Magnetic Testing, and Modeling, Simulation and Analysis for Space Applications
NASA Technical Reports Server (NTRS)
Boghosian, Mary; Narvaez, Pablo; Herman, Ray
2012-01-01
The Aerospace Corporation (Aerospace) and Lockheed Martin Space Systems (LMSS) participated with Jet Propulsion Laboratory (JPL) in the implementation of a magnetic cleanliness program of the NASA/JPL JUNO mission. The magnetic cleanliness program was applied from early flight system development up through system level environmental testing. The JUNO magnetic cleanliness program required setting-up a specialized magnetic test facility at Lockheed Martin Space Systems for testing the flight system and a testing program with facility for testing system parts and subsystems at JPL. The magnetic modeling, simulation and analysis capability was set up and performed by Aerospace to provide qualitative and quantitative magnetic assessments of the magnetic parts, components, and subsystems prior to or in lieu of magnetic tests. Because of the sensitive nature of the fields and particles scientific measurements being conducted by the JUNO space mission to Jupiter, the imposition of stringent magnetic control specifications required a magnetic control program to ensure that the spacecraft's science magnetometers and plasma wave search coil were not magnetically contaminated by flight system magnetic interferences. With Aerospace's magnetic modeling, simulation and analysis and JPL's system modeling and testing approach, and LMSS's test support, the project achieved a cost effective approach to achieving a magnetically clean spacecraft. This paper presents lessons learned from the JUNO magnetic testing approach and Aerospace's modeling, simulation and analysis activities used to solve problems such as remnant magnetization, performance of hard and soft magnetic materials within the targeted space system in applied external magnetic fields.
A magnetic bearing control approach using flux feedback
NASA Technical Reports Server (NTRS)
Groom, Nelson J.
1989-01-01
A magnetic bearing control approach using flux feedback is described and test results for a laboratory model magnetic bearing actuator are presented. Test results were obtained using a magnetic bearing test fixture, which is also described. The magnetic bearing actuator consists of elements similar to those used in a laboratory test model Annular Momentum Control Device (AMCD).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Pengpeng; Zheng, Xiaojing, E-mail: xjzheng@xidian.edu.cn; Jin, Ke
2016-04-14
Weak magnetic nondestructive testing (e.g., metal magnetic memory method) concerns the magnetization variation of ferromagnetic materials due to its applied load and a weak magnetic surrounding them. One key issue on these nondestructive technologies is the magnetomechanical effect for quantitative evaluation of magnetization state from stress–strain condition. A representative phenomenological model has been proposed to explain the magnetomechanical effect by Jiles in 1995. However, the Jiles' model has some deficiencies in quantification, for instance, there is a visible difference between theoretical prediction and experimental measurements on stress–magnetization curve, especially in the compression case. Based on the thermodynamic relations and themore » approach law of irreversible magnetization, a nonlinear coupled model is proposed to improve the quantitative evaluation of the magnetomechanical effect. Excellent agreement has been achieved between the predictions from the present model and previous experimental results. In comparison with Jiles' model, the prediction accuracy is improved greatly by the present model, particularly for the compression case. A detailed study has also been performed to reveal the effects of initial magnetization status, cyclic loading, and demagnetization factor on the magnetomechanical effect. Our theoretical model reveals that the stable weak magnetic signals of nondestructive testing after multiple cyclic loads are attributed to the first few cycles eliminating most of the irreversible magnetization. Remarkably, the existence of demagnetization field can weaken magnetomechanical effect, therefore, significantly reduces the testing capability. This theoretical model can be adopted to quantitatively analyze magnetic memory signals, and then can be applied in weak magnetic nondestructive testing.« less
Magnetic Measurements of the First Nb 3Sn Model Quadrupole (MQXFS) for the High-Luminosity LHC
DiMarco, J.; Ambrosio, G.; Chlachidze, G.; ...
2016-12-12
The US LHC Accelerator Research Program (LARP) and CERN are developing high-gradient Nb 3Sn magnets for the High Luminosity LHC interaction regions. Magnetic measurements of the first 1.5 m long, 150 mm aperture model quadrupole, MQXFS1, were performed during magnet assembly at LBNL, as well as during cryogenic testing at Fermilab’s Vertical Magnet Test Facility. This paper reports on the results of these magnetic characterization measurements, as well as on the performance of new probes developed for the tests.
Magnetic suspension and balance system advanced study
NASA Technical Reports Server (NTRS)
Boom, R. W.; Eyssa, Y. M.; Mcintosh, G. E.; Abdelsalam, M. K.
1985-01-01
An improved compact design for a superconducting magnetic suspension and balance system for an 8 ft. x 8 ft. transonic wind tunnel is developed. The original design of an MSBS in NASA Cr-3802 utilized 14 external superconductive coils and a superconductive solenoid in the airplane test model suspended in a wind tunnel. The improvements are in the following areas: test model solenoid options, dynamic force limits on the model, magnet cooling options, structure and cryogenic designs, power supply specifications, and cost and performance evaluations. The improvements are: MSBS cost reduction of 28%, weight; reduction of 43%, magnet system ampere-meter reduction of 38%, helium liquifier capacity reduction by 33%, magnet system stored energy reduction by 55%, AC loss to liquid helium reduced by 76%, system power supply reduced by 68%, test coil pole strength increased by 19%, wing magnetization increased by 40%, and control frequency limit increased by 200% from 10 Hz to 30 Hz. The improvements are due to: magnetic holmium coil forms in the test model, better rare earth permanent magnets in the wings, fiberglass-epoxy structure replacing stainless steel, better coil configuration, and new saddle roll coil design.
Near-Field Magnetic Dipole Moment Analysis
NASA Technical Reports Server (NTRS)
Harris, Patrick K.
2003-01-01
This paper describes the data analysis technique used for magnetic testing at the NASA Goddard Space Flight Center (GSFC). Excellent results have been obtained using this technique to convert a spacecraft s measured magnetic field data into its respective magnetic dipole moment model. The model is most accurate with the earth s geomagnetic field cancelled in a spherical region bounded by the measurement magnetometers with a minimum radius large enough to enclose the magnetic source. Considerably enhanced spacecraft magnetic testing is offered by using this technique in conjunction with a computer-controlled magnetic field measurement system. Such a system, with real-time magnetic field display capabilities, has been incorporated into other existing magnetic measurement facilities and is also used at remote locations where transport to a magnetics test facility is impractical.
NASA Astrophysics Data System (ADS)
Xu, Kunshan; Qiu, Xingqi; Tian, Xiaoshuai
2018-01-01
The metal magnetic memory testing (MMMT) technique has been extensively applied in various fields because of its unique advantages of easy operation, low cost and high efficiency. However, very limited theoretical research has been conducted on application of MMMT to buried defects. To promote study in this area, the equivalent magnetic charge method is employed to establish a self-magnetic flux leakage (SMFL) model of a buried defect. Theoretical results based on the established model successfully capture basic characteristics of the SMFL signals of buried defects, as confirmed via experiment. In particular, the newly developed model can calculate the buried depth of a defect based on the SMFL signals obtained via testing. The results show that the new model can successfully assess the characteristics of buried defects, which is valuable in the application of MMMT in non-destructive testing.
Blockage Testing in the NASA Glenn 225 Square Centimeter Supersonic Wind Tunnel
NASA Technical Reports Server (NTRS)
Sevier, Abigail; Davis, David; Schoenenberger, Mark
2017-01-01
A feasibility study is in progress at NASA Glenn Research Center to implement a magnetic suspension and balance system in the 225 sq cm Supersonic Wind Tunnel for the purpose of testing the dynamic stability of blunt bodies. An important area of investigation in this study was determining the optimum size of the model and the iron spherical core inside of it. In order to minimize the required magnetic field and thus the size of the magnetic suspension system, it was determined that the test model should be as large as possible. Blockage tests were conducted to determine the largest possible model that would allow for tunnel start at Mach 2, 2.5, and 3. Three different forebody model geometries were tested at different Mach numbers, axial locations in the tunnel, and in both a square and axisymmetric test section. Experimental results showed that different model geometries produced more varied results at higher Mach Numbers. It was also shown that testing closer to the nozzle allowed larger models to start compared with testing near the end of the test section. Finally, allowable model blockage was larger in the axisymmetric test section compared with the square test section at the same Mach number. This testing answered key questions posed by the feasibility study and will be used in the future to dictate model size and performance required from the magnetic suspension system.
Cable testing for Fermilab's high field magnets using small racetrack coils
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feher, S.; Ambrosio, G.; Andreev, N.
As part of the High Field Magnet program at Fermilab simple magnets have been designed utilizing small racetrack coils based on a sound mechanical structure and bladder technique developed by LBNL. Two of these magnets have been built in order to test Nb{sub 3}Sn cables used in cos-theta dipole models. The powder-in-tube strand based cable exhibited excellent performance. It reached its critical current limit within 14 quenches. Modified jelly roll strand based cable performance was limited by magnetic instabilities at low fields as previously tested dipole models which used similar cable.
Laboratory testing of a supercritical helium pump for a magnetic refrigerator
NASA Technical Reports Server (NTRS)
Wang, Pao-Lien
1988-01-01
A supercritical helium testing system for a magnetic refrigerator has been built. Details of the supercritical helium pump, the test system, and the test instrumentation are given. Actual pump tests were not run during this ASEE term because of delivery problems associated with the required pump flow meter. Consequently, efforts were directed on preliminary design of the magnetic refrigeration system for the pump. The first concern with the magnetic refrigerator design was determining how to effectively make use of the pump. A method to incorporate the supercritical helium pump into a magnetic refrigerator was determined by using a computer model. An illustrated example of this procedure is given to provide a tool for sizing the magnetic refrigerator system as a function of the pump size. The function of the computer model and its operation are also outlined and discussed.
Equivalent magnetic vector potential model for low-frequency magnetic exposure assessment
NASA Astrophysics Data System (ADS)
Diao, Y. L.; Sun, W. N.; He, Y. Q.; Leung, S. W.; Siu, Y. M.
2017-10-01
In this paper, a novel source model based on a magnetic vector potential for the assessment of induced electric field strength in a human body exposed to the low-frequency (LF) magnetic field of an electrical appliance is presented. The construction of the vector potential model requires only a single-component magnetic field to be measured close to the appliance under test, hence relieving considerable practical measurement effort—the radial basis functions (RBFs) are adopted for the interpolation of discrete measurements; the magnetic vector potential model can then be directly constructed by summing a set of simple algebraic functions of RBF parameters. The vector potentials are then incorporated into numerical calculations as the equivalent source for evaluations of the induced electric field in the human body model. The accuracy and effectiveness of the proposed model are demonstrated by comparing the induced electric field in a human model to that of the full-wave simulation. This study presents a simple and effective approach for modelling the LF magnetic source. The result of this study could simplify the compliance test procedure for assessing an electrical appliance regarding LF magnetic exposure.
Equivalent magnetic vector potential model for low-frequency magnetic exposure assessment.
Diao, Y L; Sun, W N; He, Y Q; Leung, S W; Siu, Y M
2017-09-21
In this paper, a novel source model based on a magnetic vector potential for the assessment of induced electric field strength in a human body exposed to the low-frequency (LF) magnetic field of an electrical appliance is presented. The construction of the vector potential model requires only a single-component magnetic field to be measured close to the appliance under test, hence relieving considerable practical measurement effort-the radial basis functions (RBFs) are adopted for the interpolation of discrete measurements; the magnetic vector potential model can then be directly constructed by summing a set of simple algebraic functions of RBF parameters. The vector potentials are then incorporated into numerical calculations as the equivalent source for evaluations of the induced electric field in the human body model. The accuracy and effectiveness of the proposed model are demonstrated by comparing the induced electric field in a human model to that of the full-wave simulation. This study presents a simple and effective approach for modelling the LF magnetic source. The result of this study could simplify the compliance test procedure for assessing an electrical appliance regarding LF magnetic exposure.
NASA Astrophysics Data System (ADS)
Shi, Pengpeng; Zhang, Pengcheng; Jin, Ke; Chen, Zhenmao; Zheng, Xiaojing
2018-04-01
Metal magnetic memory (MMM) testing (also known as micro-magnetic testing) is a new non-destructive electromagnetic testing method that can diagnose ferromagnetic materials at an early stage by measuring the MMM signal directly on the material surface. Previous experiments have shown that many factors affect MMM signals, in particular, the temperature, the elastoplastic state, and the complex environmental magnetic field. However, the fact that there have been only a few studies of either how these factors affect the signals or the physical coupling mechanisms among them seriously limits the industrial applications of MMM testing. In this paper, a nonlinear constitutive relation for a ferromagnetic material considering the influences of temperature and elastoplastic state is established under a weak magnetic field and is used to establish a nonlinear thermo-magneto-elastoplastic coupling model of MMM testing. Comparing with experimental data verifies that the proposed theoretical model can accurately describe the thermo-magneto-elastoplastic coupling influence on MMM signals. The proposed theoretical model can predict the MMM signals in a complex environment and so is expected to provide a theoretical basis for improving the degree of quantification in MMM testing.
R&D Progress of HTS Magnet Project for Ultrahigh-field MRI
NASA Astrophysics Data System (ADS)
Tosaka, Taizo; Miyazaki, Hiroshi; Iwai, Sadanori; Otani, Yasumi; Takahashi, Masahiko; Tasaki, Kenji; Nomura, Shunji; Kurusu, Tsutomu; Ueda, Hiroshi; Noguchi, So; Ishiyama, Atsushi; Urayama, Shinichi; Fukuyama, Hidenao
An R&D project on high-temperature superconducting (HTS) magnets using rare-earth Ba2Cu3O7 (REBCO) wires was started in 2013. The project objective is to investigate the feasibility of adapting REBCO magnets to ultrahigh field (UHF) magnetic resonance imaging (MRI) systems. REBCO wires are promising components for UHF-MRI magnets because of their superior superconducting and mechanical properties, which make them smaller and lighter than conventional ones. Moreover, REBCO magnets can be cooled by the conduction-cooling method, making liquid helium unnecessary. In the past two years, some test coils and model magnets have been fabricated and tested. This year is the final year of the project. The goals of the project are: (1) to generate a 9.4 T magnetic field with a small test coil, (2) to generate a homogeneous magnetic field in a 200 mm diameter spherical volume with a 1.5 T model magnet, and (3) to perform imaging with the 1.5 T model magnet. In this paper, the progress of this R&D is described. The knowledge gained through these R&D results will be reflected in the design of 9.4 T MRI magnets for brain and whole body imaging.
NASA Astrophysics Data System (ADS)
Sapilewski, Glen Alan
The Satellite Test of the Equivalence Principle (STEP) is a modern version of Galileo's experiment of dropping two objects from the leaning tower of Pisa. The Equivalence Principle states that all objects fall with the same acceleration, independent of their composition. The primary scientific objective of STEP is to measure a possible violation of the Equivalence Principle one million times better than the best ground based tests. This extraordinary sensitivity is made possible by using cryogenic differential accelerometers in the space environment. Critical to the STEP experiment is a sound fundamental understanding of the behavior of the superconducting magnetic linear bearings used in the accelerometers. We have developed a theoretical bearing model and a precision measuring system with which to validate the model. The accelerometers contain two concentric hollow cylindrical test masses, of different materials, each levitated and constrained to axial motion by a superconducting magnetic bearing. Ensuring that the bearings satisfy the stringent mission specifications requires developing new testing apparatus and methods. The bearing is tested using an actively-controlled table which tips it relative to gravity. This balances the magnetic forces from the bearing against a component of gravity. The magnetic force profile of the bearing can be mapped by measuring the tilt necessary to position the test mass at various locations. An operational bearing has been built and is being used to verify the theoretical levitation models. The experimental results obtained from the bearing test apparatus were inconsistent with the previous models used for STEP bearings. This led to the development of a new bearing model that includes the influence of surface current variations in the bearing wires and the effect of the superconducting transformer. The new model, which has been experimentally verified, significantly improves the prediction of levitation current, accurately estimates the relationship between tilting and translational modes, and predicts the dependence of radial mode frequencies on the bearing current. In addition, we developed a new model for the forces produced by trapped magnetic fluxons, a potential source of imperfections in the bearing. This model estimates the forces between magnetic fluxons trapped in separate superconducting objects.
Passive Magnetic Bearing With Ferrofluid Stabilization
NASA Technical Reports Server (NTRS)
Jansen, Ralph; DiRusso, Eliseo
1996-01-01
A new class of magnetic bearings is shown to exist analytically and is demonstrated experimentally. The class of magnetic bearings utilize a ferrofluid/solid magnet interaction to stabilize the axial degree of freedom of a permanent magnet radial bearing. Twenty six permanent magnet bearing designs and twenty two ferrofluid stabilizer designs are evaluated. Two types of radial bearing designs are tested to determine their force and stiffness utilizing two methods. The first method is based on the use of frequency measurements to determine stiffness by utilizing an analytical model. The second method consisted of loading the system and measuring displacement in order to measure stiffness. Two ferrofluid stabilizers are tested and force displacement curves are measured. Two experimental test fixtures are designed and constructed in order to conduct the stiffness testing. Polynomial models of the data are generated and used to design the bearing prototype. The prototype was constructed and tested and shown to be stable. Further testing shows the possibility of using this technology for vibration isolation. The project successfully demonstrated the viability of the passive magnetic bearing with ferrofluid stabilization both experimentally and analytically.
An algorithm for deriving core magnetic field models from the Swarm data set
NASA Astrophysics Data System (ADS)
Rother, Martin; Lesur, Vincent; Schachtschneider, Reyko
2013-11-01
In view of an optimal exploitation of the Swarm data set, we have prepared and tested software dedicated to the determination of accurate core magnetic field models and of the Euler angles between the magnetic sensors and the satellite reference frame. The dedicated core field model estimation is derived directly from the GFZ Reference Internal Magnetic Model (GRIMM) inversion and modeling family. The data selection techniques and the model parameterizations are similar to what were used for the derivation of the second (Lesur et al., 2010) and third versions of GRIMM, although the usage of observatory data is not planned in the framework of the application to Swarm. The regularization technique applied during the inversion process smoothes the magnetic field model in time. The algorithm to estimate the Euler angles is also derived from the CHAMP studies. The inversion scheme includes Euler angle determination with a quaternion representation for describing the rotations. It has been built to handle possible weak time variations of these angles. The modeling approach and software have been initially validated on a simple, noise-free, synthetic data set and on CHAMP vector magnetic field measurements. We present results of test runs applied to the synthetic Swarm test data set.
Study on magnetic circuit of moving magnet linear compressor
NASA Astrophysics Data System (ADS)
Xia, Ming; Chen, Xiaoping; Chen, Jun
2015-05-01
The moving magnet linear compressors are very popular in the tactical miniature stirling cryocoolers. The magnetic circuit of LFC3600 moving magnet linear compressor, manufactured by Kunming institute of Physics, was studied in this study. Three methods of the analysis theory, numerical calculation and experiment study were applied in the analysis process. The calculated formula of magnetic reluctance and magnetomotive force were given in theoretical analysis model. The magnetic flux density and magnetic flux line were analyzed in numerical analysis model. A testing method was designed to test the magnetic flux density of the linear compressor. When the piston of the motor was in the equilibrium position, the value of the magnetic flux density was at the maximum of 0.27T. The results were almost equal to the ones from numerical analysis.
Modelling of eddy currents related to large angle magnetic suspension test fixture
NASA Technical Reports Server (NTRS)
Britcher, Colin P.; Foster, Lucas E.
1994-01-01
This report presents a preliminary analysis of the mathematical modelling of eddy current effects in a large-gap magnetic suspension system. It is shown that eddy currents can significantly affect the dynamic behavior and control of these systems, but are amenable to measurement and modelling. A theoretical framework is presented, together with a comparison of computed and experimental data related to the Large Angle Magnetic Suspension Test Fixture at NASA Langley Research Center.
Status of MSBS Study at NAL in 1995
NASA Technical Reports Server (NTRS)
Sawada, Hideo; Suenaga, Hisasi; Kunimasu, Tetuya; Kohno, Takashi
1996-01-01
Magnetic field intensity and currents passing through the coils of the National Aerospace Laboratory (NAL) 1O cm Magnetic Suspension and Balance System (MSBS) were measured while a cylindrical model was oscillated along x,y,z and also about y and z axes, respectively. The model was made of alnico 5 and was 8 mm in diameter and 60 mm long. Two kinds of tests were carried out. Amplitude of the oscillation was varied at a frequency of 10 Hz. Frequency was varied from 1 to 50 Hz in the other test. Results of the tests show that the relation between coil currents and magnetic force acting on the model is affected by frequency. They also show that the relation between measured magnetic field intensity and the force in vertical direction is independent of the frequency below 30 Hz. Using the measured magnetic field intensity, the vertical force can be evaluated at the MSBS instantaneously when a model moves at frequencies below 30 Hz. A static drag force calibration test was carried out at the 60 cm MSBS. Obtained relationships between measured drag coil currents and loads shows large hysteresis.
Surface Magnetic Field Strengths: New Tests of Magnetoconvective Models of M Dwarfs
NASA Astrophysics Data System (ADS)
MacDonald, James; Mullan, D. J.
2014-05-01
Precision modeling of M dwarfs has become worthwhile in recent years due to the increasingly precise values of masses and radii which can be obtained from eclipsing binary studies. In a recent paper, Torres has identified four prime M dwarf pairs with the most precise empirical determinations of masses and radii. The measured radii are consistently larger than standard stellar models predict by several percent. These four systems potentially provide the most challenging tests of precision evolutionary models of cool dwarfs at the present time. We have previously modeled M dwarfs in the context of a criterion due to Gough & Tayler in which magnetic fields inhibit the onset of convection according to a physics-based prescription. In the present paper, we apply our magnetoconvective approach to the four prime systems in the Torres list. Going a step beyond what we have already modeled in CM Dra (one of the four Torres systems), we note that new constraints on magnetoconvective models of M dwarfs are now available from empirical estimates of magnetic field strengths on the surfaces of these stars. In the present paper, we consider how well our magnetoconvective models succeed when confronted with this new test of surface magnetic field strengths. Among the systems listed by Torres, we find that plausible magnetic models work well for CM Dra, YY Gem, and CU Cnc. (The fourth system in Torres's list does not yet have enough information to warrant magnetic modeling.) Our magnetoconvection models of CM Dra, YY Gem, and CU Cnc yield predictions of the magnetic fluxes on the stellar surface which are consistent with the observed correlation between magnetic flux and X-ray luminosity.
Surface magnetic field strengths: New tests of magnetoconvective models of M dwarfs
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacDonald, James; Mullan, D. J., E-mail: jimmacd@udel.edu, E-mail: mullan@udel.edu
2014-05-20
Precision modeling of M dwarfs has become worthwhile in recent years due to the increasingly precise values of masses and radii which can be obtained from eclipsing binary studies. In a recent paper, Torres has identified four prime M dwarf pairs with the most precise empirical determinations of masses and radii. The measured radii are consistently larger than standard stellar models predict by several percent. These four systems potentially provide the most challenging tests of precision evolutionary models of cool dwarfs at the present time. We have previously modeled M dwarfs in the context of a criterion due to Goughmore » and Tayler in which magnetic fields inhibit the onset of convection according to a physics-based prescription. In the present paper, we apply our magnetoconvective approach to the four prime systems in the Torres list. Going a step beyond what we have already modeled in CM Dra (one of the four Torres systems), we note that new constraints on magnetoconvective models of M dwarfs are now available from empirical estimates of magnetic field strengths on the surfaces of these stars. In the present paper, we consider how well our magnetoconvective models succeed when confronted with this new test of surface magnetic field strengths. Among the systems listed by Torres, we find that plausible magnetic models work well for CM Dra, YY Gem, and CU Cnc. (The fourth system in Torres's list does not yet have enough information to warrant magnetic modeling.) Our magnetoconvection models of CM Dra, YY Gem, and CU Cnc yield predictions of the magnetic fluxes on the stellar surface which are consistent with the observed correlation between magnetic flux and X-ray luminosity.« less
Gravity and magnetic anomaly modeling and correlation using the SPHERE program and Magsat data
NASA Technical Reports Server (NTRS)
Braile, L. W.; Hinze, W. J. (Principal Investigator); Vonfrese, R. R. B.
1980-01-01
The spherical Earth inversion, modeling, and contouring software were tested and modified for processing data in the Southern Hemisphere. Preliminary geologic/tectonic maps and selected cross sections for South and Central America and the Caribbean region are being compiled and as well as gravity and magnetic models for the major geological features of the area. A preliminary gravity model of the Andeas Beniff Zone was constructed so that the density columns east and west of the subducted plates are in approximate isostatic equilibrium. The magnetic anomaly for the corresponding magnetic model of the zone is being computed with the SPHERE program. A test tape containing global magnetic measurements was converted to a tape compatible with Purdue's CDC system. NOO data were screened for periods of high diurnal activity and reduced to anomaly form using the IGS-75 model. Magnetic intensity anomaly profiles were plotted on the conterminous U.S. map using the track lines as the anomaly base level. The transcontinental magnetic high seen in POGO and MAGSAT data is also represented in the NOO data.
The test facility for the short prototypes of the LHC superconducting magnets
NASA Astrophysics Data System (ADS)
Delsolaro, W. Venturini; Arn, A.; Bottura, L.; Giloux, C.; Mompo, R.; Siemko, A.; Walckiers, L.
2002-05-01
The LHC development program relies on cryogenic tests of prototype and model magnets. This vigorous program is pursued in a dedicated test facility based on several vertical cryostats working at superfluid helium temperatures. The performance of the facility is detailed. Goals and test equipment for currently performed studies are reviewed: quench analysis and magnet protection studies, measurement of the field quality, test of ancillary electrical equipment like diodes and busbars. The paper covers the equipment available for tests of prototypes and some special series of LHC magnets to come.
Finite element modelling of non-linear magnetic circuits using Cosmic NASTRAN
NASA Technical Reports Server (NTRS)
Sheerer, T. J.
1986-01-01
The general purpose Finite Element Program COSMIC NASTRAN currently has the ability to model magnetic circuits with constant permeablilities. An approach was developed which, through small modifications to the program, allows modelling of non-linear magnetic devices including soft magnetic materials, permanent magnets and coils. Use of the NASTRAN code resulted in output which can be used for subsequent mechanical analysis using a variation of the same computer model. Test problems were found to produce theoretically verifiable results.
Numerical Study of Magnetic Damping During Unidirectional Solidification
NASA Technical Reports Server (NTRS)
Li, Ben Q.
1997-01-01
A fully 3-D numerical model is developed to represent magnetic damping of complex fluid flow, heat transfer and electromagnetic field distributions in a melt cavity. The model is developed based on our in-house finite element code for the fluid flow, heat transfer and electromagnetic field calculations. The computer code has been tested against benchmark test problems that are solved by other commercial codes as well as analytical solutions whenever available. The numerical model is tested against numerical and experimental results for water reported in literature. With the model so tested, various numerical simulations are carried out for the Sn-35.5% Pb melt convection and temperature distribution in a cylindrical cavity with and without the presence of a transverse magnetic field. Numerical results show that magnetic damping can be effectively applied to reduce turbulence and flow levels in the melt undergoing solidification and over a certain threshold value a higher magnetic field resulted in a higher velocity reduction. It is found also that for a fully 3-D representation of the magnetic damping effects, the electric field induced in the melt by the applied DC magnetic field does not vanish, as some researchers suggested, and must be included even for molten metal and semiconductors. Also, for the study of the melt flow instability, a long enough time has to be applied to ensure the final fluid flow recirculation pattern. Moreover, our numerical results suggested that there seems to exist a threshold value of applied magnetic field, above which magnetic damping becomes possible and below which the convection in the melt is actually enhanced. Because of the limited financial resource allocated for the project, we are unable to carry out extensive study on this effect, which should warrant further theoretical and experimental study. In that endeavor, the developed numerical model should be very useful; and the model should serve as a useful tool for exploring necessary design parameters for planning magnetic damping experiments and interpreting the experimental results.
ERIC Educational Resources Information Center
Saarelainen, M.; Laaksonen, A.; Hirvonen, P. E.
2007-01-01
This study explores undergraduate students' understanding and reasoning models of electric and magnetic fields. The results indicate that the tested students had various alternative concepts in applying their reasoning to certain CSEM test questions. The total number of physics students tested at the beginning of the first course on…
Sun, Eric; Brindza, Paul D.; Lassiter, Steven R.; ...
2016-03-02
Commissioning characteristics of the Superconducting High Momentum Spectrometer (SHMS) Horizontal Bend (HB) magnet was presented. Pre-commissioning peer review of the magnet uncovered issues with eddy currents in the thermal shield, resulting in additional testing and modeling of the magnet. A three-stage test plan was discussed. A solution of using a small dump resistor and a warm thermal shield was presented. Analyses illustrated that it was safe to run the magnet to full test current. As a result, the HB magnet was successfully cooled to 4 K and reached its maximum test current of 4000 A.
Preliminary eddy current modelling for the large angle magnetic suspension test fixture
NASA Technical Reports Server (NTRS)
Britcher, Colin
1994-01-01
This report presents some recent developments in the mathematical modeling of the Large Angle Magnetic Suspension Test Fixture (LAMSTF) at NASA Langley Research Center. It is shown that these effects are significant, but may be amenable to analysis, modeling and measurement. A theoretical framework is presented, together with a comparison of computed and experimental data.
NASA Technical Reports Server (NTRS)
Burlaga, L. F.; Ness, N. F.
1976-01-01
A literature review is presented of theoretical models of the interaction of the solar wind and interplanetary magnetic fields. Observations of interplanetary magnetic fields by the IMP and OSO spacecraft are discussed. The causes for cosmic ray variations (Forbush decreases) by the solar wind are examined. The model of Parker is emphasized. This model shows the three dimensional magnetic field lines of the solar wind to have the form of spirals wrapped on cones. It is concluded that an out-of-the-ecliptic solar probe mission would allow the testing and verification of the various theoretical models examined. Diagrams of the various models are shown.
Magnetic Capture of a Molecular Biomarker from Synovial Fluid in a Rat Model of Knee Osteoarthritis
Yarmola, Elena G.; Shah, Yash; Arnold, David P.; Dobson, Jon; Allen, Kyle D.
2015-01-01
Biomarker development for osteoarthritis (OA) often begins in rodent models, but can be limited by an inability to aspirate synovial fluid from a rodent stifle (similar to the human knee). To address this limitation, we have developed a magnetic nanoparticle-based technology to collect biomarkers from a rodent stifle, termed magnetic capture. Using a common OA biomarker - the c-terminus telopeptide of type II collagen (CTXII) - magnetic capture was optimized in vitro using bovine synovial fluid and then tested in a rat model of knee OA. Anti-CTXII antibodies were conjugated to the surface of superparamagnetic iron oxide-containing polymeric particles. Using these anti-CTXII particles, magnetic capture was able to estimate the level of CTXII in 25 µL aliquots of bovine synovial fluid; and under controlled conditions, this estimate was unaffected by synovial fluid viscosity. Following in vitro testing, anti-CTXII particles were tested in a rat monoiodoacetate model of knee OA. CTXII could be magnetically captured from a rodent stifle without the need to aspirate fluid and showed 10 fold changes in CTXII levels from OA-affected joints relative to contralateral control joints. Combined, these data demonstrate the ability and sensitivity of magnetic capture for post-mortem analysis of OA biomarkers in the rat. PMID:26136062
Magnetic Capture of a Molecular Biomarker from Synovial Fluid in a Rat Model of Knee Osteoarthritis.
Yarmola, Elena G; Shah, Yash; Arnold, David P; Dobson, Jon; Allen, Kyle D
2016-04-01
Biomarker development for osteoarthritis (OA) often begins in rodent models, but can be limited by an inability to aspirate synovial fluid from a rodent stifle (similar to the human knee). To address this limitation, we have developed a magnetic nanoparticle-based technology to collect biomarkers from a rodent stifle, termed magnetic capture. Using a common OA biomarker--the c-terminus telopeptide of type II collagen (CTXII)--magnetic capture was optimized in vitro using bovine synovial fluid and then tested in a rat model of knee OA. Anti-CTXII antibodies were conjugated to the surface of superparamagnetic iron oxide-containing polymeric particles. Using these anti-CTXII particles, magnetic capture was able to estimate the level of CTXII in 25 μL aliquots of bovine synovial fluid; and under controlled conditions, this estimate was unaffected by synovial fluid viscosity. Following in vitro testing, anti-CTXII particles were tested in a rat monoiodoacetate model of knee OA. CTXII could be magnetically captured from a rodent stifle without the need to aspirate fluid and showed tenfold changes in CTXII levels from OA-affected joints relative to contralateral control joints. Combined, these data demonstrate the ability and sensitivity of magnetic capture for post-mortem analysis of OA biomarkers in the rat.
NASA Astrophysics Data System (ADS)
Fleishman, G. D.; Anfinogentov, S.; Loukitcheva, M.; Mysh'yakov, I.; Stupishin, A.
2017-12-01
Measuring and modeling coronal magnetic field, especially above active regions (ARs), remains one of the central problems of solar physics given that the solar coronal magnetism is the key driver of all solar activity. Nowadays the coronal magnetic field is often modelled using methods of nonlinear force-free field reconstruction, whose accuracy has not yet been comprehensively assessed. Given that the coronal magnetic probing is routinely unavailable, only morphological tests have been applied to evaluate performance of the reconstruction methods and a few direct tests using available semi-analytical force-free field solution. Here we report a detailed casting of various tools used for the nonlinear force-free field reconstruction, such as disambiguation methods, photospheric field preprocessing methods, and volume reconstruction methods in a 3D domain using a 3D snapshot of the publicly available full-fledged radiative MHD model. We take advantage of the fact that from the realistic MHD model we know the magnetic field vector distribution in the entire 3D domain, which enables us to perform "voxel-by-voxel" comparison of the restored magnetic field and the true magnetic field in the 3D model volume. Our tests show that the available disambiguation methods often fail at the quiet sun areas, where the magnetic structure is dominated by small-scale magnetic elements, while they work really well at the AR photosphere and (even better) chromosphere. The preprocessing of the photospheric magnetic field, although does produce a more force-free boundary condition, also results in some effective `elevation' of the magnetic field components. The effective `elevation' height turns out to be different for the longitudinal and transverse components of the magnetic field, which results in a systematic error in absolute heights in the reconstructed magnetic data cube. The extrapolation performed starting from actual AR photospheric magnetogram (i.e., without preprocessing) are free from this systematic error, while have other metrics either comparable or only marginally worse than those estimated for extrapolations from the preprocessed magnetograms. This finding favors the use of extrapolations from the original photospheric magnetogram without preprocessing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoynev, S.; et al.
The development ofmore » $$Nb_3Sn$$ quadrupole magnets for the High-Luminosity LHC upgrade is a joint venture between the US LHC Accelerator Research Program (LARP)* and CERN with the goal of fabricating large aperture quadrupoles for the LHC in-teraction regions (IR). The inner triplet (low-β) NbTi quadrupoles in the IR will be replaced by the stronger Nb3Sn magnets boosting the LHC program of having 10-fold increase in integrated luminos-ity after the foreseen upgrades. Previously LARP conducted suc-cessful tests of short and long models with up to 120 mm aperture. The first short 150 mm aperture quadrupole model MQXFS1 was assembled with coils fabricated by both CERN and LARP. The magnet demonstrated strong performance at the Fermilab’s verti-cal magnet test facility reaching the LHC operating limits. This paper reports the latest results from MQXFS1 tests with changed pre-stress levels. The overall magnet performance, including quench training and memory, ramp rate and temperature depend-ence, is also summarized.« less
Mosaic anisotropy model for magnetic interactions in mesostructured crystals
NASA Astrophysics Data System (ADS)
Goldman, Abby R.; Asenath-Smith, Emily; Estroff, Lara A.
2017-10-01
We propose a new model for interpreting the magnetic interactions in crystals with mosaic texture called the mosaic anisotropy (MA) model. We test the MA model using hematite as a model system, comparing mosaic crystals to polycrystals, single crystal nanoparticles, and bulk single crystals. Vibrating sample magnetometry confirms the hypothesis of the MA model that mosaic crystals have larger remanence (Mr/Ms) and coercivity (Hc) compared to polycrystalline or bulk single crystals. By exploring the magnetic properties of mesostructured crystalline materials, we may be able to develop new routes to engineering harder magnets.
Irons, Trevor P.; Hobza, Christopher M.; Steele, Gregory V.; Abraham, Jared D.; Cannia, James C.; Woodward, Duane D.
2012-01-01
Surface nuclear magnetic resonance, a noninvasive geophysical method, measures a signal directly related to the amount of water in the subsurface. This allows for low-cost quantitative estimates of hydraulic parameters. In practice, however, additional factors influence the signal, complicating interpretation. The U.S. Geological Survey, in cooperation with the Central Platte Natural Resources District, evaluated whether hydraulic parameters derived from surface nuclear magnetic resonance data could provide valuable input into groundwater models used for evaluating water-management practices. Two calibration sites in Dawson County, Nebraska, were chosen based on previous detailed hydrogeologic and geophysical investigations. At both sites, surface nuclear magnetic resonance data were collected, and derived parameters were compared with results from four constant-discharge aquifer tests previously conducted at those same sites. Additionally, borehole electromagnetic-induction flowmeter data were analyzed as a less-expensive surrogate for traditional aquifer tests. Building on recent work, a novel surface nuclear magnetic resonance modeling and inversion method was developed that incorporates electrical conductivity and effects due to magnetic-field inhomogeneities, both of which can have a substantial impact on the data. After comparing surface nuclear magnetic resonance inversions at the two calibration sites, the nuclear magnetic-resonance-derived parameters were compared with previously performed aquifer tests in the Central Platte Natural Resources District. This comparison served as a blind test for the developed method. The nuclear magnetic-resonance-derived aquifer parameters were in agreement with results of aquifer tests where the environmental noise allowed data collection and the aquifer test zones overlapped with the surface nuclear magnetic resonance testing. In some cases, the previously performed aquifer tests were not designed fully to characterize the aquifer, and the surface nuclear magnetic resonance was able to provide missing data. In favorable locations, surface nuclear magnetic resonance is able to provide valuable noninvasive information about aquifer parameters and should be a useful tool for groundwater managers in Nebraska.
NASA Astrophysics Data System (ADS)
Liu, Yi; Zhang, He; Liu, Siwei; Lin, Fuchang
2018-05-01
The J-A (Jiles-Atherton) model is widely used to describe the magnetization characteristics of magnetic cores in a low-frequency alternating field. However, this model is deficient in the quantitative analysis of the eddy current loss and residual loss in a high-frequency magnetic field. Based on the decomposition of magnetization intensity, an inverse J-A model is established which uses magnetic flux density B as an input variable. Static and dynamic core losses under high frequency excitation are separated based on the inverse J-A model. Optimized parameters of the inverse J-A model are obtained based on particle swarm optimization. The platform for the pulsed magnetization characteristic test is designed and constructed. The hysteresis curves of ferrite and Fe-based nanocrystalline cores at high magnetization rates are measured. The simulated and measured hysteresis curves are presented and compared. It is found that the inverse J-A model can be used to describe the magnetization characteristics at high magnetization rates and to separate the static loss and dynamic loss accurately.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chlachidze, G.; et al.
2016-08-30
The US LHC Accelerator Research Program (LARP) and CERN combined their efforts in developing Nb3Sn magnets for the High-Luminosity LHC upgrade. The ultimate goal of this collaboration is to fabricate large aperture Nb3Sn quadrupoles for the LHC interaction regions (IR). These magnets will replace the present 70 mm aperture NbTi quadrupole triplets for expected increase of the LHC peak luminosity by a factor of 5. Over the past decade LARP successfully fabricated and tested short and long models of 90 mm and 120 mm aperture Nb3Sn quadrupoles. Recently the first short model of 150 mm diameter quadrupole MQXFS was builtmore » with coils fabricated both by the LARP and CERN. The magnet performance was tested at Fermilab’s vertical magnet test facility. This paper reports the test results, including the quench training at 1.9 K, ramp rate and temperature dependence studies.« less
Testing the Model of Oscillating Magnetic Traps
NASA Astrophysics Data System (ADS)
Szaforz, Ż.; Tomczak, M.
2015-01-01
The aim of this paper is to test the model of oscillating magnetic traps (the OMT model), proposed by Jakimiec and Tomczak ( Solar Phys. 261, 233, 2010). This model describes the process of excitation of quasi-periodic pulsations (QPPs) observed during solar flares. In the OMT model energetic electrons are accelerated within a triangular, cusp-like structure situated between the reconnection point and the top of a flare loop as seen in soft X-rays. We analyzed QPPs in hard X-ray light curves for 23 flares as observed by Yohkoh. Three independent methods were used. We also used hard X-ray images to localize magnetic traps and soft X-ray images to diagnose thermal plasmas inside the traps. We found that the majority of the observed pulsation periods correlates with the diameters of oscillating magnetic traps, as was predicted by the OMT model. We also found that the electron number density of plasma inside the magnetic traps in the time of pulsation disappearance is strongly connected with the pulsation period. We conclude that the observations are consistent with the predictions of the OMT model for the analyzed set of flares.
Finite element model for MOI applications using A-V formulation
NASA Astrophysics Data System (ADS)
Xuan, L.; Shanker, B.; Udpa, L.; Shih, W.; Fitzpatrick, G.
2001-04-01
Magneto-optic imaging (MOI) is a relatively new sensor application of an extension of bubble memory technology to NDT and produce easy-to-interpret, real time analog images. MOI systems use a magneto-optic (MO) sensor to produce analog images of magnetic flux leakage from surface and subsurface defects. The instrument's capability in detecting the relatively weak magnetic fields associated with subsurface defects depends on the sensitivity of the magneto-optic sensor. The availability of a theoretical model that can simulate the MOI system performance is extremely important for optimization of the MOI sensor and hardware system. A nodal finite element model based on magnetic vector potential formulation has been developed for simulating MOI phenomenon. This model has been used for predicting the magnetic fields in simple test geometry with corrosion dome defects. In the case of test samples with multiple discontinuities, a more robust model using the magnetic vector potential Ā and electrical scalar potential V is required. In this paper, a finite element model based on A-V formulation is developed to model complex circumferential crack under aluminum rivets in dimpled countersink.
Studies on laws of stress-magnetization based on magnetic memory testing technique
NASA Astrophysics Data System (ADS)
Ren, Shangkun; Ren, Xianzhi
2018-03-01
Metal magnetic memory (MMM) testing technique is a novel testing method which can early test stress concentration status of ferromagnetic components. Under the different maximum tensile stress, the relationship between the leakage magnetic field of at certain point of cold rolled steel specimen and the tensile stress was measured during the process of loading and unloading by repeated. It shows that when the maximum tensile stress is less than 610 MPa, the relationship between the magnetic induction intensity and the stress is linear; When the maximum tensile stress increase from 610 MPa to 653 MPa of yield point, the relationship between the magnetic induction intensity and the tensile becomes bending line. The location of the extreme point of the bending line will move rapidly from the position of smaller stress to the larger stress position, and the variation of magnetic induction intensity increases rapidly. When the maximum tensile stress is greater than the 653 MPa of yield point, the variation of the magnetic induction intensity remains large, and the position of the extreme point moves very little. In theoretical aspects, tensile stress is to be divided into ordered stress and disordered stress. In the stage of elastic stress, a microscopic model of the order stress magnetization is established, and the conclusions are in good agreement with the experimental data. In the plastic deformation stage, a microscopic model of disordered stress magnetization is established, and the conclusions are in good agreement with the experimental data, too. The research results can provide reference for the accurate quantitative detection and evaluation of metal magnetic memory testing technology.
NASA Technical Reports Server (NTRS)
Britcher, C. P.; Fortescue, P. W.; Allcock, G. A.; Goodyer, M. J.
1979-01-01
The technology which is required to allow the principles of magnetic suspension and balance systems (MSBS) to be applied to the high Reynolds number transonic testing of aircraft models is examined. A test facility is presented as comprising a pressurized transonic cryogenic wind tunnel, with the MSBS providing full six degree of freedom control. The electro-magnets which are superconducting and fed from quiet, bipolar power supplies are examined. A model control system having some self adaptive characteristics is discussed.
Experimental Investigation of a Hall-Current Accelerator. M.S. Thesis
NASA Technical Reports Server (NTRS)
Plank, G. M.
1983-01-01
The Hall-current accelerator is being investigated for use in the 1000-2000 sec. range of specific impulse. Three models of this thruster were tested. The first two models had three permanent magnets to supply the magnetic field and the third model had six magnets to supply the field. The third model thus had approximately twice the magnetic field of the first two. The first and second models differ only in the shape of the magnetic field. All other factors remained the same for the three models except for the anode-cathode distance, which was changed to allow for the three thrusters to have the same magnetic field integral between the anode and the cathode. These Hall thrusters were tested to determine the plasma properties, the beam characteristics, and the thruster characteristics. The thruster operated in three modes: (1) main cathode only, (2) main cathode with neutralizer cathode, and (3) neutralizer cathode only. The plasma properties were measured along an axial line, 1 mm inside the cathode radius, at a distance of 0.2 to 6.2 cm from the anode. Results show that the current used to heat the cathode produced nonuniformities in the magnetic field, hence also in the plasma properties. In a Hall thruster this general design appears to provide the most thrust when operated at a magnetic field less than the maximum value studied.
Testing the new BPS method in some models of nonabelian magnetic monopole
NASA Astrophysics Data System (ADS)
Prasetyo, I.; Atmaja, A. N.; Ramadhan, H. S.
2018-03-01
The proposed method in [Phys. Lett. B768 351-358 (2017)], which can obtain BPS equations of some models of vortices, is used here to see whether it is still usable for some models of magnetic monopole. Other than the standard Yang-Mills-Higgs, here we report that the method is able to give us the BPS equations from two different magnetic monopole models.
Development of a magnetically suspended momentum wheel
NASA Technical Reports Server (NTRS)
Hamilton, S. B.
1973-01-01
An engineering model of a magnetically suspended momentum wheel was designed, fabricated, and tested under laboratory conditions. The basic unit consisted of two magnet bearings, a sculptured aluminum rotor, brushless dc spin motor, and electronics. The magnet bearings, utilizing rare-earth cobltrat-samarium magnets were active radially and passive axially. The results of the program showed that momentum wheels with magnetic bearings are feasible and operable, and that magnetic bearings of this type are capable of being used for applications where high capacity, high stiffness, and low power consumption are required. The tests performed developed criteria for improved performance for future designs.
Fast solver for large scale eddy current non-destructive evaluation problems
NASA Astrophysics Data System (ADS)
Lei, Naiguang
Eddy current testing plays a very important role in non-destructive evaluations of conducting test samples. Based on Faraday's law, an alternating magnetic field source generates induced currents, called eddy currents, in an electrically conducting test specimen. The eddy currents generate induced magnetic fields that oppose the direction of the inducing magnetic field in accordance with Lenz's law. In the presence of discontinuities in material property or defects in the test specimen, the induced eddy current paths are perturbed and the associated magnetic fields can be detected by coils or magnetic field sensors, such as Hall elements or magneto-resistance sensors. Due to the complexity of the test specimen and the inspection environments, the availability of theoretical simulation models is extremely valuable for studying the basic field/flaw interactions in order to obtain a fuller understanding of non-destructive testing phenomena. Theoretical models of the forward problem are also useful for training and validation of automated defect detection systems. Theoretical models generate defect signatures that are expensive to replicate experimentally. In general, modelling methods can be classified into two categories: analytical and numerical. Although analytical approaches offer closed form solution, it is generally not possible to obtain largely due to the complex sample and defect geometries, especially in three-dimensional space. Numerical modelling has become popular with advances in computer technology and computational methods. However, due to the huge time consumption in the case of large scale problems, accelerations/fast solvers are needed to enhance numerical models. This dissertation describes a numerical simulation model for eddy current problems using finite element analysis. Validation of the accuracy of this model is demonstrated via comparison with experimental measurements of steam generator tube wall defects. These simulations generating two-dimension raster scan data typically takes one to two days on a dedicated eight-core PC. A novel direct integral solver for eddy current problems and GPU-based implementation is also investigated in this research to reduce the computational time.
NASA Astrophysics Data System (ADS)
Westphal, Michel; Munschy, Marc
1999-10-01
In order to test the possible saw-tooth behaviour of the Earth's magnetic field during stable polarity intervals, we selected several magnetic profiles over the East Indian Ridge, the Juan de Fuca Ridge and the East Pacific Rise. We then compared the stacked magnetic anomaly profiles with different models. It appears that neither the uniform pattern nor the saw-tooth pattern fully explain the shape of all anomalies. We propose a new magnetic field model with a gradual transition between Gauss and Matuyama periods and smaller intensities for some short episodes.
Advanced optical position sensors for magnetically suspended wind tunnel models
NASA Technical Reports Server (NTRS)
Lafleur, S.
1985-01-01
A major concern to aerodynamicists has been the corruption of wind tunnel test data by model support structures, such as stings or struts. A technique for magnetically suspending wind tunnel models was considered by Tournier and Laurenceau (1957) in order to overcome this problem. This technique is now implemented with the aid of a Large Magnetic Suspension and Balance System (LMSBS) and advanced position sensors for measuring model attitude and position within the test section. Two different optical position sensors are discussed, taking into account a device based on the use of linear CCD arrays, and a device utilizing area CID cameras. Current techniques in image processing have been employed to develop target tracking algorithms capable of subpixel resolution for the sensors. The algorithms are discussed in detail, and some preliminary test results are reported.
Analysis of spatial thermal field in a magnetic bearing
NASA Astrophysics Data System (ADS)
Wajnert, Dawid; Tomczuk, Bronisław
2018-03-01
This paper presents two mathematical models for temperature field analysis in a new hybrid magnetic bearing. Temperature distributions have been calculated using a three dimensional simulation and a two dimensional one. A physical model for temperature testing in the magnetic bearing has been developed. Some results obtained from computer simulations were compared with measurements.
Dynamics of particles accelerated by head-on collisions of two magnetized plasma shocks
NASA Astrophysics Data System (ADS)
Takeuchi, Satoshi
2018-02-01
A kinetic model of the head-on collision of two magnetized plasma shocks is analyzed theoretically and in numerical calculations. When two plasmas with anti-parallel magnetic fields collide, they generate magnetic reconnection and form a motional electric field at the front of the collision region. This field accelerates the particles sandwiched between both shock fronts to extremely high energy. As they accelerate, the particles are bent by the transverse magnetic field crossing the magnetic neutral sheet, and their energy gains are reduced. In the numerical calculations, the dynamics of many test particles were modeled through the relativistic equations of motion. The attainable energy gain was obtained by multiplying three parameters: the propagation speed of the shock, the magnitude of the magnetic field, and the acceleration time of the test particle. This mechanism for generating high-energy particles is applicable over a wide range of spatial scales, from laboratory to interstellar plasmas.
Model of Reconnection of Weakly Stochastic Magnetic Field and its Implications
NASA Astrophysics Data System (ADS)
Lazarian, A.; Vishniac, E. T.
2009-08-01
We discuss the model of magnetic field reconnection in the presence of turbulence introduced by us ten years ago. The model does not require any plasma effects to be involved in order to make the reconnection fast. In fact, it shows that the degree of magnetic field stochasticity controls the reconnection. The turbulence in the model is assumed to be sub-Alfvénic, with the magnetic field only slightly perturbed. This ensures that the reconnection happens in generic astrophysical environments and the model does not appeal to any unphysical concepts, similar to the turbulent magnetic diffusivity concept, which is employed in the kinematic magnetic dynamo. The interest to that model has recently increased due to successful numerical testings of the model predictions. In view of this, we discuss implications of the model, including the first-order Fermi acceleration of cosmic rays, that the model naturally entails, bursts of reconnection, that can be associated with Solar flares, as well as, removal of magnetic flux during star-formation.
Flux-canceling electrodynamic maglev suspension. Part 1: Test fixture design and modeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thompson, M.T.; Thornton, R.D.; Kondoleon, A.
1999-05-01
The design and analysis of a scale-model suspension test facility for magnetic levitation (maglev) is discussed. The authors describe techniques for the design, construction, and testing of a prototype electrodynamic suspension (EDS) levitation system. The viability of future high-temperature superconducting magnet designs for maglev has been investigated with regard to their application to active secondary suspensions. In order to test the viability of a new flux-canceling EDS suspension, a 1/5-scale suspension magnet and guideway was constructed. The suspension was tested by using a high-speed rotating test wheel facility with linear peripheral speed of up to 84 m/s (300 km/h). Amore » set of approximate design tools and scaling laws has been developed in order to evaluate forces and critical velocities in the suspension.« less
Remanent magnetization and three-dimensional density model of the Kentucky anomaly region
NASA Technical Reports Server (NTRS)
1982-01-01
Existing software was modified to handle 3-D density and magnetization models of the Kentucky body and is being tested. Gravity and magnetic anomaly data sets are ready for use. A preliminary block model is under construction using the 1:1,000,000 maps. An x-y grid to overlay the 1:2,500,000 Albers maps and keyed to the 1:1,000,000 scale block models was created. Software was developed to generate a smoothed MAGSAT data set over this grid; this is to be input to an inversion program for generating the regional magnetization map. The regional scale 1:2,500,000 map mosaic is being digitized using previous magnetization models, the U.S. magnetic anomaly map, and regional tectonic maps as a guide.
Testing the Accuracy of Data-driven MHD Simulations of Active Region Evolution and Eruption
NASA Astrophysics Data System (ADS)
Leake, J. E.; Linton, M.; Schuck, P. W.
2017-12-01
Models for the evolution of the solar coronal magnetic field are vital for understanding solar activity, yet the best measurements of the magnetic field lie at the photosphere, necessitating the recent development of coronal models which are "data-driven" at the photosphere. Using magnetohydrodynamic simulations of active region formation and our recently created validation framework we investigate the source of errors in data-driven models that use surface measurements of the magnetic field, and derived MHD quantities, to model the coronal magnetic field. The primary sources of errors in these studies are the temporal and spatial resolution of the surface measurements. We will discuss the implications of theses studies for accurately modeling the build up and release of coronal magnetic energy based on photospheric magnetic field observations.
NASA Astrophysics Data System (ADS)
Carman, Gregory P.
2015-09-01
Electromagnetic devices rely on electrical currents to generate magnetic fields. While extremely useful this approach has limitations in the small-scale. To overcome the scaling problem, researchers have tried to use electric fields to manipulate a magnetic material's intrinsic magnetization (i.e. multiferroic). The strain mediated class of multiferroics offers up to 70% of energy transduction using available piezoelectric and magnetoelastic materials. While strain mediated multiferroic is promising, few studies exist on modeling/testing of nanoscale magnetic structures. This talk presents motivation, analytical models, and experimental data on electrical control of nanoscale single magnetic domain structures. This research is conducted in a NSF Engineering Research Center entitled Translational Applications for Nanoscale Multiferroics TANMS. The models combine micromagnetics (Landau-Lifshitz-Gilbert) with elastodynamics using the electrostatic approximation producing eight fully coupled nonlinear partial differential equations. Qualitative and quantitative verification is achieved with direct comparison to experimental data. The modeling effort guides fabrication and testing on three elements, i.e. nanoscale rings (onion states), ellipses (single domain reorientation), and superparamagnetic elements. Experimental results demonstrate electrical and deterministic control of the magnetic states in the 5-500 nm structures as measured with Photoemission Electron Microscopy PEEM, Magnetic Force Microscopy MFM, or Lorentz Transmission Electron Microscopy TEM. These data strongly suggests efficient control of nanoscale magnetic spin states is possible with voltage.
Mabray, Marc C; Lillaney, Prasheel; Sze, Chia-Hung; Losey, Aaron D; Yang, Jeffrey; Kondapavulur, Sravani; Liu, Derek; Saeed, Maythem; Patel, Anand; Cooke, Daniel; Jun, Young-Wook; El-Sayed, Ivan; Wilson, Mark; Hetts, Steven W
2016-03-01
To establish that a magnetic device designed for intravascular use can bind small iron particles in physiologic flow models. Uncoated iron oxide particles 50-100 nm and 1-5 µm in size were tested in a water flow chamber over a period of 10 minutes without a magnet (ie, control) and with large and small prototype magnets. These same particles and 1-µm carboxylic acid-coated iron oxide beads were likewise tested in a serum flow chamber model without a magnet (ie, control) and with the small prototype magnet. Particles were successfully captured from solution. Particle concentrations in solution decreased in all experiments (P < .05 vs matched control runs). At 10 minutes, concentrations were 98% (50-100-nm particles in water with a large magnet), 97% (50-100-nm particles in water with a small magnet), 99% (1-5-µm particles in water with a large magnet), 99% (1-5-µm particles in water with a small magnet), 95% (50-100-nm particles in serum with a small magnet), 92% (1-5-µm particles in serum with a small magnet), and 75% (1-µm coated beads in serum with a small magnet) lower compared with matched control runs. This study demonstrates the concept of magnetic capture of small iron oxide particles in physiologic flow models by using a small wire-mounted magnetic filter designed for intravascular use. Copyright © 2016 SIR. Published by Elsevier Inc. All rights reserved.
The reduction, verification and interpretation of MAGSAT magnetic data over Canada
NASA Technical Reports Server (NTRS)
Coles, R. L. (Principal Investigator); Haines, G. V.; Vanbeek, G. J.; Walker, J. K.; Newitt, L. R.
1982-01-01
Consideration is being given to representing the magnetic field in the area 40 deg N to 83 deg N by means of functions in spherical coordinates. A solution to Laplace's equation for the magnetic potential over a restricted area was found, and programming and testing are currently being carried out. Magnetic anomaly modelling is proceeding. The program SPHERE, which was adapted to function correctly on the Cyber computer, is now operational, for deriving gravity and magnetic models in a spherical coordinate system.
ON HIGHLY CLUMPED MAGNETIC WIND MODELS FOR COOL EVOLVED STARS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harper, G. M.
2010-09-10
Recently, it has been proposed that the winds of non-pulsating and non-dusty K and M giants and supergiants may be driven by some form of magnetic pressure acting on highly clumped wind material. While many researchers believe that magnetic processes are responsible for cool evolved stellar winds, existing MHD and Alfven wave-driven wind models have magnetic fields that are essentially radial and tied to the photosphere. The clumped magnetic wind scenario is quite different in that the magnetic flux is also being carried away from the star with the wind. We test this clumped wind hypothesis by computing continuum radiomore » fluxes from the {zeta} Aur semiempirical model of Baade et al., which is based on wind-scattered line profiles. The radio continuum opacity is proportional to the electron density squared, while the line scattering opacity is proportional to the gas density. This difference in proportionality provides a test for the presence of large clumping factors. We derive the radial distribution of clump factors (CFs) for {zeta} Aur by comparing the nonthermal pressures required to produce the semiempirical velocity distribution with the expected thermal pressures. The CFs are {approx}5 throughout the sub-sonic inner wind region and then decline outward. These implied clumping factors lead to excess radio emission at 2.0 cm, while at 6.2 cm it improves agreement with the smooth unclumped model. Smaller clumping factors of {approx}2 lead to better overall agreement but also increase the discrepancy at 2 cm. These results do not support the magnetic clumped wind hypothesis and instead suggest that inherent uncertainties in the underlying semiempirical model probably dominate uncertainties in predicted radio fluxes. However, new ultraviolet line and radio continuum observations are needed to test the new generations of inhomogeneous magnetohydrodynamic wind models.« less
Mbengue, Serigne Saliou; Buiron, Nicolas; Lanfranchi, Vincent
2016-04-16
During the manufacturing process and use of ferromagnetic sheets, operations such as rolling, cutting, and tightening induce anisotropy that changes the material's behavior. Consequently for more accuracy in magnetization and magnetostriction calculations in electric devices such as transformers, anisotropic effects should be considered. In the following sections, we give an overview of a macroscopic model which takes into account the magnetic and magnetoelastic anisotropy of the material for both magnetization and magnetostriction computing. Firstly, a comparison between the model results and measurements from a Single Sheet Tester (SST) and values will be shown. Secondly, the model is integrated in a finite elements code to predict magnetostrictive deformation of an in-house test bench which is a stack of 40 sheets glued together by the Vacuum-Pressure Impregnation (VPI) method. Measurements on the test bench and Finite Elements results are presented.
Test Result of the Short Models MQXFS3 and MQXFS5 for the HL-LHC Upgrade
Bajas, Hugues; Ambrosio, Giorgio; Ballarino, A.; ...
2018-02-27
In the framework of the High-Luminosity Large Hadron Collider, the installation of a new generation of quadrupole magnets is foreseen on each side of ATLAS and CMS experiments. The new magnets are based on Nbmore » $$_{3}$$Sn technology and shall be able to reach an ultimate current of 17.9 kA with a peak field of 12.3 T in the coil. In 2016 and 2017, the first two short models, called MQXFS3 and MQXFS5, have been tested at 4.2 and 1.9 K in the two new test benches at the European Organization for Nuclear Research. This paper presents the result of the quench performance of the two models; the first magnet reached nominal but failed to reach ultimate, showing detraining in one coil. MQXFS5 reached ultimate performance without any detraining phenomena, validating the PIT conductor used for the first time in this magnet program.« less
Test Result of the Short Models MQXFS3 and MQXFS5 for the HL-LHC Upgrade
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bajas, Hugues; Ambrosio, Giorgio; Ballarino, A.
In the framework of the High-Luminosity Large Hadron Collider, the installation of a new generation of quadrupole magnets is foreseen on each side of ATLAS and CMS experiments. The new magnets are based on Nbmore » $$_{3}$$Sn technology and shall be able to reach an ultimate current of 17.9 kA with a peak field of 12.3 T in the coil. In 2016 and 2017, the first two short models, called MQXFS3 and MQXFS5, have been tested at 4.2 and 1.9 K in the two new test benches at the European Organization for Nuclear Research. This paper presents the result of the quench performance of the two models; the first magnet reached nominal but failed to reach ultimate, showing detraining in one coil. MQXFS5 reached ultimate performance without any detraining phenomena, validating the PIT conductor used for the first time in this magnet program.« less
Testing a new flux rope model using the HELCATS CME catalogue
NASA Astrophysics Data System (ADS)
Rouillard, Alexis Paul; Lavarra, Michael
2017-04-01
We present a magnetically-driven flux rope model that computes the forces acting on a twisted magnetic flux rope from the Sun to 1AU. This model assumes a more realistic flux rope geometry than assumed before by these types of models. The balance of force is computed in an analogous manner to the well-known Chen flux-rope model. The 3-D vector components of the magnetic field measured by a probe flying through the flux rope can be extracted for any flux rope orientation imposed near the Sun. We test this model through a parametric study and a systematic comparison of the model with the HELCATS catalogues (imagery and in situ). We also report on our investigations of other physical mechanisms such as the shift of flux-surfaces associated with the magnetic forces acting to accelerate the flux rope from the lower to upper corona. Finally, we present an evaluation of this model for space-weather predictions. This work was partly funded by the HELCATS project under the FP7 EU contract number 606692.
Active Tensor Magnetic Gradiometer System
2007-11-01
Modify Forward Computer Models .............................................................................................2 Modify TMGS Simulator...active magnetic gradient measurement system are based upon the existing tensor magnetic gradiometer system ( TMGS ) developed under project MM-1328...Magnetic Gradiometer System ( TMGS ) for UXO Detection, Imaging, and Discrimination.” The TMGS developed under MM-1328 was successfully tested at the
Modeling Instruction in AP Physics C: Mechanics and Electricity and Magnetism
NASA Astrophysics Data System (ADS)
Belcher, Nathan Tillman
This action research study used data from multiple assessments in Mechanics and Electricity and Magnetism to determine the viability of Modeling Instruction as a pedagogy for students in AP Physics C: Mechanics and Electricity and Magnetism. Modeling Instruction is a guided-inquiry approach to teaching science in which students progress through the Modeling Cycle to develop a fully-constructed model for a scientific concept. AP Physics C: Mechanics and Electricity and Magnetism are calculus-based physics courses, approximately equivalent to first-year calculus-based physics courses at the collegiate level. Using a one-group pretest-posttest design, students were assessed in Mechanics using the Force Concept Inventory, Mechanics Baseline Test, and 2015 AP Physics C: Mechanics Practice Exam. With the same design, students were assessed in Electricity and Magnetism on the Brief Electricity and Magnetism Assessment, Electricity and Magnetism Conceptual Assessment, and 2015 AP Physics C: Electricity and Magnetism Practice Exam. In a one-shot case study design, student scores were collected from the 2017 AP Physics C: Mechanics and Electricity and Magnetism Exams. Students performed moderately well on the assessments in Mechanics and Electricity and Magnetism, demonstrating that Modeling Instruction is a viable pedagogy in AP Physics C: Electricity and Magnetism.
NASA Technical Reports Server (NTRS)
Fulton, J. P.; Wincheski, B.; Namkung, M.; Utrata, D.
1992-01-01
The magnetoacoustic measurement technique has been used successfully for residual stress measurements in laboratory samples. However, when used to field test samples with complex geometries, such as railroad wheels, the sensitivity of the method declines dramatically. It has been suggested that the decrease in performance may be due, in part, to an insufficient or nonuniform magnetic induction in the test sample. The purpose of this paper is to optimize the test conditions by using finite element modeling to predict the distribution of the induced bulk magnetization of railroad wheels. The results suggest that it is possible to obtain a sufficiently large and uniform bulk magnetization by altering the shape of the electromagnet used in the tests. Consequently, problems associated with bulk magnetization can be overcome, and should not prohibit the magnetoacoustic technique from being used to make residual stress measurements in railroad wheels. We begin by giving a brief overview of the magnetoacoustic technique as it applies to residual stress measurements of railroad wheels. We then define the finite element model used to predict the behavior of the current test configuration along with the nonlinear constitutive relations which we obtained experimentally through measurements on materials typically used to construct both railroad wheels and electromagnets. Finally, we show that by modifying the pole of the electromagnet it is possible to obtain a significantly more uniform bulk magnetization in the region of interest.
Fast Magnetotail Reconnection: Challenge to Global MHD Modeling
NASA Astrophysics Data System (ADS)
Kuznetsova, M. M.; Hesse, M.; Rastaetter, L.; Toth, G.; de Zeeuw, D.; Gombosi, T.
2005-05-01
Representation of fast magnetotail reconnection rates during substorm onset is one of the major challenges to global MHD modeling. Our previous comparative study of collisionless magnetic reconnection in GEM Challenge geometry demonstrated that the reconnection rate is controlled by ion nongyrotropic behavior near the reconnection site and that it can be described in terms of nongyrotropic corrections to the magnetic induction equation. To further test the approach we performed MHD simulations with nongyrotropic corrections of forced reconnection for the Newton Challenge setup. As a next step we employ the global MHD code BATSRUS and test different methods to model fast magnetotail reconnection rates by introducing non-ideal corrections to the induction equation in terms of nongyrotropic corrections, spatially localized resistivity, or current dependent resistivity. The BATSRUS adaptive grid structure allows to perform global simulations with spatial resolution near the reconnection site comparable with spatial resolution of local MHD simulations for the Newton Challenge. We select solar wind conditions which drive the accumulation of magnetic field in the tail lobes and subsequent magnetic reconnection and energy release. Testing the ability of global MHD models to describe magnetotail evolution during substroms is one of the elements of science based validation efforts at the Community Coordinated Modeling Center.
Magnetic shielding and vacuum test for passive hydrogen masers
NASA Technical Reports Server (NTRS)
Gubser, D. U.; Wolf, S. A.; Jacoby, A. B.; Jones, L. D.
1982-01-01
Vibration tests on high permeability magnetic shields used in the SAO-NRL Advanced Development Model (ADM) hydrogen maser were made. Magnetic shielding factors were measured before and after vibration. Preliminary results indicate considerable (25%) degradation. Test results on the NRL designed vacuum pumping station for the ADM hydrogen maser are also discussed. This system employs sintered zirconium carbon getter pumps to pump hydrogen plus small ion pumps to pump the inert gases. In situ activation tests and pumping characteristics indicate that the system can meet design specifications.
Discharge Chamber Primary Electron Modeling Activities in Three-Dimensions
NASA Technical Reports Server (NTRS)
Steuber, Thomas J.
2004-01-01
Designing discharge chambers for ion thrusters involves many geometric configuration decisions. Various decisions will impact discharge chamber performance with respect to propellant utilization efficiency, ion production costs, and grid lifetime. These hardware design decisions can benefit from the assistance of computational modeling. Computational modeling for discharge chambers has been limited to two-dimensional codes that leveraged symmetry for interpretation into three-dimensional analysis. This paper presents model development activities towards a three-dimensional discharge chamber simulation to aid discharge chamber design decisions. Specifically, of the many geometric configuration decisions toward attainment of a worthy discharge chamber, this paper focuses on addressing magnetic circuit considerations with a three-dimensional discharge chamber simulation as a tool. With this tool, candidate discharge chamber magnetic circuit designs can be analyzed computationally to gain insight into factors that may influence discharge chamber performance such as: primary electron loss width in magnetic cusps, cathode tip position with respect to the low magnetic field volume, definition of a low magnetic field region, and maintenance of a low magnetic field region across the grid span. Corroborating experimental data will be obtained from mockup hardware tests. Initially, simulated candidate magnetic circuit designs will resemble previous successful thruster designs. To provide opportunity to improve beyond previous performance benchmarks, off-design modifications will be simulated and experimentally tested.
NASA Technical Reports Server (NTRS)
Britcher, Colin P.; Foster, Lucas E.
1994-01-01
A small-scale laboratory magnetic suspension system, the Large Angle Magnetic Suspension Test Fixture (LAMSTF) has been constructed at NASA Langley Research Center. This paper first presents some recent developments in the mathematical modelling of the system, particularly in the area of eddy current effects. It is shown that these effects are significant, but may be amenable to modelling and measurement. Next, a theoretical framework is presented, together with a comparison of computed and experimental data. Finally, some control aspects are discussed, together with illustration that the major design objective of LAMSTF - a controlled 360 deg rotation about the vertical axis, has been accomplished.
Measurements of Dynamic Effects in FNAL 11 T Nb 3Sn Dipole Models
Velev, Gueorgui; Strauss, Thomas; Barzi, Emanuela; ...
2018-01-17
Fermilab, in collaboration with CERN, has developed a twin-aperture 11 T Nb 3Sn dipole suitable for the high-luminosity LHC upgrade. During 2012-2014, a 2-m long single-aperture dipole demonstrator and three 1-m long single-aperture dipole models were fabricated by FNAL and tested at its Vertical Magnet Test Facility. Collared coils from two of the 1-m long models were then used to assemble the first twin-aperture dipole demonstrator. This magnet had extensive testing in 2015-2016, including quench performance, quench protection, and field quality studies. Here, this paper reports the results of measurements of persistent current effects in the single-aperture and twin-aperture 11more » T Nb 3Sn dipoles and compares them with similar measurements in previous NbTi magnets« less
Measurements of Dynamic Effects in FNAL 11 T Nb 3Sn Dipole Models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Velev, Gueorgui; Strauss, Thomas; Barzi, Emanuela
Fermilab, in collaboration with CERN, has developed a twin-aperture 11 T Nb 3Sn dipole suitable for the high-luminosity LHC upgrade. During 2012-2014, a 2-m long single-aperture dipole demonstrator and three 1-m long single-aperture dipole models were fabricated by FNAL and tested at its Vertical Magnet Test Facility. Collared coils from two of the 1-m long models were then used to assemble the first twin-aperture dipole demonstrator. This magnet had extensive testing in 2015-2016, including quench performance, quench protection, and field quality studies. Here, this paper reports the results of measurements of persistent current effects in the single-aperture and twin-aperture 11more » T Nb 3Sn dipoles and compares them with similar measurements in previous NbTi magnets« less
A microprocessor-based table lookup approach for magnetic bearing linearization
NASA Technical Reports Server (NTRS)
Groom, N. J.; Miller, J. B.
1981-01-01
An approach for producing a linear transfer characteristic between force command and force output of a magnetic bearing actuator without flux biasing is presented. The approach is microprocessor based and uses a table lookup to generate drive signals for the magnetic bearing power driver. An experimental test setup used to demonstrate the feasibility of the approach is described, and test results are presented. The test setup contains bearing elements similar to those used in a laboratory model annular momentum control device.
Mabray, Marc C.; Lillaney, Prasheel; Sze, Chia-Hung; Losey, Aaron D.; Yang, Jeffrey; Kondapavulur, Sravani; Liu, Derek; Saeed, Maythem; Patel, Anand; Cooke, Daniel; Jun, Young-Wook; El-Sayed, Ivan; Wilson, Mark; Hetts, Steven W.
2015-01-01
Purpose To establish that a magnetic device designed for intravascular use can bind small iron particles in physiologic flow models. Materials and Methods Uncoated iron oxide particles 50–100 nm and 1–5 μm in size were tested in a water flow chamber over a period of 10 minutes without a magnet (ie, control) and with large and small prototype magnets. These same particles and 1-μm carboxylic acid–coated iron oxide beads were likewise tested in a serum flow chamber model without a magnet (ie, control) and with the small prototype magnet. Results Particles were successfully captured from solution. Particle concentrations in solution decreased in all experiments (P < .05 vs matched control runs). At 10 minutes, concentrations were 98% (50–100-nm particles in water with a large magnet), 97% (50–100-nm particles in water with a small magnet), 99% (1–5-μm particles in water with a large magnet), 99% (1–5-μm particles in water with a small magnet), 95% (50–100-nm particles in serum with a small magnet), 92% (1–5-μm particles in serum with a small magnet), and 75% (1-μm coated beads in serum with a small magnet) lower compared with matched control runs. Conclusions This study demonstrates the concept of magnetic capture of small iron oxide particles in physiologic flow models by using a small wire-mounted magnetic filter designed for intravascular use. PMID:26706187
Analysis and interpretation of MAGSAT anomalies over north Africa
NASA Technical Reports Server (NTRS)
Phillips, R. J.
1985-01-01
Crustal anomaly detection with MAGSAT data is frustrated by inherent resolving power of the data and by contamination from external and core fields. Quality of the data might be tested by modeling specific tectonic features which produce anomalies that fall within proposed resolution and crustal amplitude capabilities of MAGSAT fields. To test this hypothesis, north African hotspots associated with Ahaggar, Tibesti and Darfur were modeled as magnetic induction anomalies. MAGSAT data were reduced by subtracting external and core fields to isolate scalar and vertical component crustal signals. Of the three volcanic areas, only the Ahaggar region had an associated anomaly of magnitude above error limits of the data. Hotspot hypothesis was tested for Ahaggar by seeing if predicted magnetic signal matched MAGSAT anomaly. Predicted model magnetic signal arising from surface topography of the uplift and the Curie isothermal surface was calculated at MAGSAT altitudes by Fourier transform technique modified to allow for variable magnetization. Curie isotherm surface was calculated using a method for temperature distribution in a moving plate above a fixed hotspot. Magnetic signal was calculated for a fixed plate as well as a number of plate velocities and directions.
A stochastic approach to uncertainty in the equations of MHD kinematics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phillips, Edward G., E-mail: egphillips@math.umd.edu; Elman, Howard C., E-mail: elman@cs.umd.edu
2015-03-01
The magnetohydrodynamic (MHD) kinematics model describes the electromagnetic behavior of an electrically conducting fluid when its hydrodynamic properties are assumed to be known. In particular, the MHD kinematics equations can be used to simulate the magnetic field induced by a given velocity field. While prescribing the velocity field leads to a simpler model than the fully coupled MHD system, this may introduce some epistemic uncertainty into the model. If the velocity of a physical system is not known with certainty, the magnetic field obtained from the model may not be reflective of the magnetic field seen in experiments. Additionally, uncertaintymore » in physical parameters such as the magnetic resistivity may affect the reliability of predictions obtained from this model. By modeling the velocity and the resistivity as random variables in the MHD kinematics model, we seek to quantify the effects of uncertainty in these fields on the induced magnetic field. We develop stochastic expressions for these quantities and investigate their impact within a finite element discretization of the kinematics equations. We obtain mean and variance data through Monte Carlo simulation for several test problems. Toward this end, we develop and test an efficient block preconditioner for the linear systems arising from the discretized equations.« less
Design concepts and cost studies for magnetic suspension and balance systems. [wind tunnel apparatus
NASA Technical Reports Server (NTRS)
Bloom, H. L.
1982-01-01
The application of superconducting magnets for suspension and balance of wind tunnel models was studied. Conceptual designs are presented for magnetic suspension and balance system (MSBS) configurations compatible with three high Reynolds number cases representing specified combinations of test conditions and model sizes. Concepts in general met initially specified performance requirements such as duty cycle, force and moment levels, model angular displacement and positioning accuracy with nominal design requirements for support subsystems. Other performance requirements, such as forced model sinusoidal oscillations, and control force magnitude and frequency, were modified so as to alleviate the magnitude of magnet, power, and cryogenic design requirements.
NASA Astrophysics Data System (ADS)
Barnsley, Lester C.; Carugo, Dario; Aron, Miles; Stride, Eleanor
2017-03-01
The aim of this study was to characterize the behaviour of superparamagnetic particles in magnetic drug targeting (MDT) schemes. A 3-dimensional mathematical model was developed, based on the analytical derivation of the trajectory of a magnetized particle suspended inside a fluid channel carrying laminar flow and in the vicinity of an external source of magnetic force. Semi-analytical expressions to quantify the proportion of captured particles, and their relative accumulation (concentration) as a function of distance along the wall of the channel were also derived. These were expressed in terms of a non-dimensional ratio of the relevant physical and physiological parameters corresponding to a given MDT protocol. The ability of the analytical model to assess magnetic targeting schemes was tested against numerical simulations of particle trajectories. The semi-analytical expressions were found to provide good first-order approximations for the performance of MDT systems in which the magnetic force is relatively constant over a large spatial range. The numerical model was then used to test the suitability of a range of different designs of permanent magnet assemblies for MDT. The results indicated that magnetic arrays that emit a strong magnetic force that varies rapidly over a confined spatial range are the most suitable for concentrating magnetic particles in a localized region. By comparison, commonly used magnet geometries such as button magnets and linear Halbach arrays result in distributions of accumulated particles that are less efficient for delivery. The trajectories predicted by the numerical model were verified experimentally by acoustically focusing magnetic microbeads flowing in a glass capillary channel, and optically tracking their path past a high field gradient Halbach array.
Digital control analysis and design of a field-sensed magnetic suspension system.
Li, Jen-Hsing; Chiou, Juing-Shian
2015-03-13
Magnetic suspension systems are mechatronic systems and crucial in several engineering applications, such as the levitation of high-speed trains, frictionless bearings, and wind tunnels. Magnetic suspension systems are nonlinear and unstable systems; therefore, they are suitable educational benchmarks for testing various modeling and control methods. This paper presents the digital modeling and control of magnetic suspension systems. First, the magnetic suspension system is stabilized using a digital proportional-derivative controller. Subsequently, the digital model is identified using recursive algorithms. Finally, a digital mixed linear quadratic regulator (LQR)/H∞ control is adopted to stabilize the magnetic suspension system robustly. Simulation examples and a real-world example are provided to demonstrate the practicality of the study results. In this study, a digital magnetic suspension system model was developed and reviewed. In addition, equivalent state and output feedback controls for magnetic suspension systems were developed. Using this method, the controller design for magnetic suspension systems was simplified, which is the novel contribution of this study. In addition, this paper proposes a complete digital controller design procedure for magnetic suspension systems.
The forward modelling and analysis of magnetic field on the East Asia area using tesseroids
NASA Astrophysics Data System (ADS)
Chen, Z.; Meng, X.; Xu, G.
2017-12-01
As the progress of airborne and satellite magnetic survey, high-resolution magnetic data could be measured at different scale. In order to test and improve the accuracy of the existing crustal model, the forward modeling method is usually used to simulate the magnetic field of the lithosphere. Traditional models to forward modelling the magnetic field are based on the Cartesian coordinate system, and are always used to calculate the magnetic field of the local and small area. However, the Cartesian coordinate system is not an ideal choice for calculating the magnetic field of the global or continental area at the height of the satellite and Earth's curvature cannot be ignored in this situation. The spherical element (called tesseroids) can be used as a model element in the spherical coordinate system to solve this problem. On the basis of studying the principle of this forward method, we focus the selection of data source and the mechanism of adaptive integration. Then we calculate the magnetic anomaly data of East Asia area based on the model Crust1.0. The results presented the crustal susceptibility distribution, which was well consistent with the basic tectonic features in the study area.
Experimental measurement and calculation of losses in planar radial magnetic bearings
NASA Technical Reports Server (NTRS)
Kasarda, M. E. F.; Allaire, P. E.; Hope, R. W.; Humphris, R. R.
1994-01-01
The loss mechanisms associated with magnetic bearings have yet to be adequately characterized or modeled analytically and thus pose a problem for the designer of magnetic bearings. This problem is particularly important for aerospace applications where low power consumption of components is critical. Also, losses are expected to be large for high speed operation. The iron losses in magnetic bearings can be divided into eddy current losses and hysteresis losses. While theoretical models for these losses exist for transformer and electric motor applications, they have not been verified for magnetic bearings. This paper presents the results from a low speed experimental test rig and compares them to calculated values from existing theory. Experimental data was taken over a range of 90 to 2,800 rpm for several bias currents and two different pole configurations. With certain assumptions agreement between measured and calculated power losses was within 16 percent for a number of test configurations.
Casting the Coronal Magnetic Field Reconstruction Tools in 3D Using the MHD Bifrost Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fleishman, Gregory D.; Loukitcheva, Maria; Anfinogentov, Sergey
Quantifying the coronal magnetic field remains a central problem in solar physics. Nowadays, the coronal magnetic field is often modeled using nonlinear force-free field (NLFFF) reconstructions, whose accuracy has not yet been comprehensively assessed. Here we perform a detailed casting of the NLFFF reconstruction tools, such as π -disambiguation, photospheric field preprocessing, and volume reconstruction methods, using a 3D snapshot of the publicly available full-fledged radiative MHD model. Specifically, from the MHD model, we know the magnetic field vector in the entire 3D domain, which enables us to perform a “voxel-by-voxel” comparison of the restored and the true magnetic fieldsmore » in the 3D model volume. Our tests show that the available π -disambiguation methods often fail in the quiet-Sun areas dominated by small-scale magnetic elements, while they work well in the active region (AR) photosphere and (even better) chromosphere. The preprocessing of the photospheric magnetic field, although it does produce a more force-free boundary condition, also results in some effective “elevation” of the magnetic field components. This “elevation” height is different for the longitudinal and transverse components, which results in a systematic error in absolute heights in the reconstructed magnetic data cube. The extrapolations performed starting from the actual AR photospheric magnetogram are free from this systematic error, while other metrics are comparable with those for extrapolations from the preprocessed magnetograms. This finding favors the use of extrapolations from the original photospheric magnetogram without preprocessing. Our tests further suggest that extrapolations from a force-free chromospheric boundary produce measurably better results than those from a photospheric boundary.« less
NASA Technical Reports Server (NTRS)
2004-01-01
This image of a model capture magnet was taken after an experiment in a Mars simulation chamber at the University of Aarhus, Denmark. It has some dust on it, but not as much as that on the Mars Exploration Rover Spirit's capture magnet. The capture and filter magnets on both Mars Exploration Rovers were delivered by the magnetic properties team at the Center for Planetary Science, Copenhagen, Denmark.Fabrication, Testing and Modeling of the MICE Superconducting Spectrometer Solenoids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Virostek, S.P.; Green, M.A.; Trillaud, F.
2010-05-16
The Muon Ionization Cooling Experiment (MICE), an international collaboration sited at Rutherford Appleton Laboratory in the UK, will demonstrate ionization cooling in a section of realistic cooling channel using a muon beam. A five-coil superconducting spectrometer solenoid magnet will provide a 4 tesla uniform field region at each end of the cooling channel. Scintillating fiber trackers within the 400 mm diameter magnet bore tubes measure the emittance of the beam as it enters and exits the cooling channel. Each of the identical 3-meter long magnets incorporates a three-coil spectrometer magnet section and a two-coil section to match the solenoid uniformmore » field into the other magnets of the MICE cooling channel. The cold mass, radiation shield and leads are currently kept cold by means of three two-stage cryocoolers and one single-stage cryocooler. Liquid helium within the cold mass is maintained by means of a re-condensation technique. After incorporating several design changes to improve the magnet cooling and reliability, the fabrication and acceptance testing of the spectrometer solenoids have proceeded. The key features of the spectrometer solenoid magnets, the development of a thermal model, the results of the recently completed tests, and the current status of the project are presented.« less
NASA Technical Reports Server (NTRS)
Free, April M.; Flowers, George T.; Trent, Victor S.
1995-01-01
Auxiliary bearings are a critical feature of any magnetic bearing system. They protect the soft iron core of the magnetic bearing during an overload or failure. An auxiliary bearing typically consists of a rolling element bearing or bushing with a clearance gap between the rotor and the inner race of the support. The dynamics of such systems can be quite complex. It is desired to develop a rotordynamic model which describes the dynamic behavior of a flexible rotor system with magnetic bearings including auxiliary bearings. The model is based upon an experimental test facility. Some simulation studies are presented to illustrate the behavior of the model. In particular, the effects of introducing sideloading from the magnetic bearing when one coil fails is studied.
Rotordynamic Modelling and Response Characteristics of an Active Magnetic Bearing Rotor System
NASA Technical Reports Server (NTRS)
Free, April M.; Flowers, George T.; Trent, Victor S.
1996-01-01
Auxiliary bearings are a critical feature of any magnetic bearing system. They protect the soft iron core of the magnetic bearing during an overload or failure. An auxiliary bearing typically consists of a rolling element bearing or bushing with a clearance gap between the rotor and the inner race of the support. The dynamics of such systems can be quite complex. It is desired to develop a rotordynamic model which describes the dynamic behavior of a flexible rotor system with magnetic bearings including auxiliary bearings. The model is based upon an experimental test facility. Some simulation studies are presented to illustrate the behavior of the model. In particular, the effects of introducing sideloading from the magnetic bearing when one coil fails is studied. These results are presented and discussed.
Image-optimized Coronal Magnetic Field Models
NASA Astrophysics Data System (ADS)
Jones, Shaela I.; Uritsky, Vadim; Davila, Joseph M.
2017-08-01
We have reported previously on a new method we are developing for using image-based information to improve global coronal magnetic field models. In that work, we presented early tests of the method, which proved its capability to improve global models based on flawed synoptic magnetograms, given excellent constraints on the field in the model volume. In this follow-up paper, we present the results of similar tests given field constraints of a nature that could realistically be obtained from quality white-light coronagraph images of the lower corona. We pay particular attention to difficulties associated with the line-of-sight projection of features outside of the assumed coronagraph image plane and the effect on the outcome of the optimization of errors in the localization of constraints. We find that substantial improvement in the model field can be achieved with these types of constraints, even when magnetic features in the images are located outside of the image plane.
Image-Optimized Coronal Magnetic Field Models
NASA Technical Reports Server (NTRS)
Jones, Shaela I.; Uritsky, Vadim; Davila, Joseph M.
2017-01-01
We have reported previously on a new method we are developing for using image-based information to improve global coronal magnetic field models. In that work we presented early tests of the method which proved its capability to improve global models based on flawed synoptic magnetograms, given excellent constraints on the field in the model volume. In this follow-up paper we present the results of similar tests given field constraints of a nature that could realistically be obtained from quality white-light coronagraph images of the lower corona. We pay particular attention to difficulties associated with the line-of-sight projection of features outside of the assumed coronagraph image plane, and the effect on the outcome of the optimization of errors in localization of constraints. We find that substantial improvement in the model field can be achieved with this type of constraints, even when magnetic features in the images are located outside of the image plane.
NASA Astrophysics Data System (ADS)
Wang, R.; Demerdash, N. A.
1992-06-01
The combined magnetic vector potential - magnetic scalar potential method of computation of 3D magnetic fields by finite elements, introduced in a companion paper, is used for global 3D field analysis and machine performance computations under open-circuit and short-circuit conditions for an example 14.3 kVA modified Lundell alternator, whose magnetic field is of intrinsic 3D nature. The computed voltages and currents under these machine test conditions were verified and found to be in very good agreement with corresponding test data. Results of use of this modelling and computation method in the study of a design alteration example, in which the stator stack length of the example alternator is stretched in order to increase voltage and volt-ampere rating, are given here. These results demonstrate the inadequacy of conventional 2D-based design concepts and the imperative of use of this type of 3D magnetic field modelling in the design and investigation of such machines.
NASA Technical Reports Server (NTRS)
Wang, R.; Demerdash, N. A.
1992-01-01
The combined magnetic vector potential - magnetic scalar potential method of computation of 3D magnetic fields by finite elements, introduced in a companion paper, is used for global 3D field analysis and machine performance computations under open-circuit and short-circuit conditions for an example 14.3 kVA modified Lundell alternator, whose magnetic field is of intrinsic 3D nature. The computed voltages and currents under these machine test conditions were verified and found to be in very good agreement with corresponding test data. Results of use of this modelling and computation method in the study of a design alteration example, in which the stator stack length of the example alternator is stretched in order to increase voltage and volt-ampere rating, are given here. These results demonstrate the inadequacy of conventional 2D-based design concepts and the imperative of use of this type of 3D magnetic field modelling in the design and investigation of such machines.
NASA Astrophysics Data System (ADS)
Lopez-Lopez, M. T.; Nogueras-Lara, F.; Rodriguez-Arco, L.; Guigo, N.; Sbirrazzuoli, N.; Zubarev, A. Yu.; Lacis, S.; Kuzhir, P.
2017-12-01
Micron-sized particles (microbeads) dispersed in a suspension of magnetic nanoparticles, i.e., ferrofluids, can be assembled into different types of structures upon application of an external magnetic field. This paper is devoted to theoretical modeling of a relative motion of a pair of microbeads (either soft ferromagnetic or diamagnetic) in the ferrofluid under the action of applied uniform magnetic field which induces magnetic moments in the microbeads making them attracting to each other. The model is based on a point-dipole approximation for the magnetic interactions between microbeads mediated by the ferrofluid; however, the ferrofluid is considered to possess an anisotropic magnetic permeability thanks to field-induced structuring of its nanoparticles. The model is tested against experimental results and shows generally better agreement with experiments than the model considering isotropic magnetic permeability of ferrofluids. The results could be useful for understanding kinetics of aggregation of microbeads suspended in a ferrofluid. From a broader perspective, the present study is believed to contribute to a general understanding of particle behaviors in anisotropic media.
NASA Astrophysics Data System (ADS)
Virtanen, I. O. I.; Virtanen, I. I.; Pevtsov, A. A.; Yeates, A.; Mursula, K.
2017-07-01
Aims: We aim to use the surface flux transport model to simulate the long-term evolution of the photospheric magnetic field from historical observations. In this work we study the accuracy of the model and its sensitivity to uncertainties in its main parameters and the input data. Methods: We tested the model by running simulations with different values of meridional circulation and supergranular diffusion parameters, and studied how the flux distribution inside active regions and the initial magnetic field affected the simulation. We compared the results to assess how sensitive the simulation is to uncertainties in meridional circulation speed, supergranular diffusion, and input data. We also compared the simulated magnetic field with observations. Results: We find that there is generally good agreement between simulations and observations. Although the model is not capable of replicating fine details of the magnetic field, the long-term evolution of the polar field is very similar in simulations and observations. Simulations typically yield a smoother evolution of polar fields than observations, which often include artificial variations due to observational limitations. We also find that the simulated field is fairly insensitive to uncertainties in model parameters or the input data. Due to the decay term included in the model the effects of the uncertainties are somewhat minor or temporary, lasting typically one solar cycle.
Magnetic emissions testing of the space station engineering model resistojet
NASA Technical Reports Server (NTRS)
Briehl, Daniel
1988-01-01
The engineering model resistojet intended for altitude maintenance onboard the space station was tested for magnetic radiation emissions in the Radio Frequency Interference (RFI) facility at the Goddard Space Flight Center. The resistojet heater was supplied with power at 20 kHz and low voltage through a power controller. The resistojet was isolated from its power supply in the RFI enclosure, and the magnetic emission measured at three locations around the resistojet at various heater currents. At a heater current of 18.5 A the maximum magnetic emission was 61 dBpt at a distance of 1 m from the resistojet and at a location at the rear of the thruster. Calculations indicate that the case and heat shields provided a minimum of 4 dB of attenuation at a current of 18.5 A. Maximum radiation was measured at the rear of the resistojet along its major axis and was thought to be due to the magnetic radiation from the power leads. At a distance of 37 cm from the resistojet the maximum magnetic radiation measured was 73 dBpt at a current of 11.2 A. The power input leads were also a source of magnetic radiation. The engineering model rssistojet requires about 20 dB of additional shielding.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Y.; Pariat, E.; Moraitis, K.
We study the writhe, twist, and magnetic helicity of different magnetic flux ropes, based on models of the solar coronal magnetic field structure. These include an analytical force-free Titov–Démoulin equilibrium solution, non-force-free magnetohydrodynamic simulations, and nonlinear force-free magnetic field models. The geometrical boundary of the magnetic flux rope is determined by the quasi-separatrix layer and the bottom surface, and the axis curve of the flux rope is determined by its overall orientation. The twist is computed by the Berger–Prior formula, which is suitable for arbitrary geometry and both force-free and non-force-free models. The magnetic helicity is estimated by the twistmore » multiplied by the square of the axial magnetic flux. We compare the obtained values with those derived by a finite volume helicity estimation method. We find that the magnetic helicity obtained with the twist method agrees with the helicity carried by the purely current-carrying part of the field within uncertainties for most test cases. It is also found that the current-carrying part of the model field is relatively significant at the very location of the magnetic flux rope. This qualitatively explains the agreement between the magnetic helicity computed by the twist method and the helicity contributed purely by the current-carrying magnetic field.« less
Optical position measurement for a Large Gap Magnetic Suspension System
NASA Technical Reports Server (NTRS)
Welch, Sharon S.; Shelton, Kevin J.; Clemmons, James I.
1991-01-01
This paper describes the design of an optical position measurement system which is being built as part of the NASA Langley Large Gap Magnetic Suspension System (LGMSS). The LGMSS is a five degree-of-freedom, large-gap magnetic suspension system which is being built for Langley Research Center as part of the Advanced Controls Test Facility (ACTF). The LGMSS consists of a planar array of electromagnets which levitate and position a cylindrically shaped model containing a permanent magnet core. The optical position measurement system provides information on the location and orientation of the model to the LGMSS control system to stabilize levitation of the model.
Effect of loading speed on the stress-induced magnetic behavior of ferromagnetic steel
NASA Astrophysics Data System (ADS)
Bao, Sheng; Gu, Yibin; Fu, Meili; Zhang, Da; Hu, Shengnan
2017-02-01
The primary goal of this research is to investigate the effect of loading speed on the stress-induced magnetic behavior of a ferromagnetic steel. Uniaxial tension tests on Q235 steel were carried out with various stress levels under different loading speeds. The variation of the magnetic signals surrounding the tested specimen was detected by a fluxgate magnetometer. The results indicated that the magnetic signal variations depended not only on the tensile load level but on the loading speed during the test. The magnetic field amplitude seemed to decrease gradually with the increase in loading speed at the same tensile load level. Furthermore, the evolution of the magnetic reversals is also related to the loading speed. Accordingly, the loading speed should be considered as one of the influencing variables in the Jies-Atherton model theory of the magnetomechanical effect.
Dependence of Perpendicular Viscosity on Magnetic Fluctuations in a Stochastic Topology
NASA Astrophysics Data System (ADS)
Fridström, R.; Chapman, B. E.; Almagri, A. F.; Frassinetti, L.; Brunsell, P. R.; Nishizawa, T.; Sarff, J. S.
2018-06-01
In a magnetically confined plasma with a stochastic magnetic field, the dependence of the perpendicular viscosity on the magnetic fluctuation amplitude is measured for the first time. With a controlled, ˜ tenfold variation in the fluctuation amplitude, the viscosity increases ˜100 -fold, exhibiting the same fluctuation-amplitude-squared dependence as the predicted rate of stochastic field line diffusion. The absolute value of the viscosity is well predicted by a model based on momentum transport in a stochastic field, the first in-depth test of this model.
NASA Astrophysics Data System (ADS)
Baykiev, Eldar; Ebbing, Jörg; Brönner, Marco; Fabian, Karl
2016-11-01
A newly developed software package to calculate the magnetic field in a spherical coordinate system near the Earth's surface and on satellite height is shown to produce reliable modeling results for global and regional applications. The discretization cells of the model are uniformly magnetized spherical prisms, so called tesseroids. The presented algorithm extends an existing code for gravity calculations by applying Poisson's relation to identify the magnetic potential with the sum over pseudogravity fields of tesseroids. By testing different lithosphere discretization grids it is possible to determine the optimal size of tesseroids for field calculations on satellite altitude within realistic measurement error bounds. Also the influence of the Earth's ellipticity upon the modeling result is estimated and global examples are studied. The new software calculates induced and remanent magnetic fields for models at global and regional scale. For regional models far-field effects are evaluated and discussed. This provides bounds for the minimal size of a regional model that is necessary to predict meaningful satellite total field anomalies over the corresponding area.
NASA Astrophysics Data System (ADS)
Suciu, B.
2016-09-01
In this work, a colloidal damper rendered controllable under variable magnetic fields is proposed and its controllability is experimentally evaluated. This absorber employs a water- based ferrofluid (FERROTEC MSGW10) in association with a liquid-repellent nanoporous solid matrix, consisted of particles of gamma alumina or/and silica gel. Control of the dynamic characteristics is obtained by moving permanent neodymium annular magnets, which are placed either on the piston head (axial magnetic field) or on the external surface of the cylinder (radial magnetic field). In order to properly select these magnets, flow visualizations inside of a transparent model damper were performed, and the quantity of the displaced liquid by the magnets through the damper's filter and through the nanoporous solid matrix was determined. Experimental data concerning variation of the magnetic flux density at the magnet surface versus the height of the magnet, and versus the target distance was collected. Based on such data, the suitable magnet geometry was decided. Then, the 3D structural model of the trial colloidal damper obtained by using Solidworks, and the excitation test rig are presented. From excitation tests on a ball-screw shaker, one confirmed larger damping abilities of the proposed absorber relative to the traditional colloidal damper, and also the possibility to adjust the damping coefficient according to the excitation type.
NASA Astrophysics Data System (ADS)
Lee, Tae-Hoon; Han, Chulhee; Choi, Seung-Bok
2018-01-01
This work proposes a novel type of tunable magnetorheological (MR) damper operated based solely on the location of a permanent magnet incorporated into the piston. To create a larger damping force variation in comparison with the previous model, a different design configuration of the permanent-magnet-based MR (PMMR) damper is introduced to provide magnetic flux dispersion in two magnetic circuits by utilizing two materials with different magnetic reluctance. After discussing the design configuration and some advantages of the newly designed mechanism, the magnetic dispersion principle is analyzed through both the formulated analytical model of the magnetic circuit and the computer simulation based on the magnetic finite element method. Sequentially, the principal design parameters of the damper are determined and fabricated. Then, experiments are conducted to evaluate the variation in damping force depending on the location of the magnet. It is demonstrated that the new design and magnetic dispersion concept are valid showing higher damping force than the previous model. In addition, a curved structure of the two materials is further fabricated and tested to realize the linearity of the damping force variation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quettier, Lionel
A neuroscience research center with very high field MRI equipments has been opened in November 2006 by the CEA life science division. One of the imaging systems will require a 11.75 T magnet with a 900 mm warm bore, the so-call Iseult/Inumac magnet. Regarding the large aperture and field strength, this magnet is a challenge as compared to the largest MRI systems ever built, and is then developed within an ambitious R&D program. With the objective of demonstrating the possibility of achieving field homogeneity better than 1 ppm using double pancake windings, a 24 double pancakes model coil, working atmore » 1.5 T has been designed. This model magnet has been manufactured by Alstom MSA and tested at CEA. It has been measured with a very high precision, in order to fully characterize the field homogeneity, and then to investigate and discriminate the parameters that influence the field map. This magnet has reached the bare magnet field homogeneity specification expected for Iseult and thus successfully demonstrated the feasibility of building a homogenous magnet with the double pancake winding technique.« less
Investigations on the magnetization behavior of magnetic composite particles
NASA Astrophysics Data System (ADS)
Eichholz, Christian; Knoll, Johannes; Lerche, Dietmar; Nirschl, Hermann
2014-11-01
In life sciences the application of surface functionalized magnetic composite particles is establishing in diagnostics and in downstream processing of modern biotechnology. These magnetic composite particles consist of non-magnetic material, e.g. polystyrene, which serves as a matrix for the second magnetic component, usually colloidal magnetite. Because of the multitude of magnetic cores these magnetic beads show a complex magnetization behavior which cannot be described with the available approaches for homogeneous magnetic material. Therefore, in this work a new model for the magnetization behavior of magnetic composite particles is developed. By introducing an effective magnetization and considering an overall demagnetization factor the deviation of the demagnetization of homogeneously magnetized particles is taken into account. Calculated and experimental results show a good agreement which allows for the verification of the adapted model of particle magnetization. Besides, a newly developed magnetic analyzing centrifuge is used for the characterization of magnetic composite particle systems. The experimental results, also used for the model verification, give both, information about the magnetic properties and the interaction behavior of particle systems. By adding further components to the particle solution, such as salts or proteins, industrial relevant systems can be reconstructed. The analyzing tool can be used to adapt industrial processes without time-consuming preliminary tests with large samples in the process equipments.
Shimming of a Magnet for Calibration of NMR Probes for the Muon g-2 Experiment
NASA Astrophysics Data System (ADS)
Bielajew, Rachel
2013-10-01
The Muon g-2 Experiment at Fermilab aims to measure the anomalous magnetic moment aμ ≡ (g-2)/2 of the muon to the precision of 0.14 parts per million. This experimental value of aμ can then be compared to the similarly precise theoretical predictions of the Standard Model in order to test the completeness of the model. The value of aμ is extracted from muons precessing in a magnetic field. The magnetic field will be measured with a set of 400 Nuclear Magnetic Resonance (NMR) probes, which have the ability to measure the field to a precision of tens of parts per billion. Before the Muon g-2 Experiment can take place, new NMR probes must be designed, built, and tested using a 1.45 Tesla test magnet at the University of Washington Center for Experimental Nuclear Physics and Astrophysics (CENPA). In order to achieve a significant signal from NMR probes, the magnetic field in which the probes are immersed must be extremely uniform. The existing magnet at CENPA has an approximately linear gradient in magnetic field of about 1 Gauss per centimeter in the smoothest direction. A pair of adjacent square Helmholtz coils was designed and built to create a linear gradient in order to cancel the existing gradient. The length of the NMR signals improved with the implementation of the coils. The results of the addition of the coils to the magnet on the signals from the NMR probes will be presented.
Magnetic suspension and balance system advanced study, phase 2
NASA Technical Reports Server (NTRS)
Boom, R. W.; Abdelsalam, M. K.; Eyssa, Y. M.; Mcintosh, G. E.
1990-01-01
The design improvements for the system encompass 14 or 18 external superconductive coils mounted on a 8 x 8 foot wind tunnel, a superconductive model core magnet on a holmium mandrel to fit an F-16 model, model wings of permanent magnet material Nd2Fe14B, and fiber glass epoxy structure. The Magnetic Suspension and Balance System (MSBS) advanced design is confirmed by the successful construction and test of a full size superconductive model core solenoid with holmium mandrel. The solenoid is 75 cm long and 12.6 cm in diameter and produces 6.1 tesla for a hold time of 47 minutes. An integrated coil system design of a new compact configuration without specific coils for roll or pitch shows promise of simplicity; magnet reductions of 30 percent compared to the most recent 1985 design are possible.
NASA Astrophysics Data System (ADS)
Zhou, Yun; Li, Xiao-Hong; Wang, Jian-Feng; Zhou, Hao-Miao; Cao, Dan; Jiao, Zhi-Wei; Xu, Long; Li, Qi-Hao
2018-04-01
The direct and converse magnetoelectric hysteresis behavior for a tri-layered composite has been comparatively investigated and significant similarities have been observed. The results show that both the direct and converse magnetoelectric hysteresis is deeply affected by the bias magnetic field and test period. The test time hysteresis caused by a fast varying bias magnetic field can be reduced by prolonging the test period. The observed coercive field, remanence, and ratio of remanence of the direct and converse magnetoelectric effects with the test period obey an exponential decay law. A hysteretic nonlinear magnetoelectric theoretical model for the symmetrical tri-layered structure has been proposed based on a nonlinear constitutive model and pinning effect. The numerical calculation shows that the theoretical results are in good agreement with the experimental results. These findings not only provide insight into the examination and practical applications of magnetoelectric materials, but also propose a theoretical frame for studying the hysteretic characteristics of the magnetoelectric effect.
Newman, Roger H; Hill, Stefan J; Harris, Philip J
2013-12-01
A synchrotron wide-angle x-ray scattering study of mung bean (Vigna radiata) primary cell walls was combined with published solid-state nuclear magnetic resonance data to test models for packing of (1→4)-β-glucan chains in cellulose microfibrils. Computer-simulated peak shapes, calculated for 36-chain microfibrils with perfect order or uncorrelated disorder, were sharper than those in the experimental diffractogram. Introducing correlated disorder into the models broaden the simulated peaks but only when the disorder was increased to unrealistic magnitudes. Computer-simulated diffractograms, calculated for 24- and 18-chain models, showed good fits to experimental data. Particularly good fits to both x-ray and nuclear magnetic resonance data were obtained for collections of 18-chain models with mixed cross-sectional shapes and occasional twinning. Synthesis of 18-chain microfibrils is consistent with a model for cellulose-synthesizing complexes in which three cellulose synthase polypeptides form a particle and six particles form a rosette.
Pedogenic Magnetic Minerals in Soils: Some Tests of Current Models
NASA Astrophysics Data System (ADS)
Egli, R.
2008-12-01
The magnetic enhancement of soils is increasingly used as a proxy for continental climate, since it is related to the formation of pedogenic iron minerals under warm, humid conditions. Ultrafine magnetite is believed to be the major responsible of the magnetic enhancement, however, very little is known on the detailed formation mechanism, ant its relation to the soil iron cycle. Furthermore, the 'textbook' case of the Chinese Loess Plateau is not well replicated around the World: Loessic soils from the Midwestern US are systematically less enhanced than their Chinese counterpart under similar climatic conditions, and many loessic soils in Argentina are not enhanced at all. In trying to find a rationale behind these differences, I will address three main questions that need to be answered in a bottom-up approach to the problem. The first question is whether susceptibility is indeed controlled by fine magnetite, excluding any significant role of other minerals such as ferrihydrite, goethite, and hematite. This is a rock magnetic problem addressing the interpretation of magnetic measurements: is susceptibility an adequate proxy for the concentration of magnetic minerals in soils? Answering this question allows us to think directly in terms of abundance specific magnetic minerals, which is fundamental for any subsequent interpretation. The second question is directed to understanding the role of magnetic minerals in the soil iron cycle and how they are formed. This brings us to a discussion of the transfer function linking magnetic enhancement with climate. Is indeed rainfall the only parameter controlling pedogenesis? Why is rainfall apparently related with the logarithm of susceptibility in enhanced soils? Can we test current pedogenetic models against this empirical transfer function? The third question points to the role of parent material and later dust inputs. Midwestern US and Argentinian loesses are different from Chinese loess. Is this a reason for the differences observed in the magnetic enhancement of the respective soils? Enough material is now available to test current models and hypotheses with respect to the first two questions.
Pseudo-magnetic fields of strongly-curved graphene nanobubbles
NASA Astrophysics Data System (ADS)
Liu, Li-Chi
2018-04-01
We use the π-orbital axis vector (POAV) analysis to deal with large curvature effect of graphene in the tight-binding model. To test the validities of pseudo-magnetic fields (PMFs) derived from the tight-binding model and the model with Dirac equation coupled to a curved surface, we propose two types of spatially constant-field topographies for strongly-curved graphene nanobubbles, which correspond to these two models, respectively. It is shown from the latter model that the PMF induced by any spherical graphene nanobubble is always equivalent to the magnetic field caused by one magnetic monopole charge distributed on a complete spherical surface with the same radius. Such a PMF might be attributed to the isometry breaking of a graphene layer attached conformably to a spherical substrate with adhesion.
NASA Astrophysics Data System (ADS)
Ilg, Patrick; Evangelopoulos, Apostolos E. A. S.
2018-03-01
While magnetic nanoparticles suspended in Newtonian solvents (ferrofluids) have been intensively studied in recent years, the effects of viscoelasticity of the surrounding medium on the nanoparticle dynamics are much less understood. Here we investigate a mesoscopic model for the orientational dynamics of isolated magnetic nanoparticles subject to external fields, viscous and viscoelastic friction, as well as the corresponding random torques. We solve the model analytically in the overdamped limit for weak viscoelasticity. By comparison to Brownian dynamics simulations we establish the limits of validity of the analytical solution. We find that viscoelasticity not only slows down the magnetization relaxation, shifts the peak of the imaginary magnetic susceptibility χ″ to lower frequencies, and increases the magnetoviscosity but also leads to nonexponential relaxation and a broadening of χ″. The model we study also allows us to test a recent proposal for using magnetic susceptibility measurements as a nanorheological tool using a variant of the Germant-DiMarzio-Bishop relation. We find for the present model and certain parameter ranges that the relation of the magnetic susceptibility to the shear modulus is satisfied to a good approximation.
Analysis and Design of a Double-Divert Spiral Groove Seal
NASA Technical Reports Server (NTRS)
Zheng, Xiaoqing; Berard, Gerald
2007-01-01
This viewgraph presentation describes the design and analysis of a double spiral groove seal. The contents include: 1) Double Spiral Design Features; 2) Double Spiral Operational Features; 3) Mating Ring/Rotor Assembly; 4) Seal Ring Assembly; 5) Insert Segment Joints; 6) Rotor Assembly Completed Prototype Parts; 7) Seal Assembly Completed Prototype Parts; 8) Finite Element Analysis; 9) Computational Fluid Dynamics (CFD) Analysis; 10) Restrictive Orifice Design; 11) Orifice CFD Model; 12) Orifice Results; 13) Restrictive Orifice; 14) Seal Face Coning; 15) Permanent Magnet Analysis; 16) Magnetic Repulsive Force; 17) Magnetic Repulsive Test Results; 18) Spin Testing; and 19) Testing and Validation.
NASA Astrophysics Data System (ADS)
Fedorov, Sergey V.; Selivanov, Victor V.; Veldanov, Vladislav A.
2017-06-01
Accumulation of microdamages as a result of intensive plastic deformation leads to a decrease in the average density of the high-velocity elements that are formed at the explosive collapse of the special shape metal liners. For compaction of such elements in tests of their spacecraft meteoroid protection reliability, the use of magnetic-field action on the produced elements during their movement trajectory before interaction with a target is proposed. On the basis of numerical modeling within the one-dimensional axisymmetric problem of continuum mechanics and electrodynamics, the physical processes occurring in the porous conducting elastoplastic cylinder placed in a magnetic field are investigated. Using this model, the parameters of the magnetic-pulse action necessary for the compaction of the steel and aluminum elements are determined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shurupov, A. V.; Zavalova, V. E., E-mail: zavalova@fites.ru; Kozlov, A. V.
The report presents the results of the development and field testing of a mobile test facility based on a helical magnetic cumulative generator (MCGTF). The system is designed for full-scale modeling of lightning currents to study the safety of power plants of any type, including nuclear power plants. Advanced technologies of high-energy physics for solving both engineering and applied problems underlie this pilot project. The energy from the magnetic cumulative generator (MCG) is transferred to a high-impedance load with high efficiency of more than 50% using pulse transformer coupling. Modeling of the dynamics of the MEG that operates in amore » circuit with lumped parameters allows one to apply the law of inductance output during operation of the MCG, thus providing the required front of the current pulse in the load without using any switches. The results of field testing of the MCGTF are presented for both the ground loop and the model load. The ground loop generates a load resistance of 2–4 Ω. In the tests, the ohmic resistance of the model load is 10 Ω. It is shown that the current pulse parameters recorded in the resistive-inductive load are close to the calculated values.« less
Testing Theoretical Models of Magnetic Damping Using an Air Track
ERIC Educational Resources Information Center
Vidaurre, Ana; Riera, Jaime; Monsoriu, Juan A.; Gimenez, Marcos H.
2008-01-01
Magnetic braking is a long-established application of Lenz's law. A rigorous analysis of the laws governing this problem involves solving Maxwell's equations in a time-dependent situation. Approximate models have been developed to describe different experimental results related to this phenomenon. In this paper we present a new method for the…
Digital control of wind tunnel magnetic suspension and balance systems
NASA Technical Reports Server (NTRS)
Britcher, Colin P.; Goodyer, Michael J.; Eskins, Jonathan; Parker, David; Halford, Robert J.
1987-01-01
Digital controllers are being developed for wind tunnel magnetic suspension and balance systems, which in turn permit wind tunnel testing of aircraft models free from support interference. Hardware and software features of two existing digital control systems are reviewed. Some aspects of model position sensing and system calibration are also discussed.
The magnetic sense and its use in long-distance navigation by animals.
Walker, Michael M; Dennis, Todd E; Kirschvink, Joseph L
2002-12-01
True navigation by animals is likely to depend on events occurring in the individual cells that detect magnetic fields. Minimum thresholds of detection, perception and 'interpretation' of magnetic field stimuli must be met if animals are to use a magnetic sense to navigate. Recent technological advances in animal tracking devices now make it possible to test predictions from models of navigation based on the use of variations in magnetic intensity.
NASA Astrophysics Data System (ADS)
Bagni, T.; Duchateau, J. L.; Breschi, M.; Devred, A.; Nijhuis, A.
2017-09-01
Cable-in-conduit conductors (CICCs) for ITER magnets are subjected to fast changing magnetic fields during the plasma-operating scenario. In order to anticipate the limitations of conductors under the foreseen operating conditions, it is essential to have a better understanding of the stability margin of magnets. In the last decade ITER has launched a campaign for characterization of several types of NbTi and Nb3Sn CICCs comprising quench tests with a singular sine wave fast magnetic field pulse and relatively small amplitude. The stability tests, performed in the SULTAN facility, were reproduced and analyzed using two codes: JackPot-AC/DC, an electromagnetic-thermal numerical model for CICCs, developed at the University of Twente (van Lanen and Nijhuis 2010 Cryogenics 50 139-148) and multi-constant-model (MCM) (Turck and Zani 2010 Cryogenics 50 443-9), an analytical model for CICCs coupling losses. The outputs of both codes were combined with thermal, hydraulic and electric analysis of superconducting cables to predict the minimum quench energy (MQE) (Bottura et al 2000 Cryogenics 40 617-26). The experimental AC loss results were used to calibrate the JackPot and MCM models and to reproduce the energy deposited in the cable during an MQE test. The agreement between experiments and models confirm a good comprehension of the various CICCs thermal and electromagnetic phenomena. The differences between the analytical MCM and numerical JackPot approaches are discussed. The results provide a good basis for further investigation of CICC stability under plasma scenario conditions using magnetic field pulses with lower ramp rate and higher amplitude.
NASA Astrophysics Data System (ADS)
Du, Jinsong; Chen, Chao; Xiong, Xiong; Li, Yongdong; Liang, Qing
2016-04-01
Recently, because of continually accumulated magnetic measurements by CHAMP satellite and Swarm constellation of three satellites and well developed methodologies and techniques of data processing and geomagnetic field modeling etc., global lithospheric magnetic anomaly field models become more and more reliable. This makes the quantitative interpretation of lithospheric magnetic anomaly field possible for having an insight into large-scale magnetic structures in the crust and uppermost mantle. Many different approaches have been utilized to understand the magnetized sources, such as forward, inversion, statistics, correlation analysis, Euler deconvolution, signal transformations etc. Among all quantitative interpretation methods, the directly converting a magnetic anomaly map into a magnetic susceptibility anomaly map proposed by Arkani-Hamed & Strangway (1985) is, we think, the most fast quantitative interpretation tool for global studies. We just call this method AS85 hereinafter for short. Although Gubbins et al. (2011) provided a formula to directly calculate the apparent magnetic vector distribution, the AS85 method introduced constraints of magnetized direction and thus corresponding results are expected to be more robust especially in world-wide continents. Therefore, in this study, we first improved the AS85 method further considering non-axial dipolar inducing field using formulae by Nolte & Siebert (1987), initial model or priori information for starting coefficients in the apparent susceptibility conversion, hidden longest-wavelength components of lithospheric magnetic field and field contaminations from global oceanic remanent magnetization. Then, we used the vertically integrated susceptibility model by Hemant & Maus (2005) and vertically integrated remanent magnetization model by Masterton et al. (2013) to test the validity of our improved method. Subsequently, we applied the conversion method to geomagnetic field models by CHAMP and Swarm satellite magnetic measurements and obtained global lithospheric apparent susceptibility distribution models. Finally, we compared these deduced models with previous results in the literature and some other geophysical, geodetic and geologic datum. Both tests and applications suggest, indeed, that the improved AS85 method can be adopted as a fast and effective interpretation tool of global induced large-scale magnetic anomaly field models in form of spherical harmonics. Arkani-Hamed, J. & Srangway, D.W., 1985. Lateral variations of apparent magnetic susceptibility of lithosphere deduced from Magsat data, J. Geophys. Res., 90(B3), 2655-2664. Gubbins, D., Ivers, D., Masterton, S.M. & Winch, D.E., 2011. Analysis of lithospheric magnetization in vector spherical harmonics, Geophys. J. Int., 187(1), 99-117. Hemant, K. & Maus, S., 2005. Geological modeling of the new CHAMP magnetic anomaly maps using a geographical information system technique, J. Geophys. Res., 110, B12103, doi: 10.1029/2005JB003837. Masterton, S.M., Gubbins, D., Müller, R.D. & Singh, K.H., 2013. Forward modeling of oceanic lithospheric magnetization, Geophys. J. Int., 192(3), 951-962. Nolte, H.J. & Siebert, M., 1987. An analytical approach to the magnetic field of the Earth's crust, J. Geophys., 61, 69-76. This study is supported by State Key Laboratory of Geodesy and Earth's Dynamics (Institute of Geodesy and Geophysics, Chinese Academy of Sciences) (SKLGED2015-5-5-EZ), Natural Science Fund of Hubei Province (2015CFB361), International Cooperation Project in Science and Technology of China (2010DFA24580), China Postdoctoral Science Foundation (2015M572217 and 2014T70753), Hubei Subsurface Multi-scale Imaging Key Laboratory (Institute of Geophysics and Geomatics, China University of Geosciences, Wuhan) (SMIL-2015-06) and National Natural Science Foundation of China (41574070, 41104048 and 41504065).
NASA Astrophysics Data System (ADS)
Chen, Yue; Cunningham, Gregory; Henderson, Michael
2016-09-01
This study aims to statistically estimate the errors in local magnetic field directions that are derived from electron directional distributions measured by Los Alamos National Laboratory geosynchronous (LANL GEO) satellites. First, by comparing derived and measured magnetic field directions along the GEO orbit to those calculated from three selected empirical global magnetic field models (including a static Olson and Pfitzer 1977 quiet magnetic field model, a simple dynamic Tsyganenko 1989 model, and a sophisticated dynamic Tsyganenko 2001 storm model), it is shown that the errors in both derived and modeled directions are at least comparable. Second, using a newly developed proxy method as well as comparing results from empirical models, we are able to provide for the first time circumstantial evidence showing that derived magnetic field directions should statistically match the real magnetic directions better, with averaged errors < ˜ 2°, than those from the three empirical models with averaged errors > ˜ 5°. In addition, our results suggest that the errors in derived magnetic field directions do not depend much on magnetospheric activity, in contrast to the empirical field models. Finally, as applications of the above conclusions, we show examples of electron pitch angle distributions observed by LANL GEO and also take the derived magnetic field directions as the real ones so as to test the performance of empirical field models along the GEO orbits, with results suggesting dependence on solar cycles as well as satellite locations. This study demonstrates the validity and value of the method that infers local magnetic field directions from particle spin-resolved distributions.
Chen, Yue; Cunningham, Gregory; Henderson, Michael
2016-09-21
Our study aims to statistically estimate the errors in local magnetic field directions that are derived from electron directional distributions measured by Los Alamos National Laboratory geosynchronous (LANL GEO) satellites. First, by comparing derived and measured magnetic field directions along the GEO orbit to those calculated from three selected empirical global magnetic field models (including a static Olson and Pfitzer 1977 quiet magnetic field model, a simple dynamic Tsyganenko 1989 model, and a sophisticated dynamic Tsyganenko 2001 storm model), it is shown that the errors in both derived and modeled directions are at least comparable. Furthermore, using a newly developedmore » proxy method as well as comparing results from empirical models, we are able to provide for the first time circumstantial evidence showing that derived magnetic field directions should statistically match the real magnetic directions better, with averaged errors < ~2°, than those from the three empirical models with averaged errors > ~5°. In addition, our results suggest that the errors in derived magnetic field directions do not depend much on magnetospheric activity, in contrast to the empirical field models. Finally, as applications of the above conclusions, we show examples of electron pitch angle distributions observed by LANL GEO and also take the derived magnetic field directions as the real ones so as to test the performance of empirical field models along the GEO orbits, with results suggesting dependence on solar cycles as well as satellite locations. Finally, this study demonstrates the validity and value of the method that infers local magnetic field directions from particle spin-resolved distributions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Yue; Cunningham, Gregory; Henderson, Michael
Our study aims to statistically estimate the errors in local magnetic field directions that are derived from electron directional distributions measured by Los Alamos National Laboratory geosynchronous (LANL GEO) satellites. First, by comparing derived and measured magnetic field directions along the GEO orbit to those calculated from three selected empirical global magnetic field models (including a static Olson and Pfitzer 1977 quiet magnetic field model, a simple dynamic Tsyganenko 1989 model, and a sophisticated dynamic Tsyganenko 2001 storm model), it is shown that the errors in both derived and modeled directions are at least comparable. Furthermore, using a newly developedmore » proxy method as well as comparing results from empirical models, we are able to provide for the first time circumstantial evidence showing that derived magnetic field directions should statistically match the real magnetic directions better, with averaged errors < ~2°, than those from the three empirical models with averaged errors > ~5°. In addition, our results suggest that the errors in derived magnetic field directions do not depend much on magnetospheric activity, in contrast to the empirical field models. Finally, as applications of the above conclusions, we show examples of electron pitch angle distributions observed by LANL GEO and also take the derived magnetic field directions as the real ones so as to test the performance of empirical field models along the GEO orbits, with results suggesting dependence on solar cycles as well as satellite locations. Finally, this study demonstrates the validity and value of the method that infers local magnetic field directions from particle spin-resolved distributions.« less
NASA Technical Reports Server (NTRS)
Mitchell, Darryl R.
1997-01-01
Goddard Space Flight Center's (GSFC) Spacecraft Magnetic Test Facility (SMTF) is a historic test facility that has set the standard for all subsequent magnetic test facilities. The SMTF was constructed in the early 1960's for the purpose of simulating geomagnetic and interplanetary magnetic fields. Additionally, the facility provides the capability for measuring spacecraft generated magnetic fields as well as calibrating magnetic attitude control systems and science magnetometers. The SMTF was designed for large, spacecraft level tests and is currently the second largest spherical coil system in the world. The SMTF is a three-axis Braunbek system composed of four coils on each of three orthogonal axes. The largest coils are 12.7 meters (41.6 feet) in diameter. The three-axis Braunbek configuration provides a highly uniform cancellation of the geomagnetic field over the central 1.8 meter (6 foot) diameter primary test volume. Cancellation of the local geomagnetic field is to within +/-0.2 nanotesla with a uniformity of up to 0.001% within the 1.8 meter (6 foot) diameter primary test volume. Artificial magnetic field vectors from 0-60,000 nanotesla can be generated along any axis with a 0.1 nanotesla resolution. Oscillating or rotating field vectors can also be produced about any axis with a frequency of up to 100 radians/second. Since becoming fully operational in July of 1967, the SMTF has been the site of numerous spacecraft magnetics tests. Spacecraft tested at the SMTF include: the Solar Maximum Mission (SMM), Magsat, LANDSAT-D, the Fast Aurora] Snapshot (FAST) Explorer and the Sub-millimeter-Wave-Astronomy Satellite (SWAS) among others. This paper describes the methodology and sequencing used for the Global Geospace Science (GGS) initiative magnetic testing program in the Goddard Space Flight Center's SMTF. The GGS initiative provides an exemplary model of a strict and comprehensive magnetic control program.
Single-pass beam measurements for the verification of the LHC magnetic model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Calaga, R.; Giovannozzi, M.; Redaelli, S.
2010-05-23
During the 2009 LHC injection tests, the polarities and effects of specific quadrupole and higher-order magnetic circuits were investigated. A set of magnet circuits had been selected for detailed investigation based on a number of criteria. On or off-momentum difference trajectories launched via appropriate orbit correctors for varying strength settings of the magnet circuits under study - e.g. main, trim and skew quadrupoles; sextupole families and spool piece correctors; skew sextupoles, octupoles - were compared with predictions from various optics models. These comparisons allowed confirming or updating the relative polarity conventions used in the optics model and the accelerator controlmore » system, as well as verifying the correct powering and assignment of magnet families. Results from measurements in several LHC sectors are presented.« less
NASA Astrophysics Data System (ADS)
Shi, Kaile; Jiang, Wei; Guo, Anbang; Wang, Kai; Wu, Chuang
2018-06-01
The magnetic and thermodynamic properties of borophene structure have been studied for the first time by Monte Carlo simulation. Two-dimensional borophene structure consisting of seven hexagonal B36 units is described by Ising model. Each B36 basic unit includes three benzene-like with spin-3/2. The general formula for the borophene structure is given. The numerical results of the magnetization, the magnetic susceptibility, the internal energy and the specific heat are studied with various parameters. The possibility to test the predicted magnetism in experiment are illustrated, for instance, the maximum on the magnetization curve. The multiple hysteresis loops and the magnetization plateaus are sensitive to the ferromagnetic or ferrimagnetic exchange coupling in borophene structure. The results show the borophene structure could have applications in spintronics, which deserves further studies in experiments.
Optimizing Global Coronal Magnetic Field Models Using Image-Based Constraints
NASA Technical Reports Server (NTRS)
Jones-Mecholsky, Shaela I.; Davila, Joseph M.; Uritskiy, Vadim
2016-01-01
The coronal magnetic field directly or indirectly affects a majority of the phenomena studied in the heliosphere. It provides energy for coronal heating, controls the release of coronal mass ejections, and drives heliospheric and magnetospheric activity, yet the coronal magnetic field itself has proven difficult to measure. This difficulty has prompted a decades-long effort to develop accurate, timely, models of the field, an effort that continues today. We have developed a method for improving global coronal magnetic field models by incorporating the type of morphological constraints that could be derived from coronal images. Here we report promising initial tests of this approach on two theoretical problems, and discuss opportunities for application.
OPTIMIZING GLOBAL CORONAL MAGNETIC FIELD MODELS USING IMAGE-BASED CONSTRAINTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, Shaela I.; Davila, Joseph M.; Uritsky, Vadim, E-mail: shaela.i.jonesmecholsky@nasa.gov
The coronal magnetic field directly or indirectly affects a majority of the phenomena studied in the heliosphere. It provides energy for coronal heating, controls the release of coronal mass ejections, and drives heliospheric and magnetospheric activity, yet the coronal magnetic field itself has proven difficult to measure. This difficulty has prompted a decades-long effort to develop accurate, timely, models of the field—an effort that continues today. We have developed a method for improving global coronal magnetic field models by incorporating the type of morphological constraints that could be derived from coronal images. Here we report promising initial tests of thismore » approach on two theoretical problems, and discuss opportunities for application.« less
Quantitative metal magnetic memory reliability modeling for welded joints
NASA Astrophysics Data System (ADS)
Xing, Haiyan; Dang, Yongbin; Wang, Ben; Leng, Jiancheng
2016-03-01
Metal magnetic memory(MMM) testing has been widely used to detect welded joints. However, load levels, environmental magnetic field, and measurement noises make the MMM data dispersive and bring difficulty to quantitative evaluation. In order to promote the development of quantitative MMM reliability assessment, a new MMM model is presented for welded joints. Steel Q235 welded specimens are tested along the longitudinal and horizontal lines by TSC-2M-8 instrument in the tensile fatigue experiments. The X-ray testing is carried out synchronously to verify the MMM results. It is found that MMM testing can detect the hidden crack earlier than X-ray testing. Moreover, the MMM gradient vector sum K vs is sensitive to the damage degree, especially at early and hidden damage stages. Considering the dispersion of MMM data, the K vs statistical law is investigated, which shows that K vs obeys Gaussian distribution. So K vs is the suitable MMM parameter to establish reliability model of welded joints. At last, the original quantitative MMM reliability model is first presented based on the improved stress strength interference theory. It is shown that the reliability degree R gradually decreases with the decreasing of the residual life ratio T, and the maximal error between prediction reliability degree R 1 and verification reliability degree R 2 is 9.15%. This presented method provides a novel tool of reliability testing and evaluating in practical engineering for welded joints.
Dynamics of Permanent-Magnet Biased Active Magnetic Bearings
NASA Technical Reports Server (NTRS)
Fukata, Satoru; Yutani, Kazuyuki
1996-01-01
Active magnetic radial bearings are constructed with a combination of permanent magnets to provide bias forces and electromagnets to generate control forces for the reduction of cost and the operating energy consumption. Ring-shaped permanent magnets with axial magnetization are attached to a shaft and share their magnet stators with the electromagnets. The magnet cores are made of solid iron for simplicity. A simplified magnetic circuit of the combined magnet system is analyzed with linear circuit theory by approximating the characteristics of permanent magnets with a linear relation. A linearized dynamical model of the control force is presented with the first-order approximation of the effects of eddy currents. Frequency responses of the rotor motion to disturbance inputs and the motion for impulsive forces are tested in the non-rotating state. The frequency responses are compared with numerical results. The decay of rotor speed due to magnetic braking is examined. The experimental results and the presented linearized model are similar to those of the all-electromagnetic design.
Nonlinear dynamo in the intracluster medium
NASA Astrophysics Data System (ADS)
Beresnyak, Andrey; Miniati, Francesco
2018-05-01
Hot plasma in galaxy clusters, the intracluster medium is observed to be magnetized with magnetic fields of around a μG and the correlation scales of tens of kiloparsecs, the largest scales of the magnetic field so far observed in the Universe. Can this magnetic field be used as a test of the primordial magnetic field in the early Universe? In this paper, we argue that if the cluster field was created by the nonlinear dynamo, the process would be insensitive to the value of the initial field. Our model combines state of the art hydrodynamic simulations of galaxy cluster formation in a fully cosmological context with nonlinear dynamo theory. Initial field is not a parameter in this model, yet it predicts magnetic scale and strength compatible with observations.
Yamane, T; Nishida, M; Kijima, T; Maekawa, J
1997-07-01
Size reduction of the monopivot magnetic suspension blood pump has been achieved by reducing the size of the magnetic suspension and employing a direct drive mechanism in place of a brushless DC motor and a magnetic coupling. The flow has also been improved using a closed hollow impeller to remove flow obstruction at the inlet and using radial straight vanes to reduce the impeller speed by 30%. Hemolysis testing was conducted for the new models. Results showed that model DD1 presented only a slightly higher level of hemolysis than a regular extracorporeal centrifugal pump.
Blockage Testing in the NASA Glenn 225 Square Centimeter Supersonic Wind Tunnel
NASA Technical Reports Server (NTRS)
Sevier, Abigail; Davis, David O.; Schoenenberger, Mark
2017-01-01
The starting characteristics for three different model geometries were tested in the Glenn Research Center 225 Square Centimeter Supersonic Wind Tunnel. The test models were tested at Mach 2, 2.5 and 3 in a square test section and at Mach 2.5 again in an asymmetric test section. The results gathered in this study will help size the test models and inform other design features for the eventual implementation of a magnetic suspension system.
Image-optimized Coronal Magnetic Field Models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, Shaela I.; Uritsky, Vadim; Davila, Joseph M., E-mail: shaela.i.jones-mecholsky@nasa.gov, E-mail: shaela.i.jonesmecholsky@nasa.gov
We have reported previously on a new method we are developing for using image-based information to improve global coronal magnetic field models. In that work, we presented early tests of the method, which proved its capability to improve global models based on flawed synoptic magnetograms, given excellent constraints on the field in the model volume. In this follow-up paper, we present the results of similar tests given field constraints of a nature that could realistically be obtained from quality white-light coronagraph images of the lower corona. We pay particular attention to difficulties associated with the line-of-sight projection of features outsidemore » of the assumed coronagraph image plane and the effect on the outcome of the optimization of errors in the localization of constraints. We find that substantial improvement in the model field can be achieved with these types of constraints, even when magnetic features in the images are located outside of the image plane.« less
Magnetic cleanliness verification approach on tethered satellite
NASA Technical Reports Server (NTRS)
Messidoro, Piero; Braghin, Massimo; Grande, Maurizio
1990-01-01
Magnetic cleanliness testing was performed on the Tethered Satellite as the last step of an articulated verification campaign aimed at demonstrating the capability of the satellite to support its TEMAG (TEthered MAgnetometer) experiment. Tests at unit level and analytical predictions/correlations using a dedicated mathematical model (GANEW program) are also part of the verification activities. Details of the tests are presented, and the results of the verification are described together with recommendations for later programs.
Evaluation of Lightning Induced Effects in a Graphite Composite Fairing Structure. Parts 1 and 2
NASA Technical Reports Server (NTRS)
Trout, Dawn H.; Stanley, James E.; Wahid, Parveen F.
2011-01-01
Defining the electromagnetic environment inside a graphite composite fairing due to lightning is of interest to spacecraft developers. This paper is the first in a two part series and studies the shielding effectiveness of a graphite composite model fairing using derived equivalent properties. A frequency domain Method of Moments (MoM) model is developed and comparisons are made with shielding test results obtained using a vehicle-like composite fairing. The comparison results show that the analytical models can adequately predict the test results. Both measured and model data indicate that graphite composite fairings provide significant attenuation to magnetic fields as frequency increases. Diffusion effects are also discussed. Part 2 examines the time domain based effects through the development of a loop based induced field testing and a Transmission-Line-Matrix (TLM) model is developed in the time domain to study how the composite fairing affects lightning induced magnetic fields. Comparisons are made with shielding test results obtained using a vehicle-like composite fairing in the time domain. The comparison results show that the analytical models can adequately predict the test and industry results.
First Test Results of the 150 mm Aperture IR Quadrupole Models for the High Luminosity LHC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ambrosio, G.; Chlachidze, G.; Wanderer, P.
2016-10-06
The High Luminosity upgrade of the LHC at CERN will use large aperture (150 mm) quadrupole magnets to focus the beams at the interaction points. The high field in the coils requires Nb3Sn superconductor technology, which has been brought to maturity by the LHC Accelerator Re-search Program (LARP) over the last 10 years. The key design targets for the new IR quadrupoles were established in 2012, and fabrication of model magnets started in 2014. This paper discusses the results from the first single short coil test and from the first short quadrupole model test. Remaining challenges and plans to addressmore » them are also presented and discussed.« less
Engineering quadrupole magnetic flow sorting for the isolation of pancreatic islets
NASA Astrophysics Data System (ADS)
Kennedy, David J.; Todd, Paul; Logan, Sam; Becker, Matthew; Papas, Klearchos K.; Moore, Lee R.
2007-04-01
Quadrupole magnetic flow sorting (QMS) is being adapted from the separation of suspensions of single cells (<15 μm) to the isolation of pancreatic islets (150-350 μm) for transplant. To achieve this goal, the critical QMS components have been modeled and engineered to optimize the separation process. A flow channel has been designed, manufactured, and tested. The quadrupole magnet assembly has been designed and verified by finite element analysis. Pumps have been selected and verified by test. Test data generated from the pumps and flow channel demonstrate that the fabricated channel and peristaltic pumps fulfill the requirements of successful QMS separation.
NASA Astrophysics Data System (ADS)
Zilber, Nicolas A.; Katayama, Yoshinori; Iramina, Keiji; Erich, Wintermantel
2010-05-01
A new approach is proposed to test the efficiency of methods, such as the Kalman filter and the independent component analysis (ICA), when applied to remove the artifacts induced by transcranial magnetic stimulation (TMS) from electroencephalography (EEG). By using EEG recordings corrupted by TMS induction, the shape of the artifacts is approximately described with a model based on an equivalent circuit simulation. These modeled artifacts are subsequently added to other EEG signals—this time not influenced by TMS. The resulting signals prove of interest since we also know their form without the pseudo-TMS artifacts. Therefore, they enable us to use a fit test to compare the signals we obtain after removing the artifacts with the original signals. This efficiency test turned out very useful in comparing the methods between them, as well as in determining the parameters of the filtering that give satisfactory results with the automatic ICA.
Magnetic suspension and balance systems (MSBSs)
NASA Technical Reports Server (NTRS)
Britcher, Colin P.; Kilgore, Robert A.
1987-01-01
The problems of wind tunnel testing are outlined, with attention given to the problems caused by mechanical support systems, such as support interference, dynamic-testing restrictions, and low productivity. The basic principles of magnetic suspension are highlighted, along with the history of magnetic suspension and balance systems. Roll control, size limitations, high angle of attack, reliability, position sensing, and calibration are discussed among the problems and limitations of the existing magnetic suspension and balance systems. Examples of the existing systems are presented, and design studies for future systems are outlined. Problems specific to large-scale magnetic suspension and balance systems, such as high model loads, requirements for high-power electromagnets, high-capacity power supplies, highly sophisticated control systems and position sensors, and high costs are assessed.
Ordering, thermal excitations and phase transitions in dipolar coupled mono-domain magnet arrays
NASA Astrophysics Data System (ADS)
Kapaklis, Vassilios
2015-03-01
Magnetism has provided a fertile test bed for physical models, such as the Heisenberg and Ising models. Most of these investigations have focused on solid materials and relate to their atomic properties such as the atomic magnetic moments and their interactions. Recently, advances in nanotechnology have enabled the controlled patterning of nano-sized magnetic particles, which can be arranged in extended lattices. Tailoring the geometry and the magnetic material of these lattices, the magnetic interactions and magnetization reversal energy barriers can be tuned. This enables interesting interaction schemes to be examined on adjustable length and energy scales. As a result such nano-magnetic systems represent an ideal playground for the study of physical model systems, being facilitated by direct magnetic imaging techniques. One particularly interesting case is that of systems exhibiting frustration, where competing interactions cannot be simultaneously satisfied. This results in a degeneracy of the ground state and intricate thermodynamic properties. An archetypical frustrated physical system is water ice. Similar physics can be mirrored in nano-magnetic arrays, by tuning the arrangement of neighboring magnetic islands, referred to as artificial spin ice. Thermal excitations in such systems resemble magnetic monopoles. In this presentation key concepts related to nano-magnetism and artificial spin ice will be introduced and discussed, along with recent experimental and theoretical developments.
NASA Technical Reports Server (NTRS)
Free, April M.; Flowers, George T.; Trent, Victor S.
1993-01-01
Auxiliary bearings are a critical feature of any magnetic bearing system. They protect the soft iron core of the magnetic bearing during an overload or failure. An auxiliary bearing typically consists of a rolling element bearing or bushing with a clearance gap between the rotor and the inner race of the support. The dynamics of such systems can be quite complex. It is desired to develop a rotor-dynamic model and assess the dynamic behavior of a magnetic bearing rotor system which includes the effects of auxiliary bearings. Of particular interest is the effects of introducing sideloading into such a system during failure of the magnetic bearing. A model is developed from an experimental test facility and a number of simulation studies are performed. These results are presented and discussed.
A Prominence Puzzle Explained?
NASA Astrophysics Data System (ADS)
Yeates, A. R.; Mackay, D. H.; van Ballegooijen, A. A.
2009-02-01
Long-standing observations reveal a global organisation of the magnetic field direction in solar prominences (aka filaments), large clouds of cool dense plasma suspended in the Sun's hot corona. However, theorists have thus far been unable to explain the origin of this hemispheric pattern. In particular, simple shearing by large-scale surface motions would appear to lead to the wrong magnetic field direction. To explain the observations, we have developed a new model of the global magnetic field evolution in the solar corona over six months. For the first time our model can follow the build-up of magnetic helicity and shear on a global scale, driven by flux emergence and surface motions. The model is successful in predicting the correct magnetic field direction in the vast majority of prominences tested, and has enabled us to determine the key physical mechanisms behind the mysterious hemispheric pattern.
NASA Technical Reports Server (NTRS)
Garbutt, K. S.; Goodyer, M. J.
1994-01-01
Models featuring the simulation of exhaust jets were developed for magnetic levitation in a wind tunnel. The exhaust gas was stored internally producing a discharge of sufficient duration to allow nominal steady state to be reached. The gas was stored in the form of compressed gas or a solid rocket propellant. Testing was performed with the levitated models although deficiencies prevented the detection of jet-induced aerodynamic effects. Difficulties with data reduction led to the development of a new force calibration technique, used in conjunction with an exhaust simulator and also in separate high incidence aerodynamic tests.
Modelling high frequency phenomena in the rotor of induction motors under no-load test conditions
NASA Astrophysics Data System (ADS)
Boglietti, Aldo; Bottauscio, Oriano; Chiampi, Mario; Lazzari, Mario
2003-01-01
The paper aims to deep the electromagnetic phenomena in the rotor of induction motors produced during the no-load test by the high-order harmonics of the spatial distribution of magnetic flux. The analysis is carried out by a flux driven finite element procedure, which can take into account the hysteresis of magnetic material, the induced currents in rotor cage and the eddy currents in the laminations. The computed results, including losses and local waveforms of electrical and magnetic quantities, are finally discussed.
Analyzing and modeling gravity and magnetic anomalies using the SPHERE program and Magsat data
NASA Technical Reports Server (NTRS)
Braile, L. W.; Hinze, W. J.; Vonfrese, R. R. B. (Principal Investigator)
1981-01-01
Computer codes were completed, tested, and documented for analyzing magnetic anomaly vector components by equivalent point dipole inversion. The codes are intended for use in inverting the magnetic anomaly due to a spherical prism in a horizontal geomagnetic field and for recomputing the anomaly in a vertical geomagnetic field. Modeling of potential fields at satellite elevations that are derived from three dimensional sources by program SPHERE was made significantly more efficient by improving the input routines. A preliminary model of the Andean subduction zone was used to compute the anomaly at satellite elevations using both actual geomagnetic parameters and vertical polarization. Program SPHERE is also being used to calculate satellite level magnetic and gravity anomalies from the Amazon River Aulacogen.
Micromagnetic Modeling: a Tool for Studying Remanence in Magnetite
NASA Astrophysics Data System (ADS)
ter Maat, G. W.; Fabian, K.; Church, N. S.; McEnroe, S. A.
2017-12-01
Micromagnetic modeling is a useful tool in understanding magnetic particle behavior. The domain state of, and interaction between, particles is influenced by their shape, size and spacing. Rocks contain a collection of grains with varying geometries. This study presents models of true geometries obtained by dual-beam focused ion beam scanning electron microscopy (FIB-SEM). Using focused ion beam nanotomography (FIB-nT) the shape and size of individual grains and their spacing are accurately determined. The particle assemblages discussed here are basalts from the Stardalur volcano in Iceland. The main carrier of the magnetization is oxy-exsolved magnetite which contains extensive microstructures from the micron to nanometer scale. The complex morphologies vary in shape from spherical to elongated to sheet-like shapes with SD to PSD domain states. We investigate large oxy-exsolved magnetite grains as well as smaller oxy-exsolved dendritic grains. The obtained 3D volumes are modeled using finite element micromagnetics software MERRILL, to calculate magnetization structures. By modeling a full hysteresis loop we can observe the complete switching process and visualize the mechanism of the reversal of the magnetization. Micromagnetic simulation of hysteresis loops of grains with varying geometry and spacing shows the magnetization state of, and magnetostatic interaction between, different grains. From the simulations the remanence state of the modeled reconstructed geometry is obtained. Modeling the behavior of separate individual grains is compared with modeling assemblages of grains with varying spacing to study the effect of interaction. The use of realistic geometries of oxy-exsolved magnetite in micromagnetic models allows the examination of the influence of shape, size and spacing on the magnetic properties of single particles, and magnetostatic interactions between them.These parameters are varied and tested to find if there is an increase in remanence-carrying capacity. The use of modeling of the realistic representation of the widespread microstructures allow us to test proposed enhancement of remanence, and more stable paleomagnetic recorders.
Nondestructive evaluation using dipole model analysis with a scan type magnetic camera
NASA Astrophysics Data System (ADS)
Lee, Jinyi; Hwang, Jiseong
2005-12-01
Large structures such as nuclear power, thermal power, chemical and petroleum refining plants are drawing interest with regard to the economic aspect of extending component life in respect to the poor environment created by high pressure, high temperature, and fatigue, securing safety from corrosion and exceeding their designated life span. Therefore, technology that accurately calculates and predicts degradation and defects of aging materials is extremely important. Among different methods available, nondestructive testing using magnetic methods is effective in predicting and evaluating defects on the surface of or surrounding ferromagnetic structures. It is important to estimate the distribution of magnetic field intensity for applicable magnetic methods relating to industrial nondestructive evaluation. A magnetic camera provides distribution of a quantitative magnetic field with a homogeneous lift-off and spatial resolution. It is possible to interpret the distribution of magnetic field when the dipole model was introduced. This study proposed an algorithm for nondestructive evaluation using dipole model analysis with a scan type magnetic camera. The numerical and experimental considerations of the quantitative evaluation of several sizes and shapes of cracks using magnetic field images of the magnetic camera were examined.
Newman, Roger H.; Hill, Stefan J.; Harris, Philip J.
2013-01-01
A synchrotron wide-angle x-ray scattering study of mung bean (Vigna radiata) primary cell walls was combined with published solid-state nuclear magnetic resonance data to test models for packing of (1→4)-β-glucan chains in cellulose microfibrils. Computer-simulated peak shapes, calculated for 36-chain microfibrils with perfect order or uncorrelated disorder, were sharper than those in the experimental diffractogram. Introducing correlated disorder into the models broaden the simulated peaks but only when the disorder was increased to unrealistic magnitudes. Computer-simulated diffractograms, calculated for 24- and 18-chain models, showed good fits to experimental data. Particularly good fits to both x-ray and nuclear magnetic resonance data were obtained for collections of 18-chain models with mixed cross-sectional shapes and occasional twinning. Synthesis of 18-chain microfibrils is consistent with a model for cellulose-synthesizing complexes in which three cellulose synthase polypeptides form a particle and six particles form a rosette. PMID:24154621
System identification of the Large-Angle Magnetic Suspension Test Facility (LAMSTF)
NASA Technical Reports Server (NTRS)
Huang, Jen-Kuang
1993-01-01
The Large-Angle Magnetic Suspension Test Facility (LAMSTF), a laboratory-scale research project to demonstrate the magnetic suspension of objects over wide ranges of attitudes, has been developed. This system represents a scaled model of a planned Large-Gap Magnetic Suspension System (LGMSS). The LAMSTF system consists of a planar array of five copper electromagnets which actively suspend a small cylindrical permanent magnet. The cylinder is a rigid body and can be controlled to move in five independent degrees of freedom. Five position variables are sensed indirectly by using infra-red light-emitting diodes and light-receiving phototransistors. The motion of the suspended cylinder is in general nonlinear and hence only the linear, time-invariant perturbed motion about an equilibrium state is considered. One of the main challenges in this project is the control of the suspended element over a wide range of orientations. An accurate dynamic model plans an essential role in controller design. The analytical model of the LAMSTF system includes highly unstable real poles (about 10 Hz) and low-frequency flexible modes (about 0.16 Hz). Projection filters are proposed to identify the state space model from closed-loop test data in time domain. A canonical transformation matrix is also derived to transform the identified state space model into the physical coordinate. The LAMSTF system is stabilized by using a linear quadratic regulator (LQR) feedback controller. The rate information is obtained by calculating the back difference of the sensed position signals. The reference inputs contain five uncorrelated random signals. This control input and the system reponse are recorded as input/output data to identify the system directly from the projection filters. The sampling time is 4 ms and the model is fairly accurate in predicting the step responses for different controllers while the analytical model has a deficiency in the pitch axis.
AMS-02 Cryocooler Baseline Configuration and Engineering Model Qualification Test Results
NASA Technical Reports Server (NTRS)
Banks, Stuart; Breon, Susan; Shirey, Kimberly
2003-01-01
Four Sunpower M87N Stirling-cycle cryocoolers will be used to extend the lifetime of the Alpha Magnetic Spectrometer-02 (AMS-02) experiment. The cryocoolers will be mounted to the AMS-02 vacuum case using a structure that will thermally and mechanically decouple the cryocooler from the vacuum case while providing compliance to allow force attenuation using a passive balancer system. The cryocooler drive is implemented using a 60Hz pulse duration modulated square wave. Details of the testing program, mounting assembly and drive scheme will be presented. AMS-02 is a state-of-the-art particle physics detector containing a large superfluid helium-cooled superconducting magnet. Highly sensitive detector plates inside the magnet measure a particle s speed, momentum, charge, and path. The AMS-02 experiment, which will be flown as an attached payload on the International Space Station, will study the properties and origin of cosmic particles and nuclei including antimatter and dark matter. Two engineering model cryocoolers have been under test at NASA Goddard since November 2001. Qualification testing of the engineering model cryocooler bracket assembly is near completion. Delivery of the flight cryocoolers to Goddard is scheduled for September 2003.
NASA Technical Reports Server (NTRS)
Palazzolo, Alan B.; Tang, Punan; Kim, Chaesil; Manchala, Daniel; Barrett, Tim; Kascak, Albert F.; Brown, Gerald; Montague, Gerald; Dirusso, Eliseo; Klusman, Steve
1994-01-01
This paper contains a summary of the experience of the authors in the field of electromechanical modeling for rotating machinery - active vibration control. Piezoelectric and magnetic bearing actuator based control are discussed.
Design and Qualification of the AMS-02 Flight Cryocoolers
NASA Technical Reports Server (NTRS)
Shirey, Kimberly; Banks,Stuart; Boyle, Rob; Unger, Reuven
2005-01-01
Four commercial Sunpower M87N Stirling-cycle cryocoolers will be used to extend the lifetime of the Alpha Magnetic Spectrometer-02 (AMS-02) experiment. The cryocoolers will be mounted to the AMS-02 vacuum case using a structure that will thermally and mechanically decouple the cryocooler from the vacuum case. This paper discusses modifications of the Sunpower M87N cryocooler to make it acceptable for space flight applications and suitable for use on AMS-02. Details of the flight model qualification test program are presented. AMS-02 is a state-of-the-art particle physics detector containing a large superfluid helium-cooled superconducting magnet. Highly sensitive detector plates inside the magnet measure a particle's speed, mass, charge, and direction. The AMS-02 experiment, which will be flown as an attached payload on the International Space Station, will study the properties and origin of cosmic particles and nuclei including antimatter and dark matter. Two engineering model cryocoolers have been under test at NASA Goddard since November 2001. Qualification testing of the engineering model cryocooler bracket assembly including random vibration and thermal vacuum testing was completed at the end of April 2005. The flight cryocoolers were received in December 2003. Acceptance testing of the flight cryocooler bracket assemblies began in May 2005 .
NASA Astrophysics Data System (ADS)
Quenby, J. J.; Mulligan, T.; Blake, J. B.; Mazur, J. E.; Shaul, D.
2008-10-01
Energetic galactic cosmic ray (GCR) particles, arriving within the solar system, are modulated by the overall interplanetary field carried in the solar wind. Localized disturbances related to solar activity cause further reduction in intensity, the largest being Forbush decreases in which fluxes can fall ˜20% over a few days. Understanding Forbush decreases leads to a better understanding of the magnetic field structure related to shock waves and fast streams originating at the Sun since the propagation characteristics of the GCR probe much larger regions of space than do individual spacecraft instruments. We examined the temporal history of the integral GCR fluence (≥100 MeV) measured by the high-sensitivity telescope (HIST) aboard the Polar spacecraft, along with the solar wind magnetic field and plasma data from the ACE spacecraft during a 40-day period encompassing the 25 September 1998 Forbush decrease. We also examined the Forbush and (energetic storm particles) ESP event on 28 October 2003. It is the use of HIST in a high-counting-rate integral mode that allows previously poorly seen, short-scale depressions in the GCR fluxes to be observed, adding crucial information on the origin of GCR modulation. Variability on time scales within the frequency range 0.001-1.0 mHz is detected. This paper concentrates on investigating four simple models for explaining short-term reductions in the GCR intensity of both small and large amplitude. Specifically, these models are a local increase in magnetic scattering power, the passage of a shock discontinuity, and the passage of a tangential discontinuity or magnetic rope in the solar wind plasma. Analysis of the short-scale GCR depressions during a test period in September through October 1998 shows that they are not correlated with changes in magnetic scattering power or fluctuations in solar wind speed or plasma density. However, magnetic field and plasma data during the test period of Forbush decrease strongly suggest the presence of an interplanetary coronal mass ejection (ICME). Use of a non-force-free magnetic rope model in conjunction with the energetic particle data allows modeling of the geometry of the ICME in terms of a magnetic cloud topology. It is only this cloud configuration that allows a satisfactory explanation of the magnitude of the Forbush event of 25 September 1998. Calculations made during the test period point to short-scale GCR depressions being caused by either small-scale magnetic flux rope structures or possibly tangential discontinuities in the solar wind.
NASA Astrophysics Data System (ADS)
Syvorotka, Ihor I.; Pavlyk, Lyubomyr P.; Ubizskii, Sergii B.; Buryy, Oleg A.; Savytskyy, Hrygoriy V.; Mitina, Nataliya Y.; Zaichenko, Oleksandr S.
2017-04-01
Method of determining of magnetic moment and size from measurements of dependence of the nonlinear magnetic susceptibility upon magnetic field is proposed, substantiated and tested for superparamagnetic nanoparticles (SPNP) of the "magnetic core-polymer shell" type which are widely used in biomedical technologies. The model of the induction response of the SPNP ensemble on the combined action of the magnetic harmonic excitation field and permanent bias field is built, and the analysis of possible ways to determine the magnetic moment and size of the nanoparticles as well as the parameters of the distribution of these variables is performed. Experimental verification of the proposed method was implemented on samples of SPNP with maghemite core in dry form as well as in colloidal systems. The results have been compared with the data obtained by other methods. Advantages of the proposed method are analyzed and discussed, particularly in terms of its suitability for routine express testing of SPNP for biomedical technology.
NASA Technical Reports Server (NTRS)
Flowers, George T.
1996-01-01
This report presents a synopsis of the research work. Specific accomplishments are itemized below: (1) Experimental facilities have been developed. This includes a magnetic bearing test rig and an auxiliary bearing test rig. In addition, components have been designed, constructed, and tested for use with a rotordynamics test rig located at NASA Lewis Research Center. (2) A study of the rotordynamics of an auxiliary bearing supported T-501 engine model was performed. (3) An experimental/simulation study of auxiliary bearing rotordynamics has been performed. (4) A rotordynamical model for a magnetic bearing supported rotor system, including auxiliary bearing effects has been developed and simulation studies performed.(5) A finite element model for a foil bearing has been developed and studies of a rotor supported by foil bearings have been performed. (6) Two students affiliated with this project have graduated with M.S. degrees.
NASA Astrophysics Data System (ADS)
Ousaloo, H. S.; Nodeh, M. T.; Mehrabian, R.
2016-09-01
This paper accomplishes one goal and it was to verify and to validate a Spin Magnetic Attitude Control System (SMACS) program and to perform Hardware-In-the-Loop (HIL) air-bearing experiments. A study of a closed-loop magnetic spin controller is presented using only magnetic rods as actuators. The magnetic spin rate control approach is able to perform spin rate control and it is verified with an Attitude Control System (ACS) air-bearing MATLAB® SIMULINK® model and a hardware-embedded LABVIEW® algorithm that controls the spin rate of the test platform on a spherical air bearing table. The SIMULINK® model includes dynamic model of air-bearing, its disturbances, actuator emulation and the time delays caused by on-board calculations. The air-bearing simulator is employed to develop, improve, and carry out objective tests of magnetic torque rods and spin rate control algorithm in the experimental framework and to provide a more realistic demonstration of expected performance of attitude control as compared with software-based architectures. Six sets of two torque rods are used as actuators for the SMACS. It is implemented and simulated to fulfill mission requirement including spin the satellite up to 12 degs-1 around the z-axis. These techniques are documented for the full nonlinear equations of motion of the system and the performances of these techniques are compared in several simulations.
Study on magnetic force of electromagnetic levitation circular knitting machine
NASA Astrophysics Data System (ADS)
Wu, X. G.; Zhang, C.; Xu, X. S.; Zhang, J. G.; Yan, N.; Zhang, G. Z.
2018-06-01
The structure of the driving coil and the electromagnetic force of the test prototype of electromagnetic-levitation (EL) circular knitting machine are studied. In this paper, the driving coil’s structure and working principle of the EL circular knitting machine are firstly introduced, then the mathematical modelling analysis of the driving electromagnetic force is carried out, and through the Ansoft Maxwell finite element simulation software the coil’s magnetic induction intensity and the needle’s electromagnetic force is simulated, finally an experimental platform is built to measure the coil’s magnetic induction intensity and the needle’s electromagnetic force. The results show that the theoretical analysis, the simulation analysis and the results of the test are very close, which proves the correctness of the proposed model.
Suppression of Instabilities Generated by an Anti-Damper with a Nonlinear Magnetic Element in IOTA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stern, E.
The Integrable Optics Test Accelerator (IOTA) storage ring is being constructed at Fermilab as a testbed for new accelerator concepts. One important series of experiments tests the use of a novel nonlinear magnetic insert to damp coherent instabilities. To test the damping power of the element, an instability of desired strength may be intentionally excited with an anti-damper. We report on simulations of beam stabilization using the Synergia modeling framework over ranges of driving and damping strengths.
A dynamic method for magnetic torque measurement
NASA Technical Reports Server (NTRS)
Lin, C. E.; Jou, H. L.
1994-01-01
In a magnetic suspension system, accurate force measurement will result in better control performance in the test section, especially when a wider range of operation is required. Although many useful methods were developed to obtain the desired model, however, significant error is inevitable since the magnetic field distribution of the large-gap magnetic suspension system is extremely nonlinear. This paper proposed an easy approach to measure the magnetic torque of a magnetic suspension system using an angular photo encoder. Through the measurement of the velocity change data, the magnetic torque is converted. The proposed idea is described and implemented to obtain the desired data. It is useful to the calculation of a magnetic force in the magnetic suspension system.
Use of mucolytics to enhance magnetic particle retention at a model airway surface
NASA Astrophysics Data System (ADS)
Ally, Javed; Roa, Wilson; Amirfazli, A.
A previous study has shown that retention of magnetic particles at a model airway surface requires prohibitively strong magnetic fields. As mucus viscoelasticity is the most significant factor contributing to clearance of magnetic particles from the airway surface, mucolytics are considered in this study to reduce mucus viscoelasticity and enable particle retention with moderate strength magnetic fields. The excised frog palate model was used to simulate the airway surface. Two mucolytics, N-acetylcysteine (NAC) and dextran sulfate (DS) were tested. NAC was found to enable retention at moderate field values (148 mT with a gradient of 10.2 T/m), whereas DS was found to be effective only for sufficiently large particle concentrations at the airway surface. The possible mechanisms for the observed behavior with different mucolytics are also discussed based on aggregate formation and the loading of cilia.
A Comparison of Analytical and Experimental Data for a Magnetic Actuator
NASA Technical Reports Server (NTRS)
Groom, Nelson J.; Bloodgood, V. Dale, Jr.
2000-01-01
Theoretical and experimental force-displacement and force-current data are compared for two configurations of a simple horseshoe, or bipolar, magnetic actuator. One configuration utilizes permanent magnet wafers to provide a bias flux and the other configuration has no source of bias flux. The theoretical data are obtained from two analytical models of each configuration. One is an ideal analytical model which is developed under the following assumptions: (1) zero fringing and leakage flux, (2) zero actuator coil mmf loss, and (3) infinite permeability of the actuator core and suspended element flux return path. The other analytical model, called the extended model, is developed by adding loss and leakage factors to the ideal model. The values of the loss and leakage factors are calculated from experimental data. The experimental data are obtained from a magnetic actuator test fixture, which is described in detail. Results indicate that the ideal models for both configurations do not match the experimental data very well. However, except for the range around zero force, the extended models produce a good match. The best match is produced by the extended model of the configuration with permanent magnet flux bias.
NASA Astrophysics Data System (ADS)
Zheng, Jiajia; Li, Yancheng; Li, Zhaochun; Wang, Jiong
2015-10-01
This paper presents multi-physics modeling of an MR absorber considering the magnetic hysteresis to capture the nonlinear relationship between the applied current and the generated force under impact loading. The magnetic field, temperature field, and fluid dynamics are represented by the Maxwell equations, conjugate heat transfer equations, and Navier-Stokes equations. These fields are coupled through the apparent viscosity and the magnetic force, both of which in turn depend on the magnetic flux density and the temperature. Based on a parametric study, an inverse Jiles-Atherton hysteresis model is used and implemented for the magnetic field simulation. The temperature rise of the MR fluid in the annular gap caused by core loss (i.e. eddy current loss and hysteresis loss) and fluid motion is computed to investigate the current-force behavior. A group of impulsive tests was performed for the manufactured MR absorber with step exciting currents. The numerical and experimental results showed good agreement, which validates the effectiveness of the proposed multi-physics FEA model.
NASA Astrophysics Data System (ADS)
Sutherland, Michael Stephen
2010-12-01
The Galactic magnetic field is poorly understood. Essentially the only reliable measurements of its properties are the local orientation and field strength. Its behavior at galactic scales is unknown. Historically, magnetic field measurements have been performed using radio astronomy techniques which are sensitive to certain regions of the Galaxy and rely upon models of the distribution of gas and dust within the disk. However, the deflection of trajectories of ultra high energy cosmic rays arriving from extragalactic sources depends only on the properties of the magnetic field. In this work, a method is developed for determining acceptable global models of the Galactic magnetic field by backtracking cosmic rays through the field model. This method constrains the parameter space of magnetic field models by comparing a test statistic between backtracked cosmic rays and isotropic expectations for assumed cosmic ray source and composition hypotheses. Constraints on Galactic magnetic field models are established using data from the southern site of the Pierre Auger Observatory under various source distribution and cosmic ray composition hypotheses. Field models possessing structure similar to the stellar spiral arms are found to be inconsistent with hypotheses of an iron cosmic ray composition and sources selected from catalogs tracing the local matter distribution in the universe. These field models are consistent with hypothesis combinations of proton composition and sources tracing the local matter distribution. In particular, strong constraints are found on the parameter space of bisymmetric magnetic field models scanned under hypotheses of proton composition and sources selected from the 2MRS-VS, Swift 39-month, and VCV catalogs. Assuming that the Galactic magnetic field is well-described by a bisymmetric model under these hypotheses, the magnetic field strength near the Sun is less than 3-4 muG and magnetic pitch angle is less than -8°. These results comprise the first measurements of the Galactic magnetic field using ultra-high energy cosmic rays and supplement existing radio astronomical measurements of the Galactic magnetic field.
NASA Astrophysics Data System (ADS)
Bakhvalov, Yu A.; Grechikhin, V. V.; Yufanova, A. L.
2016-04-01
The article describes the calculation of the magnetic fields in the problems diagnostic of technical systems based on the full-scale modeling experiment. Use of gridless fundamental solution method and its variants in combination with grid methods (finite differences and finite elements) are allowed to considerably reduce the dimensionality task of the field calculation and hence to reduce calculation time. When implementing the method are used fictitious magnetic charges. In addition, much attention is given to the calculation accuracy. Error occurs when wrong choice of the distance between the charges. The authors are proposing to use vector magnetic dipoles to improve the accuracy of magnetic fields calculation. Examples of this approacharegiven. The article shows the results of research. They are allowed to recommend the use of this approach in the method of fundamental solutions for the full-scale modeling tests of technical systems.
Finite Element Modeling of Magnetically-Damped Convection during Solidification
NASA Technical Reports Server (NTRS)
deGroh, H. C.; Li, B. Q.; Lu, X.
1998-01-01
A fully 3-D, transient finite element model is developed to represent the magnetic damping effects on complex fluid flow, heat transfer and electromagnetic field distributions in a Sn- 35.5%Pb melt undergoing unidirectional solidification. The model is developed based on our in- house finite element code for the fluid flow, heat transfer and electromagnetic field calculations. The numerical model is tested against numerical and experimental results for water as reported in literature. Various numerical simulations are carried out for the melt convection and temperature distribution with and without the presence of a transverse magnetic field. Numerical results show that magnetic damping can be effectively applied to stabilize melt flow, reduce turbulence and flow levels in the melt and over a certain threshold value a higher magnetic field resulted in a greater reduction in velocity. Also, for the study of melt flow instability, a long enough running time is needed to ensure the final fluid flow recirculation pattern. Moreover, numerical results suggest that there seems to exist a threshold value of applied magnetic field, above which magnetic damping becomes possible and below which the 0 convection in the melt is actually enhanced.
NASA Astrophysics Data System (ADS)
Goryca, Zbigniew; Paduszyński, Kamil; Pakosz, Artur
2018-03-01
This paper presents the results of field calculations of cogging torque for a 12-pole torque motor with an 18-slot stator. A constant angular velocity magnet and the same size gap between n-1 magnets were assumed. In these conditions, the effect of change of the n-th gap between magnets on the cogging torque was tested. Due to considerable length of the machine the calculations were performed using a 2D model. The n-th gap for which the cogging torque assumed the lowest value was evaluated. The cogging torque of the machine with symmetrical magnetic circuit (the same size of gap between magnets) was compared to the one of the asymmetrical machine. With proper choice of asymmetry, the cogging torque for the machine decreased by four times.
Fabrication and test of model superconducting inflector for g-2 at FNAL
Krave, Steven; Kashikhin, Vladimir S.; Strauss, Thomas
2017-03-01
The new FNAL g-2 experiment is based on the muon storage ring previously used at BNL. The 1.45 T dipole magnetic field in the storage ring is required to have very high (1 ppm) homogeneity. The muon beam injected into the ring must be transported through the magnet yoke and the main superconducting coil cryostat with minimal distortions. The old inflector magnet shielded the main dipole fringe field inside the muon transport beam pipe, with an outer NbTi superconducting screen, and did not disturb the field in the area of circulating beam. Nevertheless, this magnet had coils with closed endsmore » in which a large fraction of muon beam particles were lost. A new magnet is envisioned utilizing the same cross section as the original with open ends for improved beam transport. A model magnet has been wound utilizing 3d printed parts to verify the magnetic behavior of the magnet at room temperature and validate winding of the complicated geometry required for the magnet ends. Finally, room temperature magnetic measurements have been performed and confirm the magnetic design« less
Assembly Tests of the First Nb 3 Sn Low-Beta Quadrupole Short Model for the Hi-Lumi LHC
Pan, H.; Felice, H.; Cheng, D. W.; ...
2016-01-18
In preparation for the high-luminosity upgrade of the Large Hadron Collider (LHC), the LHC Accelerator Research Program (LARP) in collaboration with CERN is pursuing the development of MQXF: a 150-mm-aperture high-field Nb3Sn quadrupole magnet. Moreover, the development phase starts with the fabrication and test of several short models (1.2-m magnetic length) and will continue with the development of several long prototypes. All of them are mechanically supported using a shell-based support structure, which has been extensively demonstrated on several R&D models within LARP. The first short model MQXFS-AT has been assembled at LBNL with coils fabricated by LARP and CERN.more » In our paper, we summarize the assembly process and show how it relies strongly on experience acquired during the LARP 120-mm-aperture HQ magnet series. We also present comparison between strain gauges data and finite-element model analysis. Finally, we present the implication of the MQXFS-AT experience on the design of the long prototype support structure.« less
In-Class Robot Flyby of an Endoplanet
NASA Astrophysics Data System (ADS)
Chadwick, A. J.; Capaldi, T.; Aurnou, J. M.
2013-12-01
For our Introduction to Computing class, we have developed a miniature robotic spacecraft mission that performs a flyby of an in-class 'endoplanet.' Our constructed endoplanet contains an internal dipole magnet, tilted with a dip angle that is unknown a priori. The spacecraft analog is a remotely controlled LEGO MINDSTORMS robot programmed using LabVIEW. Students acquire magnetic field data via a first spacecraft flyby past the endoplanet. This dataset is then imported into MATLAB, and is inverted to create a model of the magnet's orientation and dipole moment. Students use their models to predict the magnetic field profile along a different flyby path. They then test the accuracy of their models, comparing their predictions against the data acquired from this secondary flyby. We will be demonstrating this device at our poster in the Moscone Center.
Ellipsoids (v1.0): 3-D magnetic modelling of ellipsoidal bodies
NASA Astrophysics Data System (ADS)
Takahashi, Diego; Oliveira, Vanderlei C., Jr.
2017-09-01
A considerable amount of literature has been published on the magnetic modelling of uniformly magnetized ellipsoids since the second half of the nineteenth century. Ellipsoids have flexibility to represent a wide range of geometrical forms, are the only known bodies which can be uniformly magnetized in the presence of a uniform inducing field and are the only finite bodies for which the self-demagnetization can be treated analytically. This property makes ellipsoids particularly useful for modelling compact orebodies having high susceptibility. In this case, neglecting the self-demagnetization may strongly mislead the interpretation of these bodies by using magnetic methods. A number of previous studies consider that the self-demagnetization can be neglected for the case in which the geological body has an isotropic susceptibility lower than or equal to 0.1 SI. This limiting value, however, seems to be determined empirically and there has been no discussion about how this value was determined. In addition, the geoscientific community lacks an easy-to-use tool to simulate the magnetic field produced by uniformly magnetized ellipsoids. Here, we present an integrated review of the magnetic modelling of arbitrarily oriented triaxial, prolate and oblate ellipsoids. Our review includes ellipsoids with both induced and remanent magnetization, as well as with isotropic or anisotropic susceptibility. We also discuss the ambiguity between confocal ellipsoids with the same magnetic moment and propose a way of determining the isotropic susceptibility above which the self-demagnetization must be taken into consideration. Tests with synthetic data validate our approach. Finally, we provide a set of routines to model the magnetic field produced by ellipsoids. The routines are written in Python language as part of the Fatiando a Terra, which is an open-source library for modelling and inversion in geophysics.
Progress towards extreme attitude testing with Magnetic Suspension and Balance Systems
NASA Technical Reports Server (NTRS)
Britcher, Colin P.; Parker, David H.
1988-01-01
Progress is reported in a research effort aimed towards demonstration of the feasibility of suspension and aerodynamic testing of models at high angles of attack in wind tunnel Magnetic Suspension and Balance Systems. Extensive modifications, described in this paper, have been made to the Southampton University suspension system in order to facilitate this work. They include revision of electromagnet configuration, installation of all-new position sensors and expansion of control system programs. An angle of attack range of 0 to 90 deg is expected for axisymmetric models. To date, suspension up to 80 deg angle of attack has been achieved.
Spin Pit Application of Image Derotated Holographic Interferometry.
1980-09-01
temperatures resulting from induction heating of the test structuore through the interaction of the electromagnets and the magnetic ring. Subsequent...reference beam, and a Tektronix Model 7633 storage oscilloscope. When the laser is fired, a trigger signal from the laser power supply initiates the...rapid induction heating of the test structure due to the interaction of the electromagnets and the magnetic ring was evi(lent with the switch from dc to
NASA Astrophysics Data System (ADS)
Matsushima, Masaki; Tsunakawa, Hideo; Iijima, Yu-Ichi; Nakazawa, Satoru; Matsuoka, Ayako; Ikegami, Shingo; Ishikawa, Tomoaki; Shibuya, Hidetoshi; Shimizu, Hisayoshi; Takahashi, Futoshi
2010-07-01
To achieve the scientific objectives related to the lunar magnetic field measurements in a polar orbit at an altitude of 100 km, strict electromagnetic compatibility (EMC) requirements were applied to all components and subsystems of the SELENE (Kaguya) spacecraft. The magnetic cleanliness program was defined as one of the EMC control procedures, and magnetic tests were carried out for most of the engineering and flight models. The EMC performance of all components was systematically controlled and examined through a series of EMC tests. As a result, the Kaguya spacecraft was made to be very clean, magnetically. Hence reliable scientific data related to the magnetic field around the Moon were obtained by the LMAG (Lunar MAGnetometer) and the PACE (Plasma energy Angle and Composition Experiment) onboard the Kaguya spacecraft. These data have been available for lunar science use since November 2009.
Reflected Charged Particle Populations around Dipolar Lunar Magnetic Anomalies
NASA Astrophysics Data System (ADS)
Deca, Jan; Divin, Andrey
2016-10-01
In this work we analyze and compare the reflected particle populations for both a horizontal and a vertical dipole model embedded in the lunar surface, representing the solar wind interaction with two different lunar magnetic anomaly (LMA) structures. Using the 3D full-kinetic electromagnetic code iPic3D, in combination with a test-particle approach to generate particle trajectories, we focus on the ion and electron dynamics. Whereas the vertical model electrostatically reflects ions upward under both near-parallel and near-perpendicular angles with respect to the lunar surface, the horizontal model only has a significant shallow component. Characterizing the electron dynamics, we find that the interplay of the mini-magnetosphere electric and magnetic fields is capable of temporarily trapping low-energy electrons and possibly ejecting them upstream. Our results are in agreement with recent high-resolution observations. Low- to medium-altitude ion and electron observations might be excellent indicators to complement orbital magnetic field measurements and better uncover the underlying magnetic field structure. The latter is of particular importance in defining the correlation between LMAs and lunar swirls, and further testing the solar wind shielding hypothesis for albedo markings due to space weathering. Observing more reflected ions does not necessarily point to the existence of a mini-magnetosphere.
REFLECTED CHARGED PARTICLE POPULATIONS AROUND DIPOLAR LUNAR MAGNETIC ANOMALIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deca, Jan; Divin, Andrey
2016-10-01
In this work we analyze and compare the reflected particle populations for both a horizontal and a vertical dipole model embedded in the lunar surface, representing the solar wind interaction with two different lunar magnetic anomaly (LMA) structures. Using the 3D full-kinetic electromagnetic code iPic3D, in combination with a test-particle approach to generate particle trajectories, we focus on the ion and electron dynamics. Whereas the vertical model electrostatically reflects ions upward under both near-parallel and near-perpendicular angles with respect to the lunar surface, the horizontal model only has a significant shallow component. Characterizing the electron dynamics, we find that themore » interplay of the mini-magnetosphere electric and magnetic fields is capable of temporarily trapping low-energy electrons and possibly ejecting them upstream. Our results are in agreement with recent high-resolution observations. Low- to medium-altitude ion and electron observations might be excellent indicators to complement orbital magnetic field measurements and better uncover the underlying magnetic field structure. The latter is of particular importance in defining the correlation between LMAs and lunar swirls, and further testing the solar wind shielding hypothesis for albedo markings due to space weathering. Observing more reflected ions does not necessarily point to the existence of a mini-magnetosphere.« less
Two-fluid 2.5D code for simulations of small scale magnetic fields in the lower solar atmosphere
NASA Astrophysics Data System (ADS)
Piantschitsch, Isabell; Amerstorfer, Ute; Thalmann, Julia Katharina; Hanslmeier, Arnold; Lemmerer, Birgit
2015-08-01
Our aim is to investigate magnetic reconnection as a result of the time evolution of magnetic flux tubes in the solar chromosphere. A new numerical two-fluid code was developed, which will perform a 2.5D simulation of the dynamics from the upper convection zone up to the transition region. The code is based on the Total Variation Diminishing Lax-Friedrichs method and includes the effects of ion-neutral collisions, ionisation/recombination, thermal/resistive diffusivity as well as collisional/resistive heating. What is innovative about our newly developed code is the inclusion of a two-fluid model in combination with the use of analytically constructed vertically open magnetic flux tubes, which are used as initial conditions for our simulation. First magnetohydrodynamic (MHD) tests have already shown good agreement with known results of numerical MHD test problems like e.g. the Orszag-Tang vortex test, the Current Sheet test or the Spherical Blast Wave test. Furthermore, the single-fluid approach will also be applied to the initial conditions, in order to compare the different rates of magnetic reconnection in both codes, the two-fluid code and the single-fluid one.
Larp Nb3Sn Quadrupole Magnets for the Lhc Luminosity Upgrade
NASA Astrophysics Data System (ADS)
Ferracin, P.
2010-04-01
The US LHC Accelerator Research Program (LARP) is a collaboration between four US laboratories (BNL, FNAL, LBNL, and SLAC) aimed at contributing to the commissioning and operation of the LHC and conducting R&D on its luminosity upgrade. Within LARP, the Magnet Program's main goal is to demonstrate that Nb3Sn superconducting magnets are a viable option for a future upgrade of the LHC Interaction Regions. Over the past four years, LARP has successfully fabricated and tested several R&D magnets: 1) the subscale quadrupole magnet SQ, to perform technology studies with 300 mm long racetrack coils, 2) the technology quadrupole TQ, to investigate support structure behavior with 1 m long cos 2θ coils, and 3) the long racetrack magnet LR, to test 3.6 m long racetrack coils. The next milestone consists in the fabrication and test of the 3.7 m long quadrupole magnet LQ, with the goal of demonstrating that Nb3Sn technology is mature for use in high energy accelerators. After an overview of design features and test result of the LARP magnets fabricated so far, this paper focuses on the status of the fabrication of LQ: we describe the production of the 3.4 m long cos 2θ coils, and the of the qualification support structure. Finally, the status of the development of the next 1 m long model HQ, conceived to explore stress and field limits of Nb3Sn superconducting, magnets, is presented.
Possible relation between pulsar rotation and evolution of magnetic inclination
NASA Astrophysics Data System (ADS)
Tian, Jun
2018-05-01
The pulsar timing is observed to be different from predicted by a simple magnetic dipole radiation. We choose eight pulsars whose braking index was reliably determined. Assuming the smaller values of braking index are dominated by the secular evolution of the magnetic inclination, we calculate the increasing rate of the magnetic inclination for each pulsar. We find a possible relation between the rotation frequency of each pulsar and the inferred evolution of the magnetic inclination. Due to the model-dependent fit of the magnetic inclination and other effects, more observational indicators for the change rate of magnetic inclination are needed to test the relation.
Effect of zero magnetic field on cardiovascular system and microcirculation
NASA Astrophysics Data System (ADS)
Gurfinkel, Yu. I.; At'kov, O. Yu.; Vasin, A. L.; Breus, T. K.; Sasonko, M. L.; Pishchalnikov, R. Yu.
2016-02-01
The effects of zero magnetic field conditions on cardiovascular system of healthy adults have been studied. In order to generate zero magnetic field, the facility for magnetic fields modeling ;ARFA; has been used. Parameters of the capillary blood flow, blood pressure, and the electrocardiogram (ECG) monitoring were measured during the study. All subjects were tested twice: in zero magnetic field and, for comparison, in sham condition. The obtained results during 60 minutes of zero magnetic field exposure demonstrate a clear effect on cardiovascular system and microcirculation. The results of our experiments can be used in studies of long-term stay in hypo-magnetic conditions during interplanetary missions.
Pashut, Tamar; Magidov, Dafna; Ben-Porat, Hana; Wolfus, Shuki; Friedman, Alex; Perel, Eli; Lavidor, Michal; Bar-Gad, Izhar; Yeshurun, Yosef; Korngreen, Alon
2014-01-01
Although transcranial magnetic stimulation (TMS) is a popular tool for both basic research and clinical applications, its actions on nerve cells are only partially understood. We have previously predicted, using compartmental modeling, that magnetic stimulation of central nervous system neurons depolarized the soma followed by initiation of an action potential in the initial segment of the axon. The simulations also predict that neurons with low current threshold are more susceptible to magnetic stimulation. Here we tested these theoretical predictions by combining in vitro patch-clamp recordings from rat brain slices with magnetic stimulation and compartmental modeling. In agreement with the modeling, our recordings demonstrate the dependence of magnetic stimulation-triggered action potentials on the type and state of the neuron and its orientation within the magnetic field. Our results suggest that the observed effects of TMS are deeply rooted in the biophysical properties of single neurons in the central nervous system and provide a framework both for interpreting existing TMS data and developing new simulation-based tools and therapies. PMID:24917788
Testing theoretical models of magnetic damping using an air track
NASA Astrophysics Data System (ADS)
Vidaurre, Ana; Riera, Jaime; Monsoriu, Juan A.; Giménez, Marcos H.
2008-03-01
Magnetic braking is a long-established application of Lenz's law. A rigorous analysis of the laws governing this problem involves solving Maxwell's equations in a time-dependent situation. Approximate models have been developed to describe different experimental results related to this phenomenon. In this paper we present a new method for the analysis of magnetic braking using a magnet fixed to the glider of an air track. The forces acting on the glider, a result of the eddy currents, can be easily observed and measured. As a consequence of the air track inclination, the glider accelerates at the beginning, although it asymptotically tends towards a uniform rectilinear movement characterized by a terminal speed. This speed depends on the interaction between the magnetic field and the conductivity properties of the air track. Compared with previous related approaches, in our experimental setup the magnet fixed to the glider produces a magnetic braking force which acts continuously, rather than over a short period of time. The experimental results satisfactorily concur with the theoretical models adapted to this configuration.
Robust tracking control of a magnetically suspended rigid body
NASA Technical Reports Server (NTRS)
Lim, Kyong B.; Cox, David E.
1994-01-01
This study is an application of H-infinity and micro-synthesis for designing robust tracking controllers for the Large Angle Magnetic Suspension Test Facility. The modeling, design, analysis, simulation, and testing of a control law that guarantees tracking performance under external disturbances and model uncertainties is investigated. The type of uncertainties considered and the tracking performance metric used is discussed. This study demonstrates the tradeoff between tracking performance at low frequencies and robustness at high frequencies. Two sets of controllers were designed and tested. The first set emphasized performance over robustness, while the second set traded off performance for robustness. Comparisons of simulation and test results are also included. Current simulation and experimental results indicate that reasonably good robust tracking performance can be attained for this system using multivariable robust control approach.
Lamination effects on a 3D model of the magnetic core of power transformers
NASA Astrophysics Data System (ADS)
Poveda-Lerma, Antonio; Serrano-Callergues, Guillermo; Riera-Guasp, Martin; Pineda-Sanchez, Manuel; Puche-Panadero, Ruben; Perez-Cruz, Juan
2017-12-01
In this paper the lamination effect on the model of a power transformer's core with stacked E-I structure is analyzed. The distribution of the magnetic flux in the laminations depends on the stacking method. In this work it is shown, using a 3D FEM model and an experimental prototype, that the non-uniform distribution of the flux in a laminated E-I core with alternate-lap joint stack increases substantially the average value of the magnetic flux density in the core, compared with a butt joint stack. Both the simulated model and the experimental tests show that the presence of constructive air-gaps in the E-I junctions gives rise to a zig-zag flux in the depth direction. This inter-lamination flux reduces the magnetic flux density in the I-pieces and increases substantially the magnetic flux density in the E-pieces, with highly saturated points that traditional 2D analysis cannot reproduce. The relation between the number of laminations included in the model, and the computational resourses needed to build it, is also evaluated in this work.
Modelling of magnetostriction of transformer magnetic core for vibration analysis
NASA Astrophysics Data System (ADS)
Marks, Janis; Vitolina, Sandra
2017-12-01
Magnetostriction is a phenomenon occurring in transformer core in normal operation mode. Yet in time, it can cause the delamination of magnetic core resulting in higher level of vibrations that are measured on the surface of transformer tank during diagnostic tests. The aim of this paper is to create a model for evaluating elastic deformations in magnetic core that can be used for power transformers with intensive vibrations in order to eliminate magnetostriction as a their cause. Description of the developed model in Matlab and COMSOL software is provided including restrictions concerning geometry and properties of materials, and the results of performed research on magnetic core anisotropy are provided. As a case study modelling of magnetostriction for 5-legged 200 MVA power transformer with the rated voltage of 13.8/137kV is conducted, based on which comparative analysis of vibration levels and elastic deformations is performed.
EVOLUTION OF THE MAGNETIC FIELD LINE DIFFUSION COEFFICIENT AND NON-GAUSSIAN STATISTICS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snodin, A. P.; Ruffolo, D.; Matthaeus, W. H.
The magnetic field line random walk (FLRW) plays an important role in the transport of energy and particles in turbulent plasmas. For magnetic fluctuations that are transverse or almost transverse to a large-scale mean magnetic field, theories describing the FLRW usually predict asymptotic diffusion of magnetic field lines perpendicular to the mean field. Such theories often depend on the assumption that one can relate the Lagrangian and Eulerian statistics of the magnetic field via Corrsin’s hypothesis, and additionally take the distribution of magnetic field line displacements to be Gaussian. Here we take an ordinary differential equation (ODE) model with thesemore » underlying assumptions and test how well it describes the evolution of the magnetic field line diffusion coefficient in 2D+slab magnetic turbulence, by comparisons to computer simulations that do not involve such assumptions. In addition, we directly test the accuracy of the Corrsin approximation to the Lagrangian correlation. Over much of the studied parameter space we find that the ODE model is in fairly good agreement with computer simulations, in terms of both the evolution and asymptotic values of the diffusion coefficient. When there is poor agreement, we show that this can be largely attributed to the failure of Corrsin’s hypothesis rather than the assumption of Gaussian statistics of field line displacements. The degree of non-Gaussianity, which we measure in terms of the kurtosis, appears to be an indicator of how well Corrsin’s approximation works.« less
NASA Astrophysics Data System (ADS)
Li, Zhao; Wang, Dazhi; Zheng, Di; Yu, Linxin
2017-10-01
Rotational permanent magnet eddy current couplers are promising devices for torque and speed transmission without any mechanical contact. In this study, flux-concentration disk-type permanent magnet eddy current couplers with double conductor rotor are investigated. Given the drawback of the accurate three-dimensional finite element method, this paper proposes a mixed two-dimensional analytical modeling approach. Based on this approach, the closed-form expressions of magnetic field, eddy current, electromagnetic force and torque for such devices are obtained. Finally, a three-dimensional finite element method is employed to validate the analytical results. Besides, a prototype is manufactured and tested for the torque-speed characteristic.
A flying superconducting magnet and cryostat for magnetic suspension of wind-tunnel models
NASA Technical Reports Server (NTRS)
Britcher, C.; Goodyer, M. J.; Scurlock, R. G.; Wu, Y. Y.
1984-01-01
The engineering practicality of a persistent high-field superconducting solenoid cryostat as a magnetic suspension and balance system (MSBS) for wind-tunnel testing of aircraft and missile models is examined. The test apparatus is a simple solenoid of filamentary NbTi superconductor with a cupronickel matrix. The apparatus, with a length-to-diameter ratio of 6 to 1 and a radius of 32 mm, used a 0.25 mm wire with a critical current of 27 A in an external field of 6 T. The total heat inleak of 150 mW was achieved. Helium boiloff rates were tested over a range of operating conditions, including pitch attitudes from 10 deg nose down to 90 deg nose up; the rate was estimated as low, but the aerodynamic acceptability of venting gaseous helium has not been determined. It is shown that the effectiveness of the concept increases with increasing scale, and performance in excess of that of conventional ferromagnets is achievable with reduction in size and costs, and with aptness to transonic wind-tunnel testing. Detailed specifications and schematics are included.
NASA Technical Reports Server (NTRS)
Cox, D. E.; Groom, N. J.
1994-01-01
An implementation of a decoupled, single-input/single-output control approach for a large angle magnetic suspension test fixture is described. Numerical and experimental results are presented. The experimental system is a laboratory model large gap magnetic suspension system which provides five degree-of-freedom control of a cylindrical suspended element. The suspended element contains a core composed of permanent magnet material and is levitated above five electromagnets mounted in a planar array.
NASA Astrophysics Data System (ADS)
Huang, Haihong; Han, Gang; Qian, Zhengchun; Liu, Zhifeng
2017-12-01
The metal magnetic memory signals were measured during dynamic tension tests on the surfaces of the cladding coatings by plasma transferred arc (PTA) welding and the 0.45% C steel. Results showed that the slope of the normal component Hp(y) of magnetic signal and the average value of the tangential component Hp(x) reflect the magnetization of the specimens. The signals increased sharply in the few initial cycles; and then fluctuated around a constant value during fatigue process until fracture. For the PTA cladding coating, the slope of Hp(y) was steeper and the average of Hp(x) was smaller, compared with the 0.45% C steel. The hysteresis curves of cladding layer, bonding layer and substrate were measured by vibrating sample magnetometer testing, and then saturation magnetization, initial susceptibility and coercivity were further calculated. The stress-magnetization curves were also plotted based on the J-A model, which showed that the PTA cladding coating has smaller remanence and coercivity compared with the 0.45% C steel. The microstructures of cladding coating confirmed that the dendritic structure and second-phase of alloy hinder the magnetic domain motion, which was the main factor influencing the variation of magnetic signal during the fatigue tests.
Magnetic monopole search with the MoEDAL test trapping detector
NASA Astrophysics Data System (ADS)
Katre, Akshay
2016-11-01
IMoEDAL is designed to search for monopoles produced in high-energy Large Hadron Collider (LHC) collisions, based on two complementary techniques: nucleartrack detectors for high-ionisation signatures and other highly ionising avatars of new physics, and trapping volumes for direct magnetic charge measurements with a superconducting magnetometer. The MoEDAL test trapping detector array deployed in 2012, consisting of over 600 aluminium samples, was analysed and found to be consistent with zero trapped magnetic charge. Stopping acceptances are obtained from a simulation of monopole propagation in matter for a range of charges and masses, allowing to set modelindependent and model-dependent limits on monopole production cross sections. Multiples of the fundamental Dirac magnetic charge are probed for the first time at the LHC.
The mimetic finite difference method for the Landau–Lifshitz equation
Kim, Eugenia Hail; Lipnikov, Konstantin Nikolayevich
2017-01-01
The Landau–Lifshitz equation describes the dynamics of the magnetization inside ferromagnetic materials. This equation is highly nonlinear and has a non-convex constraint (the magnitude of the magnetization is constant) which poses interesting challenges in developing numerical methods. We develop and analyze explicit and implicit mimetic finite difference schemes for this equation. These schemes work on general polytopal meshes which provide enormous flexibility to model magnetic devices with various shapes. A projection on the unit sphere is used to preserve the magnitude of the magnetization. We also provide a proof that shows the exchange energy is decreasing in certain conditions. Themore » developed schemes are tested on general meshes that include distorted and randomized meshes. As a result, the numerical experiments include a test proposed by the National Institute of Standard and Technology and a test showing formation of domain wall structures in a thin film.« less
The mimetic finite difference method for the Landau–Lifshitz equation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Eugenia Hail; Lipnikov, Konstantin Nikolayevich
The Landau–Lifshitz equation describes the dynamics of the magnetization inside ferromagnetic materials. This equation is highly nonlinear and has a non-convex constraint (the magnitude of the magnetization is constant) which poses interesting challenges in developing numerical methods. We develop and analyze explicit and implicit mimetic finite difference schemes for this equation. These schemes work on general polytopal meshes which provide enormous flexibility to model magnetic devices with various shapes. A projection on the unit sphere is used to preserve the magnitude of the magnetization. We also provide a proof that shows the exchange energy is decreasing in certain conditions. Themore » developed schemes are tested on general meshes that include distorted and randomized meshes. As a result, the numerical experiments include a test proposed by the National Institute of Standard and Technology and a test showing formation of domain wall structures in a thin film.« less
A statistical spatial power spectrum of the Earth's lithospheric magnetic field
NASA Astrophysics Data System (ADS)
Thébault, E.; Vervelidou, F.
2015-05-01
The magnetic field of the Earth's lithosphere arises from rock magnetization contrasts that were shaped over geological times. The field can be described mathematically in spherical harmonics or with distributions of magnetization. We exploit this dual representation and assume that the lithospheric field is induced by spatially varying susceptibility values within a shell of constant thickness. By introducing a statistical assumption about the power spectrum of the susceptibility, we then derive a statistical expression for the spatial power spectrum of the crustal magnetic field for the spatial scales ranging from 60 to 2500 km. This expression depends on the mean induced magnetization, the thickness of the shell, and a power law exponent for the power spectrum of the susceptibility. We test the relevance of this form with a misfit analysis to the observational NGDC-720 lithospheric magnetic field model power spectrum. This allows us to estimate a mean global apparent induced magnetization value between 0.3 and 0.6 A m-1, a mean magnetic crustal thickness value between 23 and 30 km, and a root mean square for the field value between 190 and 205 nT at 95 per cent. These estimates are in good agreement with independent models of the crustal magnetization and of the seismic crustal thickness. We carry out the same analysis in the continental and oceanic domains separately. We complement the misfit analyses with a Kolmogorov-Smirnov goodness-of-fit test and we conclude that the observed power spectrum can be each time a sample of the statistical one.
Test of bootstrap current models using high- β p EAST-demonstration plasmas on DIII-D
Ren, Qilong; Lao, Lang L.; Garofalo, Andrea M.; ...
2015-01-12
Magnetic measurements together with kinetic profile and motional Stark effect measurements are used in full kinetic equilibrium reconstructions to test the Sauter and NEO bootstrap current models in a DIII-D high-more » $${{\\beta}_{\\text{p}}}$$ EAST-demonstration experiment. This aims at developing on DIII-D a high bootstrap current scenario to be extended on EAST for a demonstration of true steady-state at high performance and uses EAST-similar operational conditions: plasma shape, plasma current, toroidal magnetic field, total heating power and current ramp-up rate. It is found that the large edge bootstrap current in these high-$${{\\beta}_{\\text{p}}}$$ plasmas allows the use of magnetic measurements to clearly distinguish the two bootstrap current models. In these high collisionality and high-$${{\\beta}_{\\text{p}}}$$ plasmas, the Sauter model overpredicts the peak of the edge current density by about 30%, while the first-principle kinetic NEO model is in close agreement with the edge current density of the reconstructed equilibrium. Furthermore, these results are consistent with recent work showing that the Sauter model largely overestimates the edge bootstrap current at high collisionality.« less
Modeling of ion acceleration through drift and diffusion at interplanetary shocks
NASA Technical Reports Server (NTRS)
Decker, R. B.; Vlahos, L.
1986-01-01
A test particle simulation designed to model ion acceleration through drift and diffusion at interplanetary shocks is described. The technique consists of integrating along exact particle orbits in a system where the angle between the shock normal and mean upstream magnetic field, the level of magnetic fluctuations, and the energy of injected particles can assume a range of values. The technique makes it possible to study time-dependent shock acceleration under conditions not amenable to analytical techniques. To illustrate the capability of the numerical model, proton acceleration was considered under conditions appropriate for interplanetary shocks at 1 AU, including large-amplitude transverse magnetic fluctuations derived from power spectra of both ambient and shock-associated MHD waves.
NASA Technical Reports Server (NTRS)
Geng, Steven M.
2003-01-01
The Department of Energy, the Stirling Technology Company (STC), and the NASA Glenn Research Center are developing Stirling convertors for Stirling radioisotope generators to provide electrical power for future NASA deep space missions. STC is developing the 55-We technology demonstration convertor (TDC) under contract to the Department of Energy. The Department of Energy recently named Lockheed Martin as the system integration contractor for the Stirling radioisotope generator development project. Lockheed Martin will develop the Stirling radioisotope generator engineering unit and has contract options to develop the qualification unit and the first flight unit. Glenn s role includes an in-house project to provide convertor, component, and materials testing and evaluation in support of the overall power system development. As a part of this work, Glenn has established an in-house Stirling research laboratory for testing, analyzing, and evaluating Stirling machines. STC has built four 55-We convertors for NASA, and these are being tested at Glenn. A cross-sectional view of the 55-We TDC is shown in the figure. Of critical importance to the successful development of the Stirling convertor for space power applications is the development of a lightweight and highly efficient linear alternator. In support, Glenn has been developing finite element analysis and finite element method tools for performing various linear alternator thermal and electromagnetic analyses and evaluating design configurations. A three-dimensional magnetostatic finite element model of STC's 55-We TDC linear alternator was developed to evaluate the demagnetization fields affecting the alternator magnets. Since the actual linear alternator hardware is symmetric to the quarter section about the axis of motion, only a quarter section of the alternator was modeled. The components modeled included the mover laminations, the neodymium-iron-boron magnets, the stator laminations, and the copper coils. The three-dimensional magnetostatic model was then coupled with a circuit simulator model of the alternator load and convertor controller. The coupled model was then used to generate alternator terminal voltage and current predictions. The predicted voltage and current waveforms agreed well with the experimental data, which tended to validate the accuracy of the coupled model. The model was then used to generate predictions of the demagnetization fields acting on the alternator magnets for the alternator under load. The preliminary model predictions indicate that the highest potential for demagnetization is along the inside surface of the uncovered magnets. The demagnetization field for the uncovered magnets when the mover is positioned at the end of a stroke is higher than it is when the mover is at the position of maximum induced voltage or maximum alternator current. Assuming normal load conditions, the model predicted that the onset of demagnetization is most likely to occur for magnet temperatures above 101 C.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sorbi, Massimo; Ambrosio, Giorgio; Bajas, Hugo
This paper presents the analysis of some quench tests addressed to study the dynamic effects in the 1-m-long 120-mm-aperture Nb 3Sn quadrupole magnet, i.e., HQ02b, designed, fabricated, and tested by the LHC Accelerator Research Program. The magnet has a short sample gradient of 205 T/m at 1.9 K and a peak field of 14.2 T. The test campaign has been performed at CERN in April 2014. In the specific tests, which were dedicated to the measurements of the dynamic inductance of the magnet during the rapid current discharge for a quench, the protection heaters were activated only in some windings,more » in order to obtain the measure of the resistive and inductive voltages separately. The analysis of the results confirms a very low value of the dynamic inductance at the beginning of the discharge, which later approaches the nominal value. Indications of dynamic inductance variation were already found from the analysis of current decay during quenches in the previous magnets HQ02a and HQ02a2; however, with this dedicated test of HQ02b, a quantitative measurement and assessment has been possible. An analytical model using interfilament coupling current influence for the inductance lowering has been implemented in the quench calculation code QLASA, and the comparison with experimental data is given. In conclusion, the agreement of the model with the experimental results is very good and allows predicting more accurately the critical parameters in quench analysis (MIITs, hot spot temperature) for the MQXF Nb3Sn quadrupoles, which will be installed in the High Luminosity LHC.« less
Sorbi, Massimo; Ambrosio, Giorgio; Bajas, Hugo; ...
2016-06-01
This paper presents the analysis of some quench tests addressed to study the dynamic effects in the 1-m-long 120-mm-aperture Nb 3Sn quadrupole magnet, i.e., HQ02b, designed, fabricated, and tested by the LHC Accelerator Research Program. The magnet has a short sample gradient of 205 T/m at 1.9 K and a peak field of 14.2 T. The test campaign has been performed at CERN in April 2014. In the specific tests, which were dedicated to the measurements of the dynamic inductance of the magnet during the rapid current discharge for a quench, the protection heaters were activated only in some windings,more » in order to obtain the measure of the resistive and inductive voltages separately. The analysis of the results confirms a very low value of the dynamic inductance at the beginning of the discharge, which later approaches the nominal value. Indications of dynamic inductance variation were already found from the analysis of current decay during quenches in the previous magnets HQ02a and HQ02a2; however, with this dedicated test of HQ02b, a quantitative measurement and assessment has been possible. An analytical model using interfilament coupling current influence for the inductance lowering has been implemented in the quench calculation code QLASA, and the comparison with experimental data is given. In conclusion, the agreement of the model with the experimental results is very good and allows predicting more accurately the critical parameters in quench analysis (MIITs, hot spot temperature) for the MQXF Nb3Sn quadrupoles, which will be installed in the High Luminosity LHC.« less
NASA Astrophysics Data System (ADS)
Einspigel, D.; Sachl, L.; Martinec, Z.
2014-12-01
We present the DEBOT model, which is a new global barotropic ocean model. The DEBOT model is primarily designed for modelling of ocean flow generated by the tidal attraction of the Moon and the Sun, however it can be used for other ocean applications where the barotropic model is sufficient, for instance, a tsunami wave propagation. The model has been thoroughly tested by several different methods: 1) synthetic example which involves a tsunami-like wave propagation of an initial Gaussian depression and testing of the conservation of integral invariants, 2) a benchmark study with another barotropic model, the LSGbt model, has been performed and 3) results of realistic simulations have been compared with data from tide gauge measurements around the world. The test computations prove the validity of the numerical code and demonstrate the ability of the DEBOT model to simulate the realistic ocean tides. The DEBOT model will be principaly applied in related geophysical disciplines, for instance, in an investigation of an influence of the ocean tides on the geomagnetic field or the Earth's rotation. A module for modelling of the secondary poloidal magnetic field generated by an ocean flow is already implemented in the DEBOT model and preliminary results will be presented. The future aim is to assimilate magnetic data provided by the Swarm satellite mission into the ocean flow model.
Testing the Porcelli Sawtooth Trigger Module
NASA Astrophysics Data System (ADS)
Bateman, G.; Nave, M. F. F.; Parail, V.
2005-10-01
The Porcelli sawtooth trigger model [1] is implemented as a module for the National Transport Code Collaboration Module Library [2] and is tested using BALDUR and JETTO integrated modeling simulations of JET and other tokamak discharges. Statistical techniques are used to compute the average sawtooth period and the random scatter in sawtooth periods obtained during selected time intervals in the simulations compared with the corresponding statistical measures obtained from experimental data. It is found that the results are affected systematically by the fraction of magnetic reconnection during each sawtooth crash and by the model that is used for transport within the sawtooth mixing region. The physical processes that affect the sawtooth cycle in the simulations are found to involve an interaction among magnetic diffusion, reheating within the sawtooth mixing region, the instabilities that trigger a sawtooth crash in the Porcelli model, and the magnetic reconnection produced by each sawtooth crash. [1] F. Porcelli, et al., Plasma Phys. Contol. Fusion 38 (1996) 2163. [2] A.H. Kritz, et al., Comput. Phys. Commun. 164 (2004) 108; http://w3.pppl.gov/NTCC. Supported by DOE DE-FG02-92-ER-54141.
Influence of magnet eddy current on magnetization characteristics of variable flux memory machine
NASA Astrophysics Data System (ADS)
Yang, Hui; Lin, Heyun; Zhu, Z. Q.; Lyu, Shukang
2018-05-01
In this paper, the magnet eddy current characteristics of a newly developed variable flux memory machine (VFMM) is investigated. Firstly, the machine structure, non-linear hysteresis characteristics and eddy current modeling of low coercive force magnet are described, respectively. Besides, the PM eddy current behaviors when applying the demagnetizing current pulses are unveiled and investigated. The mismatch of the required demagnetization currents between the cases with or without considering the magnet eddy current is identified. In addition, the influences of the magnet eddy current on the demagnetization effect of VFMM are analyzed. Finally, a prototype is manufactured and tested to verify the theoretical analyses.
NASA Technical Reports Server (NTRS)
Kamhawi, Hani; Huang, Wensheng; Haag, Thomas; Shastry, Rohit; Thomas, Robert; Yim, John; Herman, Daniel; Williams, George; Myers, James; Hofer, Richard;
2015-01-01
NASA's Space Technology Mission Directorate (STMD) Solar Electric Propulsion Technology Demonstration Mission (SEP/TDM) project is funding the development of a 12.5-kW Hall thruster system to support future NASA missions. The thruster designated Hall Effect Rocket with Magnetic Shielding (HERMeS) is a 12.5-kW Hall thruster with magnetic shielding incorporating a centrally mounted cathode. HERMeS was designed and modeled by a NASA GRC and JPL team and was fabricated and tested in vacuum facility 5 (VF5) at NASA GRC. Tests at NASA GRC were performed with the Technology Development Unit 1 (TDU1) thruster. TDU1's magnetic shielding topology was confirmed by measurement of anode potential and low electron temperature along the discharge chamber walls. Thermal characterization tests indicated that during full power thruster operation at peak magnetic field strength, the various thruster component temperatures were below prescribed maximum allowable limits. Performance characterization tests demonstrated the thruster's wide throttling range and found that the thruster can achieve a peak thruster efficiency of 63% at 12.5 kW 500 V and can attain a specific impulse of 3,000 s at 12.5 kW and a discharge voltage of 800 V. Facility background pressure variation tests revealed that the performance, operational characteristics, and magnetic shielding effectiveness of the TDU1 design were mostly insensitive to increases in background pressure.
NASA Technical Reports Server (NTRS)
Klumpar, D. M. (Principal Investigator)
1982-01-01
Efforts in support of the development of a model of the magnetic fields due to ionospheric and magnetospheric electrical currents are discussed. Specifically, progress made in reading MAGSAT tapes and plotting the deviation of the measured magnetic field components with respect to a spherical harmonic model of the main geomagnetic field is reported. Initial tests of the modeling procedure developed to compute the ionosphere/magnetosphere-induced fields at satellite orbit are also described. The modeling technique utilizes a liner current element representation of the large scale current system.
Multilayer apparent magnetization mapping approach and its application in mineral exploration
NASA Astrophysics Data System (ADS)
Guo, L.; Meng, X.; Chen, Z.
2016-12-01
Apparent magnetization mapping is a technique to estimate magnetization distribution in the subsurface from the observed magnetic data. It has been applied for geologic mapping and mineral exploration for decades. Apparent magnetization mapping usually models the magnetic layer as a collection of vertical, juxtaposed prisms in both horizontal directions, whose top and bottom surfaces are assumed to be horizontal or variable-depth, and then inverts or deconvolves the magnetic anomalies in the space or frequency domain to determine the magnetization of each prism. The conventional mapping approaches usually assume that magnetic sources contain no remanent magnetization. However, such assumptions are not always valid in mineral exploration of metallic ores. In this case, the negligence of the remanence will result in large geologic deviation or the occurrence of negative magnetization. One alternate strategy is to transform the observed magnetic anomalies into some quantities that are insensitive or weakly sensitive to the remanence and then subsequently to perform inversion on these quantities, without needing any a priori information about remanent magnetization. Such kinds of quantities include the amplitude of the magnetic total field anomaly (AMA), and the normalized magnetic source strength (NSS). Here, we present a space-domain inversion approach for multilayer magnetization mapping based on the AMA for reducing effects of remanence. In the real world, magnetization usually varies vertically in the subsurface. If we use only one-layer model for mapping, the result is simply vertical superposition of different magnetization distributions. Hence, a multi-layer model for mapping would be a more realistic approach. We test the approach on the real data from a metallic deposit area in North China. The results demonstrated that our approach is feasible and produces considerable magnetization distribution from top layer to bottom layer in the subsurface.
NASA Technical Reports Server (NTRS)
Bavassano, B.; Mariani, F.
1983-01-01
Magnetic field data from HELIOS 1 and 2 are used to test a stochastic model for Alfvenic fluctuations recently proposed. A reasonable matching between observations and predictions is found. A rough estimate of the correlation length of the observed fluctuations is inferred.
NASA Astrophysics Data System (ADS)
Gordeev, E.; Sergeev, V.; Honkonen, I.; Kuznetsova, M.; Rastätter, L.; Palmroth, M.; Janhunen, P.; Tóth, G.; Lyon, J.; Wiltberger, M.
2015-12-01
Global magnetohydrodynamic (MHD) modeling is a powerful tool in space weather research and predictions. There are several advanced and still developing global MHD (GMHD) models that are publicly available via Community Coordinated Modeling Center's (CCMC) Run on Request system, which allows the users to simulate the magnetospheric response to different solar wind conditions including extraordinary events, like geomagnetic storms. Systematic validation of GMHD models against observations still continues to be a challenge, as well as comparative benchmarking of different models against each other. In this paper we describe and test a new approach in which (i) a set of critical large-scale system parameters is explored/tested, which are produced by (ii) specially designed set of computer runs to simulate realistic statistical distributions of critical solar wind parameters and are compared to (iii) observation-based empirical relationships for these parameters. Being tested in approximately similar conditions (similar inputs, comparable grid resolution, etc.), the four models publicly available at the CCMC predict rather well the absolute values and variations of those key parameters (magnetospheric size, magnetic field, and pressure) which are directly related to the large-scale magnetospheric equilibrium in the outer magnetosphere, for which the MHD is supposed to be a valid approach. At the same time, the models have systematic differences in other parameters, being especially different in predicting the global convection rate, total field-aligned current, and magnetic flux loading into the magnetotail after the north-south interplanetary magnetic field turning. According to validation results, none of the models emerges as an absolute leader. The new approach suggested for the evaluation of the models performance against reality may be used by model users while planning their investigations, as well as by model developers and those interesting to quantitatively evaluate progress in magnetospheric modeling.
Development of Numerical Tools for the Investigation of Plasma Detachment from Magnetic Nozzles
NASA Technical Reports Server (NTRS)
Sankaran, Kamesh; Polzin, Kurt A.
2007-01-01
A multidimensional numerical simulation framework aimed at investigating the process of plasma detachment from a magnetic nozzle is introduced. An existing numerical code based on a magnetohydrodynamic formulation of the plasma flow equations that accounts for various dispersive and dissipative processes in plasmas was significantly enhanced to allow for the modeling of axisymmetric domains containing three.dimensiunai momentum and magnetic flux vectors. A separate magnetostatic solver was used to simulate the applied magnetic field topologies found in various nozzle experiments. Numerical results from a magnetic diffusion test problem in which all three components of the magnetic field were present exhibit excellent quantitative agreement with the analytical solution, and the lack of numerical instabilities due to fluctuations in the value of del(raised dot)B indicate that the conservative MHD framework with dissipative effects is well-suited for multi-dimensional analysis of magnetic nozzles. Further studies will focus on modeling literature experiments both for the purpose of code validation and to extract physical insight regarding the mechanisms driving detachment.
Development and validation of a low-frequency modeling code for high-moment transmitter rod antennas
NASA Astrophysics Data System (ADS)
Jordan, Jared Williams; Sternberg, Ben K.; Dvorak, Steven L.
2009-12-01
The goal of this research is to develop and validate a low-frequency modeling code for high-moment transmitter rod antennas to aid in the design of future low-frequency TX antennas with high magnetic moments. To accomplish this goal, a quasi-static modeling algorithm was developed to simulate finite-length, permeable-core, rod antennas. This quasi-static analysis is applicable for low frequencies where eddy currents are negligible, and it can handle solid or hollow cores with winding insulation thickness between the antenna's windings and its core. The theory was programmed in Matlab, and the modeling code has the ability to predict the TX antenna's gain, maximum magnetic moment, saturation current, series inductance, and core series loss resistance, provided the user enters the corresponding complex permeability for the desired core magnetic flux density. In order to utilize the linear modeling code to model the effects of nonlinear core materials, it is necessary to use the correct complex permeability for a specific core magnetic flux density. In order to test the modeling code, we demonstrated that it can accurately predict changes in the electrical parameters associated with variations in the rod length and the core thickness for antennas made out of low carbon steel wire. These tests demonstrate that the modeling code was successful in predicting the changes in the rod antenna characteristics under high-current nonlinear conditions due to changes in the physical dimensions of the rod provided that the flux density in the core was held constant in order to keep the complex permeability from changing.
Modeling and analysis of a novel planar eddy current damper
NASA Astrophysics Data System (ADS)
Zhang, He; Kou, Baoquan; Jin, Yinxi; Zhang, Lu; Zhang, Hailin; Li, Liyi
2014-05-01
In this paper, a novel 2-DOF permanent magnet planar eddy current damper is proposed, of which the stator is made of a copper plate and the mover is composed of two orthogonal 1-D permanent magnet arrays with a double sided structure. The main objective of the planar eddy current damper is to provide two orthogonal damping forces for dynamic systems like the 2-DOF high precision positioning system. Firstly, the basic structure and the operating principle of the planar damper are introduced. Secondly, the analytical model of the planar damper is established where the magnetic flux density distribution of the permanent magnet arrays is obtained by using the equivalent magnetic charge method and the image method. Then, the analytical expressions of the damping force and damping coefficient are derived. Lastly, to verify the analytical model, the finite element method (FEM) is adopted for calculating the flux density and a planar damper prototype is manufactured and thoroughly tested. The results from FEM and experiments are in good agreement with the ones from the analytical expressions indicating that the analytical model is reasonable and correct.
Experimental Mapping and Benchmarking of Magnetic Field Codes on the LHD Ion Accelerator
NASA Astrophysics Data System (ADS)
Chitarin, G.; Agostinetti, P.; Gallo, A.; Marconato, N.; Nakano, H.; Serianni, G.; Takeiri, Y.; Tsumori, K.
2011-09-01
For the validation of the numerical models used for the design of the Neutral Beam Test Facility for ITER in Padua [1], an experimental benchmark against a full-size device has been sought. The LHD BL2 injector [2] has been chosen as a first benchmark, because the BL2 Negative Ion Source and Beam Accelerator are geometrically similar to SPIDER, even though BL2 does not include current bars and ferromagnetic materials. A comprehensive 3D magnetic field model of the LHD BL2 device has been developed based on the same assumptions used for SPIDER. In parallel, a detailed experimental magnetic map of the BL2 device has been obtained using a suitably designed 3D adjustable structure for the fine positioning of the magnetic sensors inside 27 of the 770 beamlet apertures. The calculated values have been compared to the experimental data. The work has confirmed the quality of the numerical model, and has also provided useful information on the magnetic non-uniformities due to the edge effects and to the tolerance on permanent magnet remanence.
Experimental Mapping and Benchmarking of Magnetic Field Codes on the LHD Ion Accelerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chitarin, G.; University of Padova, Dept. of Management and Engineering, strad. S. Nicola, 36100 Vicenza; Agostinetti, P.
2011-09-26
For the validation of the numerical models used for the design of the Neutral Beam Test Facility for ITER in Padua [1], an experimental benchmark against a full-size device has been sought. The LHD BL2 injector [2] has been chosen as a first benchmark, because the BL2 Negative Ion Source and Beam Accelerator are geometrically similar to SPIDER, even though BL2 does not include current bars and ferromagnetic materials. A comprehensive 3D magnetic field model of the LHD BL2 device has been developed based on the same assumptions used for SPIDER. In parallel, a detailed experimental magnetic map of themore » BL2 device has been obtained using a suitably designed 3D adjustable structure for the fine positioning of the magnetic sensors inside 27 of the 770 beamlet apertures. The calculated values have been compared to the experimental data. The work has confirmed the quality of the numerical model, and has also provided useful information on the magnetic non-uniformities due to the edge effects and to the tolerance on permanent magnet remanence.« less
Subduction-zone magnetic anomalies and implications for hydrated forearc mantle
Blakely, R.J.; Brocher, T.M.; Wells, R.E.
2005-01-01
Continental mantle in subduction zones is hydrated by release of water from the underlying oceanic plate. Magnetite is a significant byproduct of mantle hydration, and forearc mantle, cooled by subduction, should contribute to long-wavelength magnetic anomalies above subduction zones. We test this hypothesis with a quantitative model of the Cascadia convergent margin, based on gravity and aeromagnetic anomalies and constrained by seismic velocities, and find that hydrated mantle explains an important disparity in potential-field anomalies of Cascadia. A comparison with aeromagnetic data, thermal models, and earthquakes of Cascadia, Japan, and southern Alaska suggests that magnetic mantle may be common in forearc settings and thus magnetic anomalies may be useful in mapping hydrated mantle in convergent margins worldwide. ?? 2005 Geological Society of America.
NASA Technical Reports Server (NTRS)
Gilmore, M. S.
1999-01-01
Measurements recently supplied by the MGS Magnetometer/Electron Reflectometer (MAG/ER) on MGS can be applied to test theories of the origin of the martian crustal dichotomy. Strong (+/- 1500 nT) magnetic anomalies are observed in the Martian crust. The observations can be summarized as follows: 1) strong crustal magnetic sources are generally confined to the southern highlands, although weaker (approx. 40 nT) anomalies were observed during close periapsis; 2) strong magnetic anomalies are absent in the vicinity of Hellas and Argyre; 3) the anomalies in the region 0 deg to 90 deg S, 120 deg to 240 deg west have a linear geometry, strike generally east west for 1000s km, and show several reversals. This latter point has led to the suggestion that some form of lateral plate tectonics may have been operative in the southern highlands of Mars. These observations have led previous workers to hypothesize that the magnetic anomalies were present prior to and were destroyed by the formation of Hellas and Argyre. As such large impacts are confined to the era of heavy bombardment, this places the time of formation of large magnetic anomalies prior to approx. 3.9 Ga. One obvious extension of this is that the northern lowlands lack significant anomalies because they were erased by impacts and/or the northern lowlands represent crust completely reheated above the Curie temperature. Preliminary observations of the distributions of the large crustal magnetic anomalies show that many of them extend continuously over the highland lowland boundary. This occurs particularly north of the boundary between 30 deg W and 270 deg W, corresponding to northern Arabia, but also occurs in southern Elysium (approx. 10 deg S, 200 deg) and the SW portion of Tharsis (approx. 15 deg S, 140 deg). This suggests that, in these areas, Noachian crust containing the greater than 3.9 Ga magnetic signature, lies beneath the northern highlands. This geometry can be used to test models for the formation of the martian crustal dichotomy. Additional information is contained in the original extended abstract.
NASA Technical Reports Server (NTRS)
Flowers, George T.
1994-01-01
Progress over the past year includes the following: A simplified rotor model with a flexible shaft and backup bearings has been developed. A simple rotor model which includes a flexible disk and bearings with clearance has been developed and the dynamics of the model investigated. A rotor model based upon the T-501 engine has been developed which includes backup bearing effects. Parallel simulation runs are being conducted using an ANSYS based finite element model of the T-501. The magnetic bearing test rig is currently floating and dynamics/control tests are being conducted. A paper has been written that documents the work using the T-501 engine model. Work has continued with the simplified model. The finite element model is currently being modified to include the effects of foundation dynamics. A literature search for material on foil bearings has been conducted. A finite element model is being developed for a magnetic bearing in series with a foil backup bearing.
Gamma-ray Pulsars: Models and Predictions
NASA Technical Reports Server (NTRS)
Harding Alice K.; White, Nicholas E. (Technical Monitor)
2000-01-01
Pulsed emission from gamma-ray pulsars originates inside the magnetosphere, from radiation by charged particles accelerated near the magnetic poles or in the outer gaps. In polar cap models, the high energy spectrum is cut off by magnetic pair production above an energy that is, dependent on the local magnetic field strength. While most young pulsars with surface fields in the range B = 10(exp 12) - 10(exp 13) G are expected to have high energy cutoffs around several GeV, the gamma-ray spectra of old pulsars having lower surface fields may extend to 50 GeV. Although the gamma-ray emission of older pulsars is weaker, detecting pulsed emission at high energies from nearby sources would be an important confirmation of polar cap models. Outer gap models predict more gradual high-energy turnovers of the primary curvature emission around 10 GeV, but also predict an inverse Compton component extending to TeV energies. Detection of pulsed TeV emission, which would not survive attenuation at the polar caps, is thus an important test of outer gap models. Next-generation gamma-ray telescopes sensitive to GeV-TeV emission will provide critical tests of pulsar acceleration and emission mechanisms.
Modeling Coronal Response in Decaying Active Regions with Magnetic Flux Transport and Steady Heating
NASA Astrophysics Data System (ADS)
Ugarte-Urra, Ignacio; Warren, Harry P.; Upton, Lisa A.; Young, Peter R.
2017-09-01
We present new measurements of the dependence of the extreme ultraviolet (EUV) radiance on the total magnetic flux in active regions as obtained from the Atmospheric Imaging Assembly (AIA) and the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory. Using observations of nine active regions tracked along different stages of evolution, we extend the known radiance—magnetic flux power-law relationship (I\\propto {{{Φ }}}α ) to the AIA 335 Å passband, and the Fe xviii 93.93 Å spectral line in the 94 Å passband. We find that the total unsigned magnetic flux divided by the polarity separation ({{Φ }}/D) is a better indicator of radiance for the Fe xviii line with a slope of α =3.22+/- 0.03. We then use these results to test our current understanding of magnetic flux evolution and coronal heating. We use magnetograms from the simulated decay of these active regions produced by the Advective Flux Transport model as boundary conditions for potential extrapolations of the magnetic field in the corona. We then model the hydrodynamics of each individual field line with the Enthalpy-based Thermal Evolution of Loops model with steady heating scaled as the ratio of the average field strength and the length (\\bar{B}/L) and render the Fe xviii and 335 Å emission. We find that steady heating is able to partially reproduce the magnitudes and slopes of the EUV radiance—magnetic flux relationships and discuss how impulsive heating can help reconcile the discrepancies. This study demonstrates that combined models of magnetic flux transport, magnetic topology, and heating can yield realistic estimates for the decay of active region radiances with time.
Design of a spaceworthy adiabatic demagnetization refrigerator
NASA Technical Reports Server (NTRS)
Serlemitsos, A. T.; Kunes, E.; Sansebastian, M.
1992-01-01
A spaceworthy adiabatic demagnetization refrigerator (ADR) under development at NASA-Goddard is presented. A baseline model heat switch was tested extensively with an on/off ratio of about 10,000 and a parasitic heat leak of 10 micro-W. Data obtained from the breadboard models were used to design an ADR with improved structural integrity. The core of the ADR is the salt pill which consists of the paramagnetic salt crystal and the thermal bus. When a magnetic field is applied to the salt it forces the alignment of the magnetic moments, thereby decreasing the entropy of the salt. Preliminary tests results showed a net crystal mass of 680 g instead of the expected 740 g, which indicate that there are gaps in the salt pill. A partial fix was accomplished by sealing helium gas in the salt pill at a pressure of 2 bar, which improved the thermal contact during salt magnetization, at about 2 K.
NASA Astrophysics Data System (ADS)
Yang, X.; Xiao, C.; Chen, Y.; Xu, T.; Yu, Y.; Xu, M.; Wang, L.; Wang, X.; Lin, C.
2018-03-01
Recently, a new diagnostic method, Laser-driven Ion-beam Trace Probe (LITP), has been proposed to reconstruct 2D profiles of the poloidal magnetic field (Bp) and radial electric field (Er) in the tokamak devices. A linear assumption and test particle model were used in those reconstructions. In some toroidal devices such as the spherical tokamak and the Reversal Field Pinch (RFP), Bp is not small enough to meet the linear assumption. In those cases, the error of reconstruction increases quickly when Bp is larger than 10% of the toroidal magnetic field (Bt), and the previous test particle model may cause large error in the tomography process. Here a nonlinear reconstruction method is proposed for those cases. Preliminary numerical results show that LITP could be applied not only in tokamak devices, but also in other toroidal devices, such as the spherical tokamak, RFP, etc.
Wind-tunnel simulation of store jettison with the aid of magnetic artificial gravity
NASA Technical Reports Server (NTRS)
Stephens, T.; Adams, R.
1972-01-01
A method employed in the simulation of jettison of stores from aircraft involving small scale wind-tunnel drop tests from a model of the parent aircraft is described. Proper scaling of such experiments generally dictates that the gravitational acceleration should ideally be a test variable. A method of introducing a controllable artificial component of gravity by magnetic means has been proposed. The use of a magnetic artificial gravity facility based upon this idea, in conjunction with small scale wind-tunnel drop tests, would improve the accuracy of simulation. A review of the scaling laws as they apply to the design of such a facility is presented. The design constraints involved in the integration of such a facility with a wind tunnel are defined. A detailed performance analysis procedure applicable to such a facility is developed. A practical magnet configuration is defined which is capable of controlling the strength and orientation of the magnetic artificial gravity field in the vertical plane, thereby allowing simulation of store jettison from a diving or climbing aircraft. The factors involved in the choice between continuous or intermittent operation of the facility, and the use of normal or superconducting magnets, are defined.
Peterson, S W; Polf, J; Bues, M; Ciangaru, G; Archambault, L; Beddar, S; Smith, A
2009-05-21
The purpose of this study is to validate the accuracy of a Monte Carlo calculation model of a proton magnetic beam scanning delivery nozzle developed using the Geant4 toolkit. The Monte Carlo model was used to produce depth dose and lateral profiles, which were compared to data measured in the clinical scanning treatment nozzle at several energies. Comparisons were also made between measured and simulated off-axis profiles to test the accuracy of the model's magnetic steering. Comparison of the 80% distal dose fall-off values for the measured and simulated depth dose profiles agreed to within 1 mm for the beam energies evaluated. Agreement of the full width at half maximum values for the measured and simulated lateral fluence profiles was within 1.3 mm for all energies. The position of measured and simulated spot positions for the magnetically steered beams agreed to within 0.7 mm of each other. Based on these results, we found that the Geant4 Monte Carlo model of the beam scanning nozzle has the ability to accurately predict depth dose profiles, lateral profiles perpendicular to the beam axis and magnetic steering of a proton beam during beam scanning proton therapy.
Tests and applications of nonlinear force-free field extrapolations in spherical geometry
NASA Astrophysics Data System (ADS)
Guo, Y.; Ding, M. D.
2013-07-01
We test a nonlinear force-free field (NLFFF) optimization code in spherical geometry with an analytical solution from Low and Lou. The potential field source surface (PFSS) model is served as the initial and boundary conditions where observed data are not available. The analytical solution can be well recovered if the boundary and initial conditions are properly handled. Next, we discuss the preprocessing procedure for the noisy bottom boundary data, and find that preprocessing is necessary for NLFFF extrapolations when we use the observed photospheric magnetic field as bottom boundaries. Finally, we apply the NLFFF model to a solar area where four active regions interacting with each other. An M8.7 flare occurred in one active region. NLFFF modeling in spherical geometry simultaneously constructs the small and large scale magnetic field configurations better than the PFSS model does.
Large angle magnetic suspension test fixture
NASA Technical Reports Server (NTRS)
Britcher, Colin P. (Principal Investigator); Huang, Jen-Kuang (Principal Investigator)
1996-01-01
Good progress is being made in several major areas. These include eddy current modelling and analysis, design optimization methods, wind tunnel Magnetic Suspension and Balance Systems (MSBS), payload pointing and vibration isolation systems, and system identification. In addition, another successful International Symposium has been completed, with the Proceedings being printed at the time of writing. These activities continue current work under this Grant and extend previous work on magnetic suspension systems and devices in the Guidance and Control Branch and will permit the demonstration of several new developments in the field of magnetic suspension technology.
Gold, Michael R; Kanal, Emanuel; Schwitter, Juerg; Sommer, Torsten; Yoon, Hyun; Ellingson, Michael; Landborg, Lynn; Bratten, Tara
2015-03-01
Many patients with an implantable cardioverter-defibrillator (ICD) have indications for magnetic resonance imaging (MRI). However, MRI is generally contraindicated in ICD patients because of potential risks from hazardous interactions between the MRI and ICD system. The purpose of this study was to use preclinical computer modeling, animal studies, and bench and scanner testing to demonstrate the safety of an ICD system developed for 1.5-T whole-body MRI. MRI hazards were assessed and mitigated using multiple approaches: design decisions to increase safety and reliability, modeling and simulation to quantify clinical MRI exposure levels, animal studies to quantify the physiologic effects of MRI exposure, and bench testing to evaluate safety margin. Modeling estimated the incidence of a chronic change in pacing capture threshold >0.5 V and 1.0 V to be less than 1 in 160,000 and less than 1 in 1,000,000 cases, respectively. Modeling also estimated the incidence of unintended cardiac stimulation to occur in less than 1 in 1,000,000 cases. Animal studies demonstrated no delay in ventricular fibrillation detection and no reduction in ventricular fibrillation amplitude at clinical MRI exposure levels, even with multiple exposures. Bench and scanner testing demonstrated performance and safety against all other MRI-induced hazards. A preclinical strategy that includes comprehensive computer modeling, animal studies, and bench and scanner testing predicts that an ICD system developed for the magnetic resonance environment is safe and poses very low risks when exposed to 1.5-T normal operating mode whole-body MRI. Copyright © 2015 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.
Preliminary studies for a beam-generated plasma neutralizer test in NIO1
NASA Astrophysics Data System (ADS)
Sartori, E.; Veltri, P.; Balbinot, L.; Cavenago, M.; Veranda, M.; Antoni, V.; Serianni, G.
2017-08-01
The deployment of neutral beam injectors in future fusion plants is beset by the particularly poor efficiency of the neutralization process. Beam-generated plasma neutralizers were proposed as a passive and intrinsically safe scheme of efficient plasma neutralizers. The concept is based on the natural ionization of the gas target by the beam, and on a suitable confinement of the secondary plasma. The technological challenge of such a concept is the magnetic confinement of the secondary plasma: a proof-of-principle for the concept is needed. The possibility to test of such a system in the small negative ion beam system NIO1 is discussed in this paper. The constraints given by the facility are first discussed. A model of beam-gas interaction is developed to provide the charge-state of beam particles along the neutralizer, and to provide the source terms of plasma generation. By using a cylindrical model of plasma diffusion in magnetic fields, the ionization degree of the target is estimated. In the absence of magnetic fields the diffusion model is validated against experimental measurements of the space-charge compensation plasma in the drift region of NIO1. Finally, the feasibility study for a beam-generated plasma neutralizer in NIO is presented. The neutralizer length, required gas target thickness, and a very simple magnetic setup were considered, taking into account the integration in NIO1. For the basic design a low ionization degree (1%) is obtained, however a promising plasma density up to hundred times the beam density was calculated. The proposed test in NIO1 can be the starting point for studying advanced schemes of magnetic confinement aiming at ionization degrees in the order of 10%.
NASA Astrophysics Data System (ADS)
Evstatiev, Evstati; Svidzinski, Vladimir; Spencer, Andy; Galkin, Sergei
2014-10-01
Full wave 3-D modeling of RF fields in hot magnetized nonuniform plasma requires calculation of nonlocal conductivity kernel describing the dielectric response of such plasma to the RF field. In many cases, the conductivity kernel is a localized function near the test point which significantly simplifies numerical solution of the full wave 3-D problem. Preliminary results of feasibility analysis of numerical calculation of the conductivity kernel in a 3-D hot nonuniform magnetized plasma in the electron cyclotron frequency range will be reported. This case is relevant to modeling of ECRH in ITER. The kernel is calculated by integrating the linearized Vlasov equation along the unperturbed particle's orbits. Particle's orbits in the nonuniform equilibrium magnetic field are calculated numerically by one of the Runge-Kutta methods. RF electric field is interpolated on a specified grid on which the conductivity kernel is discretized. The resulting integrals in the particle's initial velocity and time are then calculated numerically. Different optimization approaches of the integration are tested in this feasibility analysis. Work is supported by the U.S. DOE SBIR program.
Global hybrid simulation of the solar wind interaction with the dayside of Venus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moore, K.R.; Thomas, V.A.; McComas, D.J.
1991-05-01
The authors present a 3-dimensional global hybrid simulation of the interaction of the solar wind with the entire dayside of Venus. The model obstacle is half the size of Venus, and planetary ion mass loading is included self-consistently. Results are compared to observations as well as to results from gasdynamic convected field modeling. Magnetic field magnitudes and bulk flow speeds along the planet-Sun line are comparable in both models, but only the hybrid model reproduces the experimentally observed magnetic barrier proton density depletions. The finite gyroradius of the planetary pickup ions causes a number density asymmetry in the direction ofmore » the convective ({minus}V {times} B) electric field, as predicted and observed. Mass addition consistent with photoionization of the planetary neutral hot oxygen corona has little effect on the geometry of the shock, including the subsolar and terminator shock altitudes. Mass addition rates well in excess of likely values are required to significantly affect the model shock geometry. The hybrid model results imply that oxygen ions originating deep within the dayside Venus magnetic barrier are nearly fluidlike while oxygen ions produced higher on the dayside, at much lower densities, behave more as test particles. Gasdynamic modeling incorporating both fluid and test particle mass addition reproduces the O{sup +} terminator escape flux (a few times 10{sup 24} s{sup {minus}1}) found in the hybrid model and inferred from observations, but underestimates the escape region spatial extent. The hybrid model predictions include a shock asymmetry dependent on the upstream IMF orientation, asymmetries in the magnetic barrier position and field magnitude, an asymmetry in pickup ion speed altitude profiles, and a finite gyroradius effect asymmetry in pickup ion number density caused by field draping.« less
Jahandideh, Samad; Abdolmaleki, Parviz; Movahedi, Mohammad Mehdi
2010-02-01
Various studies have been reported on the bioeffects of magnetic field exposure; however, no consensus or guideline is available for experimental designs relating to exposure conditions as yet. In this study, logistic regression (LR) and artificial neural networks (ANNs) were used in order to analyze and predict the melatonin excretion patterns in the rat exposed to extremely low frequency magnetic fields (ELF-MF). Subsequently, on a database containing 33 experiments, performances of LR and ANNs were compared through resubstitution and jackknife tests. Predictor variables were more effective parameters and included frequency, polarization, exposure duration, and strength of magnetic fields. Also, five performance measures including accuracy, sensitivity, specificity, Matthew's Correlation Coefficient (MCC) and normalized percentage, better than random (S) were used to evaluate the performance of models. The LR as a conventional model obtained poor prediction performance. Nonetheless, LR distinguished the duration of magnetic fields as a statistically significant parameter. Also, horizontal polarization of magnetic fields with the highest logit coefficient (or parameter estimate) with negative sign was found to be the strongest indicator for experimental designs relating to exposure conditions. This means that each experiment with horizontal polarization of magnetic fields has a higher probability to result in "not changed melatonin level" pattern. On the other hand, ANNs, a more powerful model which has not been introduced in predicting melatonin excretion patterns in the rat exposed to ELF-MF, showed high performance measure values and higher reliability, especially obtaining 0.55 value of MCC through jackknife tests. Obtained results showed that such predictor models are promising and may play a useful role in defining guidelines for experimental designs relating to exposure conditions. In conclusion, analysis of the bioelectromagnetic data could result in finding a relationship between electromagnetic fields and different biological processes. (c) 2009 Wiley-Liss, Inc.
NASA Astrophysics Data System (ADS)
Ni, Chen; Hua, Lin; Wang, Xiaokai
2018-09-01
To monitor the crack propagation and predict the fatigue life of ferromagnetic material, the metal magnetic memory (MMM) testing was carried out to the single edge notched specimen made from structural alloy steel under three-point bending fatigue experiment in this paper. The variation of magnetic memory signal Hp (y) in process of fatigue crack propagation was investigated. The gradient K of Hp (y) was investigated and compared with the stress of specimen obtained by finite element analysis. It indicated that the gradient K can qualitatively reflect the distribution and variation of stress. The maximum gradient Kmax and crack size showed a good linear relationship, which indicated that the crack propagation can be estimated by MMM testing. Furthermore, the damage model represented by magnetic memory characteristic was created and a fatigue life prediction method was developed. The fatigue life can be evaluated by the relationship between damage parameter and normalized life. The method was also verified by another specimen. Because of MMM testing, it provided a new approach for predicting fatigue life.
NASA Astrophysics Data System (ADS)
Barangi, Mahmood; Erementchouk, Mikhail; Mazumder, Pinaki
2016-08-01
Strain-mediated magnetization switching in a magnetic tunneling junction (MTJ) by exploiting a combination of piezoelectricity and magnetostriction has been proposed as an energy efficient alternative to spin transfer torque (STT) and field induced magnetization switching methods in MTJ-based magnetic random access memories (MRAM). Theoretical studies have shown the inherent advantages of strain-assisted switching, and the dynamic response of the magnetization has been modeled using the Landau-Lifshitz-Gilbert (LLG) equation. However, an attempt to use LLG for simulating dynamics of individual elements in large-scale simulations of multi-megabyte straintronics MRAM leads to extremely time-consuming calculations. Hence, a compact analytical solution, predicting the flipping delay of the magnetization vector in the nanomagnet under stress, combined with a liberal approximation of the LLG dynamics in the straintronics MTJ, can lead to a simplified model of the device suited for fast large-scale simulations of multi-megabyte straintronics MRAMs. In this work, a tensor-based approach is developed to study the dynamic behavior of the stressed nanomagnet. First, using the developed method, the effect of stress on the switching behavior of the magnetization is investigated to realize the margins between the underdamped and overdamped regimes. The latter helps the designer realize the oscillatory behavior of the magnetization when settling along the minor axis, and the dependency of oscillations on the stress level and the damping factor. Next, a theoretical model to predict the flipping delay of the magnetization vector is developed and tested against LLG-based numerical simulations to confirm the accuracy of findings. Lastly, the obtained delay is incorporated into the approximate solutions of the LLG dynamics, in order to create a compact model to liberally and quickly simulate the magnetization dynamics of the MTJ under stress. Using the developed delay equation, the efficiency of the straintronics switching over the STT method is highlighted by analytically investigating the energy-delay trade-off of both methodologies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barangi, Mahmood, E-mail: barangi@umich.edu; Erementchouk, Mikhail; Mazumder, Pinaki
Strain-mediated magnetization switching in a magnetic tunneling junction (MTJ) by exploiting a combination of piezoelectricity and magnetostriction has been proposed as an energy efficient alternative to spin transfer torque (STT) and field induced magnetization switching methods in MTJ-based magnetic random access memories (MRAM). Theoretical studies have shown the inherent advantages of strain-assisted switching, and the dynamic response of the magnetization has been modeled using the Landau-Lifshitz-Gilbert (LLG) equation. However, an attempt to use LLG for simulating dynamics of individual elements in large-scale simulations of multi-megabyte straintronics MRAM leads to extremely time-consuming calculations. Hence, a compact analytical solution, predicting the flippingmore » delay of the magnetization vector in the nanomagnet under stress, combined with a liberal approximation of the LLG dynamics in the straintronics MTJ, can lead to a simplified model of the device suited for fast large-scale simulations of multi-megabyte straintronics MRAMs. In this work, a tensor-based approach is developed to study the dynamic behavior of the stressed nanomagnet. First, using the developed method, the effect of stress on the switching behavior of the magnetization is investigated to realize the margins between the underdamped and overdamped regimes. The latter helps the designer realize the oscillatory behavior of the magnetization when settling along the minor axis, and the dependency of oscillations on the stress level and the damping factor. Next, a theoretical model to predict the flipping delay of the magnetization vector is developed and tested against LLG-based numerical simulations to confirm the accuracy of findings. Lastly, the obtained delay is incorporated into the approximate solutions of the LLG dynamics, in order to create a compact model to liberally and quickly simulate the magnetization dynamics of the MTJ under stress. Using the developed delay equation, the efficiency of the straintronics switching over the STT method is highlighted by analytically investigating the energy-delay trade-off of both methodologies.« less
Lunar and Planetary Science XXXV: Mars Geophysics
NASA Technical Reports Server (NTRS)
2004-01-01
The titles in this section include: 1) An Extraordinary Magnetic Field Map of Mars; 2) Mapping Weak Crustal Magnetic Fields on Mars with Electron Reflectometry; 3) Analytic Signal in the Interpretation of Mars Southern Highlands Magnetic Field; 4) Modeling of Major Martian Magnetic Anomalies: Further Evidence for Polar Reorientations During the Noachian; 5) An Improved Model of the Crustal Structure of Mars; 6) Geologic Evolution of the Martian Dichotomy and Plains Magnetization in the Ismenius Area of Mars; 7) Relaxation of the Martian Crustal Dichotomy Boundary in the Ismenius Region; 8) Localized Tharsis Loading on Mars: Testing the Membrane Surface Hypothesis; 9) Thermal Stresses and Tharsis Loading: Implications for Wrinkle Ridge Formation on Mars; 10) What Can be Learned about the Martian Lithosphere from Gravity and Topography Data? 11) A Gravity Analysis of the Subsurface Structure of the Utopia Impact Basin; 12) Mechanics of Utopia Basin on Mars; 13) Burying the 'Buried Channels' on Mars: An Alternative Explanation.
Magnetic suspension and balance system advanced study, 1989 design
NASA Technical Reports Server (NTRS)
Boom, Roger W.; Eyssa, Y. M.; Abdelsalam, Moustafa K.; Mcintosh, Glen E.
1991-01-01
The objectives are to experimentally confirm several advanced design concepts on the Magnetic Suspension and Balance Systems (MSBS). The advanced design concepts were identified as potential improvements by Madison Magnetics, Inc. (MMI) during 1984 and 1985 studies of an MSBS utilizing 14 external superconductive coils and a superconductive solenoid in an airplane test model suspended in a wind tunnel. This study confirmed several advanced design concepts on magnetic suspension and balance systems. The 1989 MSBS redesign is based on the results of these experiments. Savings of up to 30 percent in supporting magnet ampere meters and 50 percent in energy stored over the 1985 design were achieved.
Performance prediction for a magnetostrictive actuator using a simplified model
NASA Astrophysics Data System (ADS)
Yoo, Jin-Hyeong; Jones, Nicholas J.
2018-03-01
Iron-Gallium alloys (Galfenol) are promising transducer materials that combine high magnetostriction, desirable mechanical properties, high permeability, and a wide operational temperature range. Most of all, the material is capable of operating under tensile stress, and is relatively resistant to shock. These materials are generally characterized using a solid, cylindrically-shaped specimen under controlled compressive stress and magnetization conditions. Because the magnetostriction strongly depends on both the applied stress and magnetization, the characterization of the material is usually conducted under controlled conditions so each parameter is varied independently of the other. However, in a real application the applied stress and magnetization will not be maintained constant during operation. Even though the controlled characterization measurement gives insight into standard material properties, usage of this data in an application, while possible, is not straight forward. This study presents an engineering modeling methodology for magnetostrictive materials based on a piezo-electric governing equation. This model suggests phenomenological, nonlinear, three-dimensional functions for strain and magnetic flux density responses as functions of applied stress and magnetic field. Load line performances as a function of maximum magnetic field input were simulated based on the model. To verify the modeling performance, a polycrystalline magnetostrictive rod (Fe-Ga alloy, Galfenol) was characterized under compressive loads using a dead-weight test setup, with strain gages on the rod and a magnetic field driving coil around the sample. The magnetic flux density through the Galfenol rod was measured with a sensing coil; the compressive loads were measured using a load cell on the bottom of the Galfenol rod. The experimental results are compared with the simulation results using the suggested model, showing good agreement.
The synoptic maps of Br from HMI observations
NASA Astrophysics Data System (ADS)
Hayashi, Keiji; Hoeksema, J. Todd; Liu, Sun; Yang, Xudong; Centeno, Rebecca; Leka, K. D.; Barnes, Graham
2012-03-01
The vector magnetic field measurement can, in principal, give the "true" radial component of the magnetic field. We prepare 4 types of synoptic maps of the radial photospheric magnetic field, from the vector magnetic field data disambiguated by means of the minimum energy method developed at NWRA/CoRA, the vector data determined under the potential-field acute assumption, and the vector data determined under the radial-acute assumption, and the standard line-of-sight magnetogram. The models of the global corona, the MHD and the PFSS, are applied to different types of maps. Although the three-dimensional structures of the global coronal magnetic field with different maps are similar and overall agreeing well the AIA full-disk images, noticeable differences among the model outputs are found especially in the high latitude regions. We will show details of these test maps and discuss the issues in determining the radial component of the photospheric magnetic field near the poles and limb.
NASA Astrophysics Data System (ADS)
Kološ, Martin; Tursunov, Arman; Stuchlík, Zdeněk
2017-12-01
The study of quasi-periodic oscillations (QPOs) of X-ray flux observed in the stellar-mass black hole binaries can provide a powerful tool for testing of the phenomena occurring in the strong gravity regime. Magnetized versions of the standard geodesic models of QPOs can explain the observationally fixed data from the three microquasars. We perform a successful fitting of the HF QPOs observed for three microquasars, GRS 1915+105, XTE 1550-564 and GRO 1655-40, containing black holes, for magnetized versions of both epicyclic resonance and relativistic precession models and discuss the corresponding constraints of parameters of the model, which are the mass and spin of the black hole and the parameter related to the external magnetic field. The estimated magnetic field intensity strongly depends on the type of objects giving the observed HF QPOs. It can be as small as 10^{-5} G if electron oscillatory motion is relevant, but it can be by many orders higher for protons or ions (0.02-1 G), or even higher for charged dust or such exotic objects as lighting balls, etc. On the other hand, if we know by any means the magnetic field intensity, our model implies strong limit on the character of the oscillating matter, namely its specific charge.
NASA Astrophysics Data System (ADS)
Hayashi, K.
2013-11-01
We present a model of a time-dependent three-dimensional magnetohydrodynamics simulation of the sub-Alfvenic solar corona and super-Alfvenic solar wind with temporally varying solar-surface boundary magnetic field data. To (i) accommodate observational data with a somewhat arbitrarily evolving solar photospheric magnetic field as the boundary value and (ii) keep the divergence-free condition, we developed a boundary model, here named Confined Differential Potential Field model, that calculates the horizontal components of the magnetic field, from changes in the vertical component, as a potential field confined in a thin shell. The projected normal characteristic method robustly simulates the solar corona and solar wind, in response to the temporal variation of the boundary Br. We conduct test MHD simulations for two periods, from Carrington Rotation number 2009 to 2010 and from Carrington Rotation 2074 to 2075 at solar maximum and minimum of Cycle 23, respectively. We obtained several coronal features that a fixed boundary condition cannot yield, such as twisted magnetic field lines at the lower corona and the transition from an open-field coronal hole to a closed-field streamer. We also obtained slight improvements of the interplanetary magnetic field, including the latitudinal component, at Earth.
TeV Cosmic-Ray Anisotropy from the Magnetic Field at the Heliospheric Boundary
DOE Office of Scientific and Technical Information (OSTI.GOV)
López-Barquero, V.; Xu, S.; Desiati, P.
We performed numerical calculations to test the suggestion by Desiati and Lazarian that the anisotropies of TeV cosmic rays may arise from their interactions with the heliosphere. For this purpose, we used a magnetic field model of the heliosphere and performed direct numerical calculations of particle trajectories. Unlike earlier papers testing the idea, we did not employ time-reversible techniques that are based on Liouville’s theorem. We showed numerically that for scattering by the heliosphere, the conditions of Liouville’s theorem are not satisfied, and the adiabatic approximation and time-reversibility of the particle trajectories are not valid. Our results indicate sensitivity tomore » the magnetic structure of the heliospheric magnetic field, and we expect that this will be useful for probing this structure in future research.« less
Heating heavy ions in the polar corona by collisionless shocks: A one-dimensional simulation
NASA Astrophysics Data System (ADS)
Nisticò, Giuseppe; Zimbardo, Gaetano
2012-01-01
Recently a new model for explaining the observations of preferential heating of heavy ions in the polar solar corona was proposed (Zimbardo, 2010, 2011). In that model the ion energization mechanism is the ion reflection off supercritical quasi-perpendicular collisionless shocks in the corona and the subsequent acceleration by the motional electric field E = -V × B/c. The mechanism of heavy ion reflection is based on ion gyration in the magnetic overshoot of the shock. The acceleration due to the motional electric field is perpendicular to the magnetic field, giving rise to large temperature anisotropy with T⊥ ≫ T∥, in agreement with SoHO observations. Such a model is tested here by means of a one dimensional test particle simulation where ions are launched toward electric and magnetic profiles representing the shock transition. We study the dynamics of O5+, as representative of coronal heavy ions for Alfvénic Mach numbers of 2-4, as appropriate to solar corona. It is found that O5+ ions are easily reflected and gain more than mass proportional energy with respect to protons.
Parameter Design and Optimal Control of an Open Core Flywheel Energy Storage System
NASA Technical Reports Server (NTRS)
Pang, D.; Anand, D. K.; Kirk, J. A.
1996-01-01
In low earth orbit (LEO) satellite applications spacecraft power is provided by photovoltaic cells and batteries. To overcome battery shortcomings the University of Maryland, working in cooperation with NASA/GSFC and NASA/LeRC, has developed a magnetically suspended flywheel for energy storage applications. The system is referred to as an Open Core Composite Flywheel (OCCF) energy storage system. Successful application of flywheel energy storage requires integration of several technologies, viz. bearings, rotor design, motor/generator, power conditioning, and system control. In this paper we present a parameter design method which has been developed for analyzing the linear SISO model of the magnetic bearing controller for the OCCF. The objective of this continued research is to principally analyze the magnetic bearing system for nonlinear effects in order to increase the region of stability, as determined by high speed and large air gap control. This is achieved by four tasks: (1) physical modeling, design, prototyping, and testing of an improved magnetically suspended flywheel energy storage system, (2) identification of problems that limit performance and their corresponding solutions, (3) development of a design methodology for magnetic bearings, and (4) design of an optimal controller for future high speed applications. Both nonlinear SISO and MIMO models of the magnetic system were built to study limit cycle oscillations and power amplifier saturation phenomenon observed in experiments. The nonlinear models include the inductance of EM coils, the power amplifier saturation, and the physical limitation of the flywheel movement as discussed earlier. The control program EASY5 is used to study the nonlinear SISO and MIMO models. Our results have shown that the characteristics and frequency responses of the magnetic bearing system obtained from modeling are comparable to those obtained experimentally. Although magnetic saturation is shown in the bearings, there are good correlations between the theoretical model and experimental data. Both simulation and experiment confirm large variations of the magnetic bearing characteristics due to air gap growth. Therefore, the gap growth effect should be considered in the magnetic bearing system design. Additionally, the magnetic bearing control system will be compared to other design methods using not only parameter design but H-infinity optimal control and mu synthesis.
Ma, Qingyu; He, Bin
2007-08-21
A theoretical study on the magnetoacoustic signal generation with magnetic induction and its applications to electrical conductivity reconstruction is conducted. An object with a concentric cylindrical geometry is located in a static magnetic field and a pulsed magnetic field. Driven by Lorentz force generated by the static magnetic field, the magnetically induced eddy current produces acoustic vibration and the propagated sound wave is received by a transducer around the object to reconstruct the corresponding electrical conductivity distribution of the object. A theory on the magnetoacoustic waveform generation for a circular symmetric model is provided as a forward problem. The explicit formulae and quantitative algorithm for the electrical conductivity reconstruction are then presented as an inverse problem. Computer simulations were conducted to test the proposed theory and assess the performance of the inverse algorithms for a multi-layer cylindrical model. The present simulation results confirm the validity of the proposed theory and suggest the feasibility of reconstructing electrical conductivity distribution based on the proposed theory on the magnetoacoustic signal generation with magnetic induction.
The role of kinetic ion physics in the interaction of magnetic islands
NASA Astrophysics Data System (ADS)
Stanier, A.
2016-12-01
Magnetic islands are two-dimensional representations of magnetic flux-ropes, a fundamental building block of magnetized plasmas. Here we model magnetic reconnection during the coalescence of magnetic islands with a range of guide fields that have application to the Earth's magnetosphere. It is demonstrated that the Hall-MHD model is able to reproduce the reconnection rates of the fully kinetic system only in the presence of a fairly strong guide field (Bg≥ 3Bx). In the weak guide field limit non-isotropic ion pressure tensor effects that are missing from Hall-MHD are crucial to describe many key features of this reconnection test-problem [1], including the peak and average rates, pile-up field, outflow velocity, and global evolution of the system. A hybrid model which retains the full kinetic physics for ions along with mass-less fluid electrons gives good agreement with fully kinetic results for the full range of guide fields considered. These results suggest that kinetic ions may be important for a large number of reconnection events in the Earth's magnetosphere. References: [1] A. Stanier, W. Daughton, L. Chacon, H. Karimabadi, J. Ng, Y.-M. Huang, A. Hakim, and A. Bhattacharjee, Phys. Rev. Lett. 115, 175004 (2015).
Kinetic Approaches to Shear-Driven Magnetic Reconnection for Multi-Scale Modeling of CME Initiation
NASA Astrophysics Data System (ADS)
Black, C.; Antiochos, S. K.; DeVore, C.; Germaschewski, K.; Karpen, J. T.
2013-12-01
In the standard model for coronal mass ejections (CME) and/or solar flares, the free energy for the event resides in the strongly sheared magnetic field of a filament channel. The pre-eruption force balance, consisting of an upward force due to the magnetic pressure of the sheared field balanced by a downward tension due to overlying un-sheared field, is widely believed to be disrupted by magnetic reconnection. Therefore, understanding initiation of solar explosive phenomena requires a true multi-scale model of reconnection onset driven by the buildup of magnetic shear. While the application of magnetic-field shear is a trivial matter in MHD simulations, it is a significant challenge in a PIC code. The driver must be implemented in a self-consistent manner and with boundary conditions that avoid the generation of waves that destroy the applied shear. In this work, we describe drivers for 2.5D, aperiodic, PIC systems and discuss the implementation of driver-consistent boundary conditions that allow a net electric current to flow through the walls. Preliminary tests of these boundaries with a MHD equilibrium are shown. This work was supported, in part, by the NASA Living With a Star TR&T Program.
Structural health monitoring for DOT using magnetic shape memory alloy cables in concrete
NASA Astrophysics Data System (ADS)
Davis, Allen; Mirsayar, Mirmilad; Sheahan, Emery; Hartl, Darren
2018-03-01
Embedding shape memory alloy (SMA) wires in concrete components offers the potential to monitor their structural health via external magnetic field sensing. Currently, structural health monitoring (SHM) is dominated by acoustic emission and vibration-based methods. Thus, it is attractive to pursue alternative damage sensing techniques that may lower the cost or increase the accuracy of SHM. In this work, SHM via magnetic field detection applied to embedded magnetic shape memory alloy (MSMA) is demonstrated both experimentally and using computational models. A concrete beam containing iron-based MSMA wire is subjected to a 3-point bend test where structural damage is induced, thereby resulting in a localized phase change of the MSMA wire. Magnetic field lines passing through the embedded MSMA domain are altered by this phase change and can thus be used to detect damage within the structure. A good correlation is observed between the computational and experimental results. Additionally, the implementation of stranded MSMA cables in place of the MSMA wire is assessed through similar computational models. The combination of these computational models and their subsequent experimental validation provide sufficient support for the feasibility of SHM using magnetic field sensing via MSMA embedded components.
NASA Astrophysics Data System (ADS)
Jacobs, Bryan C.; Nelson, Carl V.
2001-08-01
A magnetic sensor system has been developed to measure the 3-D location and orientation of a rigid body relative to an array of magnetic dipole transmitters. A generalized solution to the measurement problem has been formulated, allowing the transmitter and receiver parameters (position, orientation, number, etc.) to be optimized for various applications. Additionally, the method of images has been used to mitigate the impact of metallic materials in close proximity to the sensor. The resulting system allows precise tracking of high-speed motion in confined metal environments. The sensor system was recently configured and tested as an abdomen displacement sensor for an automobile crash-test dummy. The test results indicate a positional accuracy of approximately 1 mm rms during 20 m/s motions. The dynamic test results also confirmed earlier covariance model predictions, which were used to optimize the sensor geometry. A covariance analysis was performed to evaluate the applicability of this magnetic position system for tracking a pilot's head motion inside an aircraft cockpit. Realistic design parameters indicate that a robust tracking system, consisting of lightweight pickup coils mounted on a pilot's helmet, and an array of transmitter coils distributed throughout a cockpit, is feasible. Recent test and covariance results are presented.
Estimation Model for Magnetic Properties of Stamped Electrical Steel Sheet
NASA Astrophysics Data System (ADS)
Kashiwara, Yoshiyuki; Fujimura, Hiroshi; Okamura, Kazuo; Imanishi, Kenji; Yashiki, Hiroyoshi
Less deterioration in magnetic properties of electrical steel sheets in the process of stamping out iron-core are necessary in order to maintain its performance. First, the influence of plastic strain and stress on magnetic properties was studied by test pieces, in which plastic strain was added uniformly and residual stress was not induced. Because the influence of plastic strain was expressed by equivalent plastic strain, at each equivalent plastic strain state the influence of load stress was investigated. Secondly, elastic limit was determined about 60% of macroscopic yield point (MYP), and it was found to agree with stress limit inducing irreversible deterioration in magnetic properties. Therefore simulation models, where beyond elastic limit plastic deformation begins and magnetic properties are deteriorated steeply, are proposed. Besides considered points in the deformation analysis are strain-rate sensitivity of flow stress, anisotropy under deformation, and influence of stress triaxiality on fracture. Finally, proposed models have been shown to be valid, because magnetic properties of 5mm width rectangular sheets stamped out from non-oriented electrical steel sheet (35A250 JIS grade) can be estimated with good accuracy. It is concluded that the elastic limit must be taken into account in both stamping process simulation and magnetic field calculation.
NASA Astrophysics Data System (ADS)
Entler, S.; Duran, I.; Kocan, M.; Vayakis, G.
2017-07-01
Three vacuum vessel sectors in ITER will be instrumented by the outer vessel steady-state magnetic field sensors. Each sensor unit features a pair of metallic Hall sensors with a sensing layer made of bismuth to measure tangential and normal components of the local magnetic field. The influence of temperature and magnetic field on the Hall coefficient was tested for the temperature range from 25 to 250 oC and the magnetic field range from 0 to 0.5 T. A fit of the Hall coefficient normalized temperature function independent of magnetic field was found, and a model of the Hall coefficient functional dependence at a wide range of temperature and magnetic field was built with the purpose to simplify the calibration procedure.
Deng; Zhang; Zhang; ...
2016-04-11
The jet composition and energy dissipation mechanism of gamma-ray bursts (GRBs) and blazars are fundamental questions that remain not fully understood. One plausible model is to interpret the γ-ray emission of GRBs and optical emission of blazars as synchrotron radiation of electrons accelerated from the collision-induced magnetic dissipation regions in Poynting-flux-dominated jets. The polarization observation is an important and independent information to test this model. Based on our recent 3D relativistic MHD simulations of collision-induced magnetic dissipation of magnetically dominated blobs, here we perform calculations of the polarization properties of the emission in the dissipation region and apply the resultsmore » to model the polarization observational data of GRB prompt emission and blazar optical emission. In this article, we show that the same numerical model with different input parameters can reproduce well the observational data of both GRBs and blazars, especially the 90° polarization angle (PA) change in GRB 100826A and the 180° PA swing in blazar 3C279. This supports a unified model for GRB and blazar jets, suggesting that collision-induced magnetic reconnection is a common physical mechanism to power the relativistic jet emission from events with very different black hole masses.« less
How Well Can the Observed Flux Ropes in the Solar Wind be Fitted by a Uniform-twist Flux Rope Model?
NASA Astrophysics Data System (ADS)
Wang, Y.
2015-12-01
In the solar wind, flux ropes, e.g., magnetic clouds (MCs), are a frequently observational phenomenon. Their magnetic field configuration or the way that the field lines wind around the flux rope axis is one of the most important information to understand the formation and evolution of the observed flux ropes. Most MCs are believed to be in the force-free state, and widely modeled by the Lundquist force-free solution, in which the twist of the field line increases from zero at the axis to infinity at the boundary. However, Lundquist solution is not the only form of a force-free magnetic field. Some studies based on suprathermal electron observations and models have shown that MCs may carry magnetic field lines more likely to be uniformly twisted. The nonlinear force-free field extrapolation of solar magnetic field also suggests that the field lines of a flux rope twist limitedly. In this study, we have developed a velocity-modified uniform-twist force-free flux rope model, and fit observed MCs with this model. By using this approach, we test how well the observed MCs can be fitted into a uniform-twist flux rope. Some interesting results will be given in this presentation.
Cell mediated therapeutics for cancer treatment: Tumor homing cells as therapeutic delivery vehicles
NASA Astrophysics Data System (ADS)
Balivada, Sivasai
Many cell types were known to have migratory properties towards tumors and different research groups have shown reliable results regarding cells as delivery vehicles of therapeutics for targeted cancer treatment. Present report discusses proof of concept for 1. Cell mediated delivery of Magnetic nanoparticles (MNPs) and targeted Magnetic hyperthermia (MHT) as a cancer treatment by using in vivo mouse cancer models, 2. Cells surface engineering with chimeric proteins for targeted cancer treatment by using in vitro models. 1. Tumor homing cells can carry MNPs specifically to the tumor site and tumor burden will decrease after alternating magnetic field (AMF) exposure. To test this hypothesis, first we loaded Fe/Fe3O4 bi-magnetic NPs into neural progenitor cells (NPCs), which were previously shown to migrate towards melanoma tumors. We observed that NPCs loaded with MNPs travel to subcutaneous melanoma tumors. After alternating magnetic field (AMF) exposure, the targeted delivery of MNPs by the NPCs resulted in a mild decrease in tumor size (Chapter-2). Monocytes/macrophages (Mo/Ma) are known to infiltrate tumor sites, and also have phagocytic activity which can increase their uptake of MNPs. To test Mo/Ma-mediated MHT we transplanted Mo/Ma loaded with MNPs into a mouse model of pancreatic peritoneal carcinomatosis. We observed that MNP-loaded Mo/Ma infiltrated pancreatic tumors and, after AMF treatment, significantly prolonged the lives of mice bearing disseminated intraperitoneal pancreatic tumors (Chapter-3). 2. Targeted cancer treatment could be achieved by engineering tumor homing cell surfaces with tumor proteases cleavable, cancer cell specific recombinant therapeutic proteins. To test this, Urokinase and Calpain (tumor specific proteases) cleavable; prostate cancer cell (CaP) specific (CaP1 targeting peptide); apoptosis inducible (Caspase3 V266ED3)- rCasp3V266ED3 chimeric protein was designed in silico. Hypothesized membrane anchored chimeric protein (rCasp3V266ED3, rMcherry red) plasmids were constructed. Membrane anchoring and activity of designed proteins were analyzed in RAW264.7 Mo/Ma and HEK293 cells in vitro. Further, Urokinase (uPA) mediated cleavage and release of rCasp3V266ED3 from engineered cells was tested (Chapter-4). Animal models for cancer therapy are invaluable for preclinical testing of potential cancer treatments. Final chapter of present report shows evidence for immune-deficient line of pigs as a model for human cancers (Chapter-5)
Alternative dipole magnets for ISABELLE
NASA Astrophysics Data System (ADS)
Taylor, C.; Althaus, R.; Caspi, S.; Gilbert, W.; Hassenzahl, W. V.; Meuser, R.; Rechen, J.; Warren, R.
1982-05-01
A dipole magnet, intended as a possible alternative for the ISABELLE main ring magnet, was designed. Three layers of FNAL Doubler/Saver conductor were used. Two 1.3-m-long models were built and tested, both with and without an iron core, and in both helium I and helium II. The training behavior, cyclic energy loss, point of quench initiation, and quench velocity were determined. A central field of 6.5 tesla was obtained in He I (4.4 K), and 7.6 tesla in He II (1.8K).
Magnetospheric Substorm Evolution in the Magnetotail: Challenge to Global MHD Modeling.
NASA Astrophysics Data System (ADS)
Kuznetsova, M. M.; Hesse, M.; Dorelli, J.; Rastaetter, L.
2003-12-01
Testing the ability of global MHD models to describe magnetotail evolution during substroms is one of the elements of science based validation efforts at CCMC. We perform simulations of magnetotail dynamics using global MHD models residing at CCMC. We select solar wind conditions which drive the accumulation of magnetic field in the tail lobes and subsequent magnetic reconnection and energy release. We will analyze the effects of spatial resolution in the plasma sheet on modeled expansion phase evolution, maximum energy stored in the tail, and details of magnetotail reconnection. We will pay special attention to current sheet thinning and multiple plasmoid formation.
Lee, Won-Ho; Lee, Jong-Chul
2018-09-01
A numerical simulation was developed for magnetic nanoparticles in a liquid dielectric to investigate the AC breakdown voltage of the magnetic nanofluids according to the volume concentration of the magnetic nanoparticles. In prior research, we found that the dielectric breakdown voltage of the transformer oil-based magnetic nanofluids was positively or negatively affected according to the amount of magnetic nanoparticles under a testing condition of dielectric fluids, and the trajectory of the magnetic nanoparticles in a fabricated chip was visualized to verify the related phenomena via measurements and computations. In this study, a numerical simulation of magnetic nanoparticles in an insulating fluid was developed to model particle tracing for AC breakdown mechanisms happened to a sphere-sphere electrode configuration and to propose a possible mechanism regarding the change in the breakdown strength due to the behavior of the magnetic nanoparticles with different applied voltages.
Bringing Earth Magnetism Research into the High School Physics Classroom
NASA Astrophysics Data System (ADS)
Smirnov, A. V.; Bluth, G.; Engel, E.; Kurpier, K.; Foucher, M. S.; Anderson, K. L.
2015-12-01
We present our work in progress from an NSF CAREER project that aims to integrate paleomagnetic research and secondary school physics education. The research project is aimed at quantifying the strength and geometry of the Precambrian geomagnetic field. Investigation of the geomagnetic field behavior is crucial for understanding the mechanisms of field generation, and the development of the Earth's atmosphere and biosphere, and can serve as a focus for connecting high-level Earth science research with a standard physics curriculum. High school science teachers have participated in each summer field and research component of the project, gaining field and laboratory research experience, sets of rock and mineral samples, and classroom-tested laboratory magnetism activities for secondary school physics and earth science courses. We report on three field seasons of teacher field experiences and two years of classroom testing of paleomagnetic research materials merged into physics instruction on magnetism. Students were surveyed before and after dedicated instruction for both perceptions and attitude towards earth science in general, then more specifically on earth history and earth magnetism. Students were also surveyed before and after instruction on major earth system and magnetic concepts and processes, particularly as they relate to paleomagnetic research. Most students surveyed had a strongly positive viewpoint towards the study of Earth history and the importance of studying Earth Sciences in general, but were significantly less drawn towards more specific topics such as mineralogy and magnetism. Students demonstrated understanding of Earth model and the basics of magnetism, as well as the general timing of life, atmospheric development, and magnetic field development. However, detailed knowledge such as the magnetic dynamo, how the magnetic field has changed over time, and connections between earth magnetism and the development of an atmosphere remained largely misunderstood even after specific instruction, laboratory activities, and research examples. Ongoing work is examining the effectiveness of specific classroom and laboratory activities on student perceptions and misconceptions - which models work best to develop deeper understanding and appreciation of paleomagnetic research.
Magnetic Launch Assist Demonstration Test
NASA Technical Reports Server (NTRS)
2001-01-01
This image shows a 1/9 subscale model vehicle clearing the Magnetic Launch Assist System, formerly referred to as the Magnetic Levitation (MagLev), test track during a demonstration test conducted at the Marshall Space Flight Center (MSFC). Engineers at MSFC have developed and tested Magnetic Launch Assist technologies. To launch spacecraft into orbit, a Magnetic Launch Assist System would use magnetic fields to levitate and accelerate a vehicle along a track at very high speeds. Similar to high-speed trains and roller coasters that use high-strength magnets to lift and propel a vehicle a couple of inches above a guideway, a launch-assist system would electromagnetically drive a space vehicle along the track. A full-scale, operational track would be about 1.5-miles long and capable of accelerating a vehicle to 600 mph in 9.5 seconds. This track is an advanced linear induction motor. Induction motors are common in fans, power drills, and sewing machines. Instead of spinning in a circular motion to turn a shaft or gears, a linear induction motor produces thrust in a straight line. Mounted on concrete pedestals, the track is 100-feet long, about 2-feet wide and about 1.5-feet high. The major advantages of launch assist for NASA launch vehicles is that it reduces the weight of the take-off, the landing gear, the wing size, and less propellant resulting in significant cost savings. The US Navy and the British MOD (Ministry of Defense) are planning to use magnetic launch assist for their next generation aircraft carriers as the aircraft launch system. The US Army is considering using this technology for launching target drones for anti-aircraft training.
Field Quality Study of a 1-m-Long Single-Aperture 11-T Nb$$_3$$Sn Dipole Model for LHC Upgrades
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chlachidze, G.; DiMarco, J.; Andreev, N.
2014-01-01
FNAL and CERN are carrying out a joint R&D program with the goal of building a 5.5-m-long twin-aperture 11-T Nb_3Sn dipole prototype that is suitable for installation in the LHC. An important part of the program is the development and test of a series of short single-aperture and twin-aperture dipole models with a nominal field of 11 T at the LHC operation current of 11.85 kA and 20% margin. This paper presents the results of magnetic measurements of a 1-m-long single-aperture Nb_3Sn dipole model fabricated and tested recently at FNAL, including geometrical field harmonics and effects of coil magnetization andmore » iron yoke saturation.« less
NASA Technical Reports Server (NTRS)
Klumpar, D. M. (Principal Investigator)
1982-01-01
Progress made in reducing MAGSAT data and displaying magnetic field perturbations caused primarily by external currents is reported. A periodic and repeatable perturbation pattern is described that arises from external current effects but appears as unique signatures associated with upper middle latitudes on the Earth's surface. Initial testing of the modeling procedure that was developed to compute the magnetic fields at satellite orbit due to current distributions in the ionosphere and magnetosphere is also discussed. The modeling technique utilizes a linear current element representation of the large scale space current system.
Numerical evaluation of heating in the human head due to magnetic resonance imaging (MRI)
NASA Astrophysics Data System (ADS)
Nguyen, Uyen; Brown, Steve; Chang, Isaac; Krycia, Joe; Mirotznik, Mark S.
2003-06-01
In this paper we present a numerical model for evaluating tissue heating during magnetic resonance imaging (MRI). Our method, which included a detailed anatomical model of a human head, calculated both the electromagnetic power deposition and the associated temperature elevations during a MRI head examination. Numerical studies were conducted using a realistic birdcage coil excited at frequencies ranging from 63 MHz to 500 MHz. The model was validated both experimentally and analytically. The experimental validation was performed at the MR test facility located at the FDA's Center for Devices and Radiological Health (CDRH).
Test of a chromomagnetic model for hadron mass differences
NASA Astrophysics Data System (ADS)
Lichtenberg, D. B.; Roncaglia, R.
1993-05-01
An oversimplified model consisting of the QCD color-magnetic interaction has been used previously by Silvestre-Brac and others to compare the masses of exotic and normal hadrons. We show that the model can give qualitatively wrong answers when applied to systems of normal hadrons.
NASA Astrophysics Data System (ADS)
Malanushenko, A. V.
2015-12-01
We present a systemic exploration of the properties of coronal heating, by forward-modeling the emission of the ensemble of 1D quasi-steady loops. This approximations were used in many theoretical models of the coronal heating. The latter is described in many such models in the form of power laws, relating heat flux through the photosphere or volumetric heating to the strength of the magnetic field and length of a given field line. We perform a large search in the parameter space of these power laws, amongst other variables, and compare the resulting emission of the active region to that observed by AIA. We use a recently developed magnetic field model which uses shapes of coronal loops to guide the magnetic model; the result closely resembles observed structures by design. We take advantage of this, by comparing, in individual sub-regions of the active region, the emission of the active region and its synthetic model. This study allows us to rule out many theoretical models and formulate predictions for the heating models to come.
A hybrid numerical fluid dynamics code for resistive magnetohydrodynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Jeffrey
2006-04-01
Spasmos is a computational fluid dynamics code that uses two numerical methods to solve the equations of resistive magnetohydrodynamic (MHD) flows in compressible, inviscid, conducting media[1]. The code is implemented as a set of libraries for the Python programming language[2]. It represents conducting and non-conducting gases and materials with uncomplicated (analytic) equations of state. It supports calculations in 1D, 2D, and 3D geometry, though only the 1D configuation has received significant testing to date. Because it uses the Python interpreter as a front end, users can easily write test programs to model systems with a variety of different numerical andmore » physical parameters. Currently, the code includes 1D test programs for hydrodynamics (linear acoustic waves, the Sod weak shock[3], the Noh strong shock[4], the Sedov explosion[5], magnetic diffusion (decay of a magnetic pulse[6], a driven oscillatory "wine-cellar" problem[7], magnetic equilibrium), and magnetohydrodynamics (an advected magnetic pulse[8], linear MHD waves, a magnetized shock tube[9]). Spasmos current runs only in a serial configuration. In the future, it will use MPI for parallel computation.« less
Computational modeling of electrostatic charge and fields produced by hypervelocity impact
Crawford, David A.
2015-05-19
Following prior experimental evidence of electrostatic charge separation, electric and magnetic fields produced by hypervelocity impact, we have developed a model of electrostatic charge separation based on plasma sheath theory and implemented it into the CTH shock physics code. Preliminary assessment of the model shows good qualitative and quantitative agreement between the model and prior experiments at least in the hypervelocity regime for the porous carbonate material tested. The model agrees with the scaling analysis of experimental data performed in the prior work, suggesting that electric charge separation and the resulting electric and magnetic fields can be a substantial effectmore » at larger scales, higher impact velocities, or both.« less
NASA Technical Reports Server (NTRS)
Sevier, Abigail; Davis, David O.; Schoenenberger, Mark; Barnhart, Paul
2016-01-01
The implementation of a magnetic suspension system in the NASA Glenn Research Center (GRC) 225 cm2 Supersonic Wind Tunnel would be a powerful test technique that could accurately determine the dynamic stability of blunt body entry vehicles with no sting interference. This paper explores initial design challenges to be evaluated before implementation, including defining the lowest possible operating dynamic pressure and corresponding model size, developing a compatible video analysis technique, and incorporating a retractable initial support sting.
Large angle magnetic suspension test fixture
NASA Technical Reports Server (NTRS)
Britcher, Colin P.
1993-01-01
Progress made under the subject grant in the period from 1 Nov. 1992 to 31 May 1993 is presented. The research involves the continued development of the Large Angle Magnetic Suspension Test Fixture (LAMSTF) and also the recommissioning of an additional piece of exisiting hardware. During the period in question, the initial configuration of LAMSTF was completed and made routinely and reliably operational. A digital phase advance controller was completed and documented. The goal of a controlled 360 deg rotation was achieved. Work started on the recommissioning of the Annular Suspension and Pointing System (ASPS). Work completed during the report period included: modeling; position sensing; controller; support of the Second International Symposium on Magnetic Suspension Technology; and recommissioning of the Annular Suspension and Pointing System.
Application of superconducting coils to the NASA prototype magnetic balance
NASA Technical Reports Server (NTRS)
Haldeman, C. W.; Kraemer, R. A.; Phey, S. W.; Alishahi, M. M.; Covert, E. E.
1981-01-01
Application of superconducting coils to a general purpose magnetic balance was studied. The most suitable currently available superconducting cable for coils appears to be a bundle of many fine wires which are transposed and are mechanically confined. Sample coils were tested at central fields up to .5 Tesla, slewing rates up to 53 Tesla/ sec and frequencies up to 30 Hz. The ac losses were measured from helium boil-off and were approximately 20% higher than those calculated. Losses were dominated by hysteresis and a model for loss calculation which appears suitable for design purposes is presented along with computer listings. Combinations of two coils were also tested and interaction losses are reported. Two feasible geometries are also presented for prototype magnetic balance using superconductors.
The Magnetic Binary GJ 65: A Test of Magnetic Diffusivity Effects
NASA Astrophysics Data System (ADS)
MacDonald, James; Mullan, D. J.; Dieterich, Sergio
2018-06-01
GJ 65 is an M dwarf binary system consisting of the two flare stars BL Cet (GJ 65A) and UV Cet (GJ 65B). Two teams of investigators have recently reported total magnetic fluxes corresponding to fields of 4.5 and 5.2 kG for GJ 65A and 5.8 and 6.7 kG for GJ 65B: for each component, the magnetic results obtained by the two teams agree with each other to within 1σ. For the first time, we can directly compare the predictions of our magneto-convective models, based on fitting observed stellar parameters, with measured field strengths. We find that our models agree with the observed field strengths, provided the effects of finite conductivity are accounted for. Thus, GJ 65 provides us with an opportunity to use observations of field strengths to distinguish between the predictions of our models that assume perfect electrical conductivity and those that allow for finite conductivity.
Phelps, Geoffrey A.; Justet, Leigh; Moring, Barry C.; Roberts, Carter W.
2006-01-01
New gravity and magnetic data collected in the vicinity of Massachusetts Mountain and CP basin (Nevada Test Site, NV) provides a more complex view of the structural relationships present in the vicinity of CP basin than previous geologic models, helps define the position and extent of structures in southern Yucca Flat and CP basin, and better constrains the configuration of the basement structure separating CP basin and Frenchman Flat. The density and gravity modeling indicates that CP basin is a shallow, oval-shaped basin which trends north-northeast and contains ~800 m of basin-filling rocks and sediment at its deepest point in the northeast. CP basin is separated from the deeper Frenchman Flat basin by a subsurface ridge that may represent a Tertiary erosion surface at the top of the Paleozoic strata. The magnetic modeling indicates that the Cane Spring fault appears to merge with faults in northwest Massachusetts Mountain, rather than cut through to Yucca Flat basin and that the basin is downed-dropped relative to Massachusetts Mountain. The magnetic modeling indicates volcanic units within Yucca Flat basin are down-dropped on the west and supports the interpretations of Phelps and KcKee (1999). The magnetic data indicate that the only faults that appear to be through-going from Yucca Flat into either Frenchman Flat or CP basin are the faults that bound the CP hogback. In general, the north-trending faults present along the length of Yucca Flat bend, merge, and disappear before reaching CP hogback and Massachusetts Mountain or French Peak.
Determining if an axially rotated solenoid will induce a radial EMF
NASA Astrophysics Data System (ADS)
MacDermott, Dustin R.
The nature of the electromagnetic field of an axially rotated solenoid or magnet is investigated. The investigations reviewed suggest the possibility of a radially emitted electric field by either: axially rotated magnetic field lines, or a relativistic change in charge of the electron. For a very long solenoid a relativistic change in charge leaves no electric field inside while leaving an electric field outside. The concept of axially rotating magnetic field lines gives an opposite prediction. They both seem to be in contradiction to the standard model of induction, which gives no change in the electric field for a rotated solenoid or magnet. An experiment by Joseph B. Tate [48], [49] conducted in 1968 seemed to have measured a change in charge outside of a rotated solenoid. Another experiment by Barnett [3] in 1912 reported measuring no electric field inside of a rotated solenoid. Further experimentation was decided necessary and the method decided upon to attempt detection of the radial E or EMF induced by an axially rotating B field or change in charge is two concentric capacitor plates, one inside and the other outside an axially rotated solenoid. The solenoid was rotated on a lathe for the test. A concentric capacitor around an axially rotated permanent neodymium magnet was also used as a test. These experiments proved very challenging because of the small magnitude of the predicted effect. Nevertheless, the bulk of the evidence obtained indicates that no induced E arises when a magnetic source is rotated about its magnetic axis, thus supporting the standard field model of electromagnetic induction, and casting doubt on the alternative theories of magnetic field line rotation or relativistic charge enhancement.
Magnetic field extrapolation with MHD relaxation using AWSoM
NASA Astrophysics Data System (ADS)
Shi, T.; Manchester, W.; Landi, E.
2017-12-01
Coronal mass ejections are known to be the major source of disturbances in the solar wind capable of affecting geomagnetic environments. In order for accurate predictions of such space weather events, a data-driven simulation is needed. The first step towards such a simulation is to extrapolate the magnetic field from the observed field that is only at the solar surface. Here we present results of a new code of magnetic field extrapolation with direct magnetohydrodynamics (MHD) relaxation using the Alfvén Wave Solar Model (AWSoM) in the Space Weather Modeling Framework. The obtained field is self-consistent with our model and can be used later in time-dependent simulations without modifications of the equations. We use the Low and Lou analytical solution to test our results and they reach a good agreement. We also extrapolate the magnetic field from the observed data. We then specify the active region corona field with this extrapolation result in the AWSoM model and self-consistently calculate the temperature of the active region loops with Alfvén wave dissipation. Multi-wavelength images are also synthesized.
Multidimensional Simulations of Filament Channel Structure and Evolution
NASA Astrophysics Data System (ADS)
Karpen, J. T.
2007-10-01
Over the past decade, the NRL Solar Theory group has made steady progress toward formulating a comprehensive model of filament-channel structure and evolution, combining the results of our sheared 3D arcade model for the magnetic field with our thermal nonequilibrium model for the cool, dense material suspended in the corona. We have also discovered that, when a sheared arcade is embedded within the global dipolar field, the resulting stressed filament channel can erupt through the mechanism of magnetic breakout. Our progress has been largely enabled by the development and implementation of state-of-the-art 1D hydrodynamic and 3D magnetohydrodynamic (MHD) codes to simulate the field-aligned plasma thermodynamics and large-scale magnetic-field evolution, respectively. Significant questions remain, however, which could be answered with the advanced observations anticipated from Solar-B. In this review, we summarize what we have learned from our simulations about the magnetic and plasma structure, evolution, and eruption of filament channels, and suggest key observational objectives for Solar-B that will test our filament-channel and CME-initiation models and augment our understanding of the underlying physical processes.
Controlled Cold Helium Spill Test in the LHC Tunnel at CERN
NASA Astrophysics Data System (ADS)
Koettig, T.; Casas-Cubillos, J.; Chorowski, M.; Dufay-Chanat, L.; Grabowski, M.; Jedrusyna, A.; Lindell, G.; Nonis, M.; Vauthier, N.; van Weelderen, R.; Winkler, T.; Bremer, J.
The helium cooled magnets of the LHC particle accelerator are installed in a confined space, formed by a 27 km circumference 3.8 m diameter underground tunnel. The vacuum enclosures of the superconducting LHC magnets are protected by a lift plate against excessive overpressure created by eventual leaks from the magnet helium bath, or from the helium supply headers. A three-meter long no stay zone has been defined centered to these plates, based on earlier scale model studies, to protect the personnel against the consequences of an eventual opening of such a lift plate. More recently several simulation studies have been carried out modelling the propagation of the resulting helium/air mixture along the tunnel in case of such a cold helium release at a rate in the range of 1 kg/s. To validate the different scale models and simulation studies, real life mock-up tests have been performed in the LHC, releasing about 1000 liter of liquid helium under standard operational tunnel conditions. Data recorded during these tests include oxygen level, temperature and flow speed as well as video recordings, taken up- and downstream of the spill point (-100 m to +200 m) with respect to the ventilation direction in the LHC tunnel. The experimental set-up and measurement results are presented. Generic effects found during the tests will be discussed to allow the transposal to possible cold helium release cases in similar facilities.
Minimally invasive entero-enteral dual-path bypass using self-assembling magnets.
Ryou, Marvin; Aihara, Hiroyuki; Thompson, Christopher C
2016-10-01
A minimally invasive method of entero-enteral bypass may be desirable for treatment of obstruction, obesity, or metabolic syndrome. We have developed a technology based on miniature self-assembling magnets which create large-caliber anastomoses (incisionless anastomosis system or IAS). The aim of this study was to assess (a) procedural characteristics of IAS deployment and (b) long-term integrity and patency of the resulting jejuno-ileal dual-path bypass. Endoscopic jejuno-ileal bypass creation using IAS magnets was performed in 8 Yorkshire pigs survived 3 months. The jejunal magnet was endoscopically deployed. However, the ileal magnet required surgical delivery given restraints of porcine anatomy. A 5-mm enterotomy was created through which the ileal magnet was inserted using a modified laparoscopic delivery tool. Magnets were manually coupled. Pigs underwent serial endoscopies for anastomosis assessment. Three-month necropsies were performed, followed by pressure testing of anastomoses and histological analysis. Jejuno-ileal bypass creation using self-assembling IAS magnets was successful in all 8 pigs (100 %). Patent, leak-free bypasses formed in all animals by day 10. All IAS magnets were expelled by day 12. Anastomoses were widely patent at 3 months, with mean maximal diameter of 30 mm. At necropsy, adhesions were minimal. Pressure testing confirmed superior integrity of anastomotic tissue. Histology showed full epithelialization across the anastomosis with no evidence of submucosal fibrosis or inflammation. Entero-enteral bypass using self-assembling IAS magnets is safe and technically feasible in the porcine model. IAS magnets can be rapidly delivered endoscopically or through a modified laparoscopic device. Expulsion of fused magnets avoids retention of prosthetic material. Anastomoses are widely patent and fully re-epithelialized. Three-month pressure testing reveals anastomotic tissue to be as robust as native tissue, while necropsy and histology suggests minimal/absent tissue inflammation. In human anatomy, a fully endoscopic jejuno-ileal bypass using IAS magnets may be feasible.
Millimeter radiation from a 3D model of the solar atmosphere. II. Chromospheric magnetic field
NASA Astrophysics Data System (ADS)
Loukitcheva, M.; White, S. M.; Solanki, S. K.; Fleishman, G. D.; Carlsson, M.
2017-05-01
Aims: We use state-of-the-art, three-dimensional non-local thermodynamic equilibrium (non-LTE) radiative magnetohydrodynamic simulations of the quiet solar atmosphere to carry out detailed tests of chromospheric magnetic field diagnostics from free-free radiation at millimeter and submillimeter wavelengths (mm/submm). Methods: The vertical component of the magnetic field was deduced from the mm/submm brightness spectra and the degree of circular polarization synthesized at millimeter frequencies. We used the frequency bands observed by the Atacama Large Millimeter/Submillimeter Array (ALMA) as a convenient reference. The magnetic field maps obtained describe the longitudinal magnetic field at the effective formation heights of the relevant wavelengths in the solar chromosphere. Results: The comparison of the deduced and model chromospheric magnetic fields at the spatial resolution of both the model and current observations demonstrates a good correlation, but has a tendency to underestimate the model field. The systematic discrepancy of about 10% is probably due to averaging of the restored field over the heights contributing to the radiation, weighted by the strength of the contribution. On the whole, the method of probing the longitudinal component of the magnetic field with free-free emission at mm/submm wavelengths is found to be applicable to measurements of the weak quiet-Sun magnetic fields. However, successful exploitation of this technique requires very accurate measurements of the polarization properties (primary beam and receiver polarization response) of the antennas, which will be the principal factor that determines the level to which chromospheric magnetic fields can be measured. Conclusions: Consequently, high-resolution and high-precision observations of circularly polarized radiation at millimeter wavelengths can be a powerful tool for producing chromospheric longitudinal magnetograms.
Realistic Subsurface Anomaly Discrimination Using Electromagnetic Induction and an SVM Classifier
NASA Astrophysics Data System (ADS)
Pablo Fernández, Juan; Shubitidze, Fridon; Shamatava, Irma; Barrowes, Benjamin E.; O'Neill, Kevin
2010-12-01
The environmental research program of the United States military has set up blind tests for detection and discrimination of unexploded ordnance. One such test consists of measurements taken with the EM-63 sensor at Camp Sibert, AL. We review the performance on the test of a procedure that combines a field-potential (HAP) method to locate targets, the normalized surface magnetic source (NSMS) model to characterize them, and a support vector machine (SVM) to classify them. The HAP method infers location from the scattered magnetic field and its associated scalar potential, the latter reconstructed using equivalent sources. NSMS replaces the target with an enclosing spheroid of equivalent radial magnetization whose integral it uses as a discriminator. SVM generalizes from empirical evidence and can be adapted for multiclass discrimination using a voting system. Our method identifies all potentially dangerous targets correctly and has a false-alarm rate of about 5%.
Characterization of commercial magnetorheological fluids at high shear rate: influence of the gap
NASA Astrophysics Data System (ADS)
Golinelli, Nicola; Spaggiari, Andrea
2018-07-01
This paper reports the experimental tests on the behaviour of a commercial MR fluid at high shear rates and the effect of the gap. Three gaps were considered at multiple magnetic fields and shear rates. From an extended set of almost two hundred experimental flow curves, a set of parameters for the apparent viscosity are retrieved by using the Ostwald de Waele model for non-Newtonian fluids. It is possible to simplify the parameter correlation by making the following considerations: the consistency of the model depends only on the magnetic field, the flow index depends on the fluid type and the gap shows an important effect only at null or very low magnetic fields. This lead to a simple and useful model, especially in the design phase of a MR based product. During the off state, with no applied field, it is possible to use a standard viscous model. During the active state, with high magnetic field, a strong non-Newtonian nature becomes prevalent over the viscous one even at very high shear rate; the magnetic field dominates the apparent viscosity change, while the gap does not play any relevant role on the system behaviour. This simple assumption allows the designer to dimension the gap only considering the non-active state, as in standard viscous systems, and taking into account only the magnetic effect in the active state, where the gap does not change the proposed fluid model.
Semi-analytic modeling and simulation of magnetized liner inertial fusion
NASA Astrophysics Data System (ADS)
McBride, R. D.; Slutz, S. A.; Hansen, S. B.
2013-10-01
Presented is a semi-analytic model of magnetized liner inertial fusion (MagLIF). This model accounts for several key aspects of MagLIF, including: (1) pre-heat of the fuel; (2) pulsed-power-driven liner implosion; (3) liner compressibility with an analytic equation of state, artificial viscosity, and internal magnetic pressure and heating; (4) adiabatic compression and heating of the fuel; (5) radiative losses and fuel opacity; (6) magnetic flux compression with Nernst thermoelectric losses; (7) magnetized electron and ion thermal conduction losses; (8) deuterium-deuterium and deuterium-tritium primary fusion reactions; and (9) magnetized alpha-particle heating. We will first show that this simplified model, with its transparent and accessible physics, can be used to reproduce the general 1D behavior presented throughout the original MagLIF paper. We will then use this model to illustrate the MagLIF parameter space, energetics, and efficiencies, and to show the experimental challenges that we will likely be facing as we begin testing MagLIF using the infrastructure presently available at the Z facility. Finally, we will demonstrate how this scenario could likely change as various facility upgrades are made over the next three to five years and beyond. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Byun, Yeun-Sub; Jeong, Rag-Gyo; Kang, Seok-Won
2015-11-13
The real-time recognition of absolute (or relative) position and orientation on a network of roads is a core technology for fully automated or driving-assisted vehicles. This paper presents an empirical investigation of the design, implementation, and evaluation of a self-positioning system based on a magnetic marker reference sensing method for an autonomous vehicle. Specifically, the estimation accuracy of the magnetic sensing ruler (MSR) in the up-to-date estimation of the actual position was successfully enhanced by compensating for time delays in signal processing when detecting the vertical magnetic field (VMF) in an array of signals. In this study, the signal processing scheme was developed to minimize the effects of the distortion of measured signals when estimating the relative positional information based on magnetic signals obtained using the MSR. In other words, the center point in a 2D magnetic field contour plot corresponding to the actual position of magnetic markers was estimated by tracking the errors between pre-defined reference models and measured magnetic signals. The algorithm proposed in this study was validated by experimental measurements using a test vehicle on a pilot network of roads. From the results, the positioning error was found to be less than 0.04 m on average in an operational test.
Byun, Yeun-Sub; Jeong, Rag-Gyo; Kang, Seok-Won
2015-01-01
The real-time recognition of absolute (or relative) position and orientation on a network of roads is a core technology for fully automated or driving-assisted vehicles. This paper presents an empirical investigation of the design, implementation, and evaluation of a self-positioning system based on a magnetic marker reference sensing method for an autonomous vehicle. Specifically, the estimation accuracy of the magnetic sensing ruler (MSR) in the up-to-date estimation of the actual position was successfully enhanced by compensating for time delays in signal processing when detecting the vertical magnetic field (VMF) in an array of signals. In this study, the signal processing scheme was developed to minimize the effects of the distortion of measured signals when estimating the relative positional information based on magnetic signals obtained using the MSR. In other words, the center point in a 2D magnetic field contour plot corresponding to the actual position of magnetic markers was estimated by tracking the errors between pre-defined reference models and measured magnetic signals. The algorithm proposed in this study was validated by experimental measurements using a test vehicle on a pilot network of roads. From the results, the positioning error was found to be less than 0.04 m on average in an operational test. PMID:26580622
Poly(caprolactone) based magnetic scaffolds for bone tissue engineering
NASA Astrophysics Data System (ADS)
Bañobre-López, M.; Piñeiro-Redondo, Y.; De Santis, R.; Gloria, A.; Ambrosio, L.; Tampieri, A.; Dediu, V.; Rivas, J.
2011-04-01
Synthetic scaffolds for tissue engineering coupled to stem cells represent a promising approach aiming to promote the regeneration of large defects of damaged tissues or organs. Magnetic nanocomposites formed by a biodegradable poly(caprolactone) (PCL) matrix and superparamagnetic iron doped hydroxyapatite (FeHA) nanoparticles at different PCL/FeHA compositions have been successfully prototyped, layer on layer, through 3D bioplotting. Magnetic measurements, mechanical testing, and imaging were carried out to calibrate both model and technological processing in the magnetized scaffold prototyping. An amount of 10% w/w of magnetic FeHA nanoparticles represents a reinforcement for PCL matrix, however, a reduction of strain at failure is also observed. Energy loss (absorption) measurements under a radio-frequency applied magnetic field were performed in the resulting magnetic scaffolds and very promising heating properties were observed, making them very useful for potential biomedical applications.
A Real-Time Localization System for an Endoscopic Capsule Using Magnetic Sensors †
Pham, Duc Minh; Aziz, Syed Mahfuzul
2014-01-01
Magnetic sensing technology offers an attractive alternative for in vivo tracking with much better performance than RF and ultrasound technologies. In this paper, an efficient in vivo magnetic tracking system is presented. The proposed system is intended to localize an endoscopic capsule which delivers biomarkers around specific locations of the gastrointestinal (GI) tract. For efficiently localizing a magnetic marker inside the capsule, a mathematical model has been developed for the magnetic field around a cylindrical magnet and used with a localization algorithm that provides minimum error and fast computation. The proposed tracking system has much reduced complexity compared to the ones reported in the literature to date. Laboratory tests and in vivo animal trials have demonstrated the suitability of the proposed system for tracking a magnetic marker with expected accuracy. PMID:25379813
Qualifying the Sunpower M-87N Cryocooler for Operation in the AMS-02 Magnetic Field
NASA Technical Reports Server (NTRS)
Mustafi, Shuvo; Banks, Stuart; Shirey, Kimberly; Warner, Brent; Leidecker, Henning; Breon, Susan; Boyle, Rob
2003-01-01
The Alpha Magnetic Spectrometer-02 (AMs-02) experiment consists of a superfluid helium dewar. The outer vapor cooled shields of the dewar are to be held at 77 K by four Sunpower M87N cryocoolers. These cryocoolers have magnetic components that might interact with the external applied field generated by the superconducting magnet, thereby degrading the cryocoolers' performance. Engineering models of the Sunpower M87N are being tested at NASA Goddard Space Flight in order to qualify them to operate in a magnetic environment similar to the AMS-02 magnetic environment. AMS-02 will be a space station based particle detector studying the properties and origin of cosmic particles including antimatter and dark matter. It uses a superconducting magnet that is cooled by the superfluid helium dewar. Highly sensitive detector plates inside the magnet will measure a particle's momentum and charge.
NASA Technical Reports Server (NTRS)
Eshleman, R. L.; Meyers, A. P.; Davidson, W. A.; Gortowski, R. C.; Anderson, M. E.
1973-01-01
The development, performance, and test results for the spaceborne magnetic tape transport are discussed. An analytical model of the tape transport was used to optimize its conceptual design. Each of the subsystems was subjected to reliability analyses which included structural integrity, maintenance of system performance within acceptable bounds, and avoidance of fatigue failure. These subsystems were also compared with each other in order to evaluate reliability characteristics. The transport uses no mechanical couplings. Four drive motors, one for each reel and one for each of two capstans, are used in a differential mode. There are two hybrid, spherical, cone tapered-crown rollers for tape guidance. Storage of the magnetic tape is provided by a reel assembly which includes the reel, a reel support structure and bearings, dust seals, and a dc drive motor. A summary of transport test results on tape guidance, flutter, and skew is provided.
Mert, Tufan; Kurt, Akif Hakan; Altun, İdiris; Celik, Ahmet; Baran, Furkan; Gunay, Ismail
2017-05-01
Cell-based or magnetic field therapies as alternative approaches to pain management have been tested in several experimental pain models. The aim of this study therefore was to investigate the actions of the cell-based therapy (adipose tissue derived mesenchymal stem cells; ADMSC) or pulsed magnetic field (PMF) therapy and magneto-cell therapy (combination of ADMSC and PMF) in chronic constriction nerve injury model (CCI). The actions of individual ADMSC (route dependent [systemic or local], time-dependent [a day or a week after surgery]), or PMF and their combination (magneto-cell) therapies on hyperalgesia and allodynia were investigated by using thermal plantar test and a dynamic plantar aesthesiometer, respectively. In addition, various cytokine levels (IL-1β, IL-6, and IL-10) of rat sciatic nerve after CCI were analyzed. Following the CCI, both latency and threshold significantly decreased. ADMSC or PMF significantly increased latencies and thresholds. The combination of ADMSC with PMF even more significantly increased latency and threshold when compared with ADMSC alone. However, ADMSC-induced decrease in pro-inflammatory or increase in anti-inflammatory cytokines levels were partially prevented by PMF treatments. Present findings may suggest that both cell-based and magnetic therapies can effectively attenuate chronic neuropathic pain symptoms. Combined magneto-cell therapy may also efficiently reverse neuropathic signs. Bioelectromagnetics. 38:255-264, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
A domain-decomposed multi-model plasma simulation of collisionless magnetic reconnection
NASA Astrophysics Data System (ADS)
Datta, I. A. M.; Shumlak, U.; Ho, A.; Miller, S. T.
2017-10-01
Collisionless magnetic reconnection is a process relevant to many areas of plasma physics in which energy stored in magnetic fields within highly conductive plasmas is rapidly converted into kinetic and thermal energy. Both in natural phenomena such as solar flares and terrestrial aurora as well as in magnetic confinement fusion experiments, the reconnection process is observed on timescales much shorter than those predicted by a resistive MHD model. As a result, this topic is an active area of research in which plasma models with varying fidelity have been tested in order to understand the proper physics explaining the reconnection process. In this research, a hybrid multi-model simulation employing the Hall-MHD and two-fluid plasma models on a decomposed domain is used to study this problem. The simulation is set up using the WARPXM code developed at the University of Washington, which uses a discontinuous Galerkin Runge-Kutta finite element algorithm and implements boundary conditions between models in the domain to couple their variable sets. The goal of the current work is to determine the parameter regimes most appropriate for each model to maintain sufficient physical fidelity over the whole domain while minimizing computational expense. This work is supported by a Grant from US AFOSR.
Experimental Searches for Exotic Short-Range Forces Using Mechanical Oscillators
NASA Astrophysics Data System (ADS)
Weisman, Evan
Experimental searches for forces beyond gravity and electromagnetism at short range have attracted a great deal of attention over the last decade. In this thesis I describe the test mass development for two new experiments searching for forces below 1 mm. Both modify a previous experiment that used 1 kHz mechanical oscillators as test masses with a stiff conducting shield between them to suppress backgrounds, a promising technique for probing exceptionally small distances at the limit of instrumental thermal noise. To further reduce thermal noise, one experiment will use plated silicon test masses at cryogenic temperatures. The other experiment, which searches for spin-dependent interactions, will apply the spin-polarizable material Dy3Fe5O 12 to the test mass surfaces. This material exhibits orbital compensation of the magnetism associated with its intrinsic electron spin, minimizing magnetic backgrounds. Several plated silicon test mass prototypes were fabricated using photolithography (useful in both experiments), and spin-dependent materials were synthesized with a simple chemical recipe. Both silicon and spin-dependent test masses demonstrate the mechanical and magnetic properties necessary for sensitive experiments. I also describe sensitivity calculations of another proposed spin-dependent experiment, based on a modified search for the electron electric dipole moment, which show unprecedented sensitivity to exotic monopole-dipole forces. Inspired by a finite element model, a study attempting to maximize detector quality factor versus geometry is also presented, with experimental results so far not explained by the model.
Pole-strength of the earth from Magsat and magnetic determination of the core radius
NASA Technical Reports Server (NTRS)
Voorhies, G. V.; Benton, E. R.
1982-01-01
A model based on two days of Magsat data is used to numerically evaluate the unsigned magnetic flux linking the earth's surface, and a comparison of the 16.054 GWb value calculated with values from earlier geomagnetic field models reveals a smooth, monotonic, and recently-accelerating decrease in the earth's pole strength at a 50-year average rate of 8.3 MWb, or 0.052%/year. Hide's (1978) magnetic technique for determining the radius of the earth's electrically-conducting core is tested by (1) extrapolating main field models for 1960 and 1965 downward through the nearly-insulating mantle, and then separately comparing them to equivalent, extrapolated models of Magsat data. The two unsigned fluxes are found to equal the Magsat values at a radius which is within 2% of the core radius; and (2) the 1960 main field and secular variation and acceleration coefficients are used to derive models of 1930, 1940 and 1950. The same core magnetic radius value, within 2% of the seismic value, is obtained. It is concluded that the mantle is a nearly-perfect insulator, while the core is a perfect conductor, on the decade time scale.
The in vivo performance of biomagnetic hydroxyapatite nanoparticles in cancer hyperthermia therapy.
Hou, Chun-Han; Hou, Sheng-Mou; Hsueh, Yu-Sheng; Lin, Jinn; Wu, Hsi-Chin; Lin, Feng-Huei
2009-08-01
Hyperthermia therapy for cancer has drawn more and more attention these days. In this study, we conducted an in vivo cancer hyperthermia study of the new magnetic hydroxyapatite nanoparticles by a mouse model. The magnetic hydroxyapatite nanoparticles were first made by co-precipitation method with the addition of Fe(2+). Then, magnetic-HAP powder (mHAP) or pure HAP powder (HAP) was mixed with phosphate buffer solution (PBS), respectively. The mixture was injected around the tumor. In order to achieve hyperthermia, the mice were placed into an inductive heater with high frequency and alternating magnetic field. Only the mice which were injected with mHAP and had been treated inside the magnetic field showed dramatic reduction of tumor volume, in the 15-day observation period. No local recurrence was noted. The blood test of mice proved that mHAP powders possessed good biocompatibility and little toxicity when injected subcutaneously. Therefore, our new magnetic hydroxyapatite nanoparticles have demonstrated therapeutic effect in a mouse model with little toxicity. Further study should be done before its application inside the human body.
Nonlinear Dynamics of Non-uniform Current-Vortex Sheets in Magnetohydrodynamic Flows
NASA Astrophysics Data System (ADS)
Matsuoka, C.; Nishihara, K.; Sano, T.
2017-04-01
A theoretical model is proposed to describe fully nonlinear dynamics of interfaces in two-dimensional MHD flows based on an idea of non-uniform current-vortex sheet. Application of vortex sheet model to MHD flows has a crucial difficulty because of non-conservative nature of magnetic tension. However, it is shown that when a magnetic field is initially parallel to an interface, the concept of vortex sheet can be extended to MHD flows (current-vortex sheet). Two-dimensional MHD flows are then described only by a one-dimensional Lagrange parameter on the sheet. It is also shown that bulk magnetic field and velocity can be calculated from their values on the sheet. The model is tested by MHD Richtmyer-Meshkov instability with sinusoidal vortex sheet strength. Two-dimensional ideal MHD simulations show that the nonlinear dynamics of a shocked interface with density stratification agrees fairly well with that for its corresponding potential flow. Numerical solutions of the model reproduce properly the results of the ideal MHD simulations, such as the roll-up of spike, exponential growth of magnetic field, and its saturation and oscillation. Nonlinear evolution of the interface is found to be determined by the Alfvén and Atwood numbers. Some of their dependence on the sheet dynamics and magnetic field amplification are discussed. It is shown by the model that the magnetic field amplification occurs locally associated with the nonlinear dynamics of the current-vortex sheet. We expect that our model can be applicable to a wide variety of MHD shear flows.
ERIC Educational Resources Information Center
Gilbert, George L., Ed.
1981-01-01
Two demonstrations are described: (1) red cabbage and electrolysis of water to bring together acid/base and electrochemical concepts; and (2) a model to demonstrate acid/base conjugate pairs utilizing magnets. (SK)
Kempe, Maria; Kempe, Henrik; Snowball, Ian; Wallén, Rita; Arza, Carlos Rodriguez; Götberg, Matthias; Olsson, Tommy
2010-12-01
Implant-assisted targeting of magnetic particles under the influence of an external magnetic field has previously been verified through mathematical modeling, in vitro studies, and in vivo studies on rat carotid arteries as a feasible method for localized drug delivery. The present study focuses on the development of nanoparticles for the treatment of in-stent thrombosis. Magnetic nanoparticles in the size-range 10-30 nm were synthesized in a one-pot procedure by precipitation of ferrous hydroxide followed by oxidation to magnetite. The nanoparticles were silanized with tetraethyl orthosilicate in the presence of triethylene glycol and/or polyethylene glycol. The surface coated magnetite nanoparticles were activated with either N-hydroxysulfosuccinimide or tresyl chloride for covalent immobilization of tissue plasminogen activator (tPA). Hysteresis loops showed saturation magnetizations of 55.8, 44.1, and 43.0 emu/g for the naked nanoparticles, the surface coated nanoparticles, and the tPA-nanoparticle conjugates, respectively. The hemolytic activity of the nanoparticles in blood was negligible. An initial in vivo biocompatibility test in pig, carried out by intravascular injection of the nanoparticles in a stented brachial artery, showed no short-term adverse effects. In vitro evaluation in a flow-through model proved that the nanoparticles were captured efficiently to the surface of a ferromagnetic coiled wire at the fluid velocities typical for human arteries. A preliminary test of the tPA-nanoparticle conjugates in a pig model suggested that the conjugates may be used for treatment of in-stent thrombosis in coronary arteries. Copyright © 2010 Elsevier Ltd. All rights reserved.
Space Flight Qualification Program for the AMS-2 Commercial Cryocoolers
NASA Technical Reports Server (NTRS)
Shirey, K. A.; Banks, I. S.; Breon, S. R.; Boyle, R. F.; Krebs, Carolyn A. (Technical Monitor)
2002-01-01
The Alpha Magnetic Spectrometer-02 (AMS-02) experiment is a state-of-the-art particle physics detector containing a large superfluid helium-cooled superconducting magnet. Highly sensitive detector plates inside the magnet measure a particle's speed, momentum, charge, and path. The AMS-02 experiment will study the properties and origin of cosmic particles and nuclei including antimatter and dark matter. AMS-02 will be installed on the International Space Station on Utilization Flight-4. The experiment will be run for at least three years. To extend the life of the stored cryogen and minimize temperature gradients around the magnet, four Stirling-cycle Sunpower M87N cryocoolers will be integrated with AMS-02. The cryocooler cold tip will be connected via a flexible strap to the outer vapor cooled shield of the dewar. Initial thermal analysis shows the lifetime of the experiment is increased by a factor of 2.8 with the use of the cryocooler. The AMS-02 project selected the Sunpower M87 cryocoolers and has asked NASA Goddard to qualify the cryocoolers for space flight use. This paper describes the interfaces with the cryocoolers and presents data collected during testing of the two engineering model cryocoolers. Tests include thermal performance characterization and launch vibration testing. Magnetic field compatibility testing will be presented in a separate paper at the conference.
The Z3 model of Saturns magnetic field and the Pioneer 11 vector helium magnetometer observations
NASA Technical Reports Server (NTRS)
Connerney, J. E. P.; Acuna, M. H.; Ness, N. F.
1984-01-01
Magnetic field observations obtained by the Pioneer 11 vector helium magnetometer are compared with the Z(sub 3) model magnetic field. These Pioneer 11 observations, obtained at close-in radial distances, constitute an important and independent test of the Z(sub 3) zonal harmonic model, which was derived from Voyager 1 and Voyager 2 fluxgate magnetometer observations. Differences between the Pioneer 11 magnetometer and the Z(sub 3) model field are found to be small (approximately 1%) and quantitatively consistent with the expected instrumental accuracy. A detailed examination of these differences in spacecraft payload coordinates shows that they are uniquely associated with the instrument frame of reference and operation. A much improved fit to the Pioneer 11 observations is obtained by rotation of the instrument coordinate system about the spacecraft spin axis by 1.4 degree. With this adjustment, possibly associated with an instrumental phase lag or roll attitude error, the Pioneer 11 vector helium magnetometer observations are fully consistent with the Voyager Z(sub 3) model.
Using a Magnetic Flux Transport Model to Predict the Solar Cycle
NASA Technical Reports Server (NTRS)
Lyatskaya, S.; Hathaway, D.; Winebarger, A.
2007-01-01
We present the results of an investigation into the use of a magnetic flux transport model to predict the amplitude of future solar cycles. Recently Dikpati, de Toma, & Gilman (2006) showed how their dynamo model could be used to accurately predict the amplitudes of the last eight solar cycles and offered a prediction for the next solar cycle - a large amplitude cycle. Cameron & Schussler (2007) found that they could reproduce this predictive skill with a simple 1-dimensional surface flux transport model - provided they used the same parameters and data as Dikpati, de Toma, & Gilman. However, when they tried incorporating the data in what they argued was a more realistic manner, they found that the predictive skill dropped dramatically. We have written our own code for examining this problem and have incorporated updated and corrected data for the source terms - the emergence of magnetic flux in active regions. We present both the model itself and our results from it - in particular our tests of its effectiveness at predicting solar cycles.
Construction and calibration of a low cost and fully automated vibrating sample magnetometer
NASA Astrophysics Data System (ADS)
El-Alaily, T. M.; El-Nimr, M. K.; Saafan, S. A.; Kamel, M. M.; Meaz, T. M.; Assar, S. T.
2015-07-01
A low cost vibrating sample magnetometer (VSM) has been constructed by using an electromagnet and an audio loud speaker; where both are controlled by a data acquisition device. The constructed VSM records the magnetic hysteresis loop up to 8.3 KG at room temperature. The apparatus has been calibrated and tested by using magnetic hysteresis data of some ferrite samples measured by two scientifically calibrated magnetometers; model (Lake Shore 7410) and model (LDJ Electronics Inc. Troy, MI). Our VSM lab-built new design proved success and reliability.
LARP Long Quadrupole: A "Long" Step Toward an LHC
Giorgio Ambrosio
2017-12-09
The beginning of the development of Nb3Sn magnets for particle accelerators goes back to the 1960âs. But only very recently has this development begun to face the challenges of fabricating Nb3Sn magnets which can meet the requirements of modern particle accelerators. LARP (the LHC Accelerator Research Program) is leading this effort focusing on long models of the Interaction Region quadrupoles for a possible luminosity upgrade of the Large Hadron Collider. A major milestone in this development is to test, by the end of 2009, 4m-long quadrupole models, which will be the first Nb3Sn accelerator-type magnets approaching the length of real accelerator magnets. The Long Quadrupoles (LQ) are âProof-of-Principleâ magnets which are to demonstrate that Nb3Sn technology is sufficiently mature for use in high energy particle accelerators. Their design is based on the LARP Technological Quadrupole (TQ) models, under development at FNAL and LBNL, which have design gradients higher than 200 T/m and an aperture of 90 mm. Several challenges must be addressed for the successful fabrication of long Nb3Sn coils and magnets. These challenges and the solutions adopted will be presented together with the main features of the LQ magnets. Several R&D lines are participating to this effort and their contributions will be also presented.
[Magnetic resonance compatibility research for coronary mental stents].
Wang, Ying; Liu, Li; Wang, Shuo; Shang, Ruyao; Wang, Chunren
2015-01-01
The objective of this article is to research magnetic resonance compatibility for coronary mental stents, and to evaluate the magnetic resonance compatibility based on laboratory testing results. Coronary stents magnetic resonance compatibility test includes magnetically induced displacement force test, magnetically induced torque test, radio frequency induced heating and evaluation of MR image. By magnetic displacement force and torque values, temperature, and image distortion values to determine metal coronary stent demagnetization effect. The methods can be applied to test magnetic resonance compatibility for coronary mental stents and evaluate its demagnetization effect.
Stability analysis of magnetized neutron stars - a semi-analytic approach
NASA Astrophysics Data System (ADS)
Herbrik, Marlene; Kokkotas, Kostas D.
2017-04-01
We implement a semi-analytic approach for stability analysis, addressing the ongoing uncertainty about stability and structure of neutron star magnetic fields. Applying the energy variational principle, a model system is displaced from its equilibrium state. The related energy density variation is set up analytically, whereas its volume integration is carried out numerically. This facilitates the consideration of more realistic neutron star characteristics within the model compared to analytical treatments. At the same time, our method retains the possibility to yield general information about neutron star magnetic field and composition structures that are likely to be stable. In contrast to numerical studies, classes of parametrized systems can be studied at once, finally constraining realistic configurations for interior neutron star magnetic fields. We apply the stability analysis scheme on polytropic and non-barotropic neutron stars with toroidal, poloidal and mixed fields testing their stability in a Newtonian framework. Furthermore, we provide the analytical scheme for dropping the Cowling approximation in an axisymmetric system and investigate its impact. Our results confirm the instability of simple magnetized neutron star models as well as a stabilization tendency in the case of mixed fields and stratification. These findings agree with analytical studies whose spectrum of model systems we extend by lifting former simplifications.
Mutual coupling effects in antenna arrays, volume 1
NASA Technical Reports Server (NTRS)
Collin, R. E.
1986-01-01
Mutual coupling between rectangular apertures in a finite antenna array, in an infinite ground plane, is analyzed using the vector potential approach. The method of moments is used to solve the equations that result from setting the tangential magnetic fields across each aperture equal. The approximation uses a set of vector potential model functions to solve for equivalent magnetic currents. A computer program was written to carry out this analysis and the resulting currents were used to determine the co- and cross-polarized far zone radiation patterns. Numerical results for various arrays using several modes in the approximation are presented. Results for one and two aperture arrays are compared against published data to check on the agreement of this model with previous work. Computer derived results are also compared against experimental results to test the accuracy of the model. These tests of the accuracy of the program showed that it yields valid data.
On the Geometry of the X-Ray Emission from Pulsars. I. Model Formulation and Tests
NASA Astrophysics Data System (ADS)
Cappallo, Rigel; Laycock, Silas G. T.; Christodoulou, Dimitris M.
2017-12-01
X-ray pulsars are complex magnetized astronomical objects in which many different attributes shape the pulse profiles of the emitted radiation. For each pulsar, the orientation of the spin axis relative to our viewing angle, the inclination of the magnetic dipole axis relative to the spin axis, and the geometries of the emission regions all play key roles in producing its unique pulse profile. In this paper, we describe in detail a new geometric computer model for X-ray emitting pulsars and the tests that we carried out in order to ensure its proper operation. This model allows for simultaneous tuning of multiple parameters for each pulsar and, by fitting observed profiles, it has the potential to determine the underlying geometries of many pulsars whose pulse profiles have been cataloged and made public in modern X-ray databases.
A test of the Hall-MHD model: Application to low-frequency upstream waves at Venus
NASA Technical Reports Server (NTRS)
Orlowski, D. S.; Russell, C. T.; Krauss-Varban, D.; Omidi, N.
1994-01-01
Early studies suggested that in the range of parameter space where the wave angular frequency is less than the proton gyrofrequency and the plasma beta, the ratio of the thermal to magnetic pressure, is less than 1 magnetohydrodynamics provides an adequate description of the propagating modes in a plasma. However, recently, Lacombe et al. (1992) have reported significant differences between basic wave characteristics of the specific propagation modes derived from linear Vlasov and Hall-magnetohydrodynamic (MHD) theories even when the waves are only weakly damped. In this paper we compare the magnetic polarization and normalization magnetic compression ratio of ultra low frequency (ULF) upstream waves at Venus with magnetic polarization and normalized magnetic compression ratio derived from both theories. We find that while the 'kinetic' approach gives magnetic polarization and normalized magnetic compression ratio consistent with the data in the analyzed range of beta (0.5 less than beta less than 5) for the fast magnetosonic mode, the same wave characteristics derived from the Hall-MHD model strongly depend on beta and are consistent with the data only at low beta for the fast mode and at high beta for the intermediate mode.
NASA Technical Reports Server (NTRS)
Zhang, Ming
2005-01-01
The primary goal of this project was to perform theoretical calculations of propagation of cosmic rays and energetic particles in 3-dimensional heliospheric magnetic fields. We used Markov stochastic process simulation to achieve to this goal. We developed computation software that can be used to study particle propagation in, as two examples of heliospheric magnetic fields that have to be treated in 3 dimensions, a heliospheric magnetic field suggested by Fisk (1996) and a global heliosphere including the region beyond the termination shock. The results from our model calculations were compared with particle measurements from Ulysses, Earth-based spacecraft such as IMP-8, WIND and ACE, Voyagers and Pioneers in outer heliosphere for tests of the magnetic field models. We particularly looked for features of particle variations that can allow us to significantly distinguish the Fisk magnetic field from the conventional Parker spiral field. The computer code will eventually lead to a new generation of integrated software for solving complicated problems of particle acceleration, propagation and modulation in realistic 3-dimensional heliosphere of realistic magnetic fields and the solar wind with a single computation approach.
A ferrofluid based energy harvester: Computational modeling, analysis, and experimental validation
NASA Astrophysics Data System (ADS)
Liu, Qi; Alazemi, Saad F.; Daqaq, Mohammed F.; Li, Gang
2018-03-01
A computational model is described and implemented in this work to analyze the performance of a ferrofluid based electromagnetic energy harvester. The energy harvester converts ambient vibratory energy into an electromotive force through a sloshing motion of a ferrofluid. The computational model solves the coupled Maxwell's equations and Navier-Stokes equations for the dynamic behavior of the magnetic field and fluid motion. The model is validated against experimental results for eight different configurations of the system. The validated model is then employed to study the underlying mechanisms that determine the electromotive force of the energy harvester. Furthermore, computational analysis is performed to test the effect of several modeling aspects, such as three-dimensional effect, surface tension, and type of the ferrofluid-magnetic field coupling on the accuracy of the model prediction.
NASA Technical Reports Server (NTRS)
Phillips, R. J.
1986-01-01
Crustal anomaly detection with MAGSAT data is frustrated by the inherent resolving power of the data and by contamination from the external and core fields. The quality of the data might be tested by modeling specific tectonic features which produce anomalies that fall within the proposed resolution and crustal amplitude capabilities of the MAGSAT fields. To test this hypothesis, the north African hotspots associated with Ahaggar, Tibestia and Darfur have been modeled as magnetic induction anomalies due solely to shallower depth to the Curie isotherm surface beneath these features. The MAGSAT data were reduced by subtracting the external and core fields to isolate the scalar and vertical component crustal signals. The predicted model magnetic signal arising from the surface topography of the uplift and the Curie isotherm surface was calculated at MAGSAT altitudes by the Fourier transform technique modified to allow for variable magnetization. In summary it is suggested that the region beneath Ahaggar is associated with a strong thermal anomaly and the predicted anomaly best fits the associated MAGSAT anomaly if the African plate is moving in a northeasterly direction.
Construction and component testing of TAMU3, a 14 Tesla stress-managed Nb3Sn model dipole
NASA Astrophysics Data System (ADS)
Holik, Eddie Frank, III; Benson, Chris; Blackburn, Raymond; Diaczenko, Nick; Elliott, Timothy; Jaisle, Andrew; McInturff, A.; McIntyre, P.; Sattarov, Akhdiyor
2012-06-01
We report the construction and testing of components of TAMU3, a 14 Tesla Nb3Sn block-coil dipole. A primary goal in developing this model dipole is to test a method of stress management in which Lorentz stress is intercepted within the coil assembly and bypassed so that it cannot accumulate to a level that would cause strain degradation in the superconducting windings. Details of the fabrication, tooling, and results of construction and magnet component testing will be presented.
Force Measurements in Magnetic Suspension and Balance System
NASA Technical Reports Server (NTRS)
Kuzin, Alexander; Shapovalov, George; Prohorov, Nikolay
1996-01-01
The description of an infrared telemetry system for measurement of drag forces in Magnetic Suspension and Balance Systems (MSBS) is presented. This system includes a drag force sensor, electronic pack and transmitter placed in the model which is of special construction, and receiver with a microprocessor-based measuring device, placed outside of the test section. Piezosensitive resonators as sensitive elements and non-magnetic steel as the material for the force sensor are used. The main features of the proposed system for load measurements are discussed and the main characteristics are presented.
Magnetic probing of the solar interior
NASA Technical Reports Server (NTRS)
Benton, E. R.; Estes, R. H.
1985-01-01
The magnetic field patterns in the region beneath the solar photosphere is determined. An approximate method for downward extrapolation of line of sight magnetic field measurements taken at the solar photosphere was developed. It utilizes the mean field theory of electromagnetism in a form thought to be appropriate for the solar convection zone. A way to test that theory is proposed. The straightforward application of the lowest order theory with the complete model fit to these data does not indicate the existence of any reasonable depth at which flux conservation is achieved.
3D printed magnetic polymer composite transformers
NASA Astrophysics Data System (ADS)
Bollig, Lindsey M.; Hilpisch, Peter J.; Mowry, Greg S.; Nelson-Cheeseman, Brittany B.
2017-11-01
The possibility of 3D printing a transformer core using fused deposition modeling methods is explored. With the use of additive manufacturing, ideal transformer core geometries can be achieved in order to produce a more efficient transformer. In this work, different 3D printed settings and toroidal geometries are tested using a custom integrated magnetic circuit capable of measuring the hysteresis loop of a transformer. These different properties are then characterized, and it was determined the most effective 3D printed transformer core requires a high fill factor along with a high concentration of magnetic particulate.
Modeling Gamma Ray Bursts in the Megnetically Dominated Regime
NASA Astrophysics Data System (ADS)
Zhang, Bing
Recent observations of broad-band prompt emission spectra of gamma-ray bursts (GRBs) by the Fermi Gamma-Ray Telescope suggest that they do not comply with the predictions of the standard fireball internal shock model. Several independent observations (including detections of high polarization degree of gamma-ray emission and early optical emission of some GRBs, as well as non-detection of PeV neutrinos from GRBs by IceCube) support or are consistent with the hypothesis that at least some GRBs have magnetically dominated jets. This calls for serious, detailed investigations of GRB models in the magnetically dominated regime, which interpret GRB emission as dissipation of strong magnetic fields entrained in the ejecta. On the other hand, because of their complexity, magnetic models are so far much less developed than the baryonic fireball models. Here we propose to tackle this difficult problem, aiming at making solid progress in this direction through a set of numerical investigations. Specifically, we propose to carry out the following simulations. (1) Using a relativistic MHD code, we will perform a global simulation to investigate whether efficient magnetic dissipation would occur when two high-σ magnetic blobs collide with a relativistic speed. (2) We will perform a local simulation of the relativistic collisions between two high-σ fluids, and track the evolution of magnetic field configuration in the colliding region and the interplay between magnetic reconnection and development of magnetic turbulence. (3) Through injecting test particles in the simulation box, we will study how electrons get accelerated in the turbulent reconnection regions. (4) Built upon the above-mentioned numerical simulation results, along with a Monte Carlo code and a synchrotron radiation code developed in our group before, we will develop a full numerical model to simulate lightcurves, time-dependent spectra, and polarization properties of GRB prompt emission within the framework of magnetically dominated jets. The results of this proposal will greatly advance our understanding of GRB physics in the magnetically dominated regime. The numerical simulations of collision-induced magnetic dissipation will be also relevant to many other astrophysical phenomena, such as active galactic nuclei, X-ray binary ``micro-quasars'', Crab nebula flares, and jets from tidal disruption events. The program conforms to NASA's Strategic Plan, and is highly relevant to the past and current NASA missions, such as CGRO/BATSE, Fermi, and Swift, as well as some future mission concepts, such as POET.
NASA Astrophysics Data System (ADS)
Manfreda, G.; Bellina, F.
2016-12-01
The paper describes the new lumped thermal model recently implemented in THELMA code for the coupled electromagnetic-thermal analysis of superconducting cables. A new geometrical model is also presented, which describes the Rutherford cables used for the accelerator magnets. A first validation of these models has been given by the analysis of the quench longitudinal propagation velocity in the Nb3Sn prototype coil SMC3, built and tested in the frame of the EUCARD project for the development of high field magnets for LHC machine. This paper shows in detail the models, while their application to the quench propagation analysis is presented in a companion paper.
Soil erosion at agricultural land in Moravia loess region estimated by using magnetic properties
NASA Astrophysics Data System (ADS)
Kapicka, Ales; Dlouha, Sarka; Petrovsky, Eduard; Jaksik, Ondrej; Grison, Hana; Kodesova, Radka
2014-05-01
A detailed field study on a small test site of agricultural land situated in loess region in Southern Moravia (Czech Republic) and subsequent laboratory analyses have been carried out in order to test the applicability of magnetic methods for the estimation of soil erosion. Chernozem, the original dominant soil unit in the wider area, is nowadays progressively transformed into different soil units along with intensive soil erosion. As a result, an extremely diversified soil cover structure has resulted from the erosion. The site was characterized by a flat upper part while the middle part, formed by a substantive side valley, is steeper (up to 15°). We carried out field measurements of magnetic susceptibility on a regular grid, resulting in 101 data points. The bulk soil material for laboratory investigation was gathered from all the grid points. We found a strong correlation between the volume magnetic susceptibility (field measurement) and mass specific magnetic susceptibility measured in the laboratory (R2 = 0.80). Values of the magnetic susceptibility are spatially distributed depending on the terrain. Higher values were measured in the flat upper part (where the original top horizon remained). The lowest values of magnetic susceptibility were obtained on the steep valley sides. Here the original topsoil was eroded and mixed by tillage with the soil substrate (loess). The soil profile that was unaffected by erosion was investigated in detail. The vertical distribution of magnetic susceptibility along this "virgin" profile was measured in laboratory on the samples from layers along the whole profile with 2-cm spacing. The undisturbed profile shows several soil horizons. Horizons Ac and A show a slight increase in magnetic susceptibility up to a depth of about 70 cm. Horizon A/Ck is characterized by a decrease in susceptibility, and the underlying C horizon (h > 103 cm) has a very low value of magnetic susceptibility. The differences between the values of susceptibility in the undisturbed soil profile and the magnetic signal after uniform mixing the soil material as a result of tillage and erosion are fundamental for the estimation of soil loss in the studied test field. Using the uneroded profile from the studied locality as a basis for examining the changes in cultivated soils, tillage homogenization model can be applied to predict changes in the surface soil magnetism with progressive soil erosion. The model is very well applicable at the studied site. Acknowledgement: This study was supported by NAZV Agency of the Ministry of Agriculture of the Czech Republic through grant No QJ1230319
Electronic structure and microscopic model of V(2)GeO(4)F(2)-a quantum spin system with S = 1.
Rahaman, Badiur; Saha-Dasgupta, T
2007-07-25
We present first-principles density functional calculations and downfolding studies of the electronic and magnetic properties of the oxide-fluoride quantum spin system V(2)GeO(4)F(2). We discuss explicitly the nature of the exchange paths and provide quantitative estimates of magnetic exchange couplings. A microscopic modelling based on analysis of the electronic structure of this systems puts it in the interesting class of weakly coupled alternating chain S = 1 systems. Based on the microscopic model, we make inferrences about its spin excitation spectra, which needs to be tested by rigorous experimental study.
NASA Astrophysics Data System (ADS)
Bucciantini, N.; Bandiera, R.; Olmi, B.; Del Zanna, L.
2017-10-01
Pulsar Wind Nebulae (PWNe) constitute an ideal astrophysical environment to test our current understanding of relativistic plasma processes. It is well known that magnetic fields play a crucial role in their dynamics and emission properties. At present, one of the main issues concerns the level of magnetic turbulence present in these systems, which in the absence of space resolved X-ray polarization measures cannot be directly constrained. In this work, we investigate, for the first time using simulated synchrotron maps, the effect of a small-scale fluctuating component of the magnetic field on the emission properties in X-ray. We illustrate how to include the effects of a turbulent component in standard emission models for PWNe and which consequences are expected in terms of net emissivity and depolarization, showing that the X-ray surface brightness maps can provide already some rough constraints. We then apply our analysis to the Crab and Vela nebulae and by comparing our model with Chandra and Vela data, we found that the typical energies in the turbulent component of the magnetic field are about 1.5-3 times the one in the ordered field.
NASA Technical Reports Server (NTRS)
Klumpar, D. M. (Principal Investigator)
1982-01-01
The status of the initial testing of the modeling procedure developed to compute the magnetic fields at satellite orbit due to current distributions in the ionosphere and magnetosphere is reported. The modeling technique utilizes a linear current element representation of the large scale space-current system.
Training manuals for nondestructive testing using magnetic particles
NASA Technical Reports Server (NTRS)
1968-01-01
Training manuals containing the fundamentals of nondestructive testing using magnetic particle as detection media are used by metal parts inspectors and quality assurance specialists. Magnetic particle testing involves magnetization of the test specimen, application of the magnetic particle and interpretation of the patterns formed.
NASA Astrophysics Data System (ADS)
Broll, J. M.; Fuselier, S. A.; Trattner, K. J.; Steven, P. M.; Burch, J. L.; Giles, B. L.
2017-12-01
Magnetic reconnection at Earth's dayside magnetopause is an essential process in magnetospheric physics. Under southward IMF conditions, reconnection occurs along a thin ribbon across the dayside magnetopause. The location of this ribbon has been studied extensively in terms of global optimization of quantities like reconnecting field energy or magnetic shear, but with expected errors of 1-2 Earth radii these global models give limited context for cases where an observation is near the reconnection line. Building on previous results, which established the cutoff contour method for locating reconnection using in-situ velocity measurements, we examine the effects of MHD-scale waves on reconnection exhaust distributions. We use a test particle exhaust distribution propagated through a globamagnetohydrodynamics model fields and compare with Magnetospheric Multiscale observations of reconnection exhaust.
Polarized light modulates light-dependent magnetic compass orientation in birds
Muheim, Rachel; Sjöberg, Sissel; Pinzon-Rodriguez, Atticus
2016-01-01
Magnetoreception of the light-dependent magnetic compass in birds is suggested to be mediated by a radical-pair mechanism taking place in the avian retina. Biophysical models on magnetic field effects on radical pairs generally assume that the light activating the magnetoreceptor molecules is nondirectional and unpolarized, and that light absorption is isotropic. However, natural skylight enters the avian retina unidirectionally, through the cornea and the lens, and is often partially polarized. In addition, cryptochromes, the putative magnetoreceptor molecules, absorb light anisotropically, i.e., they preferentially absorb light of a specific direction and polarization, implying that the light-dependent magnetic compass is intrinsically polarization sensitive. To test putative interactions between the avian magnetic compass and polarized light, we developed a spatial orientation assay and trained zebra finches to magnetic and/or overhead polarized light cues in a four-arm “plus” maze. The birds did not use overhead polarized light near the zenith for sky compass orientation. Instead, overhead polarized light modulated light-dependent magnetic compass orientation, i.e., how the birds perceive the magnetic field. Birds were well oriented when tested with the polarized light axis aligned parallel to the magnetic field. When the polarized light axis was aligned perpendicular to the magnetic field, the birds became disoriented. These findings are the first behavioral evidence to our knowledge for a direct interaction between polarized light and the light-dependent magnetic compass in an animal. They reveal a fundamentally new property of the radical pair-based magnetoreceptor with key implications for how birds and other animals perceive the Earth’s magnetic field. PMID:26811473
Polarized light modulates light-dependent magnetic compass orientation in birds.
Muheim, Rachel; Sjöberg, Sissel; Pinzon-Rodriguez, Atticus
2016-02-09
Magnetoreception of the light-dependent magnetic compass in birds is suggested to be mediated by a radical-pair mechanism taking place in the avian retina. Biophysical models on magnetic field effects on radical pairs generally assume that the light activating the magnetoreceptor molecules is nondirectional and unpolarized, and that light absorption is isotropic. However, natural skylight enters the avian retina unidirectionally, through the cornea and the lens, and is often partially polarized. In addition, cryptochromes, the putative magnetoreceptor molecules, absorb light anisotropically, i.e., they preferentially absorb light of a specific direction and polarization, implying that the light-dependent magnetic compass is intrinsically polarization sensitive. To test putative interactions between the avian magnetic compass and polarized light, we developed a spatial orientation assay and trained zebra finches to magnetic and/or overhead polarized light cues in a four-arm "plus" maze. The birds did not use overhead polarized light near the zenith for sky compass orientation. Instead, overhead polarized light modulated light-dependent magnetic compass orientation, i.e., how the birds perceive the magnetic field. Birds were well oriented when tested with the polarized light axis aligned parallel to the magnetic field. When the polarized light axis was aligned perpendicular to the magnetic field, the birds became disoriented. These findings are the first behavioral evidence to our knowledge for a direct interaction between polarized light and the light-dependent magnetic compass in an animal. They reveal a fundamentally new property of the radical pair-based magnetoreceptor with key implications for how birds and other animals perceive the Earth's magnetic field.
Qualifying the Sunpower M87N Cryocooler for Operation in the AMS-02 Magnetic Field
NASA Technical Reports Server (NTRS)
Mustafi, Shuvo; Banks, Stuart; Shirey, Kim; Breon, Susan
2003-01-01
The Alpha Magnetic Spectrometer-02 (AMs-02) experiment uses a superfluid helium dewar to cool a large superconducting magnet. The outer vapor-cooled shields of the dewar are to be held at 80 K by four Sunpower M87N cryocoolers. These cryocoolers have magnetic components that might interact with the external applied field generated by the superconducting magnet, thereby degrading the cryocoolers' performance. Engineering models of the Sunpower M87 have been qualified for operation in a magnetic environment similar to the AMs-02 magnetic environment. Although there was no noticeable performance degradation at field levels that were comparable to AMs-02 field levels, there appears to be a small performance degradation at higher field levels. It was theorized that there were three possible issues related to these performance losses at high magnetic fields: i) induced piston rubbing on the cylinder wall due to forces and torques on the linear motor due to the applied magnetic fields; ii) Magnetic hysteretic and/or eddy current damping of the balancer due to its motion in the applied magnetic fields; iii) Inductance losses in motor due to the applied magnetic field. The experiments conducted at the Massachusetts Institute of Technology (MIT) cyclotron facility in June 2002 were designed to test these. Tests were performed over a range of field levels that were lower, comparable, and higher than the field levels that the cryocoolers will experience in the AMs-02 operating environment. This paper describes the experiments and the inferences derived from them.
Note: The full function test explosive generator.
Reisman, D B; Javedani, J B; Griffith, L V; Ellsworth, G F; Kuklo, R M; Goerz, D A; White, A D; Tallerico, L J; Gidding, D A; Murphy, M J; Chase, J B
2010-03-01
We have conducted three tests of a new pulsed power device called the full function test. These tests represented the culmination of an effort to establish a high energy pulsed power capability based on high explosive pulsed power (HEPP) technology. This involved an extensive computational modeling, engineering, fabrication, and fielding effort. The experiments were highly successful and a new U.S. record for magnetic energy was obtained.
Runaway of energetic test ions in a toroidal plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eilerman, S., E-mail: eilerman@wisc.edu; Anderson, J. K.; Sarff, J. S.
2015-02-15
Ion runaway in the presence of a large-scale, reconnection-driven electric field has been conclusively measured in the Madison Symmetric Torus reversed-field pinch (RFP). Measurements of the acceleration of a beam of fast ions agree well with test particle and Fokker-Planck modeling of the runaway process. However, the runaway mechanism does not explain all measured ion heating in the RFP, particularly previous measurements of strong perpendicular heating. It is likely that multiple energization mechanisms occur simultaneously and with differing significance for magnetically coupled thermal ions and magnetically decoupled tail and beam ions.
NASA Astrophysics Data System (ADS)
Sun, Wenhao; Cai, Xudong; Meng, Qiao
2016-04-01
Complex automatic protection functions are being added to the onboard software of the Alpha Magnetic Spectrometer. A hardware-in-the-loop simulation method has been introduced to overcome the difficulties of ground testing that are brought by hardware and environmental limitations. We invented a time-saving approach by reusing the flight data as the data source of the simulation system instead of mathematical models. This is easy to implement and it works efficiently. This paper presents the system framework, implementation details and some application examples.
NASA Astrophysics Data System (ADS)
Jha, Rajesh
AlNiCo magnets are known for high-temperature stability and superior corrosion resistance and have been widely used for various applications. Reported magnetic energy density ((BH) max) for these magnets is around 10 MGOe. Theoretical calculations show that ((BH) max) of 20 MGOe is achievable which will be helpful in covering the gap between AlNiCo and Rare-Earth Elements (REE) based magnets. An extended family of AlNiCo alloys was studied in this dissertation that consists of eight elements, and hence it is important to determine composition-property relationship between each of the alloying elements and their influence on the bulk properties. In the present research, we proposed a novel approach to efficiently use a set of computational tools based on several concepts of artificial intelligence to address a complex problem of design and optimization of high temperature REE-free magnetic alloys. A multi-dimensional random number generation algorithm was used to generate the initial set of chemical concentrations. These alloys were then examined for phase equilibria and associated magnetic properties as a screening tool to form the initial set of alloy. These alloys were manufactured and tested for desired properties. These properties were fitted with a set of multi-dimensional response surfaces and the most accurate meta-models were chosen for prediction. These properties were simultaneously extremized by utilizing a set of multi-objective optimization algorithm. This provided a set of concentrations of each of the alloying elements for optimized properties. A few of the best predicted Pareto-optimal alloy compositions were then manufactured and tested to evaluate the predicted properties. These alloys were then added to the existing data set and used to improve the accuracy of meta-models. The multi-objective optimizer then used the new meta-models to find a new set of improved Pareto-optimized chemical concentrations. This design cycle was repeated twelve times in this work. Several of these Pareto-optimized alloys outperformed most of the candidate alloys on most of the objectives. Unsupervised learning methods such as Principal Component Analysis (PCA) and Heirarchical Cluster Analysis (HCA) were used to discover various patterns within the dataset. This proves the efficacy of the combined meta-modeling and experimental approach in design optimization of magnetic alloys.
Computational Analysis of Static and Dynamic Behaviour of Magnetic Suspensions and Magnetic Bearings
NASA Technical Reports Server (NTRS)
Britcher, Colin P. (Editor); Groom, Nelson J.
1996-01-01
Static modelling of magnetic bearings is often carried out using magnetic circuit theory. This theory cannot easily include nonlinear effects such as magnetic saturation or the fringing of flux in air-gaps. Modern computational tools are able to accurately model complex magnetic bearing geometries, provided some care is exercised. In magnetic suspension applications, the magnetic fields are highly three-dimensional and require computational tools for the solution of most problems of interest. The dynamics of a magnetic bearing or magnetic suspension system can be strongly affected by eddy currents. Eddy currents are present whenever a time-varying magnetic flux penetrates a conducting medium. The direction of flow of the eddy current is such as to reduce the rate-of-change of flux. Analytic solutions for eddy currents are available for some simplified geometries, but complex geometries must be solved by computation. It is only in recent years that such computations have been considered truly practical. At NASA Langley Research Center, state-of-the-art finite-element computer codes, 'OPERA', 'TOSCA' and 'ELEKTRA' have recently been installed and applied to the magnetostatic and eddy current problems. This paper reviews results of theoretical analyses which suggest general forms of mathematical models for eddy currents, together with computational results. A simplified circuit-based eddy current model proposed appears to predict the observed trends in the case of large eddy current circuits in conducting non-magnetic material. A much more difficult case is seen to be that of eddy currents in magnetic material, or in non-magnetic material at higher frequencies, due to the lower skin depths. Even here, the dissipative behavior has been shown to yield at least somewhat to linear modelling. Magnetostatic and eddy current computations have been carried out relating to the Annular Suspension and Pointing System, a prototype for a space payload pointing and vibration isolation system, where the magnetic actuator geometry resembles a conventional magnetic bearing. Magnetostatic computations provide estimates of flux density within airgaps and the iron core material, fringing at the pole faces and the net force generated. Eddy current computations provide coil inductance, power dissipation and the phase lag in the magnetic field, all as functions of excitation frequency. Here, the dynamics of the magnetic bearings, notably the rise time of forces with changing currents, are found to be very strongly affected by eddy currents, even at quite low frequencies. Results are also compared to experimental measurements of the performance of a large-gap magnetic suspension system, the Large Angle Magnetic Suspension Test Fixture (LAMSTF). Eddy current effects are again shown to significantly affect the dynamics of the system. Some consideration is given to the ease and accuracy of computation, specifically relating to OPERA/TOSCA/ELEKTRA.
On Geomagnetism and Paleomagnetism I
NASA Technical Reports Server (NTRS)
Voorhies, Coerte V.
2000-01-01
A partial description of Earth's broad scale, core-source magnetic field has been developed and tested three ways. The description features an expected, or mean, spatial magnetic power spectrum that is approximately inversely proportional to horizontal wavenumber atop Earth's core. This multipole spectrum describes a magnetic energy range; it is not steep enough for Gubbins' magnetic dissipation range. Temporal variations of core multipole powers about mean values are to be expected and are described statistically, via trial probability distribution functions, instead of deterministically, via trial solution of closed transport equations. The distributions considered here are closed and neither require nor prohibit magnetic isotropy. The description is therefore applicable to, and tested against, both dipole and low degree non-dipole fields. In Part 1, a physical basis for an expectation spectrum is developed and checked. The description is then combined with main field models of twentieth century satellite and surface geomagnetic field measurements to make testable predictions of the radius of Earth's core. The predicted core radius is 0.7% above the 3480 km seismological value. Partial descriptions of other planetary dipole fields are noted.
Metallic Rotor Sizing and Performance Model for Flywheel Systems
NASA Technical Reports Server (NTRS)
Moore, Camille J.; Kraft, Thomas G.
2012-01-01
The NASA Glenn Research Center (GRC) is developing flywheel system requirements and designs for terrestrial and spacecraft applications. Several generations of flywheels have been designed and tested at GRC using in-house expertise in motors, magnetic bearings, controls, materials and power electronics. The maturation of a flywheel system from the concept phase to the preliminary design phase is accompanied by maturation of the Integrated Systems Performance model, where estimating relationships are replaced by physics based analytical techniques. The modeling can incorporate results from engineering model testing and emerging detail from the design process.
The LHC magnet system and its status of development
NASA Technical Reports Server (NTRS)
Bona, Maurizio; Perin, Romeo; Vlogaert, Jos
1995-01-01
CERN is preparing for the construction of a new high energy accelerator/collider, the Large Hadron Collider (LHC). This new facility will mainly consist of two superconducting magnetic beam channels, 27 km long, to be installed in the existing LEP tunnel. The magnetic system comprises about 1200 twin-aperture dipoles, 13.145 m long, with an operational field of 8.65 T, about 600 quadrupoles, 3 m long, and a very large number of other superconducting magnetic components. A general description of the system is given together with the main features of the design of the regular lattice magnets. The paper also describes the present state of the magnet R & D program. Results from short model work, as well as from full scale prototypes will be presented, including the recently tested 10 m long full-scale prototype dipole manufactured in industry.
Stability Limits of a PD Controller for a Flywheel Supported on Rigid Rotor and Magnetic Bearings
NASA Technical Reports Server (NTRS)
Kascak, Albert F.; Brown, Gerald V.; Jansen, Ralph H.; Dever, TImothy P.
2006-01-01
Active magnetic bearings are used to provide a long-life, low-loss suspension of a high-speed flywheel rotor. This paper describes a modeling effort used to understand the stability boundaries of the PD controller used to control the active magnetic bearings on a high speed test rig. Limits of stability are described in terms of allowable stiffness and damping values which result in stable levitation of the nonrotating rig. Small signal stability limits for the system is defined as a nongrowth in vibration amplitude of a small disturbance. A simple mass-force model was analyzed. The force resulting from the magnetic bearing was linearized to include negative displacement stiffness and a current stiffness. The current stiffness was then used in a PD controller. The phase lag of the control loop was modeled by a simple time delay. The stability limits and the associated vibration frequencies were measured and compared to the theoretical values. The results show a region on stiffness versus damping plot that have the same qualitative tendencies as experimental measurements. The resulting stability model was then extended to a flywheel system. The rotor dynamics of the flywheel was modeled using a rigid rotor supported on magnetic bearings. The equations of motion were written for the center of mass and a small angle linearization of the rotations about the center of mass. The stability limits and the associated vibration frequencies were found as a function of nondimensional magnetic bearing stiffness and damping and nondimensional parameters of flywheel speed and time delay.
NASA Astrophysics Data System (ADS)
Zhandun, V.; Zamkova, N.; Ovchinnikov, S.; Sandalov, I.
2017-11-01
To accurately translate the results obtained within density functional theory (DFT) to the language of many-body theory we suggest and test the following approach: the parameters of the formulated model are to be found from the requirement that the model self-consistent electron density and density of electron states are as close as possible to the ones found from the DFT-based calculations. The investigation of the phase diagram of the model allows us to find the critical regions in magnetic properties. Then the behavior of the real system in these regions is checked by the ab initio calculations. As an example, we studied the physics of magnetic moment (MM) formation due to substitutions of Si by Fe-atoms or vice versa in the otherwise non-magnetic alloy α-FeSi2. We find that the MM formation is essentially controlled by the interaction of Fe atoms with its next nearest atoms (NNN) and by their particular arrangement. The latter may result in different magnetic states at the same concentrations of constituents. Moreover, one of arrangements produces the counterintuitive result: a ferromagnetism arises due to an increase in Si concentration in Fe1-xSi2+ x ordered alloy. The existing phenomenological models associate the destruction of magnetic moment only with the number of Fe-Si nearest neighbors. The presented results show that the crucial role in MM formation is played by the particular local NNN environment of the metal atom in the transition metal-metalloid alloy.
Summary of sensor evaluation for the Fusion Electromagnetic Induction Experiment (FELIX)
NASA Astrophysics Data System (ADS)
Knott, M. J.
1982-08-01
As part of the First Wall/Blanket/Shield Engineering Test Program, a test bed called FELIX (fusion electromagnetic induction experiment) is under construction. Its purpose is to test, evaluate, and develop computer codes for the prediction of electromagnetically induced phenomenon in a magnetic environment modeling that of a fusion reaction. Crucial to this process is the sensing and recording of the various induced effects. Sensor evaluation for FELIX reached the point where most sensor types were evaluated and preliminary decisions are being made as to type and quantity for the initial FELIX experiments. These early experiments, the first, flat plate experiment in particular, will be aimed at testing the sensors as well as the pertinent theories involved. The reason for these evaluations, decisions, and proof tests is the harsh electrical and magnetic environment that FELIX presents.
Comparative study of inversion methods of three-dimensional NMR and sensitivity to fluids
NASA Astrophysics Data System (ADS)
Tan, Maojin; Wang, Peng; Mao, Keyu
2014-04-01
Three-dimensional nuclear magnetic resonance (3D NMR) logging can simultaneously measure transverse relaxation time (T2), longitudinal relaxation time (T1), and diffusion coefficient (D). These parameters can be used to distinguish fluids in the porous reservoirs. For 3D NMR logging, the relaxation mechanism and mathematical model, Fredholm equation, are introduced, and the inversion methods including Singular Value Decomposition (SVD), Butler-Reeds-Dawson (BRD), and Global Inversion (GI) methods are studied in detail, respectively. During one simulation test, multi-echo CPMG sequence activation is designed firstly, echo trains of the ideal fluid models are synthesized, then an inversion algorithm is carried on these synthetic echo trains, and finally T2-T1-D map is built. Futhermore, SVD, BRD, and GI methods are respectively applied into a same fluid model, and the computing speed and inversion accuracy are compared and analyzed. When the optimal inversion method and matrix dimention are applied, the inversion results are in good aggreement with the supposed fluid model, which indicates that the inversion method of 3D NMR is applieable for fluid typing of oil and gas reservoirs. Additionally, the forward modeling and inversion tests are made in oil-water and gas-water models, respectively, the sensitivity to the fluids in different magnetic field gradients is also examined in detail. The effect of magnetic gradient on fluid typing in 3D NMR logging is stuied and the optimal manetic gradient is choosen.
Bioactive films of zein/magnetite magnetically stimuli-responsive for controlled drug release
NASA Astrophysics Data System (ADS)
Marín, Tíffany; Montoya, Paula; Arnache, Oscar; Pinal, Rodolfo; Calderón, Jorge
2018-07-01
The Zein films in two configurations with magnetite nanoparticles (zein/NPs) and magnetite-acetaminophen (zein/NPs/Drug) were used as magnetically stimuli-responsive systems to propose a model of controlled release by dissolution and diffusion mechanism. Composite material films of zein/NPs and zein/NPs/Drug were made by dispersion of magnetite nanoparticles into zein solution then solvent casting of the solution on a flat Teflon substrate. The properties of composite films were analyzed by magnetization curves of (MvsH) and measurements of magnetic force microscopy (MFM). Drug release from the zein/NPs/Drug composite films was determined using a type II dissolution apparatus for a period of 2 h under applied magnetic field conditions. In addition, the diffusion mechanism was tested with zein/NPs films into diffusion cell containing acetaminophen solution for 24 h and using a permanent magnet as a remote trigger device. The results showed that the magnetite nanoparticles contained in the zein/NPs and zein/NPs/Drug composite films are stable, i.e., they do not undergo sufficiently high levels of oxidation as to alter their magnetic properties. Furthermore, the dissolution and diffusion results lead us to conclude that zein composite films effectively behave as stimuli-responsive systems triggered by an external magnetic field applied. The result is a model controlled release system whereby drug release can be controlled by adjusting the magnitude of the applied magnetic field.
High Speed Switching in Magnetic Recording Media.
NASA Astrophysics Data System (ADS)
He, Lin
The magnetization switching behavior of magnetic particulate and metal evaporated thin film recording tapes in the nanosecond regime is studied. The purpose is to characterize the switching behavior of the magnetization in current recording media and determine whether the recording media will be a limiting factor in future high performance recording systems. In this work, a pulse test system with field pulse width tau<=ss than 1 nanosecond was created for measuring switching behavior. Two ways were used to characterize the switching behavior of the media. The first is a traditional way in which the switching behavior is determined by a switching coefficient S_{rm w}. The second is more useful and convenient. The switching behavior is described in terms of the increase in remanent coercivity H_{rm CR}(tau) as the field pulse width tau decreases. For high magnetic viscosity materials, the experimental results are in good agreement with the thermally assisted switching model proposed by Sharrock if the attempt frequency f _0 = 10^9 Hz and the exponent n = 0.5. For low magnetic viscosity materials, the results are in reasonable agreement with the Landau-Lifshitz-Gilbert -damping-limited switching model but only if values of the damping constant alpha ~ 1 are assumed, in conflict with the reported values extracted from ferromagnetic resonance measurements. The fundamental relationship between the two models through the fluctuation-dissipation theorem is emphasized and the need for a comprehensive model identified. The results have significant implications for future media where thermal effects will become increasingly important.
NASA Astrophysics Data System (ADS)
Bringley, Eric; Cao, Tongtong; Ilieva, Yordonka; Nadel-Turonski, Pawel; Park, Kijun; Zorn, Carl
2014-09-01
At the Thomas Jefferson National Accelerator Facility (JLab) a research and development project for a Detector of Internally-Reflected Cherenkov light for the upcoming Electron Ion Collider is underway. One goal is the development of a compact readout camera that can operate in high magnetic fields. Small-size photon sensors, such as Microchannel-Plate Photomultipliers (MCP-PMT), are key components of the readout. Here we present our work to set up and commission a dedicated test facility at JLab where MCP-PMT gain is evaluated in magnetic fields of up to 5 T, and to develop a test procedure and analysis software to determine the gain. We operate the setup in a single-photon mode, where a light-emitting diode delivers photons to the sensor's photocathode. The PMT spectrum is measured with a flash Analog-to-Digital converter (fADC). We model the spectrum as a sum of an exponential background and a convolution of Poisson and Gaussian distributions of the pedestal and multiple photoelectron peaks, respectively. We determine the PMT's gain from the position of the single-photoelectron peak obtained by fitting the fADC spectrum to the model. Our gain uncertainty is <10%. The facility is now established and will have a long-lasting value for sensor tests and beyond-nuclear-physics applications.
Today's research development on the application of the superconductivity transport system in Japan
NASA Technical Reports Server (NTRS)
Kyotani, Yoshihiro
1995-01-01
At the Miyazaki test track today, the new test vehicle, MLU002N, is under test run to obtain necessary data for Yamanashi test track where the construction is underway, the test vehicle has been ordered and the first tunnel was completed in December 1993. Superconducting magnetohydrodynamic drive ship, MHDS, 'Yamato 1' has completed its experiment in 1992 and it is now under preparation to exhibit to the public in___1994. Furthermore, to promote the research development of MHDS, the detailed discussion is underway on the magnetohydrodynamic drive equipment as well as the research on the future scheme. Neither an automobile nor railway but a new transport system called EQUOS LIM CAR(ELC) has been proposed. By using the rotating magnetic field, it will levitate on the aluminum like reaction plate. On the normal road, it will run by rolling the wheels like an electric car but on the highway, it will levitate on the guideway resulting to less noise, less vibration and pollution free drive. To understand the concept of the ELC, the model was built and experimented by using permanent magnet. The same model was donated to the MUSEUM OF SCIENCE AND INDUSTRY in Chicago and was displayed to the public. Today, the trial superconducting magnet has been made and the research development of the subsystem is underway. Research development of superconducting elevator, equipment for the launching of spaceship, tube transportation system and others are in progress for the superconducting applied transportation system.
Cryptochrome Mediates Light-Dependent Magnetosensitivity of Drosophila's Circadian Clock
Yoshii, Taishi; Ahmad, Margaret; Helfrich-Förster, Charlotte
2009-01-01
Since 1960, magnetic fields have been discussed as Zeitgebers for circadian clocks, but the mechanism by which clocks perceive and process magnetic information has remained unknown. Recently, the radical-pair model involving light-activated photoreceptors as magnetic field sensors has gained considerable support, and the blue-light photoreceptor cryptochrome (CRY) has been proposed as a suitable molecule to mediate such magnetosensitivity. Since CRY is expressed in the circadian clock neurons and acts as a critical photoreceptor of Drosophila's clock, we aimed to test the role of CRY in magnetosensitivity of the circadian clock. In response to light, CRY causes slowing of the clock, ultimately leading to arrhythmic behavior. We expected that in the presence of applied magnetic fields, the impact of CRY on clock rhythmicity should be altered. Furthermore, according to the radical-pair hypothesis this response should be dependent on wavelength and on the field strength applied. We tested the effect of applied static magnetic fields on the circadian clock and found that flies exposed to these fields indeed showed enhanced slowing of clock rhythms. This effect was maximal at 300 μT, and reduced at both higher and lower field strengths. Clock response to magnetic fields was present in blue light, but absent under red-light illumination, which does not activate CRY. Furthermore, cryb and cryOUT mutants did not show any response, and flies overexpressing CRY in the clock neurons exhibited an enhanced response to the field. We conclude that Drosophila's circadian clock is sensitive to magnetic fields and that this sensitivity depends on light activation of CRY and on the applied field strength, consistent with the radical pair mechanism. CRY is widespread throughout biological systems and has been suggested as receptor for magnetic compass orientation in migratory birds. The present data establish the circadian clock of Drosophila as a model system for CRY-dependent magnetic sensitivity. Furthermore, given that CRY occurs in multiple tissues of Drosophila, including those potentially implicated in fly orientation, future studies may yield insights that could be applicable to the magnetic compass of migratory birds and even to potential magnetic field effects in humans. PMID:19355790
Mechanical performance of short models for MQXF, the Nb3Sn low-β quadrupole for the Hi-Lumi LHC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vallone, Giorgio; Ambrosio, Giorgio; Anderssen, Eric
In the framework of the Hi-Lumi LHC Project, CERN and U.S. LARP are jointly developing MQXF, a 150-mm aperture high-field Nb3Sn quadrupole for the upgrade of the inner triplet of the low-beta interaction regions. The magnet is supported by a shell-based structure, providing the preload by means of bladder-key technology and differential thermal contraction of the various components. Two short models have been produced using the same cross section currently considered for the final magnet. The structures were preliminarily tested replacing the superconducting coils with blocks of aluminum. This procedure allows for model validation and calibration, and also to setmore » performance goals for the real magnet. Strain gauges were used to monitor the behavior of the structure during assembly, cool down and also excitation in the case of the magnets. The various structures differ for the shell partitioning strategies adopted and for the presence of thick or thin laminations. This study presents the results obtained and discusses the mechanical performance of all the short models produced up to now.« less
Mechanical performance of short models for MQXF, the Nb3Sn low-β quadrupole for the Hi-Lumi LHC
Vallone, Giorgio; Ambrosio, Giorgio; Anderssen, Eric; ...
2016-12-23
In the framework of the Hi-Lumi LHC Project, CERN and U.S. LARP are jointly developing MQXF, a 150-mm aperture high-field Nb3Sn quadrupole for the upgrade of the inner triplet of the low-beta interaction regions. The magnet is supported by a shell-based structure, providing the preload by means of bladder-key technology and differential thermal contraction of the various components. Two short models have been produced using the same cross section currently considered for the final magnet. The structures were preliminarily tested replacing the superconducting coils with blocks of aluminum. This procedure allows for model validation and calibration, and also to setmore » performance goals for the real magnet. Strain gauges were used to monitor the behavior of the structure during assembly, cool down and also excitation in the case of the magnets. The various structures differ for the shell partitioning strategies adopted and for the presence of thick or thin laminations. This study presents the results obtained and discusses the mechanical performance of all the short models produced up to now.« less
LANL* V1.0: a radiation belt drift shell model suitable for real-time and reanalysis applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koller, Josep; Reeves, Geoffrey D; Friedel, Reiner H W
2008-01-01
Space weather modeling, forecasts, and predictions, especially for the radiation belts in the inner magnetosphere, require detailed information about the Earth's magnetic field. Results depend on the magnetic field model and the L* (pron. L-star) values which are used to describe particle drift shells. Space wather models require integrating particle motions along trajectories that encircle the Earth. Numerical integration typically takes on the order of 10{sup 5} calls to a magnetic field model which makes the L* calculations very slow, in particular when using a dynamic and more accurate magnetic field model. Researchers currently tend to pick simplistic models overmore » more accurate ones but also risking large inaccuracies and even wrong conclusions. For example, magnetic field models affect the calculation of electron phase space density by applying adiabatic invariants including the drift shell value L*. We present here a new method using a surrogate model based on a neural network technique to replace the time consuming L* calculations made with modern magnetic field models. The advantage of surrogate models (or meta-models) is that they can compute the same output in a fraction of the time while adding only a marginal error. Our drift shell model LANL* (Los Alamos National Lab L-star) is based on L* calculation using the TSK03 model. The surrogate model has currently been tested and validated only for geosynchronous regions but the method is generally applicable to any satellite orbit. Computations with the new model are several million times faster compared to the standard integration method while adding less than 1% error. Currently, real-time applications for forecasting and even nowcasting inner magnetospheric space weather is limited partly due to the long computing time of accurate L* values. Without them, real-time applications are limited in accuracy. Reanalysis application of past conditions in the inner magnetosphere are used to understand physical processes and their effect. Without sufficiently accurate L* values, the interpretation of reanalysis results becomes difficult and uncertain. However, with a method that can calculate accurate L* values orders of magnitude faster, analyzing whole solar cycles worth of data suddenly becomes feasible.« less
Wu, Kevin J; Gregory, T Stan; Boland, Brian L; Zhao, Wujun; Cheng, Rui; Mao, Leidong; Tse, Zion Tsz Ho
2018-06-01
Higher risk patient populations require continuous physiological monitoring and, in some cases, connected life-support systems, during magnetic resonance imaging examinations. While recently there has been a shift toward wireless technology, some of the magnetic resonance imaging devices are still connected to the outside using cabling that could interfere with the magnetic resonance imaging's radio frequency during scanning, resulting in excessive heating. We developed a passive method for radio frequency suppression on cabling that may assist in making some of these devices magnetic resonance imaging compatible. A barrel-shaped strongly paramagnetic choke was developed to suppress induced radio frequency signals which are overlaid onto physiological monitoring leads during magnetic resonance imaging. It utilized a choke placed along the signal lines, with a gadolinium solution core. The choke's magnetic susceptibility was modeled, for a given geometric design, at increasing chelate concentration levels, and measured using a vibrating sample magnetometer. Radio frequency noise suppression versus frequency was quantified with network-analyzer measurements and tested using cabling placed in the magnetic resonance imaging scanner. Temperature-elevation and image-quality reduction due to the device were measured using American Society for Testing and Materials phantoms. Prototype chokes with gadolinium solution cores exhibited increasing magnetic susceptibility, and insertion loss (S21) also showed higher attenuation as gadolinium concentration increased. Image artifacts extending <4 mm from the choke were observed during magnetic resonance imaging, which agreed well with the predicted ∼3 mm artifact from the electrochemical machining simulation. An accompanying temperature increase of <1 °C was observed in the magnetic resonance imaging phantom trial. An effective paramagnetic choke for radio frequency suppression during magnetic resonance imaging was developed and its performance demonstrated.
Testing beam-induced quench levels of LHC superconducting magnets
NASA Astrophysics Data System (ADS)
Auchmann, B.; Baer, T.; Bednarek, M.; Bellodi, G.; Bracco, C.; Bruce, R.; Cerutti, F.; Chetvertkova, V.; Dehning, B.; Granieri, P. P.; Hofle, W.; Holzer, E. B.; Lechner, A.; Nebot Del Busto, E.; Priebe, A.; Redaelli, S.; Salvachua, B.; Sapinski, M.; Schmidt, R.; Shetty, N.; Skordis, E.; Solfaroli, M.; Steckert, J.; Valuch, D.; Verweij, A.; Wenninger, J.; Wollmann, D.; Zerlauth, M.
2015-06-01
In the years 2009-2013 the Large Hadron Collider (LHC) has been operated with the top beam energies of 3.5 and 4 TeV per proton (from 2012) instead of the nominal 7 TeV. The currents in the superconducting magnets were reduced accordingly. To date only seventeen beam-induced quenches have occurred; eight of them during specially designed quench tests, the others during injection. There has not been a single beam-induced quench during normal collider operation with stored beam. The conditions, however, are expected to become much more challenging after the long LHC shutdown. The magnets will be operating at near nominal currents, and in the presence of high energy and high intensity beams with a stored energy of up to 362 MJ per beam. In this paper we summarize our efforts to understand the quench levels of LHC superconducting magnets. We describe beam-loss events and dedicated experiments with beam, as well as the simulation methods used to reproduce the observable signals. The simulated energy deposition in the coils is compared to the quench levels predicted by electrothermal models, thus allowing one to validate and improve the models which are used to set beam-dump thresholds on beam-loss monitors for run 2.
NASA Astrophysics Data System (ADS)
Abraham, J. D.; Kress, W. H.; Cannia, J. C.; Steele, G. V.; Smith, B. D.; Woodward, D.
2008-12-01
In 2007, the USGS in cooperation with the Central Platte Natural Resources District, central Nebraska, initiated a four year study to test the usefulness of magnetic resonance rounding (MRS) to gather information on aquifer characteristics. Magnetic resonance sounding is a ground surface applied tool which has the potential to measure hydraulic conductivity at depth using noninvasive means. This in turn will provide a low cost alternative to traditional aquifer tests. MRS also will allow for collection of large data sets of aquifer properties during short periods of time. The work is under way in Dawson County near Lexington, Nebraska to characterize the hydrogeology of the Quaternary-age alluvial and underlying Tertiary-age Ogallala Group aquifers that occur within the Platte River Valley. This county was selected because it lies in an area of Nebraska that has major groundwater- surface water management issues which have stimulated the development of regional and local groundwater models. Data used to evaluate the MRS during this study were derived from traditional constant discharge aquifer tests, borehole flow meter tests, lithologic descriptions, borehole geophysics, and time-domain electromagnetic soundings. This study presents methods and interpretation of MRS. The MRS-derived hydraulic conductivity data will be compared to hydraulic conductivity data from two separate constant discharge pumping tests of the alluvium and Ogallala Group aquifers at Site 72 The MRS-derived hydraulic conductivity data will also be compared to conductivity estimates based on data from a borehole flow meter test. This information can potentially be incorporated into groundwater models of the area to provide improved data sets of aquifer characteristics. The research will document an integrated MRS, surface geophysical, borehole geophysical, borehole flow meter and aquifer test approach in which the hydrostratigraphy of the Platte River alluvial aquifer and Ogallala aquifer can be described.
Use of Magnetic Parameters to Asses Soil Erosion Rates on Agricultural Site
NASA Astrophysics Data System (ADS)
Petrovsky, E.; Kapicka, A.; Dlouha, S.; Jaksik, O.; Grison, H.; Kodesova, R.
2014-12-01
A detailed field study on a small test site of agricultural land situated in loess region in Southern Moravia (Czech Republic) and laboratory analyses were carried out in order to test the applicability of magnetic methods in assessing soil erosion. Haplic Chernozem, the original dominant soil unit in the area, is nowadays progressively transformed into different soil units along with intense soil erosion. As a result, an extremely diversified soil cover structure has developed due to the erosion. The site was characterized by a flat upper part while the middle part, formed by a substantive side valley, is steeper. We carried out field measurements of magnetic susceptibility on a regular grid, resulting in 101 data points. The bulk soil material for laboratory investigation was gathered from all the grid points. Values of the magnetic susceptibility are spatially distributed depending on the terrain. Higher values were measured in the flat upper part (where the original top horizon remained). The lowest values of were obtained on the steep valley sides. Here the original topsoil was eroded and mixed by tillage with the soil substrate (loess). A soil profile unaffected by erosion was investigated in detail. The vertical distribution of magnetic susceptibility along this "virgin" profile was measured in laboratory on the samples collected with 2-cm spacing. The undisturbed profile shows several soil horizons. Horizons Ac and A show a slight increase in magnetic susceptibility up to a depth of about 70 cm. Horizon A/Ck is characterized by a decrease in susceptibility, and the underlying C horizon (h > 103 cm) has a very low value of magnetic susceptibility. The differences between the values of susceptibility in the undisturbed soil profile and the magnetic signal after uniform mixing the soil material as a result of tillage and erosion are fundamental for the estimation of soil loss in the studied test field. Using the uneroded profile from the studied locality as a basis for examining the changes in cultivated soils, tillage homogenization model can be applied to predict changes in the surface soil magnetism with progressive soil erosion. The model is very well applicable at the studied site. Acknowledgement: This study was supported by NAZV Agency of the Ministry of Agriculture of the Czech Republic through grant No QJ1230319.
NASA Astrophysics Data System (ADS)
Zhu, Yuchuan; Yang, Xulei; Wereley, Norman M.
2016-08-01
In this paper, focusing on the application-oriented giant magnetostrictive material (GMM)-based electro-hydrostatic actuator, which features an applied magnetic field at high frequency and high amplitude, and concentrating on the static and dynamic characteristics of a giant magnetostrictive actuator (GMA) considering the prestress effect on the GMM rod and the electrical input dynamics involving the power amplifier and the inductive coil, a methodology for studying the static and dynamic characteristics of a GMA using the hysteresis loop as a tool is developed. A GMA that can display the preforce on the GMM rod in real-time is designed, and a magnetostrictive model dependent on the prestress on a GMM rod instead of the existing quadratic domain rotation model is proposed. Additionally, an electrical input dynamics model to excite GMA is developed according to the simplified circuit diagram, and the corresponding parameters are identified by the experimental data. A dynamic magnetization model with the eddy current effect is deduced according to the Jiles-Atherton model and the Maxwell equations. Next, all of the parameters, including the electrical input characteristics, the dynamic magnetization and the mechanical structure of GMA, are identified by the experimental data from the current response, magnetization response and displacement response, respectively. Finally, a comprehensive comparison between the model results and experimental data is performed, and the results show that the test data agree well with the presented model results. An analysis on the relation between the GMA displacement response and the parameters from the electrical input dynamics, magnetization dynamics and mechanical structural dynamics is performed.
Twisted Hubbard model for Sr2IrO4: magnetism and possible high temperature superconductivity.
Wang, Fa; Senthil, T
2011-04-01
Sr(2)IrO(4) has been suggested as a Mott insulator from a single J(eff)=1/2 band, similar to the cuprates. However, this picture is complicated by the measured large magnetic anisotropy and ferromagnetism. Based on a careful mapping to the J(eff)=1/2 (pseudospin-1/2) space, we propose that the low energy electronic structure of Sr(2)IrO(4) can indeed be described by a SU(2) invariant pseudospin-1/2 Hubbard model very similar to that of the cuprates, but with a twisted coupling to an external magnetic field (a g tensor with a staggered antisymmetric component). This perspective naturally explains the magnetic properties of Sr(2)IrO(4). We also derive several simple facts based on this mapping and the known results about the Hubbard model and the cuprates, which may be tested in future experiments on Sr(2)IrO(4). In particular, we propose that (electron-)doping Sr(2)IrO(4) can potentially realize high-temperature superconductivity. © 2011 American Physical Society
Radial stiffness improvement of a flywheel system using multi-surface superconducting levitation
NASA Astrophysics Data System (ADS)
Basaran, Sinan; Sivrioglu, Selim
2017-03-01
The goal of this research study is the maximization of the levitation force in a flywheel system by the use of more than one permanent magnet with a single ring-shaped HTS material. An analytical model for the radial stiffness of the ring HTS-PM is derived using the frozen image approach. The experimental works are carried out for different polarizations of the permanent magnets, and radial stiffness values are obtained from the radial force measurements. The rotational test of the flywheel system is also realized for different cases. Finally, natural frequencies of the flywheel superconducting magnetic bearing system are experimentally obtained for different combinations of the permanent magnets using a frequency analyzer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kashikhin, V.; Cheban, S.; DiMarco, J.
New LCLS-II Linear Superconducting Accelerator Cry-omodules are under construction at Fermilab. Installed in-side each SCRF Cryomodule is a superconducting magnet package to focus and steer an electron beam. The magnet package is an iron dominated configuration with conduc-tively cooled racetrack-type quadrupole and dipole coils. For easier installation the magnet can be split in the vertical plane. Initially the magnet was tested in a liquid helium bath, and high precision magnetic field measurements were performed. The first (prototype) Cryomodule with the magnet inside was built and successfully tested at Fermilab test facility. In this paper the magnet package is discussed, themore » Cryomodule magnet test results and current leads con-duction cooling performance are presented. So far magnets in nine Cryomodules were successfully tested at Fermilab.« less
NASA Technical Reports Server (NTRS)
Parker, David H.
1987-01-01
An all digital five channel position detection system is to be installed in the Southampton University Magnetic Suspension and Balance System (SUMSBS). The system is intended to monitor a much larger range of model pitch attitudes than has been possible hitherto, up to a maximum of a 90 degree angle of attack. It is based on the use of self-scanning photodiode arrays and illuminating laser light beams, together with purpose built processing electronics. The principles behind the design of the system are discussed, together with the results of testing one channel of the system which was used to control the axial position of a magnetically suspended model in SUMSBS. The removal of optically coupled heave position information from the axial position sensing channel is described.
Thermal Characterization of a NASA 30-cm Ion Thruster Operated up to 5 kW
NASA Technical Reports Server (NTRS)
SarverVerhey, Timothy R.; Domonkos, Matthew T.; Patterson, Michael J.
2001-01-01
A preliminary thermal characterization of a newly-fabricated NSTAR-derived test-bed thruster has recently been performed. The temperature behavior of the rare-earth magnets are reported because of their critical impact on thruster operation. The results obtained to date showed that the magnet temperatures did not exceed the stabilization Emit during thruster operation up to 4.6 kW. Magnet temperature data were also obtained for two earlier NSTAR Engineering Model Thrusters and are discussed in this report. Comparison between these thrusters suggests that the test-bed engine in its present condition is able to operate safely at higher power because of the lower discharge losses over the entire operating power range of this engine. However, because of the 'burn-in' behavior of the NSTAR thruster, magnet temperatures are expected to increase as discharge losses increase with accumulated thruster operation. Consequently, a new engineering solution may be required to achieve 5-kW operation with acceptable margin.
Field Quality and Fabrication Analysis of HQ02 Reconstructed Nb3Sn Coil Cross Sections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holik, Eddie Frank; Ambrosio, Giorgio; Carbonara, Andrea
2017-01-23
The US LHC Accelerator Research Program (LARP) quadrupole HQ02 was designed and fully tested as part of the low-beta quad development for Hi-Lumi LHC. HQ02’s design is well documented with full fabrication accounting along with full field analysis at low and high current. With this history, HQ02 is an excellent test bed for developing a methodology for measuring turn locations from magnet cross sections and comparing with CAD models and measured field. All 4 coils of HQ02 were cut in identical locations along the magnetic length corresponding to magnetic field measurement and coil metrology. A real-time camera and coordinate measuringmore » equipment was used to plot turn corners. Measurements include systematic and random displacements of winding blocks and individual turns along the magnetic length. The range of cable shifts and the field harmonic range along the length are in agreement, although correlating turn locations and measured harmonics in each cross section is challenging.« less
NASA Astrophysics Data System (ADS)
Xing, Li; Quan, Wei; Fan, Wenfeng; Li, Rujie; Jiang, Liwei; Fang, Jiancheng
2018-05-01
The frequency-response and dynamics of a dual-axis spin-exchange-relaxation-free (SERF) atomic magnetometer are investigated by means of transfer function analysis. The frequency-response at different bias magnetic fields is tested to demonstrate the effect of the residual magnetic field. The resonance frequency of alkali atoms and magnetic linewidth can be obtained simultaneously through our theoretical model. The coefficient of determination of the fitting results is superior to 0.995 with 95% confidence bounds. Additionally, step responses are applied to analyze the dynamics of the control system and the effect of imperfections. Finally, a noise-limited magnetic field resolution of 15 fT {{\\sqrt{Hz}}-1} has been achieved for our dual-axis SERF atomic magnetometer through magnetic field optimization.
Designing a Wien Filter Model with General Particle Tracer
NASA Astrophysics Data System (ADS)
Mitchell, John; Hofler, Alicia
2017-09-01
The Continuous Electron Beam Accelerator Facility injector employs a beamline component called a Wien filter which is typically used to select charged particles of a certain velocity. The Wien filter is also used to rotate the polarization of a beam for parity violation experiments. The Wien filter consists of perpendicular electric and magnetic fields. The electric field changes the spin orientation, but also imposes a transverse kick which is compensated for by the magnetic field. The focus of this project was to create a simulation of the Wien filter using General Particle Tracer. The results from these simulations were vetted against machine data to analyze the accuracy of the Wien model. Due to the close agreement between simulation and experiment, the data suggest that the Wien filter model is accurate. The model allows a user to input either the desired electric or magnetic field of the Wien filter along with the beam energy as parameters, and is able to calculate the perpendicular field strength required to keep the beam on axis. The updated model will aid in future diagnostic tests of any beamline component downstream of the Wien filter, and allow users to easily calculate the electric and magnetic fields needed for the filter to function properly. Funding support provided by DOE Office of Science's Student Undergraduate Laboratory Internship program.
NASA Astrophysics Data System (ADS)
Šouc, J.; Vojenčiak, M.; Gömöry, F.
2010-04-01
Several short cable models were constructed from YBCO coated conductor (YBCO CC) to study their basic dc and ac electrical properties. They were prepared using superconducting tapes helically wound on fiberglass former of different diameter (5, 8 and 10 mm) with different twist pitch (from 1.7 up to 2.4 cm). The number of parallel-connected tapes ranged from 1 up to 6. The standard length of the models was 11 cm. In one case a 35 cm long model has been manufactured in order to perform a bending test. We observed that the critical currents of the models were proportional to the number of tapes used for their construction. Transport and magnetization ac loss were measured at 36 and 72 Hz.
Design of permanent magnet eddy current brake for a small scaled electromagnetic launch model
NASA Astrophysics Data System (ADS)
Zhou, Shigui; Yu, Haitao; Hu, Minqiang; Huang, Lei
2012-04-01
A variable pole-pitch double-sided permanent magnet (PM) linear eddy current brake (LECB) is proposed for a small scaled electromagnetic launch model. A two-dimensional (2D) analytical steady state model is presented for the double-sided PM-LECB, and the expression for the braking force is derived. Based on the analytical model, the material and eddy current skin effect of the conducting plate are analyzed. Moreover, a variable pole-pitch double-sided PM-LECB is proposed for the effective braking of the moving plate. In addition, the braking force is predicted by finite element (FE) analysis, and the simulated results are in good agreement with the analytical model. Finally, a prototype is presented to test the braking profile for validation of the proposed design.
21 CFR 870.3690 - Pacemaker test magnet.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Pacemaker test magnet. 870.3690 Section 870.3690...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3690 Pacemaker test magnet. (a) Identification. A pacemaker test magnet is a device used to test an inhibited or triggered type...
21 CFR 870.3690 - Pacemaker test magnet.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Pacemaker test magnet. 870.3690 Section 870.3690...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3690 Pacemaker test magnet. (a) Identification. A pacemaker test magnet is a device used to test an inhibited or triggered type...
21 CFR 870.3690 - Pacemaker test magnet.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Pacemaker test magnet. 870.3690 Section 870.3690...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3690 Pacemaker test magnet. (a) Identification. A pacemaker test magnet is a device used to test an inhibited or triggered type...
21 CFR 870.3690 - Pacemaker test magnet.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Pacemaker test magnet. 870.3690 Section 870.3690...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3690 Pacemaker test magnet. (a) Identification. A pacemaker test magnet is a device used to test an inhibited or triggered type...
Sparse Reconstruction of Electric Fields from Radial Magnetic Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yeates, Anthony R.
2017-02-10
Accurate estimates of the horizontal electric field on the Sun’s visible surface are important not only for estimating the Poynting flux of magnetic energy into the corona but also for driving time-dependent magnetohydrodynamic models of the corona. In this paper, a method is developed for estimating the horizontal electric field from a sequence of radial-component magnetic field maps. This problem of inverting Faraday’s law has no unique solution. Unfortunately, the simplest solution (a divergence-free electric field) is not realistically localized in regions of nonzero magnetic field, as would be expected from Ohm’s law. Our new method generates instead a localizedmore » solution, using a basis pursuit algorithm to find a sparse solution for the electric field. The method is shown to perform well on test cases where the input magnetic maps are flux balanced in both Cartesian and spherical geometries. However, we show that if the input maps have a significant imbalance of flux—usually arising from data assimilation—then it is not possible to find a localized, realistic, electric field solution. This is the main obstacle to driving coronal models from time sequences of solar surface magnetic maps.« less
Gao, Nuo; Zhu, S A; He, Bin
2005-06-07
We have developed a new algorithm for magnetic resonance electrical impedance tomography (MREIT), which uses only one component of the magnetic flux density to reconstruct the electrical conductivity distribution within the body. The radial basis function (RBF) network and simplex method are used in the present approach to estimate the conductivity distribution by minimizing the errors between the 'measured' and model-predicted magnetic flux densities. Computer simulations were conducted in a realistic-geometry head model to test the feasibility of the proposed approach. Single-variable and three-variable simulations were performed to estimate the brain-skull conductivity ratio and the conductivity values of the brain, skull and scalp layers. When SNR = 15 for magnetic flux density measurements with the target skull-to-brain conductivity ratio being 1/15, the relative error (RE) between the target and estimated conductivity was 0.0737 +/- 0.0746 in the single-variable simulations. In the three-variable simulations, the RE was 0.1676 +/- 0.0317. Effects of electrode position uncertainty were also assessed by computer simulations. The present promising results suggest the feasibility of estimating important conductivity values within the head from noninvasive magnetic flux density measurements.
Statistical averaging of marine magnetic anomalies and the aging of oceanic crust.
Blakely, R.J.
1983-01-01
Visual comparison of Mesozoic and Cenozoic magnetic anomalies in the North Pacific suggests that older anomalies contain less short-wavelength information than younger anomalies in this area. To test this observation, magnetic profiles from the North Pacific are examined from crust of three ages: 0-2.1, 29.3-33.1, and 64.9-70.3Ma. For each time period, at least nine profiles were analyzed by 1) calculating the power density spectrum of each profile, 2) averaging the spectra together, and 3) computing a 'recording filter' for each time period by assuming a hypothetical seafloor model. The model assumes that the top of the source is acoustic basement, the source thickness is 0.5km, and the time scale of geomagnetic reversals is according to Ness et al. (1980). The calculated power density spectra of the three recording filters are complex in shape but show an increase of attenuation of short-wavelength information as the crust ages. These results are interpreted using a multilayer model for marine magnetic anomalies in which the upper layer, corresponding to pillow basalt of seismic layer 2A, acts as a source of noise to the magnetic anomalies. As the ocean crust ages, this noisy contribution by the pillow basalts becomes less significant to the anomalies. Consequently, magnetic sources below layer 2A must be faithful recorders of geomagnetic reversals.-AuthorPacific power density spectrum
Utilization of magnetically responsive cereal by-product for organic dye removal.
Baldikova, Eva; Politi, Dorothea; Maderova, Zdenka; Pospiskova, Kristyna; Sidiras, Dimitrios; Safarikova, Mirka; Safarik, Ivo
2016-04-01
Barley straw, an agricultural by-product, can also serve as a low-cost and relatively efficient adsorbent of various harmful compounds. In this case, adsorption of four water-soluble dyes belonging to different dye classes (specifically Bismarck brown Y, representing the azo group; methylene blue, quinone-imine group; safranin O, safranin group; and crystal violet, triphenylmethane group) on native and citric acid-NaOH-modified barley straw, both in magnetic and non-magnetic versions, was studied. The adsorption was characterized using three adsorption models, namely Langmuir, Freundlich and Sips. To compare the maximum adsorption capacities (qmax), the Langmuir model was employed. The qmax values reached 86.5-124.3 mg of dye per g of native non-magnetic straw and 410.8-520.3 mg of dye per g of magnetic chemically modified straw. Performed characterization studies suggested that the substantial increase in qmax values after chemical modification could be caused by rougher surface of adsorbent (observed by scanning electron microscopy) and by the presence of higher amounts of carboxyl groups (detected by Fourier transform infrared spectroscopy). The adsorption processes followed the pseudo-second-order kinetic model and thermodynamic studies indicated spontaneous and endothermic adsorption. The chemical modification of barley straw led to a significant increase in maximum adsorption capacities for all tested dyes, while magnetic modification substantially facilitated the manipulation with adsorbent. © 2015 Society of Chemical Industry.
General relativistic razor-thin disks with magnetically polarized matter
NASA Astrophysics Data System (ADS)
Navarro-Noguera, Anamaría; Lora-Clavijo, F. D.; González, Guillermo A.
2018-06-01
The origin of magnetic fields in the universe still remains unknown and constitutes one of the most intriguing questions in astronomy and astrophysics. Their significance is enormous since they have a strong influence on many astrophysical phenomena. In regards of this motivation, theoretical models of galactic disks with sources of magnetic field may contribute to understand the physics behind them. Inspired by this, we present a new family of analytical models for thin disks composed by magnetized material. The solutions are axially symmetric, conformastatic and are obtained by solving the Einstein-Maxwell Field Equations for continuum media without the test field approximation, and assuming that the sources are razor-thin disk of magnetically polarized matter. We find analytical expressions for the surface energy density, the pressure, the polarization vector, the electromagnetic fields, the mass and the rotational velocity for circular orbits, for two particular solutions. In each case, the energy-momentum tensor agrees with the energy conditions and also the convergence of the mass for all the solutions is proved. Since the solutions are well-behaved, they may be used to model astrophysical thin disks, and also may contribute as initial data in numerical simulations. In addition, the process to obtain the solutions is described in detail, which may be used as a guide to find solutions with magnetized material in General Relativity.
NASA Astrophysics Data System (ADS)
Correa, M. A.; Bohn, F.
2018-05-01
We perform a theoretical and experimental investigation of the magnetic properties and magnetization dynamics of a ferromagnetic magnetostrictive multilayer grown onto a flexible substrate and submitted to external stress. We calculate the magnetic behavior and magnetoimpedance effect for a trilayered system from an approach that considers a magnetic permeability model for planar geometry and a magnetic free energy density which takes into account induced uniaxial and magnetoelastic anisotropy contributions. We verify remarkable modifications of the magnetic anisotropy with external stress, as well as we show that the dynamic magnetic response is strongly affected by these changes. We discuss the magnetic features that lead to modifications of the frequency limits where distinct mechanisms are responsible by the magnetoimpedance variations, enabling us to manipulate the resonance fields. To test the robustness of the approach, we directly compare theoretical results with experimental data. Thus, we provide experimental evidence to confirm the validity of the theoretical approach, as well as to manipulate the resonance fields to tune the MI response according to real applications in devices.
Test of Magnetic Rotation near the band head in ^197,198Pb
NASA Astrophysics Data System (ADS)
Krücken, R.; Clark, R. M.; Deleplanque, M. A.; Diamond, R. M.; Fallon, P.; Macchiavelli, A. O.; Lee, I. Y.; Schmid, G. J.; Stephens, F. S.; Vetter, K.; Dewald, A.; Peusquens, R.; von Brentano, P.; Baldsiefen, G.; Chmel, S.; Hübel, H.; Becker, J. A.; Bernstein, L. A.; Hauschild, K.
1998-04-01
The concept of magnetic rotation is tested near the band head of shears-bands in ^197,198Pb by means of a lifetime experiment with the recoil distance method (RDM). The experiment was performed using the Gammasphere array in conjunction with the Cologne Plunger. The B(M1) values extracted from the measured lifetimes can prove the applicability of the concept of magnetic rotation for the states near the band head of these shears bands. The RDM results are compared with tilted axis cranking and shell model calculations. Furthermore the results will be used to test earlier DSAM lifetime measurements for states at higher spins. Preliminary results of this topic will be presented. This work is supported by DOE grant numbers DE-AC03-76SF00098 (LBNL), DE-FG02-91ER40609 (Yale), W-7405-ENG-48 (LLNL) and by the German BMBF for Cologne (No. 06 OK 668) and Bonn.
Trillium 360 Seismometer Initial Test Results
NASA Astrophysics Data System (ADS)
Bainbridge, Geoffrey; Devanney, Peter; Upadhyaya, Sarvesh
2017-04-01
Test results for Trillium 360 show this seismometer can resolve the Peterson New Low Noise Model down to 300 seconds period. This has been confirmed at multiple sites: Pinon Flat (California), Albuquerque Seismological Laboratory (New Mexico) and Nanometrics (Ottawa, Canada). The Pinon Flat deployment captured the March 2, 2016 Mw=7.9 Indonesian event and showed a response coherent with reference sensors including an STS-1 at periods down to 0.0015 Hz. At frequencies below 0.0015 Hz the reference sensors showed a noncoherent spurious response, i.e. noise in the presence of signal, whereas the Trillium 360 was relatively unaffected. Magnetic sensitivity has been measured to be 0.01 m/s^2/T in two independent tests at ASL and Nanometrics. Temperature sensitivity is 3*10^-4 m/s^2/T. This combination of low sensitivity to both magnetic field and temperature is achieved through magnetic shielding which resolves the side effect of magnetic sensitivity in temperature-compensated ferromagnetic spring alloys. The T360 seismometer components are sufficiently miniaturized for deployment in a borehole. This enables low-noise performance even in an urban environment with thick sediments (at Nanometrics, Ottawa) since the seismometer can be emplaced in bedrock below surface sediments and away from surface noise.
NASA Astrophysics Data System (ADS)
Reimer, R.; Marchuk, O.; Geiger, B.; Mc Carthy, P. J.; Dunne, M.; Hobirk, J.; Wolf, R.; ASDEX Upgrade Team
2017-08-01
The Motional Stark Effect (MSE) diagnostic is a well established technique to infer the local internal magnetic field in fusion plasmas. In this paper, the existing forward model which describes the MSE data is extended by the Zeeman effect, fine-structure, and relativistic corrections in the interpretation of the MSE spectra for different experimental conditions at the tokamak ASDEX Upgrade. The contribution of the non-Local Thermodynamic Equilibrium (non-LTE) populations among the magnetic sub-levels and the Zeeman effect on the derived plasma parameters is different. The obtained pitch angle is changed by 3 ° … 4 ° and by 0 . 5 ° … 1 ° including the non-LTE and the Zeeman effects into the standard statistical MSE model. The total correction is about 4°. Moreover, the variation of the magnetic field strength is significantly changed by 2.2% due to the Zeeman effect only. While the data on the derived pitch angle still could not be tested against the other diagnostics, the results from an equilibrium reconstruction solver confirm the obtained values for magnetic field strength.
Avian magnetite-based magnetoreception: a physiologist's perspective
Cadiou, Hervé; McNaughton, Peter A.
2010-01-01
It is now well established that animals use the Earth's magnetic field to perform long-distance migration and other navigational tasks. However, the transduction mechanisms that allow the conversion of magnetic field variations into an electric signal by specialized sensory cells remain largely unknown. Among the species that have been shown to sense Earth-strength magnetic fields, birds have been a model of choice since behavioural tests show that their direction-finding abilities are strongly influenced by magnetic fields. Magnetite, a ferromagnetic mineral, has been found in a wide range of organisms, from bacteria to vertebrates. In birds, both superparamagnetic (SPM) and single-domain magnetite have been found to be associated with the trigeminal nerve. Electrophysiological recordings from cells in the trigeminal ganglion have shown an increase in action potential firing in response to magnetic field changes. More recently, histological evidence has demonstrated the presence of SPM magnetite in the subcutis of the pigeon's upper beak. The aims of the present review are to review the evidence for a magnetite-based mechanism in birds and to introduce physiological concepts in order to refine the proposed models. PMID:20106875
Quench Protection Studies of 11T Nb$$_3$$Sn Dipole Models for LHC Upgrades
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zlobin, Alexander; Chlachidze, Guram; Nobrega, Alfred
CERN and FNAL are developing 11 T Nb3Sn dipole magnets for the LHC collimation system upgrade. Due to the large stored energy, protection of these magnets during a quench is a challenging problem. This paper reports the results of experimental studies of key quench protection parameters including longitudinal and radial quench propagation in the coil, coil heating due to a quench, and energy extraction and quench-back effect. The studies were performed using a 1 m long 11 T Nb3Sn dipole coil tested in a magnetic mirror configuration.
MAGSAT and aeromagnetic data in the North American continent
NASA Technical Reports Server (NTRS)
1981-01-01
Problems were encountered in deriving a proper reference field to be subtracted from the aeromagnetic data obtained from Project MAGNET. Field models tried thus far do not seem to eliminate properly the main field. The MAGSAT data in the North American continent for the period November 1 to December 22, 1979 are being compiled and compared with MAGNET data. Efforts are being made to eliminate the orbital bias errors. A computer program was developed and successfully tested which computes a topographic profile of the Curie depth isotherm which fits best to the observed vector or scalar field magnetic data.
Magnetic Leviation System Design and Implementation for Wind Tunnel Application
NASA Technical Reports Server (NTRS)
Lin, Chin E.; Sheu, Yih-Ran; Jou, Hui-Long
1996-01-01
This paper presents recent work in magnetic suspension wind tunnel development in National Cheng Kung University. In this phase of research, a control-based study is emphasized to implement a robust control system into the experimental system under study. A ten-coil 10 cm x 10 cm magnetic suspension wind tunnel is built using a set of quadrant detectors for six degree of freedom control. To achieve the attitude control of suspended model with different attitudes, a spacial electromagnetic field simulation using OPERA 3D is studied. A successful test for six degree of freedom control is demonstrated in this paper.
Fratila, Radu; Benabou, Abdelkader; Tounzi, Abdelmounaïm; Mipo, Jean-Claude
2014-05-14
NdFeB permanent magnets (PMs) are widely used in high performance electrical machines, but their relatively high conductivity subjects them to eddy current losses that can lead to magnetization loss. The Finite Element (FE) method is generally used to quantify the eddy current loss of PMs, but it remains quite difficult to validate the accuracy of the results with complex devices. In this paper, an experimental test device is used in order to extract the eddy current losses that are then compared with those of a 3D FE model.
NASA Astrophysics Data System (ADS)
Ambo, Takumi; Nakamura, Yuki; Ochiai, Taku; Nonomura, Taku; Asai, Keisuke
2017-11-01
In this study, the surface flow on a 6:1 prolate spheroid model was visualized by oil flow method in the magnetic suspension and balance system (MSBS). The MSBS is a support-free system for wind-tunnel test in that a model is levitated by magnetic force. In this experiment, the 0.3-m MSBS was installed in the low-speed wind tunnel. The Reynolds number was 0.5 million and the angle of attack was set 0 and 5 degrees. In addition to free-levitation tests, a thin rod simulating disturbance of a support system was placed on the model surface and the influence of support interference was evaluated. The obtained results indicate that complicated separation patterns are present even at zero angle of attack. At α = 5°, separation pattern becomes more complicated than that at α = 0° and the streamlines form a highly three-dimensional structure. A characteristic pattern of open separation is observed and a focal point is formed at the end of the separation line. In evaluation of the support interference, the separation is delayed in the downstream of the rod, suggesting that the change of separation pattern is caused by the transition of laminar boundary layer behind the rod. These results indicate that one must take particular care to the support interference in studying three-dimensional separation on a prolate spheroid.
NASA Astrophysics Data System (ADS)
Kochukhov, O.; Ryabchikova, T. A.
2018-02-01
A series of recent theoretical atomic diffusion studies has address the challenging problem of predicting inhomogeneous vertical and horizontal chemical element distributions in the atmospheres of magnetic ApBp stars. Here we critically assess the most sophisticated of such diffusion models - based on a time-dependent treatment of the atomic diffusion in a magnetized stellar atmosphere - by direct comparison with observations as well by testing the widely used surface mapping tools with the spectral line profiles predicted by this theory. We show that the mean abundances of Fe and Cr are grossly underestimated by the time-dependent theoretical diffusion model, with discrepancies reaching a factor of 1000 for Cr. We also demonstrate that Doppler imaging inversion codes, based either on modelling of individual metal lines or line-averaged profiles simulated according to theoretical three-dimensional abundance distribution, are able to reconstruct correct horizontal chemical spot maps despite ignoring the vertical abundance variation. These numerical experiments justify a direct comparison of the empirical two-dimensional Doppler maps with theoretical diffusion calculations. This comparison is generally unfavourable for the current diffusion theory, as very few chemical elements are observed to form overabundance rings in the horizontal field regions as predicted by the theory and there are numerous examples of element accumulations in the vicinity of radial field zones, which cannot be explained by diffusion calculations.
A Catalog of Averaged Magnetic Curves
NASA Astrophysics Data System (ADS)
Bychkov, V. D.; Bychkova, L. V.; Madej, J.
2017-06-01
The second version of the catalog contains information about 275 stars of different types. Since the first catalog was created, the situation fundamentally changed primarily due to a significant increase of accuracy of magnetic field (MF) measurements. Up to now, global magnetic fields were discovered and measured in stars of many types and their behavior was partially studied. Magnetic behavior of Ap/Bp stars was studied most thoroughly. The catalog contains data on 182 such objects. The main goals for the construction of the catalog are: 1) to review and summarize our knowledge about magnetic behavior of stars of different types; 2) the whole data are uniformly presented and processed which will allow one to perform statistical analysis of the variability of (longitudinal) magnetic fields of stars; 3) the data are presented in the most convenient way for testing different theoretical models; 4) the catalog will be useful for development of observational programs.
NASA Technical Reports Server (NTRS)
Kilbane, J.; Polzin, K. A.
2014-01-01
An annular linear induction pump (ALIP) that could be used for circulating liquid-metal coolant in a fission surface power reactor system is modeled in the present work using the computational COMSOL Multiphysics package. The pump is modeled using a two-dimensional, axisymmetric geometry and solved under conditions similar to those used during experimental pump testing. Real, nonlinear, temperature-dependent material properties can be incorporated into the model for both the electrically-conducting working fluid in the pump (NaK-78) and structural components of the pump. The intricate three-phase coil configuration of the pump is implemented in the model to produce an axially-traveling magnetic wave that is qualitatively similar to the measured magnetic wave. The model qualitatively captures the expected feature of a peak in efficiency as a function of flow rate.
NASA Astrophysics Data System (ADS)
Yamamoto, Shu; Ara, Takahiro
Recently, induction motors (IMs) and permanent-magnet synchronous motors (PMSMs) have been used in various industrial drive systems. The features of the hardware device used for controlling the adjustable-speed drive in these motors are almost identical. Despite this, different techniques are generally used for parameter measurement and speed-sensorless control of these motors. If the same technique can be used for parameter measurement and sensorless control, a highly versatile adjustable-speed-drive system can be realized. In this paper, the authors describe a new universal sensorless control technique for both IMs and PMSMs (including salient pole and nonsalient pole machines). A mathematical model applicable for IMs and PMSMs is discussed. Using this model, the authors derive the proposed universal sensorless vector control algorithm on the basis of estimation of the stator flux linkage vector. All the electrical motor parameters are determined by a unified test procedure. The proposed method is implemented on three test machines. The actual driving test results demonstrate the validity of the proposed method.
Byron, O
1997-01-01
Computer software such as HYDRO, based upon a comprehensive body of theoretical work, permits the hydrodynamic modeling of macromolecules in solution, which are represented to the computer interface as an assembly of spheres. The uniqueness of any satisfactory resultant model is optimized by incorporating into the modeling procedure the maximal possible number of criteria to which the bead model must conform. An algorithm (AtoB, for atoms to beads) that permits the direct construction of bead models from high resolution x-ray crystallographic or nuclear magnetic resonance data has now been formulated and tested. Models so generated then act as informed starting estimates for the subsequent iterative modeling procedure, thereby hastening the convergence to reasonable representations of solution conformation. Successful application of this algorithm to several proteins shows that predictions of hydrodynamic parameters, including those concerning solvation, can be confirmed. PMID:8994627
The Z3 model of Saturn's magnetic field and the Pioneer 11 vector helium magnetometer observations
NASA Technical Reports Server (NTRS)
Connerney, J. E. P.; Acuna, M. H.; Ness, N. F.
1984-01-01
Magnetic field observations obtained by the Pioneer 11 vector helium magnetometer are compared with the Z(sub 3) model magnetic field. These Pioneer 11 observations, obtained at close-in radial distances, constitute an important and independent test of the Z(sub 3) zonal harmonic model, which was derived from Voyager 1 and Voyager 2 fluxgate magnetometer observations. Differences between the Pioneer 11 magnetometer and the Z(sub 3) model field are found to be small (approximately 1 percent) and quantitatively consistent with the expected instrumental accuracy. A detailed examination of these differences in spacecraft payload coordinates shows that they are uniquely associated with the instrument frame of reference and operation. A much improved fit to the Pioneer 11 observations is obtained by rotation of the instrument coordinate system about the spacecraft spin axis by 1.4 degree. With this adjustment, possibly associated with an instrumental phase lag or roll attitude error, the Pioneer 11 vector helium magnetometer observations are fully consistent with the Voyager Z(sub 3) model.
CONSISTENT SCALING LAWS IN ANELASTIC SPHERICAL SHELL DYNAMOS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yadav, Rakesh K.; Gastine, Thomas; Christensen, Ulrich R.
2013-09-01
Numerical dynamo models always employ parameter values that differ by orders of magnitude from the values expected in natural objects. However, such models have been successful in qualitatively reproducing properties of planetary and stellar dynamos. This qualitative agreement fuels the idea that both numerical models and astrophysical objects may operate in the same asymptotic regime of dynamics. This can be tested by exploring the scaling behavior of the models. For convection-driven incompressible spherical shell dynamos with constant material properties, scaling laws had been established previously that relate flow velocity and magnetic field strength to the available power. Here we analyzemore » 273 direct numerical simulations using the anelastic approximation, involving also cases with radius-dependent magnetic, thermal, and viscous diffusivities. These better represent conditions in gas giant planets and low-mass stars compared to Boussinesq models. Our study provides strong support for the hypothesis that both mean velocity and mean magnetic field strength scale as a function of the power generated by buoyancy forces in the same way for a wide range of conditions.« less
ERIC Educational Resources Information Center
Groseclose, Richard
This third in a series of six modules for a course titled Nondestructive Examination (NDE) Techniques II explains the principles of magnets and magnetic fields and how they are applied in magnetic particle testing, describes the theory and methods of magnetizing test specimens, describes the test equipment used, discusses the principles and…
Design, implementation and control of a magnetic levitation device
NASA Astrophysics Data System (ADS)
Shameli, Ehsan
Magnetic levitation technology has shown a great deal of promise for micromanipulation tasks. Due to the lack of mechanical contact, magnetic levitation systems are free of problems caused by friction, wear, sealing and lubrication. These advantages have made magnetic levitation systems a great candidate for clean room applications. In this thesis, a new large gap magnetic levitation system is designed, developed and successfully tested. The system is capable of levitating a 6.5(gr) permanent magnet in 3D space with an air gap of approximately 50(cm) with the traveling range of 20x20x30 mm3. The overall positioning accuracy of the system is 60mum. With the aid of finite elements method, an optimal geometry for the magnetic stator is proposed. Also, an energy optimization approach is utilized in the design of the electromagnets. In order to facilitate the design of various controllers for the system, a mathematical model of the magnetic force experienced by the levitated object is obtained. The dynamic magnetic force model is determined experimentally using frequency response system identification. The response of the system components including the power amplifiers, and position measurement system are also considered in the development of the force model. The force model is then employed in the controller design for the magnetic levitation device. Through a modular approach, the controller design for the 3D positioning system is started with the controller design for the vertical direction, i.e. z, and then followed by the controller design in the horizontal directions, i.e. x and y. For the vertical direction, several controllers such as PID, feed forward and feedback linearization are designed and their performances are compared. Also a control command conditioning method is introduced as a solution to increase the control performance and the results of the proposed controller are compared with the other designs. Experimental results showed that for the magnetic levitation system, the feedback linearization controller has the shortest settling time and is capable of reducing the positioning error to RMS value of 11.56mum. The force model was also utilized in the design of a model reference adaptive feedback linearization (MRAFL) controller for the z direction. For this case, the levitated object is a small microrobot equipped with a remote controlled gripper weighting approximately 28(gr). Experimental results showed that the MRAFL controller enables the micro-robot to pick up and transport a payload as heavy as 30% of its own weight without a considerable effect on its positioning accuracy. In the presence of the payload, the MRAFL controller resulted in a RMS positioning error of 8microm compared with 27.9mum of the regular feedback linearization controller. For the horizontal position control of the system, a mathematical formula for distributing the electric currents to the multiple electromagnets of the system was proposed and a PID control approach was implemented to control the position of the levitated object in the xy-plane. The control system was experimentally tested in tracking circular and spiral trajectories with overall positioning accuracy of 60mum. Also, a new mathematical approach is presented for the prediction of magnetic field distribution in the horizontal direction. The proposed approach is named the pivot point method and is capable of predicting the two dimensional position of the levitated object in a given vertical plane for an arbitrary current distribution in the electromagnets of the levitation system. Experimental results showed that the proposed method is capable of predicting the location of the levitated object with less than 10% error.
NASA Astrophysics Data System (ADS)
Merino, Jaime; Ralko, Arnaud
2018-05-01
Motivated by the rich physics of honeycomb magnetic materials, we obtain the phase diagram and analyze magnetic properties of the spin-1 /2 and spin-1 J1-J2-J3 Heisenberg model on the honeycomb lattice. Based on the SU(2) and SU(3) symmetry representations of the Schwinger boson approach, which treats disordered spin liquids and magnetically ordered phases on an equal footing, we obtain the complete phase diagrams in the (J2,J3) plane. This is achieved using a fully unrestricted approach which does not assume any pre-defined Ansätze. For S =1 /2 , we find a quantum spin liquid (QSL) stabilized between the Néel, spiral, and collinear antiferromagnetic phases in agreement with previous theoretical work. However, by increasing S from 1 /2 to 1, the QSL is quickly destroyed due to the weakening of quantum fluctuations indicating that the model already behaves as a quasiclassical system. The dynamical structure factors and temperature dependence of the magnetic susceptibility are obtained in order to characterize all phases in the phase diagrams. Moreover, motivated by the relevance of the single-ion anisotropy, D , to various S =1 honeycomb compounds, we have analyzed the destruction of magnetic order based on an SU(3) representation of the Schwinger bosons. Our analysis provides a unified understanding of the magnetic properties of honeycomb materials realizing the J1-J2-J3 Heisenberg model from the strong quantum spin regime at S =1 /2 to the S =1 case. Neutron scattering and magnetic susceptibility experiments can be used to test the destruction of the QSL phase when replacing S =1 /2 by S =1 localized moments in certain honeycomb compounds.
Experimental results on MgB2 used as ADR magnetic shields, and comparison to NbTi
NASA Astrophysics Data System (ADS)
Prouvé, T.; Duval, J. M.; Luchier, N.; D'escrivan, S.
2014-11-01
Adiabatic Demagnetization Refrigerator (ADR) is an efficient way to obtain sub-Kelvin temperatures in space environments. The SAFARI instrument for the Japanese spaceborne SPICA mission features detectors which will be cooled down to 50 mK. This cooling will be done by a hybrid cooler comprising a 300 mK sorption stage and a 50 mK ADR stage. For this cooler and ADR in general, the main contribution to the overall mass is in the magnetic system and particularly in the magnetic shielding required to keep the stray field within acceptable values. In order to reduce this mass, superconducting materials can be used as active magnetic shields thanks to un-attenuated eddy currents generated while ramping the magnet current. In this way they could reduce the need of heavy ferromagnetic material shields and increase the shielding efficiency to reach very low parasitic values. In the framework of SAFARI we have built a numerical model of a superconductor magnetic shield. The good results regarding the weight gain lead us to an experimental confirmation. In this paper we present an experimental study on MgB2 and NbTi superconducting materials. 2 pairs of rings of typical diameter of 80 mm have been tested using a superconducting magnet matching closely the dimensions of the SAFARI ADR cooler. The magnetic shielding measurements have been compared to a numerical model.
NASA Astrophysics Data System (ADS)
Shmavonyan, Gagik; Zadoyan, Ovsanna
2013-03-01
Magnetic systems with reduced dimensionality make good test beds for checks on theoretical models. Here, changes in the nature of magnetic ordering in quasi-2d system of layered Ni hydroxides (LH-Ni-) with variations in the interlayer spacing c are investigated. Magnetic properties of LH-Ni-DS with c ~ 30 A° synthesized by intercalating dodecyl sulfate ion, (C12H25OSO3)- between the layers are compared with those of LH-Ni-Ac (c ~ 8.5 A°) containing the acetate (Ac) ligand. Measurements included those of magnetization M vs. T and H, ac susceptibilities (f = 0.1 Hz - 1000 Hz) and EMR (Electron Magnetic Resonance) spectra at 9.28 GHz. Results show that just like LH-Ni-Ac, LH-Ni-DS also orders ferromagnetically but with Tc ~ 23 Kabout 45 % largerthanT c 16 Kreportedfor LH-Ni-Ac.. In EMR studies, linewidth is strongly temperature-dependent, decreasing with decreasing T from 300 K, reaching a minimum near 45 K and then increasing sharply for T < 45 K, the latter due to short range magnetic ordering. These results differ with the model of Drillon et al in which interlayer dipolar interaction between clusters of correlated spins in the layers yields TC nearly independent of c. Roles of magnetic anisotropy and exchange constants in determining TC in the LH-Ni systems is discussed.
Magnetic Signature: Small Arms Testing of Multiple Examples of Same Model Weapons
2009-04-01
inside the wooden building, showing a three-axis fluxgate magnetometer , north-south path lines, and instrumentation system...the FVM-400 Vector Fluxgate Magnetometer by Macintyre Electronics Design Associates, Inc. (MEDA) was used and in other cases two DFM100G2 Digital... Fluxgate Magnetometers made by Billingsley Magnetics were used. The majority of the data obtained was done with the latter. The MEDA has a 1 nT
Magnetic bearing reaction wheel. [for spacecraft attitude control
NASA Technical Reports Server (NTRS)
Sabnis, A.; Schmitt, F.; Smith, L.
1976-01-01
The results of a program for the development, fabrication and functional test of an engineering model magnetically suspended reaction wheel are described. The reaction wheel develops an angular momentum of + or - 0.5 foot-pound-second and is intended for eventual application in the attitude control of long-life interplanetary and orbiting spacecraft. A description of the wheel design and its major performance characteristics is presented. Recommendations for flight prototype development are made.
NASA Technical Reports Server (NTRS)
Honess, Shawn B. (Inventor); Narvaez, Pablo (Inventor); Mcauley, James M. (Inventor)
1992-01-01
An apparatus for characterizing the magnetic field of a device under test is discussed. The apparatus is comprised of five separate devices: (1) a device for nullifying the ambient magnetic fields in a test environment area with a constant applied magnetic field; (2) a device for rotating the device under test in the test environment area; (3) a device for sensing the magnetic field (to obtain a profile of the magnetic field) at a sensor location which is along the circumference of rotation; (4) a memory for storing the profiles; and (5) a processor coupled to the memory for characterizing the magnetic field of the device from the magnetic field profiles thus obtained.
Polarization Radiation with Turbulent Magnetic Fields from X-Ray Binaries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jian-Fu; Xiang, Fu-Yuan; Lu, Ju-Fu, E-mail: jfzhang@xtu.edu.cn, E-mail: fyxiang@xtu.edu.cn, E-mail: lujf@xmu.edu.cn
2017-02-10
We study the properties of polarized radiation in turbulent magnetic fields from X-ray binary jets. These turbulent magnetic fields are composed of large- and small-scale configurations, which result in the polarized jitter radiation when the characteristic length of turbulence is less than the non-relativistic Larmor radius. On the contrary, the polarized synchrotron emission occurs, corresponding to a large-scale turbulent environment. We calculate the spectral energy distributions and the degree of polarization for a general microquasar. Numerical results show that turbulent magnetic field configurations can indeed provide a high degree of polarization, which does not mean that a uniform, large-scale magneticmore » field structure exists. The model is applied to investigate the properties of polarized radiation of the black-hole X-ray binary Cygnus X-1. Under the constraint of multiband observations of this source, our studies demonstrate that the model can explain the high polarization degree at the MeV tail and predict the highly polarized properties at the high-energy γ -ray region, and that the dominant small-scale turbulent magnetic field plays an important role for explaining the highly polarized observation at hard X-ray/soft γ -ray bands. This model can be tested by polarization observations of upcoming polarimeters at high-energy γ -ray bands.« less
The correlation between the total magnetic flux and the total jet power
NASA Astrophysics Data System (ADS)
Nokhrina, Elena E.
2017-12-01
Magnetic field threading a black hole ergosphere is believed to play the key role in both driving the powerful relativistic jets observed in active galactic nuclei and extracting the rotational energy from a black hole via Blandford-Znajek process. The magnitude of magnetic field and the magnetic flux in the vicinity of a central black hole is predicted by theoretical models. On the other hand, the magnetic field in a jet can be estimated through measurements of either the core shift effect or the brightness temperature. In both cases the obtained magnetic field is in the radiating domain, so its direct application to the calculation of the magnetic flux needs some theoretical assumptions. In this paper we address the issue of estimating the magnetic flux contained in a jet using the measurements of a core shift effect and of a brightness temperature for the jets, directed almost at the observer. The accurate account for the jet transversal structure allow us to express the magnetic flux through the observed values and an unknown rotation rate of magnetic surfaces. If we assume the sources are in a magnetically arrested disk state, the lower limit for the rotation rate can be obtained. On the other hand, the flux estimate may be tested against the total jet power predicted by the electromagnetic energy extraction model. The resultant expression for power depends logarithmically weakly on an unknown rotation rate. We show that the total jet power estimated through the magnetic flux is in good agreement with the observed power. We also obtain the extremely slow rotation rates, which may be an indication that the majority of the sources considered are not in the magnetically arrested disk state.
Manoj-Kumar, Mitta; Gowri-Sankar, Singaraju; Chaitanya, Nellore; Vivek-Reddy, Ganugapanta; Venkatesh, Nettam
2016-01-01
Background To evaluate the closure of midline diastema using the Neodymium-Iron-Boron magnets and to compare the treatment duration of midline diastemas with the use of magnets compared to regular orthodontic treatment. Material and Methods Thirty patients with age group 12 to 30 years with the midline diastema ranging from 0.5 to 3mm were selected. These patients were divided into two groups. Diastema closure in one group was accomplished by conventional method, in other group was done with Ne2Fe14B magnets. These magnets were fitted to the labial surfaces of the maxillary central incisors such a way that the opposite poles of the magnets face each other. At each appointment, study models and radiographs were taken for study subjects and the midline diastema was measured using digital vernier calipers on the study models obtained. Descriptive statistics carried out using Paired t-test. Results Subjects treated with Ne2Fe14B magnets showed a significant difference compared to fixed orthodontic appliance subjects with respect to time of closure, rate of space closure and incisal inclination. Significant difference between 2 groups with reduction of 64.6 days in time to diastema closure in subjects treated with Ne2Fe14B magnets (P<0.05). Conclusions Ne2Fe14B magnets more efficient in complete closure of mid line diastema in less duration of time. Key words:Midline diastema, Ne2Fe14B magnets, rare earth magnets, space closure. PMID:27034757
Ehmler, Hartmut; Köppen, Matthias
2007-10-01
The impedance spectrum test was employed for detection of short circuits within Wendelstein 7-X (W7-X) superconducting magnetic field coils. This test is based on measuring the complex impedance over several decades of frequency. The results are compared to predictions of appropriate electrical equivalent circuits of coils in different production states or during cold test. When the equivalent circuit is not too complicated the impedance can be represented by an analytic function. A more detailed analysis is performed with a network simulation code. The overall agreement of measured and calculated or simulated spectra is good. Two types of short circuits which appeared are presented and analyzed. The detection limit of the method is discussed. It is concluded that combined high-voltage ac and low-voltage impedance spectrum tests are ideal means to rule out short circuits in the W7-X coils.
Development of the STPX Spheromak System
NASA Astrophysics Data System (ADS)
Williams, R. L.; Clark, J.; Weatherford, C. A.
2015-11-01
The progress made in starting up the STPX Spheromak system, which is now installed at the Florida A&M University, is reviewed. Experimental, computational and theoretical activities are underway. The control system for firing the magnetized coaxial plasma gun and for collecting data from the diagnostic probes, based on LabView, is being tested and adapted. Preliminary results of testing the installed magnetic field probes, Langmuir triple probes, cylindrical ion probes, and optical diagnostics will be discussed. Progress in modeling this spheromak using simulation codes, such as NIMROD, will be discussed. Progress in investigating the use of algebraic topology to describe this spheromak will be reported.
Bouligand, C.; Glen, J.M.G.; Blakely, R.J.
2009-01-01
We have revisited the problem of mapping depth to the Curie temperature isotherm from magnetic anomalies in an attempt to provide a measure of crustal temperatures in the western United States. Such methods are based on the estimation of the depth to the bottom of magnetic sources, which is assumed to correspond to the temperature at which rocks lose their spontaneous magnetization. In this study, we test and apply a method based on the spectral analysis of magnetic anomalies. Early spectral analysis methods assumed that crustal magnetization is a completely uncorrelated function of position. Our method incorporates a more realistic representation where magnetization has a fractal distribution defined by three independent parameters: the depths to the top and bottom of magnetic sources and a fractal parameter related to the geology. The predictions of this model are compatible with radial power spectra obtained from aeromagnetic data in the western United States. Model parameters are mapped by estimating their value within a sliding window swept over the study area. The method works well on synthetic data sets when one of the three parameters is specified in advance. The application of this method to western United States magnetic compilations, assuming a constant fractal parameter, allowed us to detect robust long-wavelength variations in the depth to the bottom of magnetic sources. Depending on the geologic and geophysical context, these features may result from variations in depth to the Curie temperature isotherm, depth to the mantle, depth to the base of volcanic rocks, or geologic settings that affect the value of the fractal parameter. Depth to the bottom of magnetic sources shows several features correlated with prominent heat flow anomalies. It also shows some features absent in the map of heat flow. Independent geophysical and geologic data sets are examined to determine their origin, thereby providing new insights on the thermal and geologic crustal structure of the western United States.
Testing the Accuracy of Data-driven MHD Simulations of Active Region Evolution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leake, James E.; Linton, Mark G.; Schuck, Peter W., E-mail: james.e.leake@nasa.gov
Models for the evolution of the solar coronal magnetic field are vital for understanding solar activity, yet the best measurements of the magnetic field lie at the photosphere, necessitating the development of coronal models which are “data-driven” at the photosphere. We present an investigation to determine the feasibility and accuracy of such methods. Our validation framework uses a simulation of active region (AR) formation, modeling the emergence of magnetic flux from the convection zone to the corona, as a ground-truth data set, to supply both the photospheric information and to perform the validation of the data-driven method. We focus ourmore » investigation on how the accuracy of the data-driven model depends on the temporal frequency of the driving data. The Helioseismic and Magnetic Imager on NASA’s Solar Dynamics Observatory produces full-disk vector magnetic field measurements at a 12-minute cadence. Using our framework we show that ARs that emerge over 25 hr can be modeled by the data-driving method with only ∼1% error in the free magnetic energy, assuming the photospheric information is specified every 12 minutes. However, for rapidly evolving features, under-sampling of the dynamics at this cadence leads to a strobe effect, generating large electric currents and incorrect coronal morphology and energies. We derive a sampling condition for the driving cadence based on the evolution of these small-scale features, and show that higher-cadence driving can lead to acceptable errors. Future work will investigate the source of errors associated with deriving plasma variables from the photospheric magnetograms as well as other sources of errors, such as reduced resolution, instrument bias, and noise.« less
Hall Thruster Thermal Modeling and Test Data Correlation
NASA Technical Reports Server (NTRS)
Myers, James; Kamhawi, Hani; Yim, John; Clayman, Lauren
2016-01-01
The life of Hall Effect thrusters are primarily limited by plasma erosion and thermal related failures. NASA Glenn Research Center (GRC) in cooperation with the Jet Propulsion Laboratory (JPL) have recently completed development of a Hall thruster with specific emphasis to mitigate these limitations. Extending the operational life of Hall thursters makes them more suitable for some of NASA's longer duration interplanetary missions. This paper documents the thermal model development, refinement and correlation of results with thruster test data. Correlation was achieved by minimizing uncertainties in model input and recognizing the relevant parameters for effective model tuning. Throughout the thruster design phase the model was used to evaluate design options and systematically reduce component temperatures. Hall thrusters are inherently complex assemblies of high temperature components relying on internal conduction and external radiation for heat dispersion and rejection. System solutions are necessary in most cases to fully assess the benefits and/or consequences of any potential design change. Thermal model correlation is critical since thruster operational parameters can push some components/materials beyond their temperature limits. This thruster incorporates a state-of-the-art magnetic shielding system to reduce plasma erosion and to a lesser extend power/heat deposition. Additionally a comprehensive thermal design strategy was employed to reduce temperatures of critical thruster components (primarily the magnet coils and the discharge channel). Long term wear testing is currently underway to assess the effectiveness of these systems and consequently thruster longevity.
Circular swimming in mice after exposure to a high magnetic field.
Houpt, Thomas A; Houpt, Charles E
2010-06-16
There is increasing evidence that exposure to high magnetic fields of 4T and above perturbs the vestibular system of rodents and humans. Performance in a swim test is a sensitive test of vestibular function. In order to determine the effect of magnet field exposure on swimming in mice, mice were exposed for 30 min within a 14.1T superconducting magnet and then tested at different times after exposure in a 2-min swim test. As previously observed in open field tests, mice swam in tight counter-clockwise circles when tested immediately after magnet exposure. The counter-clockwise orientation persisted throughout the 2-min swim test. The tendency to circle was transient, because no significant circling was observed when mice were tested at 3 min or later after magnet exposure. However, mice did show a decrease in total distance swum when tested between 3 and 40 min after magnet exposure. The decrease in swimming distance was accompanied by a pronounced postural change involving a counter-clockwise twist of the pelvis and hindlimbs that was particularly severe in the first 15s of the swim test. Finally, no persistent difference from sham-exposed mice was seen in the swimming of magnet-exposed mice when tested 60 min, 24h, or 96 h after magnet exposure. This suggests that there is no long-lasting effect of magnet exposure on the ability of mice to orient or swim. The transient deficits in swimming and posture seen shortly after magnet exposure are consistent with an acute perturbation of the vestibular system by the high magnetic field. (c) 2010 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Tripp, John S.; Daniels, Taumi S.
1990-01-01
The NASA Langley 6 inch magnetic suspension and balance system (MSBS) requires an independently controlled bidirectional DC power source for each of six positioning electromagnets. These electromagnets provide five-degree-of-freedom control over a suspended aerodynamic test model. Existing power equipment, which employs resistance coupled thyratron controlled rectifiers as well as AC to DC motor generator converters, is obsolete, inefficient, and unreliable. A replacement six phase bidirectional controlled bridge rectifier is proposed, which employs power MOSFET switches sequenced by hybrid analog/digital circuits. Full load efficiency is 80 percent compared to 25 percent for the resistance coupled thyratron system. Current feedback provides high control linearity, adjustable current limiting, and current overload protection. A quenching circuit suppresses inductive voltage impulses. It is shown that 20 kHz interference from positioning magnet power into MSBS electromagnetic model position sensors results predominantly from capacitively coupled electric fields. Hence, proper shielding and grounding techniques are necessary. Inductively coupled magnetic interference is negligible.
A solid-state controllable power supply for a magnetic suspension wind tunnel
NASA Technical Reports Server (NTRS)
Daniels, Taumi S.; Tripp, John S.
1991-01-01
The NASA Langley 6-inch Magnetic Suspension and Balance System (6-in. MSBS) requires an independently controlled bidirectional dc power source for each of six positioning electromagnets. These electromagnets provide five-degree-of-freedom control over a suspended aerodynamic test model. Existing power equipment, which employs resistance-coupled thyratron-controlled rectifiers as well as ac to dc motor-generator converters, is obsolete, inefficient, and unreliable. A replacement six-phase bidirectional controlled bridge rectifier is proposed, which employs power MOSFET switches sequenced by hybrid analog/digital circuits. Full-load efficiency is 80 percent compared with 25 percent for the resistance-coupled thyratron system. Current feedback provides high control linearity, adjustable current limiting, and current overload protection. A quenching circuit suppresses inductive voltage impulses. It is shown that 20-kHz interference from positioning magnet power into MSBS electromagnetic model position sensors results predominantly from capacitively coupled electric fields. Hence, proper shielding and grounding techniques are necessary. Inductively coupled magnetic interference is negligible.
High time resolution observations of the drivers of Forbush decreases
NASA Astrophysics Data System (ADS)
Jordan, A. P.; Spence, H. E.; Blake, J. B.; Mulligan, T. L.; Shaul, D. N.
2008-12-01
The drivers of Forbush decreases in galactic cosmic ray (GCR) fluxes are thought to be magnetic turbulence in the sheath of an interplanetary coronal mass ejection (ICME) and the closed magnetic field lines in the ICME itself. This model, however, is the result of studies utilizing hourly or longer time averaging. Such averaging can smooth over important correlations between variabilities in the GCR flux and those in the interplanetary medium. To test the validity of the current model of Forbush decreases, we analyze a number of Forbush decreases using high time resolution GCR data from the High Sensitivity Telescope (HIST) on Polar and the Spectrometer for INTEGRAL (SPI). We seek causal correlations between the onset of the decrease and structures in the solar wind plasma and interplanetary magnetic field, as measured concurrently with ACE and/or Wind. We find evidence that planar magnetic structures in the sheath preceding the ICME may be a factor in driving the decrease in at least one event.
Recent Advances in Simulation of Eddy Current Testing of Tubes and Experimental Validations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reboud, C.; Premel, D.; Lesselier, D.
2007-03-21
Eddy current testing (ECT) is widely used in iron and steel industry for the inspection of tubes during manufacturing. A collaboration between CEA and the Vallourec Research Center led to the development of new numerical functionalities dedicated to the simulation of ECT of non-magnetic tubes by external probes. The achievement of experimental validations led us to the integration of these models into the CIVA platform. Modeling approach and validation results are discussed here. A new numerical scheme is also proposed in order to improve the accuracy of the model.
Recent Advances in Simulation of Eddy Current Testing of Tubes and Experimental Validations
NASA Astrophysics Data System (ADS)
Reboud, C.; Prémel, D.; Lesselier, D.; Bisiaux, B.
2007-03-01
Eddy current testing (ECT) is widely used in iron and steel industry for the inspection of tubes during manufacturing. A collaboration between CEA and the Vallourec Research Center led to the development of new numerical functionalities dedicated to the simulation of ECT of non-magnetic tubes by external probes. The achievement of experimental validations led us to the integration of these models into the CIVA platform. Modeling approach and validation results are discussed here. A new numerical scheme is also proposed in order to improve the accuracy of the model.
Design and analysis of an unconventional permanent magnet linear machine for energy harvesting
NASA Astrophysics Data System (ADS)
Zeng, Peng
This Ph.D. dissertation proposes an unconventional high power density linear electromagnetic kinetic energy harvester, and a high-performance two-stage interface power electronics to maintain maximum power abstraction from the energy source and charge the Li-ion battery load with constant current. The proposed machine architecture is composed of a double-sided flat type silicon steel stator with winding slots, a permanent magnet mover, coil windings, a linear motion guide and an adjustable spring bearing. The unconventional design of the machine is that NdFeB magnet bars in the mover are placed with magnetic fields in horizontal direction instead of vertical direction and the same magnetic poles are facing each other. The derived magnetic equivalent circuit model proves the average air-gap flux density of the novel topology is as high as 0.73 T with 17.7% improvement over that of the conventional topology at the given geometric dimensions of the proof-of-concept machine. Subsequently, the improved output voltage and power are achieved. The dynamic model of the linear generator is also developed, and the analytical equations of output maximum power are derived for the case of driving vibration with amplitude that is equal, smaller and larger than the relative displacement between the mover and the stator of the machine respectively. Furthermore, the finite element analysis (FEA) model has been simulated to prove the derived analytical results and the improved power generation capability. Also, an optimization framework is explored to extend to the multi-Degree-of-Freedom (n-DOF) vibration based linear energy harvesting devices. Moreover, a boost-buck cascaded switch mode converter with current controller is designed to extract the maximum power from the harvester and charge the Li-ion battery with trickle current. Meanwhile, a maximum power point tracking (MPPT) algorithm is proposed and optimized for low frequency driving vibrations. Finally, a proof-of-concept unconventional permanent magnet (PM) linear generator is prototyped and tested to verify the simulation results of the FEA model. For the coil windings of 33, 66 and 165 turns, the output power of the machine is tested to have the output power of 65.6 mW, 189.1 mW, and 497.7 mW respectively with the maximum power density of 2.486 mW/cm3.
Core flow inversion tested with numerical dynamo models
NASA Astrophysics Data System (ADS)
Rau, Steffen; Christensen, Ulrich; Jackson, Andrew; Wicht, Johannes
2000-05-01
We test inversion methods of geomagnetic secular variation data for the pattern of fluid flow near the surface of the core with synthetic data. These are taken from self-consistent 3-D models of convection-driven magnetohydrodynamic dynamos in rotating spherical shells, which generate dipole-dominated magnetic fields with an Earth-like morphology. We find that the frozen-flux approximation, which is fundamental to all inversion schemes, is satisfied to a fair degree in the models. In order to alleviate the non-uniqueness of the inversion, usually a priori conditions are imposed on the flow; for example, it is required to be purely toroidal or geostrophic. Either condition is nearly satisfied by our model flows near the outer surface. However, most of the surface velocity field lies in the nullspace of the inversion problem. Nonetheless, the a priori constraints reduce the nullspace, and by inverting the magnetic data with either one of them we recover a significant part of the flow. With the geostrophic condition the correlation coefficient between the inverted and the true velocity field can reach values of up to 0.65, depending on the choice of the damping parameter. The correlation is significant at the 95 per cent level for most spherical harmonic degrees up to l=26. However, it degrades substantially, even at long wavelengths, when we truncate the magnetic data sets to l <= 14, that is, to the resolution of core-field models. In some of the latter inversions prominent zonal currents, similar to those seen in core-flow models derived from geomagnetic data, occur in the equatorial region. However, the true flow does not contain this flow component. The results suggest that some meaningful information on the core-flow pattern can be retrieved from secular variation data, but also that the limited resolution of the magnetic core field could produce serious artefacts.
NASA Astrophysics Data System (ADS)
Karimi, Kurosh; Shirzaditabar, Farzad
2017-08-01
The analytic signal of magnitude of the magnetic field’s components and its first derivatives have been employed for locating magnetic structures, which can be considered as point-dipoles or line of dipoles. Although similar methods have been used for locating such magnetic anomalies, they cannot estimate the positions of anomalies in noisy states with an acceptable accuracy. The methods are also inexact in determining the depth of deep anomalies. In noisy cases and in places other than poles, the maximum points of the magnitude of the magnetic vector components and Az are not located exactly above 3D bodies. Consequently, the horizontal location estimates of bodies are accompanied by errors. Here, the previous methods are altered and generalized to locate deeper models in the presence of noise even at lower magnetic latitudes. In addition, a statistical technique is presented for working in noisy areas and a new method, which is resistant to noise by using a ‘depths mean’ method, is made. Reduction to the pole transformation is also used to find the most possible actual horizontal body location. Deep models are also well estimated. The method is tested on real magnetic data over an urban gas pipeline in the vicinity of Kermanshah province, Iran. The estimated location of the pipeline is accurate in accordance with the result of the half-width method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Francis
A team led by GE Global Research developed new magnetic refrigerant materials needed to enhance the commercialization potential of residential appliances such as refrigerators and air conditioners based on the magnetocaloric effect (a nonvapor compression cooling cycle). The new magnetic refrigerant materials have potentially better performance at lower cost than existing materials, increasing technology readiness level. The performance target of the new magnetocaloric material was to reduce the magnetic field needed to achieve 4 °C adiabatic temperature change from 1.5 Tesla to 0.75 Tesla. Such a reduction in field minimizes the cost of the magnet assembly needed for a magneticmore » refrigerator. Such a reduction in magnet assembly cost is crucial to achieving commercialization of magnetic refrigerator technology. This project was organized as an iterative alloy development effort with a parallel material modeling task being performed at George Washington University. Four families of novel magnetocaloric alloys were identified, screened, and assessed for their performance potential in a magnetic refrigeration cycle. Compositions from three of the alloy families were manufactured into regenerator components. At the beginning of the project a previously studied magnetocaloric alloy was selected for manufacturing into the first regenerator component. Each of the regenerators was tested in magnetic refrigerator prototypes at a subcontractor at at GE Appliances. The property targets for operating temperature range, operating temperature control, magnetic field sensitivity, and corrosion resistance were met. The targets for adiabatic temperature change and thermal hysteresis were not met. The high thermal hysteresis also prevented the regenerator components from displaying measurable cooling power when tested in prototype magnetic refrigerators. Magnetic refrigerant alloy compositions that were predicted to have low hysteresis were not attainable with conventional alloy processing methods. Preliminary experiments with rapid solidification methods showed a path towards attaining low hysteresis compositions should this alloy development effort be continued.« less
Development and evaluation of unmanned aerial vehicle (UAV) magnetometry systems
NASA Astrophysics Data System (ADS)
Parvar, Kiyavash
In this thesis, the procedure of conducting magnetic surveys from a UAV platform is investigated. In the process of evaluating UAVs for such surveys, magnetic sensors capable of operating on a UAV platform were tested using a terrestrial survey, as well as on a UAV-platform. Results were then compared to a model of the area generated using a proton precession magnetometer. Magnetic signature of the UAVs are discussed and impact values are calculated. For a better understanding of the magnetic fields around UAVs some micro-surveys were conducted with the help of a fluxgate magnetometer around two UAVs. Results of such surveys were used to determine a location to mount the magnetometer during the survey. A test survey over a known anomaly (a visible chromite outcrop in Oman) is conducted in order to determine the feasibility of using UAV-based magnetometry for chromite exploration. Observations were taken at two different elevations in order to generate a 3-D model of the magnetic field. Later, after applying upward continuation filters and comparing the calculated results to the real values, the reliability and uncertainty levels of such filters were investigated. Results show that magnetometery on UAV platforms is feasible. Unwanted signals can be noticeable and produce fake anomalies by the end of each line because of the swinging effect of the suspended magnetometer below the UAV. This should be reduced by hardware and software modifications i.e. applying non-linear filters and mounting the sensor on a rigid rod. Also, it was derived that the error level associated with upward continuation filters exceeds 45% and thus, using such filters instead of actual observations is not suggested in gradiometry. Moreover, 3-D magnetic gradient surveys can be beneficial for future inversion problems.
NASA Astrophysics Data System (ADS)
Gibson, S. E.; Dalmasse, K.; Fan, Y.; Fineschi, S.; MacKay, D.; Rempel, M.; White, S. M.
2015-12-01
Understanding the physical state of the solar corona is key to deciphering the origins of space weather as well as to realistically representing the environment to be navigated by missions such as Solar Orbiter and Solar Probe Plus. However, inverting solar coronal observations to reconstruct this physical state -- and in particular the three-dimensional coronal magnetic field - is complicated by limited lines of sight and by projection effects. On the other hand, the sensitivity of multiwavelength observations to different physical mechanisms implies a potential for simultaneous probing of different parts of the coronal plasma. In order to study this complementarity, and to ultimately establish an optimal set of observations for constraining the three-dimensional coronal magnetic field, we are developing a suite of representative simulations to act as diagnostic test beds. We will present three such test beds: a coronal active region, a quiescent prominence, and a global corona. Each fully define the physical state of density, temperature, and vector magnetic field in three dimensions throughout the simulation domain. From these test beds, and using the FORWARD SolarSoft IDL codes, we will create a broad range of synthetic data. Radio observables will include intensity and circular polarization (including gyroresonance effects) and Faraday rotation for a range of frequencies. Infrared and visible forbidden line diagnostics of Zeeman and saturated Hanle effects will yield full Stokes vector (I, Q, U, V) synthetic data, and UV permitted line Hanle diagnostics will yield intensity and linear polarization. In addition, we will synthesize UV and SXR imager data, UV/EUV spectrometric data, and white light brightness and polarized brightness. All of these synthetic data, along with the "ground truth" physical state of the simulations from which they are derived, will be made available to the community for the purpose of testing coronal inversion techniques.
Dynamo Enhancement and Mode Selection Triggered by High Magnetic Permeability.
Kreuzahler, S; Ponty, Y; Plihon, N; Homann, H; Grauer, R
2017-12-08
We present results from consistent dynamo simulations, where the electrically conducting and incompressible flow inside a cylinder vessel is forced by moving impellers numerically implemented by a penalization method. The numerical scheme models jumps of magnetic permeability for the solid impellers, resembling various configurations tested experimentally in the von Kármán sodium experiment. The most striking experimental observations are reproduced in our set of simulations. In particular, we report on the existence of a time-averaged axisymmetric dynamo mode, self-consistently generated when the magnetic permeability of the impellers exceeds a threshold. We describe a possible scenario involving both the turbulent flow in the vicinity of the impellers and the high magnetic permeability of the impellers.
Potential benefits of magnetic suspension and balance systems
NASA Technical Reports Server (NTRS)
Lawing, Pierce L.; Dress, David A.; Kilgore, Robert A.
1987-01-01
The potential of Magnetic Suspension and Balance Systems (MSBS) to improve conventional wind tunnel testing techniques is discussed. Topics include: elimination of model geometry distortion and support interference to improve the measurement accuracy of aerodynamic coefficients; removal of testing restrictions due to supports; improved dynamic stability data; and stores separation testing. Substantial increases in wind tunnel productivity are anticipated due to the coalescence of these improvements. Specific improvements in testing methods for missiles, helicopters, fighter aircraft, twin fuselage transports and bombers, state separation, water tunnels, and automobiles are also forecast. In a more speculative vein, new wind tunnel test techniques are envisioned as a result of applying MSBS, including free-flight computer trajectories in the test section, pilot-in-the-loop and designer-in-the-loop testing, shipboard missile launch simulation, and optimization of hybrid hypersonic configurations. Also addressed are potential applications of MSBS to such diverse technologies as medical research and practice, industrial robotics, space weaponry, and ore processing in space.
Cryogenic Magnetic Bearing Test Facility (CMBTF)
NASA Technical Reports Server (NTRS)
1992-01-01
The Cryogenic Magnetic Bearing Test Facility (CMBTF) was designed and built to evaluate compact, lightweight magnetic bearings for use in the SSME's (space shuttle main engine) liquid oxygen and liquid hydrogen turbopumps. State of the art and tradeoff studies were conducted which indicated that a hybrid permanent magnet bias homopolar magnetic bearing design would be smaller, lighter, and much more efficient than conventional industrial bearings. A test bearing of this type was designed for the test rig for use at both room temperature and cryogenic temperature (-320 F). The bearing was fabricated from state-of-the-art materials and incorporated into the CMBTF. Testing at room temperature was accomplished at Avcon's facility. These preliminary tests indicated that this magnetic bearing is a feasible alternative to older bearing technologies. Analyses showed that the hybrid magnetic bearing is one-third the weight, considerably smaller, and uses less power than previous generations of magnetic bearings.
Strong fields and neutral particle magnetic moment dynamics
NASA Astrophysics Data System (ADS)
Formanek, Martin; Evans, Stefan; Rafelski, Johann; Steinmetz, Andrew; Yang, Cheng-Tao
2018-07-01
Interaction of magnetic moment of point particles with external electromagnetic fields experiences unresolved theoretical and experimental discrepancies. In this work we point out several issues within relativistic quantum mechanics and QED and we describe effects related to a new covariant classical model of magnetic moment dynamics. Using this framework we explore the invariant acceleration experienced by neutral particles coupled to an external plane wave field through the magnetic moment: we study the case of ultrarelativistic Dirac neutrinos with magnetic moment in the range of 10‑11 to 10‑20 μ B; and we address the case of slowly moving neutrons. We explore how critical accelerations for neutrinos can be experimentally achieved in laser pulse interactions. The radiation of accelerated neutrinos can serve as an important test distinguishing between Majorana and Dirac nature of neutrinos.
Magnetic analysis of the Nb$$_3$$Sn low-beta quadrupole for the high luminosity LHC
Bermudez, Susana Izquierdo; Ambrosio, G.; Chlachidze, G.; ...
2017-01-10
As part of the Large Hadron Collider Luminosity upgrade (HiLumi-LHC) program, the US LARP collaboration and CERN are working together to design and build 150 mm aperture Nb 3Sn quadrupoles for the LHC interaction regions. A first series of 1.5 m long coils were fabricated, assembled and tested in the first short model. This paper presents the magnetic analysis, comparing magnetic field measurements with the expectations and the field quality requirements. The analysis is focused on the geometrical harmonics, iron saturation effect and cold-warm correlation. Three dimensional effects such as the variability of the field harmonics along the magnet axismore » and the contribution of the coil ends are also discussed. Furthemore, we present the influence of the conductor magnetization and the dynamic effects.« less
Computation of Relative Magnetic Helicity in Spherical Coordinates
NASA Astrophysics Data System (ADS)
Moraitis, Kostas; Pariat, Étienne; Savcheva, Antonia; Valori, Gherardo
2018-06-01
Magnetic helicity is a quantity of great importance in solar studies because it is conserved in ideal magnetohydrodynamics. While many methods for computing magnetic helicity in Cartesian finite volumes exist, in spherical coordinates, the natural coordinate system for solar applications, helicity is only treated approximately. We present here a method for properly computing the relative magnetic helicity in spherical geometry. The volumes considered are finite, of shell or wedge shape, and the three-dimensional magnetic field is considered to be fully known throughout the studied domain. Testing of the method with well-known, semi-analytic, force-free magnetic-field models reveals that it has excellent accuracy. Further application to a set of nonlinear force-free reconstructions of the magnetic field of solar active regions and comparison with an approximate method used in the past indicates that the proposed method can be significantly more accurate, thus making our method a promising tool in helicity studies that employ spherical geometry. Additionally, we determine and discuss the applicability range of the approximate method.
Deep Learning Based Solar Flare Forecasting Model. I. Results for Line-of-sight Magnetograms
NASA Astrophysics Data System (ADS)
Huang, Xin; Wang, Huaning; Xu, Long; Liu, Jinfu; Li, Rong; Dai, Xinghua
2018-03-01
Solar flares originate from the release of the energy stored in the magnetic field of solar active regions, the triggering mechanism for these flares, however, remains unknown. For this reason, the conventional solar flare forecast is essentially based on the statistic relationship between solar flares and measures extracted from observational data. In the current work, the deep learning method is applied to set up the solar flare forecasting model, in which forecasting patterns can be learned from line-of-sight magnetograms of solar active regions. In order to obtain a large amount of observational data to train the forecasting model and test its performance, a data set is created from line-of-sight magnetogarms of active regions observed by SOHO/MDI and SDO/HMI from 1996 April to 2015 October and corresponding soft X-ray solar flares observed by GOES. The testing results of the forecasting model indicate that (1) the forecasting patterns can be automatically reached with the MDI data and they can also be applied to the HMI data; furthermore, these forecasting patterns are robust to the noise in the observational data; (2) the performance of the deep learning forecasting model is not sensitive to the given forecasting periods (6, 12, 24, or 48 hr); (3) the performance of the proposed forecasting model is comparable to that of the state-of-the-art flare forecasting models, even if the duration of the total magnetograms continuously spans 19.5 years. Case analyses demonstrate that the deep learning based solar flare forecasting model pays attention to areas with the magnetic polarity-inversion line or the strong magnetic field in magnetograms of active regions.
Kallehauge, Jesper F; Sourbron, Steven; Irving, Benjamin; Tanderup, Kari; Schnabel, Julia A; Chappell, Michael A
2017-06-01
Fitting tracer kinetic models using linear methods is much faster than using their nonlinear counterparts, although this comes often at the expense of reduced accuracy and precision. The aim of this study was to derive and compare the performance of the linear compartmental tissue uptake (CTU) model with its nonlinear version with respect to their percentage error and precision. The linear and nonlinear CTU models were initially compared using simulations with varying noise and temporal sampling. Subsequently, the clinical applicability of the linear model was demonstrated on 14 patients with locally advanced cervical cancer examined with dynamic contrast-enhanced magnetic resonance imaging. Simulations revealed equal percentage error and precision when noise was within clinical achievable ranges (contrast-to-noise ratio >10). The linear method was significantly faster than the nonlinear method, with a minimum speedup of around 230 across all tested sampling rates. Clinical analysis revealed that parameters estimated using the linear and nonlinear CTU model were highly correlated (ρ ≥ 0.95). The linear CTU model is computationally more efficient and more stable against temporal downsampling, whereas the nonlinear method is more robust to variations in noise. The two methods may be used interchangeably within clinical achievable ranges of temporal sampling and noise. Magn Reson Med 77:2414-2423, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.
Design and Analysis of Embedded I&C for a Fully Submerged Magnetically Suspended Impeller Pump
Melin, Alexander M.; Kisner, Roger A.
2018-04-03
Improving nuclear reactor power system designs and fuel-processing technologies for safer and more efficient operation requires the development of new component designs. In particular, many of the advanced reactor designs such as the molten salt reactors and high-temperature gas-cooled reactors have operating environments beyond the capability of most currently available commercial components. To address this gap, new cross-cutting technologies need to be developed that will enable design, fabrication, and reliable operation of new classes of reactor components. The Advanced Sensor Initiative of the Nuclear Energy Enabling Technologies initiative is investigating advanced sensor and control designs that are capable of operatingmore » in these extreme environments. Under this initiative, Oak Ridge National Laboratory (ORNL) has been developing embedded instrumentation and control (I&C) for extreme environments. To develop, test, and validate these new sensing and control techniques, ORNL is building a pump test bed that utilizes submerged magnetic bearings to levitate the shaft. The eventual goal is to apply these techniques to a high-temperature (700°C) canned rotor pump that utilizes active magnetic bearings to eliminate the need for mechanical bearings and seals. The technologies will benefit the Next Generation Power Plant, Advanced Reactor Concepts, and Small Modular Reactor programs. In this paper, we will detail the design and analysis of the embedded I&C test bed with submerged magnetic bearings, focusing on the interplay between the different major systems. Then we will analyze the forces on the shaft and their role in the magnetic bearing design. Next, we will develop the radial and thrust bearing geometries needed to meet the operational requirements of the test bed. In conclusion, we will present some initial system identification results to validate the theoretical models of the test bed dynamics.« less
Design and Analysis of Embedded I&C for a Fully Submerged Magnetically Suspended Impeller Pump
DOE Office of Scientific and Technical Information (OSTI.GOV)
Melin, Alexander M.; Kisner, Roger A.
Improving nuclear reactor power system designs and fuel-processing technologies for safer and more efficient operation requires the development of new component designs. In particular, many of the advanced reactor designs such as the molten salt reactors and high-temperature gas-cooled reactors have operating environments beyond the capability of most currently available commercial components. To address this gap, new cross-cutting technologies need to be developed that will enable design, fabrication, and reliable operation of new classes of reactor components. The Advanced Sensor Initiative of the Nuclear Energy Enabling Technologies initiative is investigating advanced sensor and control designs that are capable of operatingmore » in these extreme environments. Under this initiative, Oak Ridge National Laboratory (ORNL) has been developing embedded instrumentation and control (I&C) for extreme environments. To develop, test, and validate these new sensing and control techniques, ORNL is building a pump test bed that utilizes submerged magnetic bearings to levitate the shaft. The eventual goal is to apply these techniques to a high-temperature (700°C) canned rotor pump that utilizes active magnetic bearings to eliminate the need for mechanical bearings and seals. The technologies will benefit the Next Generation Power Plant, Advanced Reactor Concepts, and Small Modular Reactor programs. In this paper, we will detail the design and analysis of the embedded I&C test bed with submerged magnetic bearings, focusing on the interplay between the different major systems. Then we will analyze the forces on the shaft and their role in the magnetic bearing design. Next, we will develop the radial and thrust bearing geometries needed to meet the operational requirements of the test bed. In conclusion, we will present some initial system identification results to validate the theoretical models of the test bed dynamics.« less
NASA Astrophysics Data System (ADS)
Mierau, A.; Schnizer, P.; Fischer, E.; Macavei, J.; Wilfert, S.; Koch, S.; Weiland, T.; Kurnishov, R.; Shcherbakov, P.
SIS100, the world second large scale heavy ion synchrotron using fast ramped superconducting magnets, is to be built at FAIR. Its high current operation of intermediate charge state ions requires stable vacuum pressures < 10-12 mbar under dynamic machine conditions which are only achievable when the whole beam pipe is used as an huge cryopump. In order to find technological feasible design solutions, three opposite requirements have to be met: minimum magnetic field distortion caused by AC losses, mechanical stability and low and stable wall temperatures of the beam pipe. We present the possible design versions of the beam pipe for the high current curved dipole. The pros and cons of these proposed designs were studied using simplified analytical models, FEM calculations and tests on models.
Today`s research development on the application of the superconductivity transport system in Japan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kyotani, Y.
1995-04-01
At the Miyazaki test track today, the new test vehicle, MLU002N, is under test run to obtain necessary data for Yamanashi test track where the construction is underway, the test vehicle has been ordered and the first tunnel was completed in December 1993. Superconducting magnetohydrodynamic drive ship, MHDS, `Yamato 1` has completed its experiment in 1992 and it is now under preparation to exhibit to the public in 1994. Furthermore, to promote the research development of MHDS, the detailed discussion is underway on the magnetohydrodynamic drive equipment as well as the research on the future scheme. Neither an automobile normore » railway but a new transport system called EQUOS LIM CAR(ELC) has been proposed. By using the rotating magnetic field, it will levitate on the aluminum like reaction plate. On the normal road, it will run by rolling the wheels like an electric car but on the highway, it will levitate on the guideway resulting to less noise, less vibration and pollution free drive. To understand the concept of the ELC, the model was built and experimented by using permanent magnet. The same model was donated to the MUSEUM OF SCIENCE AND INDUSTRY in Chicago and was displayed to the public. Today, the trial superconducting magnet has been made and the research development of the subsystem is underway. Research development of superconducting elevator, equipment for the launching of spaceship, tube transportation system and others are in progress for the superconducting applied transportation system.« less
Magnetic quench antenna for MQXF quadrupoles
Marchevsky, Maxim; Sabbi, GianLuca; Prestemon, Soren; ...
2016-12-21
High-field MQXF-series quadrupoles are presently under development by LARP and CERN for the upcoming LHC luminosity upgrade. Quench training and protection studies on MQXF prototypes require a capability to accurately localize quenches and measure their propagation velocity in the magnet coils. The voltage tap technique commonly used for such purposes is not a convenient option for the 4.2-m-long MQXF-A prototype, nor can it be implemented in the production model. We have developed and tested a modular inductive magnetic antenna for quench localization. The base element of our quench antenna is a round-shaped printed circuit board containing two orthogonal pairs ofmore » flat coils integrated with low-noise preamplifiers. The elements are aligned axially and spaced equidistantly in 8-element sections using a supporting rod structure. The sections are installed in the warm bore of the magnet, and can be stacked together to adapt for the magnet length. We discuss the design, operational characteristics and preliminary qualification of the antenna. Lastly, axial quench localization capability with an accuracy of better than 2 cm has been validated during training test campaign of the MQXF-S1 quadrupole.« less
Magnetic quench antenna for MQXF quadrupoles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marchevsky, Maxim; Sabbi, GianLuca; Prestemon, Soren
High-field MQXF-series quadrupoles are presently under development by LARP and CERN for the upcoming LHC luminosity upgrade. Quench training and protection studies on MQXF prototypes require a capability to accurately localize quenches and measure their propagation velocity in the magnet coils. The voltage tap technique commonly used for such purposes is not a convenient option for the 4.2-m-long MQXF-A prototype, nor can it be implemented in the production model. We have developed and tested a modular inductive magnetic antenna for quench localization. The base element of our quench antenna is a round-shaped printed circuit board containing two orthogonal pairs ofmore » flat coils integrated with low-noise preamplifiers. The elements are aligned axially and spaced equidistantly in 8-element sections using a supporting rod structure. The sections are installed in the warm bore of the magnet, and can be stacked together to adapt for the magnet length. We discuss the design, operational characteristics and preliminary qualification of the antenna. Lastly, axial quench localization capability with an accuracy of better than 2 cm has been validated during training test campaign of the MQXF-S1 quadrupole.« less
Benchmark testing of DIII-D neutral beam modeling with water flow calorimetry
Rauch, J. M.; Crowley, B. J.; Scoville, J. T.; ...
2016-06-02
Power loading on beamline components in the DIII-D neutral beam system is measured in this paper using water flow calorimetry. The results are used to benchmark beam transport models. Finally, anomalously high heat loads in the magnet region are investigated and a speculative hypothesis as to their origin is presented.
Magnetic Launch Assist System Demonstration Test
NASA Technical Reports Server (NTRS)
2001-01-01
Engineers at the Marshall Space Flight Center (MSFC) have been testing Magnetic Launch Assist Systems, formerly known as Magnetic Levitation (MagLev) technologies. To launch spacecraft into orbit, a Magnetic Launch Assist system would use magnetic fields to levitate and accelerate a vehicle along a track at a very high speed. Similar to high-speed trains and roller coasters that use high-strength magnets to lift and propel a vehicle a couple of inches above a guideway, the launch-assist system would electromagnetically drive a space vehicle along the track. A full-scale, operational track would be about 1.5-miles long and capable of accelerating a vehicle to 600 mph in 9.5 seconds. This photograph shows a subscale model of an airplane running on the experimental track at MSFC during the demonstration test. This track is an advanced linear induction motor. Induction motors are common in fans, power drills, and sewing machines. Instead of spinning in a circular motion to turn a shaft or gears, a linear induction motor produces thrust in a straight line. Mounted on concrete pedestals, the track is 100-feet long, about 2-feet wide, and about 1.5- feet high. The major advantages of launch assist for NASA launch vehicles is that it reduces the weight of the take-off, the landing gear, the wing size, and less propellant resulting in significant cost savings. The US Navy and the British MOD (Ministry of Defense) are planning to use magnetic launch assist for their next generation aircraft carriers as the aircraft launch system. The US Army is considering using this technology for launching target drones for anti-aircraft training.
2001-03-01
This image shows a 1/9 subscale model vehicle clearing the Magnetic Launch Assist System, formerly referred to as the Magnetic Levitation (MagLev), test track during a demonstration test conducted at the Marshall Space Flight Center (MSFC). Engineers at MSFC have developed and tested Magnetic Launch Assist technologies. To launch spacecraft into orbit, a Magnetic Launch Assist System would use magnetic fields to levitate and accelerate a vehicle along a track at very high speeds. Similar to high-speed trains and roller coasters that use high-strength magnets to lift and propel a vehicle a couple of inches above a guideway, a launch-assist system would electromagnetically drive a space vehicle along the track. A full-scale, operational track would be about 1.5-miles long and capable of accelerating a vehicle to 600 mph in 9.5 seconds. This track is an advanced linear induction motor. Induction motors are common in fans, power drills, and sewing machines. Instead of spinning in a circular motion to turn a shaft or gears, a linear induction motor produces thrust in a straight line. Mounted on concrete pedestals, the track is 100-feet long, about 2-feet wide and about 1.5-feet high. The major advantages of launch assist for NASA launch vehicles is that it reduces the weight of the take-off, the landing gear, the wing size, and less propellant resulting in significant cost savings. The US Navy and the British MOD (Ministry of Defense) are planning to use magnetic launch assist for their next generation aircraft carriers as the aircraft launch system. The US Army is considering using this technology for launching target drones for anti-aircraft training.
Net current control device. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fugate, D.; Cooper, J.H.
1998-11-01
Net currents generally result in elevated magnetic fields because the alternate paths are distant from the circuit conductors. Investigations have shown that one of the primary sources of power frequency magnetic fields in residential buildings is currents that return to their source via paths other than the neutral conductors. As part of EPRI`s Magnetic Field Shielding Project, ferromagnetic devices, called net current control (NCC) devices, were developed and tested for use in reducing net currents on electric power cables and the resulting magnetic fields. Applied to a residential service drop, an NCC device reduces net current by forcing current offmore » local non-utility ground paths, and back onto the neutral conductor. Circuit models and basic design equations for the NCC concept were developed, and proof-of-principles tests were carried out on an actual residence with cooperation from the local utility. After proving the basic concepts, three prototype NCC devices were built and tested on a simulated neighborhood power system. Additional prototypes were built for testing by interested EPRI utility members. Results have shown that the NCC prototypes installed on residential service drops reduce net currents to milliampere levels with compromising the safety of the ground system. Although the focus was on application to residential service cables, the NCC concept is applicable to single-phase and three-phase distribution systems as well.« less
NASA Astrophysics Data System (ADS)
Garcia, Xavier; Boerner, David; Pedersen, Laust B.
2003-09-01
We have developed a Marquardt-Levenberg inversion algorithm incorporating the effects of near-surface galvanic distortion into the electromagnetic (EM) response of a layered earth model. Different tests on synthetic model responses suggest that for the grounded source method, the magnetic distortion does not vanish for low frequencies. Including this effect is important, although to date it has been neglected. We have inverted 10 stations of controlled-source audio-magnetotellurics (CSAMT) data recorded near the Buchans Mine, Newfoundland, Canada. The Buchans Mine was one of the richest massive sulphide deposits in the world, and is situated in a highly resistive volcanogenic environment, substantially modified by thrust faulting. Preliminary work in the area demonstrated that the EM fields observed at adjacent stations show large differences due to the existence of mineralized fracture zones and variable overburden thickness. Our inversion results suggest a three-layered model that is appropriate for the Buchans Mine. The resistivity model correlates with the seismic reflection interpretation that documents the existence of two thrust packages. The distortion parameters obtained from the inversion concur with the synthetic studies that galvanic magnetic distortion is required to interpret the Buchans data since the magnetic component of the galvanic distortion does not vanish at low frequency.
NASA Astrophysics Data System (ADS)
Lishev, S.; Schiesko, L.; Wünderlich, D.; Fantz, U.
2017-08-01
The study provides results for the influence of the filter field topology on the plasma parameters in the RF prototype negative ion source for ITER NBI. A previously developed 2D fluid plasma model of the prototype source was extended towards accounting for the particles and energy losses along the magnetic field lines and the presence of a magnetic field in the driver which is the case at the BATMAN and ELISE test-beds. The effect of the magnetic field in the driver is shown for the magnetic field configuration of the prototype source (i.e. a magnetic field produced by an external magnet frame) by comparison of plasma parameters without and with the magnetic field in the driver and for different axial positions of the filter. Since the ELISE-like magnetic field (i.e. a magnetic field produced by a current flowing through the plasma grid) is a new feature planned to be installed at the BATMAN test-bed, its effect on the discharge structure was studied for different strengths of the magnetic field. The obtained results show for both configurations of the magnetic filter the same main features in the patterns of the plasma parameters in the expansion chamber: a strong axial drop of the electron temperature and the formation of a groove accompanied with accumulation of electrons in front of the plasma grid. The presence of a magnetic field in the driver has a local impact on the plasma parameters: the formation of a second groove of the electron temperature in the case of BATMAN (due to the reversed direction of the filter field in the driver) and a strong asymmetry of the electron density. Accounting for the additional losses in the third dimension suppresses the drifts across the magnetic field and, thus, the variations of the electron density in the expansion chamber are less pronounced.
Cluster electric current density measurements within a magnetic flux rope in the plasma sheet
NASA Technical Reports Server (NTRS)
Slavin, J. A.; Lepping, R. P.; Gjerloev, J.; Goldstein, M. L.; Fairfield, D. H.; Acuna, M. H.; Balogh, A.; Dunlop, M.; Kivelson, M. G.; Khurana, K.
2003-01-01
On August 22, 2001 all 4 Cluster spacecraft nearly simultaneously penetrated a magnetic flux rope in the tail. The flux rope encounter took place in the central plasma sheet, Beta(sub i) approx. 1-2, near the leading edge of a bursty bulk flow. The "time-of-flight" of the flux rope across the 4 spacecraft yielded V(sub x) approx. 700 km/s and a diameter of approx.1 R(sub e). The speed at which the flux rope moved over the spacecraft is in close agreement with the Cluster plasma measurements. The magnetic field profiles measured at each spacecraft were first modeled separately using the Lepping-Burlaga force-free flux rope model. The results indicated that the center of the flux rope passed northward (above) s/c 3, but southward (below) of s/c 1, 2 and 4. The peak electric currents along the central axis of the flux rope predicted by these single-s/c models were approx.15-19 nA/sq m. The 4-spacecraft Cluster magnetic field measurements provide a second means to determine the electric current density without any assumption regarding flux rope structure. The current profile determined using the curlometer technique was qualitatively similar to those determined by modeling the individual spacecraft magnetic field observations and yielded a peak current density of 17 nA/m2 near the central axis of the rope. However, the curlometer results also showed that the flux rope was not force-free with the component of the current density perpendicular to the magnetic field exceeding the parallel component over the forward half of the rope, perhaps due to the pressure gradients generated by the collision of the BBF with the inner magnetosphere. Hence, while the single-spacecraft models are very successful in fitting flux rope magnetic field and current variations, they do not provide a stringent test of the force-free condition.
Research Applications of Magnetic Resonance Spectroscopy (MRS) to Investigate Psychiatric Disorders
Dager, SR; Oskin, NM; Richards, TL; Posse, S
2009-01-01
Advances in magnetic resonance spectroscopy (MRS) methodology and related analytic strategies allow sophisticated testing of neurobiological models of disease pathology in psychiatric disorders. An overview of principles underlying MRS, methodological considerations and investigative approaches is presented. A review of recent research is presented that highlights innovative approaches applying MRS, in particular 1H MRS, to systematically investigate specific psychiatric disorders, including autism spectrum disorders, schizophrenia, panic disorder, major depression and bipolar disorder. PMID:19363431
Trevizol, Alisson Paulino; Shiozawa, Pedro; Cook, Ian A; Sato, Isa Albuquerque; Kaku, Caio Barbosa; Guimarães, Fernanda Bs; Sachdev, Perminder; Sarkhel, Sujit; Cordeiro, Quirino
2016-12-01
Transcranial magnetic stimulation (TMS) is a promising noninvasive brain stimulation intervention. Transcranial magnetic stimulation has been proposed for obsessive-compulsive disorder (OCD) with auspicious results. To assess the efficacy of TMS for OCD in randomized clinical trials (RCTs). Systematic review using MEDLINE and EMBASE from the first RCT available until March 11, 2016. The main outcome was the Hedges g for continuous scores for Yale-Brown Obsessive Compulsive Scale in a random-effects model. Heterogeneity was evaluated with the I and the χ test. Publication bias was evaluated using the Begg funnel plot. Metaregression was performed using the random-effects model modified by Knapp and Hartung. We included 15 RCTs (n = 483), most had small-to-modest sample sizes. Comparing active versus sham TMS, active stimulation was significantly superior for OCD symptoms (Hedges g = 0.45; 95% confidence interval, 0.2-0.71). The funnel plot showed that the risk of publication bias was low and between-study heterogeneity was low (I = 43%, P = 0.039 for the χ test). Metaregression showed no particular influence of any variable on the results. Transcranial magnetic stimulation active was superior to sham stimulation for the amelioration of OCD symptoms. Trials had moderate heterogeneity results, despite different protocols of stimulation used. Further RCTs with larger sample sizes are fundamentally needed to clarify the precise impact of TMS in OCD symptoms.
High surface magnetic field in red giants as a new signature of planet engulfment?
NASA Astrophysics Data System (ADS)
Privitera, Giovanni; Meynet, Georges; Eggenberger, Patrick; Georgy, Cyril; Ekström, Sylvia; Vidotto, Aline A.; Bianda, Michele; Villaver, Eva; ud-Doula, Asif
2016-09-01
Context. Red giant stars may engulf planets. This may increase the rotation rate of their convective envelope, which could lead to strong dynamo-triggered magnetic fields. Aims: We explore the possibility of generating magnetic fields in red giants that have gone through the process of a planet engulfment. We compare them with similar models that evolve without any planets. We discuss the impact of magnetic braking through stellar wind on the evolution of the surface velocity of the parent star. Methods: By studying rotating stellar models with and without planets and an empirical relation between the Rossby number and the surface magnetic field, we deduced the evolution of the surface magnetic field along the red giant branch. The effects of stellar wind magnetic braking were explored using a relation deduced from magnetohydrodynamics simulations. Results: The stellar evolution model of a red giant with 1.7 M⊙ without planet engulfment and with a time-averaged rotation velocity during the main sequence equal to 100 km s-1 shows a surface magnetic field triggered by convection that is stronger than 10 G only at the base of the red giant branch, that is, for gravities log g> 3. When a planet engulfment occurs, this magnetic field can also appear at much lower gravities, that is, at much higher luminosities along the red giant branch. The engulfment of a 15 MJ planet typically produces a dynamo-triggered magnetic field stronger than 10 G for gravities between 2.5 and 1.9. We show that for reasonable magnetic braking laws for the wind, the high surface velocity reached after a planet engulfment may be maintained sufficiently long to be observable. Conclusions: High surface magnetic fields for red giants in the upper part of the red giant branch are a strong indication of a planet engulfment or of an interaction with a companion. Our theory can be tested by observing fast-rotating red giants such as HD 31994, Tyc 0347-00762-1, Tyc 5904-00513-1, and Tyc 6054-01204-1 and by determining whether they show magnetic fields.
Assessment of the MHD capability in the ATHENA code using data from the ALEX facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roth, P.A.
1989-03-01
The ATHENA (Advanced Thermal Hydraulic Energy Network Analyzer) code is a system transient analysis code with multi-loop, multi-fluid capabilities, which is available to the fusion community at the National Magnetic Fusion Energy Computing Center (NMFECC). The work reported here assesses the ATHENA magnetohydrodynamic (MHD) pressure drop model for liquid metals flowing through a strong magnetic field. An ATHENA model was developed for two simple geometry, adiabatic test sections used in the Argonne Liquid Metal Experiment (ALEX) at Argonne National Laboratory (ANL). The pressure drops calculated by ATHENA agreed well with the experimental results from the ALEX facility.
Advanced single permanent magnet axipolar ironless stator ac motor for electric passenger vehicles
NASA Technical Reports Server (NTRS)
Beauchamp, E. D.; Hadfield, J. R.; Wuertz, K. L.
1983-01-01
A program was conducted to design and develop an advanced-concept motor specifically created for propulsion of electric vehicles with increased range, reduced energy consumption, and reduced life-cycle costs in comparison with conventional systems. The motor developed is a brushless, dc, rare-earth cobalt, permanent magnet, axial air gap inductor machine that uses an ironless stator. Air cooling is inherent provided by the centrifugal-fan action of the rotor poles. An extensive design phase was conducted, which included analysis of the system performance versus the SAE J227a(D) driving cycle. A proof-of-principle model was developed and tested, and a functional model was developed and tested. Full generator-level testing was conducted on the functional model, recording electromagnetic, thermal, aerodynamic, and acoustic noise data. The machine demonstrated 20.3 kW output at 1466 rad/s and 160 dc. The novel ironless stator demonstated the capability to continuously operate at peak current. The projected system performance based on the use of a transistor inverter is 23.6 kW output power at 1466 rad/s and 83.3 percent efficiency. Design areas of concern regarding electric vehicle applications include the inherently high windage loss and rotor inertia.
A Study of Soil and Duricrust Models for Mars
NASA Astrophysics Data System (ADS)
Bishop, J. L.
2001-03-01
Analysis of soil and duricrust formation mechanisms on Mars. Soil analog mixtures have been prepared, characterized and tested through wet/dry cycling experiments; results are compared with Mars Pathfinder soil data (spectral, chemical and magnetic).
An ultimate, compact, seal-less centrifugal ventricular assist device: Baylor C-Gyro pump.
Ohara, Y; Makinouchi, K; Orime, Y; Tasai, K; Naito, K; Mizuguchi, K; Shimono, T; Damm, G; Glueck, J; Takatani, S
1994-01-01
We have developed a compact, seal-less, all-purpose centrifugal pump, the Baylor C-Gyro pump, which is intended as a long-term ventricular assist device (VAD) as well as a cardiopulmonary bypass pump. In attaining this goal, we began with eliminating the shaft seals by adopting a pivot bearing system at the impeller shaft. In addition, a ring magnet encased in the bottom of the impeller was coupled magnetically to a driver magnet placed outside the pump housing (C1 Prototype). This first model yielded satisfactory performance in vitro with a flow rate of 8 L/min against 250 mm Hg at 2,400 rpm, and an index of hemolysis (IH) of 0.0083 g/100 L using bovine blood. In the second model, the C1 Eccentric Inlet Port Model, the inlet bearing support bar in the prototype were eliminated without reducing the prototype's performance. These designs for antithrombogenicity are being tested by the first in vivo experiment, which has lasted for more than 2 weeks.
Theoretical models for stellar X-ray polarization in compact objects
NASA Technical Reports Server (NTRS)
Meszaros, P.
1991-01-01
Degenerate stellar objects are expected to be strong sources of polarized X-ray emission. This is particularly true for strongly magnetized neutron stars, e.g. accretion or rotation powered pulsars, and gamma ray bursters. In these, linear polarization degrees well in excess of 30 percent are expected. Weaker magnetic field stellar sources, such as old neutron stars in low mass binary systems, white dwarfs and black holes are expected to have polarization degrees in the range 1-3 percent. A great interest attaches to the detection of polarization in these objects, since this would provide invaluable information concerning the geometry, radiation mechanism and magnetic field strength, necessary for testing and proving models of the structure and evolution of stars in their late stages. In this paper we review the theoretical models of the production of polarized radiation in compact stellar X-ray sources, and discuss the possibility of detecting these properties using currently planned detectors to be flown in space.
NASA Astrophysics Data System (ADS)
Arendt, V.; Shalchi, A.
2018-06-01
We explore numerically the transport of energetic particles in a turbulent magnetic field configuration. A test-particle code is employed to compute running diffusion coefficients as well as particle distribution functions in the different directions of space. Our numerical findings are compared with models commonly used in diffusion theory such as Gaussian distribution functions and solutions of the cosmic ray Fokker-Planck equation. Furthermore, we compare the running diffusion coefficients across the mean magnetic field with solutions obtained from the time-dependent version of the unified non-linear transport theory. In most cases we find that particle distribution functions are indeed of Gaussian form as long as a two-component turbulence model is employed. For turbulence setups with reduced dimensionality, however, the Gaussian distribution can no longer be obtained. It is also shown that the unified non-linear transport theory agrees with simulated perpendicular diffusion coefficients as long as the pure two-dimensional model is excluded.
Indirect rotor position sensing in real time for brushless permanent magnet motor drives
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ertugrul, N.; Acarnley, P.P.
1998-07-01
This paper describes a modern solution to real-time rotor position estimation of brushless permanent magnet (PM) motor drives. The position estimation scheme, based on flux linkage and line-current estimation, is implemented in real time by using the abc reference frame, and it is tested dynamically. The position estimation model of the test motor, development of hardware, and basic operation of the digital signal processor (DSP) are discussed. The overall position estimation strategy is accomplished with a fast DSP (TMS320C30). The method is a shaft position sensorless method that is applicable to a wide range of excitation types in brushless PMmore » motors without any restriction on the motor model and the current excitation. Both rectangular and sinewave-excited brushless PM motor drives are examined, and the results are given to demonstrate the effectiveness of the method with dynamic loads in closed estimated position loop.« less
Mouse brain magnetic resonance microscopy: Applications in Alzheimer disease.
Lin, Lan; Fu, Zhenrong; Xu, Xiaoting; Wu, Shuicai
2015-05-01
Over the past two decades, various Alzheimer's disease (AD) trangenetic mice models harboring genes with mutation known to cause familial AD have been created. Today, high-resolution magnetic resonance microscopy (MRM) technology is being widely used in the study of AD mouse models. It has greatly facilitated and advanced our knowledge of AD. In this review, most of the attention is paid to fundamental of MRM, the construction of standard mouse MRM brain template and atlas, the detection of amyloid plaques, following up on brain atrophy and the future applications of MRM in transgenic AD mice. It is believed that future testing of potential drugs in mouse models with MRM will greatly improve the predictability of drug effect in preclinical trials. © 2015 Wiley Periodicals, Inc.
ISS Plasma Interaction: Measurements and Modeling
NASA Technical Reports Server (NTRS)
Barsamian, H.; Mikatarian, R.; Alred, J.; Minow, J.; Koontz, S.
2004-01-01
Ionospheric plasma interaction effects on the International Space Station are discussed in the following paper. The large structure and high voltage arrays of the ISS represent a complex system interacting with LEO plasma. Discharge current measurements made by the Plasma Contactor Units and potential measurements made by the Floating Potential Probe delineate charging and magnetic induction effects on the ISS. Based on theoretical and physical understanding of the interaction phenomena, a model of ISS plasma interaction has been developed. The model includes magnetic induction effects, interaction of the high voltage solar arrays with ionospheric plasma, and accounts for other conductive areas on the ISS. Based on these phenomena, the Plasma Interaction Model has been developed. Limited verification of the model has been performed by comparison of Floating Potential Probe measurement data to simulations. The ISS plasma interaction model will be further tested and verified as measurements from the Floating Potential Measurement Unit become available, and construction of the ISS continues.
The substorm cycle as reproduced by global MHD models
NASA Astrophysics Data System (ADS)
Gordeev, E.; Sergeev, V.; Tsyganenko, N.; Kuznetsova, M.; Rastäetter, L.; Raeder, J.; Tóth, G.; Lyon, J.; Merkin, V.; Wiltberger, M.
2017-01-01
Recently, Gordeev et al. (2015) suggested a method to test global MHD models against statistical empirical data. They showed that four community-available global MHD models supported by the Community Coordinated Modeling Center (CCMC) produce a reasonable agreement with reality for those key parameters (the magnetospheric size, magnetic field, and pressure) that are directly related to the large-scale equilibria in the outer magnetosphere. Based on the same set of simulation runs, here we investigate how the models reproduce the global loading-unloading cycle. We found that in terms of global magnetic flux transport, three examined CCMC models display systematically different response to idealized 2 h north then 2 h south interplanetary magnetic field (IMF) Bz variation. The LFM model shows a depressed return convection and high loading rate during the growth phase as well as enhanced return convection and high unloading rate during the expansion phase, with the amount of loaded/unloaded magnetotail flux and the growth phase duration being the closest to their observed empirical values during isolated substorms. Two other models exhibit drastically different behavior. In the BATS-R-US model the plasma sheet convection shows a smooth transition to the steady convection regime after the IMF southward turning. In the Open GGCM a weak plasma sheet convection has comparable intensities during both the growth phase and the following slow unloading phase. We also demonstrate potential technical problem in the publicly available simulations which is related to postprocessing interpolation and could affect the accuracy of magnetic field tracing and of other related procedures.
The Substorm Cycle as Reproduced by Global MHD Models
NASA Technical Reports Server (NTRS)
Gordeev, E.; Sergee, V.; Tsyganenko, N.; Kuznetsova, M.; Rastaetter, Lutz; Raeder, J.; Toth, G.; Lyon, J.; Merkin, V.; Wiltberger, M.
2017-01-01
Recently, Gordeev et al. (2015) suggested a method to test global MHD models against statistical empirical data. They showed that four community-available global MHD models supported by the Community Coordinated Modeling Center (CCMC) produce a reasonable agreement with reality for those key parameters (the magnetospheric size, magnetic field, and pressure) that are directly related to the large-scale equilibria in the outer magnetosphere. Based on the same set of simulation runs, here we investigate how the models reproduce the global loading-unloading cycle. We found that in terms of global magnetic flux transport, three examined CCMC models display systematically different response to idealized2 h north then 2 h south interplanetary magnetic field (IMF) Bz variation. The LFM model shows a depressed return convection and high loading rate during the growth phase as well as enhanced return convection and high unloading rate during the expansion phase, with the amount of loaded unloaded magnetotail flux and the growth phase duration being the closest to their observed empirical values during isolated substorms. Two other models exhibit drastically different behavior. In the BATS-R-US model the plasma sheet convection shows a smooth transition to the steady convection regime after the IMF southward turning. In the Open GGCM a weak plasma sheet convection has comparable intensities during both the growth phase and the following slow unloading phase. We also demonstrate potential technical problem in the publicly available simulations which is related to post processing interpolation and could affect the accuracy of magnetic field tracing and of other related procedures.
Role of Laboratory Plasma Experiments in exploring the Physics of Solar Eruptions
NASA Astrophysics Data System (ADS)
Tripathi, S.
2017-12-01
Solar eruptive events are triggered over a broad range of spatio-temporal scales by a variety of fundamental processes (e.g., force-imbalance, magnetic-reconnection, electrical-current driven instabilities) associated with arched magnetoplasma structures in the solar atmosphere. Contemporary research on solar eruptive events is at the forefront of solar and heliospheric physics due to its relevance to space weather. Details on the formation of magnetized plasma structures on the Sun, storage of magnetic energy in such structures over a long period (several Alfven transit times), and their impulsive eruptions have been recorded in numerous observations and simulated in computer models. Inherent limitations of space observations and uncontrolled nature of solar eruptions pose significant challenges in testing theoretical models and developing the predictive capability for space-weather. The pace of scientific progress in this area can be significantly boosted by tapping the potential of appropriately scaled laboratory plasma experiments to compliment solar observations, theoretical models, and computer simulations. To give an example, recent results from a laboratory plasma experiment on arched magnetic flux ropes will be presented and future challenges will be discussed. (Work supported by National Science Foundation, USA under award number 1619551)
Advanced space propulsion thruster research
NASA Technical Reports Server (NTRS)
Wilbur, P. J.
1981-01-01
Experiments showed that stray magnetic fields can adversely affect the capacity of a hollow cathode neutralizer to couple to an ion beam. Magnetic field strength at the neutralizer cathode orifice is a crucial factor influencing the coupling voltage. The effects of electrostatic accelerator grid aperture diameters on the ion current extraction capabilities were examined experimentally to describe the divergence, deflection, and current extraction capabilities of grids with the screen and accelerator apertures displaced relative to one another. Experiments performed in orificed, mercury hollow cathodes support the model of field enhanced thermionic electron mission from cathode inserts. Tests supported the validity of a thermal model of the cathode insert. A theoretical justification of a Saha equation model relating cathode plasma properties is presented. Experiments suggest that ion loss rates to discharge chamber walls can be controlled. A series of new discharge chamber magnetic field configurations were generated in the flexible magnetic field thruster and their effect on performance was examined. A technique used in the thruster to measure ion currents to discharge chamber walls is described. Using these ion currents the fraction of ions produced that are extracted from the discharge chamber and the energy cost of plasma ions are computed.
Tests of Convection Electric Field Models For The January 10, 1997, Geomagnetic Storm
NASA Astrophysics Data System (ADS)
Jordanova, V.; Boonsiriseth, A.; Thorne, R.; Dotan, Y.
The January 10-11, 1997, geomagnetic storm was caused by the passage at Earth of a magnetic cloud with a negative to positive Bz variation extending for 1 day. The ge- omagnetic indices had values of minimum Dst=-83 nT and maximum Kp=6 during the period of southward IMF within the cloud. We simulate ring current development during this storm using our kinetic drift-loss model and compare the results inferred from Volland-Stern type, Weimer, and AMIE convection electric field models. A pen- etration electric field is added to the AMIE model [Boonsiriseth et al., 2001] in order to improve the agreement with measurements from the electric field instrument on Po- lar spacecraft. The ionospheric electric potentials are mapped to the equatorial plane using the Tsyganenko 1996 magnetic field model and the resulting equatorial poten- tial models are coupled with our ring current model. While the temporal evolution of the large-scale features is similar in all three convection models, detailed comparison indicates that AMIE model shows highly variable small-scale features not present in the Volland-Stern or Weimer convection models. Results from our kinetic ring current model are compared with energetic particle data from the HYDRA, TIMAS, IPS, and CAMMICE instruments on Polar to test the applicability of the convection electric field models for this storm period.
Magnetic testing for inter-granular crack defect of tubing coupling
NASA Astrophysics Data System (ADS)
Hu, Bo; Yu, Runqiao
2018-04-01
This study focused on the inter-granular crack defects of tubing coupling wherein a non-destructive magnetic testing technique was proposed to determine the magnetic flux leakage features on coupling surface in the geomagnetic field using a high-precision magnetic sensor. The abnormal magnetic signatures of defects were analysed, and the principle of the magnetic test was explained based on the differences in the relative permeability of defects and coupling materials. Abnormal fluctuations of the magnetic signal were observed at the locations of the inter-granular crack defects. Imaging showed the approximate position of defects. The test results were proven by metallographic phase.
Convectively driven decadal zonal accelerations in Earth's fluid core
NASA Astrophysics Data System (ADS)
More, Colin; Dumberry, Mathieu
2018-04-01
Azimuthal accelerations of cylindrical surfaces co-axial with the rotation axis have been inferred to exist in Earth's fluid core on the basis of magnetic field observations and changes in the length-of-day. These accelerations have a typical timescale of decades. However, the physical mechanism causing the accelerations is not well understood. Scaling arguments suggest that the leading order torque averaged over cylindrical surfaces should arise from the Lorentz force. Decadal fluctuations in the magnetic field inside the core, driven by convective flows, could then force decadal changes in the Lorentz torque and generate zonal accelerations. We test this hypothesis by constructing a quasi-geostrophic model of magnetoconvection, with thermally driven flows perturbing a steady, imposed background magnetic field. We show that when the Alfvén number in our model is similar to that in Earth's fluid core, temporal fluctuations in the torque balance are dominated by the Lorentz torque, with the latter generating mean zonal accelerations. Our model reproduces both fast, free Alfvén waves and slow, forced accelerations, with ratios of relative strength and relative timescale similar to those inferred for the Earth's core. The temporal changes in the magnetic field which drive the time-varying Lorentz torque are produced by the underlying convective flows, shearing and advecting the magnetic field on a timescale associated with convective eddies. Our results support the hypothesis that temporal changes in the magnetic field deep inside Earth's fluid core drive the observed decadal zonal accelerations of cylindrical surfaces through the Lorentz torque.
NASA Astrophysics Data System (ADS)
Wang, Zaijun; Ren, Zhongzhou; Dong, Tiekuang; Xu, Chang
2014-08-01
The ground-state spins and parities of the odd-A phosphorus isotopes 25-47P are studied with the relativistic mean-field (RMF) model and relativistic elastic magnetic electron-scattering theory (REMES). Results of the RMF model with the NL-SH, TM2, and NL3 parameters show that the 2s1/2 and 1d3/2 proton level inversion may occur for the neutron-rich isotopes 37-47P, and, consequently, the possible spin-parity values of 37-47P may be 3/2+, which, except for P47, differs from those given by the NUBASE2012 nuclear data table by Audi et al. Calculations of the elastic magnetic electron scattering of 37-47P with the single valence proton in the 2s1/2 and 1d3/2 state show that the form factors have significant differences. The results imply that elastic magnetic electron scattering can be a possible way to study the 2s1/2 and 1d3/2 level inversion and the spin-parity values of 37-47P. The results can also provide new tests as to what extent the RMF model, along with its various parameter sets, is valid for describing the nuclear structures. In addition, the contributions of the upper and lower components of the Dirac four-spinors to the form factors and the isotopic shifts of the magnetic form factors are discussed.
Characterization facility for magneto-optic media and systems
NASA Technical Reports Server (NTRS)
Mansuripur, M.; Fu, H.; Gadetsky, S.; Sugaya, S.; Wu, T. H.; Zambuto, J.; Gerber, R.; Goodman, T.; Erwin, J. K.
1993-01-01
Objectives of this research are: (1) to measure the hysteresis loop, Kerr rotation angle, anisotropy energy profile, Hall voltage, and magnetoresistance of thin-film magneto-optic media using our loop-tracer; (2) measure the wavelength-dependence of the Kerr rotation angle, Theta(sub k), and ellipticity, epsilon(sub k), for thin-film media using our magneto-optic Kerr spectrometer (MOKS); (3) measure the dielectric tensor of thin-film and multilayer samples using our variable-angle magneto-optic ellipsometer (VAMOE); (4) measure the hysteresis loop, coercivity, remanent magnetization, saturation magnetization, and anisotropy energy constant for thin film magnetic media using vibrating sample magnetometry; (5) observe small magnetic domains and investigate their interaction with defects using magnetic force microscopy; (6) perform static read/write/erase experiments on thin-film magneto-optic media using our static test station; (7) integrate the existing models of magnetization, magneto-optic effects, coercivity, and anisotropy in an interactive and user-friendly environment, and analyze the characterization data obtained in the various experiments, using this modeling package; (8) measure focusing- and tracking-error signals on a static testbed, determine the 'feedthrough' for various focusing schemes, investigate the effects of polarization and birefringence, and compare the results with diffraction-based calculations; and (9) measure the birefringence of optical disk substrates using two variable angle ellipsometers.
NASA Astrophysics Data System (ADS)
Bourdin, Philippe-A.; Hofer, Bernhard; Narita, Yasuhito
2018-03-01
Electromotive force is an essential quantity in dynamo theory. During a coronal mass ejection (CME), magnetic helicity gets decoupled from the Sun and advected into the heliosphere with the solar wind. Eventually, a heliospheric magnetic transient event might pass by a spacecraft, such as the Helios space observatories. Our aim is to investigate the electromotive force, the kinetic helicity effect (α term), the turbulent diffusion (β term), and the cross-helicity effect (γ term) in the inner heliosphere below 1 au. We set up a one-dimensional model of the solar wind velocity and magnetic field for a hypothetic interplanetary CME. Because turbulent structures within the solar wind evolve much slower than this structure needs to pass by the spacecraft, we use a reduced curl operator to compute the current density and vorticity. We test our CME shock-front model against an observed magnetic transient that passes by the Helios-2 spacecraft. At the peak of the fluctuations in this event we find strongly enhanced α, β, and γ terms, as well as a strong peak in the total electromotive force. Our method allows us to automatically identify magnetic transient events from any in situ spacecraft observations that contain magnetic field and plasma velocity data of the solar wind.
Design and Test Results of Superconducting Magnet for Heavy-Ion Rotating Gantry
NASA Astrophysics Data System (ADS)
Takayama, S.; Koyanagi, K.; Miyazaki, H.; Takami, S.; Orikasa, T.; Ishii, Y.; Kurusu, T.; Iwata, Y.; Noda, K.; Obana, T.; Suzuki, K.; Ogitsu, T.; Amemiya, N.
2017-07-01
Heavy-ion radiotherapy has a high curative effect in cancer treatment and also can reduce the burden on patients. These advantages have been generally recognized. Furthermore, a rotating gantry can irradiate a tumor with ions from any direction without changing the position of the patient. This can reduce the physical dose on normal cells, and is thus commonly used in proton radiotherapy. However, because of the high magnetic rigidity of carbon ions, the weight of the rotating gantry for heavy-ion therapy is about three-times heavier than those used for proton cancer therapy, according to our estimation. To overcome this issue, we developed a small and lightweight rotating gantry in collaboration with the National Institute of Radiological Sciences (NIRS). The compact rotating gantry was composed of ten low-temperature superconducting (LTS) magnets that were designed from the viewpoint of beam optics. These LTS magnets have a surface-winding coil-structure and provide both dipole and quadrupole fields. The maximum dipole and quadrupole magnetic field of the magnets were 2.88 T and 9.3 T/m, respectively. The rotating gantry was installed at NIRS, and beam commissioning is in progress to achieve the required beam quality. In the three years since 2013, in a project supported by the Ministry of Economy, Trade and Industry (METI) and the Japan Agency for Medical Research and Development (AMED), we have been developing high-temperature superconducting (HTS) magnets with the aim of a further size reduction of the rotating gantry. To develop fundamental technologies for designing and fabricating HTS magnets, a model magnet was manufactured. The model magnet was composed of 24 saddle-shaped HTS coils and generated a magnetic field of 1.2 T. In the presentation, recent progress in this research will be reported.
Chen, Guotao; Yang, Baibing; Chen, Jianhuai; Zhu, Leilei; Jiang, Hesong; Yu, Wen; Zang, Fengchao; Chen, Yun; Dai, Yutian
2018-02-01
Non-organic erectile dysfunction (noED) at functional imaging has been related to abnormal brain activity and requires animal models for further research on the associated molecular mechanisms. To develop a noED animal model based on chronic mild stress and investigate brain activity changes. We used 6 weeks of chronic mild stress to induce depression. The sucrose consumption test was used to assess the hedonic state. The apomorphine test and sexual behavior test were used to select male rats with ED. Rats with depression and ED were considered to have noED. Blood oxygen level-dependent-based resting-state functional magnetic resonance imaging (fMRI) studies were conducted on these rats, and the amplitude of low-frequency fluctuations and functional connectivity were analyzed to determine brain activity changes. The sexual behavior test and resting-state fMRI were used for outcome measures. The induction of depression was confirmed by the sucrose consumption test. A low intromission ratio and increased mount and intromission latencies were observed in male rats with depression. No erection was observed in male rats with depression during the apomorphine test. Male rats with depression and ED were considered to have noED. The possible central pathologic mechanism shown by fMRI involved the amygdaloid body, dorsal thalamus, hypothalamus, caudate-putamen, cingulate gyrus, insular cortex, visual cortex, sensory cortex, motor cortex, and cerebellum. Similar findings have been found in humans. The present study provided a novel noED rat model for further research on the central mechanism of noED. The present study developed a novel noED rat model and analyzed brain activity changes based at fMRI. The observed brain activity alterations might not extend to humans. The present study developed a novel noED rat model with brain activity alterations related to sexual arousal and erection, which will be helpful for further research involving the central mechanism of noED. Chen G, Yang B, Chen J, et al. Changes in Male Rat Sexual Behavior and Brain Activity Revealed by Functional Magnetic Resonance Imaging in Response to Chronic Mild Stress. J Sex Med 2018;15:136-147. Copyright © 2017 International Society for Sexual Medicine. Published by Elsevier Inc. All rights reserved.
A Novel Attitude Determination System Aided by Polarization Sensor
Zhi, Wei; Chu, Jinkui; Li, Jinshan; Wang, Yinlong
2018-01-01
This paper aims to develop a novel attitude determination system aided by polarization sensor. An improved heading angle function is derived using the perpendicular relationship between directions of E-vector of linearly polarized light and solar vector in the atmospheric polarization distribution model. The Extended Kalman filter (EKF) with quaternion differential equation as a dynamic model is applied to fuse the data from sensors. The covariance functions of filter process and measurement noises are deduced in detail. The indoor and outdoor tests are conducted to verify the validity and feasibility of proposed attitude determination system. The test results showed that polarization sensor is not affected by magnetic field, thus the proposed system can work properly in environments containing the magnetic interference. The results also showed that proposed system has higher measurement accuracy than common attitude determination system and can provide precise parameters for Unmanned Aerial Vehicle (UAV) flight control. The main contribution of this paper is implementation of the EKF for incorporating the self-developed polarization sensor into the conventional attitude determination system. The real-world experiment with the quad-rotor proved that proposed system can work in a magnetic interference environment and provide sufficient accuracy in attitude determination for autonomous navigation of vehicle. PMID:29315256
Initial Simulations of RF Waves in Hot Plasmas Using the FullWave Code
NASA Astrophysics Data System (ADS)
Zhao, Liangji; Svidzinski, Vladimir; Spencer, Andrew; Kim, Jin-Soo
2017-10-01
FullWave is a simulation tool that models RF fields in hot inhomogeneous magnetized plasmas. The wave equations with linearized hot plasma dielectric response are solved in configuration space on adaptive cloud of computational points. The nonlocal hot plasma dielectric response is formulated by calculating the plasma conductivity kernel based on the solution of the linearized Vlasov equation in inhomogeneous magnetic field. In an rf field, the hot plasma dielectric response is limited to the distance of a few particles' Larmor radii, near the magnetic field line passing through the test point. The localization of the hot plasma dielectric response results in a sparse matrix of the problem thus significantly reduces the size of the problem and makes the simulations faster. We will present the initial results of modeling of rf waves using the Fullwave code, including calculation of nonlocal conductivity kernel in 2D Tokamak geometry; the interpolation of conductivity kernel from test points to adaptive cloud of computational points; and the results of self-consistent simulations of 2D rf fields using calculated hot plasma conductivity kernel in a tokamak plasma with reduced parameters. Work supported by the US DOE ``SBIR program.
NASA Astrophysics Data System (ADS)
Whittlesey, P. L.; Larson, D. E.; Livi, R.; Abiad, R.; Parker, C.; Halekas, J. S.; Kasper, J. C.; Korreck, K. E.
2017-12-01
We present the SPAN-E calibration results and science operation plans this instrument on the Parker Solar Probe mission. SPAN-E is a pair of highly configurable ESA sensors, one on the RAM side of the spacecraft (SPAN-Ae) and one on anti-RAM (SPAN-B). Together, SPAN-E will jointly measure the full 3D thermal and suprathermal electron distribution function at cadences as fast as 4.58Hz. Joined with the SPAN-Ai and SPC instruments that are part of the Solar Wind Electrons, Alphas, and Protons (SWEAP) suite, SPAN-E will measure the solar coronal plasma across a range of energies and densities with a FOV over >90% of the sky, returning data over a 7 year long PSP mission lifetime. The SPAN-E instruments have passed environmental testing at the instrument level, and the final instrument calibrations are complete. This presentation details the final instrument calibration results as performed at UCB/SSL after environmental testing, and details the planned configurations for PSP's first orbit. In addition, the PSP spacecraft's magnetic fields are expected to distort the measured electron VDFs at low energies, thus we present a novel computer vision method of measuring and modeling the spacecraft magnetic fields as seen during an observatory-level "swing" test. Ultimately, the model will feed into an algorithm for ground corrections to electron VDFs distorted by these stray spacecraft magnetic fields.
NASA Technical Reports Server (NTRS)
Perry, Jimmy L.
1992-01-01
The same kind of standard and controls are established that are currently in use for the procurement of new analog, digital, and IBM/IBM compatible 3480 tape cartridges, and 1 in wide channel video magnetic tapes. The Magnetic Tape Certification Facility (MTCF) maintains a Qualified Products List (QPL) for the procurement of new magnetic media and uses the following specifications for the QPL and Acceptance Tests: (1) NASA TM-79724 is used for the QPL and Acceptance Testing of new analog magnetic tapes; (2) NASA TM-80599 is used for the QPL and Acceptance Testing of new digital magnetic tapes; (3) NASA TM-100702 is used for the QPL and Acceptance Testing of new IBM/IBM compatible 3840 magnetic tape cartridges; and (4) NASA TM-100712 is used for the QPL and Acceptance Testing of new 1 in wide channel video magnetic tapes. This document will be used for the QPL and Acceptance Testing of new Helical Scan 8 mm digital data tape cartridges.
A Cryogen Recycler with Pulse Tube Cryocooler for Recondensing Helium and Nitrogen
NASA Astrophysics Data System (ADS)
Wang, C.; Lichtenwalter, B.
2015-12-01
We have developed a cryogen recycler using a 4 K pulse tube cryocooler for recondensing helium and nitrogen in a NMR magnet. The liquid helium cooled NMR magnet has a liquid nitrogen cooled radiation shield. The magnet boils off 0.84 L/day of liquid helium and 6 L/day of liquid nitrogen. The recycler is designed with both a liquid helium return tube and a liquid nitrogen return tube, which are inserted into the fill ports of liquid helium and nitrogen. Therefore the recycler forms closed loops for helium and nitrogen. A two-stage 4 K pulse tube cryocooler, Cryomech model PT407 (0.7W at 4.2 K), is selected for the recycler. The recycler was first tested with a Cryomech's test cryostat and resulted in the capacities of recondensing 8.2 L/day of nitrogen and liquefying 4 L/day of helium from room temperature gas. The recycler has been installed in the NMR magnet at University of Sydney since August, 2014 and continuously maintains a zero boil off for helium and nitrogen.
A three-phase amplification of the cosmic magnetic field in galaxies
NASA Astrophysics Data System (ADS)
Martin-Alvarez, Sergio; Devriendt, Julien; Slyz, Adrianne; Teyssier, Romain
2018-06-01
Arguably the main challenge of galactic magnetism studies is to explain how the interstellar medium of galaxies reaches energetic equipartition despite the extremely weak cosmic primordial magnetic fields that are originally predicted to thread the inter-galactic medium. Previous numerical studies of isolated galaxies suggest that a fast dynamo amplification might suffice to bridge the gap spanning many orders of magnitude in strength between the weak early Universe magnetic fields and the ones observed in high redshift galaxies. To better understand their evolution in the cosmological context of hierarchical galaxy growth, we probe the amplification process undergone by the cosmic magnetic field within a spiral galaxy to unprecedented accuracy by means of a suite of constrained transport magnetohydrodynamical adaptive mesh refinement cosmological zoom simulations with different stellar feedback prescriptions. A galactic turbulent dynamo is found to be naturally excited in this cosmological environment, being responsible for most of the amplification of the magnetic energy. Indeed, we find that the magnetic energy spectra of simulated galaxies display telltale inverse cascades. Overall, the amplification process can be divided in three main phases, which are related to different physical mechanisms driving galaxy evolution: an initial collapse phase, an accretion-driven phase, and a feedback-driven phase. While different feedback models affect the magnetic field amplification differently, all tested models prove to be subdominant at early epochs, before the feedback-driven phase is reached. Thus the three-phase evolution paradigm is found to be quite robust vis-a-vis feedback prescriptions.
A novel high temperature superconducting magnetic flux pump for MRI magnets
NASA Astrophysics Data System (ADS)
Bai, Zhiming; Yan, Guo; Wu, Chunli; Ding, Shufang; Chen, Chuan
2010-10-01
This paper presents a kind of minitype magnetic flux pump made of high temperature superconductor. This kind of novel high temperature superconducting (HTS) flux pump has not any mechanical revolving parts or thermal switches. The excitation current of copper coils in magnetic pole system is controlled by a singlechip. The structure design and operational principle have been described. The operating performance of the new model magnetic flux pump has been preliminarily tested. The experiments show that the maximum pumping current is approximately 200 A for Bi2223 flux pump and 80 A for MgB 2 flux pump operating at 20 K. By comparison, it is discovered that the operating temperature range is wider, the ripple is smaller and the pumping frequency is higher in Bi2223 flux pump than those in MgB 2 flux pump. These results indicate that the newly developed Bi2223 magnetic flux pump may efficiently compensate the magnetic field decay in HTS magnet and make the magnet operate in persistent current mode, this point is significant to the magnetic resonance imaging (MRI) magnets. This new flux pump is under construction presently. It is expected that the Bi2223 flux pump would be applied to the superconducting MRI magnets by further optimizing structure and improving working process.
Makarov, Sergey N.; Yanamadala, Janakinadh; Piazza, Matthew W.; Helderman, Alex M.; Thang, Niang S.; Burnham, Edward H.; Pascual-Leone, Alvaro
2016-01-01
Goals Transcranial magnetic stimulation (TMS) is increasingly used as a diagnostic and therapeutic tool for numerous neuropsychiatric disorders. The use of TMS might cause whole-body exposure to undesired induced currents in patients and TMS operators. The aim of the present study is to test and justify a simple analytical model known previously, which may be helpful as an upper estimate of eddy current density at a particular distant observation point for any body composition and any coil setup. Methods We compare the analytical solution with comprehensive adaptive mesh refinement-based FEM simulations of a detailed full-body human model, two coil types, five coil positions, about 100,000 observation points, and two distinct pulse rise times, thus providing a representative number of different data sets for comparison, while also using other numerical data. Results Our simulations reveal that, after a certain modification, the analytical model provides an upper estimate for the eddy current density at any location within the body. In particular, it overestimates the peak eddy currents at distant locations from a TMS coil by a factor of 10 on average. Conclusion The simple analytical model tested in the present study may be valuable as a rapid method to safely estimate levels of TMS currents at different locations within a human body. Significance At present, safe limits of general exposure to TMS electric and magnetic fields are an open subject, including fetal exposure for pregnant women. PMID:26685221
Ohira, Masayuki; Silcox, Jade; Haygood, Deavin; Harper-King, Valerie; Alsharabati, Mohammad; Lu, Liang; Morgan, Marla B; Young, Angela M; Claussen, Gwen C; King, Peter H; Oh, Shin J
2013-01-01
We compared the problems or complications associated with electrodiagnostic testing in 77 patients with implanted cardiac devices. Thirty tests were performed after magnet placement, and 47 were performed without magnet application. All electrodiagnostic tests were performed safely in all patients without any serious effect on the implanted cardiac devices with or without magnet placement. A significantly higher number of patient symptoms and procedure changes were reported in the magnet group (P < 0.013). No statistical difference was found in the testing difficulty or ECG changes. The magnet group patients had an approximately 11-fold greater risk of symptoms than those in the control group. Our data do not support a recommendation that magnet placement is necessary for routine electrodiagnostic testing in patients with implanted cardiac devices, as long as our general and specific guidelines are followed. Copyright © 2012 Wiley Periodicals, Inc.
Pulsed magnetic field induced fast drug release from magneto liposomes via ultrasound generation.
Podaru, George; Ogden, Saralyn; Baxter, Amanda; Shrestha, Tej; Ren, Shenqiang; Thapa, Prem; Dani, Raj Kumar; Wang, Hongwang; Basel, Matthew T; Prakash, Punit; Bossmann, Stefan H; Chikan, Viktor
2014-10-09
Fast drug delivery is very important to utilize drug molecules that are short-lived under physiological conditions. Techniques that can release model molecules under physiological conditions could play an important role to discover the pharmacokinetics of short-lived substances in the body. Here an experimental method is developed for the fast release of the liposomes' payload without a significant increase in (local) temperatures. This goal is achieved by using short magnetic pulses to disrupt the lipid bilayer of liposomes loaded with magnetic nanoparticles. The drug release has been tested by two independent assays. The first assay relies on the AC impedance measurements of MgSO4 released from the magnetic liposomes. The second standard release assay is based on the increase of the fluorescence signal from 5(6)-carboxyfluorescein dye when the dye is released from the magneto liposomes. The efficiency of drug release ranges from a few percent to up to 40% in the case of the MgSO4. The experiments also indicate that the magnetic nanoparticles generate ultrasound, which is assumed to have a role in the release of the model drugs from the magneto liposomes.
Alexander, C. Scott; Ding, Jow -Lian; Asay, James Russell
2016-03-09
Magnetically applied pressure-shear (MAPS) is a new experimental technique that provides a platform for direct measurement of material strength at extreme pressures. The technique employs an imposed quasi-static magnetic field and a pulsed power generator that produces an intense current on a planar driver panel, which in turn generates high amplitude magnetically induced longitudinal compression and transverse shear waves into a planar sample mounted on the drive panel. In order to apply sufficiently high shear traction to the test sample, a high strength material must be used for the drive panel. Molybdenum is a potential driver material for the MAPSmore » experiment because of its high yield strength and sufficient electrical conductivity. To properly interpret the results and gain useful information from the experiments, it is critical to have a good understanding and a predictive capability of the mechanical response of the driver. In this work, the inelastic behavior of molybdenum under uniaxial compression and biaxial compression-shear ramp loading conditions is experimentally characterized. It is observed that an imposed uniaxial magnetic field ramped to approximately 10 T through a period of approximately 2500 μs and held near the peak for about 250 μs before being tested appears to anneal the molybdenum panel. In order to provide a physical basis for model development, a general theoretical framework that incorporates electromagnetic loading and the coupling between the imposed field and the inelasticity of molybdenum was developed. Based on this framework, a multi-axial continuum model for molybdenum under electromagnetic loading is presented. The model reasonably captures all of the material characteristics displayed by the experimental data obtained from various experimental configurations. Additionally, data generated from shear loading provide invaluable information not only for validating but also for guiding the development of the material model for multiaxial loadings.« less
Reconstruction of sub-surface archaeological remains from magnetic data using neural computing.
NASA Astrophysics Data System (ADS)
Bescoby, D. J.; Cawley, G. C.; Chroston, P. N.
2003-04-01
The remains of a former Roman colonial settlement, once part of the classical city of Butrint in southern Albania have been the subject of a high resolution magnetic survey using a caesium-vapour magnetometer. The survey revealed the surviving remains of an extensive planned settlement and a number of outlying buildings, today buried beneath over 0.5 m of alluvial deposits. The aim of the current research is to derive a sub-surface model from the magnetic survey measurements, allowing an enhanced archaeological interpretation of the data. Neural computing techniques are used to perform the non-linear mapping between magnetic data and corresponding sub-surface model parameters. The adoption of neural computing paradigms potentially holds several advantages over other modelling techniques, allowing fast solutions for complex data, while having a high tolerance to noise. A multi-layer perceptron network with a feed-forward architecture is trained to estimate the shape and burial depth of wall foundations using a series of representative models as training data. Parameters used to forward model the training data sets are derived from a number of trial trench excavations targeted over features identified by the magnetic survey. The training of the network was optimized by first applying it to synthetic test data of known source parameters. Pre-processing of the network input data, including the use of a rotationally invariant transform, enhanced network performance and the efficiency of the training data. The approach provides good results when applied to real magnetic data, accurately predicting the depths and layout of wall foundations within the former settlement, verified by subsequent excavation. The resulting sub-surface model is derived from the averaged outputs of a ‘committee’ of five networks, trained with individualized training sets. Fuzzy logic inference has also been used to combine individual network outputs through correlation with data from a second geophysical technique, allowing the integration of data from a separate series of measurements.
Development of a compact superconducting rotating-gantry for heavy-ion therapy
Iwata, Yoshiyuki; Noda, K.; Murakami, T.; Shirai, T.; Furukawa, T.; Fujita, T.; Mori, S.; Sato, S.; Mizushima, K.; Shouda, K.; Fujimoto, T.; Arai, H.; Ogitsu, T.; Obana, T.; Amemiya, N.; Orikasa, T.; Takami, S.; Takayama, S.
2014-01-01
An isocentric superconducting rotating-gantry for heavy-ion therapy is being developed [ 1]. This rotating gantry can transport heavy ions having 430 MeV/u to an isocenter with irradiation angles of over ±180°, and is further capable of performing fast raster-scanning irradiation [ 2]. A layout of the beam-transport line for the compact rotating-gantry is presented in Fig. 1. The rotating gantry has 10 superconducting magnets (BM01-10), a pair of the scanning magnets (SCM-X and SCM-Y) and two pairs of beam profile- monitor and steering magnets (ST01-02 and PRN01-02). For BM01-BM06 and BM09-BM10, the combined-function superconducting magnets are employed. Further, these superconducting magnets are designed for fast slewing of the magnetic field to follow the multiple flattop operation of the synchrotron [ 3]. The use of the combined-function superconducting magnets with optimized beam optics allows a compact gantry design with a large scan size at the isocenter; the length and the radius of the gantry will be to be ∼13 and 5.5 m, respectively, which are comparable to those for the existing proton gantries. Furthermore, the maximum scan size at the isocenter is calculated to be as large as ∼200 mm square for heavy-ion beams at the maximum energy of 430 MeV/u. All of the superconducting magnets were designed, and their magnetic fields were calculated using the Opera-3d code [ 4]. With the calculated magnetic fields, beam-tracking simulations were made. The simulation results agreed well with those of the linear beam-optics calculation, proving validity of the final design for the superconducting magnets. The five out of 10 superconducting magnets, as well as the model magnet were currently manufactured. With these magnets, rotation tests, magnetic field measurements and fast slewing tests were conducted. However, we did not observe any significant temperature increase, which may cause a quench problem. Further, results of the magnetic field measurements roughly agreed with those calculated by the Opera-3d code. The design study as well as major tests of the superconducting magnets was completed, and the construction of the superconducting rotating-gantry is in progress. The construction of the superconducting rotating-gantry will be completed at the end of FY2014, and be commissioned within FY2015. Fig. 1.Layout of the superconducting rotating-gantry. The gantry consists of 10 superconducting magnets (BM01–BM10), a pair of the scanning magnets (SCM-X and SCMY), and two pairs of beam profile-monitor and steering magnets (STR01–STR02 and PRN01–PRN02).
A model for heliospheric flux-ropes
NASA Astrophysics Data System (ADS)
Nieves-Chinchilla, T.; Linton, M.; Vourlidas, A.; Hidalgo, M. A. U.
2017-12-01
This work is presents an analytical flux-rope model, which explores different levels of complexity starting from a circular-cylindrical geometry. The framework of this series of models was established by Nieves-Chinchilla et al. 2016 with the circular-cylindrical analytical flux rope model. The model attempts to describe the magnetic flux rope topology with distorted cross-section as a possible consequence of the interaction with the solar wind. In this model, the flux rope is completely described in a non-orthogonal geometry. The Maxwell equations are solved using tensor calculus consistent with the geometry chosen, invariance along the axial direction, and with the assumption of no radial current density. The model is generalized in terms of the radial and azimuthal dependence of the poloidal current density component and axial current density component. The misalignment between current density and magnetic field is studied in detail for several example profiles of the axial and poloidal current density components. This theoretical analysis provides a map of the force distribution inside of the flux-rope. For reconstruction of the heliospheric flux-ropes, the circular-cylindrical reconstruction technique has been adapted to the new geometry and applied to in situ ICMEs with a flux-rope entrained and tested with cases with clear in situ signatures of distortion. The model adds a piece in the puzzle of the physical-analytical representation of these magnetic structures that should be evaluated with the ultimate goal of reconciling in-situ reconstructions with imaging 3D remote sensing CME reconstructions. Other effects such as axial curvature and/or expansion could be incorporated in the future to fully understand the magnetic structure.
A 3-D Magnetic Analysis of a Linear Alternator For a Stirling Power System
NASA Technical Reports Server (NTRS)
Geng, Steven M.; Schwarze, Gene E.; Niedra, Janis M.
2000-01-01
The NASA Glenn Research Center and the Department of Energy (DOE) are developing advanced radioisotope Stirling convertors, under contract with Stirling Technology Company (STC), for space applications. Of critical importance to the successful development of the Stirling convertor for space power applications is the development of a lightweight and highly efficient linear alternator. This paper presents a 3-D finite element method (FEM) approach for evaluating Stirling convertor linear alternators. Preliminary correlations with open-circuit voltage measurements provide an encouraging level of confidence in the model. Spatial plots of magnetic field strength (H) are presented in the region of the exciting permanent magnets. These plots identify regions of high H, where at elevated temperature and under electrical load, the potential to alter the magnetic moment of the magnets exists. This implies the need for further testing and analysis.
Rock-Magnetic Method for Post Nuclear Detonation Diagnostics
NASA Astrophysics Data System (ADS)
Englert, J.; Petrosky, J.; Bailey, W.; Watts, D. R.; Tauxe, L.; Heger, A. S.
2011-12-01
A magnetic signature characteristic of a Nuclear Electromagnetic Pulse (NEMP) may still be detectable near the sites of atmospheric nuclear tests conducted at what is now the Nevada National Security Site. This signature is due to a secondary magnetization component of the natural remanent magnetization of material containing traces of ferromagnetic particles that have been exposed to a strong pulse of magnetic field. We apply a rock-magnetic method introduced by Verrier et al. (2002), and tested on samples exposed to artificial lightning, to samples of rock and building materials (e.g. bricks, concrete) retrieved from several above ground nuclear test sites. The results of magnetization measurements are compared to NEMP simulations and historic test measurements.
Magnetic field extraction of trap-based electron beams using a high-permeability grid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hurst, N. C.; Danielson, J. R.; Surko, C. M., E-mail: csurko@physics.ucsd.edu
2015-07-15
A method to form high quality electrostatically guided lepton beams is explored. Test electron beams are extracted from tailored plasmas confined in a Penning-Malmberg trap. The particles are then extracted from the confining axial magnetic field by passing them through a high magnetic permeability grid with radial tines (a so-called “magnetic spider”). An Einzel lens is used to focus and analyze the beam properties. Numerical simulations are used to model non-adiabatic effects due to the spider, and the predictions are compared with the experimental results. Improvements in beam quality are discussed relative to the use of a hole in amore » high permeability shield (i.e., in lieu of the spider), and areas for further improvement are described.« less
Thermal-hydraulic analysis of the coil test facility for CFETR.
Ren, Yong; Liu, Xiaogang; Li, Junjun; Wang, Zhaoliang; Qiu, Lilong; Du, Shijun; Li, Guoqiang; Gao, Xiang
2016-01-01
Performance test of the China Fusion Engineering Test Reactor (CFETR) central solenoid (CS) and toroidal field (TF) insert coils is of great importance to evaluate the CFETR magnet performance in relevant operation conditions. The superconducting magnet of the coil test facility for CFETR is being designed with the aim of providing a background magnetic field to test the CFETR CS insert and TF insert coils. The superconducting magnet consists of the inner module with Nb 3 Sn coil and the outer module with NbTi coil. The superconducting magnet is designed to have a maximum magnetic field of 12.59 T and a stored energy of 436.6 MJ. An active quench protection circuit and the positive temperature coefficient dump resistor were adopted to transfer the stored magnetic energy. The temperature margin behavior of the test facility for CFETR satisfies the design criteria. The quench analysis of the test facility shows that the cable temperature and the helium pressure inside the jacket are within the design criteria.
Visco-Resistive MHD Modeling Benchmark of Forced Magnetic Reconnection
NASA Astrophysics Data System (ADS)
Beidler, M. T.; Hegna, C. C.; Sovinec, C. R.; Callen, J. D.; Ferraro, N. M.
2016-10-01
The presence of externally-applied 3D magnetic fields can affect important phenomena in tokamaks, including mode locking, disruptions, and edge localized modes. External fields penetrate into the plasma and can lead to forced magnetic reconnection (FMR), and hence magnetic islands, on resonant surfaces if the local plasma rotation relative to the external field is slow. Preliminary visco-resistive MHD simulations of FMR in a slab geometry are consistent with theory. Specifically, linear simulations exhibit proper scaling of the penetrated field with resistivity, viscosity, and flow, and nonlinear simulations exhibit a bifurcation from a flow-screened to a field-penetrated, magnetic island state as the external field is increased, due to the 3D electromagnetic force. These results will be compared to simulations of FMR in a circular cross-section, cylindrical geometry by way of a benchmark between the NIMROD and M3D-C1 extended-MHD codes. Because neither this geometry nor the MHD model has the physics of poloidal flow damping, the theory of will be expanded to include poloidal flow effects. The resulting theory will be tested with linear and nonlinear simulations that vary the resistivity, viscosity, flow, and external field. Supported by OFES DoE Grants DE-FG02-92ER54139, DE-FG02-86ER53218, DE-AC02-09CH11466, and the SciDAC Center for Extended MHD Modeling.
Concept for a new hydrodynamic blood bearing for miniature blood pumps.
Kink, Thomas; Reul, Helmut
2004-10-01
The most crucial element of a long-term implantable rotary blood pump is the rotor bearing. Because of heat generation and power loss resulting from friction, seals within the devices have to be avoided. Actively controlled magnetic bearings, although maintenance-free, increase the degree of complexity. Hydrodynamic bearings for magnetically coupled rotors may offer an alternative solution to this problem. Additionally, for miniature pumps, the load capacity of hydrodynamic bearings scales slower than that of, for example, magnetic bearings because of the cube-square-law. A special kind of hydrodynamic bearing is a spiral groove bearing (SGB), which features an excellent load capacity. Mock-loop tests showed that SGBs do not influence the hydraulic performance of the tested pumps. Although, as of now, the power consumption of the SBG is higher than for a mechanical pivot bearing, it is absolutely contact-free and has an unlimited lifetime. The liftoff of the rotor occurs already at 10% of design speed. Further tests and flow visualization studies on scaled-up models must demonstrate its overall blood compatibility.
A New Facility for Testing Superconducting Solenoid Magnets with Large Fringe Fields at Fermilab
DOE Office of Scientific and Technical Information (OSTI.GOV)
Orris, D.; Carcagno, R.; Nogiec, J.
2013-09-01
Testing superconducting solenoid with no iron flux return can be problematic for a magnet test facility due to the large magnetic fringe fields generated. These large external fields can interfere with the operation of equipment while precautions must be taken for personnel supporting the test. The magnetic forces between the solenoid under test and the external infrastructure must also be taken under consideration. A new test facility has been designed and built at Fermilab specifically for testing superconducting magnets with large external fringe fields. This paper discusses the test stand design, capabilities, and details of the instrumentation and controls withmore » data from the first solenoid tested in this facility: the Muon Ionization Cooling Experiment (MICE) coupling coil.« less
NASA Astrophysics Data System (ADS)
Burby, Joshua; Brizard, Alain
2017-10-01
Test-particle gyrocenter equations of motion play an essential role in the diagnosis of turbulent strongly-magnetized plasmas, and are playing an increasingly-important role in the formulation of kinetic-gyrokinetic hybrid models. Previous gyrocenter models required the knowledge of the perturbed electromagnetic potentials, which are not directly observable quantities (since they are gauge-dependent). A new gauge-free formulation of gyrocenter motion is presented, which enables gyrocenter trajectories to be determined using only measured values of the directly-observable electromagnetic field. Our gauge-free gyrokinetic theory is general enough to allow for gyroradius-scale fluctuations in both the electric and magnetic field. In addition, we provide gauge-free expressions for the charge and current densities produced by a distribution of gyrocenters, which explicitly include guiding-center and gyrocenter polarization and magnetization effects. This research was supported by the U.S. DOE Contract Nos. DE-SC0014032 (AB) and DE-AC05-06OR23100 (JB).
Almahmoud, Safieh; Vahdati, Nader; Rostron, Paul
2018-01-01
A monitoring solution was developed for detection of material loss in metals such as carbon steel using the force generated by permanent magnets in addition to the optical strain sensing technology. The working principle of the sensing system is related to the change in thickness of a steel plate, which typically occurs due to corrosion. As thickness decreases, the magnetostatic force between the magnet and the steel structure also decreases. This, in turn, affects the strain measured using the optical fiber. The sensor prototype was designed and built after verifying its sensitivity using a numerical model. The prototype was tested on steel plates of different thicknesses to establish the relationship between the metal thickness and measured strain. The results of experiments and numerical models demonstrate a strong relationship between the metal thickness and the measured strain values. PMID:29518006
NASA Astrophysics Data System (ADS)
Mullen, Christopher
Implementation of energy harvesting technology can provide a sustainable, remote power source for soldiers by reducing the battery weight and allowing them to stay in the field for longer periods of time. Among multiple energy conversion principles, electromagnetic induction can scavenge energy from wasted kinematic and vibration energy found from human motion. Hip displacement during human gait acts as a base excitation for an energy harvesting backpack system. The placement of a permanent magnet in this vibration environment results in relative motion of the magnet to the coil of copper wire, which induces an electric current. This current can be saved to a battery or capacitor bank installed on the backpack to be used to power electronic devices. The purpose of this research is to construct a reliable simulation model for an electromagnetic vibration energy harvester and use it for a multi-variable optimization algorithm to identify an optimal coil and magnet layout for highest power output. Key components of the coupled equations of motion such as the magnetic flux density and coil inductance are obtained using ANSYS multi-physics software or by measuring them. These components are fed into a harvester simulation model (e.g. coupled field equations of motion for the backpack harvester) that generates the electrical power output. The developed simulation model is verified with multiple case studies including an experimental test. Then the optimal design parameters in the simulation model (e.g., magnet layout, coil width, outer coil diameter, external load resistance) are identified for maximum power. Results from this study will pave the way for a more efficient energy harvesting backpack while providing better insight into the efficiency of magnet and coil layout for electromagnetic applications.
Experimental verification and optimization of a linear electromagnetic energy harvesting device
NASA Astrophysics Data System (ADS)
Mullen, Christopher; Lee, Soobum
2017-04-01
Implementation of energy harvesting technology can provide a sustainable, remote power source for soldiers by reducing the battery weight and allowing them to stay in the field for longer periods of time. Among multiple energy conversion principles, electromagnetic induction can scavenge energy from wasted kinematic and vibration energy found from human motion. Hip displacement during human gait acts as a base excitation for an energy harvesting backpack system. The placement of a permanent magnet in this vibration environment results in relative motion of the magnet to the coil of copper wire, which induces an electric current. This current can be saved to a battery or capacitor bank installed on the backpack to be used to power electronic devices. The purpose of this research is to construct a reliable simulation model for an electromagnetic vibration energy harvester and use it for a multi-variable optimization algorithm to identify an optimal coil and magnet layout for highest power output. Key components of the coupled equations of motion such as the magnetic flux density and coil inductance are obtained using ANSYS multi-physics software or by measuring them. These components are fed into a harvester simulation model (e.g. coupled field equations of motion for the backpack harvester) that generates the electrical power output. The developed simulation model is verified with a case study including an experimental test. Then the optimal design parameters in the simulation model (e.g., magnet layout, coil width, outer coil diameter, external load resistance) are identified for maximum power. Results from this study will pave the way for a more efficient energy harvesting backpack while providing better insight into the efficiency of magnet and coil layout for electromagnetic applications.
Numerical modeling of probe velocity effects for electromagnetic NDE methods
NASA Astrophysics Data System (ADS)
Shin, Y. K.; Lord, W.
The present discussion of magnetic flux (MLF) leakage inspection introduces the behavior of motion-induced currents. The results obtained indicate that velocity effects exist at even low probe speeds for magnetic materials, compelling the inclusion of velocity effects in MLF testing of oil pipelines, where the excitation level and pig speed are much higher than those used in the present work. Probe velocity effect studies should influence probe design, defining suitable probe speed limits and establishing training guidelines for defect-characterization schemes.
A 25-kW Series-Resonant Power Converter
NASA Technical Reports Server (NTRS)
Frye, R. J.; Robson, R. R.
1986-01-01
Prototype exhibited efficiency of 93.9 percent. 25-kW resonant dc/dc power converter designed, developed, fabricated, and tested, using Westinghouse D7ST transistors as high-power switches. D7ST transistor characterized for use as switch in series-resonant converters, and refined base-drive circuit developed. Technical base includes advanced switching magnetic, and filter components, mathematical circuit models, control philosophies, and switch-drive strategies. Power-system benefits such as lower losses when used for high-voltage distribution, and reduced magnetics and filter mass realized.
NASA Technical Reports Server (NTRS)
Virakas, G. I.; Matsyulevichyus, R. A.; Minkevichyus, K. P.; Potsyus, Z. Y.; Shirvinskas, B. D.
1973-01-01
Problems in measurement of irregularities in angular velocity of rotating assemblies in memory devices with rigid and flexible magnetic data carriers are discussed. A device and method for determination of change in angular velocities in various frequency and rotation rate ranges are examined. A schematic diagram of a photoelectric sensor for recording the signal pulses is provided. Mathematical models are developed to show the amount of error which can result from misalignment of the test equipment.
Pauchard, Y; Smith, M; Mintchev, M
2004-01-01
Magnetic resonance imaging (MRI) suffers from geometric distortions arising from various sources. One such source are the non-linearities associated with the presence of metallic implants, which can profoundly distort the obtained images. These non-linearities result in pixel shifts and intensity changes in the vicinity of the implant, often precluding any meaningful assessment of the entire image. This paper presents a method for correcting these distortions based on non-rigid image registration techniques. Two images from a modelled three-dimensional (3D) grid phantom were subjected to point-based thin-plate spline registration. The reference image (without distortions) was obtained from a grid model including a spherical implant, and the corresponding test image containing the distortions was obtained using previously reported technique for spatial modelling of magnetic susceptibility artifacts. After identifying the nonrecoverable area in the distorted image, the calculated spline model was able to quantitatively account for the distortions, thus facilitating their compensation. Upon the completion of the compensation procedure, the non-recoverable area was removed from the reference image and the latter was compared to the compensated image. Quantitative assessment of the goodness of the proposed compensation technique is presented.
Magnetic Particle Testing, RQA/M1-5330.16.
ERIC Educational Resources Information Center
National Aeronautics and Space Administration, Huntsville, AL. George C. Marshall Space Flight Center.
As one in the series of classroom training handbooks, prepared by the U.S. space program, instructional material is presented in this volume concerning familiarization and orientation on magnetic particle testing. The subject is divided under the following headings: Introduction, Principles of Magnetic Particle Testing, Magnetic Particle Test…
Evaluation of aerodynamic derivatives from a magnetic balance system
NASA Technical Reports Server (NTRS)
Raghunath, B. S.; Parker, H. M.
1972-01-01
The dynamic testing of a model in the University of Virginia cold magnetic balance wind-tunnel facility is expected to consist of measurements of the balance forces and moments, and the observation of the essentially six degree of freedom motion of the model. The aerodynamic derivatives of the model are to be evaluated from these observations. The basic feasibility of extracting aerodynamic information from the observation of a model which is executing transient, complex, multi-degree of freedom motion is demonstrated. It is considered significant that, though the problem treated here involves only linear aerodynamics, the methods used are capable of handling a very large class of aerodynamic nonlinearities. The basic considerations include the effect of noise in the data on the accuracy of the extracted information. Relationships between noise level and the accuracy of the evaluated aerodynamic derivatives are presented.
NASA Technical Reports Server (NTRS)
Schuck, Peter W.; Linton, Mark; Muglach, Karin; Welsch, Brian; Hageman, Jacob
2010-01-01
The imminent launch of Solar Dynamics Observatory (SDO) will carry the first full-disk imaging vector magnetograph, the Helioseismic and Magnetic Imager (HMI), into an inclined geosynchronous orbit. This magnetograph will provide nearly continuous measurements of photospheric vector magnetic fields at cadences of 90 seconds to 12 minutes with I" resolution, precise pointing, and unfettered by atmospheric seeing. The enormous data stream of 1.5 Terabytes per day from SDO will provide an unprecedented opportunity to understand the mysteries of solar eruptions. These ground-breaking observations will permit the application of a new technique, the differential affine velocity estimator for vector magnetograms (DAVE4VM), to measure photospheric plasma flows in active regions. These measurements will permit, for the first time, accurate assessments of the coronal free energy available for driving CMEs and flares. The details of photospheric plasma flows, particularly along magnetic neutral-lines, are critical to testing models for initiating coronal mass ejections (CMEs) and flares. Assimilating flows and fields into state-of-the art 3D MHD simulations that model the highly stratified solar atmosphere from the convection zone to the corona represents the next step towards achieving NASA's Living with a Star forecasting goals of predicting "when a solar eruption leading to a CME will occur." This talk will describe these major science and predictive advances that will be delivered by SDO /HMI.
NASA Technical Reports Server (NTRS)
Schuck, Peter W.; Linton, M.; Muglach, K.; Hoeksema, T.
2010-01-01
The Solar Dynamics Observatory (SDO) is carrying the first full-disk imaging vector magnetograph, the Helioseismic and Magnetic Imager (HMI), into an inclined geosynchronous orbit. This magnetograph will provide nearly continuous measurements of photospheric vector magnetic fields at cadences of 90 seconds to 12 minutes with 1" resolution, precise pointing, and unfettered by atmospheric seeing. The enormous data stream of 1.5 Terabytes per day from SAO will provide an unprecedented opportunity to understand the mysteries of solar eruptions. These ground-breaking observations will permit the application of a new technique, the differential affine velocity estimator for vector magnetograms (DAVE4VM), to measure photospheric plasma flows in active regions. These measurements will permit, for the first time, accurate assessments of the coronal free energy available for driving CMEs and flares. The details of photospheric plasma flows, particularly along magnetic neutral-lines, are critical to testing models for initiating coronal mass ejections (CMEs) and flares. Assimilating flows and fields into state-of-the art 3D MHD simulations that model the highly stratified solar atmosphere from the convection zone to the corona represents the next step towards achieving NASA's Living with a Star forecasting goals of predicting "when a solar eruption leading to a CME will occur." Our presentation will describe these major science and predictive advances that will be delivered by SDO/HMI.
Single rotating stars and the formation of bipolar planetary nebula
DOE Office of Scientific and Technical Information (OSTI.GOV)
García-Segura, G.; Villaver, E.; Langer, N.
2014-03-10
We have computed new stellar evolution models that include the effects of rotation and magnetic torques under different hypotheses. The goal is to test whether a single star can sustain the rotational velocities needed in the envelope for magnetohydrodynamical(MHD) simulations to shape bipolar planetary nebulae (PNe) when high mass-loss rates take place. Stellar evolution models with main sequence masses of 2.5 and 5 M {sub ☉} and initial rotational velocities of 250 km s{sup –1} have been followed through the PNe formation phase. We find that stellar cores have to be spun down using magnetic torques in order to reproducemore » the rotation rates observed for white dwarfs. During the asymptotic giant branch phase and beyond, the magnetic braking of the core has a practically null effect on increasing the rotational velocity of the envelope since the stellar angular momentum is efficiently removed by the wind. We have also tested the best possible case scenarios in rather non-physical contexts to give enough angular momentum to the envelope. We find that we cannot get the envelope of a single star to rotate at the speeds needed for MHD simulations to form bipolar PNe. We conclude that single stellar rotators are unlikely to be the progenitors of bipolar PNe under the current MHD model paradigm.« less
Kameda, Takashi; Ohkuma, Kazuo; Sano, Natsuki; Ogura, Hideo; Terada, Kazuto
2012-01-01
Very weak electrical, magnetic and ultrasound signal stimulations are known to promote the formation, metabolism, restoration and stability of bone and surrounding tissues after treatment and operations. We have therefore investigated the possibility of intraoral generation of electricity and magnetism by occlusal force in an in vitro study. Biting bimorph piezoelectric elements with lead zirconate titanate (PZT) using dental models generated appropriate magnetism for bone formation, i. e. 0.5-0.6 gauss, and lower electric currents and higher voltages, i. e. 2.0-6.0 μA at 10-22 V (appropriate levels are 30 μA and 1.25 V), as observed by a universal testing machine. The electric currents and voltages could be changed using amplifier circuits. These results show that intraoral generation of electricity and magnetism is possible and could provide post-operative stabilization and activation of treated areas of bone and the surrounding tissues directly and/or indirectly by electrical, magnetic and ultrasound stimulation, which could accelerate healing.
Construction of a Thermal Vacuum Chamber for Environment Test of Triple CubeSat Mission TRIO-CINEMA
NASA Astrophysics Data System (ADS)
Jeon, Jeheon; Lee, Seongwhan; Yoon, Seyoung; Seon, Jongho; Jin, Ho; Lee, Donghun; Lin, Robert P.
2013-12-01
TRiplet Ionospheric Observatory-CubeSat for Ion, Neutron, Electron & MAgnetic fields (TRIO-CINEMA) is a CubeSat with 3.14 kg in weight and 3-U (10 × 10 × 30 cm) in size, jointly developed by Kyung Hee University and UC Berkeley to measure magnetic fields of near Earth space and detect plasma particles. When a satellite is launched into orbit, it encounters ultrahigh vacuum and extreme temperature. To verify the operation and survivability of the satellite in such an extreme space environment, experimental tests are conducted on the ground using thermal vacuum chamber. This paper describes the temperature control device and monitoring system suitable for CubeSat test environment using the thermal vacuum chamber of the School of Space Research, Kyung Hee University. To build the chamber, we use a general purpose thermal analysis program and NX 6.0 TMG program. We carry out thermal vacuum tests on the two flight models developed by Kyung Hee University based on the thermal model of the TRIO-CINEMA satellite. It is expected from this experiment that proper operation of the satellite in the space environment will be achieved.
Three-Dimensional Electron Optics Model Developed for Traveling-Wave Tubes
NASA Technical Reports Server (NTRS)
Kory, Carol L.
2000-01-01
A three-dimensional traveling-wave tube (TWT) electron beam optics model including periodic permanent magnet (PPM) focusing has been developed at the NASA Glenn Research Center at Lewis Field. This accurate model allows a TWT designer to develop a focusing structure while reducing the expensive and time-consuming task of building the TWT and hot-testing it (with the electron beam). In addition, the model allows, for the first time, an investigation of the effect on TWT operation of the important azimuthally asymmetric features of the focusing stack. The TWT is a vacuum device that amplifies signals by transferring energy from an electron beam to a radiofrequency (RF) signal. A critically important component is the focusing structure, which keeps the electron beam from diverging and intercepting the RF slow wave circuit. Such an interception can result in excessive circuit heating and decreased efficiency, whereas excessive growth in the beam diameter can lead to backward wave oscillations and premature saturation, indicating a serious reduction in tube performance. The most commonly used focusing structure is the PPM stack, which consists of a sequence of cylindrical iron pole pieces and opposite-polarity magnets. Typically, two-dimensional electron optics codes are used in the design of magnetic focusing devices. In general, these codes track the beam from the gun downstream by solving equations of motion for the electron beam in static-electric and magnetic fields in an azimuthally symmetric structure. Because these two-dimensional codes cannot adequately simulate a number of important effects, the simulation code MAFIA (solution of Maxwell's equations by the Finite-Integration-Algorithm) was used at Glenn to develop a three-dimensional electron optics model. First, a PPM stack was modeled in three dimensions. Then, the fields obtained using the magnetostatic solver were loaded into a particle-in-cell solver where the fully three-dimensional behavior of the beam was simulated in the magnetic focusing field. For the first time, the effects of azimuthally asymmetric designs and critical azimuthally asymmetric characteristics of the focusing stack (such as shunts, C-magnets, or magnet misalignment) on electron beam behavior have been investigated. A cutaway portion of a simulated electron beam focused by a PPM stack is illustrated.
NASA Technical Reports Server (NTRS)
1985-01-01
Extensive computer based engineering design effort resulted in optimization of a superconducting magnet design with an average bulk current density of approximately 12KA/cm(2). Twisted, stranded 0.0045 inch diameter NbTi superconductor in a copper matrix was selected. Winding the coil from this bundle facilitated uniform winding of the small diameter wire. Test coils were wound using a first lot of the wire. The actual packing density was measured from these. Interwinding voltage break down tests on the test coils indicated the need for adjustment of the wire insulation on the lot of wire subsequently ordered for construction of the delivered superconducting magnet. Using the actual packing densities from the test coils, a final magnet design, with the required enhancement and field profile, was generated. All mechanical and thermal design parameters were then also fixed. The superconducting magnet was then fabricated and tested. The first test was made with the magnet immersed in liquid helium at 4.2K. The second test was conducted at 2K in vacuum. In the latter test, the magnet was conduction cooled from the mounting flange end.
Leclerc, Gwladys E.; Debernard, Laetitia; Foucart, Félix; Robert, Ludovic; Pelletier, Kay M.; Charleux, Fabrice; Ehman, Richard; Tho, Marie-Christine Ho Ba; Bensamoun, Sabine F.
2012-01-01
The purpose of this study was to create a polymer phantom mimicking the mechanical properties of soft tissues using experimental tests and rheological models. Multifrequency Magnetic Resonance Elastography (MMRE) tests were performed on the present phantom with a pneumatic driver to characterize the viscoelastic (μ, η) properties using Voigt, Maxwell, Zener and Springpot models. To optimize the MMRE protocol, the driver behavior was analyzed with a vibrometer. Moreover, the hyperelastic properties of the phantom were determined using compressive tests and Mooney-Rivlin model. The range of frequency to be used with the round driver was found between 60 Hz and 100 Hz as it exhibits one type of vibration mode for the membrane. MRE analysis revealed an increase in the shear modulus with frequency reflecting the viscoelastic properties of the phantom showing similar characteristic of soft tissues. Rheological results demonstrated that Springpot model better revealed the viscoelastic properties (μ = 3.45 kPa, η = 6.17 Pa.s) of the phantom and the Mooney-Rivlin coefficients were C10 = 1.09.10-2 MPa and C01 = −8.96.10-3 MPa corresponding to μ = 3.95 kPa. These studies suggest that the phantom, mimicking soft tissue, could be used for preliminary MRE tests to identify the optimal parameters necessary for in vivo investigations. Further developments of the phantom may allow clinicians to more accurately mimic healthy and pathological soft tissues using MRE. PMID:22284992
Leclerc, Gwladys E; Debernard, Laëtitia; Foucart, Félix; Robert, Ludovic; Pelletier, Kay M; Charleux, Fabrice; Ehman, Richard; Ho Ba Tho, Marie-Christine; Bensamoun, Sabine F
2012-04-05
The purpose of this study was to create a polymer phantom mimicking the mechanical properties of soft tissues using experimental tests and rheological models. Multifrequency Magnetic Resonance Elastography (MMRE) tests were performed on the present phantom with a pneumatic driver to characterize the viscoelastic (μ, η) properties using Voigt, Maxwell, Zener and Springpot models. To optimize the MMRE protocol, the driver behavior was analyzed with a vibrometer. Moreover, the hyperelastic properties of the phantom were determined using compressive tests and Mooney-Rivlin model. The range of frequency to be used with the round driver was found between 60 Hz and 100 Hz as it exhibits one type of vibration mode for the membrane. MRE analysis revealed an increase in the shear modulus with frequency reflecting the viscoelastic properties of the phantom showing similar characteristic of soft tissues. Rheological results demonstrated that Springpot model better revealed the viscoelastic properties (μ=3.45 kPa, η=6.17 Pas) of the phantom and the Mooney-Rivlin coefficients were C(10)=1.09.10(-2) MPa and C(01)=-8.96.10(-3) MPa corresponding to μ=3.95 kPa. These studies suggest that the phantom, mimicking soft tissue, could be used for preliminary MRE tests to identify the optimal parameters necessary for in vivo investigations. Further developments of the phantom may allow clinicians to more accurately mimic healthy and pathological soft tissues using MRE. Copyright © 2012 Elsevier Ltd. All rights reserved.
Magnetic strength and corrosion of rare earth magnets.
Ahmad, Khalid A; Drummond, James L; Graber, Thomas; BeGole, Ellen
2006-09-01
Rare earth magnets have been used in orthodontics, but their corrosion tendency in the oral cavity limits long-term clinical application. The aim of this project was to evaluate several; magnet coatings and their effects on magnetic flux density. A total of 60 neodymium-iron-boron magnets divided into 6 equal groups--polytetrafluoroethylene-coated (PTFE), parylene-coated, and noncoated--were subjected to 4 weeks of aging in saline solution, ball milling, and corrosion testing. A significant decrease in magnet flux density was recorded after applying a protective layer of parylene, whereas a slight decrease was found after applying a protective layer of PTFE. After 4 weeks of aging, the coated magnets were superior to the noncoated magnets in retaining magnetism. The corrosion-behavior test showed no significant difference between the 2 types of coated magnets, and considerable amounts of iron-leached ions were seen in all groups. Throughout the processes of coating, soaking, ball milling, and corrosion testing, PTFE was a better coating material than parylene for preserving magnet flux density. However, corrosion testing showed significant metal leaching in all groups.
Development of Modeling and Simulation for Magnetic Particle Inspection Using Finite Elements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Jun-Youl
2003-01-01
Magnetic particle inspection (MPI) is a widely used nondestructive inspection method for aerospace applications essentially limited to experiment-based approaches. The analysis of MPI characteristics that affect sensitivity and reliability contributes not only reductions in inspection design cost and time but also improvement of analysis of experimental data. Magnetic particles are easily attracted toward a high magnetic field gradient. Selection of a magnetic field source, which produces a magnetic field gradient large enough to detect a defect in a test sample or component, is an important factor in magnetic particle inspection. In this work a finite element method (FEM) has beenmore » employed for numerical calculation of the MPI simulation technique. The FEM method is known to be suitable for complicated geometries such as defects in samples. This thesis describes the research that is aimed at providing a quantitative scientific basis for magnetic particle inspection. A new FEM solver for MPI simulation has been developed in this research for not only nonlinear reversible permeability materials but also irreversible hysteresis materials that are described by the Jiles-Atherton model. The material is assumed to have isotropic ferromagnetic properties in this research (i.e., the magnetic properties of the material are identical in all directions in a single crystal). In the research, with a direct current field mode, an MPI situation has been simulated to measure the estimated volume of magnetic particles around defect sites before and after removing any external current fields. Currently, this new MPI simulation package is limited to solving problems with the single current source from either a solenoid or an axial directional current rod.« less
Final report on the Controlled Cold Helium Spill Test in the LHC tunnel at CERN
NASA Astrophysics Data System (ADS)
Dufay-Chanat, L.; Bremer, J.; Casas-Cubillos, J.; Chorowski, M.; Grabowski, M.; Jedrusyna, A.; Lindell, G.; Nonis, M.; Koettig, T.; Vauthier, N.; van Weelderen, R.; Winkler, T.
2015-12-01
The 27 km circumference LHC underground tunnel is a space in which the helium cooled LHC magnets are installed. The vacuum enclosures of the superconducting magnets are protected by over-pressure safety relief devices that open whenever cold helium escapes either from the magnet cold enclosure or from the helium supply headers, into this vacuum enclosure. A 3-m long no stay zone around these devices is defined based on scale model studies, protecting the personnel against cold burns or asphyxia caused by such a helium release event. Recently, several simulation studies have been carried out modelling the propagation of the helium/air mixture, resulting from the opening of such a safety device, along the tunnel. The released helium flows vary in the range between 1 kg/s and 0.1 kg/s. To validate these different simulation studies, real life mock-up tests have been performed inside the LHC tunnel, releasing helium flow rates of 1 kg/s, 0.3 kg/s and 0.1 kg/s. For each test, up to 1000 liters of liquid helium were released under standard operational tunnel conditions. The data recorded include oxygen concentration, temperature and flow speed measurements, and video footage used to assess qualitatively the visibility. These measurements have been made in the up- and downstream directions, with respect to the air ventilation flow, of the spill point. This paper presents the experimental set-up under which these release tests were made, the effects of these releases on the atmospheric tunnel condition as a function of the release flow rate. We discuss the modification to the personnel access conditions to the LHC tunnel that are presently implemented as a result of these tests.
Vertical repositioning accuracy of magnetic mounting systems on 4 articulator models.
Lee, Wonsup; Kwon, Ho-Beom
2018-03-01
Research of the ability of a cast mounted on an articulator on maintaining the identical position of a cast mounted on an articulator after repeated repositioning is lacking, despite the possible effects this may have on the occlusion of a mounted cast. The purpose of this in vitro study was to verify and compare the vertical repositioning accuracy of 4 different, commercially available articulator magnetic mounting plate systems. Four articulators and their associated magnetic mounting plates were selected for the study. These were the Artex AR articulator (Amann Girrbach AG), the Denar Mark II articulator (Whip Mix Corp), the Kavo Protar Evo articulator (Kavo Dental GmbH), and the SAM3 articulator (SAM Präzisionstechnik GmbH). Three new magnetic mounting plates were prepared for each articulator system. The repositioning accuracy of each mounting plate was evaluated by comparing the standard deviation of the vertical distances measured between the mounting plate and a laser displacement sensor. The lower arm of the articulator was secured, and the vertical distance was measured by positioning the laser displacement sensor positioned vertically above the mounting plate. Once the vertical distance was measured, the mounting plate was detached from the articulator and reattached manually to prepare for the next measurement. This procedure was repeated 30 times for each of the 3 magnetic mounting plates. Data were analyzed by ANOVA for 2-stage nested design and the Levene test (α=.05). Significant differences were detected among articulator systems and between magnetic mounting plates of the same type. The standard deviations of the measurements made with the Artex AR articulator, Denar Mark II articulator, Kavo Protar Evo articulator, and SAM3 articulator were 0.0027, 0.0308, 0.0214, and 0.0215 mm, respectively. Thus, the repositioning accuracy could be ranked in the order as follows: Artex AR, Kavo Protar Evo, SAM3, and Denar Mark II. The position of the magnetic mounting plate after repositioning did not maintain an identical position in the vertical dimension on any of the 4 articulator models tested. The repositioning accuracy of the mounting plates showed significant differences among the articulators tested in this study. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Modeling and testing of ethernet transformers
NASA Astrophysics Data System (ADS)
Bowen, David
2011-12-01
Twisted-pair Ethernet is now the standard home and office last-mile network technology. For decades, the IEEE standard that defines Ethernet has required electrical isolation between the twisted pair cable and the Ethernet device. So, for decades, every Ethernet interface has used magnetic core Ethernet transformers to isolate Ethernet devices and keep users safe in the event of a potentially dangerous fault on the network media. The current state-of-the-art Ethernet transformers are miniature (<5mm diameter) ferrite-core toroids wrapped with approximately 10 to 30 turns of wire. As small as current Ethernet transformers are, they still limit further Ethernet device miniaturization and require a separate bulky package or jack housing. New coupler designs must be explored which are capable of exceptional miniaturization or on-chip fabrication. This dissertation thoroughly explores the performance of the current commercial Ethernet transformers to both increase understanding of the device's behavior and outline performance parameters for replacement devices. Lumped element and distributed circuit models are derived; testing schemes are developed and used to extract model parameters from commercial Ethernet devices. Transfer relation measurements of the commercial Ethernet transformers are compared against the model's behavior and it is found that the tuned, distributed models produce the best transfer relation match to the measured data. Process descriptions and testing results on fabricated thin-film dielectric-core toroid transformers are presented. The best results were found for a 32-turn transformer loaded with 100Ω, the impedance of twisted pair cable. This transformer gave a flat response from about 10MHz to 40MHz with a height of approximately 0.45. For the fabricated transformer structures, theoretical methods to determine resistance, capacitance and inductance are presented. A special analytical and numerical analysis of the fabricated transformer inductance is presented. Planar cuts of magnetic slope fields around the dielectric-core toroid are shown that describe the effect of core height and winding density on flux uniformity without a magnetic core.
Annealing displacement damage in GaAs LEDs: another Galileo success story
NASA Technical Reports Server (NTRS)
Swift, G. M.; Levanas, G. C.; Ratliff, J. M.; Johnston, A. H.
2003-01-01
A recent failure of Galileo's magnetic recorder was identified as LED degradation. Annealing the culprit OP133s proved successful and the irreplaceable data was recovered. Test data and modeling results calibrate an understanding of this incident.
NASA Technical Reports Server (NTRS)
Barraclough, D. R.; Hide, R.; Leaton, B. R.; Lowes, F. J.; Malin, S. R. C.; Wilson, R. L. (Principal Investigator)
1981-01-01
The data processing of MAGSAT investigator B test tapes and data tapes, and tapes of selected data on 15 magnetically quiet days is reported. The 1980 World Chart spherical model was compared with the MAGSAT (3/80) and MAGSAT vector data were used in the models. An article on modelling the geomagnetic field using satellite data is included.
NASA Astrophysics Data System (ADS)
Glane, Sebastian; Reich, Felix A.; Müller, Wolfgang H.
2017-11-01
This study is dedicated to continuum-scale material modeling of isotropic permanent magnets. An affine-linear extension to the commonly used ideal hard model for permanent magnets is proposed, motivated, and detailed. In order to demonstrate the differences between these models, bar and horseshoe magnets are considered. The structure of the boundary value problem for the magnetic field and related solution techniques are discussed. For the ideal model, closed-form analytical solutions were obtained for both geometries. Magnetic fields of the boundary value problems for both models and differently shaped magnets were computed numerically by using the boundary element method. The results show that the character of the magnetic field is strongly influenced by the model that is used. Furthermore, it can be observed that the shape of an affine-linear magnet influences the near-field significantly. Qualitative comparisons with experiments suggest that both the ideal and the affine-linear models are relevant in practice, depending on the magnetic material employed. Mathematically speaking, the ideal magnetic model is a special case of the affine-linear one. Therefore, in applications where knowledge of the near-field is important, the affine-linear model can yield more accurate results—depending on the magnetic material.
An Evaluation of Reaction Wheel Emitted Vibrations for Large Space Telescope
NASA Technical Reports Server (NTRS)
1976-01-01
Emitted force and torque vibration were measured in three axes for three Sperry reaction wheels. Data were taken for both hard and soft mounts; tests were conducted at constant speeds and during runup-rundown over a 0 to 5000 rpm range. A FSC, 7 ft-lb-sec and HEAO, 30 ft-lb-sec ball bearing reaction wheel and a model magnetic bearing were tested. Data analysis was conducted to identify the principal resonances in the 10 to 120 Hz region. Although some particular phenomena remain unexplained, in general good agreement is attained between the analytical predictions and test data. Predictions were also made of the expected emitted vibrations for an LST sized ball bearing and magnetic bearing reaction wheel using engineering judgment and the test data obtained. Additional tests were also run on the 101H duplex bearing pairs used in the reaction wheel suspension to determine bearing stiffness characteristics in the pre-breakaway zero speed region.
NASA Technical Reports Server (NTRS)
Dye, W. H.; Lockman, W. K.
1975-01-01
The results of a hypersonic wind tunnel test program conducted using a 0.0175 scale thin-skin thermocouple model of the Space Shuttle Orbiter to obtain aerodynamic heat transfer data on the Orbiter under simulated reentry conditions were presented. The test program was conducted at a Mach number of 7.3 and a freestream Reynolds number ranging between 1.0 and 6.0 million/foot. The model was tested for angles of attack ranging between 10 deg and 30 deg and a sideslip angle of 0 deg. The model was constructed of 15-5 PH stainless steel with the instrumented areas machined to a nominal skin thickness of 0.030 in. The model instrumentation consisted of 288 iron-constantan thermocouples spot welded to the skin inner surface, but only 75 of these were used in this test program. A high-speed, analog-to-digital data acquisition system was used to record data on magnetic tape.
NASA Astrophysics Data System (ADS)
Brymora, Katarzyna; Calvayrac, Florent
2017-07-01
We performed ab initio computations of the magnetic properties of simple iron oxide clusters and slabs. We considered an iron oxide cluster functionalized by a molecule or glued to a gold cluster of the same size. We also considered a magnetite slab coated by cobalt oxide or a mixture of iron oxide and cobalt oxide. The changes in magnetic behavior were explored using constrained magnetic calculations. A possible value for the surface anisotropy was estimated from the fit of a classical Heisenberg model on ab initio results. The value was found to be compatible with estimations obtained by other means, or inferred from experimental results. The addition of a ligand, coating, or of a metallic nanoparticle to the systems degraded the quality of the description by the Heisenberg Hamiltonian. Proposing a change in the anisotropies allowing for the proportion of each transition atom we could get a much better description of the magnetism of series of hybrid cobalt and iron oxide systems.
Magnetic Orientation in Birds and Other Animals
NASA Astrophysics Data System (ADS)
Wiltschko, Wolfgang
The use of the geomagnetic field for compass orientation is widespread among animals, with two types of magnetic compass mechanisms described: an shape inclination compass in birds, turtles and salamanders and a shape polarity compass in arthropods, fishes and mammals. Additionally, some vertebrates appear to derive positional information from the total intensity and/or inclination of the geomagnetic field. For magnetoreception by animals, two models are currently discussed, the shape Radical Pair model assuming light-dependent processes by specialized photopigments, and the shape Magnetite hypothesis proposing magnetoreception by crystals of magnetite, Fe304. Behavioral experiments with migratory birds, testing them under monochromatic lights and subjecting them to a brief, strong pulse that could reverse the magnetization of magnetite particles, produced evidence for both mechanisms. However, monochromatic lights affect old, experienced and young birds alike, whereas the pulse affects only experienced birds, leaving young, inexperienced birds unaffected. These observations suggest that a radical pair mechanism provides birds with directional information for their innate magnetic compass and a magnetite-based mechanism possibly mediates information about total intensity for indicating position.