue weights vary rapidly as a function of recently experienced stimulus statistics, and that the brain can use different statistical models for different object categories. We show that subjects’ behavior is consistent with that of a broad class of Bayesian learning models. PMID:20465321

  2. Web-Based Model Visualization Tools to Aid in Model Optimization and Uncertainty Analysis

    NASA Astrophysics Data System (ADS)

    Alder, J.; van Griensven, A.; Meixner, T.

    2003-12-01

    Individuals applying hydrologic models have a need for a quick easy to use visualization tools to permit them to assess and understand model performance. We present here the Interactive Hydrologic Modeling (IHM) visualization toolbox. The IHM utilizes high-speed Internet access, the portability of the web and the increasing power of modern computers to provide an online toolbox for quick and easy model result visualization. This visualization interface allows for the interpretation and analysis of Monte-Carlo and batch model simulation results. Often times a given project will generate several thousands or even hundreds of thousands simulations. This large number of simulations creates a challenge for post-simulation analysis. IHM's goal is to try to solve this problem by loading all of the data into a database with a web interface that can dynamically generate graphs for the user according to their needs. IHM currently supports: a global samples statistics table (e.g. sum of squares error, sum of absolute differences etc.), top ten simulations table and graphs, graphs of an individual simulation using time step data, objective based dotty plots, threshold based parameter cumulative density function graphs (as used in the regional sensitivity analysis of Spear and Hornberger) and 2D error surface graphs of the parameter space. IHM is ideal for the simplest bucket model to the largest set of Monte-Carlo model simulations with a multi-dimensional parameter and model output space. By using a web interface, IHM offers the user complete flexibility in the sense that they can be anywhere in the world using any operating system. IHM can be a time saving and money saving alternative to spending time producing graphs or conducting analysis that may not be informative or being forced to purchase or use expensive and proprietary software. IHM is a simple, free, method of interpreting and analyzing batch model results, and is suitable for novice to expert hydrologic modelers.

  3. Non-swarming grasshoppers exhibit density-dependent phenotypic plasticity reminiscent of swarming locusts.

    PubMed

    Gotham, Steven; Song, Hojun

    2013-11-01

    Locusts are well known for exhibiting an extreme form of density-dependent phenotypic plasticity known as locust phase polyphenism. At low density, locust nymphs are cryptically colored and shy, but at high density they transform into conspicuously colored and gregarious individuals. Most of what we know about locust phase polyphenism come from the study of the desert locust Schistocerca gregaria (Forskål), which is a devastating pest species affecting many countries in North Africa and the Middle East. The desert locust belongs to the grasshopper genus Schistocerca Stål, which includes mostly non-swarming, sedentary species. Recent phylogenetic studies suggest that the desert locust is the earliest branching lineage within Schistocerca, which raises a possibility that the presence of density-dependent phenotypic plasticity may be a plesiomorphic trait for the whole genus. In order to test this idea, we have quantified the effect of rearing density in terms of the resulting behavior, color, and morphology in two non-swarming Schistocerca species native to Florida. When reared in both isolated and crowded conditions, the two non-swarming species, Schistocerca americana (Drury) and Schistocerca serialis cubense (Saussure) clearly exhibited plastic reaction norms in all traits measured, which were reminiscent of the desert locust. Specifically, we found that both species were more active and more attracted to each other when reared in a crowded condition than in isolation. They were mainly bright green in color when isolated, but developed strong black patterns and conspicuous background colors when crowded. We found a strong effect of rearing density in terms of size. There were also more mechanoreceptor hairs on the outer face of the hind femora in the crowded nymphs in both species. Although both species responded similarly, there were some clear species-specific differences in terms of color and behavior. Furthermore, we compare and contrast our findings with

  4. A Model-Driven Visualization Tool for Use with Model-Based Systems Engineering Projects

    NASA Technical Reports Server (NTRS)

    Trase, Kathryn; Fink, Eric

    2014-01-01

    Model-Based Systems Engineering (MBSE) promotes increased consistency between a system's design and its design documentation through the use of an object-oriented system model. The creation of this system model facilitates data presentation by providing a mechanism from which information can be extracted by automated manipulation of model content. Existing MBSE tools enable model creation, but are often too complex for the unfamiliar model viewer to easily use. These tools do not yet provide many opportunities for easing into the development and use of a system model when system design documentation already exists. This study creates a Systems Modeling Language (SysML) Document Traceability Framework (SDTF) for integrating design documentation with a system model, and develops an Interactive Visualization Engine for SysML Tools (InVEST), that exports consistent, clear, and concise views of SysML model data. These exported views are each meaningful to a variety of project stakeholders with differing subjects of concern and depth of technical involvement. InVEST allows a model user to generate multiple views and reports from a MBSE model, including wiki pages and interactive visualizations of data. System data can also be filtered to present only the information relevant to the particular stakeholder, resulting in a view that is both consistent with the larger system model and other model views. Viewing the relationships between system artifacts and documentation, and filtering through data to see specialized views improves the value of the system as a whole, as data becomes information

  5. Digital particle image velocimetry measurements of the downwash distribution of a desert locust Schistocerca gregaria

    PubMed Central

    Bomphrey, Richard J; Taylor, Graham K; Lawson, Nicholas J; Thomas, Adrian L.R

    2005-01-01

    Actuator disc models of insect flight are concerned solely with the rate of momentum transfer to the air that passes through the disc. These simple models assume that an even pressure is applied across the disc, resulting in a uniform downwash distribution. However, a correction factor, k, is often included to correct for the difference in efficiency between the assumed even downwash distribution, and the real downwash distribution. In the absence of any empirical measurements of the downwash distribution behind a real insect, the values of k used in the literature have been necessarily speculative. Direct measurement of this efficiency factor is now possible, and could be used to compare the relative efficiencies of insect flight across the Class. Here, we use Digital Particle Image Velocimetry to measure the instantaneous downwash distribution, mid-downstroke, of a tethered desert locust (Schistocerca gregaria). By integrating the downwash distribution, we are thereby able to provide the first direct empirical measurement of k for an insect. The measured value of k=1.12 corresponds reasonably well with that predicted by previous theoretical studies. PMID:16849240

  6. Intestinal peptides as circulating hormones: release of tachykinin-related peptide from the locust and cockroach midgut.

    PubMed

    Winther, A M; Nässel, D R

    2001-04-01

    Tachykinin-related peptides (TRPs) in the locust Locusta migratoria and the cockroach Leucophaea maderae have stimulatory effects on some muscles that are not innervated by TRP-containing neurons. Thus, these tissues may be affected by circulating TRPs. Here, we have investigated whether the midgut is the source of circulating TRPs. TRP-immunoreactive material in the locust midgut is found only in the endocrine cells of the gut epithelium. In both species of insect, the endocrine cells contain several isoforms of TRPs, as determined by immunocytochemistry and a combination of chromatography (HPLC) and enzyme immunoassay (ELISA). The release of TRPs was investigated by ELISA using isolated midguts of the locust and cockroach. Elevated levels of K(+) in the bathing saline induced the release of TRP from the midgut of both species. To examine the release of TRPs into the circulation in vivo, we measured haemolymph levels of TRPs in fed and starved locusts. The concentration of TRP-immunoreactive material in fed locusts was estimated to be 0.15 nmol l(-1), and this increased approximately fourfold in insects starved for 24 h. In accordance with this observation, the content of TRP-immunoreactive material in the midgut was lower in starved locusts than in fed locusts. Although part of the increased blood concentration of TRPs may be due to reduced blood volume, our data suggest that TRPs are released as hormones from the midgut of the locust and cockroach and that this release may be linked to nutritional status.

  7. Calmodulin as a downstream gene of octopamine-OAR α1 signalling mediates olfactory attraction in gregarious locusts.

    PubMed

    Xu, L; Li, L; Yang, P; Ma, Z

    2017-02-01

    The migratory locust (Locusta migratoria) shows aggregative traits in nymph marching bands and swarm formations through mutual olfactory attraction of conspecifics. However, olfactory preference in different nymph stages in gregarious locusts is not sufficiently explored. In this study, we found that the nymph olfactory preference for gregarious volatiles exhibited obvious variations at different developmental stages. The gregarious locusts show attractive response to conspecific volatiles from the third stadium. Transcriptome comparison between third- and fourth-stadium nymphs showed that the G protein-coupled receptor (GPCR) pathways are significantly enriched. Amongst the genes present in GPCR pathways, the expression level of calmodulin in locust brains significantly increased from the third- to the fourth-stadium nymphs. Amongst the four octopamine receptors (OARs) belonging to the GPCR family, only OAR α1 showed similar expression patterns to those of calmodulin, and knockdown of OAR α1 reduced the expression level of calmodulin. RNA interference of calmodulin decreased locomotion and induced the loss of olfactory attraction in gregarious locusts. Moreover, the activation of OAR α1 in calmodulin-knockdown locusts did not induce olfactory attraction of the nymphs to gregarious volatiles. Thus, calmodulin as a downstream gene of octopamine-OAR α1 (OA-OAR α1) signalling mediates olfactory attraction in gregarious locusts. Overall, this study provides novel insights into the mechanism of OA-OAR α1 signalling involved in olfactory attraction of gregarious locusts.

  8. Past locust outbreaks in the Czech Lands: do they indicate particular climatic patterns?

    NASA Astrophysics Data System (ADS)

    Brázdil, Rudolf; Řezníčková, Ladislava; Valášek, Hubert; Kiss, Andrea; Kotyza, Oldřich

    2014-04-01

    Outbreaks of locusts, probably Locusta migratoria, were once relatively frequent phenomena in Central Europe. Documentary evidence reaching back as far as the fourteenth century provides information about these events in the Czech Lands. The stages of morphological development of locusts are influenced by a number of natural conditions, including climate. The question remains as to the extent to which the occurrence of locusts may be attributed to particular weather/climatic patterns in a given year (period) in Central Europe. Available documentary sources recording locust outbreaks in the Czech Lands are presented. The chronology thus created shows their occurrence peaked in the seventeenth century, followed in severity by the eighteenth and sixteenth centuries. Some of the largest outbreaks recorded (1338, 1474-1475, 1542-1546, 1693, 1712 and 1748-1749) are analysed in detail. Seasonal temperature and precipitation patterns in Central Europe during the years in which the locust outbreaks took place show no particular climatic features compared with the years without them, with the exception of cooler and wetter springs and wetter summers.

  9. Sky Compass Orientation in Desert Locusts-Evidence from Field and Laboratory Studies.

    PubMed

    Homberg, Uwe

    2015-01-01

    Locusts are long-range migratory insects. At high population density, immature animals form marching hopper bands while adults take off and form huge swarms of millions of animals. At low population densities animals are solitarious, but likewise migrate, mostly during the night. Numerous studies aimed at predicting locust infestations showed that migrations both as hopper bands and as adults are largely downwind following seasonal shifts of the tropical convergence zone taking the animals to areas of rainfall. Only a few studies provided evidence for active orientation mechanisms, including the involvement of a sun compass. This scarcity of evidence stands in contrast to recent neurobiological data showing sophisticated neuronal adaptations suited for sky compass navigation. These include a special dorsal eye region with photoreceptors suited to analyze the polarization pattern of the sky and a system of topographically arranged sky compass neurons in the central complex of the brain. Laboratory experiments, moreover, demonstrated polarotaxis in tethered flying animals. The discrepancy of these findings call for more rigorous field studies on active orientation mechanisms in locusts. It remains to be shown how locusts use their internal sky compass during mass migrations and what role it plays to guide solitarious locusts in their natural habitat.

  10. Periodic temperature-associated drought/flood drives locust plagues in China.

    PubMed

    Zhang, Zhibin; Cazelles, Bernard; Tian, Huidong; Stige, Leif Christian; Bräuning, Achim; Stenseth, Nils Chr

    2009-03-07

    Global warming is currently of great concern. Yet the ecological effects of low-frequency climate variations remain largely unknown. Recent analyses of interdecadal variability in population abundance of the Oriental migratory locust (Locusta migratoria manilensis) in China have revealed negative associations with temperature and positive associations with Yangtze drought and flood frequencies during the past millennium (AD 957-1956). In order to shed new light on the causal relationships between locust abundance, floods, droughts and temperature in ancient China, we used wavelet analysis to explore how the coherencies between the different variables at different frequencies have been changed during the past millennium. We find consistent in-phase coherencies between locusts and drought/flood frequencies, and out-of-phase coherencies between locusts and temperature and between drought/flood and temperature at period components of 160-170 years. Similar results are obtained when historical data of drought/flood frequencies of the Yangtze Delta region are used, despite flood data showing a weak and somewhat inconsistent association with other factors. We suggest that previously unreported periodic cooling of 160-170-year intervals dominate climatic variability in China through the past millennium, the cooling events promoting locust plagues by enhancing temperature-associated drought/flood events. Our results signify a rare example of possible benign effects of global warming on the regional risk of natural disasters such as flood/drought events and outbreaks of pest insects.

  11. Periodic temperature-associated drought/flood drives locust plagues in China

    PubMed Central

    Zhang, Zhibin; Cazelles, Bernard; Tian, Huidong; Christian Stige, Leif; Bräuning, Achim; Stenseth, Nils Chr.

    2008-01-01

    Global warming is currently of great concern. Yet the ecological effects of low-frequency climate variations remain largely unknown. Recent analyses of interdecadal variability in population abundance of the Oriental migratory locust (Locusta migratoria manilensis) in China have revealed negative associations with temperature and positive associations with Yangtze drought and flood frequencies during the past millennium (AD 957–1956). In order to shed new light on the causal relationships between locust abundance, floods, droughts and temperature in ancient China, we used wavelet analysis to explore how the coherencies between the different variables at different frequencies have been changed during the past millennium. We find consistent in-phase coherencies between locusts and drought/flood frequencies, and out-of-phase coherencies between locusts and temperature and between drought/flood and temperature at period components of 160–170 years. Similar results are obtained when historical data of drought/flood frequencies of the Yangtze Delta region are used, despite flood data showing a weak and somewhat inconsistent association with other factors. We suggest that previously unreported periodic cooling of 160–170-year intervals dominate climatic variability in China through the past millennium, the cooling events promoting locust plagues by enhancing temperature-associated drought/flood events. Our results signify a rare example of possible benign effects of global warming on the regional risk of natural disasters such as flood/drought events and outbreaks of pest insects. PMID:19033144

  12. Effects of diet on the chemical composition of migratory locusts (Locusta migratoria).

    PubMed

    Oonincx, D G A B; van der Poel, A F B

    2011-01-01

    An experiment was conducted to determine the effects of diet on the chemical composition of migratory locusts (Locusta migratoria L.). Fresh and dry weight and the contents of dry matter, ash, lipid, protein, Ca, K, Mg, Na, P, Cu, Fe, Zn, retinol, lutein, zeaxanthine, cryptoxanthin, carotenes, lycopene and gross energy were determined in penultimate instar and adult locusts, that had been fed three different diets. The locusts received a diet of grass or grass+wheat bran or grass+wheat bran+carrots. Adding wheat bran decreased the protein content and increased fat content (633 vs. 583 and 182 vs. 231 g/kg DM, respectively). Addition of carrots to the diet increased fat content further from 231 to 271 g/kg DM. Mineral concentrations of Ca, K, Mg, and Na, were significantly affected by diet. P, K, Cu, and Fe concentrations were significantly different in penultimate migratory locusts compared with adults. Wheat bran decreased the α-carotene content, which did not change by incorporating carrots in the diet. However, carrots did result in higher β-carotene concentrations. Retinol concentrations were increased by incorporating both wheat bran and carrots in the diet compared with the diet containing only grass. This study shows that the chemical composition of migratory locusts can be manipulated through the diet. As such, it enables nutritionists to adapt the chemical composition of live feeder insects to better meet the nutritional demands of predators.

  13. Identification of a chitinase-producing bacterium C4 and histopathologic study on locusts.

    PubMed

    Yong, Tao; Zhangfu, Long; Jing, Xie; Hong, Jin; Hongyan, Ran; Ke, Tao; Shaorong, Ge; Kun, Liu; Shigui, Liu

    2005-02-01

    In order to develop the potential of chitinase-producing micro-organisms as biocontrol agents for insect pests, five chitinase-producing bacterial strains (C1, C2, C3, C4 and C5) previously isolated from soil samples were chosen to infect grassland locusts. The data showed that the mortality rate of locusts fed with strain C4 was significantly higher than that of other groups, and its pathogenicity was confirmed by Koch's law. Midgut tissues of locusts infected with C4 were examined with a light microscope. Apparent histopathologic changes in midgut cells partly explained the pathogenesis of locusts. Therefore, strain C4 was considered to be a potential biocontrol agent. To determine the taxonomic position of C4, physiological and biochemical characteristics were determined and molecular identification was performed. The 16S rDNA gene of C4 was amplified, cloned and sequenced. Comparative sequence analysis demonstrated that C4 corresponded to the genera Sanguibacter, Oerskovia and Cellulomonas. On the basis of phenotypic characterization and sequence similarity analysis, strain C4 was more closely related to the genus Sanguibacter. This chitinase-producing strain C4, which closely corresponds to the species of the genus Sanguibacter and is pathogenic to locusts, is here reported for the first time.

  14. Developmental- and food-dependent foraging transcript levels in the desert locust.

    PubMed

    Tobback, Julie; Verlinden, Heleen; Vuerinckx, Kristel; Vleugels, Rut; Vanden Broeck, Jozef; Huybrechts, Roger

    2013-12-01

    Drastic changes in the environment during a lifetime require developmental and physiological flexibility to ensure animal survival. Desert locusts, Schistocerca gregaria, live in an extremely changeable environment, which alternates between periods of rainfall and abundant food and periods of drought and starvation. In order to survive, locusts display an extreme form of phenotypic plasticity that allows them to rapidly cope with these changing conditions by converting from a cryptic solitarious phase to a swarming, voracious gregarious phase. To accomplish this, locusts possess different conserved mediators of phenotypic plasticity. Recently, attention has been drawn to the possible roles of protein kinases in this process. In addition to cyclic AMP-dependent protein kinase (PKA), also cyclic GMP-dependent protein kinase (PKG), which was shown to be involved in changes of food-related behavior in a variety of insects, has been associated with locust phenotypic plasticity. In this article, we study the transcript levels of the S. gregaria orthologue of the foraging gene that encodes a PKG in different food-related, developmental and crowding conditions. Transcript levels of the S. gregaria foraging orthologue are highest in different parts of the gut and differ between isolated and crowd-reared locusts. They change when the availability of food is altered, display a distinct pattern with higher levels after a moult and decrease with age during postembryonic development.

  15. Functional characterization of the short neuropeptide F receptor in the desert locust, Schistocerca gregaria.

    PubMed

    Dillen, Senne; Zels, Sven; Verlinden, Heleen; Spit, Jornt; Van Wielendaele, Pieter; Vanden Broeck, Jozef

    2013-01-01

    Whereas short neuropeptide F (sNPF) has already been reported to stimulate feeding behaviour in a variety of insect species, the opposite effect was observed in the desert locust. In the present study, we cloned a G protein-coupled receptor (GPCR) cDNA from the desert locust, Schistocerca gregaria. Cell-based functional analysis of this receptor indicated that it is activated by both known isoforms of Schgr-sNPF in a concentration dependent manner, with EC(50) values in the nanomolar range. This Schgr-sNPF receptor constitutes the first functionally characterized peptide GPCR in locusts. The in vivo effects of the sNPF signalling pathway on the regulation of feeding in locusts were further studied by knocking down the newly identified Schgr-sNPF receptor by means of RNA interference, as well as by means of peptide injection studies. While injection of sNPF caused an inhibitory effect on food uptake in the desert locust, knocking down the corresponding peptide receptor resulted in an increase of total food uptake when compared to control animals. This is the first comprehensive study in which a clearly negative correlation is described between the sNPF signalling pathway and feeding, prompting a reconsideration of the diverse roles of sNPFs in the physiology of insects.

  16. Quantitative analysis of human-model agreement in visual saliency modeling: a comparative study.

    PubMed

    Borji, Ali; Sihite, Dicky N; Itti, Laurent

    2013-01-01

    Visual attention is a process that enables biological and machine vision systems to select the most relevant regions from a scene. Relevance is determined by two components: 1) top-down factors driven by task and 2) bottom-up factors that highlight image regions that are different from their surroundings. The latter are often referred to as "visual saliency." Modeling bottom-up visual saliency has been the subject of numerous research efforts during the past 20 years, with many successful applications in computer vision and robotics. Available models have been tested with different datasets (e.g., synthetic psychological search arrays, natural images or videos) using different evaluation scores (e.g., search slopes, comparison to human eye tracking) and parameter settings. This has made direct comparison of models difficult. Here, we perform an exhaustive comparison of 35 state-of-the-art saliency models over 54 challenging synthetic patterns, three natural image datasets, and two video datasets, using three evaluation scores. We find that although model rankings vary, some models consistently perform better. Analysis of datasets reveals that existing datasets are highly center-biased, which influences some of the evaluation scores. Computational complexity analysis shows that some models are very fast, yet yield competitive eye movement prediction accuracy. Different models often have common easy/difficult stimuli. Furthermore, several concerns in visual saliency modeling, eye movement datasets, and evaluation scores are discussed and insights for future work are provided. Our study allows one to assess the state-of-the-art, helps to organizing this rapidly growing field, and sets a unified comparison framework for gauging future efforts, similar to the PASCAL VOC challenge in the object recognition and detection domains.

  17. Verification of Compartmental Epidemiological Models using Metamorphic Testing, Model Checking and Visual Analytics

    SciTech Connect

    Ramanathan, Arvind; Steed, Chad A; Pullum, Laura L

    2012-01-01

    Compartmental models in epidemiology are widely used as a means to model disease spread mechanisms and understand how one can best control the disease in case an outbreak of a widespread epidemic occurs. However, a significant challenge within the community is in the development of approaches that can be used to rigorously verify and validate these models. In this paper, we present an approach to rigorously examine and verify the behavioral properties of compartmen- tal epidemiological models under several common modeling scenarios including birth/death rates and multi-host/pathogen species. Using metamorphic testing, a novel visualization tool and model checking, we build a workflow that provides insights into the functionality of compartmental epidemiological models. Our initial results indicate that metamorphic testing can be used to verify the implementation of these models and provide insights into special conditions where these mathematical models may fail. The visualization front-end allows the end-user to scan through a variety of parameters commonly used in these models to elucidate the conditions under which an epidemic can occur. Further, specifying these models using a process algebra allows one to automatically construct behavioral properties that can be rigorously verified using model checking. Taken together, our approach allows for detecting implementation errors as well as handling conditions under which compartmental epidemiological models may fail to provide insights into disease spread dynamics.

  18. A coherent computational approach to model bottom-up visual attention.

    PubMed

    Le Meur, Olivier; Le Callet, Patrick; Barba, Dominique; Thoreau, Dominique

    2006-05-01

    Visual attention is a mechanism which filters out redundant visual information and detects the most relevant parts of our visual field. Automatic determination of the most visually relevant areas would be useful in many applications such as image and video coding, watermarking, video browsing, and quality assessment. Many research groups are currently investigating computational modeling of the visual attention system. The first published computational models have been based on some basic and well-understood Human Visual System (HVS) properties. These models feature a single perceptual layer that simulates only one aspect of the visual system. More recent models integrate complex features of the HVS and simulate hierarchical perceptual representation of the visual input. The bottom-up mechanism is the most occurring feature found in modern models. This mechanism refers to involuntary attention (i.e., salient spatial visual features that effortlessly or involuntary attract our attention). This paper presents a coherent computational approach to the modeling of the bottom-up visual attention. This model is mainly based on the current understanding of the HVS behavior. Contrast sensitivity functions, perceptual decomposition, visual masking, and center-surround interactions are some of the features implemented in this model. The performances of this algorithm are assessed by using natural images and experimental measurements from an eye-tracking system. Two adequate well-known metrics (correlation coefficient and Kullbacl-Leibler divergence) are used to validate this model. A further metric is also defined. The results from this model are finally compared to those from a reference bottom-up model.

  19. Incorporating visual attention models into video quality metrics

    NASA Astrophysics Data System (ADS)

    Akamine, Welington Y. L.; Farias, Mylène C. Q.

    2014-01-01

    A recent development in the area of image and video quality consists of trying to incorporate aspects of visual attention in the design of visual quality metrics, mostly using the assumption that visual distortions appearing in less salient areas might be less visible and, therefore, less annoying. This research area is still in its infancy and results obtained by different groups are not yet conclusive. Among the works that have reported some improvement, most use subjective saliency maps, i.e. saliency maps generated from eye-tracking data obtained experimentally. Besides, most works address the image quality problem, not focusing on how to incorporate visual attention into video signals. In this work, we investigate the benefits of incorporating saliency maps obtained with visual attention. In particular, we compare the performance of four full-reference video quality metrics with their modified versions, which had saliency maps incorporated to the algorithm. For comparison proposes, we have used a database of subjective salience maps.

  20. Using visual analytics model for pattern matching in surveillance data

    NASA Astrophysics Data System (ADS)

    Habibi, Mohammad S.

    2013-03-01

    In a persistent surveillance system huge amount of data is collected continuously and significant details are labeled for future references. In this paper a method to summarize video data as a result of identifying events based on these tagged information is explained, leading to concise description of behavior within a section of extended recordings. An efficient retrieval of various events thus becomes the foundation for determining a pattern in surveillance system observations, both in its extended and fragmented versions. The patterns consisting of spatiotemporal semantic contents are extracted and classified by application of video data mining on generated ontology, and can be matched based on analysts interest and rules set forth for decision making. The proposed extraction and classification method used in this paper uses query by example for retrieving similar events containing relevant features, and is carried out by data aggregation. Since structured data forms majority of surveillance information this Visual Analytics model employs KD-Tree approach to group patterns in variant space and time, thus making it convenient to identify and match any abnormal burst of pattern detected in a surveillance video. Several experimental video were presented to viewers to analyze independently and were compared with the results obtained in this paper to demonstrate the efficiency and effectiveness of the proposed technique.

  1. Inhalable Antitubercular Therapy Mediated by Locust Bean Gum Microparticles.

    PubMed

    Alves, Ana D; Cavaco, Joana S; Guerreiro, Filipa; Lourenço, João P; Rosa da Costa, Ana M; Grenha, Ana

    2016-05-28

    Tuberculosis remains a major global health problem and alternative therapeutic approaches are needed. Considering the high prevalence of lung tuberculosis (80% of cases), the pulmonary delivery of antitubercular drugs in a carrier system capable of reaching the alveoli, being recognised and phagocytosed by alveolar macrophages (mycobacterium hosts), would be a significant improvement to current oral drug regimens. Locust bean gum (LBG) is a polysaccharide composed of galactose and mannose residues, which may favour specific recognition by macrophages and potentiate phagocytosis. LBG microparticles produced by spray-drying are reported herein for the first time, incorporating either isoniazid or rifabutin, first-line antitubercular drugs (association efficiencies >82%). Microparticles have adequate theoretical properties for deep lung delivery (aerodynamic diameters between 1.15 and 1.67 μm). The cytotoxic evaluation in lung epithelial cells (A549 cells) and macrophages (THP-1 cells) revealed a toxic effect from rifabutin-loaded microparticles at the highest concentrations, but we may consider that these were very high comparing with in vivo conditions. LBG microparticles further evidenced strong ability to be captured by macrophages (percentage of phagocytosis >94%). Overall, the obtained data indicated the potential of the proposed system for tuberculosis therapy.

  2. The effect of octopamine on the locust stomatogastric nervous system.

    PubMed

    Rand, David; Knebel, Daniel; Ayali, Amir

    2012-01-01

    Octopamine (OA) is a prominent neuromodulator of invertebrate nervous systems, influencing multiple physiological processes. Among its many roles in insects are the initiation and maintenance of various rhythmic behaviors. Here, the neuromodulatory effects of OA on the components of the locust stomatogastric nervous system were studied, and one putative source of OA modulation of the system was identified. Bath application of OA was found to abolish the endogenous rhythmic output of the fully isolated frontal ganglion (FG), while stimulating motor activity of the fully isolated hypocerebral ganglion (HG). OA also induced rhythmic movements in a foregut preparation with intact HG innervation. Complex dose-dependent effects of OA on interconnected FG-HG preparations were seen: 10(-5) M OA accelerated the rhythmic activity of both the HG and FG in a synchronized manner, while 10(-4) M OA decreased both rhythms. Intracellular stimulation of an identified octopaminergic dorsal unpaired median neuron in the subesophageal ganglion was found to exert a similar effect on the FG motor output as that of OA application. Our findings suggest a mechanism of regulation of insect gut patterns and feeding-related behavior during stress and times of high energy demand.

  3. Purification and characterization of arginine kinase from locust.

    PubMed

    Li, Miao; Wang, Xiao-Yun; Bai, Ji-Gang

    2006-01-01

    L-Arginine kinase (AK; ATP:L-arginine N-phosphotransferase; EC 2.7.3.3) catalyzes the reversible transphosphorylation between N-phospho-L-arginine (PArg) and ATP thus buffering cellular ATP levels. AK was purified from the leg muscle of the locust Migratoria manilensis by Sephacryl S-200 HR gel filtration chromatography and DEAE Sepharose CL-6B fast flow anion exchange chromatography to an apparent homogeneity with a recovery of 80%. The enzyme behaved as monomeric protein with molecular mass of about 40 kD, and had a pH and temperature optimum of 8.6 and 30 degrees C, respectively, and a pI of about 6.3. The Michaelis constants for synthesis of PArg are 0.936 and 1.290 mM for L-arginine and ATP, respectively and k(cat)/K(m)(Arg) 174. The activity of AK required divalent cations such as Mg(2+) and Mn(2+). In the presence of Cu(2+) and Zn(2+), AK activity was greatly inhibited. The intrinsic protein fluorescence emission maximum at 330 nm using the excitation wavelength at 295 nm suggested that tryptophan residues are below the surface of the protein and not exposed to solvent.

  4. Geographic variation in RNAi sensitivity in the migratory locust.

    PubMed

    Sugahara, Ryohei; Tanaka, Seiji; Jouraku, Akiya; Shiotsuki, Takahiro

    2017-03-20

    The RNA interference (RNAi) technology has been widely used in basic and applied research. It is known that RNAi works in some species but not in others, although the cause for this difference remains unclear. Here, we present inter- and intra-populational variations in RNAi sensitivity in the migratory locust Locusta migratoria, and provide information on the genetic background of such variations. In the four strains analyzed, originating from different Japanese localities, most individuals from two of the strains were sensitive to injections of double-stranded RNA (dsRNA) against the corazonin (CRZ) and ecdysone receptor genes, whereas those from the other two strains were resistant. Selection for individuals sensitive to dsCRZ produced a dramatic increase in the RNAi sensitivity in the following generations, although phenotypes also varied in the selected line, suggesting that several genes might control RNAi sensitivity. Reciprocal crosses between a sensitive and a resistant strain suggested that the resistant phenotype is dominant. The expression levels of nine RNAi-associated genes known for other organisms were not correlated with the variation in RNAi sensitivity observed in L. migratoria. Variations in RNAi sensitivity as the ones observed in this study should be considered when using RNAi in basic and applied research as well as in pest management.

  5. Modeling Drivers' Visual Attention Allocation while Interacting with In-Vehicle Technologies

    ERIC Educational Resources Information Center

    Horrey, William J.; Wickens, Christopher D.; Consalus, Kyle P.

    2006-01-01

    In 2 experiments, the authors examined how characteristics of a simulated traffic environment and in-vehicle tasks impact driver performance and visual scanning and the extent to which a computational model of visual attention (SEEV model) could predict scanning behavior. In Experiment 1, the authors manipulated task-relevant information bandwidth…

  6. Consumer Control Points: Creating a Visual Food Safety Education Model for Consumers.

    ERIC Educational Resources Information Center

    Schiffman, Carole B.

    Consumer education has always been a primary consideration in the prevention of food-borne illness. Using nutrition education and the new food guide as a model, this paper develops suggestions for a framework of microbiological food safety principles and a compatible visual model for communicating key concepts. Historically, visual food guides in…

  7. Augmenting Visual Analysis in Single-Case Research with Hierarchical Linear Modeling

    ERIC Educational Resources Information Center

    Davis, Dawn H.; Gagne, Phill; Fredrick, Laura D.; Alberto, Paul A.; Waugh, Rebecca E.; Haardorfer, Regine

    2013-01-01

    The purpose of this article is to demonstrate how hierarchical linear modeling (HLM) can be used to enhance visual analysis of single-case research (SCR) designs. First, the authors demonstrated the use of growth modeling via HLM to augment visual analysis of a sophisticated single-case study. Data were used from a delayed multiple baseline…

  8. Augmenting Visual Analysis in Single-Case Research with Hierarchical Linear Modeling

    ERIC Educational Resources Information Center

    Davis, Dawn H.; Gagne, Phill; Fredrick, Laura D.; Alberto, Paul A.; Waugh, Rebecca E.; Haardorfer, Regine

    2013-01-01

    The purpose of this article is to demonstrate how hierarchical linear modeling (HLM) can be used to enhance visual analysis of single-case research (SCR) designs. First, the authors demonstrated the use of growth modeling via HLM to augment visual analysis of a sophisticated single-case study. Data were used from a delayed multiple baseline…

  9. A novel computational model to probe visual search deficits during motor performance.

    PubMed

    Singh, Tarkeshwar; Fridriksson, Julius; Perry, Christopher M; Tryon, Sarah C; Ross, Angela; Fritz, Stacy; Herter, Troy M

    2017-01-01

    Successful execution of many motor skills relies on well-organized visual search (voluntary eye movements that actively scan the environment for task-relevant information). Although impairments of visual search that result from brain injuries are linked to diminished motor performance, the neural processes that guide visual search within this context remain largely unknown. The first objective of this study was to examine how visual search in healthy adults and stroke survivors is used to guide hand movements during the Trail Making Test (TMT), a neuropsychological task that is a strong predictor of visuomotor and cognitive deficits. Our second objective was to develop a novel computational model to investigate combinatorial interactions between three underlying processes of visual search (spatial planning, working memory, and peripheral visual processing). We predicted that stroke survivors would exhibit deficits in integrating the three underlying processes, resulting in deteriorated overall task performance. We found that normal TMT performance is associated with patterns of visual search that primarily rely on spatial planning and/or working memory (but not peripheral visual processing). Our computational model suggested that abnormal TMT performance following stroke is associated with impairments of visual search that are characterized by deficits integrating spatial planning and working memory. This innovative methodology provides a novel framework for studying how the neural processes underlying visual search interact combinatorially to guide motor performance. Visual search has traditionally been studied in cognitive and perceptual paradigms, but little is known about how it contributes to visuomotor performance. We have developed a novel computational model to examine how three underlying processes of visual search (spatial planning, working memory, and peripheral visual processing) contribute to visual search during a visuomotor task. We show that

  10. Control of Drug Diffusion Behavior of Xanthan and Locust Bean Gum Gel by Agar Gel.

    PubMed

    Hishikawa, Yoshihiro; Kakino, Yukari; Tsukamoto, Hoshi; Tahara, Kohei; Onodera, Risako; Takeuchi, Hirofumi

    2016-01-01

    Oral gel formulations are known as easy to administer drug products for patients who have problems taking drugs including those with conditions such as dysphagia. In addition, there are numerous commercially available oral gel products, most of which are immediate-release formulation that release their pharmaceutical ingredient content by diffusion. This study is focused on developing oral gel formulations that reduce the dosing frequency and dosage compared to the conventional types. This is with the aim of facilitating the use of gel formulations for producing pharmaceutical agents with different dose regimens, thereby enhancing patient convenience. Here, we used naturally derived high-molecular-weight agar (Ag), xanthan gum (Xa), and locust bean gum (Lo) as gel bases to prepare a variety of gel membranes, and evaluated the diffusion coefficient of the model substances. The result revealed that the Ag content in the Xa-Lo combination gel concentration-dependently increased the diffusion coefficient. Moreover, these findings were applied in an attempt to mask the taste of intensely bitter levofloxacin. The results indicated that the Xa-Lo combination gel exhibited a significantly superior masking effect to that of the Ag gel. This study demonstrates the feasibility of using oral gel formulations to modulate the controlled-release functionality of pharmaceutical agents.

  11. A temperature rise reduces trial-to-trial variability of locust auditory neuron responses

    PubMed Central

    Schleimer, Jan-Hendrik; Schreiber, Susanne; Ronacher, Bernhard

    2015-01-01

    The neurophysiology of ectothermic animals, such as insects, is affected by environmental temperature, as their body temperature fluctuates with ambient conditions. Changes in temperature alter properties of neurons and, consequently, have an impact on the processing of information. Nevertheless, nervous system function is often maintained over a broad temperature range, exhibiting a surprising robustness to variations in temperature. A special problem arises for acoustically communicating insects, as in these animals mate recognition and mate localization typically rely on the decoding of fast amplitude modulations in calling and courtship songs. In the auditory periphery, however, temporal resolution is constrained by intrinsic neuronal noise. Such noise predominantly arises from the stochasticity of ion channel gating and potentially impairs the processing of sensory signals. On the basis of intracellular recordings of locust auditory neurons, we show that intrinsic neuronal variability on the level of spikes is reduced with increasing temperature. We use a detailed mathematical model including stochastic ion channel gating to shed light on the underlying biophysical mechanisms in auditory receptor neurons: because of a redistribution of channel-induced current noise toward higher frequencies and specifics of the temperature dependence of the membrane impedance, membrane potential noise is indeed reduced at higher temperatures. This finding holds under generic conditions and physiologically plausible assumptions on the temperature dependence of the channels' kinetics and peak conductances. We demonstrate that the identified mechanism also can explain the experimentally observed reduction of spike timing variability at higher temperatures. PMID:26041833

  12. Fast Odor Learning Improves Reliability of Odor Responses in the Locust Antennal Lobe

    PubMed Central

    Bazhenov, Maxim; Stopfer, Mark; Sejnowski, Terrence J.; Laurent, Gilles

    2010-01-01

    Summary Recordings in the locust antennal lobe (AL) reveal activity-dependent, stimulus-specific changes in projection neuron (PN) and local neuron response patterns over repeated odor trials. During the first few trials, PN response intensity decreases, while spike time precision increases, and coherent oscillations, absent at first, quickly emerge. We examined this “fast odor learning” with a realistic computational model of the AL. Activity-dependent facilitation of AL inhibitory synapses was sufficient to simulate physiological recordings of fast learning. In addition, in experiments with noisy inputs, a network including synaptic facilitation of both inhibition and excitation responded with reliable spatiotemporal patterns from trial to trial despite the noise. A network lacking fast plasticity, however, responded with patterns that varied across trials, reflecting the input variability. Thus, our study suggests that fast olfactory learning results from stimulus-specific, activity-dependent synaptic facilitation and may improve the signal-to-noise ratio for repeatedly encountered odor stimuli. PMID:15882647

  13. Identification of pheromone-like compounds in male reproductive organs of the oriental locust Locusta migratoria.

    PubMed

    Ban, Liping; Napolitano, Elio; Serra, Andrea; Zhou, Xianhong; Iovinella, Immacolata; Pelosi, Paolo

    2013-08-09

    Despite the great economical interest of locusts in agriculture, knowledge on their chemoreception systems is still poor. Phenylacetonitrile is recognised as a pheromone of the desert locust Schistocerca gregaria, triggering gregarization, promoting aggregation and inhibiting courtship. However, in the other major locust species, Locusta migratoria, pheromones have not been reported. We have identified the two isomers of naphthylpropionitrile from the male reproductive organs of L. migratoria. Chemical synthesis has confirmed the identity of the two compounds. Both isomers show significant affinity to CSP91, a protein reported in the testis, but not to three other proteins of the same family (CSP180, CSP540 and CSP884) expressed in female accessory glands. The striking similarity of these compounds with phenylacetonitrile and the unusual nature of such chemicals strongly suggest that naphthylpropionitrile could be pheromones for L. migratoria, while their site of expression and binding activity indicate a role in communication between sexes.

  14. AN ODORANT-BINDING PROTEIN INVOLVED IN PERCEPTION OF HOST PLANT ODORANTS IN LOCUST Locusta migratoria.

    PubMed

    Li, Jia; Zhang, Long; Wang, Xiaoqi

    2016-04-01

    Locusts, Locusta migratoria (Orthoptera: Acrididae), are extremely destructive agricultural pests, but very little is known of their molecular aspects of perception to host plant odorants including related odorant-binding proteins (OBPs), though several OBPs have been identified in locust. To elucidate the function of LmigOBP1, the first OBP identified from locust, RNA interference was employed in this study to silence LmigOBP1, which was achieved by injection of dsRNA targeting LmigOBP1 into the hemolymph of male nymphs. Compared with LmigOBP1 normal nymphs, LmigOBP1 knockdown nymphs significantly decreased food (maize leaf, Zea mays) consumption and electro-antennography responses to five maize leaf volatiles, ((Z)-3-hexenol, linalool, nonanal, decanal, and (Z)-3-hexenyl acetate). These suggest that LmigOBP1 is involved in perception of host plant odorants.

  15. Monitoring grasshopper and locust habitats in Sahelian Africa using GIS and remote sensing technology

    USGS Publications Warehouse

    Tappan, G. Gray; Moore, Donald G.; Knauseberger, Walter I.

    1991-01-01

    Development programmes in Sahelian Africa are beginning to use geographic information system (GIS) technology. One of the GIS and remote sensing programmes introduced to the region in the late 1980s was the use of seasonal vegetation maps made from satellite data to support grasshopper and locust control. Following serious outbreaks of these pests in 1987, the programme addressed a critical need, by national and international crop protection organizations, to monitor site-specific dynamic vegetation conditions associated with grasshopper and locust breeding. The primary products used in assessing vegetation conditions were vegetation index (greenness) image maps derived from National Oceanic and Atmospheric Administration satellite imagery. Vegetation index data were integrated in a GIS with digital cartographic data of individual Sahelian countries. These near-real-time image maps were used regularly in 10 countries for locating potential grasshopper and locust habitats. The programme to monitor vegetation conditions is currently being institutionalized in the Sahel.

  16. Microwave assisted synthesis of acrylamide grafted locust bean gum and its application in drug delivery.

    PubMed

    Kaity, Santanu; Isaac, Jinu; Kumar, P Mahesh; Bose, Anirbandeep; Wong, Tin Wui; Ghosh, Animesh

    2013-10-15

    Acrylamide grafted copolymer of locust bean gum was prepared by microwave irradiation using ceric ammonium nitrate as redox initiator. The grafting process was optimized in terms of irradiation time, amount of initiator and acrylamide by using constant amount of native locust bean gum. The grafted gum was characterized by Fourier transform infrared spectroscopy (FT-IR), (13)C nuclear magnetic resonance (NMR), scanning electron microscopy (SEM), X-ray diffraction study (XRD), differential scanning calorimetry (DSC), elemental analysis, contact angle, viscosity, molecular weight, swelling and biodegradability studies. The grafted gum was found to be biodegradable and non-toxic. It was further used to prepare controlled-release matrix tablet of buflomedil hydrochloride. The in vitro release profile of the tablet showed the rate controlling property of acrylamide grafted locust bean gum was similar to that of hydroxypropyl methylcellulose (HPMC-K15M).

  17. Relationship between oriental migratory locust plague and soil moisture extracted from MODIS data

    NASA Astrophysics Data System (ADS)

    Liu, Zhenbo; Shi, Xuezheng; Warner, Eric; Ge, Yunjian; Yu, Dongsheng; Ni, Shaoxiang; Wang, Hongjie

    2008-02-01

    Locust plagues have been the source of some of the most severe natural disasters in human history. Soil moisture content is among the most important of the numerous factors influencing plague onset and severity. This paper describes a study initiated in three pilot locust plague monitoring regions, i.e., Huangzao, Yangguanzhuang, and Tengnan in Huanghua county, Hebei province, China, to examine the impact of soil moisture status on oriental migratory locust [ Locusta migratoria manilensis (L.) Meyen] plague breakout as related to the life cycle, oviposition in autumn, survival in winter, and incubation in summer. Thirty-nine temperature vegetation dryness index (TVDI) data sets, which represent soil moisture content, were extracted from MODIS remote sensing images for two representative time periods: a severe locust plague breakout year (2001-2002) and a slight plague year (2003-2004). TVDI values demonstrated distinctive soil moisture status differences between the 2 years concerned. Soil moisture conditions in the severe plague year were shown to be lower than those in slight plague year. In all three pilot regions, average TVDI value in the severe plague year was 0.07 higher than that in slight plague year, and monthly TVDI values in locust oviposition period (September and October) and incubation period (March, April and May) were higher than their corresponding monthly figures in slight plague year. No remarkable TVDI differences were found in other months during the locust life cycle between the 2 years. TVDI values for September and October (2001), March, April and May (2002) were 0.11, 0.08, 0.16, 0.11 and 0.16 higher than their corresponding monthly figures in 2003-2004 period, respectively.

  18. Anoxic stress and rapid cold hardening enhance cold tolerance of the migratory locust.

    PubMed

    Cui, Feng; Wang, Hongsheng; Zhang, Hanying; Kang, Le

    2014-10-01

    Anoxia and rapid cold hardening (RCH) can increase the cold tolerance of many animals. However, mechanisms underlying these two kinds of stresses remain unclear. In this study, we aimed to explore the relationship of acclimation to cold stress with acclimation to anoxic stress in the migratory locust, Locusta migratoria. RCH at 0°C for 3h promoted the survival of cold stress-exposed locusts. Anoxic hypercapnia (CO2 anoxic treatment) for 40 min exerted an effect similar to that of RCH. Anoxic hypercapnia within 1h can all promote the cold hardiness of locusts. We investigated the transcript levels of six heat shock protein (Hsp) genes, namely, Hsp20.5, Hsp20.6, Hsp20.7, Hsp40, Hsp70, and Hsp90. Four genes, namely, Hsp90, Hsp40, Hsp20.5, and Hsp20.7, showed differential responses to RCH and anoxic hypercapnia treatments. Under cold stress, locusts exposed to the two regimens showed different responses for Hsp90, Hsp20.5, and Hsp20.7. However, the varied responses disappeared after recovery from cold stress. Compared with the control group, the transcript levels of six Hsp genes were generally downregulated in locusts subjected to anoxic hypercapnia or/and RCH. These results indicate that anoxic stress and RCH have different mechanisms of regulating the transcription of Hsp family members even if the two treatments exerted similar effects on cold tolerance of the migratory locust. However, Hsps may not play a major role in the promotion of cold hardiness by the two treatments.

  19. Locust displacing winds in eastern Australia reassessed with observations from an insect monitoring radar

    NASA Astrophysics Data System (ADS)

    Hao, Zhenhua; Drake, V. Alistair; Sidhu, Leesa; Taylor, John R.

    2017-07-01

    Based on previous investigations, adult Australian plague locusts are believed to migrate on warm nights (with evening temperatures >25 °C), provided daytime flight is suppressed by surface winds greater than the locusts' flight speed, which has been shown to be 3.1 m s-1. Moreover, adult locusts are believed to undertake briefer `dispersal' flights on nights with evening temperature >20 °C. To reassess the utility of these conditions for forecasting locust flight, contingency tests were conducted comparing the nights selected on these bases (predicted nights) for the months of November, January, and March and the nights when locust migration were detected with an insect monitoring radar (actual nights) over a 7-year period. In addition, the wind direction distributions and mean wind directions on all predicted nights and actual nights were compared. Observations at around 395 m above ground level (AGL), the height at which radar observations have shown that the greatest number of locusts fly, were used to determine the actual nights. Tests and comparisons were also made for a second height, 990 m AGL, as this was used in the previous investigation. Our analysis shows that the proposed criteria are successful from predicting migratory flight only in March, when the surface temperature is effective as a predicting factor. Surface wind speed has no predicting power. It is suggested that a strong daytime surface wind speed requirement should not be considered and other meteorological variables need to be added to the requirement of a warm surface temperature around dusk for the predictions to have much utility.

  20. Explorations of Anatomy of Connectionist Models for Visual Lexical Access

    DTIC Science & Technology

    1990-06-14

    which was as close as possible in frequency, and then substituting directly to generate the consonant string stimuli. The vowels in the words were...by assigning to each letter of the alphabet a character from the Hebrew alphabet or another character visually similar to letters (Gibson, Shurciff...Yonas, 1970). The Hebrew alphabet was chosen as a source of visual forms which convey a similar sort of information as letters do in English, but

  1. Canopy transpiration of two black locust (Robinia pseudoacacia) plantations with different ages in semi-arid Loess Plateau, China

    NASA Astrophysics Data System (ADS)

    Jiao, L.

    2015-12-01

    Black locust (Robinia pseudoacacia) was widely planted to control soil erosion and restore degraded ecosystem in Loess Plateau. The water use of the plantations was concerned due to its potential effects on hydrological cycle and regional water resource. Although some studies estimated canopy transpiration (Ec) of the mature black locust plantation, variation in Ec in plantations with different ages was not clear. In this study, we selected two plantations with different ages (12 years and 27 years, denoted as young stand and mature stand, respectively) in similar topographical conditions in Yangjuangou catchment in the central of Loess Plateau. Sap flux density (Fd) and tree biometrics were measured in each stand during the growing season in 2014. Soil water content (SWC) in each plot and meteorological variables in the catchment were simultaneously monitored. Tree transpiration (Et) was derived from Fd and tree sapwood area (As). Canopy transpiration (Ec) was estimated by a product of mean stand sap flux density (Js) and stand total sapwood area (AST). The mean Fd of mature trees was 2-fold larger than that of young trees.However, tree-to-tree variation in Fd among sampled trees within mature stand was evident compared to that within young stand. Mean Et in mature stand was higher than that in young stand. Ec in mature stand was significant higher than that in young stand,with cumulative value of 54 mm and 27 mm respectively. This is attributed to higher Js in mature stand although AST in young is slightly higher than that in mature stand. The patterns of daily Ec during the growing season were similar in both stands during the study period. A exponential saturation model can explain the responses of Ec to vapor deficit pressure (VPD) and solar radiation (Rs) in both stands.The relationship between Ec and SWC was not detected. Our finding suggested that stand age should be taken into consideration when estimated vegetation water use in this region. Further

  2. Visual crowding illustrates the inadequacy of local vs. global and feedforward vs. feedback distinctions in modeling visual perception

    PubMed Central

    Clarke, Aaron M.; Herzog, Michael H.; Francis, Gregory

    2014-01-01

    Experimentalists tend to classify models of visual perception as being either local or global, and involving either feedforward or feedback processing. We argue that these distinctions are not as helpful as they might appear, and we illustrate these issues by analyzing models of visual crowding as an example. Recent studies have argued that crowding cannot be explained by purely local processing, but that instead, global factors such as perceptual grouping are crucial. Theories of perceptual grouping, in turn, often invoke feedback connections as a way to account for their global properties. We examined three types of crowding models that are representative of global processing models, and two of which employ feedback processing: a model based on Fourier filtering, a feedback neural network, and a specific feedback neural architecture that explicitly models perceptual grouping. Simulations demonstrate that crucial empirical findings are not accounted for by any of the models. We conclude that empirical investigations that reject a local or feedforward architecture offer almost no constraints for model construction, as there are an uncountable number of global and feedback systems. We propose that the identification of a system as being local or global and feedforward or feedback is less important than the identification of a system's computational details. Only the latter information can provide constraints on model development and promote quantitative explanations of complex phenomena. PMID:25374554

  3. Optimizing energy yields in black locust through genetic selection: final report

    SciTech Connect

    Bongarten, B.C.; Merkle, S.A.

    1996-10-01

    The purpose of this work was to assess the magnitude of improvement in biomass yield of black locust possible through breeding, and to determine methods for efficiently capturing the yield improvement achievable from selective breeding. To meet this overall objective, six tasks were undertaken to determine: (1) the amount and geographic pattern of natural genetic variation, (2) the mating system of the species, (3) quantitative genetic parameters of relevant traits, (4) the relationship between nitrogen fixation and growth in black locust, (5) the viability of mass vegetative propagation, and (6) the feasibility of improvement through genetic transformation.

  4. A rodent model for the study of invariant visual object recognition

    PubMed Central

    Zoccolan, Davide; Oertelt, Nadja; DiCarlo, James J.; Cox, David D.

    2009-01-01

    The human visual system is able to recognize objects despite tremendous variation in their appearance on the retina resulting from variation in view, size, lighting, etc. This ability—known as “invariant” object recognition—is central to visual perception, yet its computational underpinnings are poorly understood. Traditionally, nonhuman primates have been the animal model-of-choice for investigating the neuronal substrates of invariant recognition, because their visual systems closely mirror our own. Meanwhile, simpler and more accessible animal models such as rodents have been largely overlooked as possible models of higher-level visual functions, because their brains are often assumed to lack advanced visual processing machinery. As a result, little is known about rodents' ability to process complex visual stimuli in the face of real-world image variation. In the present work, we show that rats possess more advanced visual abilities than previously appreciated. Specifically, we trained pigmented rats to perform a visual task that required them to recognize objects despite substantial variation in their appearance, due to changes in size, view, and lighting. Critically, rats were able to spontaneously generalize to previously unseen transformations of learned objects. These results provide the first systematic evidence for invariant object recognition in rats and argue for an increased focus on rodents as models for studying high-level visual processing. PMID:19429704

  5. A rodent model for the study of invariant visual object recognition.

    PubMed

    Zoccolan, Davide; Oertelt, Nadja; DiCarlo, James J; Cox, David D

    2009-05-26

    The human visual system is able to recognize objects despite tremendous variation in their appearance on the retina resulting from variation in view, size, lighting, etc. This ability--known as "invariant" object recognition--is central to visual perception, yet its computational underpinnings are poorly understood. Traditionally, nonhuman primates have been the animal model-of-choice for investigating the neuronal substrates of invariant recognition, because their visual systems closely mirror our own. Meanwhile, simpler and more accessible animal models such as rodents have been largely overlooked as possible models of higher-level visual functions, because their brains are often assumed to lack advanced visual processing machinery. As a result, little is known about rodents' ability to process complex visual stimuli in the face of real-world image variation. In the present work, we show that rats possess more advanced visual abilities than previously appreciated. Specifically, we trained pigmented rats to perform a visual task that required them to recognize objects despite substantial variation in their appearance, due to changes in size, view, and lighting. Critically, rats were able to spontaneously generalize to previously unseen transformations of learned objects. These results provide the first systematic evidence for invariant object recognition in rats and argue for an increased focus on rodents as models for studying high-level visual processing.

  6. Visualization of Complex Biological Systems: An Immune Response Model Using OpenGL

    NASA Astrophysics Data System (ADS)

    Burns, John; Ruskin, Heather J.; Perrin, Dimitri; Walsh, John

    In this paper we present an update on our novel visualization technologies based on cellular immune interaction from both large-scale spatial and temporal perspectives. We do so with a primary motive: to present a visually and behaviourally realistic environment to the community of experimental biologists and physicians such that their knowledge and expertise may be more readily integrated into the model creation and calibration process. Visualization aids understanding as we rely on visual perception to make crucial decisions. For example, with our initial model, we can visualize the dynamics of an idealized lymphatic compartment, with antigen presenting cells (APC) and cytotoxic T lymphocyte (CTL) cells. The visualization technology presented here offers the researcher the ability to start, pause, zoom-in, zoom-out and navigate in 3-dimensions through an idealised lymphatic compartment.

  7. Visualization and modeling of factors influencing visibility in computer-aided crewstation design

    NASA Technical Reports Server (NTRS)

    Arditi, Aries; Azueta, Steven; Larimer, James; Prevost, Michael; Lubin, Jeffrey; Bergen, James

    1992-01-01

    We have developed two modules for use in computer-aided design (CAD) of crewstation environments that enhance the designer's appreciation of factors influencing the pilot's vision and visual processing capacity. The Binocular Optics Module (BOM) is an interactive tool for visualizing geometric aspects of (1) how retinal imagery of the environment changes on the pilot's retinas under conditions of eye and object motion, and (2) how visual capabilities that can be modeled as regions or contours on the retinas, affect spatial perception of the environment. The Visual Performance Module (VPM) contains a signal processing model of human visual discrimination that quantitatively predicts visual discrimination performance. The outputs of the VPM are retinal contours that represent performance probabilities. These contours may be used as inputs to the BOM for visualizing those volumes of space within the crewstation that bound different levels of the pilot's of visual discrimination capability. Used together, the BOM and VPM provide the designer with the opportunity to interactively explore relationships between environmental retinal imagery and visual function, and the ability to factor the pilot's visual capabilities into the earliest phases of crewstation CAD.

  8. Visualization and modeling of factors influencing visibility in computer-aided crewstation design

    NASA Technical Reports Server (NTRS)

    Arditi, Aries; Azueta, Steven; Larimer, James; Prevost, Michael; Lubin, Jeffrey; Bergen, James

    1992-01-01

    We have developed two modules for use in computer-aided design (CAD) of crewstation environments that enhance the designer's appreciation of factors influencing the pilot's vision and visual processing capacity. The Binocular Optics Module (BOM) is an interactive tool for visualizing geometric aspects of (1) how retinal imagery of the environment changes on the pilot's retinas under conditions of eye and object motion, and (2) how visual capabilities that can be modeled as regions or contours on the retinas, affect spatial perception of the environment. The Visual Performance Module (VPM) contains a signal processing model of human visual discrimination that quantitatively predicts visual discrimination performance. The outputs of the VPM are retinal contours that represent performance probabilities. These contours may be used as inputs to the BOM for visualizing those volumes of space within the crewstation that bound different levels of the pilot's of visual discrimination capability. Used together, the BOM and VPM provide the designer with the opportunity to interactively explore relationships between environmental retinal imagery and visual function, and the ability to factor the pilot's visual capabilities into the earliest phases of crewstation CAD.

  9. Development of a visualization tool for integrated surface water-groundwater modeling

    NASA Astrophysics Data System (ADS)

    Tian, Yong; Zheng, Yi; Zheng, Chunmiao

    2016-01-01

    Physically-based, fully integrated surface water (SW)-groundwater (GW) models have been increasingly used in water resources research and management. The integrated modeling involves a large amount of scientific data. The use of three-dimensional (3D) visualization software to integrate all the scientific data into a comprehensive system can facilitate the interpretation and validation of modeling results. Nevertheless, at present few software tools can efficiently perform data visualization for integrated SW-GW modeling. In this study, a visualization tool named IHM3D was designed and developed specifically for integrated SW-GW modeling. In IHM3D, spatially distributed model inputs/outputs and geo-referenced data sets are visualized in a virtual globe-based 3D environment. End users can conveniently explore and validate modeling results within the 3D environment. A GSLFOW (an integrated SW-GW model developed by USGS) modeling case in the Heihe River Basin (Northwest China) was used to demonstrate the applicability of IHM3D at a large basin scale. The visualization of the modeling results significantly improved the understanding of the complex hydrologic cycle in this water-limited area, and provided insights into the regional water resources management. This study shows that visualization tools like IHM3D can promote data and model sharing in the water resources research community, and make it more practical to perform complex hydrological modeling in real-world water resources management.

  10. [Three-dimensional morphological modeling and visualization of wheat root system].

    PubMed

    Tan, Feng; Tang, Liang; Hu, Jun-Cheng; Jiang, Hai-Yan; Cao, Wei-Xing; Zhu, Yan

    2011-01-01

    Crop three-dimensional (3D) morphological modeling and visualization is an important part of digital plant study. This paper aimed to develop a 3D morphological model of wheat root system based on the parameters of wheat root morphological features, and to realize the visualization of wheat root growth. According to the framework of visualization technology for wheat root growth, a 3D visualization model of wheat root axis, including root axis growth model, branch geometric model, and root axis curve model, was developed firstly. Then, by integrating root topology, the corresponding pixel was determined, and the whole wheat root system was three-dimensionally re-constructed by using the morphological feature parameters in the root morphological model. Finally, based on the platform of OpenGL, and by integrating the technologies of texture mapping, lighting rendering, and collision detection, the 3D visualization of wheat root growth was realized. The 3D output of wheat root system from the model was vivid, which could realize the 3D root system visualization of different wheat cultivars under different water regimes and nitrogen application rates. This study could lay a technical foundation for further development of an integral visualization system of wheat plant.

  11. Visual world perception modeling and control of cooperative mobile robots

    NASA Astrophysics Data System (ADS)

    Shirkhodaie, Amir

    2003-10-01

    There has been a great interest in the recent years in visual coordination and target tracking for mobile robots cooperating in unstructured environments. This paper describes visual servo control techniques suitable for intelligent task planning of cooperative robots operating in unstructured environment. In this paper, we have considered a team of semi-autonomous robots controlled by a remote supervisory control system. We have presented an algorithm for visual position tracking of individual cooperative robots within their working environment. Initially, we present a technique suitable for visual servoing of a robot toward its landmark targets. Secondly, we present an image-processing technique that utilizes images from a remote surveillance camera for localization of the robots within the operational environment. In this algorithm, the surveillance camera can be either stationary or mobile. The supervisor control system keeps tracks of relative locations of individual robots and utilizes relative coordinate information of the robots to plan their cooperative activities. We presented some results of this research effort that illustrates effectiveness of the proposed algorithms for cooperative robotic systems visual team working and target tracking.

  12. Modeling and Simulation. III. Simulation of a Model for Development of Visual Cortical Specificity.

    DTIC Science & Technology

    1986-12-15

    of parameter values. Experiment, model, and simulation 5’ The simulations we consider mimic, in form, classic deprivation experiments. Kittens are...second paper of the series (ref. 8) reviews the results of numerous experiments on the neuronal development of kitten visual cortex. We have...restricted to a very limited range of oriented contours (see citations in ref. 8). Kittens were raised, for example, viewing only horizontal or only vertical

  13. DBSolve Optimum: a software package for kinetic modeling which allows dynamic visualization of simulation results

    PubMed Central

    2010-01-01

    Background Systems biology research and applications require creation, validation, extensive usage of mathematical models and visualization of simulation results by end-users. Our goal is to develop novel method for visualization of simulation results and implement it in simulation software package equipped with the sophisticated mathematical and computational techniques for model development, verification and parameter fitting. Results We present mathematical simulation workbench DBSolve Optimum which is significantly improved and extended successor of well known simulation software DBSolve5. Concept of "dynamic visualization" of simulation results has been developed and implemented in DBSolve Optimum. In framework of the concept graphical objects representing metabolite concentrations and reactions change their volume and shape in accordance to simulation results. This technique is applied to visualize both kinetic response of the model and dependence of its steady state on parameter. The use of the dynamic visualization is illustrated with kinetic model of the Krebs cycle. Conclusion DBSolve Optimum is a user friendly simulation software package that enables to simplify the construction, verification, analysis and visualization of kinetic models. Dynamic visualization tool implemented in the software allows user to animate simulation results and, thereby, present them in more comprehensible mode. DBSolve Optimum and built-in dynamic visualization module is free for both academic and commercial use. It can be downloaded directly from http://www.insysbio.ru. PMID:20698988

  14. DBSolve Optimum: a software package for kinetic modeling which allows dynamic visualization of simulation results.

    PubMed

    Gizzatkulov, Nail M; Goryanin, Igor I; Metelkin, Eugeny A; Mogilevskaya, Ekaterina A; Peskov, Kirill V; Demin, Oleg V

    2010-08-10

    Systems biology research and applications require creation, validation, extensive usage of mathematical models and visualization of simulation results by end-users. Our goal is to develop novel method for visualization of simulation results and implement it in simulation software package equipped with the sophisticated mathematical and computational techniques for model development, verification and parameter fitting. We present mathematical simulation workbench DBSolve Optimum which is significantly improved and extended successor of well known simulation software DBSolve5. Concept of "dynamic visualization" of simulation results has been developed and implemented in DBSolve Optimum. In framework of the concept graphical objects representing metabolite concentrations and reactions change their volume and shape in accordance to simulation results. This technique is applied to visualize both kinetic response of the model and dependence of its steady state on parameter. The use of the dynamic visualization is illustrated with kinetic model of the Krebs cycle. DBSolve Optimum is a user friendly simulation software package that enables to simplify the construction, verification, analysis and visualization of kinetic models. Dynamic visualization tool implemented in the software allows user to animate simulation results and, thereby, present them in more comprehensible mode. DBSolve Optimum and built-in dynamic visualization module is free for both academic and commercial use. It can be downloaded directly from http://www.insysbio.ru.

  15. Visual unified modeling language for the composition of scenarios in modeling and simulation systems

    NASA Astrophysics Data System (ADS)

    Talbert, Michael L.; Swayne, Daniel E.

    2006-05-01

    The Department of Defense uses modeling and simulation systems in many various roles, from research and training to modeling likely outcomes of command decisions. Simulation systems have been increasing in complexity with the increased capability of low-cost computer systems to support these DOD requirements. The demand for scenarios is also increasing, but the complexity of the simulation systems has caused a bottleneck in scenario development due to the limited number of individuals with knowledge of the arcane simulator languages in which these scenarios are written. This research combines the results of previous efforts from the Air Force Institute of Technology in visual modeling languages to create a language that unifies description of entities within a scenario with its behavior using a visual tool that was developed in the course of this research. The resulting language has a grammar and syntax that can be parsed from the visual representation of the scenario. The language is designed so that scenarios can be described in a generic manner, not tied to a specific simulation system, allowing the future development of modules to translate the generic scenario into simulation system specific scenarios.

  16. The utility of modeling word identification from visual input within models of eye movements in reading.

    PubMed

    Bicknell, Klinton; Levy, Roger

    2012-04-01

    Decades of empirical work have shown that a range of eye movement phenomena in reading are sensitive to the details of the process of word identification. Despite this, major models of eye movement control in reading do not explicitly model word identification from visual input. This paper presents a argument for developing models of eye movements that do include detailed models of word identification. Specifically, we argue that insights into eye movement behavior can be gained by understanding which phenomena naturally arise from an account in which the eyes move for efficient word identification, and that one important use of such models is to test which eye movement phenomena can be understood this way. As an extended case study, we present evidence from an extension of a previous model of eye movement control in reading that does explicitly model word identification from visual input, Mr. Chips (Legge, Klitz, & Tjan, 1997), to test two proposals for the effect of using linguistic context on reading efficiency.

  17. Alteration of bursting properties in interneurons during locust flight.

    PubMed

    Ramirez, J M; Pearson, K G

    1993-11-01

    1. The contribution of bursting properties to the generation of the flight motor pattern was examined for two identified interneurons (interneurons 566 and 567) in the flight system of the locust Locusta migratoria by means of intracellular recording and stimulation techniques. These interneurons are important elements in transmitting proprioceptive information from the hindwing tegula to wing elevator motoneurons. 2. Offset currents injected into these neurons revealed that bursts are triggered in the intact flying animal by synaptic input from tegula afferents (n = 10). These bursts lead to an amplification of proprioceptive input that is crucial for the generation of the intact flight motor pattern. In the absence of afferent input the activity of these neurons remained subthreshold for triggering a burst. This explains why these neurons exhibit only weak rhythmic oscillations in deafferented animals. 3. The property of interneuron 566 to burst was conditional, always being expressed during flight (n = 14) and occurring only occasionally in the quiescent animal. In the absence of flight, stimulation of tegula afferents never evoked bursts in interneuron 566 (n = 7) and depolarizing current pulses evoked weak bursts in only three of nine preparations. In 2 of 14 animals, bursting property of interneuron 566 was enhanced just after the termination of flight. 4. Variability in the bursting property was also found for interneuron 567. In the quiescent animal, tegula-evoked compound excitatory postsynaptic potentials were not sufficient to trigger bursts (n = 3) but depolarizing current pulses evoked always weak rhythmic bursting activity (n = 4). This bursting property was also variable and in one animal we found long-lasting plateau potentials that could be evoked by current injection after flight was elicited several times. 5. The data presented demonstrate that the capacity to burst is conditional in the interneurons 566 and 567. Bursting properties are always

  18. Identification of representative genes of the central nervous system of the locust, Locusta migratoria manilensis by deep sequencing.

    PubMed

    Zhang, Zhengyi; Peng, Zhi-Yu; Yi, Kang; Cheng, Yanbing; Xia, Yuxian

    2012-01-01

    The shortage of available genomic and transcriptomic data hampers the molecular study on the migratory locust, Locusta migratoria manilensis (L.) (Orthoptera: Acrididae) central nervous system (CNS). In this study, locust CNS RNA was sequenced by deep sequencing. 41,179 unigenes were obtained with an average length of 570 bp, and 5,519 unigenes were longer than 1,000 bp. Compared with an EST database of another locust species Schistocerca gregaria Forsskåi, 9,069 unigenes were found conserved, while 32,110 unigenes were differentially expressed. A total of 15,895 unigenes were identified, including 644 nervous system relevant unigenes. Among the 25,284 unknown unigenes, 9,482 were found to be specific to the CNS by filtering out the previous ESTs acquired from locust organs without CNS's. The locust CNS showed the most matches (18%) with Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae) sequences. Comprehensive assessment reveals that the database generated in this study is broadly representative of the CNS of adult locust, providing comprehensive gene information at the transcriptional level that could facilitate research of the locust CNS, including various physiological aspects and pesticide target finding.

  19. Behavior of geladas and other endemic wildlife during a desert locust outbreak at Guassa, Ethiopia: ecological and conservation implications.

    PubMed

    Fashing, Peter J; Nguyen, Nga; Fashing, Norman J

    2010-07-01

    Desert locust (Schistocerca gregaria) outbreaks have occurred repeatedly throughout recorded history in the Horn of Africa region, devastating crops and contributing to famines. In June 2009, a desert locust swarm invaded the Guassa Plateau, Ethiopia, a large and unusually intact Afroalpine tall-grass ecosystem, home to important populations of geladas (Theropithecus gelada), Ethiopian wolves (Canis simensis), thick-billed ravens (Corvus crassirostris), and other Ethiopian or Horn of Africa endemics. During the outbreak and its aftermath, we observed many animals, including geladas, ravens, and a wolf, feeding on locusts in large quantities. These observations suggest surprising flexibility in the normally highly specialized diets of geladas and wolves, including the potential for temporary but intensive insectivory during locust outbreaks. To our knowledge, Guassa is the highest elevation site (3,200-3,600 m) at which desert locusts, which require temperatures >20 degrees C for sustained flight, have been reported. Continued monitoring will be necessary to determine whether the June 2009 outbreak was an isolated incident or part of an emerging pattern in the Ethiopian Highlands linked to global warming. The intensive consumption of desert locusts by geladas, wolves, and ravens during the outbreak at Guassa raises concerns about pesticide-based locust control strategies and potential unintended adverse effects on endemic and endangered wildlife.

  20. CSP and Takeout Genes Modulate the Switch between Attraction and Repulsion during Behavioral Phase Change in the Migratory Locust

    PubMed Central

    Ma, Zongyuan; Xue, Liang; Han, Jingyao; Yu, Dan; Kang, Le

    2011-01-01

    Behavioral plasticity is the most striking trait in locust phase transition. However, the genetic basis for behavioral plasticity in locusts is largely unknown. To unravel the molecular mechanisms underlying the behavioral phase change in the migratory locust Locusta migratoria, the gene expression patterns over the time courses of solitarization and gregarization were compared by oligonucleotide microarray analysis. Data analysis revealed that several gene categories relevant to peripheral olfactory perception are strongly regulated in a total of 1,444 differentially expressed genes during both time courses. Among these candidate genes, several CSP (chemosensory protein) genes and one takeout gene, LmigTO1, showed higher expression in gregarious and solitarious locusts, respectively, and displayed opposite expression trends during solitarization and gregarization. qRT-PCR experiments revealed that most CSP members and LmigTO1 exhibited antenna-rich expressions. RNA interference combined with olfactory behavioral experiments confirmed that the CSP gene family and one takeout gene, LmigTO1, are involved in the shift from repulsion to attraction between individuals during gregarization and in the reverse transition during solitarization. These findings suggest that the response to locust-emitted olfactory cues regulated by CSP and takeout genes is involved in the behavioral phase change in the migratory locust and provide a previously undescribed molecular mechanism linked to the formation of locust aggregations. PMID:21304893

  1. A New Model of Graph and Visualization Usage

    DTIC Science & Technology

    2001-01-01

    comprehension is Bertin’s (1983) task analysis that suggests three main processes in graph and visual- ization comprehension: 1. Encode visual elements of the...2. Translate the elements into patterns: For example, notice that one bar is taller than another or the slope of a line. This stage is affected by...PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Naval

  2. A Fractional Cartesian Composition Model for Semi-Spatial Comparative Visualization Design.

    PubMed

    Kolesar, Ivan; Bruckner, Stefan; Viola, Ivan; Hauser, Helwig

    2017-01-01

    The study of spatial data ensembles leads to substantial visualization challenges in a variety of applications. In this paper, we present a model for comparative visualization that supports the design of according ensemble visualization solutions by partial automation. We focus on applications, where the user is interested in preserving selected spatial data characteristics of the data as much as possible-even when many ensemble members should be jointly studied using comparative visualization. In our model, we separate the design challenge into a minimal set of user-specified parameters and an optimization component for the automatic configuration of the remaining design variables. We provide an illustrated formal description of our model and exemplify our approach in the context of several application examples from different domains in order to demonstrate its generality within the class of comparative visualization problems for spatial data ensembles.

  3. The visual pathway as a model to understand brain damage in multiple sclerosis.

    PubMed

    Martínez-Lapiscina, E H; Sanchez-Dalmau, B; Fraga-Pumar, E; Ortiz-Perez, S; Tercero-Uribe, A I; Torres-Torres, R; Villoslada, P

    2014-11-01

    Patients with multiple sclerosis (MS) almost always experience effects in the visual pathway; and thus, visual dysfunction is not only common but also highly relevant. The visual pathway represents a model of acute focal central nervous system (CNS) damage, through acute optic neuritis and retinal periphlebitis, as well as a model of chronic, diffuse CNS damage through chronic retinopathy and optic neuropathy. The optic pathway can be accurately evaluated in detail, due to the availability of highly sensitive imaging techniques (e.g. magnetic resonance imaging or optical coherent tomography) or electrophysiological tests (multifocal visual evoked potentials or electroretinography). These techniques allow the interactions between the different processes at play to be evaluated, such as inflammation, demyelination, axonal damage and neurodegeneration. Moreover, these features mean that the visual pathway can be used as a model to test new neuroprotective or regenerative therapies. © The Author(s), 2014.

  4. Scaling of resting and maximum hopping metabolic rate throughout the life cycle of the locust Locusta migratoria.

    PubMed

    Snelling, Edward P; Seymour, Roger S; Matthews, Philip G D; Runciman, Sue; White, Craig R

    2011-10-01

    The hemimetabolous migratory locust Locusta migratoria progresses through five instars to the adult, increasing in size from 0.02 to 0.95 g, a 45-fold change. Hopping locomotion occurs at all life stages and is supported by aerobic metabolism and provision of oxygen through the tracheal system. This allometric study investigates the effect of body mass (Mb) on oxygen consumption rate (MO2, μmol h(-1)) to establish resting metabolic rate (MRO2), maximum metabolic rate during hopping (MMO2) and maximum metabolic rate of the hopping muscles (MMO2,hop) in first instar, third instar, fifth instar and adult locusts. Oxygen consumption rates increased throughout development according to the allometric equations MRO2=30.1Mb(0.83±0.02), MMO2=155Mb(1.01±0.02), MMO2,hop=120Mb(1.07±0.02) and, if adults are excluded, MMO2,juv=136Mb(0.97±0.02) and MMO2,juv,hop=103Mb(1.02±0.02). Increasing body mass by 20-45% with attached weights did not increase mass-specific MMO2 significantly at any life stage, although mean mass-specific hopping MO2 was slightly higher (ca. 8%) when juvenile data were pooled. The allometric exponents for all measures of metabolic rate are much greater than 0.75, and therefore do not support West, Brown and Enquist’s optimised fractal network model, which predicts that metabolism scales with a 3⁄4-power exponent owing to limitations in the rate at which resources can be transported within the body.

  5. Spatial Visualization Ability and Impact of Drafting Models: A Quasi Experimental Study

    ERIC Educational Resources Information Center

    Katsioloudis, Petros J.; Jovanovic, Vukica

    2014-01-01

    A quasi experimental study was done to determine significant positive effects among three different types of visual models and to identify whether any individual type or combination contributed towards a positive increase of spatial visualization ability for students in engineering technology courses. In particular, the study compared the use of…

  6. AccesSports: A Model for Adapting Mainstream Sports Activities for Individuals with Visual Impairments.

    ERIC Educational Resources Information Center

    Ponchilla, Paul E.

    1995-01-01

    The AccesSports Model allows professionals with basic knowledge of visual impairments and mainstream sports to analyze any sports activity and design adaptations needed for targets or goals, boundaries, and rules to enable individuals with visual impairments to participate. Suggestions for modifying baseball, table tennis, swim racing, wrestling,…

  7. How Spatial Abilities and Dynamic Visualizations Interplay When Learning Functional Anatomy with 3D Anatomical Models

    ERIC Educational Resources Information Center

    Berney, Sandra; Bétrancourt, Mireille; Molinari, Gaëlle; Hoyek, Nady

    2015-01-01

    The emergence of dynamic visualizations of three-dimensional (3D) models in anatomy curricula may be an adequate solution for spatial difficulties encountered with traditional static learning, as they provide direct visualization of change throughout the viewpoints. However, little research has explored the interplay between learning material…

  8. Spatial Visualization Ability and Impact of Drafting Models: A Quasi Experimental Study

    ERIC Educational Resources Information Center

    Katsioloudis, Petros J.; Jovanovic, Vukica

    2014-01-01

    A quasi experimental study was done to determine significant positive effects among three different types of visual models and to identify whether any individual type or combination contributed towards a positive increase of spatial visualization ability for students in engineering technology courses. In particular, the study compared the use of…

  9. How Spatial Abilities and Dynamic Visualizations Interplay When Learning Functional Anatomy with 3D Anatomical Models

    ERIC Educational Resources Information Center

    Berney, Sandra; Bétrancourt, Mireille; Molinari, Gaëlle; Hoyek, Nady

    2015-01-01

    The emergence of dynamic visualizations of three-dimensional (3D) models in anatomy curricula may be an adequate solution for spatial difficulties encountered with traditional static learning, as they provide direct visualization of change throughout the viewpoints. However, little research has explored the interplay between learning material…

  10. [Analytical model of readaptation of the human visual system after light exposure].

    PubMed

    Naumov, N D

    2003-01-01

    The process of readaptation of the human visual system is considered as the behavior of a follow-up system, with the brightness of the background being the control signal. The times of recovery of visual acuity calculated by the model are compared with the experimental data.

  11. A Linear Physiological Visual-Vestibular Interaction Model for the Prediction of Motion Sickness Incidence

    DTIC Science & Technology

    2004-09-01

    control of posture and equilibrium. From a technical point of view, the...proposed a model concerning visual-vestibular stabilization of gaze, which was later successfully used in the stabilization of a robot gaze (Panerai...muscular control . Optokinetic: Relating to eye movements produced by a moving visual stimulus. Peak value: The maximum value of a quantity during a

  12. AccesSports: A Model for Adapting Mainstream Sports Activities for Individuals with Visual Impairments.

    ERIC Educational Resources Information Center

    Ponchilla, Paul E.

    1995-01-01

    The AccesSports Model allows professionals with basic knowledge of visual impairments and mainstream sports to analyze any sports activity and design adaptations needed for targets or goals, boundaries, and rules to enable individuals with visual impairments to participate. Suggestions for modifying baseball, table tennis, swim racing, wrestling,…

  13. The Effects of Solid Modeling and Visualization on Technical Problem Solving

    ERIC Educational Resources Information Center

    Koch, Douglas

    2011-01-01

    The purpose of this study was to determine whether or not the use of solid modeling software increases participants' success in solving a specified technical problem and how visualization affects their ability to solve a technical problem. Specifically, the study sought to determine if (a) students' visualization skills affect their problem…

  14. Modelling fast forms of visual neural plasticity using a modified second-order motion energy model.

    PubMed

    Pavan, Andrea; Contillo, Adriano; Mather, George

    2014-12-01

    The Adelson-Bergen motion energy sensor is well established as the leading model of low-level visual motion sensing in human vision. However, the standard model cannot predict adaptation effects in motion perception. A previous paper Pavan et al.(Journal of Vision 10:1-17, 2013) presented an extension to the model which uses a first-order RC gain-control circuit (leaky integrator) to implement adaptation effects which can span many seconds, and showed that the extended model's output is consistent with psychophysical data on the classic motion after-effect. Recent psychophysical research has reported adaptation over much shorter time periods, spanning just a few hundred milliseconds. The present paper further extends the sensor model to implement rapid adaptation, by adding a second-order RC circuit which causes the sensor to require a finite amount of time to react to a sudden change in stimulation. The output of the new sensor accounts accurately for psychophysical data on rapid forms of facilitation (rapid visual motion priming, rVMP) and suppression (rapid motion after-effect, rMAE). Changes in natural scene content occur over multiple time scales, and multi-stage leaky integrators of the kind proposed here offer a computational scheme for modelling adaptation over multiple time scales.

  15. Impulse processing: A dynamical systems model of incremental eye movements in the visual world paradigm

    PubMed Central

    Kukona, Anuenue; Tabor, Whitney

    2011-01-01

    The visual world paradigm presents listeners with a challenging problem: they must integrate two disparate signals, the spoken language and the visual context, in support of action (e.g., complex movements of the eyes across a scene). We present Impulse Processing, a dynamical systems approach to incremental eye movements in the visual world that suggests a framework for integrating language, vision, and action generally. Our approach assumes that impulses driven by the language and the visual context impinge minutely on a dynamical landscape of attractors corresponding to the potential eye-movement behaviors of the system. We test three unique predictions of our approach in an empirical study in the visual world paradigm, and describe an implementation in an artificial neural network. We discuss the Impulse Processing framework in relation to other models of the visual world paradigm. PMID:21609355

  16. Curriculum Model for Oculomotor. Binocular, and Visual Perception Dysfunctions.

    ERIC Educational Resources Information Center

    Journal of Optometric Education, 1988

    1988-01-01

    A curriculum for disorders of oculomotor control, binocular vision, and visual perception, adopted by the Association of Schools and Colleges of Optometry, is outlined. The curriculum's 14 objectives in physiology, perceptual and cognitive development, epidemiology, public health, diagnosis and management, environmental influences, care delivery,…

  17. Visual reconciliation of alternative similarity spaces in climate modeling

    Treesearch

    J Poco; A Dasgupta; Y Wei; William Hargrove; C.R. Schwalm; D.N. Huntzinger; R Cook; E Bertini; C.T. Silva

    2015-01-01

    Visual data analysis often requires grouping of data objects based on their similarity. In many application domains researchers use algorithms and techniques like clustering and multidimensional scaling to extract groupings from data. While extracting these groups using a single similarity criteria is relatively straightforward, comparing alternative criteria poses...

  18. Advancing Creative Visual Thinking with Constructive Function-Based Modelling

    ERIC Educational Resources Information Center

    Pasko, Alexander; Adzhiev, Valery; Malikova, Evgeniya; Pilyugin, Victor

    2013-01-01

    Modern education technologies are destined to reflect the realities of a modern digital age. The juxtaposition of real and synthetic (computer-generated) worlds as well as a greater emphasis on visual dimension are especially important characteristics that have to be taken into account in learning and teaching. We describe the ways in which an…

  19. Testing a Conceptual Change Model Framework for Visual Data

    ERIC Educational Resources Information Center

    Finson, Kevin D.; Pedersen, Jon E.

    2015-01-01

    An emergent data analysis technique was employed to test the veracity of a conceptual framework constructed around visual data use and instruction in science classrooms. The framework incorporated all five key components Vosniadou (2007a, 2007b) described as existing in a learner's schema: framework theory, presuppositions, conceptual domains,…

  20. Advancing Creative Visual Thinking with Constructive Function-Based Modelling

    ERIC Educational Resources Information Center

    Pasko, Alexander; Adzhiev, Valery; Malikova, Evgeniya; Pilyugin, Victor

    2013-01-01

    Modern education technologies are destined to reflect the realities of a modern digital age. The juxtaposition of real and synthetic (computer-generated) worlds as well as a greater emphasis on visual dimension are especially important characteristics that have to be taken into account in learning and teaching. We describe the ways in which an…

  1. Application of sugar maple and black locust to the biomass/energy plantation concept. Interim report, March 1, 1980-February 28, 1981. [Sugar Maples, Black Locusts

    SciTech Connect

    Not Available

    1981-03-01

    The objective of the research program is to determine the feasibility of converting existing pole-size maple stands to biomass/energy plantations using black locust as an interplanted species. Toward this end, progress has been made in quantifying sprout biomass. Significant differences have been identified in productivity by site, species, time of fertilizer application, and diameter and damage of stumps. Rhizobium strains for black locust have been identified which are tolerant of low pH and phosphorous and high aluminum levels. Frost-hardy black locust seed sources have been identified for future work. Methods for sampling and equations for young natural stands of maple have been developed. Detailed characterization of sugar and red maple sprouts by physical, chemical and thermal analysis were compared to those of old, mature trees. The results are discussed in terms of seasonal moisture content variation, effects of tree age on specific gravity, extractive contents, ash content, major cell wall components, heating values and thermal behavior. 7 references, 5 figures, 17 tables.

  2. Visual field differences in visual word recognition can emerge purely from perceptual learning: evidence from modeling Chinese character pronunciation.

    PubMed

    Hsiao, Janet Hui-Wen

    2011-11-01

    In Chinese orthography, a dominant character structure exists in which a semantic radical appears on the left and a phonetic radical on the right (SP characters); a minority opposite arrangement also exists (PS characters). As the number of phonetic radical types is much greater than semantic radical types, in SP characters the information is skewed to the right, whereas in PS characters it is skewed to the left. Through training a computational model for SP and PS character recognition that takes into account of the locations in which the characters appear in the visual field during learning, but does not assume any fundamental hemispheric processing difference, we show that visual field differences can emerge as a consequence of the fundamental structural differences in information between SP and PS characters, as opposed to the fundamental processing differences between the two hemispheres. This modeling result is also consistent with behavioral naming performance. This work provides strong evidence that perceptual learning, i.e., the information structure of word stimuli to which the readers have long been exposed, is one of the factors that accounts for hemispheric asymmetry effects in visual word recognition. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Abnormal visual gain control in a Parkinson's disease model

    PubMed Central

    Afsari, Farinaz; Christensen, Kenneth V.; Smith, Garrick Paul; Hentzer, Morten; Nippe, Olivia M.; Elliott, Christopher J. H.; Wade, Alex R.

    2014-01-01

    Our understanding of Parkinson's disease (PD) has been revolutionized by the discovery of disease-causing genetic mutations. The most common of these is the G2019S mutation in the LRRK2 kinase gene, which leads to increased kinase activity. However, the link between increased kinase activity and PD is unclear. Previously, we showed that dopaminergic expression of the human LRRK2-G2019S transgene in flies led to an activity-dependent loss of vision in older animals and we hypothesized that this may have been preceded by a failure to regulate neuronal activity correctly in younger animals. To test this hypothesis, we used a sensitive measure of visual function based on frequency-tagged steady-state visually evoked potentials. Spectral analysis allowed us to identify signals from multiple levels of the fly visual system and wild-type visual response curves were qualitatively similar to those from human cortex. Dopaminergic expression of hLRRK2-G2019S increased contrast sensitivity throughout the retinal network. To test whether this was due to increased kinase activity, we fed Drosophila with kinase inhibitors targeted at LRRK2. Contrast sensitivity in both day 1 and day 14 flies was normalized by a novel LRRK2 kinase inhibitor ‘BMPPB-32’. Biochemical and cellular assays suggested that BMPPB-32 would be a more specific kinase inhibitor than LRRK2-IN-1. We confirmed this in vivo, finding that dLRRK− null flies show large off-target effects with LRRK2-IN-1 but not BMPPB-32. Our data link the increased Kinase activity of the G2019S-LRRK2 mutation to neuronal dysfunction and demonstrate the power of the Drosophila visual system in assaying the neurological effects of genetic diseases and therapies. PMID:24718285

  4. Collaborative Visualization for Large-Scale Accelerator Electromagnetic Modeling

    SciTech Connect

    Schussman, Greg; /SLAC

    2010-08-25

    In the Phase I SBIR we proposed a ParaView-based solution to provide an environment for individuals to actively collaborate in the visualization process. The technical objectives of Phase I were: (1) to determine the set of features required for an effect collaborative system; (2) to implement a two-person collaborative prototype; and (3) to implement key collaborative features such as control locking and annotation. Accordingly, we implemented a ParaView-based collaboration prototype with support for collaborating with up to four simultaneous clients. We also implemented collaborative features such as control locking, chatting, annotation etc. Due to in part of the flexibility provided by the ParaView framework and the design features implemented in the prototype, we were able to support collaboration with multiple views, instead of a simple give as initially proposed in Phase I. In this section we will summarize the results we obtained during the Phase I project. ParaView is complex, scalable, client-server application framework built on top of the VTK visualization engine. During the implementation of the Phase I prototype, we realized that the ParaView framework naturally supports collaboration technology; hence we were able to go beyond the proposed Phase I prototype in several ways. For example, we were able to support for multiple views, enable server-as well as client-side rendering, and manage up to four heterogeneous clients. The success we achieved with Phase I clearly demonstrated the technical feasibility of the ParaView based collaborative framework we are proposing in the Phase II effort. We also investigated using the web browser as one of the means of participating in a collaborative session. This would enable non-visualization experts to participate in the collaboration process without being intimidated by a complex application such as ParaView. Hence we also developed a prototype web visualization applet that makes it possible for interactive

  5. Visual Similarity of Words Alone Can Modulate Hemispheric Lateralization in Visual Word Recognition: Evidence From Modeling Chinese Character Recognition.

    PubMed

    Hsiao, Janet H; Cheung, Kit

    2016-03-01

    In Chinese orthography, the most common character structure consists of a semantic radical on the left and a phonetic radical on the right (SP characters); the minority, opposite arrangement also exists (PS characters). Recent studies showed that SP character processing is more left hemisphere (LH) lateralized than PS character processing. Nevertheless, it remains unclear whether this is due to phonetic radical position or character type frequency. Through computational modeling with artificial lexicons, in which we implement a theory of hemispheric asymmetry in perception but do not assume phonological processing being LH lateralized, we show that the difference in character type frequency alone is sufficient to exhibit the effect that the dominant type has a stronger LH lateralization than the minority type. This effect is due to higher visual similarity among characters in the dominant type than the minority type, demonstrating the modulation of visual similarity of words on hemispheric lateralization. Copyright © 2015 Cognitive Science Society, Inc.

  6. Processing of Visual Imagery by an Adaptive Model of the Visual System: Its Performance and its Significance. Final Report, June 1969-March 1970.

    ERIC Educational Resources Information Center

    Tallman, Oliver H.

    A digital simulation of a model for the processing of visual images is derived from known aspects of the human visual system. The fundamental principle of computation suggested by a biological model is a transformation that distributes information contained in an input stimulus everywhere in a transform domain. Each sensory input contributes under…

  7. Processing of Visual Imagery by an Adaptive Model of the Visual System: Its Performance and its Significance. Final Report, June 1969-March 1970.

    ERIC Educational Resources Information Center

    Tallman, Oliver H.

    A digital simulation of a model for the processing of visual images is derived from known aspects of the human visual system. The fundamental principle of computation suggested by a biological model is a transformation that distributes information contained in an input stimulus everywhere in a transform domain. Each sensory input contributes under…

  8. Biomechanical Analysis of Locust Jumping in a Physically Realistic Virtual Environment

    NASA Astrophysics Data System (ADS)

    Cofer, David; Cymbalyuk, Gennady; Heitler, William; Edwards, Donald

    2008-03-01

    The biomechanical and neural components that underlie locust jumping have been extensively studied. Previous research suggested that jump energy is stored primarily in the extensor apodeme, and in a band of cuticle called the semi-lunar process (SLP). As it has thus far proven impossible to experimentally alter the SLP without rendering a locust unable to jump, it has not been possible to test whether the energy stored in the SLP has a significant impact on the jump. To address problems such as this we have developed a software toolkit, AnimatLab, which allows researchers to build and test virtual organisms. We used this software to build a virtual locust, and then asked how the SLP is utilized during jumping. The results show that without the SLP the jump distance was reduced by almost half. Further, the simulations were also able to show that loss of the SLP had a significant impact on the final phase of the jump. We are currently working on postural control mechanisms for targeted jumping in locust.

  9. Acute and chronic gregarisation are associated with distinct DNA methylation fingerprints in desert locusts

    PubMed Central

    Mallon, Eamonn B.; Amarasinghe, Harindra E.; Ott, Swidbert R.

    2016-01-01

    Desert locusts (Schistocerca gregaria) show a dramatic form of socially induced phenotypic plasticity known as phase polyphenism. In the absence of conspecifics, locusts occur in a shy and cryptic solitarious phase. Crowding with conspecifics drives a behavioural transformation towards gregariousness that occurs within hours and is followed by changes in physiology, colouration and morphology, resulting in the full gregarious phase syndrome. We analysed methylation-sensitive amplified fragment length polymorphisms (MS-AFLP) to compare the effect of acute and chronic crowding on DNA methylation in the central nervous system. We find that crowd-reared and solitary-reared locusts show markedly different neural MS-AFLP fingerprints. However, crowding for a day resulted in neural MS-AFLP fingerprints that were clearly distinct from both crowd-reared and uncrowded solitary-reared locusts. Our results indicate that changes in DNA methylation associated with behavioural gregarisation proceed through intermediate states that are not simply partial realisations of the endpoint states. PMID:27752110

  10. The role of the frontal ganglion in locust feeding and moulting related behaviours.

    PubMed

    Zilberstein, Yael; Ayali, Amir

    2002-09-01

    In the desert locust, Schistocerca gregaria, the frontal ganglion (FG) plays a key role in control of foregut movements, and constitutes a source of innervation to the foregut dilator muscles. In this work we studied the generation and characteristics of FG motor outputs in two distinct and fundamental behaviours: feeding and moulting. The FG motor pattern was found to be complex, and strongly dependent on the locust's physiological and behavioural state. Rhythmic activity of the foregut was dependent on the amount of food present in the crop; animals with food in their crop demonstrated higher FG burst frequency than those with empty crop. A very full gut inhibited the FG rhythm altogether. When no feeding-related foregut pattern was observed, the FG motor output was strongly correlated with the locust's ventilation pattern. This ventilation-related rhythm was dominant in pre-moulting locusts. During the moult, synchronization with the ventilation pattern can be transiently switched off, revealing the endogenous (feeding-related) FG pattern. This presumably happens during vigorous air swallowing, and could also be induced experimentally. Our findings suggest that the FG central pattern generator can be modulated to generate a variety of motor outputs under different physiological conditions and behavioural contexts.

  11. Heat-induced chemical and color changes of extractive-free Black Locust (Rosinia Pseudoacacia) wood

    Treesearch

    Yao Chen; Jianmin Gao; Yongming Fan; Mandla A. Tshabalala; Nicole M. Stark

    2012-01-01

    To investigate chemical and color changes of the polymeric constituents of black locust (Robinia pseudoacacia) wood during heat treatment, extractive-free wood flour was conditioned to 30% initial moisture content (MC) and heated for 24 h at 120 °C in either an oxygen or nitrogen atmosphere. The color change was measured using the CIELAB color system. Chemical changes...

  12. Simultaneous measurement of aerodynamic forces and kinematics in flapping wings of tethered locust.

    PubMed

    Shkarayev, Sergey; Kumar, Rajeev

    2015-10-23

    Aerodynamic and inertial forces and corresponding kinematics of flapping wings of locusts, Schistocerca americana, were investigated in a low-speed wind tunnel. The experimental setup included live locusts mounted on microbalance synchronized with a high-speed video system. Simultaneous measurements of wing kinematics and forces were carried out on three locusts at 7° angle of attack and velocities of 0 m s(-1) and 4 m s(-1). Time variations of flapping and pitching angles exhibit similar patterns in fore- and hindwings and among the animals. Significant tip to root variations in pitching angle are found in both wings. The locusts have much larger flapping and pitching amplitudes in still air causing larger oscillations in inertial forces. Inertial forces are added to the lift and thrust on one part of the stroke, resulting in higher reaction forces and subtracted on the other part. Plots of the lift demonstrate similar trends with and without the wind. The global maxima and peak-to-peak amplitudes in lift are about the same in both tests. However, local minima are significantly lower in still air, resulting in much smaller stroke-averaged lift. Amplitudes of thrust force oscillations are much higher in still air; consequently, the stroke-averaged thrust is higher compared to the non-zero freestream velocity case.

  13. (Z)-9-Pentacosene - contact sex pheromone of the locust borer, Megacyllene robiniae

    Treesearch

    Matthew D. Ginzel; Jocelyn G. Miller; Lawrence M. Hanks

    2003-01-01

    Male locust borers, Megacyllene robiniae (Forster), responded to females only after contacting them with their antennae, indicating that mate recognition was mediated by a contact sex pheromone. GC-MS analyses of whole-body extracts of males and females determined that the profiles of compounds in the extracts were qualitatively similar, but differed...

  14. From release to absorption: Elucidating the effects of a desert locust pheromone

    USDA-ARS?s Scientific Manuscript database

    We used a glass-vial bioassay to test the contact effect of the desert locust pheromone phenylacetonitrile (PAN) on nymphs and adults after 2 hand 4 h respectively, and quantified the amount of the pheromone absorbed and released by the nymphs after 2 h and 12 h. We also monitored the knockdown effe...

  15. Hydroponic screening of black locust families for heavy metal tolerance and accumulation.

    PubMed

    Župunski, Milan; Borišev, Milan; Orlović, Saša; Arsenov, Danijela; Nikolić, Nataša; Pilipović, Andrej; Pajević, Slobodanka

    2016-01-01

    Present work examines phytoextraction potential of four black locust families (half-sibs 54, 56, 115, and 135) grown hydroponically. Plants were treated with 6 ppm of cadmium (Cd), 100 ppm of nickel (Ni), and 40 ppm of lead (Pb) added in Hoagland nutrient solution, accompanying with simultaneously applied all three metals. Responses to metals exposure among families were different, ranging from severe to slight reduction of root and shoot biomass production of treated plants. Calculated tolerance indices are indicating tested families as highly tolerant (Ti > 60). Family 135 had the lowest tolerance index, pointing that it was highly susceptible to applied metals. Comparing photosynthetic activities of tested families it has been noticed that they were highly sensitive to stress induced by heavy metals. Net photosynthetic rate of nickel treated plants was the most affected by applied concentration. Cadmium and nickel concentrations in stems and leaves of black locust families exceeded 100 mg Cd kg(-1) and 1000 mg Ni kg(-1), in both single and multipollution context. On the contrary, accumulation of lead in above ground biomass was highly affected by multipollution treatment. Tf and BCF significantly varied between investigated treatments and families of black locust. Concerning obtained results of heavy metals accumulation and tolerance of black locust families can be concluded that tested families might be a promising tool for phytoextraction purposes, but it takes to be further confirmed in field trials.

  16. Diacylglycerol-carrying lipoprotein of hemolymph of the locust and some insects.

    PubMed

    Chino, H; Kitazawa, K

    1981-09-01

    The diacylglycerol-carrying lipoprotein (DGLP) was purified from hemolymph of the locust, Locusta migratoria, by a rapid method which included a specific precipitation at low ionic concentration and DEAE-cellulose column chromatography. The final preparation was highly homogeneous as judged by gel electrophoresis, electron microscopy, and immunodiffusion. The locust DGLP molecule was almost spherical in shape with a diameter of about 130 A. The molecular weight, determined by a sedimentation equilibrium method, was approximately 580,000. The total lipid content amounted to about 40%. The lipids comprised diacylglycerol (33% of total lipid), hydrocarbon (21%), cholesterol (8%), and phospholipids (36%). The hydrocarbon fraction contained a number of n-alkanes and methylalkanes ranging from C25 to C38 in chain length. Mannose (3%) and glucosamine (0.5%) were associated with the apoprotein of DGLP. Apoprotein of locust DGLP consisted of two subunits, heavy chain (mol wt 250,000) and light chain (mol wt 85,000); carbohydrate (mannose) was associated only with the heavy chain. Tests of physiological function of DGLPs from locust, cockroach, and silkworm suggest that the insect DGLP serves multiple roles as a true carrier molecule in transporting diacylglycerol, cholesterol, and hydrocarbon from sites of storage, absorption, and synthesis to sites where these lipids are utilized as metabolic fuel, precursors for triacylglycerol and phospholipid synthesis, or structural components of cell membrane and cuticle. In addition, the insect DGLPs displayed no species-specificity in terms of the functions, whereas they were immunologically distinguishable.

  17. Planting yellow-poplar, white ash, black cherry, and black locust

    Treesearch

    Robert D. Williams; Calvin F. Bey

    1989-01-01

    Hardwood plantations that include yellow-poplar, white ash, black cherry, and black locust can be established on upland sites in the central hardwoods region (see Note 3.06 Seeding and Planting Upland Oaks, and Note 3.08 Seeding and Planting Walnut). Even though hardwoods are more difficult to establish than conifers, there are...

  18. Behavioral thermoregulation in the migratory locust: a therapy to overcome fungal infection.

    PubMed

    Ouedraogo, R M; Goettel, M S; Brodeur, J

    2004-01-01

    We examined under laboratory conditions the thermopreference of the migratory locust, Locusta migratoria migratorioides, following infection by the entomopathogenic fungus Metarhizium anisopliae var. acridum and its influence on mycosis. Infected locusts raised their body temperature more frequently than healthy conspecifics through selection of high temperatures in a heat gradient. Thermoregulation did not, however, alter the frequency of feeding events nor the amount of food eaten by infected L. migratoria. A thermoregulation regime of a minimum of 4 h/day substantially increased survival of inoculated insects (by 85%). However, the therapeutic effect decreased when thermoregulation was delayed following inoculation of the pathogen. Thermoregulation reduced locust mortality but did not completely eliminate the fungus from infected hosts; the fungus grew and killed the insects when thermoregulation was interrupted. We suggest that periodic, short bouts of thermoregulation, when performed from the onset of infection and for an extended period of time, are sufficient to provide a therapeutic effect to infected hosts. Such thermoregulatory capacity of locusts may limit the potential of fungal pathogens as biological control agents under certain ecological conditions.

  19. Future path and tangent point models in the visual control of locomotion in curve driving.

    PubMed

    Lappi, Otto

    2014-10-21

    Studying human behavior in the natural context of everyday visual tasks--including locomotor tasks such as driving--can reveal visual strategies or even suggest underlying visual mechanisms. This paper reviews empirical and theoretical work in the past 20 years (1994-2014) on the visual control of steering a vehicle along a winding path-one of the most comprehensively studied forms of visually guided locomotion in humans. The focus is on on-road studies of visual behavior and what they can reveal about the visual strategies in curve driving. Theoretical models and results from simulator studies are discussed where they have direct relevance to the interpretation of on-road data. For the past 20 years, the point of departure in studies of curve driving has been tangent point orientation, and tangent point models (models based on tracking the tangent point) have become established as the default account of how vision is used in curve negotiation. More recent studies have questioned the generality of the tangent point hypothesis, however, arguing that in addition to (or instead of) the tangent point, drivers target visual reference points on their future path. Ecological validity of real-world studies often comes at the cost of methodological challenges that make the data difficult to interpret in terms of underlying mechanisms, and the limitations of existing data and the complementary roles of real-world and laboratory studies are discussed.

  20. Visual Attention Saccadic Models Learn to Emulate Gaze Patterns From Childhood to Adulthood.

    PubMed

    Le Meur, Olivier; Coutrot, Antoine; Liu, Zhi; Rama, Pia; Le Roch, Adrien; Helo, Andrea

    2017-10-01

    How people look at visual information reveals fundamental information about themselves, their interests and their state of mind. While previous visual attention models output static 2D saliency maps, saccadic models aim to predict not only where observers look at but also how they move their eyes to explore the scene. In this paper, we demonstrate that saccadic models are a flexible framework that can be tailored to emulate observer's viewing tendencies. More specifically, we use fixation data from 101 observers split into five age groups (adults, 8-10 y.o., 6-8 y.o., 4-6 y.o., and 2 y.o.) to train our saccadic model for different stages of the development of human visual system. We show that the joint distribution of saccade amplitude and orientation is a visual signature specific to each age group, and can be used to generate age-dependent scan paths. Our age-dependent saccadic model does not only output human-like, age-specific visual scan paths, but also significantly outperforms other state-of-the-art saliency models. We demonstrate that the computational modeling of visual attention, through the use of saccadic model, can be efficiently adapted to emulate the gaze behavior of a specific group of observers.

  1. Investigation of aberration characteristics of eyes at a peripheral visual field by individual eye model.

    PubMed

    Lou, Qiqi; Wang, Yan; Wang, Zhaoqi; Liu, Yongji; Zhang, Lin; Zhai, Yi; Fang, Hui

    2015-07-01

    We propose a method of constructing an individual eye model with a large visual field, and then investigate aberration characteristics of eyes in peripheral fields with constructed models. Twelve eyes of different aberrations are selected from 89 myopic eyes. It is shown that astigmatism increases as visual field in a quadratic manner. The variation tendency of defocus can be expressed by the cubic curve for 50% of eyes. For most of the eyes, the variation of spherical aberration shows a quadratic rule within ±24° visual field. Coma exhibits obvious individual differences. The impact of high-order aberrations on vision is mainly at a smaller visual field, and it becomes negligible beyond 24° visual field.

  2. Knowledge-based visual image processing IDE model for algorithm and system rapid prototyping

    NASA Astrophysics Data System (ADS)

    Zhang, Biyin; Chen, Wei; Wang, Yuanbin

    2009-10-01

    A novel intelligent model for Image Processing (IP) research integrated development environment (IDE) is presented for rapid converting conceptual model of IP algorithm into computational model and program implementation. Considering psychology of IP and computer programming, this model presents a cycle model of IP research process and establishes an improved expert system prototype. Visualization approaches are introduced into visualizing three phases of IP development. An intelligent methodology is applied to reuse algorithms, graphical user interfaces (GUI) and data visualizing tools. Thus, researchers are allowed to fix more attention only on their own interest algorithm models. Experimental results show that the development based the new model enhances rapid algorithm prototype modeling with great efficiency and speed.

  3. viwish: a visualization server for protein modelling and docking.

    PubMed

    Klein, T; Ackermann, F; Posch, S

    1996-12-12

    A visualization tool viwish for proteins based on the Tcl command language has been developed. The system is completely menu driven and can display arbitrary many proteins in arbitrary many windows. It isinstantly t o use, even for non computer experts and provides possibilities to modify menus, configurations, and windows. It may be used as a stand-alone molecular graphics package or as a graphics server for external programs. Communications with these client applications is established even across different machines (through the send command to Tk, an extension of Tcl). In addition, a wide rage of chemical data like molecular surfaces and 3D gridded samplings of chemical features can be displayed. Therefore the systmen is especially useful for the development of algorithms that need visual distributed freely, including the source code.

  4. Visual Sample Plan (VSP) Models and Code Verification

    SciTech Connect

    Gilbert, Richard O.; Davidson, James R.; Wilson, John E.; Pulsipher, Brent A.

    2001-03-06

    VSP is an easy to use, visual and graphic software tool being developed to select the right number and location of environmental samples so that the results of statistical tests performed to provide input to environmental decisions have the required confidence and performance. It is a significant help for implementing the 6th and 7th steps of the Data Quality Objectives (DQO) planning process ("Specify Tolerable Limits on Decision Errors" and "Optimize the Design for Obtaining Data," respectively).

  5. The toxic and lethal effects of the trehalase inhibitor trehazolin in locusts are caused by hypoglycaemia.

    PubMed

    Wegener, Gerhard; Tschiedel, Volker; Schlöder, Paul; Ando, Osamu

    2003-04-01

    The main blood sugar of locusts is trehalose, which is hydrolysed to two glucose units by trehalase. Homogenates of locust flight muscles are rich in trehalase activity, which is bound to membranes. A minor fraction of trehalase is in an overt form while the remainder is latent, i.e. active only after impairing membrane integrity. Trehazolin, an antibiotic pseudosaccharide, inhibits locust flight muscle trehalase with apparent K(i)- and EC(50) values of 10(-8) mol l(-1) and 10(-7) mol l(-1), respectively. Trehazolin is insecticidal: 50 micro g injected into locusts completely and selectively blocked the overt form of muscle trehalase (with little effect on latent activity) and killed 50% of the insects within 24 h. Here, it is demonstrated for the first time that trehazolin causes dramatic hypoglycaemia. Injection of 10 micro g trehazolin caused glucose levels to fall by over 90% in 24 h, from 2.8 mmol l(-1) to 0.23 mmol l(-1), while trehalose increased from 61 mmol l(-1) to 111 mmol l(-1). Feeding glucose to the locusts fully neutralized the effects of a potentially lethal dose of trehazolin. This indicates that hypertrehalosaemia is not acutely toxic, whereas lack of glucose causes organ failure (presumably of the nervous system), and that sufficient haemolymph glucose can only be generated from trehalose by trehalase. The results also suggest that overt flight muscle trehalase is located in the plasma membrane with the active site accessible to the haemolymph. Trehalase inhibitors are valuable tools for studying the molecular physiology of trehalase function and sugar metabolism in insects.

  6. Mapping locust habitats in the Amudarya River Delta, Uzbekistan with multi-temporal MODIS imagery.

    PubMed

    Sivanpillai, Ramesh; Latchininsky, Alexandre V

    2007-06-01

    Reed beds of Phragmites australis in the River Amudarya delta near the Aral Sea constitute permanent breeding areas of the Asian Migratory locust, Locusta migratoria migratoria. Every year, thousands of hectares are treated with broad-spectrum insecticides to prevent locust swarms from damaging crops in adjacent areas. To devise efficient locust monitoring and management plans, accurate and updated information about the spatial distribution of reeds is necessary. Given the vast geographic extent of the delta, traditional, ground survey methods are inadequate. Remotely sensed data collected by the MODIS sensor aboard the TERRA satellite provide a useful tool to characterize the spatial distribution of reeds. Multi-temporal MODIS data, collected at different times of the growing season, were used to generate spectral-temporal signatures for reeds and other land cover classes. These spectral-temporal signatures were matched with reed phenology. MODIS information was digitally classified to generate a land cover map with an overall accuracy of 74%. MODIS data captured 87% of the ground-verified reed locations. Estimates derived from MODIS data indicate that 18% of the study area was covered by reeds. However, high commission error resulted from misclassification of reeds mixed with shrubs class and shrubs class as reeds. This could have resulted in overprediction of the area covered by reeds. Additional research is needed to minimize the overlap between reeds and other vegetation classes (shrubs, and reed and shrub mix). Nevertheless, despite its relatively low spatial resolution (250 m), multi-temporal MODIS data were able to adequately capture the distribution of reeds. Instead of blanketing the fragile wetland ecosystem of the Amudarya delta with chemical anti-locust treatments, plant protection specialists can use this information to devise ecologically sound pest management plans aimed at reducing the adverse environmental impact in the zone of the Aral Sea

  7. VISUALIZATION-BASED ANALYSIS FOR A MIXED-INHIBITION BINARY PBPK MODEL: DETERMINATION OF INHIBITION MECHANISM

    EPA Science Inventory

    A physiologically-based pharmacokinetic (PBPK) model incorporating mixed enzyme inhibition was used to determine the mechanism of metabolic interactions occurring during simultaneous exposures to the organic solvents chloroform and trichloroethylene (TCE). Visualization-based se...

  8. Introduction to Information Visualization (InfoVis) Techniques for Model-Based Systems Engineering

    NASA Technical Reports Server (NTRS)

    Sindiy, Oleg; Litomisky, Krystof; Davidoff, Scott; Dekens, Frank

    2013-01-01

    This paper presents insights that conform to numerous system modeling languages/representation standards. The insights are drawn from best practices of Information Visualization as applied to aerospace-based applications.

  9. Bio-inspired modeling and implementation of the ocelli visual system of flying insects.

    PubMed

    Gremillion, Gregory; Humbert, J Sean; Krapp, Holger G

    2014-12-01

    Two visual sensing modalities in insects, the ocelli and compound eyes, provide signals used for flight stabilization and navigation. In this article, a generalized model of the ocellar visual system is developed for a 3-D visual simulation environment based on behavioral, anatomical, and electrophysiological data from several species. A linear measurement model is estimated from Monte Carlo simulation in a cluttered urban environment relating state changes of the vehicle to the outputs of the ocellar model. A fully analog-printed circuit board sensor based on this model is designed and fabricated. Open-loop characterization of the sensor to visual stimuli induced by self motion is performed. Closed-loop stabilizing feedback of the sensor in combination with optic flow sensors is implemented onboard a quadrotor micro-air vehicle and its impulse response is characterized.

  10. Introduction to Information Visualization (InfoVis) Techniques for Model-Based Systems Engineering

    NASA Technical Reports Server (NTRS)

    Sindiy, Oleg; Litomisky, Krystof; Davidoff, Scott; Dekens, Frank

    2013-01-01

    This paper presents insights that conform to numerous system modeling languages/representation standards. The insights are drawn from best practices of Information Visualization as applied to aerospace-based applications.

  11. Robust segmentation of moving objects in video based on spatiotemporal visual saliency and active contour model

    NASA Astrophysics Data System (ADS)

    Ramadan, Hiba; Tairi, Hamid

    2016-11-01

    This paper presents an algorithm for automatic segmentation of moving objects in video based on spatiotemporal visual saliency and an active contour model. Our algorithm exploits the visual saliency and motion information to build a spatiotemporal visual saliency map used to extract a moving region of interest. This region is used to automatically provide the seeds for the convex active contour (CAC) model to segment the moving object accurately. The experiments show a good performance of our algorithm for moving object segmentation in video without user interaction, especially on the SegTrack dataset.

  12. Optical information for car following: the driving by visual angle (DVA) model.

    PubMed

    Andersen, George J; Sauer, Craig W

    2007-10-01

    The present study developed and tested a model of car following by human drivers. Previous models of car following are based on 3-D parameters such as lead vehicle speed and distance information, which are not directly available to a driver. In the present paper we present the driving by visual angle (DVA) model, which is based on the visual information (visual angle and rate of change of visual angle) available to the driver. Two experiments in a driving simulator examined car-following performance in response to speed variations of a lead vehicle defined by a sum of sine wave oscillations and ramp acceleration functions. In addition, the model was applied to six driving events using real world-driving data. The model provided a good fit to car-following performance in the driving simulation studies as well as in real-world driving performance. A comparison with the advanced interactive microscopic simulator for urban and nonurban networks (AIMSUN) model, which is based on 3-D parameters, suggests that the DVA was more predictive of driver behavior in matching lead vehicle speed and distance headway. Car-following behavior can be modeled using only visual information to the driver and can produce performance more predictive of driver performance than models based on 3-D (speed or distance) information. The DVA model has applications to several traffic safety issues, including automated driving systems and traffic flow models.

  13. Three-Dimension Visualization for Primary Wheat Diseases Based on Simulation Model

    NASA Astrophysics Data System (ADS)

    Shijuan, Li; Yeping, Zhu

    Crop simulation model has been becoming the core of agricultural production management and resource optimization management. Displaying crop growth process makes user observe the crop growth and development intuitionisticly. On the basis of understanding and grasping the occurrence condition, popularity season, key impact factors for main wheat diseases of stripe rust, leaf rust, stem rust, head blight and powdery mildew from research material and literature, we designed 3D visualization model for wheat growth and diseases occurrence. The model system will help farmer, technician and decision-maker to use crop growth simulation model better and provide decision-making support. Now 3D visualization model for wheat growth on the basis of simulation model has been developed, and the visualization model for primary wheat diseases is in the process of development.

  14. Visual causal models enhance clinical explanations of treatments for generalized anxiety disorder.

    PubMed

    Kim, Nancy S; Khalife, Danielle; Judge, Kelly A; Paulus, Daniel J; Jordan, Jake T; Yopchick, Jennelle E

    2013-01-01

    A daily challenge in clinical practice is to adequately explain disorders and treatments to patients of varying levels of literacy in a time-limited situation. Drawing jointly upon research on causal reasoning and multimodal theory, the authors asked whether adding visual causal models to clinical explanations promotes patient learning. Participants were 86 people currently or formerly diagnosed with a mood disorder and 104 lay people in Boston, Massachusetts, USA, who were randomly assigned to receive either a visual causal model (dual-mode) presentation or auditory-only presentation of an explanation about generalized anxiety disorder and its treatment. Participants' knowledge was tested before, immediately after, and 4 weeks after the presentation. Patients and lay people learned significantly more from visual causal model presentations than from auditory-only presentations, and visual causal models were perceived to be helpful. Participants retained some information 4 weeks after the presentation, although the advantage of visual causal models did not persist in the long term. In conclusion, dual-mode presentations featuring visual causal models yield significant relative gains in patient comprehension immediately after the clinical session, at a time when the authors suggest that patients may be most willing to begin the recommended treatment plan.

  15. A State Space Model for Spatial Updating of Remembered Visual Targets during Eye Movements

    PubMed Central

    Mohsenzadeh, Yalda; Dash, Suryadeep; Crawford, J. Douglas

    2016-01-01

    In the oculomotor system, spatial updating is the ability to aim a saccade toward a remembered visual target position despite intervening eye movements. Although this has been the subject of extensive experimental investigation, there is still no unifying theoretical framework to explain the neural mechanism for this phenomenon, and how it influences visual signals in the brain. Here, we propose a unified state-space model (SSM) to account for the dynamics of spatial updating during two types of eye movement; saccades and smooth pursuit. Our proposed model is a non-linear SSM and implemented through a recurrent radial-basis-function neural network in a dual Extended Kalman filter (EKF) structure. The model parameters and internal states (remembered target position) are estimated sequentially using the EKF method. The proposed model replicates two fundamental experimental observations: continuous gaze-centered updating of visual memory-related activity during smooth pursuit, and predictive remapping of visual memory activity before and during saccades. Moreover, our model makes the new prediction that, when uncertainty of input signals is incorporated in the model, neural population activity and receptive fields expand just before and during saccades. These results suggest that visual remapping and motor updating are part of a common visuomotor mechanism, and that subjective perceptual constancy arises in part from training the visual system on motor tasks. PMID:27242452

  16. Animal models for visual deprivation-induced strabismus and nystagmus.

    PubMed

    Tusa, Ronald J; Mustari, Michael J; Das, Vallabh E; Boothe, Ronald G

    2002-04-01

    The development of gaze-stabilizing systems depends on normal vision during infancy. Monkeys reared with binocular lid suture (BLS) for the first 25-40 days of life have strabismus, optokinetic nystagmus deficits, latent nystagmus, and decreased binocular cells in the visual cortex and nucleus of the optic tract. When BLS is extended to 55 days, pendular and congenital nystagmus also occurs. Eyelids in infant monkeys are hairless and thin, but BLS still degrades sensory fusion, motion, and form perception. To determine to what extent these visual properties are critical in the development of normal gaze stabilization, we examined infant monkeys reared with one opaque contact lens over one eye, alternated to the fellow eye every other day (AMO); and monkeys reared in a 3-Hz strobe environment. Monkeys reared with AMO develop strabismus, but have normal optokinetic nystagmus and no spontaneous nystagmus. Area 17 is monocular, but the medial temporal area and the nucleus of the optic tract are binocular. Monkeys reared in strobe light develop pendular nystagmus but not strabismus. We were puzzled by the results of the AMO monkeys until we examined infant monkeys with BLS that were prevented from seeing form through the lids. This was done by leaving the tarsal plate intact behind the eyelid. They developed similar to the AMO monkeys. These results suggest that disruption of sensory fusion during infancy (BLS, AMO) causes strabismus. If strabismus occurs while the monkeys have some form vision from each eye (BLS without tarsal plate), then the nucleus of the optic tract becomes monocular, which causes optokinetic nystagmus deficits and latent nystagmus. Infant monkeys reared without visual motion develop pendular nystagmus.

  17. From Salience to Saccades: Multiple-Alternative Gated Stochastic Accumulator Model of Visual Search

    PubMed Central

    Purcell, Braden A.; Schall, Jeffrey D.; Logan, Gordon D.; Palmeri, Thomas J.

    2012-01-01

    We describe a stochastic accumulator model demonstrating that visual search performance can be understood as a gated feedforward cascade from a salience map to multiple competing accumulators. The model quantitatively accounts for behavior and predicts neural dynamics of macaque monkeys performing visual search for a target stimulus among different numbers of distractors. The salience accumulated in the model is equated with the spike trains recorded from visually responsive neurons in the frontal eye field. Accumulated variability in the firing rates of these neurons explains choice probabilities and the distributions of correct and error response times with search arrays of different set sizes if the accumulators are mutually inhibitory. The dynamics of the stochastic accumulators quantitatively predict the activity of presaccadic movement neurons that initiate eye movements if gating inhibition prevents accumulation before the representation of stimulus salience emerges. Adjustments in the level of gating inhibition can control trade-offs in speed and accuracy that optimize visual search performance. PMID:22399766

  18. Comprehensive Modeling and Visualization of Cardiac Anatomy and Physiology from CT Imaging and Computer Simulations.

    PubMed

    Xiong, Guanglei; Sun, Peng; Zhou, Haoyin; Ha, Seongmin; Hartaigh, Briain O; Truong, Quynh A; Min, James K

    2017-02-01

    In clinical cardiology, both anatomy and physiology are needed to diagnose cardiac pathologies. CT imaging and computer simulations provide valuable and complementary data for this purpose. However, it remains challenging to gain useful information from the large amount of high-dimensional diverse data. The current tools are not adequately integrated to visualize anatomic and physiologic data from a complete yet focused perspective. We introduce a new computer-aided diagnosis framework, which allows for comprehensive modeling and visualization of cardiac anatomy and physiology from CT imaging data and computer simulations, with a primary focus on ischemic heart disease. The following visual information is presented: (1) Anatomy from CT imaging: geometric modeling and visualization of cardiac anatomy, including four heart chambers, left and right ventricular outflow tracts, and coronary arteries; (2) Function from CT imaging: motion modeling, strain calculation, and visualization of four heart chambers; (3) Physiology from CT imaging: quantification and visualization of myocardial perfusion and contextual integration with coronary artery anatomy; (4) Physiology from computer simulation: computation and visualization of hemodynamics (e.g., coronary blood velocity, pressure, shear stress, and fluid forces on the vessel wall). Substantially, feedback from cardiologists have confirmed the practical utility of integrating these features for the purpose of computer-aided diagnosis of ischemic heart disease.

  19. Comprehensive Modeling and Visualization of Cardiac Anatomy and Physiology from CT Imaging and Computer Simulations

    PubMed Central

    Sun, Peng; Zhou, Haoyin; Ha, Seongmin; Hartaigh, Bríain ó; Truong, Quynh A.; Min, James K.

    2016-01-01

    In clinical cardiology, both anatomy and physiology are needed to diagnose cardiac pathologies. CT imaging and computer simulations provide valuable and complementary data for this purpose. However, it remains challenging to gain useful information from the large amount of high-dimensional diverse data. The current tools are not adequately integrated to visualize anatomic and physiologic data from a complete yet focused perspective. We introduce a new computer-aided diagnosis framework, which allows for comprehensive modeling and visualization of cardiac anatomy and physiology from CT imaging data and computer simulations, with a primary focus on ischemic heart disease. The following visual information is presented: (1) Anatomy from CT imaging: geometric modeling and visualization of cardiac anatomy, including four heart chambers, left and right ventricular outflow tracts, and coronary arteries; (2) Function from CT imaging: motion modeling, strain calculation, and visualization of four heart chambers; (3) Physiology from CT imaging: quantification and visualization of myocardial perfusion and contextual integration with coronary artery anatomy; (4) Physiology from computer simulation: computation and visualization of hemodynamics (e.g., coronary blood velocity, pressure, shear stress, and fluid forces on the vessel wall). Substantially, feedback from cardiologists have confirmed the practical utility of integrating these features for the purpose of computer-aided diagnosis of ischemic heart disease. PMID:26863663

  20. Physically-based in silico light sheet microscopy for visualizing fluorescent brain models

    PubMed Central

    2015-01-01

    Background We present a physically-based computational model of the light sheet fluorescence microscope (LSFM). Based on Monte Carlo ray tracing and geometric optics, our method simulates the operational aspects and image formation process of the LSFM. This simulated, in silico LSFM creates synthetic images of digital fluorescent specimens that can resemble those generated by a real LSFM, as opposed to established visualization methods producing visually-plausible images. We also propose an accurate fluorescence rendering model which takes into account the intrinsic characteristics of fluorescent dyes to simulate the light interaction with fluorescent biological specimen. Results We demonstrate first results of our visualization pipeline to a simplified brain tissue model reconstructed from the somatosensory cortex of a young rat. The modeling aspects of the LSFM units are qualitatively analysed, and the results of the fluorescence model were quantitatively validated against the fluorescence brightness equation and characteristic emission spectra of different fluorescent dyes. AMS subject classification Modelling and simulation PMID:26329404