Sedimentary Geothermal Feasibility Study: October 2016
DOE Office of Scientific and Technical Information (OSTI.GOV)
Augustine, Chad; Zerpa, Luis
The objective of this project is to analyze the feasibility of commercial geothermal projects using numerical reservoir simulation, considering a sedimentary reservoir with low permeability that requires productivity enhancement. A commercial thermal reservoir simulator (STARS, from Computer Modeling Group, CMG) is used in this work for numerical modeling. In the first stage of this project (FY14), a hypothetical numerical reservoir model was developed, and validated against an analytical solution. The following model parameters were considered to obtain an acceptable match between the numerical and analytical solutions: grid block size, time step and reservoir areal dimensions; the latter related to boundarymore » effects on the numerical solution. Systematic model runs showed that insufficient grid sizing generates numerical dispersion that causes the numerical model to underestimate the thermal breakthrough time compared to the analytic model. As grid sizing is decreased, the model results converge on a solution. Likewise, insufficient reservoir model area introduces boundary effects in the numerical solution that cause the model results to differ from the analytical solution.« less
Modeling flow and solute transport in irrigation furrows
USDA-ARS?s Scientific Manuscript database
This paper presents an internally coupled flow and solute transport model for free-draining irrigation furrows. Furrow hydraulics is simulated with a numerical zero-inertia model and solute transport is computed with a model based on a numerical solution of the cross-section averaged advection-dispe...
NASA Astrophysics Data System (ADS)
Gómez-Aguilar, J. F.
2018-03-01
In this paper, we analyze an alcoholism model which involves the impact of Twitter via Liouville-Caputo and Atangana-Baleanu-Caputo fractional derivatives with constant- and variable-order. Two fractional mathematical models are considered, with and without delay. Special solutions using an iterative scheme via Laplace and Sumudu transform were obtained. We studied the uniqueness and existence of the solutions employing the fixed point postulate. The generalized model with variable-order was solved numerically via the Adams method and the Adams-Bashforth-Moulton scheme. Stability and convergence of the numerical solutions were presented in details. Numerical examples of the approximate solutions are provided to show that the numerical methods are computationally efficient. Therefore, by including both the fractional derivatives and finite time delays in the alcoholism model studied, we believe that we have established a more complete and more realistic indicator of alcoholism model and affect the spread of the drinking.
Documentation for the MODFLOW 6 framework
Hughes, Joseph D.; Langevin, Christian D.; Banta, Edward R.
2017-08-10
MODFLOW is a popular open-source groundwater flow model distributed by the U.S. Geological Survey. Growing interest in surface and groundwater interactions, local refinement with nested and unstructured grids, karst groundwater flow, solute transport, and saltwater intrusion, has led to the development of numerous MODFLOW versions. Often times, there are incompatibilities between these different MODFLOW versions. The report describes a new MODFLOW framework called MODFLOW 6 that is designed to support multiple models and multiple types of models. The framework is written in Fortran using a modular object-oriented design. The primary framework components include the simulation (or main program), Timing Module, Solutions, Models, Exchanges, and Utilities. The first version of the framework focuses on numerical solutions, numerical models, and numerical exchanges. This focus on numerical models allows multiple numerical models to be tightly coupled at the matrix level.
A modified dynamical model of drying process of polymer blend solution coated on a flat substrate
NASA Astrophysics Data System (ADS)
Kagami, Hiroyuki
2008-05-01
We have proposed and modified a model of drying process of polymer solution coated on a flat substrate for flat polymer film fabrication. And for example numerical simulation of the model reproduces a typical thickness profile of the polymer film formed after drying. Then we have clarified dependence of distribution of polymer molecules on a flat substrate on a various parameters based on analysis of numerical simulations. Then we drove nonlinear equations of drying process from the dynamical model and the fruits were reported. The subject of above studies was limited to solution having one kind of solute though the model could essentially deal with solution having some kinds of solutes. But nowadays discussion of drying process of a solution having some kinds of solutes is needed because drying process of solution having some kinds of solutes appears in many industrial scenes. Polymer blend solution is one instance. And typical resist consists of a few kinds of polymers. Then we introduced a dynamical model of drying process of polymer blend solution coated on a flat substrate and results of numerical simulations of the dynamical model. But above model was the simplest one. In this study, we modify above dynamical model of drying process of polymer blend solution adding effects that some parameters change with time as functions of some variables to it. Then we consider essence of drying process of polymer blend solution through comparison between results of numerical simulations of the modified model and those of the former model.
NASA Astrophysics Data System (ADS)
Gencoglu, Muharrem Tuncay; Baskonus, Haci Mehmet; Bulut, Hasan
2017-01-01
The main aim of this manuscript is to obtain numerical solutions for the nonlinear model of interpersonal relationships with time fractional derivative. The variational iteration method is theoretically implemented and numerically conducted only to yield the desired solutions. Numerical simulations of desired solutions are plotted by using Wolfram Mathematica 9. The authors would like to thank the reviewers for their comments that help improve the manuscript.
Flow and Heat Transfer Analysis of an Eyring-Powell Fluid in a Pipe
NASA Astrophysics Data System (ADS)
Ali, N.; Nazeer, F.; Nazeer, Mubbashar
2018-02-01
The steady non-isothermal flow of an Eyring-Powell fluid in a pipe is investigated using both perturbation and numerical methods. The results are presented for two viscosity models, namely the Reynolds model and the Vogel model. The shooting method is employed to compute the numerical solution. Criteria for validity of perturbation solution are developed. When these criteria are met, it is shown that the perturbation solution is in good agreement with the numerical solution. The influence of various emerging parameters on the velocity and temperature field is also shown.
NASA Technical Reports Server (NTRS)
Baldwin, B. S.; Maccormack, R. W.; Deiwert, G. S.
1975-01-01
The time-splitting explicit numerical method of MacCormack is applied to separated turbulent boundary layer flow problems. Modifications of this basic method are developed to counter difficulties associated with complicated geometry and severe numerical resolution requirements of turbulence model equations. The accuracy of solutions is investigated by comparison with exact solutions for several simple cases. Procedures are developed for modifying the basic method to improve the accuracy. Numerical solutions of high-Reynolds-number separated flows over an airfoil and shock-separated flows over a flat plate are obtained. A simple mixing length model of turbulence is used for the transonic flow past an airfoil. A nonorthogonal mesh of arbitrary configuration facilitates the description of the flow field. For the simpler geometry associated with the flat plate, a rectangular mesh is used, and solutions are obtained based on a two-equation differential model of turbulence.
Numerical Modeling in Geodynamics: Success, Failure and Perspective
NASA Astrophysics Data System (ADS)
Ismail-Zadeh, A.
2005-12-01
A real success in numerical modeling of dynamics of the Earth can be achieved only by multidisciplinary research teams of experts in geodynamics, applied and pure mathematics, and computer science. The success in numerical modeling is based on the following basic, but simple, rules. (i) People need simplicity most, but they understand intricacies best (B. Pasternak, writer). Start from a simple numerical model, which describes basic physical laws by a set of mathematical equations, and move then to a complex model. Never start from a complex model, because you cannot understand the contribution of each term of the equations to the modeled geophysical phenomenon. (ii) Study the numerical methods behind your computer code. Otherwise it becomes difficult to distinguish true and erroneous solutions to the geodynamic problem, especially when your problem is complex enough. (iii) Test your model versus analytical and asymptotic solutions, simple 2D and 3D model examples. Develop benchmark analysis of different numerical codes and compare numerical results with laboratory experiments. Remember that the numerical tool you employ is not perfect, and there are small bugs in every computer code. Therefore the testing is the most important part of your numerical modeling. (iv) Prove (if possible) or learn relevant statements concerning the existence, uniqueness and stability of the solution to the mathematical and discrete problems. Otherwise you can solve an improperly-posed problem, and the results of the modeling will be far from the true solution of your model problem. (v) Try to analyze numerical models of a geological phenomenon using as less as possible tuning model variables. Already two tuning variables give enough possibilities to constrain your model well enough with respect to observations. The data fitting sometimes is quite attractive and can take you far from a principal aim of your numerical modeling: to understand geophysical phenomena. (vi) If the number of tuning model variables are greater than two, test carefully the effect of each of the variables on the modeled phenomenon. Remember: With four exponents I can fit an elephant (E. Fermi, physicist). (vii) Make your numerical model as accurate as possible, but never put the aim to reach a great accuracy: Undue precision of computations is the first symptom of mathematical illiteracy (N. Krylov, mathematician). How complex should be a numerical model? A model which images any detail of the reality is as useful as a map of scale 1:1 (J. Robinson, economist). This message is quite important for geoscientists, who study numerical models of complex geodynamical processes. I believe that geoscientists will never create a model of the real Earth dynamics, but we should try to model the dynamics such a way to simulate basic geophysical processes and phenomena. Does a particular model have a predictive power? Each numerical model has a predictive power, otherwise the model is useless. The predictability of the model varies with its complexity. Remember that a solution to the numerical model is an approximate solution to the equations, which have been chosen in believe that they describe dynamic processes of the Earth. Hence a numerical model predicts dynamics of the Earth as well as the mathematical equations describe this dynamics. What methodological advances are still needed for testable geodynamic modeling? Inverse (time-reverse) numerical modeling and data assimilation are new methodologies in geodynamics. The inverse modeling can allow to test geodynamic models forward in time using restored (from present-day observations) initial conditions instead of unknown conditions.
Numerical Modeling of Ablation Heat Transfer
NASA Technical Reports Server (NTRS)
Ewing, Mark E.; Laker, Travis S.; Walker, David T.
2013-01-01
A unique numerical method has been developed for solving one-dimensional ablation heat transfer problems. This paper provides a comprehensive description of the method, along with detailed derivations of the governing equations. This methodology supports solutions for traditional ablation modeling including such effects as heat transfer, material decomposition, pyrolysis gas permeation and heat exchange, and thermochemical surface erosion. The numerical scheme utilizes a control-volume approach with a variable grid to account for surface movement. This method directly supports implementation of nontraditional models such as material swelling and mechanical erosion, extending capabilities for modeling complex ablation phenomena. Verifications of the numerical implementation are provided using analytical solutions, code comparisons, and the method of manufactured solutions. These verifications are used to demonstrate solution accuracy and proper error convergence rates. A simple demonstration of a mechanical erosion (spallation) model is also provided to illustrate the unique capabilities of the method.
Spurious Numerical Solutions Of Differential Equations
NASA Technical Reports Server (NTRS)
Lafon, A.; Yee, H. C.
1995-01-01
Paper presents detailed study of spurious steady-state numerical solutions of differential equations that contain nonlinear source terms. Main objectives of this study are (1) to investigate how well numerical steady-state solutions of model nonlinear reaction/convection boundary-value problem mimic true steady-state solutions and (2) to relate findings of this investigation to implications for interpretation of numerical results from computational-fluid-dynamics algorithms and computer codes used to simulate reacting flows.
NASA Astrophysics Data System (ADS)
Ahmed, E.; El-Sayed, A. M. A.; El-Saka, H. A. A.
2007-01-01
In this paper we are concerned with the fractional-order predator-prey model and the fractional-order rabies model. Existence and uniqueness of solutions are proved. The stability of equilibrium points are studied. Numerical solutions of these models are given. An example is given where the equilibrium point is a centre for the integer order system but locally asymptotically stable for its fractional-order counterpart.
NASA Astrophysics Data System (ADS)
Xu, Zexuan; Hu, Bill
2016-04-01
Dual-permeability karst aquifers of porous media and conduit networks with significant different hydrological characteristics are widely distributed in the world. Discrete-continuum numerical models, such as MODFLOW-CFP and CFPv2, have been verified as appropriate approaches to simulate groundwater flow and solute transport in numerical modeling of karst hydrogeology. On the other hand, seawater intrusion associated with fresh groundwater resources contamination has been observed and investigated in numbers of coastal aquifers, especially under conditions of sea level rise. Density-dependent numerical models including SEAWAT are able to quantitatively evaluate the seawater/freshwater interaction processes. A numerical model of variable-density flow and solute transport - conduit flow process (VDFST-CFP) is developed to provide a better description of seawater intrusion and submarine groundwater discharge in a coastal karst aquifer with conduits. The coupling discrete-continuum VDFST-CFP model applies Darcy-Weisbach equation to simulate non-laminar groundwater flow in the conduit system in which is conceptualized and discretized as pipes, while Darcy equation is still used in continuum porous media. Density-dependent groundwater flow and solute transport equations with appropriate density terms in both conduit and porous media systems are derived and numerically solved using standard finite difference method with an implicit iteration procedure. Synthetic horizontal and vertical benchmarks are created to validate the newly developed VDFST-CFP model by comparing with other numerical models such as variable density SEAWAT, couplings of constant density groundwater flow and solute transport MODFLOW/MT3DMS and discrete-continuum CFPv2/UMT3D models. VDFST-CFP model improves the simulation of density dependent seawater/freshwater mixing processes and exchanges between conduit and matrix. Continuum numerical models greatly overestimated the flow rate under turbulent flow condition but discrete-continuum models provide more accurate results. Parameters sensitivities analysis indicates that conduit diameter and friction factor, matrix hydraulic conductivity and porosity are important parameters that significantly affect variable-density flow and solute transport simulation. The pros and cons of model assumptions, conceptual simplifications and numerical techniques in VDFST-CFP are discussed. In general, the development of VDFST-CFP model is an innovation in numerical modeling methodology and could be applied to quantitatively evaluate the seawater/freshwater interaction in coastal karst aquifers. Keywords: Discrete-continuum numerical model; Variable density flow and transport; Coastal karst aquifer; Non-laminar flow
Analytical and numerical solution for wave reflection from a porous wave absorber
NASA Astrophysics Data System (ADS)
Magdalena, Ikha; Roque, Marian P.
2018-03-01
In this paper, wave reflection from a porous wave absorber is investigated theoretically and numerically. The equations that we used are based on shallow water type model. Modification of motion inside the absorber is by including linearized friction term in momentum equation and introducing a filtered velocity. Here, an analytical solution for wave reflection coefficient from a porous wave absorber over a flat bottom is derived. Numerically, we solve the equations using the finite volume method on a staggered grid. To validate our numerical model, comparison of the numerical reflection coefficient is made against the analytical solution. Further, we implement our numerical scheme to study the evolution of surface waves pass through a porous absorber over varied bottom topography.
On the Possibilities of Predicting Geomagnetic Secular Variation with Geodynamo Modeling
NASA Technical Reports Server (NTRS)
Kuang, Wei-Jia; Tangborn, Andrew; Sabaka, Terrance
2004-01-01
We use our MoSST core dynamics model and geomagnetic field at the core-mantle boundary (CMB) continued downward from surface observations to investigate possibilities of geomagnetic data assimilation, so that model results and current geomagnetic observations can be used to predict geomagnetic secular variation in future. As the first attempt, we apply data insertion technique to examine evolution of the model solution that is modified by geomagnetic input. Our study demonstrate that, with a single data insertion, large-scale poloidal magnetic field obtained from subsequent numerical simulation evolves similarly to the observed geomagnetic variation, regardless of the initial choice of the model solution (so long it is a well developed numerical solution). The model solution diverges on the time scales on the order of 60 years, similar to the time scales of the torsional oscillations in the Earth's core. Our numerical test shows that geomagnetic data assimilation is promising with our MoSST model.
NASA Astrophysics Data System (ADS)
Gopalan, Giri; Hrafnkelsson, Birgir; Aðalgeirsdóttir, Guðfinna; Jarosch, Alexander H.; Pálsson, Finnur
2018-03-01
Bayesian hierarchical modeling can assist the study of glacial dynamics and ice flow properties. This approach will allow glaciologists to make fully probabilistic predictions for the thickness of a glacier at unobserved spatio-temporal coordinates, and it will also allow for the derivation of posterior probability distributions for key physical parameters such as ice viscosity and basal sliding. The goal of this paper is to develop a proof of concept for a Bayesian hierarchical model constructed, which uses exact analytical solutions for the shallow ice approximation (SIA) introduced by Bueler et al. (2005). A suite of test simulations utilizing these exact solutions suggests that this approach is able to adequately model numerical errors and produce useful physical parameter posterior distributions and predictions. A byproduct of the development of the Bayesian hierarchical model is the derivation of a novel finite difference method for solving the SIA partial differential equation (PDE). An additional novelty of this work is the correction of numerical errors induced through a numerical solution using a statistical model. This error correcting process models numerical errors that accumulate forward in time and spatial variation of numerical errors between the dome, interior, and margin of a glacier.
Preliminary numerical analysis of improved gas chromatograph model
NASA Technical Reports Server (NTRS)
Woodrow, P. T.
1973-01-01
A mathematical model for the gas chromatograph was developed which incorporates the heretofore neglected transport mechanisms of intraparticle diffusion and rates of adsorption. Because a closed-form analytical solution to the model does not appear realizable, techniques for the numerical solution of the model equations are being investigated. Criteria were developed for using a finite terminal boundary condition in place of an infinite boundary condition used in analytical solution techniques. The class of weighted residual methods known as orthogonal collocation is presently being investigated and appears promising.
Numerical Modelling of Foundation Slabs with use of Schur Complement Method
NASA Astrophysics Data System (ADS)
Koktan, Jiří; Brožovský, Jiří
2017-10-01
The paper discusses numerical modelling of foundation slabs with use of advanced numerical approaches, which are suitable for parallel processing. The solution is based on the Finite Element Method with the slab-type elements. The subsoil is modelled with use of Winklertype contact model (as an alternative a multi-parameter model can be used). The proposed modelling approach uses the Schur Complement method to speed-up the computations of the problem. The method is based on a special division of the analyzed model to several substructures. It adds some complexity to the numerical procedures, especially when subsoil models are used inside the finite element method solution. In other hand, this method makes possible a fast solution of large models but it introduces further problems to the process. Thus, the main aim of this paper is to verify that such method can be successfully used for this type of problem. The most suitable finite elements will be discussed, there will be also discussion related to finite element mesh and limitations of its construction for such problem. The core approaches of the implementation of the Schur Complement Method for this type of the problem will be also presented. The proposed approach was implemented in the form of a computer program, which will be also briefly introduced. There will be also presented results of example computations, which prove the speed-up of the solution - there will be shown important speed-up of solution even in the case of on-parallel processing and the ability of bypass size limitations of numerical models with use of the discussed approach.
NASA Astrophysics Data System (ADS)
Markou, A. A.; Manolis, G. D.
2018-03-01
Numerical methods for the solution of dynamical problems in engineering go back to 1950. The most famous and widely-used time stepping algorithm was developed by Newmark in 1959. In the present study, for the first time, the Newmark algorithm is developed for the case of the trilinear hysteretic model, a model that was used to describe the shear behaviour of high damping rubber bearings. This model is calibrated against free-vibration field tests implemented on a hybrid base isolated building, namely the Solarino project in Italy, as well as against laboratory experiments. A single-degree-of-freedom system is used to describe the behaviour of a low-rise building isolated with a hybrid system comprising high damping rubber bearings and low friction sliding bearings. The behaviour of the high damping rubber bearings is simulated by the trilinear hysteretic model, while the description of the behaviour of the low friction sliding bearings is modeled by a linear Coulomb friction model. In order to prove the effectiveness of the numerical method we compare the analytically solved trilinear hysteretic model calibrated from free-vibration field tests (Solarino project) against the same model solved with the Newmark method with Netwon-Raphson iteration. Almost perfect agreement is observed between the semi-analytical solution and the fully numerical solution with Newmark's time integration algorithm. This will allow for extension of the trilinear mechanical models to bidirectional horizontal motion, to time-varying vertical loads, to multi-degree-of-freedom-systems, as well to generalized models connected in parallel, where only numerical solutions are possible.
Khan, Farman U; Qamar, Shamsul
2017-05-01
A set of analytical solutions are presented for a model describing the transport of a solute in a fixed-bed reactor of cylindrical geometry subjected to the first (Dirichlet) and third (Danckwerts) type inlet boundary conditions. Linear sorption kinetic process and first-order decay are considered. Cylindrical geometry allows the use of large columns to investigate dispersion, adsorption/desorption and reaction kinetic mechanisms. The finite Hankel and Laplace transform techniques are adopted to solve the model equations. For further analysis, statistical temporal moments are derived from the Laplace-transformed solutions. The developed analytical solutions are compared with the numerical solutions of high-resolution finite volume scheme. Different case studies are presented and discussed for a series of numerical values corresponding to a wide range of mass transfer and reaction kinetics. A good agreement was observed in the analytical and numerical concentration profiles and moments. The developed solutions are efficient tools for analyzing numerical algorithms, sensitivity analysis and simultaneous determination of the longitudinal and transverse dispersion coefficients from a laboratory-scale radial column experiment. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Numerical modeling of the radiative transfer in a turbid medium using the synthetic iteration.
Budak, Vladimir P; Kaloshin, Gennady A; Shagalov, Oleg V; Zheltov, Victor S
2015-07-27
In this paper we propose the fast, but the accurate algorithm for numerical modeling of light fields in the turbid media slab. For the numerical solution of the radiative transfer equation (RTE) it is required its discretization based on the elimination of the solution anisotropic part and the replacement of the scattering integral by a finite sum. The solution regular part is determined numerically. A good choice of the method of the solution anisotropic part elimination determines the high convergence of the algorithm in the mean square metric. The method of synthetic iterations can be used to improve the convergence in the uniform metric. A significant increase in the solution accuracy with the use of synthetic iterations allows applying the two-stream approximation for the regular part determination. This approach permits to generalize the proposed method in the case of an arbitrary 3D geometry of the medium.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Starodumov, Ilya; Kropotin, Nikolai
2016-08-10
We investigate the three-dimensional mathematical model of crystal growth called PFC (Phase Field Crystal) in a hyperbolic modification. This model is also called the modified model PFC (originally PFC model is formulated in parabolic form) and allows to describe both slow and rapid crystallization processes on atomic length scales and on diffusive time scales. Modified PFC model is described by the differential equation in partial derivatives of the sixth order in space and second order in time. The solution of this equation is possible only by numerical methods. Previously, authors created the software package for the solution of the Phasemore » Field Crystal problem, based on the method of isogeometric analysis (IGA) and PetIGA program library. During further investigation it was found that the quality of the solution can strongly depends on the discretization parameters of a numerical method. In this report, we show the features that should be taken into account during constructing the computational grid for the numerical simulation.« less
Numerical scheme approximating solution and parameters in a beam equation
NASA Astrophysics Data System (ADS)
Ferdinand, Robert R.
2003-12-01
We present a mathematical model which describes vibration in a metallic beam about its equilibrium position. This model takes the form of a nonlinear second-order (in time) and fourth-order (in space) partial differential equation with boundary and initial conditions. A finite-element Galerkin approximation scheme is used to estimate model solution. Infinite-dimensional model parameters are then estimated numerically using an inverse method procedure which involves the minimization of a least-squares cost functional. Numerical results are presented and future work to be done is discussed.
NASA Astrophysics Data System (ADS)
Yun, Ana; Shin, Jaemin; Li, Yibao; Lee, Seunggyu; Kim, Junseok
We numerically investigate periodic traveling wave solutions for a diffusive predator-prey system with landscape features. The landscape features are modeled through the homogeneous Dirichlet boundary condition which is imposed at the edge of the obstacle domain. To effectively treat the Dirichlet boundary condition, we employ a robust and accurate numerical technique by using a boundary control function. We also propose a robust algorithm for calculating the numerical periodicity of the traveling wave solution. In numerical experiments, we show that periodic traveling waves which move out and away from the obstacle are effectively generated. We explain the formation of the traveling waves by comparing the wavelengths. The spatial asynchrony has been shown in quantitative detail for various obstacles. Furthermore, we apply our numerical technique to the complicated real landscape features.
Computer Facilitated Mathematical Methods in Chemical Engineering--Similarity Solution
ERIC Educational Resources Information Center
Subramanian, Venkat R.
2006-01-01
High-performance computers coupled with highly efficient numerical schemes and user-friendly software packages have helped instructors to teach numerical solutions and analysis of various nonlinear models more efficiently in the classroom. One of the main objectives of a model is to provide insight about the system of interest. Analytical…
NASA Astrophysics Data System (ADS)
Malovichko, M.; Khokhlov, N.; Yavich, N.; Zhdanov, M.
2017-10-01
Over the recent decades, a number of fast approximate solutions of Lippmann-Schwinger equation, which are more accurate than classic Born and Rytov approximations, were proposed in the field of electromagnetic modeling. Those developments could be naturally extended to acoustic and elastic fields; however, until recently, they were almost unknown in seismology. This paper presents several solutions of this kind applied to acoustic modeling for both lossy and lossless media. We evaluated the numerical merits of those methods and provide an estimation of their numerical complexity. In our numerical realization we use the matrix-free implementation of the corresponding integral operator. We study the accuracy of those approximate solutions and demonstrate, that the quasi-analytical approximation is more accurate, than the Born approximation. Further, we apply the quasi-analytical approximation to the solution of the inverse problem. It is demonstrated that, this approach improves the estimation of the data gradient, comparing to the Born approximation. The developed inversion algorithm is based on the conjugate-gradient type optimization. Numerical model study demonstrates that the quasi-analytical solution significantly reduces computation time of the seismic full-waveform inversion. We also show how the quasi-analytical approximation can be extended to the case of elastic wavefield.
Application of geometric approximation to the CPMG experiment: Two- and three-site exchange.
Chao, Fa-An; Byrd, R Andrew
2017-04-01
The Carr-Purcell-Meiboom-Gill (CPMG) experiment is one of the most classical and well-known relaxation dispersion experiments in NMR spectroscopy, and it has been successfully applied to characterize biologically relevant conformational dynamics in many cases. Although the data analysis of the CPMG experiment for the 2-site exchange model can be facilitated by analytical solutions, the data analysis in a more complex exchange model generally requires computationally-intensive numerical analysis. Recently, a powerful computational strategy, geometric approximation, has been proposed to provide approximate numerical solutions for the adiabatic relaxation dispersion experiments where analytical solutions are neither available nor feasible. Here, we demonstrate the general potential of geometric approximation by providing a data analysis solution of the CPMG experiment for both the traditional 2-site model and a linear 3-site exchange model. The approximate numerical solution deviates less than 0.5% from the numerical solution on average, and the new approach is computationally 60,000-fold more efficient than the numerical approach. Moreover, we find that accurate dynamic parameters can be determined in most cases, and, for a range of experimental conditions, the relaxation can be assumed to follow mono-exponential decay. The method is general and applicable to any CPMG RD experiment (e.g. N, C', C α , H α , etc.) The approach forms a foundation of building solution surfaces to analyze the CPMG experiment for different models of 3-site exchange. Thus, the geometric approximation is a general strategy to analyze relaxation dispersion data in any system (biological or chemical) if the appropriate library can be built in a physically meaningful domain. Published by Elsevier Inc.
The Bean model in suprconductivity: Variational formulation and numerical solution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prigozhin, L.
The Bean critical-state model describes the penetration of magnetic field into type-II superconductors. Mathematically, this is a free boundary problem and its solution is of interest in applied superconductivity. We derive a variational formulation for the Bean model and use it to solve two-dimensional and axially symmetric critical-state problems numerically. 25 refs., 9 figs., 1 tab.
Kurylyk, Barret L.; McKenzie, Jeffrey M; MacQuarrie, Kerry T. B.; Voss, Clifford I.
2014-01-01
Numerous cold regions water flow and energy transport models have emerged in recent years. Dissimilarities often exist in their mathematical formulations and/or numerical solution techniques, but few analytical solutions exist for benchmarking flow and energy transport models that include pore water phase change. This paper presents a detailed derivation of the Lunardini solution, an approximate analytical solution for predicting soil thawing subject to conduction, advection, and phase change. Fifteen thawing scenarios are examined by considering differences in porosity, surface temperature, Darcy velocity, and initial temperature. The accuracy of the Lunardini solution is shown to be proportional to the Stefan number. The analytical solution results obtained for soil thawing scenarios with water flow and advection are compared to those obtained from the finite element model SUTRA. Three problems, two involving the Lunardini solution and one involving the classic Neumann solution, are recommended as standard benchmarks for future model development and testing.
Flow through three-dimensional arrangements of cylinders with alternating streamwise planar tilt
NASA Astrophysics Data System (ADS)
Sahraoui, M.; Marshall, H.; Kaviany, M.
1993-09-01
In this report, fluid flow through a three-dimensional model for the fibrous filters is examined. In this model, the three-dimensional Stokes equation with the appropriate periodic boundary conditions is solved using the finite volume method. In addition to the numerical solution, we attempt to model this flow analytically by using the two-dimensional extended analytic solution in each of the unit cells of the three-dimensional structure. Particle trajectories computed using the superimposed analytic solution of the flow field are closed to those computed using the numerical solution of the flow field. The numerical results show that the pressure drop is not affected significantly by the relative angle of rotation of the cylinders for the high porosity used in this study (epsilon = 0.8 and epsilon = 0.95). The numerical solution and the superimposed analytic solution are also compared in terms of the particle capture efficiency. The results show that the efficiency predictions using the two methods are within 10% for St = 0.01 and 5% for St = 100. As the the porosity decreases, the three-dimensional effect becomes more significant and a difference of 35% is obtained for epsilon = 0.8.
Arbitrary Steady-State Solutions with the K-epsilon Model
NASA Technical Reports Server (NTRS)
Rumsey, Christopher L.; Pettersson Reif, B. A.; Gatski, Thomas B.
2006-01-01
Widely-used forms of the K-epsilon turbulence model are shown to yield arbitrary steady-state converged solutions that are highly dependent on numerical considerations such as initial conditions and solution procedure. These solutions contain pseudo-laminar regions of varying size. By applying a nullcline analysis to the equation set, it is possible to clearly demonstrate the reasons for the anomalous behavior. In summary, the degenerate solution acts as a stable fixed point under certain conditions, causing the numerical method to converge there. The analysis also suggests a methodology for preventing the anomalous behavior in steady-state computations.
NASA Astrophysics Data System (ADS)
Harmon, Michael; Gamba, Irene M.; Ren, Kui
2016-12-01
This work concerns the numerical solution of a coupled system of self-consistent reaction-drift-diffusion-Poisson equations that describes the macroscopic dynamics of charge transport in photoelectrochemical (PEC) solar cells with reactive semiconductor and electrolyte interfaces. We present three numerical algorithms, mainly based on a mixed finite element and a local discontinuous Galerkin method for spatial discretization, with carefully chosen numerical fluxes, and implicit-explicit time stepping techniques, for solving the time-dependent nonlinear systems of partial differential equations. We perform computational simulations under various model parameters to demonstrate the performance of the proposed numerical algorithms as well as the impact of these parameters on the solution to the model.
A model for managing sources of groundwater pollution
Gorelick, Steven M.
1982-01-01
The waste disposal capacity of a groundwater system can be maximized while maintaining water quality at specified locations by using a groundwater pollutant source management model that is based upon linear programing and numerical simulation. The decision variables of the management model are solute waste disposal rates at various facilities distributed over space. A concentration response matrix is used in the management model to describe transient solute transport and is developed using the U.S. Geological Survey solute transport simulation model. The management model was applied to a complex hypothetical groundwater system. Large-scale management models were formulated as dual linear programing problems to reduce numerical difficulties and computation time. Linear programing problems were solved using a numerically stable, available code. Optimal solutions to problems with successively longer management time horizons indicated that disposal schedules at some sites are relatively independent of the number of disposal periods. Optimal waste disposal schedules exhibited pulsing rather than constant disposal rates. Sensitivity analysis using parametric linear programing showed that a sharp reduction in total waste disposal potential occurs if disposal rates at any site are increased beyond their optimal values.
Dynamic one-dimensional modeling of secondary settling tanks and system robustness evaluation.
Li, Ben; Stenstrom, M K
2014-01-01
One-dimensional secondary settling tank models are widely used in current engineering practice for design and optimization, and usually can be expressed as a nonlinear hyperbolic or nonlinear strongly degenerate parabolic partial differential equation (PDE). Reliable numerical methods are needed to produce approximate solutions that converge to the exact analytical solutions. In this study, we introduced a reliable numerical technique, the Yee-Roe-Davis (YRD) method as the governing PDE solver, and compared its reliability with the prevalent Stenstrom-Vitasovic-Takács (SVT) method by assessing their simulation results at various operating conditions. The YRD method also produced a similar solution to the previously developed Method G and Enquist-Osher method. The YRD and SVT methods were also used for a time-to-failure evaluation, and the results show that the choice of numerical method can greatly impact the solution. Reliable numerical methods, such as the YRD method, are strongly recommended.
Numerical Problems and Agent-Based Models for a Mass Transfer Course
ERIC Educational Resources Information Center
Murthi, Manohar; Shea, Lonnie D.; Snurr, Randall Q.
2009-01-01
Problems requiring numerical solutions of differential equations or the use of agent-based modeling are presented for use in a course on mass transfer. These problems were solved using the popular technical computing language MATLABTM. Students were introduced to MATLAB via a problem with an analytical solution. A more complex problem to which no…
NASA Technical Reports Server (NTRS)
Wang, Gang
2003-01-01
A multi grid solution procedure for the numerical simulation of turbulent flows in complex geometries has been developed. A Full Multigrid-Full Approximation Scheme (FMG-FAS) is incorporated into the continuity and momentum equations, while the scalars are decoupled from the multi grid V-cycle. A standard kappa-Epsilon turbulence model with wall functions has been used to close the governing equations. The numerical solution is accomplished by solving for the Cartesian velocity components either with a traditional grid staggering arrangement or with a multiple velocity grid staggering arrangement. The two solution methodologies are evaluated for relative computational efficiency. The solution procedure with traditional staggering arrangement is subsequently applied to calculate the flow and temperature fields around a model Short Take-off and Vertical Landing (STOVL) aircraft hovering in ground proximity.
Approximate Solutions for Ideal Dam-Break Sediment-Laden Flows on Uniform Slopes
NASA Astrophysics Data System (ADS)
Ni, Yufang; Cao, Zhixian; Borthwick, Alistair; Liu, Qingquan
2018-04-01
Shallow water hydro-sediment-morphodynamic (SHSM) models have been applied increasingly widely in hydraulic engineering and geomorphological studies over the past few decades. Analytical and approximate solutions are usually sought to verify such models and therefore confirm their credibility. Dam-break flows are often evoked because such flows normally feature shock waves and contact discontinuities that warrant refined numerical schemes to solve. While analytical and approximate solutions to clear-water dam-break flows have been available for some time, such solutions are rare for sediment transport in dam-break flows. Here we aim to derive approximate solutions for ideal dam-break sediment-laden flows resulting from the sudden release of a finite volume of frictionless, incompressible water-sediment mixture on a uniform slope. The approximate solutions are presented for three typical sediment transport scenarios, i.e., pure advection, pure sedimentation, and concurrent entrainment and deposition. Although the cases considered in this paper are not real, the approximate solutions derived facilitate suitable benchmark tests for evaluating SHSM models, especially presently when shock waves can be numerically resolved accurately with a suite of finite volume methods, while the accuracy of the numerical solutions of contact discontinuities in sediment transport remains generally poorer.
The stability of freak waves with regard to external impact and perturbation of initial data
NASA Astrophysics Data System (ADS)
Smirnova, Anna; Shamin, Roman
2014-05-01
We investigate solutions of the equations, describing freak waves, in perspective of stability with regard to external impact and perturbation of initial data. The modeling of freak waves is based on numerical solution of equations describing a non-stationary potential flow of the ideal fluid with a free surface. We consider the two-dimensional infinitely deep flow. For waves modeling we use the equations in conformal variables. The variant of these equations is offered in [1]. Mathematical correctness of these equations was discussed in [2]. These works establish the uniqueness of solutions, offer the effective numerical solution calculation methods, prove the numerical convergence of these methods. The important aspect of numerical modeling of freak waves is the stability of solutions, describing these waves. In this work we study the questions of stability with regards to external impact and perturbation of initial data. We showed the stability of freak waves numerical model, corresponding to the external impact. We performed series of computational experiments with various freak wave initial data and random external impact. This impact means the power density on free surface. In each experiment examine two waves: the wave that was formed by external impact and without one. In all the experiments we see the stability of equation`s solutions. The random external impact practically does not change the time of freak wave formation and its form. Later our work progresses to the investigation of solution's stability under perturbations of initial data. We take the initial data that provide a freak wave and get the numerical solution. In common we take the numerical solution of equation with perturbation of initial data. The computing experiments showed that the freak waves equations solutions are stable under perturbations of initial data.So we can make a conclusion that freak waves are stable relatively external perturbation and perturbation of initial data both. 1. Zakharov V.E., Dyachenko A.I., Vasilyev O.A. New method for numerical simulation of a nonstationary potential flow of incompressible fluid with a free surface// Eur. J.~Mech. B Fluids. 2002. V. 21. P. 283-291. 2. R.V. Shamin. Dynamics of an Ideal Liquid with a Free Surface in Conformal Variables // Journal of Mathematical Sciences, Vol. 160, No. 5, 2009. P. 537-678. 3. R.V. Shamin, V.E. Zakharov, A.I. Dyachenko. How probability for freak wave formation can be found // THE EUROPEAN PHYSICAL JOURNAL - SPECIAL TOPICS Volume 185, Number 1, 113-124, DOI: 10.1140/epjst/e2010-01242-y
USDA-ARS?s Scientific Manuscript database
When Lagrangian stochastic models for turbulent dispersion are applied to complex flows, some type of ad hoc intervention is almost always necessary to eliminate unphysical behavior in the numerical solution. This paper discusses numerical considerations when solving the Langevin-based particle velo...
Combined structures-controls optimization of lattice trusses
NASA Technical Reports Server (NTRS)
Balakrishnan, A. V.
1991-01-01
The role that distributed parameter model can play in CSI is demonstrated, in particular in combined structures controls optimization problems of importance in preliminary design. Closed form solutions can be obtained for performance criteria such as rms attitude error, making possible analytical solutions of the optimization problem. This is in contrast to the need for numerical computer solution involving the inversion of large matrices in traditional finite element model (FEM) use. Another advantage of the analytic solution is that it can provide much needed insight into phenomena that can otherwise be obscured or difficult to discern from numerical computer results. As a compromise in level of complexity between a toy lab model and a real space structure, the lattice truss used in the EPS (Earth Pointing Satellite) was chosen. The optimization problem chosen is a generic one: of minimizing the structure mass subject to a specified stability margin and to a specified upper bond on the rms attitude error, using a co-located controller and sensors. Standard FEM treating each bar as a truss element is used, while the continuum model is anisotropic Timoshenko beam model. Performance criteria are derived for each model, except that for the distributed parameter model, explicit closed form solutions was obtained. Numerical results obtained by the two model show complete agreement.
Effects of numerical tolerance levels on an atmospheric chemistry model for mercury
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferris, D.C.; Burns, D.S.; Shuford, J.
1996-12-31
A Box Model was developed to investigate the atmospheric oxidation processes of mercury in the environment. Previous results indicated the most important influences on the atmospheric concentration of HgO(g) are (i) the flux of HgO(g) volatilization, which is related to the surface medium, extent of contamination, and temperature, and (ii) the presence of Cl{sub 2} in the atmosphere. The numerical solver which has been incorporated into the ORganic CHemistry Integrated Dispersion (ORCHID) model uses the Livermore Solver of Ordinary Differential Equations (LSODE). In the solution of the ODE`s, LSODE uses numerical tolerances. The tolerances effect computer run time, the relativemore » accuracy of ODE calculated species concentrations and whether or not LSODE converges to a solution using this system of equations. The effects of varying these tolerances on the solution of the box model and the ORCHID model will be discussed.« less
Flute-like musical instruments: A toy model investigated through numerical continuation
NASA Astrophysics Data System (ADS)
Terrien, Soizic; Vergez, Christophe; Fabre, Benoît
2013-07-01
Self-sustained musical instruments (bowed string, woodwind and brass instruments) can be modelled by nonlinear lumped dynamical systems. Among these instruments, flutes and flue organ pipes present the particularity to be modelled as a delay dynamical system. In this paper, such a system, a toy model of flute-like instruments, is studied using numerical continuation. Equilibrium and periodic solutions are explored with respect to the blowing pressure, with focus on amplitude and frequency evolutions along the different solution branches, as well as "jumps" between periodic solution branches. The influence of a second model parameter (namely the inharmonicity) on the behaviour of the system is addressed. It is shown that harmonicity plays a key role in the presence of hysteresis or quasiperiodic regime. Throughout the paper, experimental results on a real instrument are presented to illustrate various phenomena, and allow some qualitative comparisons with numerical results.
Study of stability of the difference scheme for the model problem of the gaslift process
NASA Astrophysics Data System (ADS)
Temirbekov, Nurlan; Turarov, Amankeldy
2017-09-01
The paper studies a model of the gaslift process where the motion in a gas-lift well is described by partial differential equations. The system describing the studied process consists of equations of motion, continuity, equations of thermodynamic state, and hydraulic resistance. A two-layer finite-difference Lax-Vendroff scheme is constructed for the numerical solution of the problem. The stability of the difference scheme for the model problem is investigated using the method of a priori estimates, the order of approximation is investigated, the algorithm for numerical implementation of the gaslift process model is given, and the graphs are presented. The development and investigation of difference schemes for the numerical solution of systems of equations of gas dynamics makes it possible to obtain simultaneously exact and monotonic solutions.
A Numerical Simulation of Scattering from One-Dimensional Inhomogeneous Dielectric Random Surfaces
NASA Technical Reports Server (NTRS)
Sarabandi, Kamal; Oh, Yisok; Ulaby, Fawwaz T.
1996-01-01
In this paper, an efficient numerical solution for the scattering problem of inhomogeneous dielectric rough surfaces is presented. The inhomogeneous dielectric random surface represents a bare soil surface and is considered to be comprised of a large number of randomly positioned dielectric humps of different sizes, shapes, and dielectric constants above an impedance surface. Clods with nonuniform moisture content and rocks are modeled by inhomogeneous dielectric humps and the underlying smooth wet soil surface is modeled by an impedance surface. In this technique, an efficient numerical solution for the constituent dielectric humps over an impedance surface is obtained using Green's function derived by the exact image theory in conjunction with the method of moments. The scattered field from a sample of the rough surface is obtained by summing the scattered fields from all the individual humps of the surface coherently ignoring the effect of multiple scattering between the humps. The statistical behavior of the scattering coefficient sigma(sup 0) is obtained from the calculation of scattered fields of many different realizations of the surface. Numerical results are presented for several different roughnesses and dielectric constants of the random surfaces. The numerical technique is verified by comparing the numerical solution with the solution based on the small perturbation method and the physical optics model for homogeneous rough surfaces. This technique can be used to study the behavior of scattering coefficient and phase difference statistics of rough soil surfaces for which no analytical solution exists.
NASA Astrophysics Data System (ADS)
Atlabachew, Abunu; Shu, Longcang; Wu, Peipeng; Zhang, Yongjie; Xu, Yang
2018-03-01
This laboratory study improves the understanding of the impacts of horizontal hydraulic gradient, artificial recharge, and groundwater pumping on solute transport through aquifers. Nine experiments and numerical simulations were carried out using a sand tank. The variable-density groundwater flow and sodium chloride transport were simulated using the three-dimensional numerical model SEAWAT. Numerical modelling results successfully reproduced heads and concentrations observed in the sand tank. A higher horizontal hydraulic gradient enhanced the migration of sodium chloride, particularly in the groundwater flow direction. The application of constant artificial recharge increased the spread of the sodium chloride plume in both the longitudinal and lateral directions. In addition, groundwater pumping accelerated spreading of the sodium chloride plume towards the pumping well. Both higher hydraulic gradient and pumping rate generated oval-shaped plumes in the horizontal plane. However, the artificial recharge process produced stretched plumes. These effects of artificial recharge and groundwater pumping were greater under higher hydraulic gradient. The concentration breakthrough curves indicated that emerging solutions never attained the concentration of the originally injected solution. This is probably because of sorption of sodium chloride onto the silica sand and/or the exchange of sodium chloride between the mobile and immobile liquid domains. The fingering and protruding plume shapes in the numerical models constitute instability zones produced by buoyancy-driven flow. Overall, the results have substantiated the influences of hydraulic gradient, boundary condition, artificial recharge, pumping rate and density differences on solute transport through a homogeneous unconfined aquifer. The implications of these findings are important for managing liquid wastes.
NASA Astrophysics Data System (ADS)
Marras, Simone; Kopera, Michal A.; Constantinescu, Emil M.; Suckale, Jenny; Giraldo, Francis X.
2018-04-01
The high-order numerical solution of the non-linear shallow water equations is susceptible to Gibbs oscillations in the proximity of strong gradients. In this paper, we tackle this issue by presenting a shock capturing model based on the numerical residual of the solution. Via numerical tests, we demonstrate that the model removes the spurious oscillations in the proximity of strong wave fronts while preserving their strength. Furthermore, for coarse grids, it prevents energy from building up at small wave-numbers. When applied to the continuity equation to stabilize the water surface, the addition of the shock capturing scheme does not affect mass conservation. We found that our model improves the continuous and discontinuous Galerkin solutions alike in the proximity of sharp fronts propagating on wet surfaces. In the presence of wet/dry interfaces, however, the model needs to be enhanced with the addition of an inundation scheme which, however, we do not address in this paper.
Upscaling of Solute Transport in Heterogeneous Media with Non-uniform Flow and Dispersion Fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Zhijie; Meakin, Paul
2013-10-01
An analytical and computational model for non-reactive solute transport in periodic heterogeneous media with arbitrary non-uniform flow and dispersion fields within the unit cell of length ε is described. The model lumps the effect of non-uniform flow and dispersion into an effective advection velocity Ve and an effective dispersion coefficient De. It is shown that both Ve and De are scale-dependent (dependent on the length scale of the microscopic heterogeneity, ε), dependent on the Péclet number Pe, and on a dimensionless parameter α that represents the effects of microscopic heterogeneity. The parameter α, confined to the range of [-0.5, 0.5]more » for the numerical example presented, depends on the flow direction and non-uniform flow and dispersion fields. Effective advection velocity Ve and dispersion coefficient De can be derived for any given flow and dispersion fields, and . Homogenized solutions describing the macroscopic variations can be obtained from the effective model. Solutions with sub-unit-cell accuracy can be constructed by homogenized solutions and its spatial derivatives. A numerical implementation of the model compared with direct numerical solutions using a fine grid, demonstrated that the new method was in good agreement with direct solutions, but with significant computational savings.« less
Rajaraman, Prathish K; Manteuffel, T A; Belohlavek, M; Heys, Jeffrey J
2017-01-01
A new approach has been developed for combining and enhancing the results from an existing computational fluid dynamics model with experimental data using the weighted least-squares finite element method (WLSFEM). Development of the approach was motivated by the existence of both limited experimental blood velocity in the left ventricle and inexact numerical models of the same flow. Limitations of the experimental data include measurement noise and having data only along a two-dimensional plane. Most numerical modeling approaches do not provide the flexibility to assimilate noisy experimental data. We previously developed an approach that could assimilate experimental data into the process of numerically solving the Navier-Stokes equations, but the approach was limited because it required the use of specific finite element methods for solving all model equations and did not support alternative numerical approximation methods. The new approach presented here allows virtually any numerical method to be used for approximately solving the Navier-Stokes equations, and then the WLSFEM is used to combine the experimental data with the numerical solution of the model equations in a final step. The approach dynamically adjusts the influence of the experimental data on the numerical solution so that more accurate data are more closely matched by the final solution and less accurate data are not closely matched. The new approach is demonstrated on different test problems and provides significantly reduced computational costs compared with many previous methods for data assimilation. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
On recent advances and future research directions for computational fluid dynamics
NASA Technical Reports Server (NTRS)
Baker, A. J.; Soliman, M. O.; Manhardt, P. D.
1986-01-01
This paper highlights some recent accomplishments regarding CFD numerical algorithm constructions for generation of discrete approximate solutions to classes of Reynolds-averaged Navier-Stokes equations. Following an overview of turbulent closure modeling, and development of appropriate conservation law systems, a Taylor weak-statement semi-discrete approximate solution algorithm is developed. Various forms for completion to the final linear algebra statement are cited, as are a range of candidate numerical linear algebra solution procedures. This development sequence emphasizes the key building blocks of a CFD RNS algorithm, including solution trial and test spaces, integration procedure and added numerical stability mechanisms. A range of numerical results are discussed focusing on key topics guiding future research directions.
ANALYZING NUMERICAL ERRORS IN DOMAIN HEAT TRANSPORT MODELS USING THE CVBEM.
Hromadka, T.V.
1987-01-01
Besides providing an exact solution for steady-state heat conduction processes (Laplace-Poisson equations), the CVBEM (complex variable boundary element method) can be used for the numerical error analysis of domain model solutions. For problems where soil-water phase change latent heat effects dominate the thermal regime, heat transport can be approximately modeled as a time-stepped steady-state condition in the thawed and frozen regions, respectively. The CVBEM provides an exact solution of the two-dimensional steady-state heat transport problem, and also provides the error in matching the prescribed boundary conditions by the development of a modeling error distribution or an approximate boundary generation.
NASA Astrophysics Data System (ADS)
Woo, Mino; Wörner, Martin; Tischer, Steffen; Deutschmann, Olaf
2018-03-01
The multicomponent model and the effective diffusivity model are well established diffusion models for numerical simulation of single-phase flows consisting of several components but are seldom used for two-phase flows so far. In this paper, a specific numerical model for interfacial mass transfer by means of a continuous single-field concentration formulation is combined with the multicomponent model and effective diffusivity model and is validated for multicomponent mass transfer. For this purpose, several test cases for one-dimensional physical or reactive mass transfer of ternary mixtures are considered. The numerical results are compared with analytical or numerical solutions of the Maxell-Stefan equations and/or experimental data. The composition-dependent elements of the diffusivity matrix of the multicomponent and effective diffusivity model are found to substantially differ for non-dilute conditions. The species mole fraction or concentration profiles computed with both diffusion models are, however, for all test cases very similar and in good agreement with the analytical/numerical solutions or measurements. For practical computations, the effective diffusivity model is recommended due to its simplicity and lower computational costs.
Building Blocks for Reliable Complex Nonlinear Numerical Simulations
NASA Technical Reports Server (NTRS)
Yee, H. C.; Mansour, Nagi N. (Technical Monitor)
2002-01-01
This talk describes some of the building blocks to ensure a higher level of confidence in the predictability and reliability (PAR) of numerical simulation of multiscale complex nonlinear problems. The focus is on relating PAR of numerical simulations with complex nonlinear phenomena of numerics. To isolate sources of numerical uncertainties, the possible discrepancy between the chosen partial differential equation (PDE) model and the real physics and/or experimental data is set aside. The discussion is restricted to how well numerical schemes can mimic the solution behavior of the underlying PDE model for finite time steps and grid spacings. The situation is complicated by the fact that the available theory for the understanding of nonlinear behavior of numerics is not at a stage to fully analyze the nonlinear Euler and Navier-Stokes equations. The discussion is based on the knowledge gained for nonlinear model problems with known analytical solutions to identify and explain the possible sources and remedies of numerical uncertainties in practical computations. Examples relevant to turbulent flow computations are included.
Building Blocks for Reliable Complex Nonlinear Numerical Simulations
NASA Technical Reports Server (NTRS)
Yee, H. C.
2005-01-01
This chapter describes some of the building blocks to ensure a higher level of confidence in the predictability and reliability (PAR) of numerical simulation of multiscale complex nonlinear problems. The focus is on relating PAR of numerical simulations with complex nonlinear phenomena of numerics. To isolate sources of numerical uncertainties, the possible discrepancy between the chosen partial differential equation (PDE) model and the real physics and/or experimental data is set aside. The discussion is restricted to how well numerical schemes can mimic the solution behavior of the underlying PDE model for finite time steps and grid spacings. The situation is complicated by the fact that the available theory for the understanding of nonlinear behavior of numerics is not at a stage to fully analyze the nonlinear Euler and Navier-Stokes equations. The discussion is based on the knowledge gained for nonlinear model problems with known analytical solutions to identify and explain the possible sources and remedies of numerical uncertainties in practical computations.
Building Blocks for Reliable Complex Nonlinear Numerical Simulations. Chapter 2
NASA Technical Reports Server (NTRS)
Yee, H. C.; Mansour, Nagi N. (Technical Monitor)
2001-01-01
This chapter describes some of the building blocks to ensure a higher level of confidence in the predictability and reliability (PAR) of numerical simulation of multiscale complex nonlinear problems. The focus is on relating PAR of numerical simulations with complex nonlinear phenomena of numerics. To isolate sources of numerical uncertainties, the possible discrepancy between the chosen partial differential equation (PDE) model and the real physics and/or experimental data is set aside. The discussion is restricted to how well numerical schemes can mimic the solution behavior of the underlying PDE model for finite time steps and grid spacings. The situation is complicated by the fact that the available theory for the understanding of nonlinear behavior of numerics is not at a stage to fully analyze the nonlinear Euler and Navier-Stokes equations. The discussion is based on the knowledge gained for nonlinear model problems with known analytical solutions to identify and explain the possible sources and remedies of numerical uncertainties in practical computations. Examples relevant to turbulent flow computations are included.
Numerical Solution of the Extended Nernst-Planck Model.
Samson; Marchand
1999-07-01
The main features of a numerical model aiming at predicting the drift of ions in an electrolytic solution upon a chemical potential gradient are presented. The mechanisms of ionic diffusion are described by solving the extended Nernst-Planck system of equations. The electrical coupling between the various ionic fluxes is accounted for by the Poisson equation. Furthermore, chemical activity effects are considered in the model. The whole system of nonlinear equations is solved using the finite-element method. Results yielded by the model for simple test cases are compared to those obtained using an analytical solution. Applications of the model to more complex problems are also presented and discussed. Copyright 1999 Academic Press.
Numerical model for the uptake of groundwater contaminants by phreatophytes
Widdowson, M.A.; El-Sayed, A.; Landmeyer, J.E.
2008-01-01
Conventional solute transport models do not adequately account for the effects of phreatophytic plant systems on contaminant concentrations in shallow groundwater systems. A numerical model was developed and tested to simulate threedimensional reactive solute transport in a heterogeneous porous medium. Advective-dispersive transport is coupled to biodegradation, sorption, and plantbased attenuation processes including plant uptake and sorption by plant roots. The latter effects are a function of the physical-chemical properties of the individual solutes and plant species. Models for plant uptake were tested and evaluated using the experimental data collected at a field site comprised of hybrid poplar trees. A non-linear equilibrium isotherm model best represented site conditions.
The lunar libration: comparisons between various models - a model fitted to LLR observations
NASA Astrophysics Data System (ADS)
Chapront, J.; Francou, G.
2005-09-01
We consider 4 libration models: 3 numerical models built by JPL (ephemerides for the libration in DE245, DE403 and DE405) and an analytical model improved with numerical complements fitted to recent LLR observations. The analytical solution uses 3 angular variables (ρ1, ρ2, τ) which represent the deviations with respect to Cassini's laws. After having referred the models to a unique reference frame, we study the differences between the models which depend on gravitational and tidal parameters of the Moon, as well as amplitudes and frequencies of the free librations. It appears that the differences vary widely depending of the above quantities. They correspond to a few meters displacement on the lunar surface, reminding that LLR distances are precise to the centimeter level. Taking advantage of the lunar libration theory built by Moons (1984) and improved by Chapront et al. (1999) we are able to establish 4 solutions and to represent their differences by Fourier series after a numerical substitution of the gravitational constants and free libration parameters. The results are confirmed by frequency analyses performed separately. Using DE245 as a basic reference ephemeris, we approximate the differences between the analytical and numerical models with Poisson series. The analytical solution - improved with numerical complements under the form of Poisson series - is valid over several centuries with an internal precision better than 5 centimeters.
NASA Astrophysics Data System (ADS)
Vijayashree, M.; Uthayakumar, R.
2017-09-01
Lead time is one of the major limits that affect planning at every stage of the supply chain system. In this paper, we study a continuous review inventory model. This paper investigates the ordering cost reductions are dependent on lead time. This study addressed two-echelon supply chain problem consisting of a single vendor and a single buyer. The main contribution of this study is that the integrated total cost of the single vendor and the single buyer integrated system is analyzed by adopting two different (linear and logarithmic) types ordering cost reductions act dependent on lead time. In both cases, we develop effective solution procedures for finding the optimal solution and then illustrative numerical examples are given to illustrate the results. The solution procedure is to determine the optimal solutions of order quantity, ordering cost, lead time and the number of deliveries from the single vendor and the single buyer in one production run, so that the integrated total cost incurred has the minimum value. Ordering cost reduction is the main aspect of the proposed model. A numerical example is given to validate the model. Numerical example solved by using Matlab software. The mathematical model is solved analytically by minimizing the integrated total cost. Furthermore, the sensitivity analysis is included and the numerical examples are given to illustrate the results. The results obtained in this paper are illustrated with the help of numerical examples. The sensitivity of the proposed model has been checked with respect to the various major parameters of the system. Results reveal that the proposed integrated inventory model is more applicable for the supply chain manufacturing system. For each case, an algorithm procedure of finding the optimal solution is developed. Finally, the graphical representation is presented to illustrate the proposed model and also include the computer flowchart in each model.
A 2D nonlinear multiring model for blood flow in large elastic arteries
NASA Astrophysics Data System (ADS)
Ghigo, Arthur R.; Fullana, Jose-Maria; Lagrée, Pierre-Yves
2017-12-01
In this paper, we propose a two-dimensional nonlinear ;multiring; model to compute blood flow in axisymmetric elastic arteries. This model is designed to overcome the numerical difficulties of three-dimensional fluid-structure interaction simulations of blood flow without using the over-simplifications necessary to obtain one-dimensional blood flow models. This multiring model is derived by integrating over concentric rings of fluid the simplified long-wave Navier-Stokes equations coupled to an elastic model of the arterial wall. The resulting system of balance laws provides a unified framework in which both the motion of the fluid and the displacement of the wall are dealt with simultaneously. The mathematical structure of the multiring model allows us to use a finite volume method that guarantees the conservation of mass and the positivity of the numerical solution and can deal with nonlinear flows and large deformations of the arterial wall. We show that the finite volume numerical solution of the multiring model provides at a reasonable computational cost an asymptotically valid description of blood flow velocity profiles and other averaged quantities (wall shear stress, flow rate, ...) in large elastic and quasi-rigid arteries. In particular, we validate the multiring model against well-known solutions such as the Womersley or the Poiseuille solutions as well as against steady boundary layer solutions in quasi-rigid constricted and expanded tubes.
Variational data assimilation problem for the Baltic Sea thermodynamics
NASA Astrophysics Data System (ADS)
Zakharova, Natalia; Agoshkov, Valery; Parmuzin, Eugene
2015-04-01
The most versatile and promising technology for solving problems of monitoring and analysis of the natural environment is a four-dimensional variational data assimilation of observation data. In such problems not only the development and justification of algorithms for numerical solution of variational data assimilation problems but the properties of the optimal solution play an important role. In this work the variational data assimilation problems in the Baltic Sea water area were formulated and studied. Numerical experiments on restoring the ocean heat flux and obtaining solution of the system (temperature, salinity, velocity, and sea surface height) in the Baltic Sea primitive equation hydrodynamics model with assimilation procedure were carried out. In the calculations we used daily sea surface temperature observation from Danish meteorological Institute, prepared on the basis of measurements of the radiometer (AVHRR, AATSR and AMSRE) and spectroradiometer (SEVIRI and MODIS). The spatial resolution of the model grid with respect to the horizontal variables amounted to 0.0625x0.03125 degree. The results of the numerical experiments are presented. This study was supported by the Russian Foundation for Basic Research (project 13-01-00753, project 14-01-31195) and project 14-11-00609 by the Russian Science Foundation. References: 1 E.I. Parmuzin, V.I. Agoshkov, Numerical solution of the variational assimilation problem for sea surface temperature in the model of the Black Sea dynamics. Russ. J. Numer. Anal. Math. Modelling (2012) 27, No.1, 69-94 2 Zakharova N.B., Agoshkov V.I., Parmuzin E.I., The new method of ARGO buoys system observation data interpolation. Russian Journal of Numerical Analysis and Mathematical Modelling. Vol. 28, Issue 1, 2013. 3 Zalesny V.B., Gusev A.V., Chernobay S.Yu., Aps R., Tamsalu R., Kujala P., Rytkönen J. The Bal-tic Sea circulation modelling and assessment of marine pollution, Russ. J. Numer. Analysis and Math. Modelling, 2014, V 29, No. 2, pp. 129-138.
Lloyd, Jeffrey T.; Clayton, John D.; Austin, Ryan A.; ...
2015-07-10
Background: The shock response of metallic single crystals can be captured using a micro-mechanical description of the thermoelastic-viscoplastic material response; however, using a such a description within the context of traditional numerical methods may introduce a physical artifacts. Advantages and disadvantages of complex material descriptions, in particular the viscoplastic response, must be framed within approximations introduced by numerical methods. Methods: Three methods of modeling the shock response of metallic single crystals are summarized: finite difference simulations, steady wave simulations, and algebraic solutions of the Rankine-Hugoniot jump conditions. For the former two numerical techniques, a dislocation density based framework describes themore » rate- and temperature-dependent shear strength on each slip system. For the latter analytical technique, a simple (two-parameter) rate- and temperature-independent linear hardening description is necessarily invoked to enable simultaneous solution of the governing equations. For all models, the same nonlinear thermoelastic energy potential incorporating elastic constants of up to order 3 is applied. Results: Solutions are compared for plate impact of highly symmetric orientations (all three methods) and low symmetry orientations (numerical methods only) of aluminum single crystals shocked to 5 GPa (weak shock regime) and 25 GPa (overdriven regime). Conclusions: For weak shocks, results of the two numerical methods are very similar, regardless of crystallographic orientation. For strong shocks, artificial viscosity affects the finite difference solution, and effects of transverse waves for the lower symmetry orientations not captured by the steady wave method become important. The analytical solution, which can only be applied to highly symmetric orientations, provides reasonable accuracy with regards to prediction of most variables in the final shocked state but, by construction, does not provide insight into the shock structure afforded by the numerical methods.« less
An approach of traffic signal control based on NLRSQP algorithm
NASA Astrophysics Data System (ADS)
Zou, Yuan-Yang; Hu, Yu
2017-11-01
This paper presents a linear program model with linear complementarity constraints (LPLCC) to solve traffic signal optimization problem. The objective function of the model is to obtain the minimization of total queue length with weight factors at the end of each cycle. Then, a combination algorithm based on the nonlinear least regression and sequence quadratic program (NLRSQP) is proposed, by which the local optimal solution can be obtained. Furthermore, four numerical experiments are proposed to study how to set the initial solution of the algorithm that can get a better local optimal solution more quickly. In particular, the results of numerical experiments show that: The model is effective for different arrival rates and weight factors; and the lower bound of the initial solution is, the better optimal solution can be obtained.
A new theoretical basis for numerical simulations of nonlinear acoustic fields
NASA Astrophysics Data System (ADS)
Wójcik, Janusz
2000-07-01
Nonlinear acoustic equations can be considerably simplified. The presented model retains the accuracy of a more complex description of nonlinearity and a uniform description of near and far fields (in contrast to the KZK equation). A method has been presented for obtaining solutions of Kuznetsov's equation from the solutions of the model under consideration. Results of numerical calculations, including comparative ones, are presented.
Fluid Flow and Solidification Under Combined Action of Magnetic Fields and Microgravity
NASA Technical Reports Server (NTRS)
Li, B. Q.; Shu, Y.; Li, K.; deGroh, H. C.
2002-01-01
Mathematical models, both 2-D and 3-D, are developed to represent g-jitter induced fluid flows and their effects on solidification under combined action of magnetic fields and microgravity. The numerical model development is based on the finite element solution of governing equations describing the transient g-jitter driven fluid flows, heat transfer and solutal transport during crystal growth with and without an applied magnetic field in space vehicles. To validate the model predictions, a ground-based g-jitter simulator is developed using the oscillating wall temperatures where timely oscillating fluid flows are measured using a laser PIV system. The measurements are compared well with numerical results obtained from the numerical models. Results show that a combined action derived from magnetic damping and microgravity can be an effective means to control the melt flow and solutal transport in space single crystal growth systems.
Simplified method for numerical modeling of fiber lasers.
Shtyrina, O V; Yarutkina, I A; Fedoruk, M P
2014-12-29
A simplified numerical approach to modeling of dissipative dispersion-managed fiber lasers is examined. We present a new numerical iteration algorithm for finding the periodic solutions of the system of nonlinear ordinary differential equations describing the intra-cavity dynamics of the dissipative soliton characteristics in dispersion-managed fiber lasers. We demonstrate that results obtained using simplified model are in good agreement with full numerical modeling based on the corresponding partial differential equations.
NASA Astrophysics Data System (ADS)
Warsta, L.; Karvonen, T.
2017-12-01
There are currently 25 shooting and training areas in Finland managed by The Finnish Defence Forces (FDF), where military activities can cause contamination of open waters and groundwater reservoirs. In the YMPYRÄ project, a computer software framework is being developed that combines existing open environmental data and proprietary information collected by FDF with computational models to investigate current and prevent future environmental problems. A data centric philosophy is followed in the development of the system, i.e. the models are updated and extended to handle available data from different areas. The results generated by the models are summarized as easily understandable flow and risk maps that can be opened in GIS programs and used in environmental assessments by experts. Substances investigated with the system include explosives and metals such as lead, and both surface and groundwater dominated areas can be simulated. The YMPYRÄ framework is composed of a three dimensional soil and groundwater flow model, several solute transport models and an uncertainty assessment system. Solute transport models in the framework include particle based, stream tube and finite volume based approaches. The models can be used to simulate solute dissolution from source area, transport in the unsaturated layers to groundwater and finally migration in groundwater to water extraction wells and springs. The models can be used to simulate advection, dispersion, equilibrium adsorption on soil particles, solubility and dissolution from solute phase and dendritic solute decay chains. Correct numerical solutions were confirmed by comparing results to analytical 1D and 2D solutions and by comparing the numerical solutions to each other. The particle based and stream tube type solute transport models were useful as they could complement the traditional finite volume based approach which in certain circumstances produced numerical dispersion due to piecewise solution of the governing equations in computational grids and included computationally intensive and in some cases unstable iterative solutions. The YMPYRÄ framework is being developed by WaterHope, Gain Oy, and SITO Oy consulting companies and funded by FDF.
Bergues Pupo, Ana E; Reyes, Juan Bory; Bergues Cabrales, Luis E; Bergues Cabrales, Jesús M
2011-09-24
Electrotherapy is a relatively well established and efficient method of tumor treatment. In this paper we focus on analytical and numerical calculations of the potential and electric field distributions inside a tumor tissue in a two-dimensional model (2D-model) generated by means of electrode arrays with shapes of different conic sections (ellipse, parabola and hyperbola). Analytical calculations of the potential and electric field distributions based on 2D-models for different electrode arrays are performed by solving the Laplace equation, meanwhile the numerical solution is solved by means of finite element method in two dimensions. Both analytical and numerical solutions reveal significant differences between the electric field distributions generated by electrode arrays with shapes of circle and different conic sections (elliptic, parabolic and hyperbolic). Electrode arrays with circular, elliptical and hyperbolic shapes have the advantage of concentrating the electric field lines in the tumor. The mathematical approach presented in this study provides a useful tool for the design of electrode arrays with different shapes of conic sections by means of the use of the unifying principle. At the same time, we verify the good correspondence between the analytical and numerical solutions for the potential and electric field distributions generated by the electrode array with different conic sections.
Satellite attitude motion models for capture and retrieval investigations
NASA Technical Reports Server (NTRS)
Cochran, John E., Jr.; Lahr, Brian S.
1986-01-01
The primary purpose of this research is to provide mathematical models which may be used in the investigation of various aspects of the remote capture and retrieval of uncontrolled satellites. Emphasis has been placed on analytical models; however, to verify analytical solutions, numerical integration must be used. Also, for satellites of certain types, numerical integration may be the only practical or perhaps the only possible method of solution. First, to provide a basis for analytical and numerical work, uncontrolled satellites were categorized using criteria based on: (1) orbital motions, (2) external angular momenta, (3) internal angular momenta, (4) physical characteristics, and (5) the stability of their equilibrium states. Several analytical solutions for the attitude motions of satellite models were compiled, checked, corrected in some minor respects and their short-term prediction capabilities were investigated. Single-rigid-body, dual-spin and multi-rotor configurations are treated. To verify the analytical models and to see how the true motion of a satellite which is acted upon by environmental torques differs from its corresponding torque-free motion, a numerical simulation code was developed. This code contains a relatively general satellite model and models for gravity-gradient and aerodynamic torques. The spacecraft physical model for the code and the equations of motion are given. The two environmental torque models are described.
NASA Technical Reports Server (NTRS)
Cooke, C. H.
1976-01-01
An iterative method for numerically solving the time independent Navier-Stokes equations for viscous compressible flows is presented. The method is based upon partial application of the Gauss-Seidel principle in block form to the systems of nonlinear algebraic equations which arise in construction of finite element (Galerkin) models approximating solutions of fluid dynamic problems. The C deg-cubic element on triangles is employed for function approximation. Computational results for a free shear flow at Re = 1,000 indicate significant achievement of economy in iterative convergence rate over finite element and finite difference models which employ the customary time dependent equations and asymptotic time marching procedure to steady solution. Numerical results are in excellent agreement with those obtained for the same test problem employing time marching finite element and finite difference solution techniques.
Survey of three-dimensional numerical estuarine models
Cheng, Ralph T.; Smith, Peter E.
1989-01-01
This paper surveys the existing 3-D estuarine hydrodynamic and solute transport models by a review of the commonly used assumptions and approximations, and by an examination of the methods of solution. The model formulations, methods of solution, and known applications are surveyed and summarized in tables. In conclusion, the authors present their modeling philosophy and suggest future research needs.
Recent advances in two-phase flow numerics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahaffy, J.H.; Macian, R.
1997-07-01
The authors review three topics in the broad field of numerical methods that may be of interest to individuals modeling two-phase flow in nuclear power plants. The first topic is iterative solution of linear equations created during the solution of finite volume equations. The second is numerical tracking of macroscopic liquid interfaces. The final area surveyed is the use of higher spatial difference techniques.
Intercomparison of 3D pore-scale flow and solute transport simulation methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Xiaofan; Mehmani, Yashar; Perkins, William A.
2016-09-01
Multiple numerical approaches have been developed to simulate porous media fluid flow and solute transport at the pore scale. These include methods that 1) explicitly model the three-dimensional geometry of pore spaces and 2) those that conceptualize the pore space as a topologically consistent set of stylized pore bodies and pore throats. In previous work we validated a model of class 1, based on direct numerical simulation using computational fluid dynamics (CFD) codes, against magnetic resonance velocimetry (MRV) measurements of pore-scale velocities. Here we expand that validation to include additional models of class 1 based on the immersed-boundary method (IMB),more » lattice Boltzmann method (LBM), smoothed particle hydrodynamics (SPH), as well as a model of class 2 (a pore-network model or PNM). The PNM approach used in the current study was recently improved and demonstrated to accurately simulate solute transport in a two-dimensional experiment. While the PNM approach is computationally much less demanding than direct numerical simulation methods, the effect of conceptualizing complex three-dimensional pore geometries on solute transport in the manner of PNMs has not been fully determined. We apply all four approaches (CFD, LBM, SPH and PNM) to simulate pore-scale velocity distributions and nonreactive solute transport, and intercompare the model results with previously reported experimental observations. Experimental observations are limited to measured pore-scale velocities, so solute transport comparisons are made only among the various models. Comparisons are drawn both in terms of macroscopic variables (e.g., permeability, solute breakthrough curves) and microscopic variables (e.g., local velocities and concentrations).« less
Numerical solutions of the semiclassical Boltzmann ellipsoidal-statistical kinetic model equation
Yang, Jaw-Yen; Yan, Chin-Yuan; Huang, Juan-Chen; Li, Zhihui
2014-01-01
Computations of rarefied gas dynamical flows governed by the semiclassical Boltzmann ellipsoidal-statistical (ES) kinetic model equation using an accurate numerical method are presented. The semiclassical ES model was derived through the maximum entropy principle and conserves not only the mass, momentum and energy, but also contains additional higher order moments that differ from the standard quantum distributions. A different decoding procedure to obtain the necessary parameters for determining the ES distribution is also devised. The numerical method in phase space combines the discrete-ordinate method in momentum space and the high-resolution shock capturing method in physical space. Numerical solutions of two-dimensional Riemann problems for two configurations covering various degrees of rarefaction are presented and various contours of the quantities unique to this new model are illustrated. When the relaxation time becomes very small, the main flow features a display similar to that of ideal quantum gas dynamics, and the present solutions are found to be consistent with existing calculations for classical gas. The effect of a parameter that permits an adjustable Prandtl number in the flow is also studied. PMID:25104904
NASA Astrophysics Data System (ADS)
Tran, A. B.; Vu, M. N.; Nguyen, S. T.; Dong, T. Q.; Le-Nguyen, K.
2018-02-01
This paper presents analytical solutions to heat transfer problems around a crack and derive an adaptive model for effective thermal conductivity of cracked materials based on singular integral equation approach. Potential solution of heat diffusion through two-dimensional cracked media, where crack filled by air behaves as insulator to heat flow, is obtained in a singular integral equation form. It is demonstrated that the temperature field can be described as a function of temperature and rate of heat flow on the boundary and the temperature jump across the cracks. Numerical resolution of this boundary integral equation allows determining heat conduction and effective thermal conductivity of cracked media. Moreover, writing this boundary integral equation for an infinite medium embedding a single crack under a far-field condition allows deriving the closed-form solution of temperature discontinuity on the crack and particularly the closed-form solution of temperature field around the crack. These formulas are then used to establish analytical effective medium estimates. Finally, the comparison between the developed numerical and analytical solutions allows developing an adaptive model for effective thermal conductivity of cracked media. This model takes into account both the interaction between cracks and the percolation threshold.
NASA Astrophysics Data System (ADS)
Hejri, Mohammad; Mokhtari, Hossein; Azizian, Mohammad Reza; Söder, Lennart
2016-04-01
Parameter extraction of the five-parameter single-diode model of solar cells and modules from experimental data is a challenging problem. These parameters are evaluated from a set of nonlinear equations that cannot be solved analytically. On the other hand, a numerical solution of such equations needs a suitable initial guess to converge to a solution. This paper presents a new set of approximate analytical solutions for the parameters of a five-parameter single-diode model of photovoltaic (PV) cells and modules. The proposed solutions provide a good initial point which guarantees numerical analysis convergence. The proposed technique needs only a few data from the PV current-voltage characteristics, i.e. open circuit voltage Voc, short circuit current Isc and maximum power point current and voltage Im; Vm making it a fast and low cost parameter determination technique. The accuracy of the presented theoretical I-V curves is verified by experimental data.
NASA Astrophysics Data System (ADS)
Koychev Demirov, Encho
1994-12-01
The paper presents a numerical solution of barotropic and two-layer eigen-oscillation problems for the Black Sea on a boundary fitted coordinate system. This solution is compared with model and empirical data obtained by other workers. Frequencies of the eigen-oscillations found by the numerical solution of spectral problem are compared with the data obtained by spectral analysis of the sea-level oscillations measured near the town of Achtopol and Cape Irakli in stormy sea on 17-21 February 1979. Extreme oscillations of the sea-level result from resonant amplifications of three eigenmodes of the Black Sea of 68.3 -1, 36.6 -1 and 27.3 -1 cycles h -1 frequency.
Numerical schemes for anomalous diffusion of single-phase fluids in porous media
NASA Astrophysics Data System (ADS)
Awotunde, Abeeb A.; Ghanam, Ryad A.; Al-Homidan, Suliman S.; Tatar, Nasser-eddine
2016-10-01
Simulation of fluid flow in porous media is an indispensable part of oil and gas reservoir management. Accurate prediction of reservoir performance and profitability of investment rely on our ability to model the flow behavior of reservoir fluids. Over the years, numerical reservoir simulation models have been based mainly on solutions to the normal diffusion of fluids in the porous reservoir. Recently, however, it has been documented that fluid flow in porous media does not always follow strictly the normal diffusion process. Small deviations from normal diffusion, called anomalous diffusion, have been reported in some experimental studies. Such deviations can be caused by different factors such as the viscous state of the fluid, the fractal nature of the porous media and the pressure pulse in the system. In this work, we present explicit and implicit numerical solutions to the anomalous diffusion of single-phase fluids in heterogeneous reservoirs. An analytical solution is used to validate the numerical solution to the simple homogeneous case. The conventional wellbore flow model is modified to account for anomalous behavior. Example applications are used to show the behavior of wellbore and wellblock pressures during the single-phase anomalous flow of fluids in the reservoirs considered.
Analytical and numerical analysis of frictional damage in quasi brittle materials
NASA Astrophysics Data System (ADS)
Zhu, Q. Z.; Zhao, L. Y.; Shao, J. F.
2016-07-01
Frictional sliding and crack growth are two main dissipation processes in quasi brittle materials. The frictional sliding along closed cracks is the origin of macroscopic plastic deformation while the crack growth induces a material damage. The main difficulty of modeling is to consider the inherent coupling between these two processes. Various models and associated numerical algorithms have been proposed. But there are so far no analytical solutions even for simple loading paths for the validation of such algorithms. In this paper, we first present a micro-mechanical model taking into account the damage-friction coupling for a large class of quasi brittle materials. The model is formulated by combining a linear homogenization procedure with the Mori-Tanaka scheme and the irreversible thermodynamics framework. As an original contribution, a series of analytical solutions of stress-strain relations are developed for various loading paths. Based on the micro-mechanical model, two numerical integration algorithms are exploited. The first one involves a coupled friction/damage correction scheme, which is consistent with the coupling nature of the constitutive model. The second one contains a friction/damage decoupling scheme with two consecutive steps: the friction correction followed by the damage correction. With the analytical solutions as reference results, the two algorithms are assessed through a series of numerical tests. It is found that the decoupling correction scheme is efficient to guarantee a systematic numerical convergence.
Advanced numerical methods for three dimensional two-phase flow calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toumi, I.; Caruge, D.
1997-07-01
This paper is devoted to new numerical methods developed for both one and three dimensional two-phase flow calculations. These methods are finite volume numerical methods and are based on the use of Approximate Riemann Solvers concepts to define convective fluxes versus mean cell quantities. The first part of the paper presents the numerical method for a one dimensional hyperbolic two-fluid model including differential terms as added mass and interface pressure. This numerical solution scheme makes use of the Riemann problem solution to define backward and forward differencing to approximate spatial derivatives. The construction of this approximate Riemann solver uses anmore » extension of Roe`s method that has been successfully used to solve gas dynamic equations. As far as the two-fluid model is hyperbolic, this numerical method seems very efficient for the numerical solution of two-phase flow problems. The scheme was applied both to shock tube problems and to standard tests for two-fluid computer codes. The second part describes the numerical method in the three dimensional case. The authors discuss also some improvements performed to obtain a fully implicit solution method that provides fast running steady state calculations. Such a scheme is not implemented in a thermal-hydraulic computer code devoted to 3-D steady-state and transient computations. Some results obtained for Pressurised Water Reactors concerning upper plenum calculations and a steady state flow in the core with rod bow effect evaluation are presented. In practice these new numerical methods have proved to be stable on non staggered grids and capable of generating accurate non oscillating solutions for two-phase flow calculations.« less
An acoustic-convective splitting-based approach for the Kapila two-phase flow model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eikelder, M.F.P. ten, E-mail: m.f.p.teneikelder@tudelft.nl; Eindhoven University of Technology, Department of Mathematics and Computer Science, P.O. Box 513, 5600 MB Eindhoven; Daude, F.
In this paper we propose a new acoustic-convective splitting-based numerical scheme for the Kapila five-equation two-phase flow model. The splitting operator decouples the acoustic waves and convective waves. The resulting two submodels are alternately numerically solved to approximate the solution of the entire model. The Lagrangian form of the acoustic submodel is numerically solved using an HLLC-type Riemann solver whereas the convective part is approximated with an upwind scheme. The result is a simple method which allows for a general equation of state. Numerical computations are performed for standard two-phase shock tube problems. A comparison is made with a non-splittingmore » approach. The results are in good agreement with reference results and exact solutions.« less
NASA Astrophysics Data System (ADS)
Phanikumar, Mantha S.; McGuire, Jennifer T.
2010-08-01
Push-pull tests are a popular technique to investigate various aquifer properties and microbial reaction kinetics in situ. Most previous studies have interpreted push-pull test data using approximate analytical solutions to estimate (generally first-order) reaction rate coefficients. Though useful, these analytical solutions may not be able to describe important complexities in rate data. This paper reports the development of a multi-species, radial coordinate numerical model (PPTEST) that includes the effects of sorption, reaction lag time and arbitrary reaction order kinetics to estimate rates in the presence of mixing interfaces such as those created between injected "push" water and native aquifer water. The model has the ability to describe an arbitrary number of species and user-defined reaction rate expressions including Monod/Michelis-Menten kinetics. The FORTRAN code uses a finite-difference numerical model based on the advection-dispersion-reaction equation and was developed to describe the radial flow and transport during a push-pull test. The accuracy of the numerical solutions was assessed by comparing numerical results with analytical solutions and field data available in the literature. The model described the observed breakthrough data for tracers (chloride and iodide-131) and reactive components (sulfate and strontium-85) well and was found to be useful for testing hypotheses related to the complex set of processes operating near mixing interfaces.
Contribution of the Recent AUSM Schemes to the Overflow Code: Implementation and Validation
NASA Technical Reports Server (NTRS)
Liou, Meng-Sing; Buning, Pieter G.
2000-01-01
We shall present results of a recent collaborative effort between the authors attempting to implement the numerical flux scheme, AUSM+ and its new developments, into a widely used NASA code, OVERFLOW. This paper is intended to give a thorough and systematic documentation about the solutions of default test cases using the AUSNI+ scheme. Hence we will address various aspects of numerical solutions, such as accuracy, convergence rate, and effects of turbulence models, over a variety of geometries, speed regimes. We will briefly describe the numerical schemes employed in the calculations, including the capability of solving for low-speed flows and multiphase flows by employing the concept of numerical speed of sound. As a bonus, this low Mach number formulations also enhances convergence to steady solutions for flows even at transonic speed. Calculations for complex 3D turbulent flows were performed with several turbulence models and the results display excellent agreements with measured data.
Poulain, Christophe A.; Finlayson, Bruce A.; Bassingthwaighte, James B.
2010-01-01
The analysis of experimental data obtained by the multiple-indicator method requires complex mathematical models for which capillary blood-tissue exchange (BTEX) units are the building blocks. This study presents a new, nonlinear, two-region, axially distributed, single capillary, BTEX model. A facilitated transporter model is used to describe mass transfer between plasma and intracellular spaces. To provide fast and accurate solutions, numerical techniques suited to nonlinear convection-dominated problems are implemented. These techniques are the random choice method, an explicit Euler-Lagrange scheme, and the MacCormack method with and without flux correction. The accuracy of the numerical techniques is demonstrated, and their efficiencies are compared. The random choice, Euler-Lagrange and plain MacCormack method are the best numerical techniques for BTEX modeling. However, the random choice and Euler-Lagrange methods are preferred over the MacCormack method because they allow for the derivation of a heuristic criterion that makes the numerical methods stable without degrading their efficiency. Numerical solutions are also used to illustrate some nonlinear behaviors of the model and to show how the new BTEX model can be used to estimate parameters from experimental data. PMID:9146808
On the limits of numerical astronomical solutions used in paleoclimate studies
NASA Astrophysics Data System (ADS)
Zeebe, Richard E.
2017-04-01
Numerical solutions of the equations of the Solar System estimate Earth's orbital parameters in the past and represent the backbone of cyclostratigraphy and astrochronology, now widely applied in geology and paleoclimatology. Given one numerical realization of a Solar System model (i.e., obtained using one code or integrator package), various parameters determine the properties of the solution and usually limit its validity to a certain time period. Such limitations are denoted here as "internal" and include limitations due to (i) the underlying physics/physical model and (ii) numerics. The physics include initial coordinates and velocities of Solar System bodies, treatment of the Moon and asteroids, the Sun's quadrupole moment, and the intrinsic dynamics of the Solar System itself, i.e., its chaotic nature. Numerical issues include solver algorithm, numerical accuracy (e.g., time step), and round-off errors. At present, internal limitations seem to restrict the validity of astronomical solutions to perhaps the past 50 or 60 myr. However, little is currently known about "external" limitations, that is, how do different numerical realizations compare, say, between different investigators using different codes and integrators? Hitherto only two solutions for Earth's eccentricity appear to be used in paleoclimate studies, provided by two different groups that integrated the full Solar System equations over the past >100 myr (Laskar and coworkers and Varadi et al. 2003). In this contribution, I will present results from new Solar System integrations for Earth's eccentricity obtained using the integrator package HNBody (Rauch and Hamilton 2002). I will discuss the various internal limitations listed above within the framework of the present simulations. I will also compare the results to the existing solutions, the details of which are still being sorted out as several simulations are still running at the time of writing.
Chemical Transport in a Fissured Rock: Verification of a Numerical Model
NASA Astrophysics Data System (ADS)
Rasmuson, A.; Narasimhan, T. N.; Neretnieks, I.
1982-10-01
Numerical models for simulating chemical transport in fissured rocks constitute powerful tools for evaluating the acceptability of geological nuclear waste repositories. Due to the very long-term, high toxicity of some nuclear waste products, the models are required to predict, in certain cases, the spatial and temporal distribution of chemical concentration less than 0.001% of the concentration released from the repository. Whether numerical models can provide such accuracies is a major question addressed in the present work. To this end we have verified a numerical model, TRUMP, which solves the advective diffusion equation in general three dimensions, with or without decay and source terms. The method is based on an integrated finite difference approach. The model was verified against known analytic solution of the one-dimensional advection-diffusion problem, as well as the problem of advection-diffusion in a system of parallel fractures separated by spherical particles. The studies show that as long as the magnitude of advectance is equal to or less than that of conductance for the closed surface bounding any volume element in the region (that is, numerical Peclet number <2), the numerical method can indeed match the analytic solution within errors of ±10-3% or less. The realistic input parameters used in the sample calculations suggest that such a range of Peclet numbers is indeed likely to characterize deep groundwater systems in granitic and ancient argillaceous systems. Thus TRUMP in its present form does provide a viable tool for use in nuclear waste evaluation studies. A sensitivity analysis based on the analytic solution suggests that the errors in prediction introduced due to uncertainties in input parameters are likely to be larger than the computational inaccuracies introduced by the numerical model. Currently, a disadvantage in the TRUMP model is that the iterative method of solving the set of simultaneous equations is rather slow when time constants vary widely over the flow region. Although the iterative solution may be very desirable for large three-dimensional problems in order to minimize computer storage, it seems desirable to use a direct solver technique in conjunction with the mixed explicit-implicit approach whenever possible. Work in this direction is in progress.
A numerical model for simulation of bioremediation of hydrocarbons in aquifers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Munoz, J.F.; Irarrazaval, M.J.
1998-03-01
A numerical model was developed to describe the bioremediation of hydrocarbons in ground water aquifers considering aerobic degradation. The model solves the independent transport of three solutes (oxygen, hydrocarbons, and microorganisms) in ground water flow using the method of characteristics. Interactions between the three solutes, in which oxygen and hydrocarbons are consumed by microorganisms, are represented by Monod kinetics, solved using a Runge-Kutta method. Model simulations showed good correlation as compared with results of soil column experiments. The model was used to estimate the time needed to remediate the columns, which varied from one to two years.
NASA Astrophysics Data System (ADS)
Rehman, Asad; Ali, Ishtiaq; Qamar, Shamsul
An upwind space-time conservation element and solution element (CE/SE) scheme is extended to numerically approximate the dusty gas flow model. Unlike central CE/SE schemes, the current method uses the upwind procedure to derive the numerical fluxes through the inner boundary of conservation elements. These upwind fluxes are utilized to calculate the gradients of flow variables. For comparison and validation, the central upwind scheme is also applied to solve the same dusty gas flow model. The suggested upwind CE/SE scheme resolves the contact discontinuities more effectively and preserves the positivity of flow variables in low density flows. Several case studies are considered and the results of upwind CE/SE are compared with the solutions of central upwind scheme. The numerical results show better performance of the upwind CE/SE method as compared to the central upwind scheme.
Singular boundary method for global gravity field modelling
NASA Astrophysics Data System (ADS)
Cunderlik, Robert
2014-05-01
The singular boundary method (SBM) and method of fundamental solutions (MFS) are meshless boundary collocation techniques that use the fundamental solution of a governing partial differential equation (e.g. the Laplace equation) as their basis functions. They have been developed to avoid singular numerical integration as well as mesh generation in the traditional boundary element method (BEM). SBM have been proposed to overcome a main drawback of MFS - its controversial fictitious boundary outside the domain. The key idea of SBM is to introduce a concept of the origin intensity factors that isolate singularities of the fundamental solution and its derivatives using some appropriate regularization techniques. Consequently, the source points can be placed directly on the real boundary and coincide with the collocation nodes. In this study we deal with SBM applied for high-resolution global gravity field modelling. The first numerical experiment presents a numerical solution to the fixed gravimetric boundary value problem. The achieved results are compared with the numerical solutions obtained by MFS or the direct BEM indicating efficiency of all methods. In the second numerical experiments, SBM is used to derive the geopotential and its first derivatives from the Tzz components of the gravity disturbing tensor observed by the GOCE satellite mission. A determination of the origin intensity factors allows to evaluate the disturbing potential and gravity disturbances directly on the Earth's surface where the source points are located. To achieve high-resolution numerical solutions, the large-scale parallel computations are performed on the cluster with 1TB of the distributed memory and an iterative elimination of far zones' contributions is applied.
NASA Astrophysics Data System (ADS)
Lai, Wencong; Khan, Abdul A.
2018-04-01
A computationally efficient hybrid finite-volume/finite-difference method is proposed for the numerical solution of Saint-Venant equations in one-dimensional open channel flows. The method adopts a mass-conservative finite volume discretization for the continuity equation and a semi-implicit finite difference discretization for the dynamic-wave momentum equation. The spatial discretization of the convective flux term in the momentum equation employs an upwind scheme and the water-surface gradient term is discretized using three different schemes. The performance of the numerical method is investigated in terms of efficiency and accuracy using various examples, including steady flow over a bump, dam-break flow over wet and dry downstream channels, wetting and drying in a parabolic bowl, and dam-break floods in laboratory physical models. Numerical solutions from the hybrid method are compared with solutions from a finite volume method along with analytic solutions or experimental measurements. Comparisons demonstrates that the hybrid method is efficient, accurate, and robust in modeling various flow scenarios, including subcritical, supercritical, and transcritical flows. In this method, the QUICK scheme for the surface slope discretization is more accurate and less diffusive than the center difference and the weighted average schemes.
2011-01-01
Background Electrotherapy is a relatively well established and efficient method of tumor treatment. In this paper we focus on analytical and numerical calculations of the potential and electric field distributions inside a tumor tissue in a two-dimensional model (2D-model) generated by means of electrode arrays with shapes of different conic sections (ellipse, parabola and hyperbola). Methods Analytical calculations of the potential and electric field distributions based on 2D-models for different electrode arrays are performed by solving the Laplace equation, meanwhile the numerical solution is solved by means of finite element method in two dimensions. Results Both analytical and numerical solutions reveal significant differences between the electric field distributions generated by electrode arrays with shapes of circle and different conic sections (elliptic, parabolic and hyperbolic). Electrode arrays with circular, elliptical and hyperbolic shapes have the advantage of concentrating the electric field lines in the tumor. Conclusion The mathematical approach presented in this study provides a useful tool for the design of electrode arrays with different shapes of conic sections by means of the use of the unifying principle. At the same time, we verify the good correspondence between the analytical and numerical solutions for the potential and electric field distributions generated by the electrode array with different conic sections. PMID:21943385
NASA Technical Reports Server (NTRS)
Tamma, Kumar K.; D'Costa, Joseph F.
1991-01-01
This paper describes the evaluation of mixed implicit-explicit finite element formulations for hyperbolic heat conduction problems involving non-Fourier effects. In particular, mixed implicit-explicit formulations employing the alpha method proposed by Hughes et al. (1987, 1990) are described for the numerical simulation of hyperbolic heat conduction models, which involves time-dependent relaxation effects. Existing analytical approaches for modeling/analysis of such models involve complex mathematical formulations for obtaining closed-form solutions, while in certain numerical formulations the difficulties include severe oscillatory solution behavior (which often disguises the true response) in the vicinity of the thermal disturbances, which propagate with finite velocities. In view of these factors, the alpha method is evaluated to assess the control of the amount of numerical dissipation for predicting the transient propagating thermal disturbances. Numerical test models are presented, and pertinent conclusions are drawn for the mixed-time integration simulation of hyperbolic heat conduction models involving non-Fourier effects.
Modelling groundwater fractal flow with fractional differentiation via Mittag-Leffler law
NASA Astrophysics Data System (ADS)
Ahokposi, D. P.; Atangana, Abdon; Vermeulen, D. P.
2017-04-01
Modelling the flow of groundwater within a network of fractures is perhaps one of the most difficult exercises within the field of geohydrology. This physical problem has attracted the attention of several scientists across the globe. Already two different types of differentiations have been used to attempt modelling this problem including the classical and the fractional differentiation. In this paper, we employed the most recent concept of differentiation based on the non-local and non-singular kernel called the generalized Mittag-Leffler function, to reshape the model of groundwater fractal flow. We presented the existence of positive solution of the new model. Using the fixed-point approach, we established the uniqueness of the positive solution. We solve the new model with three different numerical schemes including implicit, explicit and Crank-Nicholson numerical methods. Experimental data collected from four constant discharge tests conducted in a typical fractured crystalline rock aquifer of the Northern Limb (Bushveld Complex) in the Limpopo Province (South Africa) are compared with the numerical solutions. It is worth noting that the four boreholes (BPAC1, BPAC2, BPAC3, and BPAC4) are located on Faults.
Difference-Equation/Flow-Graph Circuit Analysis
NASA Technical Reports Server (NTRS)
Mcvey, I. M.
1988-01-01
Numerical technique enables rapid, approximate analyses of electronic circuits containing linear and nonlinear elements. Practiced in variety of computer languages on large and small computers; for circuits simple enough, programmable hand calculators used. Although some combinations of circuit elements make numerical solutions diverge, enables quick identification of divergence and correction of circuit models to make solutions converge.
NASA Astrophysics Data System (ADS)
Tsivilskiy, I. V.; Nagulin, K. Yu.; Gilmutdinov, A. Kh.
2016-02-01
A full three-dimensional nonstationary numerical model of graphite electrothermal atomizers of various types is developed. The model is based on solution of a heat equation within solid walls of the atomizer with a radiative heat transfer and numerical solution of a full set of Navier-Stokes equations with an energy equation for a gas. Governing equations for the behavior of a discrete phase, i.e., atomic particles suspended in a gas (including gas-phase processes of evaporation and condensation), are derived from the formal equations molecular kinetics by numerical solution of the Hertz-Langmuir equation. The following atomizers test the model: a Varian standard heated electrothermal vaporizer (ETV), a Perkin Elmer standard THGA transversely heated graphite tube with integrated platform (THGA), and the original double-stage tube-helix atomizer (DSTHA). The experimental verification of computer calculations is carried out by a method of shadow spectral visualization of the spatial distributions of atomic and molecular vapors in an analytical space of an atomizer.
Salty popcorn in a homogeneous low-dimensional toy model of holographic QCD
NASA Astrophysics Data System (ADS)
Elliot-Ripley, Matthew
2017-04-01
Recently, a homogeneous ansatz has been used to study cold dense nuclear matter in the Sakai-Sugimoto model of holographic QCD. To justify this homogeneous approximation we here investigate a homogeneous ansatz within a low-dimensional toy version of Sakai-Sugimoto to study finite baryon density configurations and compare it to full numerical solutions. We find the ansatz corresponds to enforcing a dyon salt arrangement in which the soliton solutions are split into half-soliton layers. Within this ansatz we find analogues of the proposed baryonic popcorn transitions, in which solutions split into multiple layers in the holographic direction. The homogeneous results are found to qualitatively match the full numerical solutions, lending confidence to the homogeneous approximations of the full Sakai-Sugimoto model. In addition, we find exact compact solutions in the high density, flat space limit which demonstrate the existence of further popcorn transitions to three layers and beyond.
NASA Astrophysics Data System (ADS)
Ikeguchi, Mitsunori; Doi, Junta
1995-09-01
The Ornstein-Zernike integral equation (OZ equation) has been used to evaluate the distribution function of solvents around solutes, but its numerical solution is difficult for molecules with a complicated shape. This paper proposes a numerical method to directly solve the OZ equation by introducing the 3D lattice. The method employs no approximation the reference interaction site model (RISM) equation employed. The method enables one to obtain the spatial distribution of spherical solvents around solutes with an arbitrary shape. Numerical accuracy is sufficient when the grid-spacing is less than 0.5 Å for solvent water. The spatial water distribution around a propane molecule is demonstrated as an example of a nonspherical hydrophobic molecule using iso-value surfaces. The water model proposed by Pratt and Chandler is used. The distribution agrees with the molecular dynamics simulation. The distribution increases offshore molecular concavities. The spatial distribution of water around 5α-cholest-2-ene (C27H46) is visualized using computer graphics techniques and a similar trend is observed.
NASA Astrophysics Data System (ADS)
Fujimura, Toshio; Takeshita, Kunimasa; Suzuki, Ryosuke O.
2018-04-01
An analytical approximate solution to non-linear solute- and heat-transfer equations in the unsteady-state mushy zone of Fe-C plain steel has been obtained, assuming a linear relationship between the solid fraction and the temperature of the mushy zone. The heat transfer equations for both the solid and liquid zone along with the boundary conditions have been linked with the equations to solve the whole equations. The model predictions ( e.g., the solidification constants and the effective partition ratio) agree with the generally accepted values and with a separately performed numerical analysis. The solidus temperature predicted by the model is in the intermediate range of the reported formulas. The model and Neuman's solution are consistent in the low carbon range. A conventional numerical heat analysis ( i.e., an equivalent specific heat method using the solidus temperature predicted by the model) is consistent with the model predictions for Fe-C plain steels. The model presented herein simplifies the computations to solve the solute- and heat-transfer simultaneous equations while searching for a solidus temperature as a part of the solution. Thus, this model can reduce the complexity of analyses considering the heat- and solute-transfer phenomena in the mushy zone.
A closed-form solution for steady-state coupled phloem/xylem flow using the Lambert-W function.
Hall, A J; Minchin, P E H
2013-12-01
A closed-form solution for steady-state coupled phloem/xylem flow is presented. This incorporates the basic Münch flow model of phloem transport, the cohesion model of xylem flow, and local variation in the xylem water potential and lateral water flow along the transport pathway. Use of the Lambert-W function allows this solution to be obtained under much more general and realistic conditions than has previously been possible. Variation in phloem resistance (i.e. viscosity) with solute concentration, and deviations from the Van't Hoff expression for osmotic potential are included. It is shown that the model predictions match those of the equilibrium solution of a numerical time-dependent model based upon the same mechanistic assumptions. The effect of xylem flow upon phloem flow can readily be calculated, which has not been possible in any previous analytical model. It is also shown how this new analytical solution can handle multiple sources and sinks within a complex architecture, and can describe competition between sinks. The model provides new insights into Münch flow by explicitly including interactions with xylem flow and water potential in the closed-form solution, and is expected to be useful as a component part of larger numerical models of entire plants. © 2013 John Wiley & Sons Ltd.
A comparison of solute-transport solution techniques based on inverse modelling results
Mehl, S.; Hill, M.C.
2000-01-01
Five common numerical techniques (finite difference, predictor-corrector, total-variation-diminishing, method-of-characteristics, and modified-method-of-characteristics) were tested using simulations of a controlled conservative tracer-test experiment through a heterogeneous, two-dimensional sand tank. The experimental facility was constructed using randomly distributed homogeneous blocks of five sand types. This experimental model provides an outstanding opportunity to compare the solution techniques because of the heterogeneous hydraulic conductivity distribution of known structure, and the availability of detailed measurements with which to compare simulated concentrations. The present work uses this opportunity to investigate how three common types of results-simulated breakthrough curves, sensitivity analysis, and calibrated parameter values-change in this heterogeneous situation, given the different methods of simulating solute transport. The results show that simulated peak concentrations, even at very fine grid spacings, varied because of different amounts of numerical dispersion. Sensitivity analysis results were robust in that they were independent of the solution technique. They revealed extreme correlation between hydraulic conductivity and porosity, and that the breakthrough curve data did not provide enough information about the dispersivities to estimate individual values for the five sands. However, estimated hydraulic conductivity values are significantly influenced by both the large possible variations in model dispersion and the amount of numerical dispersion present in the solution technique.Five common numerical techniques (finite difference, predictor-corrector, total-variation-diminishing, method-of-characteristics, and modified-method-of-characteristics) were tested using simulations of a controlled conservative tracer-test experiment through a heterogeneous, two-dimensional sand tank. The experimental facility was constructed using randomly distributed homogeneous blocks of five sand types. This experimental model provides an outstanding opportunity to compare the solution techniques because of the heterogeneous hydraulic conductivity distribution of known structure, and the availability of detailed measurements with which to compare simulated concentrations. The present work uses this opportunity to investigate how three common types of results - simulated breakthrough curves, sensitivity analysis, and calibrated parameter values - change in this heterogeneous situation, given the different methods of simulating solute transport. The results show that simulated peak concentrations, even at very fine grid spacings, varied because of different amounts of numerical dispersion. Sensitivity analysis results were robust in that they were independent of the solution technique. They revealed extreme correlation between hydraulic conductivity and porosity, and that the breakthrough curve data did not provide enough information about the dispersivities to estimate individual values for the five sands. However, estimated hydraulic conductivity values are significantly influenced by both the large possible variations in model dispersion and the amount of numerical dispersion present in the solution technique.
Mathematical, Constitutive and Numerical Modelling of Catastrophic Landslides and Related Phenomena
NASA Astrophysics Data System (ADS)
Pastor, M.; Fernández Merodo, J. A.; Herreros, M. I.; Mira, P.; González, E.; Haddad, B.; Quecedo, M.; Tonni, L.; Drempetic, V.
2008-02-01
Mathematical and numerical models are a fundamental tool for predicting the behaviour of geostructures and their interaction with the environment. The term “mathematical model” refers to a mathematical description of the more relevant physical phenomena which take place in the problem being analyzed. It is indeed a wide area including models ranging from the very simple ones for which analytical solutions can be obtained to those more complicated requiring the use of numerical approximations such as the finite element method. During the last decades, mathematical, constitutive and numerical models have been very much improved and today their use is widespread both in industry and in research. One special case is that of fast catastrophic landslides, for which simplified methods are not able to provide accurate solutions in many occasions. Moreover, many finite element codes cannot be applied for propagation of the mobilized mass. The purpose of this work is to present an overview of the different alternative mathematical and numerical models which can be applied to both the initiation and propagation mechanisms of fast catastrophic landslides and other related problems such as waves caused by landslides.
VAVUQ, Python and Matlab freeware for Verification and Validation, Uncertainty Quantification
NASA Astrophysics Data System (ADS)
Courtney, J. E.; Zamani, K.; Bombardelli, F. A.; Fleenor, W. E.
2015-12-01
A package of scripts is presented for automated Verification and Validation (V&V) and Uncertainty Quantification (UQ) for engineering codes that approximate Partial Differential Equations (PDFs). The code post-processes model results to produce V&V and UQ information. This information can be used to assess model performance. Automated information on code performance can allow for a systematic methodology to assess the quality of model approximations. The software implements common and accepted code verification schemes. The software uses the Method of Manufactured Solutions (MMS), the Method of Exact Solution (MES), Cross-Code Verification, and Richardson Extrapolation (RE) for solution (calculation) verification. It also includes common statistical measures that can be used for model skill assessment. Complete RE can be conducted for complex geometries by implementing high-order non-oscillating numerical interpolation schemes within the software. Model approximation uncertainty is quantified by calculating lower and upper bounds of numerical error from the RE results. The software is also able to calculate the Grid Convergence Index (GCI), and to handle adaptive meshes and models that implement mixed order schemes. Four examples are provided to demonstrate the use of the software for code and solution verification, model validation and uncertainty quantification. The software is used for code verification of a mixed-order compact difference heat transport solver; the solution verification of a 2D shallow-water-wave solver for tidal flow modeling in estuaries; the model validation of a two-phase flow computation in a hydraulic jump compared to experimental data; and numerical uncertainty quantification for 3D CFD modeling of the flow patterns in a Gust erosion chamber.
Aeroacoustic Simulations of a Nose Landing Gear Using FUN3D on Pointwise Unstructured Grids
NASA Technical Reports Server (NTRS)
Vatsa, Veer N.; Khorrami, Mehdi R.; Rhoads, John; Lockard, David P.
2015-01-01
Numerical simulations have been performed for a partially-dressed, cavity-closed (PDCC) nose landing gear configuration that was tested in the University of Florida's open-jet acoustic facility known as the UFAFF. The unstructured-grid flow solver FUN3D is used to compute the unsteady flow field for this configuration. Mixed-element grids generated using the Pointwise(TradeMark) grid generation software are used for these simulations. Particular care is taken to ensure quality cells and proper resolution in critical areas of interest in an effort to minimize errors introduced by numerical artifacts. A hybrid Reynolds-averaged Navier-Stokes/large eddy simulation (RANS/LES) turbulence model is used for these simulations. Solutions are also presented for a wall function model coupled to the standard turbulence model. Time-averaged and instantaneous solutions obtained on these Pointwise grids are compared with the measured data and previous numerical solutions. The resulting CFD solutions are used as input to a Ffowcs Williams-Hawkings noise propagation code to compute the farfield noise levels in the flyover and sideline directions. The computed noise levels compare well with previous CFD solutions and experimental data.
NASA Astrophysics Data System (ADS)
Hartland, Tucker; Schilling, Oleg
2017-11-01
Analytical self-similar solutions to several families of single- and two-scale, eddy viscosity and Reynolds stress turbulence models are presented for Rayleigh-Taylor, Richtmyer-Meshkov, and Kelvin-Helmholtz instability-induced turbulent mixing. The use of algebraic relationships between model coefficients and physical observables (e.g., experimental growth rates) following from the self-similar solutions to calibrate a member of a given family of turbulence models is shown. It is demonstrated numerically that the algebraic relations accurately predict the value and variation of physical outputs of a Reynolds-averaged simulation in flow regimes that are consistent with the simplifying assumptions used to derive the solutions. The use of experimental and numerical simulation data on Reynolds stress anisotropy ratios to calibrate a Reynolds stress model is briefly illustrated. The implications of the analytical solutions for future Reynolds-averaged modeling of hydrodynamic instability-induced mixing are briefly discussed. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
NASA Astrophysics Data System (ADS)
Uzunov, Ivan M.; Georgiev, Zhivko D.; Arabadzhiev, Todor N.
2018-05-01
In this paper we study the transitions of stationary to pulsating solutions in the complex cubic-quintic Ginzburg-Landau equation (CCQGLE) under the influence of nonlinear gain, its saturation, and higher-order effects: self-steepening, third-order of dispersion, and intrapulse Raman scattering in the anomalous dispersion region. The variation method and the method of moments are applied in order to obtain the dynamic models with finite degrees of freedom for the description of stationary and pulsating solutions. Having applied the first model and its bifurcation analysis we have discovered the existence of families of subcritical Poincaré-Andronov-Hopf bifurcations due to the intrapulse Raman scattering, as well as some small nonlinear gain and the saturation of the nonlinear gain. A phenomenon of nonlinear stability has been studied and it has been shown that long living pulsating solutions with relatively small fluctuations of amplitude and frequencies exist at the bifurcation point. The numerical analysis of the second model has revealed the existence of Poincaré-Andronov-Hopf bifurcations of Raman dissipative soliton under the influence of the self-steepening effect and large nonlinear gain. All our theoretical predictions have been confirmed by the direct numerical solution of the full perturbed CCQGLE. The detailed comparison between the results obtained by both dynamic models and the direct numerical solution of the perturbed CCQGLE has proved the applicability of the proposed models in the investigation of the solutions of the perturbed CCQGLE.
Finite Element Analysis of Magnetic Damping Effects on G-Jitter Induced Fluid Flow
NASA Technical Reports Server (NTRS)
Pan, Bo; Li, Ben Q.; deGroh, Henry C., III
1997-01-01
This paper reports some interim results on numerical modeling and analyses of magnetic damping of g-jitter driven fluid flow in microgravity. A finite element model is developed to represent the fluid flow, thermal and solute transport phenomena in a 2-D cavity under g-jitter conditions with and without an applied magnetic field. The numerical model is checked by comparing with analytical solutions obtained for a simple parallel plate channel flow driven by g-jitter in a transverse magnetic field. The model is then applied to study the effect of steady state g-jitter induced oscillation and on the solute redistribution in the liquid that bears direct relevance to the Bridgman-Stockbarger single crystal growth processes. A selection of computed results is presented and the results indicate that an applied magnetic field can effectively damp the velocity caused by g-jitter and help to reduce the time variation of solute redistribution.
Alternating Direction Implicit (ADI) schemes for a PDE-based image osmosis model
NASA Astrophysics Data System (ADS)
Calatroni, L.; Estatico, C.; Garibaldi, N.; Parisotto, S.
2017-10-01
We consider Alternating Direction Implicit (ADI) splitting schemes to compute efficiently the numerical solution of the PDE osmosis model considered by Weickert et al. in [10] for several imaging applications. The discretised scheme is shown to preserve analogous properties to the continuous model. The dimensional splitting strategy traduces numerically into the solution of simple tridiagonal systems for which standard matrix factorisation techniques can be used to improve upon the performance of classical implicit methods, even for large time steps. Applications to the shadow removal problem are presented.
Robertson, John B.
1976-01-01
Aqueous chemical and low-level radioactive effluents have been disposed to seepage ponds since 1952 at the Idaho National Engineering Laboratory. The solutions percolate toward the Snake River Plain aquifer (135 m below) through interlayered basalts and unconsolidated sediments and an extensive zone of ground water perched on a sedimentary layer about 40 m beneath the ponds. A three-segment numerical model was developed to simulate the system, including effects of convection, hydrodynamic dispersion, radioactive decay, and adsorption. Simulated hydraulics and solute migration patterns for all segments agree adequately with the available field data. The model can be used to project subsurface distributions of waste solutes under a variety of assumed conditions for the future. Although chloride and tritium reached the aquifer several years ago, the model analysis suggests that the more easily sorbed solutes, such as cesium-137 and strontium-90, would not reach the aquifer in detectable concentrations within 150 years for the conditions assumed. (Woodard-USGS)
Large Black Holes in the Randall-Sundrum II Model
NASA Astrophysics Data System (ADS)
Yaghoobpour Tari, Shima
The Einstein equation with a negative cosmological constant ! in the five dimensions for the Randall-Sundrum II model, which includes a black hole, has been solved numerically. We have constructed an AdS5-CFT 4 solution numerically, using a spectral method to minimize the integral of the square of the error of the Einstein equation, with 210 parameters to be determined by optimization. This metric is conformal to the Schwarzschild metric at an AdS5 boundary with an infinite scale factor. So, we consider this solution as an infinite-mass black hole solution. We have rewritten the infinite-mass black hole in the Fefferman-Graham form and obtained the numerical components of the CFT energy-momentum tensor. Using them, we have perturbed the metric to relocate the brane from infinity and obtained a large static black hole solution for the Randall- Sundrum II model. The changes of mass, entropy, temperature and area of the large black hole from the Schwarzschild metric are studied up to the first order for the perturbation parameter 1/(-Λ5M 2). The Hawking temperature and entropy for our large black hole have the same values as the Schwarzschild metric with the same mass, but the horizon area is increased by about 4.7/(-Λ5). Figueras, Lucietti, and Wiseman found an AdS5-CFT4 solution using an independent and different method from us, called the Ricci-DeTurck-flow method. Then, Figueras and Wiseman perturbed this solution in a same way as we have done and obtained the solution for the large black hole in the Randall-Sundrum II model. These two numerical solutions are the first mathematical proofs for having a large black hole in the Randall-Sundrum II. We have compared their results with ours for the CFT energy-momentum tensor components and the perturbed metric. We have shown that the results are closely in agreement, which can be considered as evidence that the solution for the large black hole in the Randall-Sundrum II model exists.
Existence of periodic solutions in a model of respiratory syncytial virus RSV
NASA Astrophysics Data System (ADS)
Arenas, Abraham J.; González, Gilberto; Jódar, Lucas
2008-08-01
In this paper we study the existence of a positive periodic solutions for nested models of respiratory syncytial virus RSV, by using a continuation theorem based on coincidence degree theory. Conditions for the existence of periodic solutions in the model are given. Numerical simulations related to the transmission of respiratory syncytial virus in Madrid and Rio Janeiro are included.
NONLINEAR AND FIBER OPTICS: Self-similar solution obtained by self-focusing of annular laser beams
NASA Astrophysics Data System (ADS)
Azimov, B. S.; Platonenko, Viktor T.; Sagatov, M. M.
1991-03-01
A numerical modeling is reported of steady-state self-focusing of an annular beam with thin "walls." An approximate similar solution is found to describe well the relationships observed in the numerical experiment for a special selection of the input parameters of the beam. This solution is used to estimate the focal length. Such self-similar self-focusing is shown to affect the whole power of the beam.
Numerical Modeling Tools for the Prediction of Solution Migration Applicable to Mining Site
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martell, M.; Vaughn, P.
1999-01-06
Mining has always had an important influence on cultures and traditions of communities around the globe and throughout history. Today, because mining legislation places heavy emphasis on environmental protection, there is great interest in having a comprehensive understanding of ancient mining and mining sites. Multi-disciplinary approaches (i.e., Pb isotopes as tracers) are being used to explore the distribution of metals in natural environments. Another successful approach is to model solution migration numerically. A proven method to simulate solution migration in natural rock salt has been applied to project through time for 10,000 years the system performance and solution concentrations surroundingmore » a proposed nuclear waste repository. This capability is readily adaptable to simulate solution migration around mining.« less
NASA Astrophysics Data System (ADS)
Zhang, Hong; Zegeling, Paul Andries
2017-09-01
Motivated by observations of saturation overshoot, this paper investigates numerical modeling of two-phase flow in porous media incorporating dynamic capillary pressure. The effects of the dynamic capillary coefficient, the infiltrating flux rate and the initial and boundary values are systematically studied using a traveling wave ansatz and efficient numerical methods. The traveling wave solutions may exhibit monotonic, non-monotonic or plateau-shaped behavior. Special attention is paid to the non-monotonic profiles. The traveling wave results are confirmed by numerically solving the partial differential equation using an accurate adaptive moving mesh solver. Comparisons between the computed solutions using the Brooks-Corey model and the laboratory measurements of saturation overshoot verify the effectiveness of our approach.
Asymptotic analysis of dissipative waves with applications to their numerical simulation
NASA Technical Reports Server (NTRS)
Hagstrom, Thomas
1990-01-01
Various problems involving the interplay of asymptotics and numerics in the analysis of wave propagation in dissipative systems are studied. A general approach to the asymptotic analysis of linear, dissipative waves is developed. It was applied to the derivation of asymptotic boundary conditions for numerical solutions on unbounded domains. Applications include the Navier-Stokes equations. Multidimensional traveling wave solutions to reaction-diffusion equations are also considered. A preliminary numerical investigation of a thermo-diffusive model of flame propagation in a channel with heat loss at the walls is presented.
Development of numerical techniques for simulation of magnetogasdynamics and hypersonic chemistry
NASA Astrophysics Data System (ADS)
Damevin, Henri-Marie
Magnetogasdynamics, the science concerned with the mutual interaction between electromagnetic field and flow of electrically conducting gas, offers promising advances in flow control and propulsion of future hypersonic vehicles. Numerical simulations are essential for understanding phenomena, and for research and development. The current dissertation is devoted to the development and validation of numerical algorithms for the solution of multidimensional magnetogasdynamic equations and the simulation of hypersonic high-temperature effects. Governing equations are derived, based on classical magnetogasdynamic assumptions. Two sets of equations are considered, namely the full equations and equations in the low magnetic Reynolds number approximation. Equations are expressed in a suitable formulation for discretization by finite differences in a computational space. For the full equations, Gauss law for magnetism is enforced using Powell's methodology. The time integration method is a four-stage modified Runge-Kutta scheme, amended with a Total Variation Diminishing model in a postprocessing stage. The eigensystem, required for the Total Variation Diminishing scheme, is derived in generalized three-dimensional coordinate system. For the simulation of hypersonic high-temperature effects, two chemical models are utilized, namely a nonequilibrium model and an equilibrium model. A loosely coupled approach is implemented to communicate between the magnetogasdynamic equations and the chemical models. The nonequilibrium model is a one-temperature, five-species, seventeen-reaction model solved by an implicit flux-vector splitting scheme. The chemical equilibrium model computes thermodynamics properties using curve fit procedures. Selected results are provided, which explore the different features of the numerical algorithms. The shock-capturing properties are validated for shock-tube simulations using numerical solutions reported in the literature. The computations of superfast flows over corners and in convergent channels demonstrate the performances of the algorithm in multiple dimensions. The implementation of diffusion terms is validated by solving the magnetic Rayleigh problem and Hartmann problem, for which analytical solutions are available. Prediction of blunt-body type flow are investigated and compared with numerical solutions reported in the literature. The effectiveness of the chemical models for hypersonic flow over blunt body is examined in various flow conditions. It is shown that the proposed schemes perform well in a variety of test cases, though some limitations have been identified.
On the Solution of the Three-Dimensional Flowfield About a Flow-Through Nacelle. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Compton, William Bernard
1985-01-01
The solution of the three dimensional flow field for a flow through nacelle was studied. Both inviscid and viscous inviscid interacting solutions were examined. Inviscid solutions were obtained with two different computational procedures for solving the three dimensional Euler equations. The first procedure employs an alternating direction implicit numerical algorithm, and required the development of a complete computational model for the nacelle problem. The second computational technique employs a fourth order Runge-Kutta numerical algorithm which was modified to fit the nacelle problem. Viscous effects on the flow field were evaluated with a viscous inviscid interacting computational model. This model was constructed by coupling the explicit Euler solution procedure with a flag entrainment boundary layer solution procedure in a global iteration scheme. The computational techniques were used to compute the flow field for a long duct turbofan engine nacelle at free stream Mach numbers of 0.80 and 0.94 and angles of attack of 0 and 4 deg.
NASA Astrophysics Data System (ADS)
Boufadel, Michel C.; Suidan, Makram T.; Venosa, Albert D.
1999-04-01
We present a formulation for water flow and solute transport in two-dimensional variably saturated media that accounts for the effects of the solute on water density and viscosity. The governing equations are cast in a dimensionless form that depends on six dimensionless groups of parameters. These equations are discretized in space using the Galerkin finite element formulation and integrated in time using the backward Euler scheme with mass lumping. The modified Picard method is used to linearize the water flow equation. The resulting numerical model, the MARUN model, is verified by comparison to published numerical results. It is then used to investigate beach hydraulics at seawater concentration (about 30 g l -1) in the context of nutrients delivery for bioremediation of oil spills on beaches. Numerical simulations that we conducted in a rectangular section of a hypothetical beach revealed that buoyancy in the unsaturated zone is significant in soils that are fine textured, with low anisotropy ratio, and/or exhibiting low physical dispersion. In such situations, application of dissolved nutrients to a contaminated beach in a freshwater solution is superior to their application in a seawater solution. Concentration-engendered viscosity effects were negligible with respect to concentration-engendered density effects for the cases that we considered.
Interface modeling in incompressible media using level sets in Escript
NASA Astrophysics Data System (ADS)
Gross, L.; Bourgouin, L.; Hale, A. J.; Mühlhaus, H.-B.
2007-08-01
We use a finite element (FEM) formulation of the level set method to model geological fluid flow problems involving interface propagation. Interface problems are ubiquitous in geophysics. Here we focus on a Rayleigh-Taylor instability, namely mantel plumes evolution, and the growth of lava domes. Both problems require the accurate description of the propagation of an interface between heavy and light materials (plume) or between high viscous lava and low viscous air (lava dome), respectively. The implementation of the models is based on Escript which is a Python module for the solution of partial differential equations (PDEs) using spatial discretization techniques such as FEM. It is designed to describe numerical models in the language of PDEs while using computational components implemented in C and C++ to achieve high performance for time-intensive, numerical calculations. A critical step in the solution geological flow problems is the solution of the velocity-pressure problem. We describe how the Escript module can be used for a high-level implementation of an efficient variant of the well-known Uzawa scheme. We begin with a brief outline of the Escript modules and then present illustrations of its usage for the numerical solutions of the problems mentioned above.
NASA Astrophysics Data System (ADS)
Abbasbandy, S.; Van Gorder, R. A.; Hajiketabi, M.; Mesrizadeh, M.
2015-10-01
We consider traveling wave solutions to the Casimir equation for the Ito system (a two-field extension of the KdV equation). These traveling waves are governed by a nonlinear initial value problem with an interesting nonlinearity (which actually amplifies in magnitude as the size of the solution becomes small). The nonlinear problem is parameterized by two initial constant values, and we demonstrate that the existence of solutions is strongly tied to these parameter values. For our interests, we are concerned with positive, bounded, periodic wave solutions. We are able to classify parameter regimes which admit such solutions in full generality, thereby obtaining a nice existence result. Using the existence result, we are then able to numerically simulate the positive, bounded, periodic solutions. We elect to employ a group preserving scheme in order to numerically study these solutions, and an outline of this approach is provided. The numerical simulations serve to illustrate the properties of these solutions predicted analytically through the existence result. Physically, these results demonstrate the existence of a type of space-periodic structure in the Casimir equation for the Ito model, which propagates as a traveling wave.
Sedimentation Solutions for Military Ocean Terminal Sunny Point (MOTSU), North Carolina
2012-07-01
quality at MOTSU at the request of US Army Engineer District–Wilmington (USAED-SAW). The objective was achieved through numerical modeling ...literature review, and sediment forecasting. This report documents the results of the numerical modeling study only. Two advantageous approaches for...data .............................................................................................................. 25 4 Model Development
Spikes and matter inhomogeneities in massless scalar field models
NASA Astrophysics Data System (ADS)
Coley, A. A.; Lim, W. C.
2016-01-01
We shall discuss the general relativistic generation of spikes in a massless scalar field or stiff perfect fluid model. We first investigate orthogonally transitive (OT) G 2 stiff fluid spike models both heuristically and numerically, and give a new exact OT G 2 stiff fluid spike solution. We then present a new two-parameter family of non-OT G 2 stiff fluid spike solutions, obtained by the generalization of non-OT G 2 vacuum spike solutions to the stiff fluid case by applying Geroch's transformation on a Jacobs seed. The dynamics of these new stiff fluid spike solutions is qualitatively different from that of the vacuum spike solutions in that the matter (stiff fluid) feels the spike directly and the stiff fluid spike solution can end up with a permanent spike. We then derive the evolution equations of non-OT G 2 stiff fluid models, including a second perfect fluid, in full generality, and briefly discuss some of their qualitative properties and their potential numerical analysis. Finally, we discuss how a fluid, and especially a stiff fluid or massless scalar field, affects the physics of the generation of spikes.
A positive and entropy-satisfying finite volume scheme for the Baer-Nunziato model
NASA Astrophysics Data System (ADS)
Coquel, Frédéric; Hérard, Jean-Marc; Saleh, Khaled
2017-02-01
We present a relaxation scheme for approximating the entropy dissipating weak solutions of the Baer-Nunziato two-phase flow model. This relaxation scheme is straightforwardly obtained as an extension of the relaxation scheme designed in [16] for the isentropic Baer-Nunziato model and consequently inherits its main properties. To our knowledge, this is the only existing scheme for which the approximated phase fractions, phase densities and phase internal energies are proven to remain positive without any restrictive condition other than a classical fully computable CFL condition. For ideal gas and stiffened gas equations of state, real values of the phasic speeds of sound are also proven to be maintained by the numerical scheme. It is also the only scheme for which a discrete entropy inequality is proven, under a CFL condition derived from the natural sub-characteristic condition associated with the relaxation approximation. This last property, which ensures the non-linear stability of the numerical method, is satisfied for any admissible equation of state. We provide a numerical study for the convergence of the approximate solutions towards some exact Riemann solutions. The numerical simulations show that the relaxation scheme compares well with two of the most popular existing schemes available for the Baer-Nunziato model, namely Schwendeman-Wahle-Kapila's Godunov-type scheme [39] and Tokareva-Toro's HLLC scheme [44]. The relaxation scheme also shows a higher precision and a lower computational cost (for comparable accuracy) than a standard numerical scheme used in the nuclear industry, namely Rusanov's scheme. Finally, we assess the good behavior of the scheme when approximating vanishing phase solutions.
A positive and entropy-satisfying finite volume scheme for the Baer–Nunziato model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coquel, Frédéric, E-mail: frederic.coquel@cmap.polytechnique.fr; Hérard, Jean-Marc, E-mail: jean-marc.herard@edf.fr; Saleh, Khaled, E-mail: saleh@math.univ-lyon1.fr
We present a relaxation scheme for approximating the entropy dissipating weak solutions of the Baer–Nunziato two-phase flow model. This relaxation scheme is straightforwardly obtained as an extension of the relaxation scheme designed in for the isentropic Baer–Nunziato model and consequently inherits its main properties. To our knowledge, this is the only existing scheme for which the approximated phase fractions, phase densities and phase internal energies are proven to remain positive without any restrictive condition other than a classical fully computable CFL condition. For ideal gas and stiffened gas equations of state, real values of the phasic speeds of sound aremore » also proven to be maintained by the numerical scheme. It is also the only scheme for which a discrete entropy inequality is proven, under a CFL condition derived from the natural sub-characteristic condition associated with the relaxation approximation. This last property, which ensures the non-linear stability of the numerical method, is satisfied for any admissible equation of state. We provide a numerical study for the convergence of the approximate solutions towards some exact Riemann solutions. The numerical simulations show that the relaxation scheme compares well with two of the most popular existing schemes available for the Baer–Nunziato model, namely Schwendeman–Wahle–Kapila's Godunov-type scheme and Tokareva–Toro's HLLC scheme . The relaxation scheme also shows a higher precision and a lower computational cost (for comparable accuracy) than a standard numerical scheme used in the nuclear industry, namely Rusanov's scheme. Finally, we assess the good behavior of the scheme when approximating vanishing phase solutions.« less
ANALYZING NUMERICAL ERRORS IN DOMAIN HEAT TRANSPORT MODELS USING THE CVBEM.
Hromadka, T.V.; ,
1985-01-01
Besides providing an exact solution for steady-state heat conduction processes (Laplace Poisson equations), the CVBEM (complex variable boundary element method) can be used for the numerical error analysis of domain model solutions. For problems where soil water phase change latent heat effects dominate the thermal regime, heat transport can be approximately modeled as a time-stepped steady-state condition in the thawed and frozen regions, respectively. The CVBEM provides an exact solution of the two-dimensional steady-state heat transport problem, and also provides the error in matching the prescribed boundary conditions by the development of a modeling error distribution or an approximative boundary generation. This error evaluation can be used to develop highly accurate CVBEM models of the heat transport process, and the resulting model can be used as a test case for evaluating the precision of domain models based on finite elements or finite differences.
NASA Astrophysics Data System (ADS)
Řidký, V.; Šidlof, P.; Vlček, V.
2013-04-01
The work is devoted to comparing measured data with the results of numerical simulations. As mathematical model was used mathematical model whitout turbulence for incompressible flow In the experiment was observed the behavior of designed NACA0015 airfoil in airflow. For the numerical solution was used OpenFOAM computational package, this is open-source software based on finite volume method. In the numerical solution is prescribed displacement of the airfoil, which corresponds to the experiment. The velocity at a point close to the airfoil surface is compared with the experimental data obtained from interferographic measurements of the velocity field. Numerical solution is computed on a 3D mesh composed of about 1 million ortogonal hexahedron elements. The time step is limited by the Courant number. Parallel computations are run on supercomputers of the CIV at Technical University in Prague (HAL and FOX) and on a computer cluster of the Faculty of Mechatronics of Liberec (HYDRA). Run time is fixed at five periods, the results from the fifth periods and average value for all periods are then be compared with experiment.
A stochastic delay model for pricing debt and equity: Numerical techniques and applications
NASA Astrophysics Data System (ADS)
Tambue, Antoine; Kemajou Brown, Elisabeth; Mohammed, Salah
2015-01-01
Delayed nonlinear models for pricing corporate liabilities and European options were recently developed. Using self-financed strategy and duplication we were able to derive a Random Partial Differential Equation (RPDE) whose solutions describe the evolution of debt and equity values of a corporate in the last delay period interval in the accompanied paper (Kemajou et al., 2012) [14]. In this paper, we provide robust numerical techniques to solve the delayed nonlinear model for the corporate value, along with the corresponding RPDEs modeling the debt and equity values of the corporate. Using financial data from some firms, we forecast and compare numerical solutions from both the nonlinear delayed model and classical Merton model with the real corporate data. From this comparison, it comes up that in corporate finance the past dependence of the firm value process may be an important feature and therefore should not be ignored.
Numerical uncertainty in computational engineering and physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hemez, Francois M
2009-01-01
Obtaining a solution that approximates ordinary or partial differential equations on a computational mesh or grid does not necessarily mean that the solution is accurate or even 'correct'. Unfortunately assessing the quality of discrete solutions by questioning the role played by spatial and temporal discretizations generally comes as a distant third to test-analysis comparison and model calibration. This publication is contributed to raise awareness of the fact that discrete solutions introduce numerical uncertainty. This uncertainty may, in some cases, overwhelm in complexity and magnitude other sources of uncertainty that include experimental variability, parametric uncertainty and modeling assumptions. The concepts ofmore » consistency, convergence and truncation error are overviewed to explain the articulation between the exact solution of continuous equations, the solution of modified equations and discrete solutions computed by a code. The current state-of-the-practice of code and solution verification activities is discussed. An example in the discipline of hydro-dynamics illustrates the significant effect that meshing can have on the quality of code predictions. A simple method is proposed to derive bounds of solution uncertainty in cases where the exact solution of the continuous equations, or its modified equations, is unknown. It is argued that numerical uncertainty originating from mesh discretization should always be quantified and accounted for in the overall uncertainty 'budget' that supports decision-making for applications in computational physics and engineering.« less
NASA Technical Reports Server (NTRS)
Sharma, Naveen
1992-01-01
In this paper we briefly describe a combined symbolic and numeric approach for solving mathematical models on parallel computers. An experimental software system, PIER, is being developed in Common Lisp to synthesize computationally intensive and domain formulation dependent phases of finite element analysis (FEA) solution methods. Quantities for domain formulation like shape functions, element stiffness matrices, etc., are automatically derived using symbolic mathematical computations. The problem specific information and derived formulae are then used to generate (parallel) numerical code for FEA solution steps. A constructive approach to specify a numerical program design is taken. The code generator compiles application oriented input specifications into (parallel) FORTRAN77 routines with the help of built-in knowledge of the particular problem, numerical solution methods and the target computer.
NASA Astrophysics Data System (ADS)
Chaljub, Emmanuel; Maufroy, Emeline; Moczo, Peter; Kristek, Jozef; Hollender, Fabrice; Bard, Pierre-Yves; Priolo, Enrico; Klin, Peter; de Martin, Florent; Zhang, Zhenguo; Zhang, Wei; Chen, Xiaofei
2015-04-01
Differences between 3-D numerical predictions of earthquake ground motion in the Mygdonian basin near Thessaloniki, Greece, led us to define four canonical stringent models derived from the complex realistic 3-D model of the Mygdonian basin. Sediments atop an elastic bedrock are modelled in the 1D-sharp and 1D-smooth models using three homogeneous layers and smooth velocity distribution, respectively. The 2D-sharp and 2D-smooth models are extensions of the 1-D models to an asymmetric sedimentary valley. In all cases, 3-D wavefields include strongly dispersive surface waves in the sediments. We compared simulations by the Fourier pseudo-spectral method (FPSM), the Legendre spectral-element method (SEM) and two formulations of the finite-difference method (FDM-S and FDM-C) up to 4 Hz. The accuracy of individual solutions and level of agreement between solutions vary with type of seismic waves and depend on the smoothness of the velocity model. The level of accuracy is high for the body waves in all solutions. However, it strongly depends on the discrete representation of the material interfaces (at which material parameters change discontinuously) for the surface waves in the sharp models. An improper discrete representation of the interfaces can cause inaccurate numerical modelling of surface waves. For all the numerical methods considered, except SEM with mesh of elements following the interfaces, a proper implementation of interfaces requires definition of an effective medium consistent with the interface boundary conditions. An orthorhombic effective medium is shown to significantly improve accuracy and preserve the computational efficiency of modelling. The conclusions drawn from the analysis of the results of the canonical cases greatly help to explain differences between numerical predictions of ground motion in realistic models of the Mygdonian basin. We recommend that any numerical method and code that is intended for numerical prediction of earthquake ground motion should be verified through stringent models that would make it possible to test the most important aspects of accuracy.
Application of a flux-split algorithm to chemically relaxing, hypervelocity blunt-body flows
NASA Technical Reports Server (NTRS)
Balakrishnan, A.
1987-01-01
Viscous, nonequilibrium, hypervelocity flow fields over two axisymmetric configurations are numerically simulated using a factored, implicit, flux-split algorithm. The governing gas-dynamic and species-continuity equations for laminar flow are presented. The gas-dynamics/nonequilibrium-chemistry coupling procedure is developed as part of the solution procedure and is described in detail. Numerical solutions are presented for hypervelocity flows over a hemisphere and over an axisymmetric aeroassisted orbital transfer vehicle using three different chemistry models. The gas models considered are those for an ideal gas, for a frozen gas, and for chemically relaxing air consisting of five species. The calculated results are compared with existing numerical solutions in the literature along the stagnation line of the hemisphere. The effects of free-stream Reynolds number on the nonequilibrium flow field are discussed.
Properties of finite difference models of non-linear conservative oscillators
NASA Technical Reports Server (NTRS)
Mickens, R. E.
1988-01-01
Finite-difference (FD) approaches to the numerical solution of the differential equations describing the motion of a nonlinear conservative oscillator are investigated analytically. A generalized formulation of the Duffing and modified Duffing equations is derived and analyzed using several FD techniques, and it is concluded that, although it is always possible to contstruct FD models of conservative oscillators which are themselves conservative, caution is required to avoid numerical solutions which do not accurately reflect the properties of the original equation.
Stuebner, Michael; Haider, Mansoor A
2010-06-18
A new and efficient method for numerical solution of the continuous spectrum biphasic poroviscoelastic (BPVE) model of articular cartilage is presented. Development of the method is based on a composite Gauss-Legendre quadrature approximation of the continuous spectrum relaxation function that leads to an exponential series representation. The separability property of the exponential terms in the series is exploited to develop a numerical scheme that can be reduced to an update rule requiring retention of the strain history at only the previous time step. The cost of the resulting temporal discretization scheme is O(N) for N time steps. Application and calibration of the method is illustrated in the context of a finite difference solution of the one-dimensional confined compression BPVE stress-relaxation problem. Accuracy of the numerical method is demonstrated by comparison to a theoretical Laplace transform solution for a range of viscoelastic relaxation times that are representative of articular cartilage. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
An Efficient Numerical Approach for Nonlinear Fokker-Planck equations
NASA Astrophysics Data System (ADS)
Otten, Dustin; Vedula, Prakash
2009-03-01
Fokker-Planck equations which are nonlinear with respect to their probability densities that occur in many nonequilibrium systems relevant to mean field interaction models, plasmas, classical fermions and bosons can be challenging to solve numerically. To address some underlying challenges in obtaining numerical solutions, we propose a quadrature based moment method for efficient and accurate determination of transient (and stationary) solutions of nonlinear Fokker-Planck equations. In this approach the distribution function is represented as a collection of Dirac delta functions with corresponding quadrature weights and locations, that are in turn determined from constraints based on evolution of generalized moments. Properties of the distribution function can be obtained by solution of transport equations for quadrature weights and locations. We will apply this computational approach to study a wide range of problems, including the Desai-Zwanzig Model (for nonlinear muscular contraction) and multivariate nonlinear Fokker-Planck equations describing classical fermions and bosons, and will also demonstrate good agreement with results obtained from Monte Carlo and other standard numerical methods.
Tidally induced residual current over the Malin Sea continental slope
NASA Astrophysics Data System (ADS)
Stashchuk, Nataliya; Vlasenko, Vasiliy; Hosegood, Phil; Nimmo-Smith, W. Alex M.
2017-05-01
Tidally induced residual currents generated over shelf-slope topography are investigated analytically and numerically using the Massachusetts Institute of Technology general circulation model. Observational support for the presence of such a slope current was recorded over the Malin Sea continental slope during the 88-th cruise of the RRS ;James Cook; in July 2013. A simple analytical formula developed here in the framework of time-averaged shallow water equations has been validated against a fully nonlinear nonhydrostatic numerical solution. A good agreement between analytical and numerical solutions is found for a wide range of input parameters of the tidal flow and bottom topography. In application to the Malin Shelf area both the numerical model and analytical solution predicted a northward moving current confined to the slope with its core located above the 400 m isobath and with vertically averaged maximum velocities up to 8 cm s-1, which is consistent with the in-situ data recorded at three moorings and along cross-slope transects.
A conservative fully implicit algorithm for predicting slug flows
NASA Astrophysics Data System (ADS)
Krasnopolsky, Boris I.; Lukyanov, Alexander A.
2018-02-01
An accurate and predictive modelling of slug flows is required by many industries (e.g., oil and gas, nuclear engineering, chemical engineering) to prevent undesired events potentially leading to serious environmental accidents. For example, the hydrodynamic and terrain-induced slugging leads to unwanted unsteady flow conditions. This demands the development of fast and robust numerical techniques for predicting slug flows. The presented in this paper study proposes a multi-fluid model and its implementation method accounting for phase appearance and disappearance. The numerical modelling of phase appearance and disappearance presents a complex numerical challenge for all multi-component and multi-fluid models. Numerical challenges arise from the singular systems of equations when some phases are absent and from the solution discontinuity when some phases appear or disappear. This paper provides a flexible and robust solution to these issues. A fully implicit formulation described in this work enables to efficiently solve governing fluid flow equations. The proposed numerical method provides a modelling capability of phase appearance and disappearance processes, which is based on switching procedure between various sets of governing equations. These sets of equations are constructed using information about the number of phases present in the computational domain. The proposed scheme does not require an explicit truncation of solutions leading to a conservative scheme for mass and linear momentum. A transient two-fluid model is used to verify and validate the proposed algorithm for conditions of hydrodynamic and terrain-induced slug flow regimes. The developed modelling capabilities allow to predict all the major features of the experimental data, and are in a good quantitative agreement with them.
NASA Technical Reports Server (NTRS)
Wright, William B.
1988-01-01
Transient, numerical simulations of the deicing of composite aircraft components by electrothermal heating have been performed in a 2-D rectangular geometry. Seven numerical schemes and four solution methods were used to find the most efficient numerical procedure for this problem. The phase change in the ice was simulated using the Enthalpy method along with the Method for Assumed States. Numerical solutions illustrating deicer performance for various conditions are presented. Comparisons are made with previous numerical models and with experimental data. The simulation can also be used to solve a variety of other heat conduction problems involving composite bodies.
Evaluation of Proteus as a Tool for the Rapid Development of Models of Hydrologic Systems
NASA Astrophysics Data System (ADS)
Weigand, T. M.; Farthing, M. W.; Kees, C. E.; Miller, C. T.
2013-12-01
Models of modern hydrologic systems can be complex and involve a variety of operators with varying character. The goal is to implement approximations of such models that are both efficient for the developer and computationally efficient, which is a set of naturally competing objectives. Proteus is a Python-based toolbox that supports prototyping of model formulations as well as a wide variety of modern numerical methods and parallel computing. We used Proteus to develop numerical approximations for three models: Richards' equation, a brine flow model derived using the Thermodynamically Constrained Averaging Theory (TCAT), and a multiphase TCAT-based tumor growth model. For Richards' equation, we investigated discontinuous Galerkin solutions with higher order time integration based on the backward difference formulas. The TCAT brine flow model was implemented using Proteus and a variety of numerical methods were compared to hand coded solutions. Finally, an existing tumor growth model was implemented in Proteus to introduce more advanced numerics and allow the code to be run in parallel. From these three example models, Proteus was found to be an attractive open-source option for rapidly developing high quality code for solving existing and evolving computational science models.
Traveling-Wave Solutions of the Kolmogorov-Petrovskii-Piskunov Equation
NASA Astrophysics Data System (ADS)
Pikulin, S. V.
2018-02-01
We consider quasi-stationary solutions of a problem without initial conditions for the Kolmogorov-Petrovskii-Piskunov (KPP) equation, which is a quasilinear parabolic one arising in the modeling of certain reaction-diffusion processes in the theory of combustion, mathematical biology, and other areas of natural sciences. A new efficiently numerically implementable analytical representation is constructed for self-similar plane traveling-wave solutions of the KPP equation with a special right-hand side. Sufficient conditions for an auxiliary function involved in this representation to be analytical for all values of its argument, including the endpoints, are obtained. Numerical results are obtained for model examples.
Dynamical analysis of the avian-human influenza epidemic model using the semi-analytical method
NASA Astrophysics Data System (ADS)
Jabbari, Azizeh; Kheiri, Hossein; Bekir, Ahmet
2015-03-01
In this work, we present a dynamic behavior of the avian-human influenza epidemic model by using efficient computational algorithm, namely the multistage differential transform method(MsDTM). The MsDTM is used here as an algorithm for approximating the solutions of the avian-human influenza epidemic model in a sequence of time intervals. In order to show the efficiency of the method, the obtained numerical results are compared with the fourth-order Runge-Kutta method (RK4M) and differential transform method(DTM) solutions. It is shown that the MsDTM has the advantage of giving an analytical form of the solution within each time interval which is not possible in purely numerical techniques like RK4M.
NASA Astrophysics Data System (ADS)
Xie, Dexuan
2014-10-01
The Poisson-Boltzmann equation (PBE) is one widely-used implicit solvent continuum model in the calculation of electrostatic potential energy for biomolecules in ionic solvent, but its numerical solution remains a challenge due to its strong singularity and nonlinearity caused by its singular distribution source terms and exponential nonlinear terms. To effectively deal with such a challenge, in this paper, new solution decomposition and minimization schemes are proposed, together with a new PBE analysis on solution existence and uniqueness. Moreover, a PBE finite element program package is developed in Python based on the FEniCS program library and GAMer, a molecular surface and volumetric mesh generation program package. Numerical tests on proteins and a nonlinear Born ball model with an analytical solution validate the new solution decomposition and minimization schemes, and demonstrate the effectiveness and efficiency of the new PBE finite element program package.
A discontinuous Galerkin method for poroelastic wave propagation: The two-dimensional case
NASA Astrophysics Data System (ADS)
Dudley Ward, N. F.; Lähivaara, T.; Eveson, S.
2017-12-01
In this paper, we consider a high-order discontinuous Galerkin (DG) method for modelling wave propagation in coupled poroelastic-elastic media. The upwind numerical flux is derived as an exact solution for the Riemann problem including the poroelastic-elastic interface. Attenuation mechanisms in both Biot's low- and high-frequency regimes are considered. The current implementation supports non-uniform basis orders which can be used to control the numerical accuracy element by element. In the numerical examples, we study the convergence properties of the proposed DG scheme and provide experiments where the numerical accuracy of the scheme under consideration is compared to analytic and other numerical solutions.
Exact solutions of the Navier-Stokes equations generalized for flow in porous media
NASA Astrophysics Data System (ADS)
Daly, Edoardo; Basser, Hossein; Rudman, Murray
2018-05-01
Flow of Newtonian fluids in porous media is often modelled using a generalized version of the full non-linear Navier-Stokes equations that include additional terms describing the resistance to flow due to the porous matrix. Because this formulation is becoming increasingly popular in numerical models, exact solutions are required as a benchmark of numerical codes. The contribution of this study is to provide a number of non-trivial exact solutions of the generalized form of the Navier-Stokes equations for parallel flow in porous media. Steady-state solutions are derived in the case of flows in a medium with constant permeability along the main direction of flow and a constant cross-stream velocity in the case of both linear and non-linear drag. Solutions are also presented for cases in which the permeability changes in the direction normal to the main flow. An unsteady solution for a flow with velocity driven by a time-periodic pressure gradient is also derived. These solutions form a basis for validating computational models across a wide range of Reynolds and Darcy numbers.
NASA Technical Reports Server (NTRS)
Bandyopadhyay, Alak; Majumdar, Alok
2007-01-01
The present paper describes the verification and validation of a quasi one-dimensional pressure based finite volume algorithm, implemented in Generalized Fluid System Simulation Program (GFSSP), for predicting compressible flow with friction, heat transfer and area change. The numerical predictions were compared with two classical solutions of compressible flow, i.e. Fanno and Rayleigh flow. Fanno flow provides an analytical solution of compressible flow in a long slender pipe where incoming subsonic flow can be choked due to friction. On the other hand, Raleigh flow provides analytical solution of frictionless compressible flow with heat transfer where incoming subsonic flow can be choked at the outlet boundary with heat addition to the control volume. Nonuniform grid distribution improves the accuracy of numerical prediction. A benchmark numerical solution of compressible flow in a converging-diverging nozzle with friction and heat transfer has been developed to verify GFSSP's numerical predictions. The numerical predictions compare favorably in all cases.
Fast Estimation of Strains for Cross-Beams Six-Axis Force/Torque Sensors by Mechanical Modeling
Ma, Junqing; Song, Aiguo
2013-01-01
Strain distributions are crucial criteria of cross-beams six-axis force/torque sensors. The conventional method for calculating the criteria is to utilize Finite Element Analysis (FEA) to get numerical solutions. This paper aims to obtain analytical solutions of strains under the effect of external force/torque in each dimension. Genetic mechanical models for cross-beams six-axis force/torque sensors are proposed, in which deformable cross elastic beams and compliant beams are modeled as quasi-static Timoshenko beam. A detailed description of model assumptions, model idealizations, application scope and model establishment is presented. The results are validated by both numerical FEA simulations and calibration experiments, and test results are found to be compatible with each other for a wide range of geometric properties. The proposed analytical solutions are demonstrated to be an accurate estimation algorithm with higher efficiency. PMID:23686144
Numerical modeling of rapidly varying flows using HEC-RAS and WSPG models.
Rao, Prasada; Hromadka, Theodore V
2016-01-01
The performance of two popular hydraulic models (HEC-RAS and WSPG) for modeling hydraulic jump in an open channel is investigated. The numerical solutions are compared with a new experimental data set obtained for varying channel bottom slopes and flow rates. Both the models satisfactorily predict the flow depths and location of the jump. The end results indicate that the numerical models output is sensitive to the value of chosen roughness coefficient. For this application, WSPG model is easier to implement with few input variables.
Mehl, S.; Hill, M.C.
2001-01-01
Five common numerical techniques for solving the advection-dispersion equation (finite difference, predictor corrector, total variation diminishing, method of characteristics, and modified method of characteristics) were tested using simulations of a controlled conservative tracer-test experiment through a heterogeneous, two-dimensional sand tank. The experimental facility was constructed using discrete, randomly distributed, homogeneous blocks of five sand types. This experimental model provides an opportunity to compare the solution techniques: the heterogeneous hydraulic-conductivity distribution of known structure can be accurately represented by a numerical model, and detailed measurements can be compared with simulated concentrations and total flow through the tank. The present work uses this opportunity to investigate how three common types of results - simulated breakthrough curves, sensitivity analysis, and calibrated parameter values - change in this heterogeneous situation given the different methods of simulating solute transport. The breakthrough curves show that simulated peak concentrations, even at very fine grid spacings, varied between the techniques because of different amounts of numerical dispersion. Sensitivity-analysis results revealed: (1) a high correlation between hydraulic conductivity and porosity given the concentration and flow observations used, so that both could not be estimated; and (2) that the breakthrough curve data did not provide enough information to estimate individual values of dispersivity for the five sands. This study demonstrates that the choice of assigned dispersivity and the amount of numerical dispersion present in the solution technique influence estimated hydraulic conductivity values to a surprising degree.
Sun, Hui; Zhou, Shenggao; Moore, David K; Cheng, Li-Tien; Li, Bo
2016-05-01
We design and implement numerical methods for the incompressible Stokes solvent flow and solute-solvent interface motion for nonpolar molecules in aqueous solvent. The balance of viscous force, surface tension, and van der Waals type dispersive force leads to a traction boundary condition on the solute-solvent interface. To allow the change of solute volume, we design special numerical boundary conditions on the boundary of a computational domain through a consistency condition. We use a finite difference ghost fluid scheme to discretize the Stokes equation with such boundary conditions. The method is tested to have a second-order accuracy. We combine this ghost fluid method with the level-set method to simulate the motion of the solute-solvent interface that is governed by the solvent fluid velocity. Numerical examples show that our method can predict accurately the blow up time for a test example of curvature flow and reproduce the polymodal (e.g., dry and wet) states of hydration of some simple model molecular systems.
Sun, Hui; Zhou, Shenggao; Moore, David K.; Cheng, Li-Tien; Li, Bo
2015-01-01
We design and implement numerical methods for the incompressible Stokes solvent flow and solute-solvent interface motion for nonpolar molecules in aqueous solvent. The balance of viscous force, surface tension, and van der Waals type dispersive force leads to a traction boundary condition on the solute-solvent interface. To allow the change of solute volume, we design special numerical boundary conditions on the boundary of a computational domain through a consistency condition. We use a finite difference ghost fluid scheme to discretize the Stokes equation with such boundary conditions. The method is tested to have a second-order accuracy. We combine this ghost fluid method with the level-set method to simulate the motion of the solute-solvent interface that is governed by the solvent fluid velocity. Numerical examples show that our method can predict accurately the blow up time for a test example of curvature flow and reproduce the polymodal (e.g., dry and wet) states of hydration of some simple model molecular systems. PMID:27365866
Numerical applications of the advective-diffusive codes for the inner magnetosphere
NASA Astrophysics Data System (ADS)
Aseev, N. A.; Shprits, Y. Y.; Drozdov, A. Y.; Kellerman, A. C.
2016-11-01
In this study we present analytical solutions for convection and diffusion equations. We gather here the analytical solutions for the one-dimensional convection equation, the two-dimensional convection problem, and the one- and two-dimensional diffusion equations. Using obtained analytical solutions, we test the four-dimensional Versatile Electron Radiation Belt code (the VERB-4D code), which solves the modified Fokker-Planck equation with additional convection terms. The ninth-order upwind numerical scheme for the one-dimensional convection equation shows much more accurate results than the results obtained with the third-order scheme. The universal limiter eliminates unphysical oscillations generated by high-order linear upwind schemes. Decrease in the space step leads to convergence of a numerical solution of the two-dimensional diffusion equation with mixed terms to the analytical solution. We compare the results of the third- and ninth-order schemes applied to magnetospheric convection modeling. The results show significant differences in electron fluxes near geostationary orbit when different numerical schemes are used.
Chemical transport in a fissured rock: Verification of a numerical model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rasmuson, A.; Narasimhan, T. N.; Neretnieks, I.
1982-10-01
Numerical models for simulating chemical transport in fissured rocks constitute powerful tools for evaluating the acceptability of geological nuclear waste repositories. Due to the very long-term, high toxicity of some nuclear waste products, the models are required to predict, in certain cases, the spatial and temporal distribution of chemical concentration less than 0.001% of the concentration released from the repository. Whether numerical models can provide such accuracies is a major question addressed in the present work. To this end, we have verified a numerical model, TRUMP, which solves the advective diffusion equation in general three dimensions with or without decaymore » and source terms. The method is based on an integrated finite-difference approach. The model was verified against known analytic solution of the one-dimensional advection-diffusion problem as well as the problem of advection-diffusion in a system of parallel fractures separated by spherical particles. The studies show that as long as the magnitude of advectance is equal to or less than that of conductance for the closed surface bounding any volume element in the region (that is, numerical Peclet number <2), the numerical method can indeed match the analytic solution within errors of ±10{sup -3} % or less. The realistic input parameters used in the sample calculations suggest that such a range of Peclet numbers is indeed likely to characterize deep groundwater systems in granitic and ancient argillaceous systems. Thus TRUMP in its present form does provide a viable tool for use in nuclear waste evaluation studies. A sensitivity analysis based on the analytic solution suggests that the errors in prediction introduced due to uncertainties in input parameters is likely to be larger than the computational inaccuracies introduced by the numerical model. Currently, a disadvantage in the TRUMP model is that the iterative method of solving the set of simultaneous equations is rather slow when time constants vary widely over the flow region. Although the iterative solution may be very desirable for large three-dimensional problems in order to minimize computer storage, it seems desirable to use a direct solver technique in conjunction with the mixed explicit-implicit approach whenever possible. work in this direction is in progress.« less
Semi-analytical solutions of the Schnakenberg model of a reaction-diffusion cell with feedback
NASA Astrophysics Data System (ADS)
Al Noufaey, K. S.
2018-06-01
This paper considers the application of a semi-analytical method to the Schnakenberg model of a reaction-diffusion cell. The semi-analytical method is based on the Galerkin method which approximates the original governing partial differential equations as a system of ordinary differential equations. Steady-state curves, bifurcation diagrams and the region of parameter space in which Hopf bifurcations occur are presented for semi-analytical solutions and the numerical solution. The effect of feedback control, via altering various concentrations in the boundary reservoirs in response to concentrations in the cell centre, is examined. It is shown that increasing the magnitude of feedback leads to destabilization of the system, whereas decreasing this parameter to negative values of large magnitude stabilizes the system. The semi-analytical solutions agree well with numerical solutions of the governing equations.
Numerical solution of fluid-structure interaction represented by human vocal folds in airflow
NASA Astrophysics Data System (ADS)
Valášek, J.; Sváček, P.; Horáček, J.
2016-03-01
The paper deals with the human vocal folds vibration excited by the fluid flow. The vocal fold is modelled as an elastic body assuming small displacements and therefore linear elasticity theory is used. The viscous incompressible fluid flow is considered. For purpose of numerical solution the arbitrary Lagrangian-Euler method (ALE) is used. The whole problem is solved by the finite element method (FEM) based solver. Results of numerical experiments with different boundary conditions are presented.
A numerical solution for thermoacoustic convection of fluids in low gravity
NASA Technical Reports Server (NTRS)
Spradley, L. W.; Bourgeois, S. V., Jr.; Fan, C.; Grodzka, P. G.
1973-01-01
A finite difference numerical technique for solving the differential equations which describe thermal convection of compressible fluids in low gravity are reported. Results of one-dimensional calculations are presented, and comparisons are made to previous solutions. The primary result presented is a one-dimensional radial model of the Apollo 14 heat flow and convection demonstration flight experiment. The numerical calculations show that thermally induced convective motion in a confined fluid can have significant effects on heat transfer in a low gravity environment.
Introduction to Numerical Methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schoonover, Joseph A.
2016-06-14
These are slides for a lecture for the Parallel Computing Summer Research Internship at the National Security Education Center. This gives an introduction to numerical methods. Repetitive algorithms are used to obtain approximate solutions to mathematical problems, using sorting, searching, root finding, optimization, interpolation, extrapolation, least squares regresion, Eigenvalue problems, ordinary differential equations, and partial differential equations. Many equations are shown. Discretizations allow us to approximate solutions to mathematical models of physical systems using a repetitive algorithm and introduce errors that can lead to numerical instabilities if we are not careful.
NASA Astrophysics Data System (ADS)
Ming, Mei-Jun; Xu, Long-Kun; Wang, Fan; Bi, Ting-Jun; Li, Xiang-Yuan
2017-07-01
In this work, a matrix form of numerical algorithm for spectral shift is presented based on the novel nonequilibrium solvation model that is established by introducing the constrained equilibrium manipulation. This form is convenient for the development of codes for numerical solution. By means of the integral equation formulation polarizable continuum model (IEF-PCM), a subroutine has been implemented to compute spectral shift numerically. Here, the spectral shifts of absorption spectra for several popular chromophores, N,N-diethyl-p-nitroaniline (DEPNA), methylenecyclopropene (MCP), acrolein (ACL) and p-nitroaniline (PNA) were investigated in different solvents with various polarities. The computed spectral shifts can explain the available experimental findings reasonably. Discussions were made on the contributions of solute geometry distortion, electrostatic polarization and other non-electrostatic interactions to spectral shift.
Porru, Marcella; Özkan, Leyla
2017-05-24
This paper develops a new simulation model for crystal size distribution dynamics in industrial batch crystallization. The work is motivated by the necessity of accurate prediction models for online monitoring purposes. The proposed numerical scheme is able to handle growth, nucleation, and agglomeration kinetics by means of the population balance equation and the method of characteristics. The former offers a detailed description of the solid phase evolution, while the latter provides an accurate and efficient numerical solution. In particular, the accuracy of the prediction of the agglomeration kinetics, which cannot be ignored in industrial crystallization, has been assessed by comparing it with solutions in the literature. The efficiency of the solution has been tested on a simulation of a seeded flash cooling batch process. Since the proposed numerical scheme can accurately simulate the system behavior more than hundred times faster than the batch duration, it is suitable for online applications such as process monitoring tools based on state estimators.
2017-01-01
This paper develops a new simulation model for crystal size distribution dynamics in industrial batch crystallization. The work is motivated by the necessity of accurate prediction models for online monitoring purposes. The proposed numerical scheme is able to handle growth, nucleation, and agglomeration kinetics by means of the population balance equation and the method of characteristics. The former offers a detailed description of the solid phase evolution, while the latter provides an accurate and efficient numerical solution. In particular, the accuracy of the prediction of the agglomeration kinetics, which cannot be ignored in industrial crystallization, has been assessed by comparing it with solutions in the literature. The efficiency of the solution has been tested on a simulation of a seeded flash cooling batch process. Since the proposed numerical scheme can accurately simulate the system behavior more than hundred times faster than the batch duration, it is suitable for online applications such as process monitoring tools based on state estimators. PMID:28603342
NASA Astrophysics Data System (ADS)
Lai, Wencong; Ogden, Fred L.; Steinke, Robert C.; Talbot, Cary A.
2015-03-01
We have developed a one-dimensional numerical method to simulate infiltration and redistribution in the presence of a shallow dynamic water table. This method builds upon the Green-Ampt infiltration with Redistribution (GAR) model and incorporates features from the Talbot-Ogden (T-O) infiltration and redistribution method in a discretized moisture content domain. The redistribution scheme is more physically meaningful than the capillary weighted redistribution scheme in the T-O method. Groundwater dynamics are considered in this new method instead of hydrostatic groundwater front. It is also computationally more efficient than the T-O method. Motion of water in the vadose zone due to infiltration, redistribution, and interactions with capillary groundwater are described by ordinary differential equations. Numerical solutions to these equations are computationally less expensive than solutions of the highly nonlinear Richards' (1931) partial differential equation. We present results from numerical tests on 11 soil types using multiple rain pulses with different boundary conditions, with and without a shallow water table and compare against the numerical solution of Richards' equation (RE). Results from the new method are in satisfactory agreement with RE solutions in term of ponding time, deponding time, infiltration rate, and cumulative infiltrated depth. The new method, which we call "GARTO" can be used as an alternative to the RE for 1-D coupled surface and groundwater models in general situations with homogeneous soils with dynamic water table. The GARTO method represents a significant advance in simulating groundwater surface water interactions because it very closely matches the RE solution while being computationally efficient, with guaranteed mass conservation, and no stability limitations that can affect RE solvers in the case of a near-surface water table.
Friction-term response to boundary-condition type in flow models
Schaffranek, R.W.; Lai, C.
1996-01-01
The friction-slope term in the unsteady open-channel flow equations is examined using two numerical models based on different formulations of the governing equations and employing different solution methods. The purposes of the study are to analyze, evaluate, and demonstrate the behavior of the term in a set of controlled numerical experiments using varied types and combinations of boundary conditions. Results of numerical experiments illustrate that a given model can respond inconsistently for the identical resistance-coefficient value under different types and combinations of boundary conditions. Findings also demonstrate that two models employing different dependent variables and solution methods can respond similarly for the identical resistance-coefficient value under similar types and combinations of boundary conditions. Discussion of qualitative considerations and quantitative experimental results provides insight into the proper treatment, evaluation, and significance of the friction-slope term, thereby offering practical guidelines for model implementation and calibration.
Modeling of transient heat pipe operation
NASA Technical Reports Server (NTRS)
Colwell, G. T.; Hartley, J. G.
1986-01-01
Mathematical models and associated solution procedures which can be used to design heat pipe cooled structures for use on hypersonic vehicles are being developed. The models should also have the capability to predict off-design performance for a variety of operating conditions. It is expected that the resulting models can be used to predict startup behavior of liquid metal heat pipes to be used in reentry vehicles, hypersonic aircraft, and space nuclear reactors. Work to date related to numerical solutions of governing differential equations for the outer shell and the combination capillary structure and working fluid is summarized. Finite element numerical equations using both implicit, explicit, and combination methods were examined.
NASA Astrophysics Data System (ADS)
Amarti, Z.; Nurkholipah, N. S.; Anggriani, N.; Supriatna, A. K.
2018-03-01
Predicting the future of population number is among the important factors that affect the consideration in preparing a good management for the population. This has been done by various known method, one among them is by developing a mathematical model describing the growth of the population. The model usually takes form in a differential equation or a system of differential equations, depending on the complexity of the underlying properties of the population. The most widely used growth models currently are those having a sigmoid solution of time series, including the Verhulst logistic equation and the Gompertz equation. In this paper we consider the Allee effect of the Verhulst’s logistic population model. The Allee effect is a phenomenon in biology showing a high correlation between population size or density and the mean individual fitness of the population. The method used to derive the solution is the Runge-Kutta numerical scheme, since it is in general regarded as one among the good numerical scheme which is relatively easy to implement. Further exploration is done via the fuzzy theoretical approach to accommodate the impreciseness of the initial values and parameters in the model.
NASA Technical Reports Server (NTRS)
Baker, A. J.; Manhardt, P. D.; Orzechowski, J. A.
1979-01-01
A numerical solution algorithm is established for prediction of subsonic turbulent three-dimensional flows in aerodynamic configuration juncture regions. A turbulence closure model is established using the complete Reynolds stress. Pressure coupling is accomplished using the concepts of complementary and particular solutions to a Poisson equation. Specifications for data input juncture geometry modification are presented.
An explicit closed-form analytical solution for European options under the CGMY model
NASA Astrophysics Data System (ADS)
Chen, Wenting; Du, Meiyu; Xu, Xiang
2017-01-01
In this paper, we consider the analytical pricing of European path-independent options under the CGMY model, which is a particular type of pure jump Le´vy process, and agrees well with many observed properties of the real market data by allowing the diffusions and jumps to have both finite and infinite activity and variation. It is shown that, under this model, the option price is governed by a fractional partial differential equation (FPDE) with both the left-side and right-side spatial-fractional derivatives. In comparison to derivatives of integer order, fractional derivatives at a point not only involve properties of the function at that particular point, but also the information of the function in a certain subset of the entire domain of definition. This ;globalness; of the fractional derivatives has added an additional degree of difficulty when either analytical methods or numerical solutions are attempted. Albeit difficult, we still have managed to derive an explicit closed-form analytical solution for European options under the CGMY model. Based on our solution, the asymptotic behaviors of the option price and the put-call parity under the CGMY model are further discussed. Practically, a reliable numerical evaluation technique for the current formula is proposed. With the numerical results, some analyses of impacts of four key parameters of the CGMY model on European option prices are also provided.
Fluid dynamic modeling of nano-thermite reactions
NASA Astrophysics Data System (ADS)
Martirosyan, Karen S.; Zyskin, Maxim; Jenkins, Charles M.; Yuki Horie, Yasuyuki
2014-03-01
This paper presents a direct numerical method based on gas dynamic equations to predict pressure evolution during the discharge of nanoenergetic materials. The direct numerical method provides for modeling reflections of the shock waves from the reactor walls that generates pressure-time fluctuations. The results of gas pressure prediction are consistent with the experimental evidence and estimates based on the self-similar solution. Artificial viscosity provides sufficient smoothing of shock wave discontinuity for the numerical procedure. The direct numerical method is more computationally demanding and flexible than self-similar solution, in particular it allows study of a shock wave in its early stage of reaction and allows the investigation of "slower" reactions, which may produce weaker shock waves. Moreover, numerical results indicate that peak pressure is not very sensitive to initial density and reaction time, providing that all the material reacts well before the shock wave arrives at the end of the reactor.
Fluid dynamic modeling of nano-thermite reactions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martirosyan, Karen S., E-mail: karen.martirosyan@utb.edu; Zyskin, Maxim; Jenkins, Charles M.
2014-03-14
This paper presents a direct numerical method based on gas dynamic equations to predict pressure evolution during the discharge of nanoenergetic materials. The direct numerical method provides for modeling reflections of the shock waves from the reactor walls that generates pressure-time fluctuations. The results of gas pressure prediction are consistent with the experimental evidence and estimates based on the self-similar solution. Artificial viscosity provides sufficient smoothing of shock wave discontinuity for the numerical procedure. The direct numerical method is more computationally demanding and flexible than self-similar solution, in particular it allows study of a shock wave in its early stagemore » of reaction and allows the investigation of “slower” reactions, which may produce weaker shock waves. Moreover, numerical results indicate that peak pressure is not very sensitive to initial density and reaction time, providing that all the material reacts well before the shock wave arrives at the end of the reactor.« less
A new numerical benchmark for variably saturated variable-density flow and transport in porous media
NASA Astrophysics Data System (ADS)
Guevara, Carlos; Graf, Thomas
2016-04-01
In subsurface hydrological systems, spatial and temporal variations in solute concentration and/or temperature may affect fluid density and viscosity. These variations could lead to potentially unstable situations, in which a dense fluid overlies a less dense fluid. These situations could produce instabilities that appear as dense plume fingers migrating downwards counteracted by vertical upwards flow of freshwater (Simmons et al., Transp. Porous Medium, 2002). As a result of unstable variable-density flow, solute transport rates are increased over large distances and times as compared to constant-density flow. The numerical simulation of variable-density flow in saturated and unsaturated media requires corresponding benchmark problems against which a computer model is validated (Diersch and Kolditz, Adv. Water Resour, 2002). Recorded data from a laboratory-scale experiment of variable-density flow and solute transport in saturated and unsaturated porous media (Simmons et al., Transp. Porous Medium, 2002) is used to define a new numerical benchmark. The HydroGeoSphere code (Therrien et al., 2004) coupled with PEST (www.pesthomepage.org) are used to obtain an optimized parameter set capable of adequately representing the data set by Simmons et al., (2002). Fingering in the numerical model is triggered using random hydraulic conductivity fields. Due to the inherent randomness, a large number of simulations were conducted in this study. The optimized benchmark model adequately predicts the plume behavior and the fate of solutes. This benchmark is useful for model verification of variable-density flow problems in saturated and/or unsaturated media.
Water and solute transport parameterization form a soil of semi-arid region of northeast of Brazil
NASA Astrophysics Data System (ADS)
Netto, A. M.; Antonino, A. C. D.; Lima, L. J. S.; Angulo-Jaramillo, R.; Montenegro, S. M. G.
2003-04-01
Water and solute transfer modeling needs the transport parameters as input data. Classical theory, Fickian advection-dispersion, is not successfully applied to account for solute transport along with preferential flow pathways. This transport may be operating at scales smaller than spatial discretization used in a field scale numerical model. An axisymetric infiltration using a single ring infiltrometer along with a conservative tracer (Cl^-) is an efficient and easy method to use in fields tools. Two experiments were accomplished on a Yellow Oxissol in a 4,0 ha area in Centro de Ciências Agrárias, UFPB, Areia City, Paraíba State, Brazil (6^o 58'S, 35o 41'W and 645 m), in a 50 × 50 m grid (16 points): a) cultivated with beans (Vigna Unguinculata (L.) Walp.), and b) bare soil after harvest. The unsaturated hydraulic conductivity K and sorptivity S were estimated from short time or long time analysis of cumulative three dimensional infiltration. Single tracer technique was used for the calculation of mobile water fraction f by measuring the solute concentration underneath the ring infiltrometer, at the end of infiltration. A solute transfer numerical model, based on the mobile-immobile water concept, was used for the determination of the solute transport parameters. The mobile water fraction f, the dispersion coefficient D, and the mass transfer coefficient α, were estimated from both the measured infiltration depth and concentration profile underneath the ring infiltrometer. The presence of preferential flow was due to the soil nature (aggregated soil, macropores, flux instabilities and heterogeneity). The lateral solute transfer is not only diffusive but also convective. The parameters deduced from the numerical model associated to the solute profile concentration are representative of this phenomenon.
A Grobner Basis Solution for Lightning Ground Flash Fraction Retrieval
NASA Technical Reports Server (NTRS)
Solakiewicz, Richard; Attele, Rohan; Koshak, William
2011-01-01
A Bayesian inversion method was previously introduced for retrieving the fraction of ground flashes in a set of flashes observed from a (low earth orbiting or geostationary) satellite lightning imager. The method employed a constrained mixed exponential distribution model to describe the lightning optical measurements. To obtain the optimum model parameters, a scalar function was minimized by a numerical method. In order to improve this optimization, we introduce a Grobner basis solution to obtain analytic representations of the model parameters that serve as a refined initialization scheme to the numerical optimization. Using the Grobner basis, we show that there are exactly 2 solutions involving the first 3 moments of the (exponentially distributed) data. When the mean of the ground flash optical characteristic (e.g., such as the Maximum Group Area, MGA) is larger than that for cloud flashes, then a unique solution can be obtained.
Modeling of Passive Acoustic Liners from High Fidelity Numerical Simulations
NASA Astrophysics Data System (ADS)
Ferrari, Marcello do Areal Souto
Noise reduction in aviation has been an important focus of study in the last few decades. One common solution is setting up acoustic liners in the internal walls of the engines. However, measurements in the laboratory with liners are expensive and time consuming. The present work proposes a nonlinear physics-based time domain model to predict the acoustic behavior of a given liner in a defined flow condition. The parameters of the model are defined by analysis of accurate numerical solutions of the flow obtained from a high-fidelity numerical code. The length of the cavity is taken into account by using an analytical procedure to account for internal reflections in the interior of the cavity. Vortices and jets originated from internal flow separations are confirmed to be important mechanisms of sound absorption, which defines the overall efficiency of the liner. Numerical simulations at different frequency, geometry and sound pressure level are studied in detail to define the model parameters. Comparisons with high-fidelity numerical simulations show that the proposed model is accurate, robust, and can be used to define a boundary condition simulating a liner in a high-fidelity code.
1991-09-01
Difference Numerical Model for the Propagation of Finite Amplitude Acoustical Blast Waves Outdoors Over Hard and Porous Surfaces by Victor W. Sparrow...The nonlinear acoustic propagation effects require a numerical solution in the time domain. To model a porous ground surface, which in the frequency...incident on the hard and porous surfaces were produced. The model predicted that near grazing finite amplitude acoustic blast waves decay with distance
Norton, G V; Novarini, J C
2007-06-01
Ultrasonic imaging in medical applications involves propagation and scattering of acoustic waves within and by biological tissues that are intrinsically dispersive. Analytical approaches for modeling propagation and scattering in inhomogeneous media are difficult and often require extremely simplifying approximations in order to achieve a solution. To avoid such approximations, the direct numerical solution of the wave equation via the method of finite differences offers the most direct tool, which takes into account diffraction and refraction. It also allows for detailed modeling of the real anatomic structure and combination/layering of tissues. In all cases the correct inclusion of the dispersive properties of the tissues can make the difference in the interpretation of the results. However, the inclusion of dispersion directly in the time domain proved until recently to be an elusive problem. In order to model the transient signal a convolution operator that takes into account the dispersive characteristics of the medium is introduced to the linear wave equation. To test the ability of this operator to handle scattering from localized scatterers, in this work, two-dimensional numerical modeling of scattering from an infinite cylinder with physical properties associated with biological tissue is calculated. The numerical solutions are compared with the exact solution synthesized from the frequency domain for a variety of tissues having distinct dispersive properties. It is shown that in all cases, the use of the convolutional propagation operator leads to the correct solution for the scattered field.
Stochasticity in numerical solutions of the nonlinear Schroedinger equation
NASA Technical Reports Server (NTRS)
Shen, Mei-Mei; Nicholson, D. R.
1987-01-01
The cubically nonlinear Schroedinger equation is an important model of nonlinear phenomena in fluids and plasmas. Numerical solutions in a spatially periodic system commonly involve truncation to a finite number of Fourier modes. These solutions are found to be stochastic in the sense that the largest Liapunov exponent is positive. As the number of modes is increased, the size of this exponent appears to converge to zero, in agreement with the recent demonstration of the integrability of the spatially periodic case.
Goode, D.J.; Konikow, Leonard F.
1989-01-01
The U.S. Geological Survey computer model of two-dimensional solute transport and dispersion in ground water (Konikow and Bredehoeft, 1978) has been modified to incorporate the following types of chemical reactions: (1) first-order irreversible rate-reaction, such as radioactive decay; (2) reversible equilibrium-controlled sorption with linear, Freundlich, or Langmuir isotherms; and (3) reversible equilibrium-controlled ion exchange for monovalent or divalent ions. Numerical procedures are developed to incorporate these processes in the general solution scheme that uses method-of- characteristics with particle tracking for advection and finite-difference methods for dispersion. The first type of reaction is accounted for by an exponential decay term applied directly to the particle concentration. The second and third types of reactions are incorporated through a retardation factor, which is a function of concentration for nonlinear cases. The model is evaluated and verified by comparison with analytical solutions for linear sorption and decay, and by comparison with other numerical solutions for nonlinear sorption and ion exchange.
A perturbation analysis of a mechanical model for stable spatial patterning in embryology
NASA Astrophysics Data System (ADS)
Bentil, D. E.; Murray, J. D.
1992-12-01
We investigate a mechanical cell-traction mechanism that generates stationary spatial patterns. A linear analysis highlights the model's potential for these heterogeneous solutions. We use multiple-scale perturbation techniques to study the evolution of these solutions and compare our solutions with numerical simulations of the model system. We discuss some potential biological applications among which are the formation of ridge patterns, dermatoglyphs, and wound healing.
NASA Astrophysics Data System (ADS)
Orszaghova, Jana; Borthwick, Alistair G. L.; Taylor, Paul H.
2012-01-01
This article describes a one-dimensional numerical model of a shallow-water flume with an in-built piston paddle moving boundary wavemaker. The model is based on a set of enhanced Boussinesq equations and the nonlinear shallow water equations. Wave breaking is described approximately, by locally switching to the nonlinear shallow water equations when a critical wave steepness is reached. The moving shoreline is calculated as part of the solution. The piston paddle wavemaker operates on a movable grid, which is Lagrangian on the paddle face and Eulerian away from the paddle. The governing equations are, however, evolved on a fixed mapped grid, and the newly calculated solution is transformed back onto the moving grid via a domain mapping technique. Validation test results are compared against analytical solutions, confirming correct discretisation of the governing equations, wave generation via the numerical paddle, and movement of the wet/dry front. Simulations are presented that reproduce laboratory experiments of wave runup on a plane beach and wave overtopping of a laboratory seawall, involving solitary waves and compact wave groups. In practice, the numerical model is suitable for simulating the propagation of weakly dispersive waves and can additionally model any associated inundation, overtopping or inland flooding within the same simulation.
Numerical Validation of Chemical Compositional Model for Wettability Alteration Processes
NASA Astrophysics Data System (ADS)
Bekbauov, Bakhbergen; Berdyshev, Abdumauvlen; Baishemirov, Zharasbek; Bau, Domenico
2017-12-01
Chemical compositional simulation of enhanced oil recovery and surfactant enhanced aquifer remediation processes is a complex task that involves solving dozens of equations for all grid blocks representing a reservoir. In the present work, we perform a numerical validation of the newly developed mathematical formulation which satisfies the conservation laws of mass and energy and allows applying a sequential solution approach to solve the governing equations separately and implicitly. Through its application to the numerical experiment using a wettability alteration model and comparisons with existing chemical compositional model's numerical results, the new model has proven to be practical, reliable and stable.
Cai, Junmeng; Liu, Ronghou
2008-05-01
In the present paper, a new distributed activation energy model has been developed, considering the reaction order and the dependence of frequency factor on temperature. The proposed DAEM cannot be solved directly in a closed from, thus a method was used to obtain the numerical solution of the new DAEM equation. Two numerical examples to illustrate the proposed method were presented. The traditional DAEM and new DAEM have been used to simulate the pyrolytic process of some types of biomass. The new DAEM fitted the experimental data much better than the traditional DAEM as the dependence of the frequency factor on temperature was taken into account.
Numerical dissipation vs. subgrid-scale modelling for large eddy simulation
NASA Astrophysics Data System (ADS)
Dairay, Thibault; Lamballais, Eric; Laizet, Sylvain; Vassilicos, John Christos
2017-05-01
This study presents an alternative way to perform large eddy simulation based on a targeted numerical dissipation introduced by the discretization of the viscous term. It is shown that this regularisation technique is equivalent to the use of spectral vanishing viscosity. The flexibility of the method ensures high-order accuracy while controlling the level and spectral features of this purely numerical viscosity. A Pao-like spectral closure based on physical arguments is used to scale this numerical viscosity a priori. It is shown that this way of approaching large eddy simulation is more efficient and accurate than the use of the very popular Smagorinsky model in standard as well as in dynamic version. The main strength of being able to correctly calibrate numerical dissipation is the possibility to regularise the solution at the mesh scale. Thanks to this property, it is shown that the solution can be seen as numerically converged. Conversely, the two versions of the Smagorinsky model are found unable to ensure regularisation while showing a strong sensitivity to numerical errors. The originality of the present approach is that it can be viewed as implicit large eddy simulation, in the sense that the numerical error is the source of artificial dissipation, but also as explicit subgrid-scale modelling, because of the equivalence with spectral viscosity prescribed on a physical basis.
Transonic Navier-Stokes solutions of three-dimensional afterbody flows
NASA Technical Reports Server (NTRS)
Compton, William B., III; Thomas, James L.; Abeyounis, William K.; Mason, Mary L.
1989-01-01
The performance of a three-dimensional Navier-Stokes solution technique in predicting the transonic flow past a nonaxisymmetric nozzle was investigated. The investigation was conducted at free-stream Mach numbers ranging from 0.60 to 0.94 and an angle of attack of 0 degrees. The numerical solution procedure employs the three-dimensional, unsteady, Reynolds-averaged Navier-Stokes equations written in strong conservation form, a thin layer assumption, and the Baldwin-Lomax turbulence model. The equations are solved by using the finite-volume principle in conjunction with an approximately factored upwind-biased numerical algorithm. In the numerical procedure, the jet exhaust is represented by a solid sting. Wind-tunnel data with the jet exhaust simulated by high pressure air were also obtained to compare with the numerical calculations.
Bifurcation structure of a wind-driven shallow water model with layer-outcropping
NASA Astrophysics Data System (ADS)
Primeau, François W.; Newman, David
The steady state bifurcation structure of the double-gyre wind-driven ocean circulation is examined in a shallow water model where the upper layer is allowed to outcrop at the sea surface. In addition to the classical jet-up and jet-down multiple equilibria, we find a new regime in which one of the equilibrium solutions has a large outcropping region in the subpolar gyre. Time dependent simulations show that the outcropping solution equilibrates to a stable periodic orbit with a period of 8 months. Co-existing with the periodic solution is a stable steady state solution without outcropping. A numerical scheme that has the unique advantage of being differentiable while still allowing layers to outcrop at the sea surface is used for the analysis. In contrast, standard schemes for solving layered models with outcropping are non-differentiable and have an ill-defined Jacobian making them unsuitable for solution using Newton's method. As such, our new scheme expands the applicability of numerical bifurcation techniques to an important class of ocean models whose bifurcation structure had hitherto remained unexplored.
Novel approach for dam break flow modeling using computational intelligence
NASA Astrophysics Data System (ADS)
Seyedashraf, Omid; Mehrabi, Mohammad; Akhtari, Ali Akbar
2018-04-01
A new methodology based on the computational intelligence (CI) system is proposed and tested for modeling the classic 1D dam-break flow problem. The reason to seek for a new solution lies in the shortcomings of the existing analytical and numerical models. This includes the difficulty of using the exact solutions and the unwanted fluctuations, which arise in the numerical results. In this research, the application of the radial-basis-function (RBF) and multi-layer-perceptron (MLP) systems is detailed for the solution of twenty-nine dam-break scenarios. The models are developed using seven variables, i.e. the length of the channel, the depths of the up-and downstream sections, time, and distance as the inputs. Moreover, the depths and velocities of each computational node in the flow domain are considered as the model outputs. The models are validated against the analytical, and Lax-Wendroff and MacCormack FDM schemes. The findings indicate that the employed CI models are able to replicate the overall shape of the shock- and rarefaction-waves. Furthermore, the MLP system outperforms RBF and the tested numerical schemes. A new monolithic equation is proposed based on the best fitting model, which can be used as an efficient alternative to the existing piecewise analytic equations.
NASA Astrophysics Data System (ADS)
Sheloput, Tatiana; Agoshkov, Valery
2017-04-01
The problem of modeling water areas with `liquid' (open) lateral boundaries is discussed. There are different known methods dealing with open boundaries in limited-area models, and one of the most efficient is data assimilation. Although this method is popular, there are not so many articles concerning its implementation for recovering boundary functions. However, the problem of specifying boundary conditions at the open boundary of a limited area is still actual and important. The mathematical model of the Baltic Sea circulation, developed in INM RAS, is considered. It is based on the system of thermo-hydrodynamic equations in the Boussinesq and hydrostatic approximations. The splitting method that is used for time approximation in the model allows to consider the data assimilation problem as a sequence of linear problems. One of such `simple' temperature (salinity) assimilation problem is investigated in the study. Using well known techniques of study and solution of inverse problems and optimal control problems [1], we propose an iterative solution algorithm and we obtain conditions for existence of the solution, for unique and dense solvability of the problem and for convergence of the iterative algorithm. The investigation shows that if observations satisfy certain conditions, the proposed algorithm converges to the solution of the boundary control problem. Particularly, it converges when observational data are given on the `liquid' boundary [2]. Theoretical results are confirmed by the results of numerical experiments. The numerical algorithm was implemented to water area of the Baltic Sea. Two numerical experiments were carried out in the Gulf of Finland: one with the application of the assimilation procedure and the other without. The analyses have shown that the surface temperature field in the first experiment is close to the observed one, while the result of the second experiment misfits. Number of iterations depends on the regularisation parameter, but generally the algorithm converges after 10 iterations. The results of the numerical experiments show that the usage of the proposed method makes sense. The work was supported by the Russian Science Foundation (project 14-11-00609, the formulation of the iterative process and numerical experiments) and by the Russian Foundation for Basic Research (project 16-01-00548, the formulation of the problem and its study). [1] Agoshkov V. I. Methods of Optimal Control and Adjoint Equations in Problems of Mathematical Physics. INM RAS, Moscow, 2003 (in Russian). [2] Agoshkov V.I., Sheloput T.O. The study and numerical solution of the problem of heat and salinity transfer assuming 'liquid' boundaries // Russ. J. Numer. Anal. Math. Modelling. 2016. Vol. 31, No. 2. P. 71-80.
Validation of Groundwater Models: Meaningful or Meaningless?
NASA Astrophysics Data System (ADS)
Konikow, L. F.
2003-12-01
Although numerical simulation models are valuable tools for analyzing groundwater systems, their predictive accuracy is limited. People who apply groundwater flow or solute-transport models, as well as those who make decisions based on model results, naturally want assurance that a model is "valid." To many people, model validation implies some authentication of the truth or accuracy of the model. History matching is often presented as the basis for model validation. Although such model calibration is a necessary modeling step, it is simply insufficient for model validation. Because of parameter uncertainty and solution non-uniqueness, declarations of validation (or verification) of a model are not meaningful. Post-audits represent a useful means to assess the predictive accuracy of a site-specific model, but they require the existence of long-term monitoring data. Model testing may yield invalidation, but that is an opportunity to learn and to improve the conceptual and numerical models. Examples of post-audits and of the application of a solute-transport model to a radioactive waste disposal site illustrate deficiencies in model calibration, prediction, and validation.
Can we model solute transfer in heterogeneous soils with MIM model?
NASA Astrophysics Data System (ADS)
Ben Slimene, Erij; Lassabatere, Laurent; Winiarski, Thierry; Gourdon, Remy
2017-04-01
The fate of pollutants in the vadose zone must be understood, in particular, underneath infiltration basins for an optimum management of these plants. Stormwaters carry pollutants (heavy metals, organics, emerging pollutant like nanoparticles, etc.) and thus constitute a risk for groundwater and soil quality. Most infiltration basins are settled over highly permeable soils that exhibit a strong lithological heterogeneity. The impact of such lithological heterogeneity on flow and solute transfer has already been questioned. Previous studies have already proved that lithological heterogeneity was prone to the establishment of preferential flows. In more details, the concomitance of several materials with contrasting hydraulic properties induces funneled flow at the interfaces between less permeable and more permeable lithofacies. Solutes are then carried by water fluxes quickly along preferential flow pathways and have restricted access to zones far from these pathways. It can clearly be imagined that such pattern could be modeled by a MIM model postulating water fraction into two fractions, one mobile and the other immobile, with solute transport by convection and dispersion in mobile water fraction and solute diffusion at the interface between mobile and immobile water fractions. The application of MIM approach to the case of solute transport in strongly heterogeneous soils may be quite advantageous: simplification of the problem, fewer parameters, ease of modeling, numerical computation, gain in computation time, etc. However, such consistency has never been investigated in details. In this paper, we focus on the possibility to model solute transport in a strongly heterogeneous deposit using MIM model. The deposit has been the subject of intensive campaigns of characterization of its lithology and the hydraulic and hydrodispersive properties of its lithofacies. Numerical computations were performed for a section of deposit 13.5 m wide and 2.5 m deep. Numerical results clearly showed the establishment of preferential flows with funneling mostly under unsaturated conditions. Solute elution at 2.5 m depth was characterized and discussed as a function of solute reactivity. Solutes breakthrough curves show clear evidence of MIM like pattern. In this paper, we clearly demonstrate that MIM model accurately reproduces solute elution at 2.5m depths but also at different depths. MIM approach accuracy is ensured provided that related parameters are optimized as a function of depth, hydric and hydraulic conditions and the contrast in hydraulic parameters of the lithofacies that constitute the deposit.
Burov, S V; Shchekin, A K
2010-12-28
General thermodynamic relations for the work of polydisperse micelle formation in the model of ideal solution of molecular aggregates in nonionic surfactant solution and the model of "dressed micelles" in ionic solution have been considered. In particular, the dependence of the aggregation work on the total concentration of nonionic surfactant has been analyzed. The analogous dependence for the work of formation of ionic aggregates has been examined with regard to existence of two variables of a state of an ionic aggregate, the aggregation numbers of surface active ions and counterions. To verify the thermodynamic models, the molecular dynamics simulations of micellization in nonionic and ionic surfactant solutions at two total surfactant concentrations have been performed. It was shown that for nonionic surfactants, even at relatively high total surfactant concentrations, the shape and behavior of the work of polydisperse micelle formation found within the model of the ideal solution at different total surfactant concentrations agrees fairly well with the numerical experiment. For ionic surfactant solutions, the numerical results indicate a strong screening of ionic aggregates by the bound counterions. This fact as well as independence of the coefficient in the law of mass action for ionic aggregates on total surfactant concentration and predictable behavior of the "waterfall" lines of surfaces of the aggregation work upholds the model of "dressed" ionic aggregates.
NASA Astrophysics Data System (ADS)
Brykina, I. G.; Rogov, B. V.; Semenov, I. L.; Tirskiy, G. A.
2011-05-01
Super- and hypersonic rarefied gas flow over blunt bodies is investigated by using asymptotically correct viscous shock layer (VSL) model with effective boundary conditions and thin viscous shock layer model. Correct shock and wall conditions for VSL are proposed with taking into account terms due to the curvature which are significant at low Reynolds number. These conditions improve original Davis's VSL model [1]. Numerical calculation of Krook equation [2] is carried out to verify continuum results. Continuum numerical and asymptotic solutions are compared with kinetic solution, free-molecule flow solution and with DSMC solutions [3, 4, 5] over a wide range of free-stream Knudsen number Kn∞. It is shown that taking into account terms with shock and surface curvatures have a pronounced effect on skin friction and heat-transfer in transitional flow regime. Using the asymptotically correct VSL model with effective boundary conditions significantly extends the range of its applicability to higher Kn∞ numbers.
Computations of ideal and real gas high altitude plume flows
NASA Technical Reports Server (NTRS)
Feiereisen, William J.; Venkatapathy, Ethiraj
1988-01-01
In the present work, complete flow fields around generic space vehicles in supersonic and hypersonic flight regimes are studied numerically. Numerical simulation is performed with a flux-split, time asymptotic viscous flow solver that incorporates a generalized equilibrium chemistry model. Solutions to generic problems at various altitude and flight conditions show the complexity of the flow, the equilibrium chemical dissociation and its effect on the overall flow field. Viscous ideal gas solutions are compared against equilibrium gas solutions to illustrate the effect of equilibrium chemistry. Improved solution accuracy is achieved through adaptive grid refinement.
Numerical simulation of magmatic hydrothermal systems
Ingebritsen, S.E.; Geiger, S.; Hurwitz, S.; Driesner, T.
2010-01-01
The dynamic behavior of magmatic hydrothermal systems entails coupled and nonlinear multiphase flow, heat and solute transport, and deformation in highly heterogeneous media. Thus, quantitative analysis of these systems depends mainly on numerical solution of coupled partial differential equations and complementary equations of state (EOS). The past 2 decades have seen steady growth of computational power and the development of numerical models that have eliminated or minimized the need for various simplifying assumptions. Considerable heuristic insight has been gained from process-oriented numerical modeling. Recent modeling efforts employing relatively complete EOS and accurate transport calculations have revealed dynamic behavior that was damped by linearized, less accurate models, including fluid property control of hydrothermal plume temperatures and three-dimensional geometries. Other recent modeling results have further elucidated the controlling role of permeability structure and revealed the potential for significant hydrothermally driven deformation. Key areas for future reSearch include incorporation of accurate EOS for the complete H2O-NaCl-CO2 system, more realistic treatment of material heterogeneity in space and time, realistic description of large-scale relative permeability behavior, and intercode benchmarking comparisons. Copyright 2010 by the American Geophysical Union.
NASA Astrophysics Data System (ADS)
Han, Weimin; Shillor, Meir; Sofonea, Mircea
2001-12-01
We consider a model for quasistatic frictional contact between a viscoelastic body and a foundation. The material constitutive relation is assumed to be nonlinear. The mechanical damage of the material, caused by excessive stress or strain, is described by the damage function, the evolution of which is determined by a parabolic inclusion. The contact is modeled with the normal compliance condition and the associated version of Coulomb's law of dry friction. We derive a variational formulation for the problem and prove the existence of its unique weak solution. We then study a fully discrete scheme for the numerical solutions of the problem and obtain error estimates on the approximate solutions.
Mechanics of additively manufactured porous biomaterials based on the rhombicuboctahedron unit cell.
Hedayati, R; Sadighi, M; Mohammadi-Aghdam, M; Zadpoor, A A
2016-01-01
Thanks to recent developments in additive manufacturing techniques, it is now possible to fabricate porous biomaterials with arbitrarily complex micro-architectures. Micro-architectures of such biomaterials determine their physical and biological properties, meaning that one could potentially improve the performance of such biomaterials through rational design of micro-architecture. The relationship between the micro-architecture of porous biomaterials and their physical and biological properties has therefore received increasing attention recently. In this paper, we studied the mechanical properties of porous biomaterials made from a relatively unexplored unit cell, namely rhombicuboctahedron. We derived analytical relationships that relate the micro-architecture of such porous biomaterials, i.e. the dimensions of the rhombicuboctahedron unit cell, to their elastic modulus, Poisson's ratio, and yield stress. Finite element models were also developed to validate the analytical solutions. Analytical and numerical results were compared with experimental data from one of our recent studies. It was found that analytical solutions and numerical results show a very good agreement particularly for smaller values of apparent density. The elastic moduli predicted by analytical and numerical models were in very good agreement with experimental observations too. While in excellent agreement with each other, analytical and numerical models somewhat over-predicted the yield stress of the porous structures as compared to experimental data. As the ratio of the vertical struts to the inclined struts, α, approaches zero and infinity, the rhombicuboctahedron unit cell respectively approaches the octahedron (or truncated cube) and cube unit cells. For those limits, the analytical solutions presented here were found to approach the analytic solutions obtained for the octahedron, truncated cube, and cube unit cells, meaning that the presented solutions are generalizations of the analytical solutions obtained for several other types of porous biomaterials. Copyright © 2015 Elsevier Ltd. All rights reserved.
Random element method for numerical modeling of diffusional processes
NASA Technical Reports Server (NTRS)
Ghoniem, A. F.; Oppenheim, A. K.
1982-01-01
The random element method is a generalization of the random vortex method that was developed for the numerical modeling of momentum transport processes as expressed in terms of the Navier-Stokes equations. The method is based on the concept that random walk, as exemplified by Brownian motion, is the stochastic manifestation of diffusional processes. The algorithm based on this method is grid-free and does not require the diffusion equation to be discritized over a mesh, it is thus devoid of numerical diffusion associated with finite difference methods. Moreover, the algorithm is self-adaptive in space and explicit in time, resulting in an improved numerical resolution of gradients as well as a simple and efficient computational procedure. The method is applied here to an assortment of problems of diffusion of momentum and energy in one-dimension as well as heat conduction in two-dimensions in order to assess its validity and accuracy. The numerical solutions obtained are found to be in good agreement with exact solution except for a statistical error introduced by using a finite number of elements, the error can be reduced by increasing the number of elements or by using ensemble averaging over a number of solutions.
A Numerical Study of Hypersonic Forebody/Inlet Integration Problem
NASA Technical Reports Server (NTRS)
Kumar, Ajay
1991-01-01
A numerical study of hypersonic forebody/inlet integration problem is presented in the form of the view-graphs. The following topics are covered: physical/chemical modeling; solution procedure; flow conditions; mass flow rate at inlet face; heating and skin friction loads; 3-D forebogy/inlet integration model; and sensitivity studies.
Explicit filtering in large eddy simulation using a discontinuous Galerkin method
NASA Astrophysics Data System (ADS)
Brazell, Matthew J.
The discontinuous Galerkin (DG) method is a formulation of the finite element method (FEM). DG provides the ability for a high order of accuracy in complex geometries, and allows for highly efficient parallelization algorithms. These attributes make the DG method attractive for solving the Navier-Stokes equations for large eddy simulation (LES). The main goal of this work is to investigate the feasibility of adopting an explicit filter in the numerical solution of the Navier-Stokes equations with DG. Explicit filtering has been shown to increase the numerical stability of under-resolved simulations and is needed for LES with dynamic sub-grid scale (SGS) models. The explicit filter takes advantage of DG's framework where the solution is approximated using a polyno- mial basis where the higher modes of the solution correspond to a higher order polynomial basis. By removing high order modes, the filtered solution contains low order frequency content much like an explicit low pass filter. The explicit filter implementation is tested on a simple 1-D solver with an initial condi- tion that has some similarity to turbulent flows. The explicit filter does restrict the resolution as well as remove accumulated energy in the higher modes from aliasing. However, the ex- plicit filter is unable to remove numerical errors causing numerical dissipation. A second test case solves the 3-D Navier-Stokes equations of the Taylor-Green vortex flow (TGV). The TGV is useful for SGS model testing because it is initially laminar and transitions into a fully turbulent flow. The SGS models investigated include the constant coefficient Smagorinsky model, dynamic Smagorinsky model, and dynamic Heinz model. The constant coefficient Smagorinsky model is over dissipative, this is generally not desirable however it does add stability. The dynamic Smagorinsky model generally performs better, especially during the laminar-turbulent transition region as expected. The dynamic Heinz model which is based on an improved model, handles the laminar-turbulent transition region well while also showing additional robustness.
Numerical solution of the exterior oblique derivative BVP using the direct BEM formulation
NASA Astrophysics Data System (ADS)
Čunderlík, Róbert; Špir, Róbert; Mikula, Karol
2016-04-01
The fixed gravimetric boundary value problem (FGBVP) represents an exterior oblique derivative problem for the Laplace equation. A direct formulation of the boundary element method (BEM) for the Laplace equation leads to a boundary integral equation (BIE) where a harmonic function is represented as a superposition of the single-layer and double-layer potential. Such a potential representation is applied to obtain a numerical solution of FGBVP. The oblique derivative problem is treated by a decomposition of the gradient of the unknown disturbing potential into its normal and tangential components. Our numerical scheme uses the collocation with linear basis functions. It involves a triangulated discretization of the Earth's surface as our computational domain considering its complicated topography. To achieve high-resolution numerical solutions, parallel implementations using the MPI subroutines as well as an iterative elimination of far zones' contributions are performed. Numerical experiments present a reconstruction of a harmonic function above the Earth's topography given by the spherical harmonic approach, namely by the EGM2008 geopotential model up to degree 2160. The SRTM30 global topography model is used to approximate the Earth's surface by the triangulated discretization. The obtained BEM solution with the resolution 0.05 deg (12,960,002 nodes) is compared with EGM2008. The standard deviation of residuals 5.6 cm indicates a good agreement. The largest residuals are obviously in high mountainous regions. They are negative reaching up to -0.7 m in Himalayas and about -0.3 m in Andes and Rocky Mountains. A local refinement in the area of Slovakia confirms an improvement of the numerical solution in this mountainous region despite of the fact that the Earth's topography is here considered in more details.
Numerical simulation of wave-induced fluid flow seismic attenuation based on the Cole-Cole model.
Picotti, Stefano; Carcione, José M
2017-07-01
The acoustic behavior of porous media can be simulated more realistically using a stress-strain relation based on the Cole-Cole model. In particular, seismic velocity dispersion and attenuation in porous rocks is well described by mesoscopic-loss models. Using the Zener model to simulate wave propagation is a rough approximation, while the Cole-Cole model provides an optimal description of the physics. Here, a time-domain algorithm is proposed based on the Grünwald-Letnikov numerical approximation of the fractional derivative involved in the time-domain representation of the Cole-Cole model, while the spatial derivatives are computed with the Fourier pseudospectral method. The numerical solution is successfully tested against an analytical solution. The methodology is applied to a model of saline aquifer, where carbon dioxide (CO 2 ) is injected. To follow the migration of the gas and detect possible leakages, seismic monitoring surveys should be carried out periodically. To this aim, the sensitivity of the seismic method must be carefully assessed for the specific case. The simulated test considers a possible leakage in the overburden, above the caprock, where the sandstone is partially saturated with gas and brine. The numerical examples illustrate the implementation of the theory.
NASA Astrophysics Data System (ADS)
Rakshit, Suman; Khare, Swanand R.; Datta, Biswa Nath
2018-07-01
One of the most important yet difficult aspect of the Finite Element Model Updating Problem is to preserve the finite element inherited structures in the updated model. Finite element matrices are in general symmetric, positive definite (or semi-definite) and banded (tridiagonal, diagonal, penta-diagonal, etc.). Though a large number of papers have been published in recent years on various aspects of solutions of this problem, papers dealing with structure preservation almost do not exist. A novel optimization based approach that preserves the symmetric tridiagonal structures of the stiffness and damping matrices is proposed in this paper. An analytical expression for the global minimum solution of the associated optimization problem along with the results of numerical experiments obtained by both the analytical expressions and by an appropriate numerical optimization algorithm are presented. The results of numerical experiments support the validity of the proposed method.
Eikonal solutions to optical model coupled-channel equations
NASA Technical Reports Server (NTRS)
Cucinotta, Francis A.; Khandelwal, Govind S.; Maung, Khin M.; Townsend, Lawrence W.; Wilson, John W.
1988-01-01
Methods of solution are presented for the Eikonal form of the nucleus-nucleus coupled-channel scattering amplitudes. Analytic solutions are obtained for the second-order optical potential for elastic scattering. A numerical comparison is made between the first and second order optical model solutions for elastic and inelastic scattering of H-1 and He-4 on C-12. The effects of bound-state excitations on total and reaction cross sections are also estimated.
Modeling radium and radon transport through soil and vegetation
Kozak, J.A.; Reeves, H.W.; Lewis, B.A.
2003-01-01
A one-dimensional flow and transport model was developed to describe the movement of two fluid phases, gas and water, within a porous medium and the transport of 226Ra and 222Rn within and between these two phases. Included in this model is the vegetative uptake of water and aqueous 226Ra and 222Rn that can be extracted from the soil via the transpiration stream. The mathematical model is formulated through a set of phase balance equations and a set of species balance equations. Mass exchange, sink terms and the dependence of physical properties upon phase composition couple the two sets of equations. Numerical solution of each set, with iteration between the sets, is carried out leading to a set-iterative compositional model. The Petrov-Galerkin finite element approach is used to allow for upstream weighting if required for a given simulation. Mass lumping improves solution convergence and stability behavior. The resulting numerical model was applied to four problems and was found to produce accurate, mass conservative solutions when compared to published experimental and numerical results and theoretical column experiments. Preliminary results suggest that the model can be used as an investigative tool to determine the feasibility of phytoremediating radium and radon-contaminated soil. ?? 2003 Elsevier Science B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Nguyen, S. T.; Vu, M.-H.; Vu, M. N.; Tang, A. M.
2017-05-01
The present work aims to modeling the thermal conductivity of fractured materials using homogenization-based analytical and pattern-based numerical methods. These materials are considered as a network of cracks distributed inside a solid matrix. Heat flow through such media is perturbed by the crack system. The problem of heat flow across a single crack is firstly investigated. The classical Eshelby's solution, extended to the thermal conduction problem of an ellipsoidal inclusion embedding in an infinite homogeneous matrix, gives an analytical solution of temperature discontinuity across a non-conducting penny-shaped crack. This solution is then validated by the numerical simulation based on the finite elements method. The numerical simulation allows analyzing the effect of crack conductivity. The problem of a single crack is then extended to a medium containing multiple cracks. Analytical estimations for effective thermal conductivity, that take into account the interaction between cracks and their spatial distribution, are developed for the case of non-conducting cracks. Pattern-based numerical method is then employed for both cases non-conducting and conducting cracks. In the case of non-conducting cracks, numerical and analytical methods, both account for the spatial distribution of the cracks, fit perfectly. In the case of conducting cracks, the numerical analyzing of crack conductivity effect shows that highly conducting cracks weakly affect heat flow and the effective thermal conductivity of fractured media.
Numerical prediction of kinetic model for enzymatic hydrolysis of cellulose using DAE-QMOM approach
NASA Astrophysics Data System (ADS)
Jamil, N. M.; Wang, Q.
2016-06-01
Bioethanol production from lignocellulosic biomass consists of three fundamental processes; pre-treatment, enzymatic hydrolysis, and fermentation. In enzymatic hydrolysis phase, the enzymes break the cellulose chains into sugar in the form of cellobiose or glucose. A currently proposed kinetic model for enzymatic hydrolysis of cellulose that uses population balance equation (PBE) mechanism was studied. The complexity of the model due to integrodifferential equations makes it difficult to find the analytical solution. Therefore, we solved the full model of PBE numerically by using DAE-QMOM approach. The computation was carried out using MATLAB software. The numerical results were compared to the asymptotic solution developed in the author's previous paper and the results of Griggs et al. Besides confirming the findings were consistent with those references, some significant characteristics were also captured. The PBE model for enzymatic hydrolysis process can be solved using DAE-QMOM method. Also, an improved understanding of the physical insights of the model was achieved.
Mansour, M M; Spink, A E F
2013-01-01
Grid refinement is introduced in a numerical groundwater model to increase the accuracy of the solution over local areas without compromising the run time of the model. Numerical methods developed for grid refinement suffered certain drawbacks, for example, deficiencies in the implemented interpolation technique; the non-reciprocity in head calculations or flow calculations; lack of accuracy resulting from high truncation errors, and numerical problems resulting from the construction of elongated meshes. A refinement scheme based on the divergence theorem and Taylor's expansions is presented in this article. This scheme is based on the work of De Marsily (1986) but includes more terms of the Taylor's series to improve the numerical solution. In this scheme, flow reciprocity is maintained and high order of refinement was achievable. The new numerical method is applied to simulate groundwater flows in homogeneous and heterogeneous confined aquifers. It produced results with acceptable degrees of accuracy. This method shows the potential for its application to solving groundwater heads over nested meshes with irregular shapes. © 2012, British Geological Survey © NERC 2012. Ground Water © 2012, National GroundWater Association.
NASA Technical Reports Server (NTRS)
Smith, S. D.
1984-01-01
The overall contractual effort and the theory and numerical solution for the Reacting and Multi-Phase (RAMP2) computer code are described. The code can be used to model the dominant phenomena which affect the prediction of liquid and solid rocket nozzle and orbital plume flow fields. Fundamental equations for steady flow of reacting gas-particle mixtures, method of characteristics, mesh point construction, and numerical integration of the conservation equations are considered herein.
Modeling of multi-band drift in nanowires using a full band Monte Carlo simulation
NASA Astrophysics Data System (ADS)
Hathwar, Raghuraj; Saraniti, Marco; Goodnick, Stephen M.
2016-07-01
We report on a new numerical approach for multi-band drift within the context of full band Monte Carlo (FBMC) simulation and apply this to Si and InAs nanowires. The approach is based on the solution of the Krieger and Iafrate (KI) equations [J. B. Krieger and G. J. Iafrate, Phys. Rev. B 33, 5494 (1986)], which gives the probability of carriers undergoing interband transitions subject to an applied electric field. The KI equations are based on the solution of the time-dependent Schrödinger equation, and previous solutions of these equations have used Runge-Kutta (RK) methods to numerically solve the KI equations. This approach made the solution of the KI equations numerically expensive and was therefore only applied to a small part of the Brillouin zone (BZ). Here we discuss an alternate approach to the solution of the KI equations using the Magnus expansion (also known as "exponential perturbation theory"). This method is more accurate than the RK method as the solution lies on the exponential map and shares important qualitative properties with the exact solution such as the preservation of the unitary character of the time evolution operator. The solution of the KI equations is then incorporated through a modified FBMC free-flight drift routine and applied throughout the nanowire BZ. The importance of the multi-band drift model is then demonstrated for the case of Si and InAs nanowires by simulating a uniform field FBMC and analyzing the average carrier energies and carrier populations under high electric fields. Numerical simulations show that the average energy of the carriers under high electric field is significantly higher when multi-band drift is taken into consideration, due to the interband transitions allowing carriers to achieve higher energies.
NASA Astrophysics Data System (ADS)
Malekan, Mohammad; Barros, Felício B.
2017-12-01
Generalized or extended finite element method (G/XFEM) models the crack by enriching functions of partition of unity type with discontinuous functions that represent well the physical behavior of the problem. However, this enrichment functions are not available for all problem types. Thus, one can use numerically-built (global-local) enrichment functions to have a better approximate procedure. This paper investigates the effects of micro-defects/inhomogeneities on a main crack behavior by modeling the micro-defects/inhomogeneities in the local problem using a two-scale G/XFEM. The global-local enrichment functions are influenced by the micro-defects/inhomogeneities from the local problem and thus change the approximate solution of the global problem with the main crack. This approach is presented in detail by solving three different linear elastic fracture mechanics problems for different cases: two plane stress and a Reissner-Mindlin plate problems. The numerical results obtained with the two-scale G/XFEM are compared with the reference solutions from the analytical, numerical solution using standard G/XFEM method and ABAQUS as well, and from the literature.
2007-12-21
of hydrodynamics and the physical characteristics of the polymers. The physics models include both analytical models and numerical simulations ...the experimental observations. The numerical simulations also succeed in replicating some experimental measurements. However, there is still no...become quite significant. 4.5 Documentation The complete model is coded in MatLab . In the model, all units are cgs, so distances are in
Macías-Díaz, J E; Macías, Siegfried; Medina-Ramírez, I E
2013-12-01
In this manuscript, we present a computational model to approximate the solutions of a partial differential equation which describes the growth dynamics of microbial films. The numerical technique reported in this work is an explicit, nonlinear finite-difference methodology which is computationally implemented using Newton's method. Our scheme is compared numerically against an implicit, linear finite-difference discretization of the same partial differential equation, whose computer coding requires an implementation of the stabilized bi-conjugate gradient method. Our numerical results evince that the nonlinear approach results in a more efficient approximation to the solutions of the biofilm model considered, and demands less computer memory. Moreover, the positivity of initial profiles is preserved in the practice by the nonlinear scheme proposed. Copyright © 2013 Elsevier Ltd. All rights reserved.
Numerical modelling of bifurcation and localisation in cohesive-frictional materials
NASA Astrophysics Data System (ADS)
de Borst, René
1991-12-01
Methods are reviewed for analysing highly localised failure and bifurcation modes in discretised mechanical systems as typically arise in numerical simulations of failure in soils, rocks, metals and concrete. By the example of a plane-strain biaxial test it is shown that strain softening and lack of normality in elasto-plastic constitutive equations and the ensuing loss of ellipticity of the governing field equations cause a pathological mesh dependence of numerical solutions for such problems, thus rendering the results effectively meaningless. The need for introduction of higher-order continuum models is emphasised to remedy this shortcoming of the conventional approach. For one such a continuum model, namely the unconstrained Cosserat continuum, it is demonstrated that meaningful and convergent solutions (in the sense that a finite width of the localisation zone is computed upon mesh refinement) can be obtained.
Numerical Implementation of the Cohesive Soil Bounding Surface Plasticity Model. Volume I.
1983-02-01
AD-R24 866 NUMERICAL IMPLEMENTATION OF THE COHESIVE SOIL BOUNDING 1/2 SURFACE PLASTICITY ..(U) CALIFORNIA UNIV DAVIS DEPT OF CIVIL ENGINEERING L R...a study of various numerical means for implementing the bounding surface plasticity model for cohesive soils is presented. A comparison is made of... Plasticity Models 17 3.4 Selection Of Methods For Comparison 17 3.5 Theory 20 3.5.1 Solution Methods 20 3.5.2 Reduction Of The Number Of Equation
WATSFAR: numerical simulation of soil WATer and Solute fluxes using a FAst and Robust method
NASA Astrophysics Data System (ADS)
Crevoisier, David; Voltz, Marc
2013-04-01
To simulate the evolution of hydro- and agro-systems, numerous spatialised models are based on a multi-local approach and improvement of simulation accuracy by data-assimilation techniques are now used in many application field. The latest acquisition techniques provide a large amount of experimental data, which increase the efficiency of parameters estimation and inverse modelling approaches. In turn simulations are often run on large temporal and spatial domains which requires a large number of model runs. Eventually, despite the regular increase in computing capacities, the development of fast and robust methods describing the evolution of saturated-unsaturated soil water and solute fluxes is still a challenge. Ross (2003, Agron J; 95:1352-1361) proposed a method, solving 1D Richards' and convection-diffusion equation, that fulfil these characteristics. The method is based on a non iterative approach which reduces the numerical divergence risks and allows the use of coarser spatial and temporal discretisations, while assuring a satisfying accuracy of the results. Crevoisier et al. (2009, Adv Wat Res; 32:936-947) proposed some technical improvements and validated this method on a wider range of agro- pedo- climatic situations. In this poster, we present the simulation code WATSFAR which generalises the Ross method to other mathematical representations of soil water retention curve (i.e. standard and modified van Genuchten model) and includes a dual permeability context (preferential fluxes) for both water and solute transfers. The situations tested are those known to be the less favourable when using standard numerical methods: fine textured and extremely dry soils, intense rainfall and solute fluxes, soils near saturation, ... The results of WATSFAR have been compared with the standard finite element model Hydrus. The analysis of these comparisons highlights two main advantages for WATSFAR, i) robustness: even on fine textured soil or high water and solute fluxes - where Hydrus simulations may fail to converge - no numerical problem appears, and ii) accuracy of simulations even for loose spatial domain discretisations, which can only be obtained by Hydrus with fine discretisations.
NASA Technical Reports Server (NTRS)
Reynolds, W. C. (Editor); Maccormack, R. W.
1981-01-01
Topics discussed include polygon transformations in fluid mechanics, computation of three-dimensional horseshoe vortex flow using the Navier-Stokes equations, an improved surface velocity method for transonic finite-volume solutions, transonic flow calculations with higher order finite elements, the numerical calculation of transonic axial turbomachinery flows, and the simultaneous solutions of inviscid flow and boundary layer at transonic speeds. Also considered are analytical solutions for the reflection of unsteady shock waves and relevant numerical tests, reformulation of the method of characteristics for multidimensional flows, direct numerical simulations of turbulent shear flows, the stability and separation of freely interacting boundary layers, computational models of convective motions at fluid interfaces, viscous transonic flow over airfoils, and mixed spectral/finite difference approximations for slightly viscous flows.
Modeling of turbulent separated flows for aerodynamic applications
NASA Technical Reports Server (NTRS)
Marvin, J. G.
1983-01-01
Steady, high speed, compressible separated flows modeled through numerical simulations resulting from solutions of the mass-averaged Navier-Stokes equations are reviewed. Emphasis is placed on benchmark flows that represent simplified (but realistic) aerodynamic phenomena. These include impinging shock waves, compression corners, glancing shock waves, trailing edge regions, and supersonic high angle of attack flows. A critical assessment of modeling capabilities is provided by comparing the numerical simulations with experiment. The importance of combining experiment, numerical algorithm, grid, and turbulence model to effectively develop this potentially powerful simulation technique is stressed.
Some problems of the calculation of three-dimensional boundary layer flows on general configurations
NASA Technical Reports Server (NTRS)
Cebeci, T.; Kaups, K.; Mosinskis, G. J.; Rehn, J. A.
1973-01-01
An accurate solution of the three-dimensional boundary layer equations over general configurations such as those encountered in aircraft and space shuttle design requires a very efficient, fast, and accurate numerical method with suitable turbulence models for the Reynolds stresses. The efficiency, speed, and accuracy of a three-dimensional numerical method together with the turbulence models for the Reynolds stresses are examined. The numerical method is the implicit two-point finite difference approach (Box Method) developed by Keller and applied to the boundary layer equations by Keller and Cebeci. In addition, a study of some of the problems that may arise in the solution of these equations for three-dimensional boundary layer flows over general configurations.
NASA Astrophysics Data System (ADS)
Ferrara, Alessandro; Polverino, Pierpaolo; Pianese, Cesare
2018-06-01
This paper proposes an analytical model of the water content of the electrolyte of a Proton Exchange Membrane Fuel Cell. The model is designed by accounting for several simplifying assumptions, which make the model suitable for on-board/online water management applications, while ensuring a good accuracy of the considered phenomena, with respect to advanced numerical solutions. The achieved analytical solution, expressing electrolyte water content, is compared with that obtained by means of a complex numerical approach, used to solve the same mathematical problem. The achieved results show that the mean error is below 5% for electrodes water content values ranging from 2 to 15 (given as boundary conditions), and it does not overcome 0.26% for electrodes water content above 5. These results prove the capability of the solution to correctly model electrolyte water content at any operating condition, aiming at embodiment into more complex frameworks (e.g., cell or stack models), related to fuel cell simulation, monitoring, control, diagnosis and prognosis.
NASA Astrophysics Data System (ADS)
Werner, Adrian D.; Robinson, Neville I.
2018-06-01
Existing analytical solutions for the distribution of fresh groundwater in subsea aquifers presume that the overlying offshore aquitard, represented implicitly, contains seawater. Here, we consider the case where offshore fresh groundwater is the result of freshwater discharge from onshore aquifers, and neglect paleo-freshwater sources. A recent numerical modeling investigation, involving explicit simulation of the offshore aquitard, demonstrates that offshore aquitards more likely contain freshwater in areas of upward freshwater leakage to the sea. We integrate this finding into the existing analytical solutions by providing an alternative formulation for steady interface flow in subsea aquifers, whereby the salinity in the offshore aquitard can be chosen. The new solution, taking the aquitard salinity as that of freshwater, provides a closer match to numerical modeling results in which the aquitard is represented explicitly.
Nonlocal Poisson-Fermi model for ionic solvent.
Xie, Dexuan; Liu, Jinn-Liang; Eisenberg, Bob
2016-07-01
We propose a nonlocal Poisson-Fermi model for ionic solvent that includes ion size effects and polarization correlations among water molecules in the calculation of electrostatic potential. It includes the previous Poisson-Fermi models as special cases, and its solution is the convolution of a solution of the corresponding nonlocal Poisson dielectric model with a Yukawa-like kernel function. The Fermi distribution is shown to be a set of optimal ionic concentration functions in the sense of minimizing an electrostatic potential free energy. Numerical results are reported to show the difference between a Poisson-Fermi solution and a corresponding Poisson solution.
Oscillations and stability of numerical solutions of the heat conduction equation
NASA Technical Reports Server (NTRS)
Kozdoba, L. A.; Levi, E. V.
1976-01-01
The mathematical model and results of numerical solutions are given for the one dimensional problem when the linear equations are written in a rectangular coordinate system. All the computations are easily realizable for two and three dimensional problems when the equations are written in any coordinate system. Explicit and implicit schemes are shown in tabular form for stability and oscillations criteria; the initial temperature distribution is considered uniform.
The dynamics of a delayed predator-prey model with state dependent feedback control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Anuraj; Gakkhar, Sunita
2011-11-30
A delayed prey-predator model with state-dependent impulses is investigated. The sufficient conditions of existence and stability of semi-trivial solution and positive period-1 solution are obtained by using the Poincare map and analogue of the Poincare Criterion. The qualitative analysis shows that the positive period-one solution bifurcates from the semi-trivial solution through a fold bifurcation. The complex dynamics including chaos is obtained and numerical simulations substantiate the analytical results.
Numerical Simulation of the Perrin-Like Experiments
ERIC Educational Resources Information Center
Mazur, Zygmunt; Grech, Dariusz
2008-01-01
A simple model of the random Brownian walk of a spherical mesoscopic particle in viscous liquids is proposed. The model can be solved analytically and simulated numerically. The analytic solution gives the known Einstein-Smoluchowski diffusion law r[superscript 2] = 2Dt, where the diffusion constant D is expressed by the mass and geometry of a…
NASA Astrophysics Data System (ADS)
Bulovich, S. V.; Smirnov, E. M.
2018-05-01
The paper covers application of the artificial viscosity technique to numerical simulation of unsteady one-dimensional multiphase compressible flows on the base of the multi-fluid approach. The system of the governing equations is written under assumption of the pressure equilibrium between the "fluids" (phases). No interfacial exchange is taken into account. A model for evaluation of the artificial viscosity coefficient that (i) assumes identity of this coefficient for all interpenetrating phases and (ii) uses the multiphase-mixture Wood equation for evaluation of a scale speed of sound has been suggested. Performance of the artificial viscosity technique has been evaluated via numerical solution of a model problem of pressure discontinuity breakdown in a three-fluid medium. It has been shown that a relatively simple numerical scheme, explicit and first-order, combined with the suggested artificial viscosity model, predicts a physically correct behavior of the moving shock and expansion waves, and a subsequent refinement of the computational grid results in a monotonic approaching to an asymptotic time-dependent solution, without non-physical oscillations.
Parallelization of elliptic solver for solving 1D Boussinesq model
NASA Astrophysics Data System (ADS)
Tarwidi, D.; Adytia, D.
2018-03-01
In this paper, a parallel implementation of an elliptic solver in solving 1D Boussinesq model is presented. Numerical solution of Boussinesq model is obtained by implementing a staggered grid scheme to continuity, momentum, and elliptic equation of Boussinesq model. Tridiagonal system emerging from numerical scheme of elliptic equation is solved by cyclic reduction algorithm. The parallel implementation of cyclic reduction is executed on multicore processors with shared memory architectures using OpenMP. To measure the performance of parallel program, large number of grids is varied from 28 to 214. Two test cases of numerical experiment, i.e. propagation of solitary and standing wave, are proposed to evaluate the parallel program. The numerical results are verified with analytical solution of solitary and standing wave. The best speedup of solitary and standing wave test cases is about 2.07 with 214 of grids and 1.86 with 213 of grids, respectively, which are executed by using 8 threads. Moreover, the best efficiency of parallel program is 76.2% and 73.5% for solitary and standing wave test cases, respectively.
Numerical equilibrium analysis for structured consumer resource models.
de Roos, A M; Diekmann, O; Getto, P; Kirkilionis, M A
2010-02-01
In this paper, we present methods for a numerical equilibrium and stability analysis for models of a size structured population competing for an unstructured resource. We concentrate on cases where two model parameters are free, and thus existence boundaries for equilibria and stability boundaries can be defined in the (two-parameter) plane. We numerically trace these implicitly defined curves using alternatingly tangent prediction and Newton correction. Evaluation of the maps defining the curves involves integration over individual size and individual survival probability (and their derivatives) as functions of individual age. Such ingredients are often defined as solutions of ODE, i.e., in general only implicitly. In our case, the right-hand sides of these ODE feature discontinuities that are caused by an abrupt change of behavior at the size where juveniles are assumed to turn adult. So, we combine the numerical solution of these ODE with curve tracing methods. We have implemented the algorithms for "Daphnia consuming algae" models in C-code. The results obtained by way of this implementation are shown in the form of graphs.
Modelling technological process of ion-exchange filtration of fluids in porous media
NASA Astrophysics Data System (ADS)
Ravshanov, N.; Saidov, U. M.
2018-05-01
Solution of an actual problem related to the process of filtration and dehydration of liquid and ionic solutions from gel particles and heavy ionic compounds is considered in the paper. This technological process is realized during the preparation and cleaning of chemical solutions, drinking water, pharmaceuticals, liquid fuels, products for public use, etc. For the analysis, research, determination of the main parameters of the technological process and operating modes of filter units and for support in managerial decision-making, a mathematical model is developed. Using the developed model, a series of computational experiments on a computer is carried out. The results of numerical calculations are illustrated in the form of graphs. Based on the analysis of numerical experiments, the conclusions are formulated that serve as the basis for making appropriate managerial decisions.
Ferrofluids: Modeling, numerical analysis, and scientific computation
NASA Astrophysics Data System (ADS)
Tomas, Ignacio
This dissertation presents some developments in the Numerical Analysis of Partial Differential Equations (PDEs) describing the behavior of ferrofluids. The most widely accepted PDE model for ferrofluids is the Micropolar model proposed by R.E. Rosensweig. The Micropolar Navier-Stokes Equations (MNSE) is a subsystem of PDEs within the Rosensweig model. Being a simplified version of the much bigger system of PDEs proposed by Rosensweig, the MNSE are a natural starting point of this thesis. The MNSE couple linear velocity u, angular velocity w, and pressure p. We propose and analyze a first-order semi-implicit fully-discrete scheme for the MNSE, which decouples the computation of the linear and angular velocities, is unconditionally stable and delivers optimal convergence rates under assumptions analogous to those used for the Navier-Stokes equations. Moving onto the much more complex Rosensweig's model, we provide a definition (approximation) for the effective magnetizing field h, and explain the assumptions behind this definition. Unlike previous definitions available in the literature, this new definition is able to accommodate the effect of external magnetic fields. Using this definition we setup the system of PDEs coupling linear velocity u, pressure p, angular velocity w, magnetization m, and magnetic potential ϕ We show that this system is energy-stable and devise a numerical scheme that mimics the same stability property. We prove that solutions of the numerical scheme always exist and, under certain simplifying assumptions, that the discrete solutions converge. A notable outcome of the analysis of the numerical scheme for the Rosensweig's model is the choice of finite element spaces that allow the construction of an energy-stable scheme. Finally, with the lessons learned from Rosensweig's model, we develop a diffuse-interface model describing the behavior of two-phase ferrofluid flows and present an energy-stable numerical scheme for this model. For a simplified version of this model and the corresponding numerical scheme we prove (in addition to stability) convergence and existence of solutions as by-product . Throughout this dissertation, we will provide numerical experiments, not only to validate mathematical results, but also to help the reader gain a qualitative understanding of the PDE models analyzed in this dissertation (the MNSE, the Rosenweig's model, and the Two-phase model). In addition, we also provide computational experiments to illustrate the potential of these simple models and their ability to capture basic phenomenological features of ferrofluids, such as the Rosensweig instability for the case of the two-phase model. In this respect, we highlight the incisive numerical experiments with the two-phase model illustrating the critical role of the demagnetizing field to reproduce physically realistic behavior of ferrofluids.
Weatherill, D.; Simmons, C.T.; Voss, C.I.; Robinson, N.I.
2004-01-01
This study proposes the use of several problems of unstable steady state convection with variable fluid density in a porous layer of infinite horizontal extent as two-dimensional (2-D) test cases for density-dependent groundwater flow and solute transport simulators. Unlike existing density-dependent model benchmarks, these problems have well-defined stability criteria that are determined analytically. These analytical stability indicators can be compared with numerical model results to test the ability of a code to accurately simulate buoyancy driven flow and diffusion. The basic analytical solution is for a horizontally infinite fluid-filled porous layer in which fluid density decreases with depth. The proposed test problems include unstable convection in an infinite horizontal box, in a finite horizontal box, and in an infinite inclined box. A dimensionless Rayleigh number incorporating properties of the fluid and the porous media determines the stability of the layer in each case. Testing the ability of numerical codes to match both the critical Rayleigh number at which convection occurs and the wavelength of convection cells is an addition to the benchmark problems currently in use. The proposed test problems are modelled in 2-D using the SUTRA [SUTRA-A model for saturated-unsaturated variable-density ground-water flow with solute or energy transport. US Geological Survey Water-Resources Investigations Report, 02-4231, 2002. 250 p] density-dependent groundwater flow and solute transport code. For the case of an infinite horizontal box, SUTRA results show a distinct change from stable to unstable behaviour around the theoretical critical Rayleigh number of 4??2 and the simulated wavelength of unstable convection agrees with that predicted by the analytical solution. The effects of finite layer aspect ratio and inclination on stability indicators are also tested and numerical results are in excellent agreement with theoretical stability criteria and with numerical results previously reported in traditional fluid mechanics literature. ?? 2004 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Fikri, Fariz Fahmi; Nuraini, Nuning
2018-03-01
The differential equation is one of the branches in mathematics which is closely related to human life problems. Some problems that occur in our life can be modeled into differential equations as well as systems of differential equations such as the Lotka-Volterra model and SIR model. Therefore, solving a problem of differential equations is very important. Some differential equations are difficult to solve, so numerical methods are needed to solve that problems. Some numerical methods for solving differential equations that have been widely used are Euler Method, Heun Method, Runge-Kutta and others. However, some of these methods still have some restrictions that cause the method cannot be used to solve more complex problems such as an evaluation interval that we cannot change freely. New methods are needed to improve that problems. One of the method that can be used is the artificial bees colony algorithm. This algorithm is one of metaheuristic algorithm method, which can come out from local search space and do exploration in solution search space so that will get better solution than other method.
Direct numerical simulations of three-dimensional electrokinetic flows
NASA Astrophysics Data System (ADS)
Chiam, Keng-Hwee
2006-11-01
We discuss direct numerical simulations of three-dimensional electrokinetic flows in microfluidic devices. In particular, we focus on the study of the electrokinetic instability that develops when two solutions with different electrical conductivities are coupled to an external electric field. We characterize this ``mixing'' instability as a function of the parameters of the model, namely the Reynolds number of the flow, the electric Peclet number of the electrolyte solution, and the ratio of the electroosmotic to the electroviscous time scales. Finally, we describe how this model breaks down when the length scale of the device approaches the nanoscale, where the width of the electric Debye layer is comparable to the width of the channel, and discuss solutions to overcome this.
Solution landscapes in nematic microfluidics
NASA Astrophysics Data System (ADS)
Crespo, M.; Majumdar, A.; Ramos, A. M.; Griffiths, I. M.
2017-08-01
We study the static equilibria of a simplified Leslie-Ericksen model for a unidirectional uniaxial nematic flow in a prototype microfluidic channel, as a function of the pressure gradient G and inverse anchoring strength, B. We numerically find multiple static equilibria for admissible pairs (G , B) and classify them according to their winding numbers and stability. The case G = 0 is analytically tractable and we numerically study how the solution landscape is transformed as G increases. We study the one-dimensional dynamical model, the sensitivity of the dynamic solutions to initial conditions and the rate of change of G and B. We provide a physically interesting example of how the time delay between the applications of G and B can determine the selection of the final steady state.
Solution of the spatial neutral model yields new bounds on the Amazonian species richness
NASA Astrophysics Data System (ADS)
Shem-Tov, Yahav; Danino, Matan; Shnerb, Nadav M.
2017-02-01
Neutral models, in which individual agents with equal fitness undergo a birth-death-mutation process, are very popular in population genetics and community ecology. Usually these models are applied to populations and communities with spatial structure, but the analytic results presented so far are limited to well-mixed or mainland-island scenarios. Here we combine analytic results and numerics to obtain an approximate solution for the species abundance distribution and the species richness for the neutral model on continuous landscape. We show how the regional diversity increases when the recruitment length decreases and the spatial segregation of species grows. Our results are supported by extensive numerical simulations and allow one to probe the numerically inaccessible regime of large-scale systems with extremely small mutation/speciation rates. Model predictions are compared with the findings of recent large-scale surveys of tropical trees across the Amazon basin, yielding new bounds for the species richness (between 13100 and 15000) and the number of singleton species (between 455 and 690).
NASA Technical Reports Server (NTRS)
Shih, T. I. P.; Yang, S. L.; Schock, H. J.
1986-01-01
A numerical study was performed to investigate the unsteady, multidimensional flow inside the combustion chambers of an idealized, two-dimensional, rotary engine under motored conditions. The numerical study was based on the time-dependent, two-dimensional, density-weighted, ensemble-averaged conservation equations of mass, species, momentum, and total energy valid for two-component ideal gas mixtures. The ensemble-averaged conservation equations were closed by a K-epsilon model of turbulence. This K-epsilon model of turbulence was modified to account for some of the effects of compressibility, streamline curvature, low-Reynolds number, and preferential stress dissipation. Numerical solutions to the conservation equations were obtained by the highly efficient implicit-factored method of Beam and Warming. The grid system needed to obtain solutions were generated by an algebraic grid generation technique based on transfinite interpolation. Results of the numerical study are presented in graphical form illustrating the flow patterns during intake, compression, gaseous fuel injection, expansion, and exhaust.
NASA Technical Reports Server (NTRS)
Shih, T. I-P.; Yang, S. L.; Schock, H. J.
1986-01-01
A numerical study was performed to investigate the unsteady, multidimensional flow inside the combustion chambers of an idealized, two-dimensional, rotary engine under motored conditions. The numerical study was based on the time-dependent, two-dimensional, density-weighted, ensemble-averaged conservation equations of mass, species, momentum, and total energy valid for two-component ideal gas mixtures. The ensemble-averaged conservation equations were closed by a K-epsilon model of turbulence. This K-epsilon model of turbulence was modified to account for some of the effects of compressibility, streamline curvature, low-Reynolds number, and preferential stress dissipation. Numerical solutions to the conservation equations were obtained by the highly efficient implicit-factored method of Beam and Warming. The grid system needed to obtain solutions were generated by an algebraic grid generation technique based on transfinite interpolation. Results of the numerical study are presented in graphical form illustrating the flow patterns during intake, compression, gaseous fuel injection, expansion, and exhaust.
Cosmic-ray propagation with DRAGON2: I. numerical solver and astrophysical ingredients
NASA Astrophysics Data System (ADS)
Evoli, Carmelo; Gaggero, Daniele; Vittino, Andrea; Di Bernardo, Giuseppe; Di Mauro, Mattia; Ligorini, Arianna; Ullio, Piero; Grasso, Dario
2017-02-01
We present version 2 of the DRAGON code designed for computing realistic predictions of the CR densities in the Galaxy. The code numerically solves the interstellar CR transport equation (including inhomogeneous and anisotropic diffusion, either in space and momentum, advective transport and energy losses), under realistic conditions. The new version includes an updated numerical solver and several models for the astrophysical ingredients involved in the transport equation. Improvements in the accuracy of the numerical solution are proved against analytical solutions and in reference diffusion scenarios. The novel features implemented in the code allow to simulate the diverse scenarios proposed to reproduce the most recent measurements of local and diffuse CR fluxes, going beyond the limitations of the homogeneous galactic transport paradigm. To this end, several applications using DRAGON2 are presented as well. This new version facilitates the users to include their own physical models by means of a modular C++ structure.
NASA Technical Reports Server (NTRS)
Dlugach, Janna M.; Mishchenko, Michael I.
2017-01-01
In this paper, we discuss some aspects of numerical modeling of electromagnetic scattering by discrete random medium by using numerically exact solutions of the macroscopic Maxwell equations. Typical examples of such media are clouds of interstellar dust, clouds of interplanetary dust in the Solar system, dusty atmospheres of comets, particulate planetary rings, clouds in planetary atmospheres, aerosol particles with numerous inclusions and so on. Our study is based on the results of extensive computations of different characteristics of electromagnetic scattering obtained by using the superposition T-matrix method which represents a direct computer solver of the macroscopic Maxwell equations for an arbitrary multisphere configuration. As a result, in particular, we clarify the range of applicability of the low-density theories of radiative transfer and coherent backscattering as well as of widely used effective-medium approximations.
Valuation of financial models with non-linear state spaces
NASA Astrophysics Data System (ADS)
Webber, Nick
2001-02-01
A common assumption in valuation models for derivative securities is that the underlying state variables take values in a linear state space. We discuss numerical implementation issues in an interest rate model with a simple non-linear state space, formulating and comparing Monte Carlo, finite difference and lattice numerical solution methods. We conclude that, at least in low dimensional spaces, non-linear interest rate models may be viable.
NASA Astrophysics Data System (ADS)
Gotz, M.; Karsch, L.; Pawelke, J.
2017-11-01
In order to describe the volume recombination in a pulsed radiation field of high dose-per-pulse this study presents a numerical solution of a 1D transport model of the liberated charges in a plane-parallel ionization chamber. In addition, measurements were performed on an Advanced Markus ionization chamber in a pulsed electron beam to obtain suitable data to test the calculation. The experiment used radiation pulses of 4 μs duration and variable dose-per-pulse values up to about 1 Gy, as well as pulses of variable duration up to 308 μs at constant dose-per-pulse values between 85 mGy and 400 mGy. Those experimental data were compared to the developed numerical model and existing descriptions of volume recombination. At low collection voltages the observed dose-per-pulse dependence of volume recombination can be approximated by the existing theory using effective parameters. However, at high collection voltages large discrepancies are observed. The developed numerical model shows much better agreement with the observations and is able to replicate the observed behavior over the entire range of dose-per-pulse values and collection voltages. Using the developed numerical model, the differences between observation and existing theory are shown to be the result of a large fraction of the charge being collected as free electrons and the resultant distortion of the electric field inside the chamber. Furthermore, the numerical solution is able to calculate recombination losses for arbitrary pulse durations in good agreement with the experimental data, an aspect not covered by current theory. Overall, the presented numerical solution of the charge transport model should provide a more flexible tool to describe volume recombination for high dose-per-pulse values as well as for arbitrary pulse durations and repetition rates.
Gotz, M; Karsch, L; Pawelke, J
2017-11-01
In order to describe the volume recombination in a pulsed radiation field of high dose-per-pulse this study presents a numerical solution of a 1D transport model of the liberated charges in a plane-parallel ionization chamber. In addition, measurements were performed on an Advanced Markus ionization chamber in a pulsed electron beam to obtain suitable data to test the calculation. The experiment used radiation pulses of 4 μs duration and variable dose-per-pulse values up to about 1 Gy, as well as pulses of variable duration up to 308 [Formula: see text] at constant dose-per-pulse values between 85 mGy and 400 mGy. Those experimental data were compared to the developed numerical model and existing descriptions of volume recombination. At low collection voltages the observed dose-per-pulse dependence of volume recombination can be approximated by the existing theory using effective parameters. However, at high collection voltages large discrepancies are observed. The developed numerical model shows much better agreement with the observations and is able to replicate the observed behavior over the entire range of dose-per-pulse values and collection voltages. Using the developed numerical model, the differences between observation and existing theory are shown to be the result of a large fraction of the charge being collected as free electrons and the resultant distortion of the electric field inside the chamber. Furthermore, the numerical solution is able to calculate recombination losses for arbitrary pulse durations in good agreement with the experimental data, an aspect not covered by current theory. Overall, the presented numerical solution of the charge transport model should provide a more flexible tool to describe volume recombination for high dose-per-pulse values as well as for arbitrary pulse durations and repetition rates.
One-dimensional model and solutions for creeping gas flows in the approximation of uniform pressure
NASA Astrophysics Data System (ADS)
Vedernikov, A.; Balapanov, D.
2016-11-01
A model, along with analytical and numerical solutions, is presented to describe a wide variety of one-dimensional slow flows of compressible heat-conductive fluids. The model is based on the approximation of uniform pressure valid for the flows, in which the sound propagation time is much shorter than the duration of any meaningful density variation in the system. The energy balance is described by the heat equation that is solved independently. This approach enables the explicit solution for the fluid velocity to be obtained. Interfacial and volumetric heat and mass sources as well as boundary motion are considered as possible sources of density variation in the fluid. A set of particular tasks is analyzed for different motion sources in planar, axial, and central symmetries in the quasistationary limit of heat conduction (i.e., for large Fourier number). The analytical solutions are in excellent agreement with corresponding numerical solutions of the whole system of the Navier-Stokes equations. This work deals with the ideal gas. The approach is also valid for other equations of state.
Standards and Guidelines for Numerical Models for Tsunami Hazard Mitigation
NASA Astrophysics Data System (ADS)
Titov, V.; Gonzalez, F.; Kanoglu, U.; Yalciner, A.; Synolakis, C. E.
2006-12-01
An increased number of nations around the workd need to develop tsunami mitigation plans which invariably involve inundation maps for warning guidance and evacuation planning. There is the risk that inundation maps may be produced with older or untested methodology, as there are currently no standards for modeling tools. In the aftermath of the 2004 megatsunami, some models were used to model inundation for Cascadia events with results much larger than sediment records and existing state-of-the-art studies suggest leading to confusion among emergency management. Incorrectly assessing tsunami impact is hazardous, as recent events in 2006 in Tonga, Kythira, Greece and Central Java have suggested (Synolakis and Bernard, 2006). To calculate tsunami currents, forces and runup on coastal structures, and inundation of coastlines one must calculate the evolution of the tsunami wave from the deep ocean to its target site, numerically. No matter what the numerical model, validation (the process of ensuring that the model solves the parent equations of motion accurately) and verification (the process of ensuring that the model used represents geophysical reality appropriately) both are an essential. Validation ensures that the model performs well in a wide range of circumstances and is accomplished through comparison with analytical solutions. Verification ensures that the computational code performs well over a range of geophysical problems. A few analytic solutions have been validated themselves with laboratory data. Even fewer existing numerical models have been both validated with the analytical solutions and verified with both laboratory measurements and field measurements, thus establishing a gold standard for numerical codes for inundation mapping. While there is in principle no absolute certainty that a numerical code that has performed well in all the benchmark tests will also produce correct inundation predictions with any given source motions, validated codes reduce the level of uncertainty in their results to the uncertainty in the geophysical initial conditions. Further, when coupled with real--time free--field tsunami measurements from tsunameters, validated codes are the only choice for realistic forecasting of inundation; the consequences of failure are too ghastly to take chances with numerical procedures that have not been validated. We discuss a ten step process of benchmark tests for models used for inundation mapping. The associated methodology and algorithmes have to first be validated with analytical solutions, then verified with laboratory measurements and field data. The models need to be published in the scientific literature in peer-review journals indexed by ISI. While this process may appear onerous, it reflects our state of knowledge, and is the only defensible methodology when human lives are at stake. Synolakis, C.E., and Bernard, E.N, Tsunami science before and beyond Boxing Day 2004, Phil. Trans. R. Soc. A 364 1845, 2231--2263, 2005.
Accurate modelling of unsteady flows in collapsible tubes.
Marchandise, Emilie; Flaud, Patrice
2010-01-01
The context of this paper is the development of a general and efficient numerical haemodynamic tool to help clinicians and researchers in understanding of physiological flow phenomena. We propose an accurate one-dimensional Runge-Kutta discontinuous Galerkin (RK-DG) method coupled with lumped parameter models for the boundary conditions. The suggested model has already been successfully applied to haemodynamics in arteries and is now extended for the flow in collapsible tubes such as veins. The main difference with cardiovascular simulations is that the flow may become supercritical and elastic jumps may appear with the numerical consequence that scheme may not remain monotone if no limiting procedure is introduced. We show that our second-order RK-DG method equipped with an approximate Roe's Riemann solver and a slope-limiting procedure allows us to capture elastic jumps accurately. Moreover, this paper demonstrates that the complex physics associated with such flows is more accurately modelled than with traditional methods such as finite difference methods or finite volumes. We present various benchmark problems that show the flexibility and applicability of the numerical method. Our solutions are compared with analytical solutions when they are available and with solutions obtained using other numerical methods. Finally, to illustrate the clinical interest, we study the emptying process in a calf vein squeezed by contracting skeletal muscle in a normal and pathological subject. We compare our results with experimental simulations and discuss the sensitivity to parameters of our model.
Thermodynamics of Inozemtsev's elliptic spin chain
NASA Astrophysics Data System (ADS)
Klabbers, Rob
2016-06-01
We study the thermodynamic behaviour of Inozemtsev's long-range elliptic spin chain using the Bethe ansatz equations describing the spectrum of the model in the infinite-length limit. We classify all solutions of these equations in that limit and argue which of these solutions determine the spectrum in the thermodynamic limit. Interestingly, some of the solutions are not selfconjugate, which puts the model in sharp contrast to one of the model's limiting cases, the Heisenberg XXX spin chain. Invoking the string hypothesis we derive the thermodynamic Bethe ansatz equations (TBA-equations) from which we determine the Helmholtz free energy in thermodynamic equilibrium and derive the associated Y-system. We corroborate our results by comparing numerical solutions of the TBA-equations to a direct computation of the free energy for the finite-length hamiltonian. In addition we confirm numerically the interesting conjecture put forward by Finkel and González-López that the original and supersymmetric versions of Inozemtsev's elliptic spin chain are equivalent in the thermodynamic limit.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gutjahr, A.L.; Kincaid, C.T.; Mercer, J.W.
1987-04-01
The objective of this report is to summarize the various modeling approaches that were used to simulate solute transport in a variably saturated emission. In particular, the technical strengths and weaknesses of each approach are discussed, and conclusions and recommendations for future studies are made. Five models are considered: (1) one-dimensional analytical and semianalytical solutions of the classical deterministic convection-dispersion equation (van Genuchten, Parker, and Kool, this report ); (2) one-dimensional simulation using a continuous-time Markov process (Knighton and Wagenet, this report); (3) one-dimensional simulation using the time domain method and the frequency domain method (Duffy and Al-Hassan, this report);more » (4) one-dimensional numerical approach that combines a solution of the classical deterministic convection-dispersion equation with a chemical equilibrium speciation model (Cederberg, this report); and (5) three-dimensional numerical solution of the classical deterministic convection-dispersion equation (Huyakorn, Jones, Parker, Wadsworth, and White, this report). As part of the discussion, the input data and modeling results are summarized. The models were used in a data analysis mode, as opposed to a predictive mode. Thus, the following discussion will concentrate on the data analysis aspects of model use. Also, all the approaches were similar in that they were based on a convection-dispersion model of solute transport. Each discussion addresses the modeling approaches in the order listed above.« less
Analysis of groundwater flow and stream depletion in L-shaped fluvial aquifers
NASA Astrophysics Data System (ADS)
Lin, Chao-Chih; Chang, Ya-Chi; Yeh, Hund-Der
2018-04-01
Understanding the head distribution in aquifers is crucial for the evaluation of groundwater resources. This article develops a model for describing flow induced by pumping in an L-shaped fluvial aquifer bounded by impermeable bedrocks and two nearly fully penetrating streams. A similar scenario for numerical studies was reported in Kihm et al. (2007). The water level of the streams is assumed to be linearly varying with distance. The aquifer is divided into two subregions and the continuity conditions of the hydraulic head and flux are imposed at the interface of the subregions. The steady-state solution describing the head distribution for the model without pumping is first developed by the method of separation of variables. The transient solution for the head distribution induced by pumping is then derived based on the steady-state solution as initial condition and the methods of finite Fourier transform and Laplace transform. Moreover, the solution for stream depletion rate (SDR) from each of the two streams is also developed based on the head solution and Darcy's law. Both head and SDR solutions in the real time domain are obtained by a numerical inversion scheme called the Stehfest algorithm. The software MODFLOW is chosen to compare with the proposed head solution for the L-shaped aquifer. The steady-state and transient head distributions within the L-shaped aquifer predicted by the present solution are compared with the numerical simulations and measurement data presented in Kihm et al. (2007).
Dispersive models describing mosquitoes’ population dynamics
NASA Astrophysics Data System (ADS)
Yamashita, W. M. S.; Takahashi, L. T.; Chapiro, G.
2016-08-01
The global incidences of dengue and, more recently, zica virus have increased the interest in studying and understanding the mosquito population dynamics. Understanding this dynamics is important for public health in countries where climatic and environmental conditions are favorable for the propagation of these diseases. This work is based on the study of nonlinear mathematical models dealing with the life cycle of the dengue mosquito using partial differential equations. We investigate the existence of traveling wave solutions using semi-analytical method combining dynamical systems techniques and numerical integration. Obtained solutions are validated through numerical simulations using finite difference schemes.
Equations for description of nonlinear standing waves in constant-cross-sectioned resonators.
Bednarik, Michal; Cervenka, Milan
2014-03-01
This work is focused on investigation of applicability of two widely used model equations for description of nonlinear standing waves in constant-cross-sectioned resonators. The investigation is based on the comparison of numerical solutions of these model equations with solutions of more accurate model equations whose validity has been verified experimentally in a number of published papers.
Review of Thawing Time Prediction Models Depending on Process Conditions and Product Characteristics
Kluza, Franciszek; Spiess, Walter E. L.; Kozłowicz, Katarzyna
2016-01-01
Summary Determining thawing times of frozen foods is a challenging problem as the thermophysical properties of the product change during thawing. A number of calculation models and solutions have been developed. The proposed solutions range from relatively simple analytical equations based on a number of assumptions to a group of empirical approaches that sometimes require complex calculations. In this paper analytical, empirical and graphical models are presented and critically reviewed. The conditions of solution, limitations and possible applications of the models are discussed. The graphical and semi--graphical models are derived from numerical methods. Using the numerical methods is not always possible as running calculations takes time, whereas the specialized software and equipment are not always cheap. For these reasons, the application of analytical-empirical models is more useful for engineering. It is demonstrated that there is no simple, accurate and feasible analytical method for thawing time prediction. Consequently, simplified methods are needed for thawing time estimation of agricultural and food products. The review reveals the need for further improvement of the existing solutions or development of new ones that will enable accurate determination of thawing time within a wide range of practical conditions of heat transfer during processing. PMID:27904387
Snorradóttir, Bergthóra S; Jónsdóttir, Fjóla; Sigurdsson, Sven Th; Másson, Már
2014-08-01
A model is presented for transdermal drug delivery from single-layered silicone matrix systems. The work is based on our previous results that, in particular, extend the well-known Higuchi model. Recently, we have introduced a numerical transient model describing matrix systems where the drug dissolution can be non-instantaneous. Furthermore, our model can describe complex interactions within a multi-layered matrix and the matrix to skin boundary. The power of the modelling approach presented here is further illustrated by allowing the possibility of a donor solution. The model is validated by a comparison with experimental data, as well as validating the parameter values against each other, using various configurations with donor solution, silicone matrix and skin. Our results show that the model is a good approximation to real multi-layered delivery systems. The model offers the ability of comparing drug release for ibuprofen and diclofenac, which cannot be analysed by the Higuchi model because the dissolution in the latter case turns out to be limited. The experiments and numerical model outlined in this study could also be adjusted to more general formulations, which enhances the utility of the numerical model as a design tool for the development of drug-loaded matrices for trans-membrane and transdermal delivery. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.
NASA Astrophysics Data System (ADS)
Pain, C. C.; Saunders, J. H.; Worthington, M. H.; Singer, J. M.; Stuart-Bruges, W.; Mason, G.; Goddard, A.
2005-02-01
In this paper, a numerical method for solving the Biot poroelastic equations is developed. These equations comprise acoustic (typically water) and elastic (porous medium frame) equations, which are coupled mainly through fluid/solid drag terms. This wave solution is coupled to a simplified form of Maxwell's equations, which is solved for the streaming potential resulting from electrokinesis. The ultimate aim is to use the generated electrical signals to provide porosity, permeability and other information about the formation surrounding a borehole. The electrical signals are generated through electrokinesis by seismic waves causing movement of the fluid through pores or fractures of a porous medium. The focus of this paper is the numerical solution of the Biot equations in displacement form, which is achieved using a mixed finite-element formulation with a different finite-element representation for displacements and stresses. The mixed formulation is used in order to reduce spurious displacement modes and fluid shear waves in the numerical solutions. These equations are solved in the time domain using an implicit unconditionally stable time-stepping method using iterative solution methods amenable to solving large systems of equations. The resulting model is embodied in the MODELLING OF ACOUSTICS, POROELASTICS AND ELECTROKINETICS (MAPEK) computer model for electroseismic analysis.
Two Novel Methods and Multi-Mode Periodic Solutions for the Fermi-Pasta-Ulam Model
NASA Astrophysics Data System (ADS)
Arioli, Gianni; Koch, Hans; Terracini, Susanna
2005-04-01
We introduce two novel methods for studying periodic solutions of the FPU β-model, both numerically and rigorously. One is a variational approach, based on the dual formulation of the problem, and the other involves computer-assisted proofs. These methods are used e.g. to construct a new type of solutions, whose energy is spread among several modes, associated with closely spaced resonances.
Adiabatic model of field reversal by fast ions in an axisymmetric open trap
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsidulko, Yu. A., E-mail: tsidulko@mail.ru
2016-06-15
A model of field reversal by fast ions has been developed under the assumption of preservation of fast-ion adiabatic invariants. Analytical solutions obtained in the approximation of a narrow fast-ion layer and numerical solutions to the evolutionary problem are presented. The solutions demonstrate the process of formation of a field reversed configuration with parameters close to those of the planned experiment.
Research of Radionuclides Migrating in Porous Media Allowing for the "Solution-Rock" Interaction
NASA Astrophysics Data System (ADS)
Drozhko, E.; Aleksakhin, A. I.; Samsanova, L.; Kotchergina, N.; Zinin, A.
2001-12-01
Industrial solutions from the surface storage of liquid radioactive waste in Lake Karachay, near the Mayak Production Association in Russia, enter groundwaters through the reservoir loamy bed and have formed a contaminated groundwater plume. In order to predict radionuclide migration with the groundwater flow in porous unconsolidated rocks and to assess the protective mechanism of the natural environment, it is necessary to allow for the "solution-rock" physical and chemical interaction described by the distribution factor (Kd). In order to study radionuclide distribution in porous media, a numerical model was developed which models stontium-90 migration in a uniform unit of loams typical for the Karachay Lake bed. For the migration to be calculated, the results of the in situ and laboratory reasearch on strontium-90 sorption and desorption were used in the code, as well as strontium-90 dependance on sodium nitrate concentration in the solution. The code uses various models of the "solution-rock" interaction, taking into account both sorption/desorption and diffusion processes. Numerical research of strontium-90 migration resulted in data on strontium-90 distribution in solid and liquid phases of the porous loam unit over different time periods. Various models of the "solution-rock" interaction affecting strontium-90 migration are demonstrated.
An incompressible two-dimensional multiphase particle-in-cell model for dense particle flows
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snider, D.M.; O`Rourke, P.J.; Andrews, M.J.
1997-06-01
A two-dimensional, incompressible, multiphase particle-in-cell (MP-PIC) method is presented for dense particle flows. The numerical technique solves the governing equations of the fluid phase using a continuum model and those of the particle phase using a Lagrangian model. Difficulties associated with calculating interparticle interactions for dense particle flows with volume fractions above 5% have been eliminated by mapping particle properties to a Eulerian grid and then mapping back computed stress tensors to particle positions. This approach utilizes the best of Eulerian/Eulerian continuum models and Eulerian/Lagrangian discrete models. The solution scheme allows for distributions of types, sizes, and density of particles,more » with no numerical diffusion from the Lagrangian particle calculations. The computational method is implicit with respect to pressure, velocity, and volume fraction in the continuum solution thus avoiding courant limits on computational time advancement. MP-PIC simulations are compared with one-dimensional problems that have analytical solutions and with two-dimensional problems for which there are experimental data.« less
NASA Technical Reports Server (NTRS)
Whitmore, Stephen A.
1988-01-01
Presented is a mathematical model derived from the Navier-Stokes equations of momentum and continuity, which may be accurately used to predict the behavior of conventionally mounted pneumatic sensing systems subject to arbitrary pressure inputs. Numerical techniques for solving the general model are developed. Both step and frequency response lab tests were performed. These data are compared with solutions of the mathematical model and show excellent agreement. The procedures used to obtain the lab data are described. In-flight step and frequency response data were obtained. Comparisons with numerical solutions of the math model show good agreement. Procedures used to obtain the flight data are described. Difficulties encountered with obtaining the flight data are discussed.
An adaptive time-stepping strategy for solving the phase field crystal model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Zhengru, E-mail: zrzhang@bnu.edu.cn; Ma, Yuan, E-mail: yuner1022@gmail.com; Qiao, Zhonghua, E-mail: zqiao@polyu.edu.hk
2013-09-15
In this work, we will propose an adaptive time step method for simulating the dynamics of the phase field crystal (PFC) model. The numerical simulation of the PFC model needs long time to reach steady state, and then large time-stepping method is necessary. Unconditionally energy stable schemes are used to solve the PFC model. The time steps are adaptively determined based on the time derivative of the corresponding energy. It is found that the use of the proposed time step adaptivity cannot only resolve the steady state solution, but also the dynamical development of the solution efficiently and accurately. Themore » numerical experiments demonstrate that the CPU time is significantly saved for long time simulations.« less
NASA Astrophysics Data System (ADS)
Benettin, Paolo; Bertuzzo, Enrico
2018-04-01
This paper presents the tran-SAS
package, which includes a set of codes to model solute transport and water residence times through a hydrological system. The model is based on a catchment-scale approach that aims at reproducing the integrated response of the system at one of its outlets. The codes are implemented in MATLAB and are meant to be easy to edit, so that users with minimal programming knowledge can adapt them to the desired application. The problem of large-scale solute transport has both theoretical and practical implications. On the one side, the ability to represent the ensemble of water flow trajectories through a heterogeneous system helps unraveling streamflow generation processes and allows us to make inferences on plant-water interactions. On the other side, transport models are a practical tool that can be used to estimate the persistence of solutes in the environment. The core of the package is based on the implementation of an age master equation (ME), which is solved using general StorAge Selection (SAS) functions. The age ME is first converted into a set of ordinary differential equations, each addressing the transport of an individual precipitation input through the catchment, and then it is discretized using an explicit numerical scheme. Results show that the implementation is efficient and allows the model to run in short times. The numerical accuracy is critically evaluated and it is shown to be satisfactory in most cases of hydrologic interest. Additionally, a higher-order implementation is provided within the package to evaluate and, if necessary, to improve the numerical accuracy of the results. The codes can be used to model streamflow age and solute concentration, but a number of additional outputs can be obtained by editing the codes to further advance the ability to understand and model catchment transport processes.
Optimal Power Flow in Multiphase Radial Networks with Delta Connections: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Changhong; Dall-Anese, Emiliano; Low, Steven H.
This paper focuses on multiphase radial distribution networks with mixed wye and delta connections, and proposes a semidefinite relaxation of the AC optimal power flow (OPF) problem. Two multiphase power-flow models are developed to facilitate the integration of delta-connected generation units/loads in the OPF problem. The first model extends traditional branch flow models - and it is referred to as extended branch flow model (EBFM). The second model leverages a linear relationship between per-phase power injections and delta connections, which holds under a balanced voltage approximation (BVA). Based on these models, pertinent OPF problems are formulated and relaxed to semidefinitemore » programs (SDPs). Numerical studies on IEEE test feeders show that SDP relaxations can be solved efficiently by a generic optimization solver. Numerical evidences indicate that solving the resultant SDP under BVA is faster than under EBFM. Moreover, both SDP solutions are numerically exact with respect to voltages and branch flows. It is also shown that the SDP solution under BVA has a small optimality gap, while the BVA model is accurate in the sense that it reflects actual system voltages.« less
NASA Astrophysics Data System (ADS)
Bibi, Madiha; Khalil-Ur-Rehman; Malik, M. Y.; Tahir, M.
2018-04-01
In the present article, unsteady flow field characteristics of the Williamson fluid model are explored. The nanosized particles are suspended in the flow regime having the interaction of a magnetic field. The fluid flow is induced due to a stretching permeable surface. The flow model is controlled through coupled partial differential equations to the used shooting method for a numerical solution. The obtained partial differential equations are converted into ordinary differential equations as an initial value problem. The shooting method is used to find a numerical solution. The mathematical modeling yields physical parameters, namely the Weissenberg number, the Prandtl number, the unsteadiness parameter, the magnetic parameter, the mass transfer parameter, the Lewis number, the thermophoresis parameter and Brownian parameters. It is found that the Williamson fluid velocity, temperature and nanoparticles concentration are a decreasing function of the unsteadiness parameter.
Akimenko, Vitalii; Anguelov, Roumen
2017-12-01
In this paper we study the nonlinear age-structured model of a polycyclic two-phase population dynamics including delayed effect of population density growth on the mortality. Both phases are modelled as a system of initial boundary values problem for semi-linear transport equation with delay and initial problem for nonlinear delay ODE. The obtained system is studied both theoretically and numerically. Three different regimes of population dynamics for asymptotically stable states of autonomous systems are obtained in numerical experiments for the different initial values of population density. The quasi-periodical travelling wave solutions are studied numerically for the autonomous system with the different values of time delays and for the system with oscillating death rate and birth modulus. In both cases it is observed three types of travelling wave solutions: harmonic oscillations, pulse sequence and single pulse.
NASA Technical Reports Server (NTRS)
Reese, O. W.
1972-01-01
The numerical calculation is described of the steady-state flow of electrons in an axisymmetric, spherical, electrostatic collector for a range of boundary conditions. The trajectory equations of motion are solved alternately with Poisson's equation for the potential field until convergence is achieved. A direct (noniterative) numerical technique is used to obtain the solution to Poisson's equation. Space charge effects are included for initial current densities as large as 100 A/sq cm. Ways of dealing successfully with the difficulties associated with these high densities are discussed. A description of the mathematical model, a discussion of numerical techniques, results from two typical runs, and the FORTRAN computer program are included.
NASA Astrophysics Data System (ADS)
Toufik, Mekkaoui; Atangana, Abdon
2017-10-01
Recently a new concept of fractional differentiation with non-local and non-singular kernel was introduced in order to extend the limitations of the conventional Riemann-Liouville and Caputo fractional derivatives. A new numerical scheme has been developed, in this paper, for the newly established fractional differentiation. We present in general the error analysis. The new numerical scheme was applied to solve linear and non-linear fractional differential equations. We do not need a predictor-corrector to have an efficient algorithm, in this method. The comparison of approximate and exact solutions leaves no doubt believing that, the new numerical scheme is very efficient and converges toward exact solution very rapidly.
System Simulation by Recursive Feedback: Coupling a Set of Stand-Alone Subsystem Simulations
NASA Technical Reports Server (NTRS)
Nixon, D. D.
2001-01-01
Conventional construction of digital dynamic system simulations often involves collecting differential equations that model each subsystem, arran g them to a standard form, and obtaining their numerical gin solution as a single coupled, total-system simultaneous set. Simulation by numerical coupling of independent stand-alone subsimulations is a fundamentally different approach that is attractive because, among other things, the architecture naturally facilitates high fidelity, broad scope, and discipline independence. Recursive feedback is defined and discussed as a candidate approach to multidiscipline dynamic system simulation by numerical coupling of self-contained, single-discipline subsystem simulations. A satellite motion example containing three subsystems (orbit dynamics, attitude dynamics, and aerodynamics) has been defined and constructed using this approach. Conventional solution methods are used in the subsystem simulations. Distributed and centralized implementations of coupling have been considered. Numerical results are evaluated by direct comparison with a standard total-system, simultaneous-solution approach.
Asymptotic traveling wave solution for a credit rating migration problem
NASA Astrophysics Data System (ADS)
Liang, Jin; Wu, Yuan; Hu, Bei
2016-07-01
In this paper, an asymptotic traveling wave solution of a free boundary model for pricing a corporate bond with credit rating migration risk is studied. This is the first study to associate the asymptotic traveling wave solution to the credit rating migration problem. The pricing problem with credit rating migration risk is modeled by a free boundary problem. The existence, uniqueness and regularity of the solution are obtained. Under some condition, we proved that the solution of our credit rating problem is convergent to a traveling wave solution, which has an explicit form. Furthermore, numerical examples are presented.
Modeling of long range frequency sweeping for energetic particle modes
NASA Astrophysics Data System (ADS)
Nyqvist, R. M.; Breizman, B. N.
2013-04-01
Long range frequency sweeping events are simulated numerically within a one-dimensional, electrostatic bump-on-tail model with fast particle sources and collisions. The numerical solution accounts for fast particle trapping and detrapping in an evolving wave field with a fixed wavelength, and it includes three distinct collisions operators: Drag (dynamical friction on the background electrons), Krook-type collisions, and velocity space diffusion. The effects of particle trapping and diffusion on the evolution of holes and clumps are investigated, and the occurrence of non-monotonic (hooked) frequency sweeping and asymptotically steady holes is discussed. The presented solution constitutes a step towards predictive modeling of frequency sweeping events in more realistic geometries.
Numerical methods for stiff systems of two-point boundary value problems
NASA Technical Reports Server (NTRS)
Flaherty, J. E.; Omalley, R. E., Jr.
1983-01-01
Numerical procedures are developed for constructing asymptotic solutions of certain nonlinear singularly perturbed vector two-point boundary value problems having boundary layers at one or both endpoints. The asymptotic approximations are generated numerically and can either be used as is or to furnish a general purpose two-point boundary value code with an initial approximation and the nonuniform computational mesh needed for such problems. The procedures are applied to a model problem that has multiple solutions and to problems describing the deformation of thin nonlinear elastic beam that is resting on an elastic foundation.
Parallel 3-D numerical simulation of dielectric barrier discharge plasma actuators
NASA Astrophysics Data System (ADS)
Houba, Tomas
Dielectric barrier discharge plasma actuators have shown promise in a range of applications including flow control, sterilization and ozone generation. Developing numerical models of plasma actuators is of great importance, because a high-fidelity parallel numerical model allows new design configurations to be tested rapidly. Additionally, it provides a better understanding of the plasma actuator physics which is useful for further innovation. The physics of plasma actuators is studied numerically. A loosely coupled approach is utilized for the coupling of the plasma to the neutral fluid. The state of the art in numerical plasma modeling is advanced by the development of a parallel, three-dimensional, first-principles model with detailed air chemistry. The model incorporates 7 charged species and 18 reactions, along with a solution of the electron energy equation. To the author's knowledge, a parallel three-dimensional model of a gas discharge with a detailed air chemistry model and the solution of electron energy is unique. Three representative geometries are studied using the gas discharge model. The discharge of gas between two parallel electrodes is used to validate the air chemistry model developed for the gas discharge code. The gas discharge model is then applied to the discharge produced by placing a dc powered wire and grounded plate electrodes in a channel. Finally, a three-dimensional simulation of gas discharge produced by electrodes placed inside a riblet is carried out. The body force calculated with the gas discharge model is loosely coupled with a fluid model to predict the induced flow inside the riblet.
An asymptotic solution to a passive biped walker model
NASA Astrophysics Data System (ADS)
Yudaev, Sergey A.; Rachinskii, Dmitrii; Sobolev, Vladimir A.
2017-02-01
We consider a simple model of a passive dynamic biped robot walker with point feet and legs without knee. The model is a switched system, which includes an inverted double pendulum. Robot’s gait and its stability depend on parameters such as the slope of the ramp, the length of robot’s legs, and the mass distribution along the legs. We present an asymptotic solution of the model. The first correction to the zero order approximation is shown to agree with the numerical solution for a limited parameter range.
Quasi-3D Modeling and Efficient Simulation of Laminar Flows in Microfluidic Devices.
Islam, Md Zahurul; Tsui, Ying Yin
2016-10-03
A quasi-3D model has been developed to simulate the flow in planar microfluidic systems with low Reynolds numbers. The model was developed by decomposing the flow profile along the height of a microfluidic system into a Fourier series. It was validated against the analytical solution for flow in a straight rectangular channel and the full 3D numerical COMSOL Navier-Stokes solver for flow in a T-channel. Comparable accuracy to the full 3D numerical solution was achieved by using only three Fourier terms with a significant decrease in computation time. The quasi-3D model was used to model flows in a micro-flow cytometer chip on a desktop computer and good agreement between the simulation and the experimental results was found.
Quasi-3D Modeling and Efficient Simulation of Laminar Flows in Microfluidic Devices
Islam, Md. Zahurul; Tsui, Ying Yin
2016-01-01
A quasi-3D model has been developed to simulate the flow in planar microfluidic systems with low Reynolds numbers. The model was developed by decomposing the flow profile along the height of a microfluidic system into a Fourier series. It was validated against the analytical solution for flow in a straight rectangular channel and the full 3D numerical COMSOL Navier-Stokes solver for flow in a T-channel. Comparable accuracy to the full 3D numerical solution was achieved by using only three Fourier terms with a significant decrease in computation time. The quasi-3D model was used to model flows in a micro-flow cytometer chip on a desktop computer and good agreement between the simulation and the experimental results was found. PMID:27706104
On the formation of fold-type oscillation marks in the continuous casting of steel.
Vynnycky, M; Saleem, S; Devine, K M; Florio, B J; Mitchell, S L; O'Brien, S B G
2017-06-01
Asymptotic methods are employed to revisit an earlier model for oscillation-mark formation in the continuous casting of steel. A systematic non-dimensionalization of the governing equations, which was not carried out previously, leads to a model with 12 dimensionless parameters. Analysis is provided in the same parameter regime as for the earlier model, and surprisingly simple analytical solutions are found for the oscillation-mark profiles; these are found to agree reasonably well with the numerical solution in the earlier model and very well with fold-type oscillation marks that have been obtained in more recent experimental work. The benefits of this approach, when compared with time-consuming numerical simulations, are discussed in the context of auxiliary models for macrosegregation and thermomechanical stresses and strains.
On the formation of fold-type oscillation marks in the continuous casting of steel
Saleem, S.; Devine, K. M.; Florio, B. J.; Mitchell, S. L.; O’Brien, S. B. G.
2017-01-01
Asymptotic methods are employed to revisit an earlier model for oscillation-mark formation in the continuous casting of steel. A systematic non-dimensionalization of the governing equations, which was not carried out previously, leads to a model with 12 dimensionless parameters. Analysis is provided in the same parameter regime as for the earlier model, and surprisingly simple analytical solutions are found for the oscillation-mark profiles; these are found to agree reasonably well with the numerical solution in the earlier model and very well with fold-type oscillation marks that have been obtained in more recent experimental work. The benefits of this approach, when compared with time-consuming numerical simulations, are discussed in the context of auxiliary models for macrosegregation and thermomechanical stresses and strains. PMID:28680666
NASA Astrophysics Data System (ADS)
Coronel-Escamilla, A.; Gómez-Aguilar, J. F.; Torres, L.; Escobar-Jiménez, R. F.
2018-02-01
A reaction-diffusion system can be represented by the Gray-Scott model. The reaction-diffusion dynamic is described by a pair of time and space dependent Partial Differential Equations (PDEs). In this paper, a generalization of the Gray-Scott model by using variable-order fractional differential equations is proposed. The variable-orders were set as smooth functions bounded in (0 , 1 ] and, specifically, the Liouville-Caputo and the Atangana-Baleanu-Caputo fractional derivatives were used to express the time differentiation. In order to find a numerical solution of the proposed model, the finite difference method together with the Adams method were applied. The simulations results showed the chaotic behavior of the proposed model when different variable-orders are applied.
ERIC Educational Resources Information Center
Foley, Greg
2011-01-01
Continuous feed and bleed ultrafiltration, modeled with the gel polarization model for the limiting flux, is shown to provide a rich source of non-linear algebraic equations that can be readily solved using numerical and graphical techniques familiar to undergraduate students. We present a variety of numerical problems in the design, analysis, and…
Finite-difference model for 3-D flow in bays and estuaries
Smith, Peter E.; Larock, Bruce E.; ,
1993-01-01
This paper describes a semi-implicit finite-difference model for the numerical solution of three-dimensional flow in bays and estuaries. The model treats the gravity wave and vertical diffusion terms in the governing equations implicitly, and other terms explicitly. The model achieves essentially second-order accurate and stable solutions in strongly nonlinear problems by using a three-time-level leapfrog-trapezoidal scheme for the time integration.
Numerical method based on the lattice Boltzmann model for the Fisher equation.
Yan, Guangwu; Zhang, Jianying; Dong, Yinfeng
2008-06-01
In this paper, a lattice Boltzmann model for the Fisher equation is proposed. First, the Chapman-Enskog expansion and the multiscale time expansion are used to describe higher-order moment of equilibrium distribution functions and a series of partial differential equations in different time scales. Second, the modified partial differential equation of the Fisher equation with the higher-order truncation error is obtained. Third, comparison between numerical results of the lattice Boltzmann models and exact solution is given. The numerical results agree well with the classical ones.
Numerical simulation of crevice corrosion of titanium: Effect of the bold surface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Evitts, R.W.; Postlethwaite, J.; Watson, M.K.
1996-12-01
A rigorous crevice corrosion model has been developed that accounts for the bold metal surfaces exterior to the crevice. The model predicts the time change in concentration of all specified chemical species in the crevice and bulk solution, and has the ability to predict active corrosion. It is applied to the crevice corrosion of a small titanium crevice in both oxygenated and anaerobic sodium chloride solutions. The numerical predictions confirm that oxygen is the driving force for crevice corrosion. During the simulations where oxygen is initially present in both the crevice and bulk solution an acidic chloride solution is developed;more » this is the precursor required for crevice corrosion. The anaerobic case displays no tendency to form such a solution. It is also confirmed that those areas in the crevice that are deoxygenated become anodic and the bold metal surface becomes cathodic. As expected, active corrosion is not attained as the simulations are based on electrochemical and chemical parameters at 25 C.« less
On the numerical treatment of nonlinear source terms in reaction-convection equations
NASA Technical Reports Server (NTRS)
Lafon, A.; Yee, H. C.
1992-01-01
The objectives of this paper are to investigate how various numerical treatments of the nonlinear source term in a model reaction-convection equation can affect the stability of steady-state numerical solutions and to show under what conditions the conventional linearized analysis breaks down. The underlying goal is to provide part of the basic building blocks toward the ultimate goal of constructing suitable numerical schemes for hypersonic reacting flows, combustions and certain turbulence models in compressible Navier-Stokes computations. It can be shown that nonlinear analysis uncovers much of the nonlinear phenomena which linearized analysis is not capable of predicting in a model reaction-convection equation.
Stability analysis and wave dynamics of an extended hybrid traffic flow model
NASA Astrophysics Data System (ADS)
Wang, Yu-Qing; Zhou, Chao-Fan; Li, Wei-Kang; Yan, Bo-Wen; Jia, Bin; Wang, Ji-Xin
2018-02-01
The stability analysis and wave dynamic properties of an extended hybrid traffic flow model, WZY model, are intensively studied in this paper. The linear stable condition obtained by the linear stability analysis is presented. Besides, by means of analyzing Korteweg-de Vries equation, we present soliton waves in the metastable region. Moreover, the multiscale perturbation technique is applied to derive the traveling wave solution of the model. Furthermore, by means of performing Darboux transformation, the first-order and second-order doubly-periodic solutions and rational solutions are presented. It can be found that analytical solutions match well with numerical simulations.
Quantifying errors in trace species transport modeling.
Prather, Michael J; Zhu, Xin; Strahan, Susan E; Steenrod, Stephen D; Rodriguez, Jose M
2008-12-16
One expectation when computationally solving an Earth system model is that a correct answer exists, that with adequate physical approximations and numerical methods our solutions will converge to that single answer. With such hubris, we performed a controlled numerical test of the atmospheric transport of CO(2) using 2 models known for accurate transport of trace species. Resulting differences were unexpectedly large, indicating that in some cases, scientific conclusions may err because of lack of knowledge of the numerical errors in tracer transport models. By doubling the resolution, thereby reducing numerical error, both models show some convergence to the same answer. Now, under realistic conditions, we identify a practical approach for finding the correct answer and thus quantifying the advection error.
Mathematical model for the Bridgman-Stockbarger crystal growing system
NASA Technical Reports Server (NTRS)
Roberts, G. O.
1986-01-01
In a major technical breakthrough, a computer model for Bridgman-Stockbarger crystal growth was developed. The model includes melt convection, solute effects, thermal conduction in the ampule, melt, and crystal, and the determination of the curved moving crystal-melt interface. The key to the numerical method is the use of a nonuniform computational mesh which moves with the interface, so that the interface is a mesh surface. In addition, implicit methods are used for advection and diffusion of heat, concentration, and vorticity, for interface movement, and for internal gracity waves. This allows large time-steps without loss of stability or accuracy. Numerical results are presented for the interface shape, temperature distribution, and concentration distribution, in steady-state crystl growth. Solutions are presented for two test cases using water, with two different salts in solution. The two diffusivities differ by a factor of ten, and the concentrations differ by a factor of twenty.
solveME: fast and reliable solution of nonlinear ME models.
Yang, Laurence; Ma, Ding; Ebrahim, Ali; Lloyd, Colton J; Saunders, Michael A; Palsson, Bernhard O
2016-09-22
Genome-scale models of metabolism and macromolecular expression (ME) significantly expand the scope and predictive capabilities of constraint-based modeling. ME models present considerable computational challenges: they are much (>30 times) larger than corresponding metabolic reconstructions (M models), are multiscale, and growth maximization is a nonlinear programming (NLP) problem, mainly due to macromolecule dilution constraints. Here, we address these computational challenges. We develop a fast and numerically reliable solution method for growth maximization in ME models using a quad-precision NLP solver (Quad MINOS). Our method was up to 45 % faster than binary search for six significant digits in growth rate. We also develop a fast, quad-precision flux variability analysis that is accelerated (up to 60× speedup) via solver warm-starts. Finally, we employ the tools developed to investigate growth-coupled succinate overproduction, accounting for proteome constraints. Just as genome-scale metabolic reconstructions have become an invaluable tool for computational and systems biologists, we anticipate that these fast and numerically reliable ME solution methods will accelerate the wide-spread adoption of ME models for researchers in these fields.
Transient well flow in vertically heterogeneous aquifers
NASA Astrophysics Data System (ADS)
Hemker, C. J.
1999-11-01
A solution for the general problem of computing well flow in vertically heterogeneous aquifers is found by an integration of both analytical and numerical techniques. The radial component of flow is treated analytically; the drawdown is a continuous function of the distance to the well. The finite-difference technique is used for the vertical flow component only. The aquifer is discretized in the vertical dimension and the heterogeneous aquifer is considered to be a layered (stratified) formation with a finite number of homogeneous sublayers, where each sublayer may have different properties. The transient part of the differential equation is solved with Stehfest's algorithm, a numerical inversion technique of the Laplace transform. The well is of constant discharge and penetrates one or more of the sublayers. The effect of wellbore storage on early drawdown data is taken into account. In this way drawdowns are found for a finite number of sublayers as a continuous function of radial distance to the well and of time since the pumping started. The model is verified by comparing results with published analytical and numerical solutions for well flow in homogeneous and heterogeneous, confined and unconfined aquifers. Instantaneous and delayed drainage of water from above the water table are considered, combined with the effects of partially penetrating and finite-diameter wells. The model is applied to demonstrate that the transient effects of wellbore storage in unconfined aquifers are less pronounced than previous numerical experiments suggest. Other applications of the presented solution technique are given for partially penetrating wells in heterogeneous formations, including a demonstration of the effect of decreasing specific storage values with depth in an otherwise homogeneous aquifer. The presented solution can be a powerful tool for the analysis of drawdown from pumping tests, because hydraulic properties of layered heterogeneous aquifer systems with partially penetrating wells may be estimated without the need to construct transient numerical models. A computer program based on the hybrid analytical-numerical technique is available from the author.
Differential geometry based solvation model I: Eulerian formulation
NASA Astrophysics Data System (ADS)
Chen, Zhan; Baker, Nathan A.; Wei, G. W.
2010-11-01
This paper presents a differential geometry based model for the analysis and computation of the equilibrium property of solvation. Differential geometry theory of surfaces is utilized to define and construct smooth interfaces with good stability and differentiability for use in characterizing the solvent-solute boundaries and in generating continuous dielectric functions across the computational domain. A total free energy functional is constructed to couple polar and nonpolar contributions to the solvation process. Geometric measure theory is employed to rigorously convert a Lagrangian formulation of the surface energy into an Eulerian formulation so as to bring all energy terms into an equal footing. By optimizing the total free energy functional, we derive coupled generalized Poisson-Boltzmann equation (GPBE) and generalized geometric flow equation (GGFE) for the electrostatic potential and the construction of realistic solvent-solute boundaries, respectively. By solving the coupled GPBE and GGFE, we obtain the electrostatic potential, the solvent-solute boundary profile, and the smooth dielectric function, and thereby improve the accuracy and stability of implicit solvation calculations. We also design efficient second-order numerical schemes for the solution of the GPBE and GGFE. Matrix resulted from the discretization of the GPBE is accelerated with appropriate preconditioners. An alternative direct implicit (ADI) scheme is designed to improve the stability of solving the GGFE. Two iterative approaches are designed to solve the coupled system of nonlinear partial differential equations. Extensive numerical experiments are designed to validate the present theoretical model, test computational methods, and optimize numerical algorithms. Example solvation analysis of both small compounds and proteins are carried out to further demonstrate the accuracy, stability, efficiency and robustness of the present new model and numerical approaches. Comparison is given to both experimental and theoretical results in the literature.
Differential geometry based solvation model I: Eulerian formulation
Chen, Zhan; Baker, Nathan A.; Wei, G. W.
2010-01-01
This paper presents a differential geometry based model for the analysis and computation of the equilibrium property of solvation. Differential geometry theory of surfaces is utilized to define and construct smooth interfaces with good stability and differentiability for use in characterizing the solvent-solute boundaries and in generating continuous dielectric functions across the computational domain. A total free energy functional is constructed to couple polar and nonpolar contributions to the salvation process. Geometric measure theory is employed to rigorously convert a Lagrangian formulation of the surface energy into an Eulerian formulation so as to bring all energy terms into an equal footing. By minimizing the total free energy functional, we derive coupled generalized Poisson-Boltzmann equation (GPBE) and generalized geometric flow equation (GGFE) for the electrostatic potential and the construction of realistic solvent-solute boundaries, respectively. By solving the coupled GPBE and GGFE, we obtain the electrostatic potential, the solvent-solute boundary profile, and the smooth dielectric function, and thereby improve the accuracy and stability of implicit solvation calculations. We also design efficient second order numerical schemes for the solution of the GPBE and GGFE. Matrix resulted from the discretization of the GPBE is accelerated with appropriate preconditioners. An alternative direct implicit (ADI) scheme is designed to improve the stability of solving the GGFE. Two iterative approaches are designed to solve the coupled system of nonlinear partial differential equations. Extensive numerical experiments are designed to validate the present theoretical model, test computational methods, and optimize numerical algorithms. Example solvation analysis of both small compounds and proteins are carried out to further demonstrate the accuracy, stability, efficiency and robustness of the present new model and numerical approaches. Comparison is given to both experimental and theoretical results in the literature. PMID:20938489
Error behavior of multistep methods applied to unstable differential systems
NASA Technical Reports Server (NTRS)
Brown, R. L.
1977-01-01
The problem of modeling a dynamic system described by a system of ordinary differential equations which has unstable components for limited periods of time is discussed. It is shown that the global error in a multistep numerical method is the solution to a difference equation initial value problem, and the approximate solution is given for several popular multistep integration formulas. Inspection of the solution leads to the formulation of four criteria for integrators appropriate to unstable problems. A sample problem is solved numerically using three popular formulas and two different stepsizes to illustrate the appropriateness of the criteria.
Steady state numerical solutions for determining the location of MEMS on projectile
NASA Astrophysics Data System (ADS)
Abiprayu, K.; Abdigusna, M. F. F.; Gunawan, P. H.
2018-03-01
This paper is devoted to compare the numerical solutions for the steady and unsteady state heat distribution model on projectile. Here, the best location for installing of the MEMS on the projectile based on the surface temperature is investigated. Numerical iteration methods, Jacobi and Gauss-Seidel have been elaborated to solve the steady state heat distribution model on projectile. The results using Jacobi and Gauss-Seidel are shown identical but the discrepancy iteration cost for each methods is gained. Using Jacobi’s method, the iteration cost is 350 iterations. Meanwhile, using Gauss-Seidel 188 iterations are obtained, faster than the Jacobi’s method. The comparison of the simulation by steady state model and the unsteady state model by a reference is shown satisfying. Moreover, the best candidate for installing MEMS on projectile is observed at pointT(10, 0) which has the lowest temperature for the other points. The temperature using Jacobi and Gauss-Seidel for scenario 1 and 2 atT(10, 0) are 307 and 309 Kelvin respectively.
The numerical modelling and process simulation for the fault diagnosis of rotary kiln incinerator.
Roh, S D; Kim, S W; Cho, W S
2001-10-01
The numerical modelling and process simulation for the fault diagnosis of rotary kiln incinerator were accomplished. In the numerical modelling, two models applied to the modelling within the kiln are the combustion chamber model including the mass and energy balance equations for two combustion chambers and 3D thermal model. The combustion chamber model predicts temperature within the kiln, flue gas composition, flux and heat of combustion. Using the combustion chamber model and 3D thermal model, the production-rules for the process simulation can be obtained through interrelation analysis between control and operation variables. The process simulation of the kiln is operated with the production-rules for automatic operation. The process simulation aims to provide fundamental solutions to the problems in incineration process by introducing an online expert control system to provide an integrity in process control and management. Knowledge-based expert control systems use symbolic logic and heuristic rules to find solutions for various types of problems. It was implemented to be a hybrid intelligent expert control system by mutually connecting with the process control systems which has the capability of process diagnosis, analysis and control.
A 2D flood inundation model based on cellular automata approach
NASA Astrophysics Data System (ADS)
Dottori, Francesco; Todini, Ezio
2010-05-01
In the past years, the cellular automata approach has been successfully applied in two-dimensional modelling of flood events. When used in experimental applications, models based on such approach have provided good results, comparable to those obtained with more complex 2D models; moreover, CA models have proven significantly faster and easier to apply than most of existing models, and these features make them a valuable tool for flood analysis especially when dealing with large areas. However, to date the real degree of accuracy of such models has not been demonstrated, since they have been mainly used in experimental applications, while very few comparisons with theoretical solutions have been made. Also, the use of an explicit scheme of solution, which is inherent in cellular automata models, forces them to work only with small time steps, thus reducing model computation speed. The present work describes a cellular automata model based on the continuity and diffusive wave equations. Several model versions based on different solution schemes have been realized and tested in a number of numerical cases, both 1D and 2D, comparing the results with theoretical and numerical solutions. In all cases, the model performed well compared to the reference solutions, and proved to be both stable and accurate. Finally, the version providing the best results in terms of stability was tested in a real flood event and compared with different hydraulic models. Again, the cellular automata model provided very good results, both in term of computational speed and reproduction of the simulated event.
NASA Astrophysics Data System (ADS)
Marras, Simone; Suckale, Jenny; Giraldo, Francis X.; Constantinescu, Emil
2016-04-01
We present the solution of the viscous shallow water equations where viscosity is built as a residual-based subgrid scale model originally designed for large eddy simulation of compressible [1] and stratified flows [2]. The necessity of viscosity for a shallow water model not only finds motivation from mathematical analysis [3], but is supported by physical reasoning as can be seen by an analysis of the energetics of the solution. We simulated the flow of an idealized wave as it hits a set of obstacles. The kinetic energy spectrum of this flow shows that, although the inviscid Galerkin solutions -by spectral elements and discontinuous Galerkin [4]- preserve numerical stability in spite of the spurious oscillations in the proximity of the wave fronts, the slope of the energy cascade deviates from the theoretically expected values. We show that only a sufficiently small amount of dynamically adaptive viscosity removes the unwanted high-frequency modes while preserving the overall sharpness of the solution. In addition, it yields a physically plausible energy decay. This work is motivated by a larger interest in the application of a shallow water model to the solution of tsunami triggered coastal flows. In particular, coastal flows in regions around the world where coastal parks made of mitigation hills of different sizes and configurations are considered as a means to deviate the power of the incoming wave. References [1] M. Nazarov and J. Hoffman (2013) "Residual-based artificial viscosity for simulation of turbulent compressible flow using adaptive finite element methods" Int. J. Numer. Methods Fluids, 71:339-357 [2] S. Marras, M. Nazarov, F. X. Giraldo (2015) "Stabilized high-order Galerkin methods based on a parameter-free dynamic SGS model for LES" J. Comput. Phys. 301:77-101 [3] J. F. Gerbeau and B. Perthame (2001) "Derivation of the viscous Saint-Venant system for laminar shallow water; numerical validation" Discrete Contin. Dyn. Syst. Ser. B, 1:89?102 [4] F. X. Giraldo and M. Restelli (2010) "High-order semi-implicit time-integrators for a triangular discontinuous Galerkin oceanic shallow water model. Int. J. Numer. Methods Fluids, 63:1077-1102
NASA Technical Reports Server (NTRS)
Deavours, Daniel D.; Qureshi, M. Akber; Sanders, William H.
1997-01-01
Modeling tools and technologies are important for aerospace development. At the University of Illinois, we have worked on advancing the state of the art in modeling by Markov reward models in two important areas: reducing the memory necessary to numerically solve systems represented as stochastic activity networks and other stochastic Petri net extensions while still obtaining solutions in a reasonable amount of time, and finding numerically stable and memory-efficient methods to solve for the reward accumulated during a finite mission time. A long standing problem when modeling with high level formalisms such as stochastic activity networks is the so-called state space explosion, where the number of states increases exponentially with size of the high level model. Thus, the corresponding Markov model becomes prohibitively large and solution is constrained by the the size of primary memory. To reduce the memory necessary to numerically solve complex systems, we propose new methods that can tolerate such large state spaces that do not require any special structure in the model (as many other techniques do). First, we develop methods that generate row and columns of the state transition-rate-matrix on-the-fly, eliminating the need to explicitly store the matrix at all. Next, we introduce a new iterative solution method, called modified adaptive Gauss-Seidel, that exhibits locality in its use of data from the state transition-rate-matrix, permitting us to cache portions of the matrix and hence reduce the solution time. Finally, we develop a new memory and computationally efficient technique for Gauss-Seidel based solvers that avoids the need for generating rows of A in order to solve Ax = b. This is a significant performance improvement for on-the-fly methods as well as other recent solution techniques based on Kronecker operators. Taken together, these new results show that one can solve very large models without any special structure.
Triangular dislocation: an analytical, artefact-free solution
NASA Astrophysics Data System (ADS)
Nikkhoo, Mehdi; Walter, Thomas R.
2015-05-01
Displacements and stress-field changes associated with earthquakes, volcanoes, landslides and human activity are often simulated using numerical models in an attempt to understand the underlying processes and their governing physics. The application of elastic dislocation theory to these problems, however, may be biased because of numerical instabilities in the calculations. Here, we present a new method that is free of artefact singularities and numerical instabilities in analytical solutions for triangular dislocations (TDs) in both full-space and half-space. We apply the method to both the displacement and the stress fields. The entire 3-D Euclidean space {R}3 is divided into two complementary subspaces, in the sense that in each one, a particular analytical formulation fulfils the requirements for the ideal, artefact-free solution for a TD. The primary advantage of the presented method is that the development of our solutions involves neither numerical approximations nor series expansion methods. As a result, the final outputs are independent of the scale of the input parameters, including the size and position of the dislocation as well as its corresponding slip vector components. Our solutions are therefore well suited for application at various scales in geoscience, physics and engineering. We validate the solutions through comparison to other well-known analytical methods and provide the MATLAB codes.
NASA Astrophysics Data System (ADS)
Huang, Junqi; Goltz, Mark N.
2017-06-01
To greatly simplify their solution, the equations describing radial advective/dispersive transport to an extraction well in a porous medium typically neglect molecular diffusion. While this simplification is appropriate to simulate transport in the saturated zone, it can result in significant errors when modeling gas phase transport in the vadose zone, as might be applied when simulating a soil vapor extraction (SVE) system to remediate vadose zone contamination. A new analytical solution for the equations describing radial gas phase transport of a sorbing contaminant to an extraction well is presented. The equations model advection, dispersion (including both mechanical dispersion and molecular diffusion), and rate-limited mass transfer of dissolved, separate phase, and sorbed contaminants into the gas phase. The model equations are analytically solved by using the Laplace transform with respect to time. The solutions are represented by confluent hypergeometric functions in the Laplace domain. The Laplace domain solutions are then evaluated using a numerical Laplace inversion algorithm. The solutions can be used to simulate the spatial distribution and the temporal evolution of contaminant concentrations during operation of a soil vapor extraction well. Results of model simulations show that the effect of gas phase molecular diffusion upon concentrations at the extraction well is relatively small, although the effect upon the distribution of concentrations in space is significant. This study provides a tool that can be useful in designing SVE remediation strategies, as well as verifying numerical models used to simulate SVE system performance.
An analytic solution for numerical modeling validation in electromagnetics: the resistive sphere
NASA Astrophysics Data System (ADS)
Swidinsky, Andrei; Liu, Lifei
2017-11-01
We derive the electromagnetic response of a resistive sphere to an electric dipole source buried in a conductive whole space. The solution consists of an infinite series of spherical Bessel functions and associated Legendre polynomials, and follows the well-studied problem of a conductive sphere buried in a resistive whole space in the presence of a magnetic dipole. Our result is particularly useful for controlled-source electromagnetic problems using a grounded electric dipole transmitter and can be used to check numerical methods of calculating the response of resistive targets (such as finite difference, finite volume, finite element and integral equation). While we elect to focus on the resistive sphere in our examples, the expressions in this paper are completely general and allow for arbitrary source frequency, sphere radius, transmitter position, receiver position and sphere/host conductivity contrast so that conductive target responses can also be checked. Commonly used mesh validation techniques consist of comparisons against other numerical codes, but such solutions may not always be reliable or readily available. Alternatively, the response of simple 1-D models can be tested against well-known whole space, half-space and layered earth solutions, but such an approach is inadequate for validating models with curved surfaces. We demonstrate that our theoretical results can be used as a complementary validation tool by comparing analytic electric fields to those calculated through a finite-element analysis; the software implementation of this infinite series solution is made available for direct and immediate application.
An extension of the Derrida-Lebowitz-Speer-Spohn equation
NASA Astrophysics Data System (ADS)
Bordenave, Charles; Germain, Pierre; Trogdon, Thomas
2015-12-01
We show how the derivation of the Derrida-Lebowitz-Speer-Spohn equation can be prolonged to obtain a new equation, generalizing the models obtained in the paper by these authors. We then investigate its properties from both an analytical and numerical perspective. Specifically, a numerical method is presented to approximate solutions of the prolonged equation. Using this method, we investigate the relationship between the solutions of the prolonged equation and the Tracy-Widom GOE distribution.
Solute redistribution in dendritic solidification with diffusion in the solid
NASA Technical Reports Server (NTRS)
Ganesan, S.; Poirier, D. R.
1989-01-01
An investigation of solute redistribution during dendritic solidification with diffusion in the solid has been performed using numerical techniques. The extent of diffusion is characterized by the instantaneous and average diffusion parameters. These parameters are functions of the diffusion Fourier number, the partition ratio and the fraction solid. Numerical results are presented as an approximate model, which is used to predict the average diffusion parameter and calculate the composition of the interdendritic liquid during solidification.
ERIC Educational Resources Information Center
De Corte, Erik; Verschaffel, Lieven
Design and results of an investigation attempting to analyze and improve children's solution processes in elementary addition and subtraction problems are described. As background for the study, a conceptual model was developed based on previous research. One dimension of the model relates to the characteristics of the tasks (numerical versus word…
Cheng, R.T.; Casulli, V.; Gartner, J.W.
1993-01-01
A numerical model using a semi-implicit finite-difference method for solving the two-dimensional shallow-water equations is presented. The gradient of the water surface elevation in the momentum equations and the velocity divergence in the continuity equation are finite-differenced implicitly, the remaining terms are finite-differenced explicitly. The convective terms are treated using an Eulerian-Lagrangian method. The combination of the semi-implicit finite-difference solution for the gravity wave propagation, and the Eulerian-Lagrangian treatment of the convective terms renders the numerical model unconditionally stable. When the baroclinic forcing is included, a salt transport equation is coupled to the momentum equations, and the numerical method is subject to a weak stability condition. The method of solution and the properties of the numerical model are given. This numerical model is particularly suitable for applications to coastal plain estuaries and tidal embayments in which tidal currents are dominant, and tidally generated residual currents are important. The model is applied to San Francisco Bay, California where extensive historical tides and current-meter data are available. The model calibration is considered by comparing time-series of the field data and of the model results. Alternatively, and perhaps more meaningfully, the model is calibrated by comparing the harmonic constants of tides and tidal currents derived from field data with those derived from the model. The model is further verified by comparing the model results with an independent data set representing the wet season. The strengths and the weaknesses of the model are assessed based on the results of model calibration and verification. Using the model results, the properties of tides and tidal currents in San Francisco Bay are characterized and discussed. Furthermore, using the numerical model, estimates of San Francisco Bay's volume, surface area, mean water depth, tidal prisms, and tidal excursions at spring and neap tides are computed. Additional applications of the model reveal, qualitatively the spatial distribution of residual variables. ?? 1993 Academic Press. All rights reserved.
NASA Astrophysics Data System (ADS)
Jiménez, Noé; Camarena, Francisco; Redondo, Javier; Sánchez-Morcillo, Víctor; Konofagou, Elisa E.
2015-10-01
We report a numerical method for solving the constitutive relations of nonlinear acoustics, where multiple relaxation processes are included in a generalized formulation that allows the time-domain numerical solution by an explicit finite differences scheme. Thus, the proposed physical model overcomes the limitations of the one-way Khokhlov-Zabolotskaya-Kuznetsov (KZK) type models and, due to the Lagrangian density is implicitly included in the calculation, the proposed method also overcomes the limitations of Westervelt equation in complex configurations for medical ultrasound. In order to model frequency power law attenuation and dispersion, such as observed in biological media, the relaxation parameters are fitted to both exact frequency power law attenuation/dispersion media and also empirically measured attenuation of a variety of tissues that does not fit an exact power law. Finally, a computational technique based on artificial relaxation is included to correct the non-negligible numerical dispersion of the finite difference scheme, and, on the other hand, improve stability trough artificial attenuation when shock waves are present. This technique avoids the use of high-order finite-differences schemes leading to fast calculations. The present algorithm is especially suited for practical configuration where spatial discontinuities are present in the domain (e.g. axisymmetric domains or zero normal velocity boundary conditions in general). The accuracy of the method is discussed by comparing the proposed simulation solutions to one dimensional analytical and k-space numerical solutions.
Analytical and numerical solutions for mass diffusion in a composite cylindrical body
NASA Astrophysics Data System (ADS)
Kumar, A.
1980-12-01
The analytical and numerical solution techniques were investigated to study moisture diffusion problems in cylindrical bodies that are assumed to be composed of a finite number of layers of different materials. A generalized diffusion model for an n-layer cylindrical body with discontinuous moisture content at the interfaces was developed and the formal solutions were obtained. The model is to be used for describing mass transfer rates of any composite body, such as an ear of corn which could be assumed of consisting two different layers: the inner core represents the woody cob and the outer cylinder represents the kernel layer. Data describing the fully exposed drying characteristics of ear corn at high air velocity were obtained under different drying conditions. Ear corns were modeled as homogeneous bodies since composite model did not improve the fit substantially. A computer program using multidimensional optimization technique showed that diffusivity was an exponential function of moisture content and an arrhenius function of temperature of drying air.
NASA Astrophysics Data System (ADS)
Jain, Sonal
2018-01-01
In this paper, we aim to use the alternative numerical scheme given by Gnitchogna and Atangana for solving partial differential equations with integer and non-integer differential operators. We applied this method to fractional diffusion model and fractional Buckmaster models with non-local fading memory. The method yields a powerful numerical algorithm for fractional order derivative to implement. Also we present in detail the stability analysis of the numerical method for solving the diffusion equation. This proof shows that this method is very stable and also converges very quickly to exact solution and finally some numerical simulation is presented.
Cosmological perturbations in the DGP braneworld: Numeric solution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cardoso, Antonio; Koyama, Kazuya; Silva, Fabio P.
2008-04-15
We solve for the behavior of cosmological perturbations in the Dvali-Gabadadze-Porrati (DGP) braneworld model using a new numerical method. Unlike some other approaches in the literature, our method uses no approximations other than linear theory and is valid on large scales. We examine the behavior of late-universe density perturbations for both the self-accelerating and normal branches of DGP cosmology. Our numerical results can form the basis of a detailed comparison between the DGP model and cosmological observations.
NASA Astrophysics Data System (ADS)
Pozorska, Jolanta; Pozorski, Zbigniew
2018-01-01
The paper presents the problem of static structural behavior of sandwich panels at the supports. The panels have a soft core and correspond to typical structures applied in civil engineering. To analyze the problem, five different 3-D numerical models were created. The results were compared in the context of core compression and stress redistribution. The numerical solutions verify methods of evaluating the capacity of the sandwich panel that are known from the literature.
NASA Astrophysics Data System (ADS)
Parumasur, N.; Willie, R.
2008-09-01
We consider a simple HIV/AIDs finite dimensional mathematical model on interactions of the blood cells, the HIV/AIDs virus and the immune system for consistence of the equations to the real biomedical situation that they model. A better understanding to a cure solution to the illness modeled by the finite dimensional equations is given. This is accomplished through rigorous mathematical analysis and is reinforced by numerical analysis of models developed for real life cases.
You Don't Need Richards'... A New General 1-D Vadose Zone Solution Method that is Reliable
NASA Astrophysics Data System (ADS)
Ogden, F. L.; Lai, W.; Zhu, J.; Steinke, R. C.; Talbot, C. A.
2015-12-01
Hydrologic modelers and mathematicians have strived to improve 1-D Richards' equation (RE) solution reliability for predicting vadose zone fluxes. Despite advances in computing power and the numerical solution of partial differential equations since Richards first published the RE in 1931, the solution remains unreliable. That is to say that there is no guarantee that for a particular set of soil constitutive relations, moisture profile conditions, or forcing input that a numerical RE solver will converge to an answer. This risk of non-convergence renders prohibitive the use of RE solvers in hydrological models that need perhaps millions of infiltration solutions. In lieu of using unreliable numerical RE solutions, researchers have developed a wide array of approximate solutions that more-or-less mimic the behavior of the RE, with some notable deficiencies such as parameter insensitivity or divergence over time. The improved Talbot-Ogden (T-O) finite water-content scheme was shown by Ogden et al. (2015) to be an extremely good approximation of the 1-D RE solution, with a difference in cumulative infiltration of only 0.2 percent over an 8 month simulation comparing the improved T-O scheme with a RE numerical solver. The reason is that the newly-derived fundamental flow equation that underpins the improved T-O method is equivalent to the RE minus a term that is equal to the diffusive flux divided by the slope of the wetting front. Because the diffusive flux has zero mean, this term is not important in calculating the mean flux. The wetting front slope is near infinite (sharp) in coarser soils that produce more significant hydrological interactions between surface and ground waters, which also makes this missing term 1) disappear in the limit, and, 2) create stability challenges for the numerical solution of RE. The improved T-O method is a replacement for the 1-D RE in soils that can be simulated as homogeneous layers, where the user is willing to neglect the effects of soil water diffusivity. This presentation emphasizes the transformative nature of the improved T-O finite water-content solution, and highlights the benefits of the methods' reliability in high-resolution large watershed simulations in the high performance computing environment, and discusses coupling of the soil matrix and non-Darcian macropores.
Two-dimensional numerical simulation of a Stirling engine heat exchanger
NASA Technical Reports Server (NTRS)
Ibrahim, Mounir B.; Tew, Roy C.; Dudenhoefer, James E.
1989-01-01
The first phase of an effort to develop multidimensional models of Stirling engine components is described; the ultimate goal is to model an entire engine working space. More specifically, parallel plate and tubular heat exchanger models with emphasis on the central part of the channel (i.e., ignoring hydrodynamic and thermal end effects) are described. The model assumes: laminar, incompressible flow with constant thermophysical properties. In addition, a constant axial temperature gradient is imposed. The governing equations, describing the model, were solved using Crank-Nicloson finite-difference scheme. Model predictions were compared with analytical solutions for oscillating/reversing flow and heat transfer in order to check numerical accuracy. Excellent agreement was obtained for the model predictions with analytical solutions available for both flow in circular tubes and between parallel plates. Also the heat transfer computational results are in good agreement with the heat transfer analytical results for parallel plates.
Modeling flow at the nozzle of a solid rocket motor
NASA Technical Reports Server (NTRS)
Chow, Alan S.; Jin, Kang-Ren
1991-01-01
The mechanical behavior of a rocket motor internal flow field results in a system of nonlinear partial differential equations which can be solved numerically. The accuracy and the convergence of the solution of the system of equations depends largely on how precisely the sharp gradients can be resolved. An adaptive grid generation scheme is incorporated into the computer algorithm to enhance the capability of numerical modeling. With this scheme, the grid is refined as the solution evolves. This scheme significantly improves the methodology of solving flow problems in rocket nozzle by putting the refinement part of grid generation into the computer algorithm.
Hierarchic models for laminated plates. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Actis, Ricardo Luis
1991-01-01
Structural plates and shells are three-dimensional bodies, one dimension of which happens to be much smaller than the other two. Thus, the quality of a plate or shell model must be judged on the basis of how well its exact solution approximates the corresponding three-dimensional problem. Of course, the exact solution depends not only on the choice of the model but also on the topology, material properties, loading and constraints. The desired degree of approximation depends on the analyst's goals in performing the analysis. For these reasons models have to be chosen adaptively. Hierarchic sequences of models make adaptive selection of the model which is best suited for the purposes of a particular analysis possible. The principles governing the formulation of hierarchic models for laminated plates are presented. The essential features of the hierarchic models described models are: (1) the exact solutions corresponding to the hierarchic sequence of models converge to the exact solution of the corresponding problem of elasticity for a fixed laminate thickness; and (2) the exact solution of each model converges to the same limit as the exact solution of the corresponding problem of elasticity with respect to the laminate thickness approaching zero. The formulation is based on one parameter (beta) which characterizes the hierarchic sequence of models, and a set of constants whose influence was assessed by a numerical sensitivity study. The recommended selection of these constants results in the number of fields increasing by three for each increment in the power of beta. Numerical examples analyzed with the proposed sequence of models are included and good correlation with the reference solutions was found. Results were obtained for laminated strips (plates in cylindrical bending) and for square and rectangular plates with uniform loading and with homogeneous boundary conditions. Cross-ply and angle-ply laminates were evaluated and the results compared with those of MSC/PROBE. Hierarchic models make the computation of any engineering data possible to an arbitrary level of precision within the framework of the theory of elasticity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Touma, Rony; Zeidan, Dia
In this paper we extend a central finite volume method on nonuniform grids to the case of drift-flux two-phase flow problems. The numerical base scheme is an unstaggered, non oscillatory, second-order accurate finite volume scheme that evolves a piecewise linear numerical solution on a single grid and uses dual cells intermediately while updating the numerical solution to avoid the resolution of the Riemann problems arising at the cell interfaces. We then apply the numerical scheme and solve a classical drift-flux problem. The obtained results are in good agreement with corresponding ones appearing in the recent literature, thus confirming the potentialmore » of the proposed scheme.« less
Modelling the spread of Ebola virus with Atangana-Baleanu fractional operators
NASA Astrophysics Data System (ADS)
Koca, Ilknur
2018-03-01
The model of Ebola spread within a targeted population is extended to the concept of fractional differentiation and integration with non-local and non-singular fading memory introduced by Atangana and Baleanu. It is expected that the proposed model will show better approximation than the models established before. The existence and uniqueness of solutions for the spread of Ebola disease model is given via the Picard-Lindelof method. Finally, numerical solutions for the model are given by using different parameter values.
Numerical solutions of the Navier-Stokes equations for transonic afterbody flows
NASA Technical Reports Server (NTRS)
Swanson, R. C., Jr.
1980-01-01
The time dependent Navier-Stokes equations in mass averaged variables are solved for transonic flow over axisymmetric boattail plume simulator configurations. Numerical solution of these equations is accomplished with the unsplit explict finite difference algorithm of MacCormack. A grid subcycling procedure and computer code vectorization are used to improve computational efficiency. The two layer algebraic turbulence models of Cebeci-Smith and Baldwin-Lomax are employed for investigating turbulence closure. Two relaxation models based on these baseline models are also considered. Results in the form of surface pressure distribution for three different circular arc boattails at two free stream Mach numbers are compared with experimental data. The pressures in the recirculating flow region for all separated cases are poorly predicted with the baseline turbulence models. Significant improvements in the predictions are usually obtained by using the relaxation models.
Multi-objective optimal design of sandwich panels using a genetic algorithm
NASA Astrophysics Data System (ADS)
Xu, Xiaomei; Jiang, Yiping; Pueh Lee, Heow
2017-10-01
In this study, an optimization problem concerning sandwich panels is investigated by simultaneously considering the two objectives of minimizing the panel mass and maximizing the sound insulation performance. First of all, the acoustic model of sandwich panels is discussed, which provides a foundation to model the acoustic objective function. Then the optimization problem is formulated as a bi-objective programming model, and a solution algorithm based on the non-dominated sorting genetic algorithm II (NSGA-II) is provided to solve the proposed model. Finally, taking an example of a sandwich panel that is expected to be used as an automotive roof panel, numerical experiments are carried out to verify the effectiveness of the proposed model and solution algorithm. Numerical results demonstrate in detail how the core material, geometric constraints and mechanical constraints impact the optimal designs of sandwich panels.
NASA Astrophysics Data System (ADS)
Varado, N.; Braud, I.; Ross, P. J.
2006-05-01
From the non iterative numerical method proposed by [Ross, P.J., 2003. Modeling soil water and solute transport—fast, simplified numerical solutions. Agronomy Journal 95, 1352-1361] for solving the 1D Richards' equation, an unsaturated zone module for large scale hydrological model is developed by the inclusion of a root extraction module and a formulation of interception. Two root water uptake modules, first proposed by [Lai, C.-T. and Katul, G., 2000. The dynamic role of rott-water uptake in coupling potential to actual transpiration. Adv. Water Res. 23: 427-439; Li, K.Y., De Jong, R. and Boisvert, J.B., 2001. An exponential root-water-uptake model with water stress compensation. J. Hydrol. 252: 189-204], were included as the sink term in the Richards' equation. They express root extraction as a linear function of potential transpiration and take into account water stress and compensation mechanism allowing water to be extracted in wetter layers. The vadose zone module is tested in a systematic way with synthetic data sets covering a wide range of soil characteristics, climate forcing, and vegetation cover. A detailed SVAT model providing an accurate solution of the coupled heat and water transfer in the soil and the surface energy balance is used as a reference. The accuracy of the numerical solution using only the SVAT soil module, and the loss of accuracy when using a potential evapotranspiration instead of solving the energy budget are both investigated. The vadose zone module is very accurate with errors of less than a few percent for cumulative transpiration. Soil evaporation is less accurately simulated as it leads to a systematic underestimation of soil evaporation amounts. The [Lai, C.-T. and Katul, G., 2000. The dynamic role of rott-water uptake in coupling potential to actual transpiration. Adv. Water Res. 23: 427-439] module is not adapted for sandy soils, due to a weakness in the compensation term formulation. When using a potential evapotranspiration instead of the surface energy balance, we evidenced a difference in partitioning the energy between the soil and the vegetation. A Beer-Lambert law is not able to take into account the complex interactions at the soil-vegetation-atmopshere interface. However, under field conditions, the accuracy of the vadose zone module is satisfactory provided that a correct crop coefficient could be defined. As a conclusion the numerical method proposed by [Ross, P.J., 2003. Modeling soil water and solute transport—fast, simplified numerical solutions. Agronomy Journal 95, 1352-1361] coupled with the [Li, K.Y., De Jong, R. and Boisvert, J.B., 2001. An exponential root-water-uptake model with water stress compensation. J. Hydrol. 252: 189-204] root extraction module provides an efficient and accurate solution for inclusion as a physically-based infiltration-evapotranspiration module into larger scale watershed models.
Scott, Sarah Nicole; Templeton, Jeremy Alan; Hough, Patricia Diane; ...
2014-01-01
This study details a methodology for quantification of errors and uncertainties of a finite element heat transfer model applied to a Ruggedized Instrumentation Package (RIP). The proposed verification and validation (V&V) process includes solution verification to examine errors associated with the code's solution techniques, and model validation to assess the model's predictive capability for quantities of interest. The model was subjected to mesh resolution and numerical parameters sensitivity studies to determine reasonable parameter values and to understand how they change the overall model response and performance criteria. To facilitate quantification of the uncertainty associated with the mesh, automatic meshing andmore » mesh refining/coarsening algorithms were created and implemented on the complex geometry of the RIP. Automated software to vary model inputs was also developed to determine the solution’s sensitivity to numerical and physical parameters. The model was compared with an experiment to demonstrate its accuracy and determine the importance of both modelled and unmodelled physics in quantifying the results' uncertainty. An emphasis is placed on automating the V&V process to enable uncertainty quantification within tight development schedules.« less
Viscoelastic love-type surface waves
Borcherdt, Roger D.
2008-01-01
The general theoretical solution for Love-Type surface waves in viscoelastic media provides theoreticalexpressions for the physical characteristics of the waves in elastic as well as anelastic media with arbitraryamounts of intrinsic damping. The general solution yields dispersion and absorption-coefficient curves for the waves as a function of frequency and theamount of intrinsic damping for any chosen viscoelastic model.Numerical results valid for a variety of viscoelastic models provide quantitative estimates of the physicalcharacteristics of the waves pertinent to models of Earth materials ranging from small amounts of damping in the Earth’s crust to moderate and large amounts of damping in soft soils and water-saturated sediments. Numerical results, presented herein, are valid for a wide range of solids and applications.
Soliton and kink jams in traffic flow with open boundaries.
Muramatsu, M; Nagatani, T
1999-07-01
Soliton density wave is investigated numerically and analytically in the optimal velocity model (a car-following model) of a one-dimensional traffic flow with open boundaries. Soliton density wave is distinguished from the kink density wave. It is shown that the soliton density wave appears only at the threshold of occurrence of traffic jams. The Korteweg-de Vries (KdV) equation is derived from the optimal velocity model by the use of the nonlinear analysis. It is found that the traffic soliton appears only near the neutral stability line. The soliton solution is analytically obtained from the perturbed KdV equation. It is shown that the soliton solution obtained from the nonlinear analysis is consistent with that of the numerical simulation.
NASA Technical Reports Server (NTRS)
Metz, Roger N.
1991-01-01
This paper discusses the numerical modeling of electron flows from the sheath surrounding high positively biased objects in LEO (Low Earth Orbit) to regions of voltage or shape discontinuity on the biased surfaces. The sheath equations are derived from the Two-fluid, Warm Plasma Model. An equipotential corner and a plane containing strips of alternating voltage bias are treated in two dimensions. A self-consistent field solution of the sheath equations is outlined and is pursued through one cycle. The electron density field is determined by numerical solution of Poisson's equation for the electrostatic potential in the sheath using the NASCAP-LEO relation between electrostatic potential and charge density. Electron flows are calculated numerically from the electron continuity equation. Magnetic field effects are not treated.
Automated Calibration For Numerical Models Of Riverflow
NASA Astrophysics Data System (ADS)
Fernandez, Betsaida; Kopmann, Rebekka; Oladyshkin, Sergey
2017-04-01
Calibration of numerical models is fundamental since the beginning of all types of hydro system modeling, to approximate the parameters that can mimic the overall system behavior. Thus, an assessment of different deterministic and stochastic optimization methods is undertaken to compare their robustness, computational feasibility, and global search capacity. Also, the uncertainty of the most suitable methods is analyzed. These optimization methods minimize the objective function that comprises synthetic measurements and simulated data. Synthetic measurement data replace the observed data set to guarantee an existing parameter solution. The input data for the objective function derivate from a hydro-morphological dynamics numerical model which represents an 180-degree bend channel. The hydro- morphological numerical model shows a high level of ill-posedness in the mathematical problem. The minimization of the objective function by different candidate methods for optimization indicates a failure in some of the gradient-based methods as Newton Conjugated and BFGS. Others reveal partial convergence, such as Nelder-Mead, Polak und Ribieri, L-BFGS-B, Truncated Newton Conjugated, and Trust-Region Newton Conjugated Gradient. Further ones indicate parameter solutions that range outside the physical limits, such as Levenberg-Marquardt and LeastSquareRoot. Moreover, there is a significant computational demand for genetic optimization methods, such as Differential Evolution and Basin-Hopping, as well as for Brute Force methods. The Deterministic Sequential Least Square Programming and the scholastic Bayes Inference theory methods present the optimal optimization results. keywords: Automated calibration of hydro-morphological dynamic numerical model, Bayesian inference theory, deterministic optimization methods.
Numerical Simulation of the Flow over a Segment-Conical Body on the Basis of Reynolds Equations
NASA Astrophysics Data System (ADS)
Egorov, I. V.; Novikov, A. V.; Palchekovskaya, N. V.
2018-01-01
Numerical simulation was used to study the 3D supersonic flow over a segment-conical body similar in shape to the ExoMars space vehicle. The nonmonotone behavior of the normal force acting on the body placed in a supersonic gas flow was analyzed depending on the angle of attack. The simulation was based on the numerical solution of the unsteady Reynolds-averaged Navier-Stokes equations with a two-parameter differential turbulence model. The solution of the problem was obtained using the in-house solver HSFlow with an efficient parallel algorithm intended for multiprocessor super computers.
NASA Technical Reports Server (NTRS)
Chang, S. C.
1986-01-01
A two-step semidirect procedure is developed to accelerate the one-step procedure described in NASA TP-2529. For a set of constant coefficient model problems, the acceleration factor increases from 1 to 2 as the one-step procedure convergence rate decreases from + infinity to 0. It is also shown numerically that the two-step procedure can substantially accelerate the convergence of the numerical solution of many partial differential equations (PDE's) with variable coefficients.
NASA Astrophysics Data System (ADS)
Wuttke, Manfred W.
2017-04-01
At LIAG, we use numerical models to develop and enhance understanding of coupled transport processes and to predict the dynamics of the system under consideration. Topics include geothermal heat utilization, subrosion processes, and spontaneous underground coal fires. Although the details make it inconvenient if not impossible to apply a single code implementation to all systems, their investigations go along similar paths: They all depend on the solution of coupled transport equations. We thus saw a need for a modular code system with open access for the various communities to maximize the shared synergistic effects. To this purpose we develop the oops! ( open object-oriented parallel solutions) - toolkit, a C++ class library for the numerical solution of mathematical models of coupled thermal, hydraulic and chemical processes. This is used to develop problem-specific libraries like acme( amendable coal-fire modeling exercise), a class library for the numerical simulation of coal-fires and applications like kobra (Kohlebrand, german for coal-fire), a numerical simulation code for standard coal-fire models. Basic principle of the oops!-code system is the provision of data types for the description of space and time dependent data fields, description of terms of partial differential equations (pde), their discretisation and solving methods. Coupling of different processes, described by their particular pde is modeled by an automatic timescale-ordered operator-splitting technique. acme is a derived coal-fire specific application library, depending on oops!. If specific functionalities of general interest are implemented and have been tested they will be assimilated into the main oops!-library. Interfaces to external pre- and post-processing tools are easily implemented. Thus a construction kit which can be arbitrarily amended is formed. With the kobra-application constructed with acme we study the processes and propagation of shallow coal seam fires in particular in Xinjiang, China, as well as analyze and interpret results from lab experiments.
A model and numerical method for compressible flows with capillary effects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmidmayer, Kevin, E-mail: kevin.schmidmayer@univ-amu.fr; Petitpas, Fabien, E-mail: fabien.petitpas@univ-amu.fr; Daniel, Eric, E-mail: eric.daniel@univ-amu.fr
2017-04-01
A new model for interface problems with capillary effects in compressible fluids is presented together with a specific numerical method to treat capillary flows and pressure waves propagation. This new multiphase model is in agreement with physical principles of conservation and respects the second law of thermodynamics. A new numerical method is also proposed where the global system of equations is split into several submodels. Each submodel is hyperbolic or weakly hyperbolic and can be solved with an adequate numerical method. This method is tested and validated thanks to comparisons with analytical solutions (Laplace law) and with experimental results onmore » droplet breakup induced by a shock wave.« less
Benchmarking FEniCS for mantle convection simulations
NASA Astrophysics Data System (ADS)
Vynnytska, L.; Rognes, M. E.; Clark, S. R.
2013-01-01
This paper evaluates the usability of the FEniCS Project for mantle convection simulations by numerical comparison to three established benchmarks. The benchmark problems all concern convection processes in an incompressible fluid induced by temperature or composition variations, and cover three cases: (i) steady-state convection with depth- and temperature-dependent viscosity, (ii) time-dependent convection with constant viscosity and internal heating, and (iii) a Rayleigh-Taylor instability. These problems are modeled by the Stokes equations for the fluid and advection-diffusion equations for the temperature and composition. The FEniCS Project provides a novel platform for the automated solution of differential equations by finite element methods. In particular, it offers a significant flexibility with regard to modeling and numerical discretization choices; we have here used a discontinuous Galerkin method for the numerical solution of the advection-diffusion equations. Our numerical results are in agreement with the benchmarks, and demonstrate the applicability of both the discontinuous Galerkin method and FEniCS for such applications.
Cosmic-ray propagation with DRAGON2: I. numerical solver and astrophysical ingredients
DOE Office of Scientific and Technical Information (OSTI.GOV)
Evoli, Carmelo; Gaggero, Daniele; Vittino, Andrea
2017-02-01
We present version 2 of the DRAGON code designed for computing realistic predictions of the CR densities in the Galaxy. The code numerically solves the interstellar CR transport equation (including inhomogeneous and anisotropic diffusion, either in space and momentum, advective transport and energy losses), under realistic conditions. The new version includes an updated numerical solver and several models for the astrophysical ingredients involved in the transport equation. Improvements in the accuracy of the numerical solution are proved against analytical solutions and in reference diffusion scenarios. The novel features implemented in the code allow to simulate the diverse scenarios proposed tomore » reproduce the most recent measurements of local and diffuse CR fluxes, going beyond the limitations of the homogeneous galactic transport paradigm. To this end, several applications using DRAGON2 are presented as well. This new version facilitates the users to include their own physical models by means of a modular C++ structure.« less
NASA Astrophysics Data System (ADS)
Cho, Yi Je; Lee, Wook Jin; Park, Yong Ho
2014-11-01
Aspects of numerical results from computational experiments on representative volume element (RVE) problems using finite element analyses are discussed. Two different boundary conditions (BCs) are examined and compared numerically for volume elements with different sizes, where tests have been performed on the uniaxial tensile deformation of random particle reinforced composites. Structural heterogeneities near model boundaries such as the free-edges of particle/matrix interfaces significantly influenced the overall numerical solutions, producing force and displacement fluctuations along the boundaries. Interestingly, this effect was shown to be limited to surface regions within a certain distance of the boundaries, while the interior of the model showed almost identical strain fields regardless of the applied BCs. Also, the thickness of the BC-affected regions remained constant with varying volume element sizes in the models. When the volume element size was large enough compared to the thickness of the BC-affected regions, the structural response of most of the model was found to be almost independent of the applied BC such that the apparent properties converged to the effective properties. Finally, the mechanism that leads a RVE model for random heterogeneous materials to be representative is discussed in terms of the size of the volume element and the thickness of the BC-affected region.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rubin, M. B.; Vorobiev, O.; Vitali, E.
Here, a large deformation thermomechanical model is developed for shock loading of a material that can exhibit elastic and inelastic anisotropy. Use is made of evolution equations for a triad of microstructural vectors m i(i=1,2,3) which model elastic deformations and directions of anisotropy. Specific constitutive equations are presented for a material with orthotropic elastic response. The rate of inelasticity depends on an orthotropic yield function that can be used to model weak fault planes with failure in shear and which exhibits a smooth transition to isotropic response at high compression. Moreover, a robust, strongly objective numerical algorithm is proposed formore » both rate-independent and rate-dependent response. The predictions of the continuum model are examined by comparison with exact steady-state solutions. Also, the constitutive equations are used to obtain a simplified continuum model of jointed rock which is compared with high fidelity numerical solutions that model a persistent system of joints explicitly in the rock medium.« less
Van Theemsche, Achim; Deconinck, Johan; Van den Bossche, Bart; Bortels, Leslie
2002-10-01
A new more general numerical model for the simulation of electrokinetic flow in rectangular microchannels is presented. The model is based on the dilute solution model and the Navier-Stokes equations and has been implemented in a finite-element-based C++ code. The model includes the ion distribution in the Helmholtz double layer and considers only one single electrical' potential field variable throughout the domain. On a charged surface(s) the surface charge density, which is proportional to the local electrical field, is imposed. The zeta potential results, then, from this boundary condition and depends on concentrations, temperature, ion valence, molecular diffusion coefficients, and geometric conditions. Validation cases show that the model predicts accurately known analytical results, also for geometries having dimensions comparable to the Debye length. As a final study, the electro-osmotic flow in a controlled cross channel is investigated.
A three-dimensional, time-dependent model of Mobile Bay
NASA Technical Reports Server (NTRS)
Pitts, F. H.; Farmer, R. C.
1976-01-01
A three-dimensional, time-variant mathematical model for momentum and mass transport in estuaries was developed and its solution implemented on a digital computer. The mathematical model is based on state and conservation equations applied to turbulent flow of a two-component, incompressible fluid having a free surface. Thus, bouyancy effects caused by density differences between the fresh and salt water, inertia from thare river and tidal currents, and differences in hydrostatic head are taken into account. The conservation equations, which are partial differential equations, are solved numerically by an explicit, one-step finite difference scheme and the solutions displayed numerically and graphically. To test the validity of the model, a specific estuary for which scaled model and experimental field data are available, Mobile Bay, was simulated. Comparisons of velocity, salinity and water level data show that the model is valid and a viable means of simulating the hydrodynamics and mass transport in non-idealized estuaries.
Numerical modeling of runback water on ice protected aircraft surfaces
NASA Technical Reports Server (NTRS)
Al-Khalil, Kamel M.; Keith, Theo G., Jr.; Dewitt, Kenneth J.
1992-01-01
A numerical simulation for 'running wet' aircraft anti-icing systems is developed. The model includes breakup of the water film, which exists in regions of direct impingement, into individual rivulets. The wetness factor distribution resulting from the film breakup and the rivulet configuration on the surface are predicted in the numerical solution procedure. The solid wall is modeled as a multilayer structure and the anti-icing system used is of the thermal type utilizing hot air and/or electrical heating elements embedded with the layers. Details of the calculation procedure and the methods used are presented.
Exact Riemann solutions of the Ripa model for flat and non-flat bottom topographies
NASA Astrophysics Data System (ADS)
Rehman, Asad; Ali, Ishtiaq; Qamar, Shamsul
2018-03-01
This article is concerned with the derivation of exact Riemann solutions for Ripa model considering flat and non-flat bottom topographies. The Ripa model is a system of shallow water equations accounting for horizontal temperature gradients. In the case of non-flat bottom topography, the mass, momentum and energy conservation principles are utilized to relate the left and right states across the step-type bottom topography. The resulting system of algebraic equations is solved iteratively. Different numerical case studies of physical interest are considered. The solutions obtained from developed exact Riemann solvers are compared with the approximate solutions of central upwind scheme.
Hopf solitons in the Nicole model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gillard, Mike; Sutcliffe, Paul
2010-12-15
The Nicole model is a conformal field theory in a three-dimensional space. It has topological soliton solutions classified by the integer-valued Hopf charge, and all currently known solitons are axially symmetric. A volume-preserving flow is used to construct soliton solutions numerically for all Hopf charges from 1 to 8. It is found that the known axially symmetric solutions are unstable for Hopf charges greater than 2 and new lower energy solutions are obtained that include knots and links. A comparison with the Skyrme-Faddeev model suggests many universal features, though there are some differences in the link types obtained in themore » two theories.« less
Power Series Solution to the Pendulum Equation
ERIC Educational Resources Information Center
Benacka, Jan
2009-01-01
This note gives a power series solution to the pendulum equation that enables to investigate the system in an analytical way only, i.e. to avoid numeric methods. A method of determining the number of the terms for getting a required relative error is presented that uses bigger and lesser geometric series. The solution is suitable for modelling the…
Modeling of nonequilibrium space plasma flows
NASA Technical Reports Server (NTRS)
Gombosi, Tamas
1995-01-01
Godunov-type numerical solution of the 20 moment plasma transport equations. One of the centerpieces of our proposal was the development of a higher order Godunov-type numerical scheme to solve the gyration dominated 20 moment transport equations. In the first step we explored some fundamental analytic properties of the 20 moment transport equations for a low b plasma, including the eigenvectors and eigenvalues of propagating disturbances. The eigenvalues correspond to wave speeds, while the eigenvectors characterize the transported physical quantities. In this paper we also explored the physically meaningful parameter range of the normalized heat flow components. In the second step a new Godunov scheme type numerical method was developed to solve the coupled set of 20 moment transport equations for a quasineutral single-ion plasma. The numerical method and the first results were presented at several national and international meetings and a paper describing the method has been published in the Journal of Computational Physics. To our knowledge this is the first numerical method which is capable of producing stable time-dependent solutions to the full 20 (or 16) moment set of transport equations, including the full heat flow equation. Previous attempts resulted in unstable (oscillating) solutions of the heat flow equations. Our group invested over two man-years into the development and implementation of the new method. The present model solves the 20 moment transport equations for an ion species and thermal electrons in 8 domain extending from a collision dominated to a collisionless region (200 km to 12,000 km). This model has been applied to study O+ acceleration due to Joule heating in the lower ionosphere.
Tavčar, Gregor; Katrašnik, Tomaž
2014-01-01
The parallel straight channel PEM fuel cell model presented in this paper extends the innovative hybrid 3D analytic-numerical (HAN) approach previously published by the authors with capabilities to address ternary diffusion systems and counter-flow configurations. The model's core principle is modelling species transport by obtaining a 2D analytic solution for species concentration distribution in the plane perpendicular to the cannel gas-flow and coupling consecutive 2D solutions by means of a 1D numerical pipe-flow model. Electrochemical and other nonlinear phenomena are coupled to the species transport by a routine that uses derivative approximation with prediction-iteration. The latter is also the core of the counter-flow computation algorithm. A HAN model of a laboratory test fuel cell is presented and evaluated against a professional 3D CFD simulation tool showing very good agreement between results of the presented model and those of the CFD simulation. Furthermore, high accuracy results are achieved at moderate computational times, which is owed to the semi-analytic nature and to the efficient computational coupling of electrochemical kinetics and species transport.
Finite element modeling of borehole heat exchanger systems. Part 1. Fundamentals
NASA Astrophysics Data System (ADS)
Diersch, H.-J. G.; Bauer, D.; Heidemann, W.; Rühaak, W.; Schätzl, P.
2011-08-01
Single borehole heat exchanger (BHE) and arrays of BHE are modeled by using the finite element method. The first part of the paper derives the fundamental equations for BHE systems and their finite element representations, where the thermal exchange between the borehole components is modeled via thermal transfer relations. For this purpose improved relationships for thermal resistances and capacities of BHE are introduced. Pipe-to-grout thermal transfer possesses multiple grout points for double U-shape and single U-shape BHE to attain a more accurate modeling. The numerical solution of the final 3D problems is performed via a widely non-sequential (essentially non-iterative) coupling strategy for the BHE and porous medium discretization. Four types of vertical BHE are supported: double U-shape (2U) pipe, single U-shape (1U) pipe, coaxial pipe with annular (CXA) and centred (CXC) inlet. Two computational strategies are used: (1) The analytical BHE method based on Eskilson and Claesson's (1988) solution, (2) numerical BHE method based on Al-Khoury et al.'s (2005) solution. The second part of the paper focusses on BHE meshing aspects, the validation of BHE solutions and practical applications for borehole thermal energy store systems.
Numerical Simulation of the Freeze-Thaw Behavior of Mortar Containing Deicing Salt Solution
Esmaeeli, Hadi S.; Farnam, Yaghoob; Bentz, Dale P.; Zavattieri, Pablo D.; Weiss, Jason
2016-01-01
This paper presents a one-dimensional finite difference model that is developed to describe the freeze-thaw behavior of an air-entrained mortar containing deicing salt solution. A phenomenological model is used to predict the temperature and the heat flow for mortar specimens during cooling and heating. Phase transformations associated with the freezing/melting of water/ice or transition of the eutectic solution from liquid to solid are included in this phenomenological model. The lever rule is used to calculate the quantity of solution that undergoes the phase transformation, thereby simulating the energy released/absorbed during phase transformation. Undercooling and pore size effects are considered in the numerical model. To investigate the effect of pore size distribution, this distribution is considered using the Gibbs-Thomson equation in a saturated mortar specimen. For an air-entrained mortar, the impact of considering pore size (and curvature) on freezing was relatively insignificant; however the impact of pore size is much more significant during melting. The fluid inside pores smaller than 5 nm (i.e., gel pores) has a relatively small contribution in the macroscopic freeze-thaw behavior of mortar specimens within the temperature range used in this study (i.e., +24 °C to −35 °C), and can therefore be neglected for the macroscopic freeze-thaw simulations. A heat sink term is utilized to simulate the heat dissipation during phase transformations. Data from experiments performed using a low-temperature longitudinal guarded comparative calorimeter (LGCC) on mortar specimens fully saturated with various concentration NaCl solutions or partially saturated with water is compared to the numerical results and a promising agreement is generally obtained. PMID:28082830
Numerical Simulation of the Freeze-Thaw Behavior of Mortar Containing Deicing Salt Solution.
Esmaeeli, Hadi S; Farnam, Yaghoob; Bentz, Dale P; Zavattieri, Pablo D; Weiss, Jason
2017-02-01
This paper presents a one-dimensional finite difference model that is developed to describe the freeze-thaw behavior of an air-entrained mortar containing deicing salt solution. A phenomenological model is used to predict the temperature and the heat flow for mortar specimens during cooling and heating. Phase transformations associated with the freezing/melting of water/ice or transition of the eutectic solution from liquid to solid are included in this phenomenological model. The lever rule is used to calculate the quantity of solution that undergoes the phase transformation, thereby simulating the energy released/absorbed during phase transformation. Undercooling and pore size effects are considered in the numerical model. To investigate the effect of pore size distribution, this distribution is considered using the Gibbs-Thomson equation in a saturated mortar specimen. For an air-entrained mortar, the impact of considering pore size (and curvature) on freezing was relatively insignificant; however the impact of pore size is much more significant during melting. The fluid inside pores smaller than 5 nm (i.e., gel pores) has a relatively small contribution in the macroscopic freeze-thaw behavior of mortar specimens within the temperature range used in this study (i.e., +24 °C to -35 °C), and can therefore be neglected for the macroscopic freeze-thaw simulations. A heat sink term is utilized to simulate the heat dissipation during phase transformations. Data from experiments performed using a low-temperature longitudinal guarded comparative calorimeter (LGCC) on mortar specimens fully saturated with various concentration NaCl solutions or partially saturated with water is compared to the numerical results and a promising agreement is generally obtained.
NASA Astrophysics Data System (ADS)
Brantson, Eric Thompson; Ju, Binshan; Wu, Dan; Gyan, Patricia Semwaah
2018-04-01
This paper proposes stochastic petroleum porous media modeling for immiscible fluid flow simulation using Dykstra-Parson coefficient (V DP) and autocorrelation lengths to generate 2D stochastic permeability values which were also used to generate porosity fields through a linear interpolation technique based on Carman-Kozeny equation. The proposed method of permeability field generation in this study was compared to turning bands method (TBM) and uniform sampling randomization method (USRM). On the other hand, many studies have also reported that, upstream mobility weighting schemes, commonly used in conventional numerical reservoir simulators do not accurately capture immiscible displacement shocks and discontinuities through stochastically generated porous media. This can be attributed to high level of numerical smearing in first-order schemes, oftentimes misinterpreted as subsurface geological features. Therefore, this work employs high-resolution schemes of SUPERBEE flux limiter, weighted essentially non-oscillatory scheme (WENO), and monotone upstream-centered schemes for conservation laws (MUSCL) to accurately capture immiscible fluid flow transport in stochastic porous media. The high-order schemes results match well with Buckley Leverett (BL) analytical solution without any non-oscillatory solutions. The governing fluid flow equations were solved numerically using simultaneous solution (SS) technique, sequential solution (SEQ) technique and iterative implicit pressure and explicit saturation (IMPES) technique which produce acceptable numerical stability and convergence rate. A comparative and numerical examples study of flow transport through the proposed method, TBM and USRM permeability fields revealed detailed subsurface instabilities with their corresponding ultimate recovery factors. Also, the impact of autocorrelation lengths on immiscible fluid flow transport were analyzed and quantified. A finite number of lines used in the TBM resulted into visual artifact banding phenomenon unlike the proposed method and USRM. In all, the proposed permeability and porosity fields generation coupled with the numerical simulator developed will aid in developing efficient mobility control schemes to improve on poor volumetric sweep efficiency in porous media.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wnek, W.J.; Ramshaw, J.D.; Trapp, J.A.
1975-11-01
A mathematical model and a numerical solution scheme for thermal- hydraulic analysis of fuel rod arrays are given. The model alleviates the two major deficiencies associated with existing rod array analysis models, that of a correct transverse momentum equation and the capability of handling reversing and circulatory flows. Possible applications of the model include steady state and transient subchannel calculations as well as analysis of flows in heat exchangers, other engineering equipment, and porous media. (auth)
Wavelet-based Adaptive Mesh Refinement Method for Global Atmospheric Chemical Transport Modeling
NASA Astrophysics Data System (ADS)
Rastigejev, Y.
2011-12-01
Numerical modeling of global atmospheric chemical transport presents enormous computational difficulties, associated with simulating a wide range of time and spatial scales. The described difficulties are exacerbated by the fact that hundreds of chemical species and thousands of chemical reactions typically are used for chemical kinetic mechanism description. These computational requirements very often forces researches to use relatively crude quasi-uniform numerical grids with inadequate spatial resolution that introduces significant numerical diffusion into the system. It was shown that this spurious diffusion significantly distorts the pollutant mixing and transport dynamics for typically used grid resolution. The described numerical difficulties have to be systematically addressed considering that the demand for fast, high-resolution chemical transport models will be exacerbated over the next decade by the need to interpret satellite observations of tropospheric ozone and related species. In this study we offer dynamically adaptive multilevel Wavelet-based Adaptive Mesh Refinement (WAMR) method for numerical modeling of atmospheric chemical evolution equations. The adaptive mesh refinement is performed by adding and removing finer levels of resolution in the locations of fine scale development and in the locations of smooth solution behavior accordingly. The algorithm is based on the mathematically well established wavelet theory. This allows us to provide error estimates of the solution that are used in conjunction with an appropriate threshold criteria to adapt the non-uniform grid. Other essential features of the numerical algorithm include: an efficient wavelet spatial discretization that allows to minimize the number of degrees of freedom for a prescribed accuracy, a fast algorithm for computing wavelet amplitudes, and efficient and accurate derivative approximations on an irregular grid. The method has been tested for a variety of benchmark problems including numerical simulation of transpacific traveling pollution plumes. The generated pollution plumes are diluted due to turbulent mixing as they are advected downwind. Despite this dilution, it was recently discovered that pollution plumes in the remote troposphere can preserve their identity as well-defined structures for two weeks or more as they circle the globe. Present Global Chemical Transport Models (CTMs) implemented for quasi-uniform grids are completely incapable of reproducing these layered structures due to high numerical plume dilution caused by numerical diffusion combined with non-uniformity of atmospheric flow. It is shown that WAMR algorithm solutions of comparable accuracy as conventional numerical techniques are obtained with more than an order of magnitude reduction in number of grid points, therefore the adaptive algorithm is capable to produce accurate results at a relatively low computational cost. The numerical simulations demonstrate that WAMR algorithm applied the traveling plume problem accurately reproduces the plume dynamics unlike conventional numerical methods that utilizes quasi-uniform numerical grids.
Kataoka, Takeshi; Tsutahara, Michihisa
2004-03-01
We have developed a lattice Boltzmann model for the compressible Navier-Stokes equations with a flexible specific-heat ratio. Several numerical results are presented, and they agree well with the corresponding solutions of the Navier-Stokes equations. In addition, an explicit finite-difference scheme is proposed for the numerical calculation that can make a stable calculation with a large Courant number.
Numerical Simulation of Rheological, Chemical and Hydromechanical Processes of Thrombolysis
NASA Astrophysics Data System (ADS)
Khramchenkov, E.; Khramchenkov, M.
2015-04-01
Mathematical model of clot lysis in blood vessels is developed on the basis of equations of convection-diffusion. Fibrin of the clot is considered stationary solid phase, and plasminogen, plasmin and plasminogen-activators - as dissolved fluid phases. As a result of numerical solution of the model predictions of lysis process are gained. Important influence of clot swelling on the process of lysis is revealed.
NASA Astrophysics Data System (ADS)
Saltas, V.; Horlait, D.; Sgourou, E. N.; Vallianatos, F.; Chroneos, A.
2017-12-01
Modelling solid solutions is fundamental in understanding the properties of numerous materials which are important for a range of applications in various fields including nanoelectronics and energy materials such as fuel cells, nuclear materials, and batteries, as the systematic understanding throughout the composition range of solid solutions for a range of conditions can be challenging from an experimental viewpoint. The main motivation of this review is to contribute to the discussion in the community of the applicability of methods that constitute the investigation of solid solutions computationally tractable. This is important as computational modelling is required to calculate numerous defect properties and to act synergistically with experiment to understand these materials. This review will examine in detail two examples: silicon germanium alloys and MAX phase solid solutions. Silicon germanium alloys are technologically important in nanoelectronic devices and are also relevant considering the recent advances in ternary and quaternary groups IV and III-V semiconductor alloys. MAX phase solid solutions display a palette of ceramic and metallic properties and it is anticipated that via their tuning they can have applications ranging from nuclear to aerospace industries as well as being precursors for particular MXenes. In the final part, a brief summary assesses the limitations and possibilities of the methodologies discussed, whereas there is discussion on the future directions and examples of solid solution systems that should prove fruitful to consider.
A novel Lagrangian approach for the stable numerical simulation of fault and fracture mechanics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Franceschini, Andrea; Ferronato, Massimiliano, E-mail: massimiliano.ferronato@unipd.it; Janna, Carlo
The simulation of the mechanics of geological faults and fractures is of paramount importance in several applications, such as ensuring the safety of the underground storage of wastes and hydrocarbons or predicting the possible seismicity triggered by the production and injection of subsurface fluids. However, the stable numerical modeling of ground ruptures is still an open issue. The present work introduces a novel formulation based on the use of the Lagrange multipliers to prescribe the constraints on the contact surfaces. The variational formulation is modified in order to take into account the frictional work along the activated fault portion accordingmore » to the principle of maximum plastic dissipation. The numerical model, developed in the framework of the Finite Element method, provides stable solutions with a fast convergence of the non-linear problem. The stabilizing properties of the proposed model are emphasized with the aid of a realistic numerical example dealing with the generation of ground fractures due to groundwater withdrawal in arid regions. - Highlights: • A numerical model is developed for the simulation of fault and fracture mechanics. • The model is implemented in the framework of the Finite Element method and with the aid of Lagrange multipliers. • The proposed formulation introduces a new contribution due to the frictional work on the portion of activated fault. • The resulting algorithm is highly non-linear as the portion of activated fault is itself unknown. • The numerical solution is validated against analytical results and proves to be stable also in realistic applications.« less
An MPI-based MoSST core dynamics model
NASA Astrophysics Data System (ADS)
Jiang, Weiyuan; Kuang, Weijia
2008-09-01
Distributed systems are among the main cost-effective and expandable platforms for high-end scientific computing. Therefore scalable numerical models are important for effective use of such systems. In this paper, we present an MPI-based numerical core dynamics model for simulation of geodynamo and planetary dynamos, and for simulation of core-mantle interactions. The model is developed based on MPI libraries. Two algorithms are used for node-node communication: a "master-slave" architecture and a "divide-and-conquer" architecture. The former is easy to implement but not scalable in communication. The latter is scalable in both computation and communication. The model scalability is tested on Linux PC clusters with up to 128 nodes. This model is also benchmarked with a published numerical dynamo model solution.
NASA Astrophysics Data System (ADS)
Wilson, Seth Robert
A mathematical model that results in an expression for the local acceleration of a network of sharp interfaces interacting with an ambient solute field is proposed. This expression comprises a first-order differential equation for the local velocity that, given the appropriate initial conditions, may be used to predict the subsequent time evolution of the system, including non-steady state absorption and desorption of solute. Evolution equations for both interfaces and the junction of interfaces are derived by maximizing a functional approximating the rate at which the local Gibbs free energy density decreases, as a function of the local solute content and the instantaneous velocity. The model has been formulated in three dimensions, and non-equilibrium effects such as grain boundary diffusion, solute gradients, and time-dependant segregation are taken into account. As a consequence of this model, it is shown that both interfaces and the junctions between interfaces obey evolution equations that closely resemble Newton's second law. In particular, the concept of "thrust" in variable-mass systems is shown to have a direct analog in solute-interface interaction. Numerical analysis of the equations that result reveals that a double cusp catastrophe governs the behavior of the solute-interface system, for which trajectories that include hysteresis, slip-stick motion, and jerky motion are all conceivable. The geometry of the cusp catastrophe is quantified, and a number of relations between physical parameters and system behavior are consequently predicted.
Symmetry-plane model of 3D Euler flows: Mapping to regular systems and numerical solutions of blowup
NASA Astrophysics Data System (ADS)
Mulungye, Rachel M.; Lucas, Dan; Bustamante, Miguel D.
2014-11-01
We introduce a family of 2D models describing the dynamics on the so-called symmetry plane of the full 3D Euler fluid equations. These models depend on a free real parameter and can be solved analytically. For selected representative values of the free parameter, we apply the method introduced in [M.D. Bustamante, Physica D: Nonlinear Phenom. 240, 1092 (2011)] to map the fluid equations bijectively to globally regular systems. By comparing the analytical solutions with the results of numerical simulations, we establish that the numerical simulations of the mapped regular systems are far more accurate than the numerical simulations of the original systems, at the same spatial resolution and CPU time. In particular, the numerical integrations of the mapped regular systems produce robust estimates for the growth exponent and singularity time of the main blowup quantity (vorticity stretching rate), converging well to the analytically-predicted values even beyond the time at which the flow becomes under-resolved (i.e. the reliability time). In contrast, direct numerical integrations of the original systems develop unstable oscillations near the reliability time. We discuss the reasons for this improvement in accuracy, and explain how to extend the analysis to the full 3D case. Supported under the programme for Research in Third Level Institutions (PRTLI) Cycle 5 and co-funded by the European Regional Development Fund.
Implicitly solving phase appearance and disappearance problems using two-fluid six-equation model
Zou, Ling; Zhao, Haihua; Zhang, Hongbin
2016-01-25
Phase appearance and disappearance issue presents serious numerical challenges in two-phase flow simulations using the two-fluid six-equation model. Numerical challenges arise from the singular equation system when one phase is absent, as well as from the discontinuity in the solution space when one phase appears or disappears. In this work, a high-resolution spatial discretization scheme on staggered grids and fully implicit methods were applied for the simulation of two-phase flow problems using the two-fluid six-equation model. A Jacobian-free Newton-Krylov (JFNK) method was used to solve the discretized nonlinear problem. An improved numerical treatment was proposed and proved to be effectivemore » to handle the numerical challenges. The treatment scheme is conceptually simple, easy to implement, and does not require explicit truncations on solutions, which is essential to conserve mass and energy. Various types of phase appearance and disappearance problems relevant to thermal-hydraulics analysis have been investigated, including a sedimentation problem, an oscillating manometer problem, a non-condensable gas injection problem, a single-phase flow with heat addition problem and a subcooled flow boiling problem. Successful simulations of these problems demonstrate the capability and robustness of the proposed numerical methods and numerical treatments. As a result, volume fraction of the absent phase can be calculated effectively as zero.« less
Revealing Numerical Solutions of a Differential Equation
ERIC Educational Resources Information Center
Glaister, P.
2006-01-01
In this article, the author considers a student exercise that involves determining the exact and numerical solutions of a particular differential equation. He shows how a typical student solution is at variance with a numerical solution, suggesting that the numerical solution is incorrect. However, further investigation shows that this numerical…
Self-similar solutions to isothermal shock problems
NASA Astrophysics Data System (ADS)
Deschner, Stephan C.; Illenseer, Tobias F.; Duschl, Wolfgang J.
We investigate exact solutions for isothermal shock problems in different one-dimensional geometries. These solutions are given as analytical expressions if possible, or are computed using standard numerical methods for solving ordinary differential equations. We test the numerical solutions against the analytical expressions to verify the correctness of all numerical algorithms. We use similarity methods to derive a system of ordinary differential equations (ODE) yielding exact solutions for power law density distributions as initial conditions. Further, the system of ODEs accounts for implosion problems (IP) as well as explosion problems (EP) by changing the initial or boundary conditions, respectively. Taking genuinely isothermal approximations into account leads to additional insights of EPs in contrast to earlier models. We neglect a constant initial energy contribution but introduce a parameter to adjust the initial mass distribution of the system. Moreover, we show that due to this parameter a constant initial density is not allowed for isothermal EPs. Reasonable restrictions for this parameter are given. Both, the (genuinely) isothermal implosion as well as the explosion problem are solved for the first time.
Fluid-structure interaction with pipe-wall viscoelasticity during water hammer
NASA Astrophysics Data System (ADS)
Keramat, A.; Tijsseling, A. S.; Hou, Q.; Ahmadi, A.
2012-01-01
Fluid-structure interaction (FSI) due to water hammer in a pipeline which has viscoelastic wall behaviour is studied. Appropriate governing equations are derived and numerically solved. In the numerical implementation of the hydraulic and structural equations, viscoelasticity is incorporated using the Kelvin-Voigt mechanical model. The equations are solved by two different approaches, namely the Method of Characteristics-Finite Element Method (MOC-FEM) and full MOC. In both approaches two important effects of FSI in fluid-filled pipes, namely Poisson and junction coupling, are taken into account. The study proposes a more comprehensive model for studying fluid transients in pipelines as compared to previous works, which take into account either FSI or viscoelasticity. To verify the proposed mathematical model and its numerical solutions, the following problems are investigated: axial vibration of a viscoelastic bar subjected to a step uniaxial loading, FSI in an elastic pipe, and hydraulic transients in a pressurised polyethylene pipe without FSI. The results of each case are checked with available exact and experimental results. Then, to study the simultaneous effects of FSI and viscoelasticity, which is the new element of the present research, one problem is solved by the two different numerical approaches. Both numerical methods give the same results, thus confirming the correctness of the solutions.
Water and chloride transport in a fine-textured soil in a feedlot pen.
Veizaga, E A; Rodríguez, L; Ocampo, C J
2015-11-01
Cattle feeding in feedlot pens produces large amounts of manure and animal urine. Manure solutions resulting from surface runoff are composed of numerous chemical constituents whose leaching causes salinization of the soil profile. There is a relatively large number of studies on preferential flow characterization and modeling in clayed soils. However, research on water flow and solute transport derived from cattle feeding operations in fine-textured soils under naturally occurring precipitation events is less frequent. A field monitoring and modeling investigation was conducted at two plots on a fine-textured soil near a feedlot pen in Argentina to assess the potential of solute leaching into the soil profile. Soil pressure head and chloride concentration of the soil solution were used in combination with HYDRUS-1D numerical model to simulate water flow and chloride transport resorting to the concept of mobile/immobile-MIM water for solute transport. Pressure head sensors located at different depths registered a rapid response to precipitation suggesting the occurrence of preferential flow-paths for infiltrating water. Cracks and small fissures were documented at the field site where the % silt and % clay combined is around 94%. Chloride content increased with depth for various soil pressure head conditions, although a dilution process was observed as precipitation increased. The MIM approach improved numerical results at one of the tested sites where the development of cracks and macropores is likely, obtaining a more dynamic response in comparison with the advection-dispersion equation. Copyright © 2015 Elsevier B.V. All rights reserved.
The problem of solute transport in steady nonuniform flow created by a recharging and discharging well pair is investigated. Numerical difficulties encountered with the standard Galerkin formulations in Cartesian coordinates are illustrated. An improved finite element solution st...
NASA Technical Reports Server (NTRS)
Longuski, James M.; Mcronald, Angus D.
1988-01-01
In previous work the problem of injecting the Galileo and Ulysses spacecraft from low earth orbit into their respective interplanetary trajectories has been discussed for the single stage (Centaur) vehicle. The central issue, in the event of spherically distributed injection errors, is what happens to the vehicle? The difficulties addressed in this paper involve the multi-stage problem since both Galileo and Ulysses will be utilizing the two-stage IUS system. Ulysses will also include a third stage: the PAM-S. The solution is expressed in terms of probabilities for total percentage of escape, orbit decay and reentry trajectories. Analytic solutions are found for Hill's Equations of Relative Motion (more recently called Clohessy-Wiltshire Equations) for multi-stage injections. These solutions are interpreted geometrically on the injection sphere. The analytic-geometric models compare well with numerical solutions, provide insight into the behavior of trajectories mapped on the injection sphere and simplify the numerical two-dimensional search for trajectory families.
Swimming in a two-dimensional Brinkman fluid: Computational modeling and regularized solutions
NASA Astrophysics Data System (ADS)
Leiderman, Karin; Olson, Sarah D.
2016-02-01
The incompressible Brinkman equation represents the homogenized fluid flow past obstacles that comprise a small volume fraction. In nondimensional form, the Brinkman equation can be characterized by a single parameter that represents the friction or resistance due to the obstacles. In this work, we derive an exact fundamental solution for 2D Brinkman flow driven by a regularized point force and describe the numerical method to use it in practice. To test our solution and method, we compare numerical results with an analytic solution of a stationary cylinder in a uniform Brinkman flow. Our method is also compared to asymptotic theory; for an infinite-length, undulating sheet of small amplitude, we recover an increasing swimming speed as the resistance is increased. With this computational framework, we study a model swimmer of finite length and observe an enhancement in propulsion and efficiency for small to moderate resistance. Finally, we study the interaction of two swimmers where attraction does not occur when the initial separation distance is larger than the screening length.
Numerical Issues for Circulation Control Calculations
NASA Technical Reports Server (NTRS)
Swanson, Roy C., Jr.; Rumsey, Christopher L.
2006-01-01
Steady-state and time-accurate two-dimensional solutions of the compressible Reynolds-averaged Navier- Stokes equations are obtained for flow over the Lockheed circulation control (CC) airfoil and the General Aviation CC (GACC) airfoil. Numerical issues in computing circulation control flows such as the effects of grid resolution, boundary and initial conditions, and unsteadiness are addressed. For the Lockheed CC airfoil computed solutions are compared with detailed experimental data, which include velocity and Reynolds stress profiles. Three turbulence models, having either one or two transport equations, are considered. Solutions are obtained on a sequence of meshes, with mesh refinement primarily concentrated on the airfoil circular trailing edge. Several effects related to mesh refinement are identified. For example, sometimes sufficient mesh resolution can exclude nonphysical solutions, which can occur in CC airfoil calculations. Also, sensitivities of the turbulence models with mesh refinement are discussed. In the case of the GACC airfoil the focus is on the difference between steady-state and time-accurate solutions. A specific objective is to determine if there is self-excited vortex shedding from the jet slot lip.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dykhuizen, R.C.; Eaton, R.R.; Hopkins, P.L.
1991-12-01
Numerical results are presented for the Performance Assessment Calculational Exercise (PACE-90). One- and two-dimensional water and solute transport are presented for steady infiltration into Yucca Mountain. Evenly distributed infiltration rates of 0.01, 0.1, and 0.5 mm/yr were considered. The calculations of solute transport show that significant amounts of radionuclides can reach the water table over 100,000 yr at the 0.5 mm/yr rate. For time periods less than 10,000 yr or infiltrations less than 0.1 mm/yr very little solute reaches the water table. The numerical simulations clearly demonstrate that multi-dimensional effects can result in significant decreases in the travel time ofmore » solute through the modeled domain. Dual continuum effects are shown to be negligible for the low steady state fluxes considered. However, material heterogeneities may cause local amplification of the flux level in multi-dimensional flows. These higher flux levels may then require modeling of a dual continuum porous medium.« less
NASA Astrophysics Data System (ADS)
Pando, V.; García-Laguna, J.; San-José, L. A.
2012-11-01
In this article, we integrate a non-linear holding cost with a stock-dependent demand rate in a maximising profit per unit time model, extending several inventory models studied by other authors. After giving the mathematical formulation of the inventory system, we prove the existence and uniqueness of the optimal policy. Relying on this result, we can obtain the optimal solution using different numerical algorithms. Moreover, we provide a necessary and sufficient condition to determine whether a system is profitable, and we establish a rule to check when a given order quantity is the optimal lot size of the inventory model. The results are illustrated through numerical examples and the sensitivity of the optimal solution with respect to changes in some values of the parameters is assessed.
Modeling quasi-static poroelastic propagation using an asymptotic approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vasco, D.W.
2007-11-01
Since the formulation of poroelasticity (Biot(1941)) and its reformulation (Rice & Cleary(1976)), there have been many efforts to solve the coupled system of equations. Perhaps because of the complexity of the governing equations, most of the work has been directed towards finding numerical solutions. For example, Lewis and co-workers published early papers (Lewis & Schrefler(1978); Lewis et al.(1991)Lewis, Schrefler, & Simoni) concerned with finite-element methods for computing consolidation, subsidence, and examining the importance of coupling. Other early work dealt with flow in a deformable fractured medium (Narasimhan & Witherspoon 1976); Noorishad et al.(1984)Noorishad, Tsang, & Witherspoon. This effort eventually evolvedmore » into a general numerical approach for modeling fluid flow and deformation (Rutqvist et al.(2002)Rutqvist, Wu, Tsang, & Bodvarsson). As a result of this and other work, numerous coupled, computer-based algorithms have emerged, typically falling into one of three categories: one-way coupling, loose coupling, and full coupling (Minkoff et al.(2003)Minkoff, Stone, Bryant, Peszynska, & Wheeler). In one-way coupling the fluid flow is modeled using a conventional numerical simulator and the resulting change in fluid pressures simply drives the deformation. In loosely coupled modeling distinct geomechanical and fluid flow simulators are run for a sequence of time steps and at the conclusion of each step information is passed between the simulators. In full coupling, the fluid flow and geomechanics equations are solved simultaneously at each time step (Lewis & Sukirman(1993); Lewis & Ghafouri(1997); Gutierrez & Lewis(2002)). One disadvantage of a purely numerical approach to solving the governing equations of poroelasticity is that it is not clear how the various parameters interact and influence the solution. Analytic solutions have an advantage in that respect; the relationship between the medium and fluid properties is clear from the form of the solution. Unfortunately, analytic solutions are only available for highly idealized conditions, such as a uniform (Rudnicki(1986)) or one-dimensional (Simon et al.(1984)Simon, Zienkiewicz, & Paul; Gajo & Mongiovi(1995); Wang & Kumpel(2003)) medium. In this paper I derive an asymptotic, semi-analytic solution for coupled deformation and flow. The approach is similar to trajectory- or ray-based methods used to model elastic and electromagnetic wave propagation (Aki & Richards(1980); Kline & Kay(1979); Kravtsov & Orlov(1990); Keller & Lewis(1995)) and, more recently, diffusive propagation (Virieux et al.(1994)Virieux, Flores-Luna, & Gibert; Vasco et al.(2000)Vasco, Karasaki, & Keers; Shapiro et al.(2002)Shapiro, Rothert, Rath, & Rindschwentner; Vasco(2007)). The asymptotic solution is valid in the presence of smoothly-varying, heterogeneous flow properties. The situation I am modeling is that of a formation with heterogeneous flow properties and uniform mechanical properties. The boundaries of the layer may vary arbitrary and can define discontinuities in both flow and mechanical properties. Thus, using the techniques presented here, it is possible to model a stack of irregular layers with differing mechanical properties. Within each layer the hydraulic conductivity and porosity can vary smoothly but with an arbitrarily large magnitude. The advantages of this approach are that it produces explicit, semi-analytic expressions for the arrival time and amplitude of the Biot slow and fast waves, expressions which are valid in a medium with heterogeneous properties. As shown here, the semi-analytic expressions provide insight into the nature of pressure and deformation signals recorded at an observation point. Finally, the technique requires considerably fewer computer resources than does a fully numerical treatment.« less
Effects of inhomogeneities on MCG due to a single current dipole
NASA Astrophysics Data System (ADS)
Chen, Jiange; Niki, Noboru; Nakaya, Yutaka; Nishitani, Hiroshi; Kang, Yoongming
1999-05-01
The aim of this study was to quantify the effects of inhomogeneities on magnetocardiography (MCG) forward solutions. A numerical model of a human torso was used which construction included geometry for major anatomical structures such as subcutaneous fat, skeletal muscle, lungs, major arteries and veins, and the bones. Simulations were done with a single current dipole placed at different sites of heart. The boundary element method (BEM) was utilized for numerical treatment of magnetic field calculations. Comparisons of the effects of different conductivity on MCG forward solution followed one of two basic schemes: (1) consider the difference between the magnetic fields of the homogeneous torso model and the same model with one inhomogeneity of a single organ or tissue added; (2) consider the difference between the magnetic fields of the full inhomogeneous model and the same model with one inhomogeneity of individual organ or tissue removed. The results of this study suggested that accurate representation of tissue inhomogeneity has a significant effect on the accuracy of the MCG forward solution. Generally lungs, subcutaneous fat, skeletal muscle play a larger role than other tissues. Our results showed that the inclusion of the boundaries also had effects on the topology of the magnetic fields and on the MCG inverse solution accuracy.
Anisotropic mesh adaptation for marine ice-sheet modelling
NASA Astrophysics Data System (ADS)
Gillet-Chaulet, Fabien; Tavard, Laure; Merino, Nacho; Peyaud, Vincent; Brondex, Julien; Durand, Gael; Gagliardini, Olivier
2017-04-01
Improving forecasts of ice-sheets contribution to sea-level rise requires, amongst others, to correctly model the dynamics of the grounding line (GL), i.e. the line where the ice detaches from its underlying bed and goes afloat on the ocean. Many numerical studies, including the intercomparison exercises MISMIP and MISMIP3D, have shown that grid refinement in the GL vicinity is a key component to obtain reliable results. Improving model accuracy while maintaining the computational cost affordable has then been an important target for the development of marine icesheet models. Adaptive mesh refinement (AMR) is a method where the accuracy of the solution is controlled by spatially adapting the mesh size. It has become popular in models using the finite element method as they naturally deal with unstructured meshes, but block-structured AMR has also been successfully applied to model GL dynamics. The main difficulty with AMR is to find efficient and reliable estimators of the numerical error to control the mesh size. Here, we use the estimator proposed by Frey and Alauzet (2015). Based on the interpolation error, it has been found effective in practice to control the numerical error, and has some flexibility, such as its ability to combine metrics for different variables, that makes it attractive. Routines to compute the anisotropic metric defining the mesh size have been implemented in the finite element ice flow model Elmer/Ice (Gagliardini et al., 2013). The mesh adaptation is performed using the freely available library MMG (Dapogny et al., 2014) called from Elmer/Ice. Using a setup based on the inter-comparison exercise MISMIP+ (Asay-Davis et al., 2016), we study the accuracy of the solution when the mesh is adapted using various variables (ice thickness, velocity, basal drag, …). We show that combining these variables allows to reduce the number of mesh nodes by more than one order of magnitude, for the same numerical accuracy, when compared to uniform mesh refinement. For transient solutions where the GL is moving, we have implemented an algorithm where the computation is reiterated allowing to anticipate the GL displacement and to adapt the mesh to the transient solution. We discuss the performance and robustness of this algorithm.
Convex Relaxation of OPF in Multiphase Radial Networks with Wye and Delta Connections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Changhong; Dall-Anese, Emiliano; Low, Steven
2017-08-01
This panel presentation focuses on multiphase radial distribution networks with wye and delta connections, and proposes a semidefinite relaxation of the AC optimal power flow (OPF) problem. Two multiphase power flow models are developed to facilitate the integration of delta-connected loads or generation resources in the OPF problem. The first model is referred to as the extended branch flow model (EBFM). The second model leverages a linear relationship between phase-to-ground power injections and delta connections that holds under a balanced voltage approximation (BVA). Based on these models, pertinent OPF problems are formulated and relaxed to semidefinite programs (SDPs). Numerical studiesmore » on IEEE test feeders show that the proposed SDP relaxations can be solved efficiently by a generic optimization solver. Numerical evidence also indicates that solving the resultant SDP under BVA is faster than under EBFM. Moreover, both SDP solutions are numerically exact with respect to voltages and branch flows. It is further shown that the SDP solution under BVA has a small optimality gap, and the BVA model is accurate in the sense that it reproduces actual system voltages.« less
NASA Astrophysics Data System (ADS)
Nisar, Ubaid Ahmed; Ashraf, Waqas; Qamar, Shamsul
2016-08-01
Numerical solutions of the hydrodynamical model of semiconductor devices are presented in one and two-space dimension. The model describes the charge transport in semiconductor devices. Mathematically, the models can be written as a convection-diffusion type system with a right hand side describing the relaxation effects and interaction with a self consistent electric field. The proposed numerical scheme is a splitting scheme based on the conservation element and solution element (CE/SE) method for hyperbolic step, and a semi-implicit scheme for the relaxation step. The numerical results of the suggested scheme are compared with the splitting scheme based on Nessyahu-Tadmor (NT) central scheme for convection step and the same semi-implicit scheme for the relaxation step. The effects of various parameters such as low field mobility, device length, lattice temperature and voltages for one-space dimensional hydrodynamic model are explored to further validate the generic applicability of the CE/SE method for the current model equations. A two dimensional simulation is also performed by CE/SE method for a MESFET device, producing results in good agreement with those obtained by NT-central scheme.
Model-order reduction of lumped parameter systems via fractional calculus
NASA Astrophysics Data System (ADS)
Hollkamp, John P.; Sen, Mihir; Semperlotti, Fabio
2018-04-01
This study investigates the use of fractional order differential models to simulate the dynamic response of non-homogeneous discrete systems and to achieve efficient and accurate model order reduction. The traditional integer order approach to the simulation of non-homogeneous systems dictates the use of numerical solutions and often imposes stringent compromises between accuracy and computational performance. Fractional calculus provides an alternative approach where complex dynamical systems can be modeled with compact fractional equations that not only can still guarantee analytical solutions, but can also enable high levels of order reduction without compromising on accuracy. Different approaches are explored in order to transform the integer order model into a reduced order fractional model able to match the dynamic response of the initial system. Analytical and numerical results show that, under certain conditions, an exact match is possible and the resulting fractional differential models have both a complex and frequency-dependent order of the differential operator. The implications of this type of approach for both model order reduction and model synthesis are discussed.
NASA Astrophysics Data System (ADS)
Jorris, Timothy R.
2007-12-01
To support the Air Force's Global Reach concept, a Common Aero Vehicle is being designed to support the Global Strike mission. "Waypoints" are specified for reconnaissance or multiple payload deployments and "no-fly zones" are specified for geopolitical restrictions or threat avoidance. Due to time critical targets and multiple scenario analysis, an autonomous solution is preferred over a time-intensive, manually iterative one. Thus, a real-time or near real-time autonomous trajectory optimization technique is presented to minimize the flight time, satisfy terminal and intermediate constraints, and remain within the specified vehicle heating and control limitations. This research uses the Hypersonic Cruise Vehicle (HCV) as a simplified two-dimensional platform to compare multiple solution techniques. The solution techniques include a unique geometric approach developed herein, a derived analytical dynamic optimization technique, and a rapidly emerging collocation numerical approach. This up-and-coming numerical technique is a direct solution method involving discretization then dualization, with pseudospectral methods and nonlinear programming used to converge to the optimal solution. This numerical approach is applied to the Common Aero Vehicle (CAV) as the test platform for the full three-dimensional reentry trajectory optimization problem. The culmination of this research is the verification of the optimality of this proposed numerical technique, as shown for both the two-dimensional and three-dimensional models. Additionally, user implementation strategies are presented to improve accuracy and enhance solution convergence. Thus, the contributions of this research are the geometric approach, the user implementation strategies, and the determination and verification of a numerical solution technique for the optimal reentry trajectory problem that minimizes time to target while satisfying vehicle dynamics and control limitation, and heating, waypoint, and no-fly zone constraints.
NASA Technical Reports Server (NTRS)
Fridlind, Ann; Seifert, Axel; Ackerman, Andrew; Jensen, Eric
2004-01-01
Numerical models that resolve cloud particles into discrete mass size distributions on an Eulerian grid provide a uniquely powerful means of studying the closely coupled interaction of aerosols, cloud microphysics, and transport that determine cloud properties and evolution. However, such models require many experimentally derived paramaterizations in order to properly represent the complex interactions of droplets within turbulent flow. Many of these parameterizations remain poorly quantified, and the numerical methods of solving the equations for temporal evolution of the mass size distribution can also vary considerably in terms of efficiency and accuracy. In this work, we compare results from two size-resolved microphysics models that employ various widely-used parameterizations and numerical solution methods for several aspects of stochastic collection.
Numerical approach for finite volume three-body interaction
NASA Astrophysics Data System (ADS)
Guo, Peng; Gasparian, Vladimir
2018-01-01
In the present work, we study a numerical approach to one dimensional finite volume three-body interaction, the method is demonstrated by considering a toy model of three spinless particles interacting with pair-wise δ -function potentials. The numerical results are compared with the exact solutions of three spinless bosons interaction when the strength of short-range interactions are set equal for all pairs.
Localized solutions of Lugiato-Lefever equations with focused pump.
Cardoso, Wesley B; Salasnich, Luca; Malomed, Boris A
2017-12-04
Lugiato-Lefever (LL) equations in one and two dimensions (1D and 2D) accurately describe the dynamics of optical fields in pumped lossy cavities with the intrinsic Kerr nonlinearity. The external pump is usually assumed to be uniform, but it can be made tightly focused too-in particular, for building small pixels. We obtain solutions of the LL equations, with both the focusing and defocusing intrinsic nonlinearity, for 1D and 2D confined modes supported by the localized pump. In the 1D setting, we first develop a simple perturbation theory, based in the sech ansatz, in the case of weak pump and loss. Then, a family of exact analytical solutions for spatially confined modes is produced for the pump focused in the form of a delta-function, with a nonlinear loss (two-photon absorption) added to the LL model. Numerical findings demonstrate that these exact solutions are stable, both dynamically and structurally (the latter means that stable numerical solutions close to the exact ones are found when a specific condition, necessary for the existence of the analytical solution, does not hold). In 2D, vast families of stable confined modes are produced by means of a variational approximation and full numerical simulations.
Willis, Catherine; Rubin, Jacob
1987-01-01
A moving boundary problem which arises during transport with precipitation-dissolution reactions is solved by three different numerical methods. Two of these methods (one explicit and one implicit) are based on an integral formulation of mass balance and lead to an approximation of a weak solution. These methods are compared to a front-tracking scheme. Although the two approaches are conceptually different, the numerical solutions showed good agreement. As the ratio of dispersion to convection decreases, the methods based on the integral formulation become computationally more efficient. Specific reactions were modeled to examine the dependence of the system on the physical and chemical parameters. Although the water flow rate does not explicitly appear in the equation for the velocity of the moving boundary, the speed of the boundary depends more on the flux rate than on the dispersion coefficient. The discontinuity in the gradient of the solute concentration profile at the boundary increases with convection and with the initial concentration of the mineral. Our implicit method is extended to allow participation of the solutes in complexation reactions as well as the precipitation-dissolution reaction. This extension is easily made and does not change the basic method.
NASA Astrophysics Data System (ADS)
Lokhande, Ritesh D.; Murthy, V. M. S. R.; Singh, K. B.; Verma, Chandan Prasad; Verma, A. K.
2018-04-01
Stability analysis of underground mining is, generally, complex in nature and is difficult to carry out through analytical solutions more so in case of pot-hole subsidence prediction. Thus, application of numerical modeling technique for simulating and finding a solution is preferred. This paper reports the development of a methodology for simulating the pot-hole subsidence using FLAC3D. This study is restricted to geologically disturbed areas where presence of fault was dominating factor for occurrence of pot-hole subsidence. The results demonstrate that the variation in the excavation geometry and properties of immediate roof rocks play a vital role in the occurrence of pot-hole subsidence.
NASA Astrophysics Data System (ADS)
Belkina, T. A.; Konyukhova, N. B.; Kurochkin, S. V.
2012-10-01
A singular boundary value problem for a second-order linear integrodifferential equation with Volterra and non-Volterra integral operators is formulated and analyzed. The equation is defined on ℝ+, has a weak singularity at zero and a strong singularity at infinity, and depends on several positive parameters. Under natural constraints on the coefficients of the equation, existence and uniqueness theorems for this problem with given limit boundary conditions at singular points are proved, asymptotic representations of the solution are given, and an algorithm for its numerical determination is described. Numerical computations are performed and their interpretation is given. The problem arises in the study of the survival probability of an insurance company over infinite time (as a function of its initial surplus) in a dynamic insurance model that is a modification of the classical Cramer-Lundberg model with a stochastic process rate of premium under a certain investment strategy in the financial market. A comparative analysis of the results with those produced by the model with deterministic premiums is given.
A numerical method for computing unsteady 2-D boundary layer flows
NASA Technical Reports Server (NTRS)
Krainer, Andreas
1988-01-01
A numerical method for computing unsteady two-dimensional boundary layers in incompressible laminar and turbulent flows is described and applied to a single airfoil changing its incidence angle in time. The solution procedure adopts a first order panel method with a simple wake model to solve for the inviscid part of the flow, and an implicit finite difference method for the viscous part of the flow. Both procedures integrate in time in a step-by-step fashion, in the course of which each step involves the solution of the elliptic Laplace equation and the solution of the parabolic boundary layer equations. The Reynolds shear stress term of the boundary layer equations is modeled by an algebraic eddy viscosity closure. The location of transition is predicted by an empirical data correlation originating from Michel. Since transition and turbulence modeling are key factors in the prediction of viscous flows, their accuracy will be of dominant influence to the overall results.
Study of Magnetic Damping Effect on Convection and Solidification Under G-Jitter Conditions
NASA Technical Reports Server (NTRS)
Li, Ben Q.; deGroh, H. C., III
1999-01-01
As shown by NASA resources dedicated to measuring residual gravity (SAMS and OARE systems), g-jitter is a critical issue affecting space experiments on solidification processing of materials. This study aims to provide, through extensive numerical simulations and ground based experiments, an assessment of the use of magnetic fields in combination with microgravity to reduce the g-jitter induced convective flows in space processing systems. We have so far completed asymptotic analyses based on the analytical solutions for g-jitter driven flow and magnetic field damping effects for a simple one-dimensional parallel plate configuration, and developed both 2-D and 3-D numerical models for g-jitter driven flows in simple solidification systems with and without presence of an applied magnetic field. Numerical models have been checked with the analytical solutions and have been applied to simulate the convective flows and mass transfer using both synthetic g-jitter functions and the g-jitter data taken from space flight. Some useful findings have been obtained from the analyses and the modeling results. Some key points may be summarized as follows: (1) the amplitude of the oscillating velocity decreases at a rate inversely proportional to the g-jitter frequency and with an increase in the applied magnetic field; (2) the induced flow approximately oscillates at the same frequency as the affecting g-jitter, but out of a phase angle; (3) the phase angle is a complicated function of geometry, applied magnetic field, temperature gradient and frequency; (4) g-jitter driven flows exhibit a complex fluid flow pattern evolving in time; (5) the damping effect is more effective for low frequency flows; and (6) the applied magnetic field helps to reduce the variation of solutal distribution along the solid-liquid interface. Work in progress includes numerical simulations and ground-based measurements. Both 2-D and 3-D numerical simulations are being continued to obtain further information on g-jitter driven flows and magnetic field effects. A physical model for ground-based measurements is completed and some measurements of the oscillating convection are being taken on the physical model. The comparison of the measurements with numerical simulations is in progress. Additional work planned in the project will also involve extending the 2-D numerical model to include the solidification phenomena with the presence of both g-jitter and magnetic fields.
Age-of-Air, Tape Recorder, and Vertical Transport Schemes
NASA Technical Reports Server (NTRS)
Lin, S.-J.; Einaudi, Franco (Technical Monitor)
2000-01-01
A numerical-analytic investigation of the impacts of vertical transport schemes on the model simulated age-of-air and the so-called 'tape recorder' will be presented using an idealized 1-D column transport model as well as a more realistic 3-D dynamical model. By comparing to the 'exact' solutions of 'age-of-air' and the 'tape recorder' obtainable in the 1-D setting, useful insight is gained on the impacts of numerical diffusion and dispersion of numerical schemes used in global models. Advantages and disadvantages of Eulerian, semi-Lagrangian, and Lagrangian transport schemes will be discussed. Vertical resolution requirement for numerical schemes as well as observing systems for capturing the fine details of the 'tape recorder' or any upward propagating wave-like structures can potentially be derived from the 1-D analytic model.
Flow in curved ducts of varying cross-section
NASA Astrophysics Data System (ADS)
Sotiropoulos, F.; Patel, V. C.
1992-07-01
Two numerical methods for solving the incompressible Navier-Stokes equations are compared with each other by applying them to calculate laminar and turbulent flows through curved ducts of regular cross-section. Detailed comparisons, between the computed solutions and experimental data, are carried out in order to validate the two methods and to identify their relative merits and disadvantages. Based on the conclusions of this comparative study a numerical method is developed for simulating viscous flows through curved ducts of varying cross-sections. The proposed method is capable of simulating the near-wall turbulence using fine computational meshes across the sublayer in conjunction with a two-layer k-epsilon model. Numerical solutions are obtained for: (1) a straight transition duct geometry, and (2) a hydroturbine draft-tube configuration at model scale Reynolds number for various inlet swirl intensities. The report also provides a detailed literature survey that summarizes all the experimental and computational work in the area of duct flows.
Solar Corona Simulation Model With Positivity-preserving Property
NASA Astrophysics Data System (ADS)
Feng, X. S.
2015-12-01
Positivity-preserving is one of crucial problems in solar corona simulation. In such numerical simulation of low plasma β region, keeping density and pressure is a first of all matter to obtain physical sound solution. In the present paper, we utilize the maximum-principle-preserving flux limiting technique to develop a class of second order positivity-preserving Godunov finite volume HLL methods for the solar wind plasma MHD equations. Based on the underlying first order building block of positivity preserving Lax-Friedrichs, our schemes, under the constrained transport (CT) and generalized Lagrange multiplier (GLM) framework, can achieve high order accuracy, a discrete divergence-free condition and positivity of the numerical solution simultaneously without extra CFL constraints. Numerical results in four Carrington rotation during the declining, rising, minimum and maximum solar activity phases are provided to demonstrate the performance of modeling small plasma beta with positivity-preserving property of the proposed method.
Well-balanced high-order solver for blood flow in networks of vessels with variable properties.
Müller, Lucas O; Toro, Eleuterio F
2013-12-01
We present a well-balanced, high-order non-linear numerical scheme for solving a hyperbolic system that models one-dimensional flow in blood vessels with variable mechanical and geometrical properties along their length. Using a suitable set of test problems with exact solution, we rigorously assess the performance of the scheme. In particular, we assess the well-balanced property and the effective order of accuracy through an empirical convergence rate study. Schemes of up to fifth order of accuracy in both space and time are implemented and assessed. The numerical methodology is then extended to realistic networks of elastic vessels and is validated against published state-of-the-art numerical solutions and experimental measurements. It is envisaged that the present scheme will constitute the building block for a closed, global model for the human circulation system involving arteries, veins, capillaries and cerebrospinal fluid. Copyright © 2013 John Wiley & Sons, Ltd.
Four-level conservative finite-difference schemes for Boussinesq paradigm equation
NASA Astrophysics Data System (ADS)
Kolkovska, N.
2013-10-01
In this paper a two-parametric family of four level conservative finite difference schemes is constructed for the multidimensional Boussinesq paradigm equation. The schemes are explicit in the sense that no inner iterations are needed for evaluation of the numerical solution. The preservation of the discrete energy with this method is proved. The schemes have been numerically tested on one soliton propagation model and two solitons interaction model. The numerical experiments demonstrate that the proposed family of schemes has second order of convergence in space and time steps in the discrete maximal norm.
Approximating a retarded-advanced differential equation that models human phonation
NASA Astrophysics Data System (ADS)
Teodoro, M. Filomena
2017-11-01
In [1, 2, 3] we have got the numerical solution of a linear mixed type functional differential equation (MTFDE) introduced initially in [4], considering the autonomous and non-autonomous case by collocation, least squares and finite element methods considering B-splines basis set. The present work introduces a numerical scheme using least squares method (LSM) and Gaussian basis functions to solve numerically a nonlinear mixed type equation with symmetric delay and advance which models human phonation. The preliminary results are promising. We obtain an accuracy comparable with the previous results.
A numerical cloud model for the support of laboratory experimentation
NASA Technical Reports Server (NTRS)
Hagen, D. E.
1979-01-01
A numerical cloud model is presented which can describe the evolution of a cloud starting from moist aerosol-laden air through the diffusional growth regime. The model is designed for the direct support of cloud chamber laboratory experimentation, i.e., experiment preparation, real-time control and data analysis. In the model the thermodynamics is uncoupled from the droplet growth processes. Analytic solutions for the cloud droplet growth equations are developed which can be applied in most laboratory situations. The model is applied to a variety of representative experiments.
Automated smoother for the numerical decoupling of dynamics models.
Vilela, Marco; Borges, Carlos C H; Vinga, Susana; Vasconcelos, Ana Tereza R; Santos, Helena; Voit, Eberhard O; Almeida, Jonas S
2007-08-21
Structure identification of dynamic models for complex biological systems is the cornerstone of their reverse engineering. Biochemical Systems Theory (BST) offers a particularly convenient solution because its parameters are kinetic-order coefficients which directly identify the topology of the underlying network of processes. We have previously proposed a numerical decoupling procedure that allows the identification of multivariate dynamic models of complex biological processes. While described here within the context of BST, this procedure has a general applicability to signal extraction. Our original implementation relied on artificial neural networks (ANN), which caused slight, undesirable bias during the smoothing of the time courses. As an alternative, we propose here an adaptation of the Whittaker's smoother and demonstrate its role within a robust, fully automated structure identification procedure. In this report we propose a robust, fully automated solution for signal extraction from time series, which is the prerequisite for the efficient reverse engineering of biological systems models. The Whittaker's smoother is reformulated within the context of information theory and extended by the development of adaptive signal segmentation to account for heterogeneous noise structures. The resulting procedure can be used on arbitrary time series with a nonstationary noise process; it is illustrated here with metabolic profiles obtained from in-vivo NMR experiments. The smoothed solution that is free of parametric bias permits differentiation, which is crucial for the numerical decoupling of systems of differential equations. The method is applicable in signal extraction from time series with nonstationary noise structure and can be applied in the numerical decoupling of system of differential equations into algebraic equations, and thus constitutes a rather general tool for the reverse engineering of mechanistic model descriptions from multivariate experimental time series.
NASA Technical Reports Server (NTRS)
CraigMcClung, R.; Lee, Yi-Der; Cardinal, Joseph W.; Guo, Yajun
2012-01-01
The elastic stress intensity factor (SIF, commonly denoted as K) is the foundation of practical fracture mechanics (FM) analysis for aircraft structures. This single parameter describes the first-order effects of stress magnitude and distribution as well as the geometry of both structure/component and crack. Hence, the calculation of K is often the most significant step in fatigue analysis based on FM. This presentation will provide several reflections on the current state-of-the-art in SIF solution methods used for practical aerospace applications, including a brief historical perspective, descriptions of some recent and ongoing advances, and comments on some remaining challenges. Newman and Raju made significant early contributions to practical structural analysis by developing closed-form SIF equations for surface and corner cracks in simplified geometries, often based on empirical fits of finite element (FE) solutions. Those solutions (and others like them) were sometimes revised as new analyses were conducted or limitations discovered. The foundational solutions have exhibited striking longevity, despite the relatively "coarse" FE models employed many decades ago. However, in recent years, the accumulation of different generations of solutions for the same nominal geometry has led to some confusion (which solution is correct?), and steady increases in computational capabilities have facilitated the discovery of inaccuracies in some (not all!) of the legacy solutions. Some examples of problems and solutions are presented and discussed, including the challenge of maintaining consistency with legacy design applications. As computational power has increased, the prospect of calculating large numbers of SIF solutions for specific complex geometries with advanced numerical methods has grown more attractive. Fawaz and Andersson, for example, have been generating literally millions of new SIF solutions for different combinations of multiple cracks under simplified loading schemes using p-version FE methods. These data are invaluable, but questions remain about their practical use, because the tabular databases of key results needed to support practical life analysis can occupy gigabytes of storage for only a few classes of geometries. The prospect of using such advanced numerical methods to calculate in real time only those K solutions actually needed to support a specific crack growth analysis is also tempting, but the stark reality is that the computational cost is still so high that the approach is not practical except for specific, critical application problems. Some thoughts are offered about alternative paradigms. Compounding approaches are some of the earliest building blocks of SIF development for more complex geometries. These approaches are especially attractive because of their very low computational cost and their conceptual robustness; they are, in some ways, an intriguing contrast and complement to the brute-force numerical methods. In recent years, researchers at NRC-Canada have published remarkable results showing how compounding approaches can be used to generate accurate solutions for very difficult problems. Examples are provided of some successes--and some limitations--using this approach. These closed-form, tabulated numerical, and compounding approaches have typically been used for simple remote loading with simple load paths to the crack. However, many significant cracks occur in complex stress gradient fields. This is a job for weight function (WF) methods, where the arbitrary stress distribution on the crack plane in the corresponding uncracked body (typically determined using FE methods) is used to determine K. Several significant recent advances in WF methods and solutions are highlighted here. Fueled by advanced 3D numerical methods, many new solutions have been generated for classic geometries such as surface and corner cracks with wide ranges of geometrical validity. A new WF formulation has also be developed for part-through cracks considering the arbitrary stress gradients in all directions in the crack plane (so-called bivariant solutions). Basic WF methods have recently been combined with analytical expressions for crack plane stresses to develop a large family of accurate SIF solutions for corner, surface, and through cracks at internal or external notches with very wide ranges of shapes, sizes, acuities, and offsets. Finally, WF solutions are much faster than FE or boundary element solutions, but can still be much slower than simple closed-form solutions, especially for bivariant solutions that can require 2D numerical integration. Novel pre-integration and dynamic tabular methods have been developed that substantially increase the speed of these advanced WF solutions. The practical utility of advanced SIF methods, including both WF and direct numerical methods, is greatly enhanced if the FM life analysis can be directly and efficiently linked with digital models of the actual structure or component (e.g., FE models for stress analysis). Two recent advances of this type will be described. One approach directly interfaces the FM life analysis with the FE model of the uncracked component (including stress results). Through a powerful graphical user interface, simplified FM life models can be constructed (and visualized) directly on the component model, with the computer collecting the geometry and stress gradient information needed for the life calculation. An even more powerful paradigm uses expert logic to automatically build an optimum simple fracture model at any and every desired location in the component model, perform the life calculation, and even generate fatigue crack growth life contour maps, all with minimal user intervention. This paradigm has also been extended to the automatic calculation of fracture risk, considering uncertainty or variability in key input parameters such as initial crack size or location. Another new integrated approach links the engineering life analysis, the component model, and a 3D numerical fracture analysis built with the same component model to generate a table of SIF values at a specific location that can then be employed efficiently to perform the life calculation. Some attention must be given to verification and validation (V&V) issues and challenges: how good are these SIF solutions, how good is good enough, and does anyone believe the life answer? It is important to think critically about the different sources of error or uncertainty and to perform V&V in a hierarchal, building-block manner. Some accuracy issues for SIF solutions, for example, may actually involve independent material behavior issues, such as constraint loss effects for crack fronts near component surfaces, and can be a source of confusion. Recommendations are proposed for improved V&V approaches. This presentation will briefly but critically survey the range of issues and advances mentioned above, with a particular view towards assembling an integrated approach that combines different methods to create practical tools for real-world design and analysis problems. Examples will be selectively drawn from the recent literature, from recent enhancements in the NASGRO and DARWIN computer codes, and from previously unpublished research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gelbard, F.; Fitzgerald, J.W.; Hoppel, W.A.
1998-07-01
We present the theoretical framework and computational methods that were used by {ital Fitzgerald} {ital et al.} [this issue (a), (b)] describing a one-dimensional sectional model to simulate multicomponent aerosol dynamics in the marine boundary layer. The concepts and limitations of modeling spatially varying multicomponent aerosols are elucidated. New numerical sectional techniques are presented for simulating multicomponent aerosol growth, settling, and eddy transport, coupled to time-dependent and spatially varying condensing vapor concentrations. Comparisons are presented with new exact solutions for settling and particle growth by simultaneous dynamic condensation of one vapor and by instantaneous equilibration with a spatially varying secondmore » vapor. {copyright} 1998 American Geophysical Union« less
NASA Astrophysics Data System (ADS)
Jin, Y.; Liang, Z.
2002-12-01
The vector radiative transfer (VRT) equation is an integral-deferential equation to describe multiple scattering, absorption and transmission of four Stokes parameters in random scatter media. From the integral formal solution of VRT equation, the lower order solutions, such as the first-order scattering for a layer medium or the second order scattering for a half space, can be obtained. The lower order solutions are usually good at low frequency when high-order scattering is negligible. It won't be feasible to continue iteration for obtaining high order scattering solution because too many folds integration would be involved. In the space-borne microwave remote sensing, for example, the DMSP (Defense Meterological Satellite Program) SSM/I (Special Sensor Microwave/Imager) employed seven channels of 19, 22, 37 and 85GHz. Multiple scattering from the terrain surfaces such as snowpack cannot be neglected at these channels. The discrete ordinate and eigen-analysis method has been studied to take into account for multiple scattering and applied to remote sensing of atmospheric precipitation, snowpack etc. Snowpack was modeled as a layer of dense spherical particles, and the VRT for a layer of uniformly dense spherical particles has been numerically studied by the discrete ordinate method. However, due to surface melting and refrozen crusts, the snowpack undergoes stratifying to form inhomegeneous profiles of the ice grain size, fractional volume and physical temperature etc. It becomes necessary to study multiple scattering and emission from stratified snowpack of dense ice grains. But, the discrete ordinate and eigen-analysis method cannot be simply applied to multi-layers model, because numerically solving a set of multi-equations of VRT is difficult. Stratifying the inhomogeneous media into multi-slabs and employing the first order Mueller matrix of each thin slab, this paper developed an iterative method to derive high orders scattering solutions of whole scatter media. High order scattering and emission from inhomogeneous stratifying media of dense spherical particles are numerically obtained. The brightness temperature at low frequency such as 5.3 GHz without high order scattering and at SSM/I channels with high order scattering are obtained. This approach is also compared with the conventional discrete ordinate method for an uniform layer model. Numerical simulation for inhomogeneous snowpack is also compared with the measurements of microwave remote sensing.
Master equation for a kinetic model of a trading market and its analytic solution
NASA Astrophysics Data System (ADS)
Chatterjee, Arnab; Chakrabarti, Bikas K.; Stinchcombe, Robin B.
2005-08-01
We analyze an ideal-gas-like model of a trading market with quenched random saving factors for its agents and show that the steady state income (m) distribution P(m) in the model has a power law tail with Pareto index ν exactly equal to unity, confirming the earlier numerical studies on this model. The analysis starts with the development of a master equation for the time development of P(m) . Precise solutions are then obtained in some special cases.
Master equation for a kinetic model of a trading market and its analytic solution.
Chatterjee, Arnab; Chakrabarti, Bikas K; Stinchcombe, Robin B
2005-08-01
We analyze an ideal-gas-like model of a trading market with quenched random saving factors for its agents and show that the steady state income (m) distribution P(m) in the model has a power law tail with Pareto index nu exactly equal to unity, confirming the earlier numerical studies on this model. The analysis starts with the development of a master equation for the time development of P(m) . Precise solutions are then obtained in some special cases.
Analytical and Numerical Solutions of Generalized Fokker-Planck Equations - Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prinja, Anil K.
The overall goal of this project was to develop advanced theoretical and numerical techniques to quantitatively describe the spreading of a collimated beam of charged particles in space, in angle, and in energy, as a result of small deflection, small energy transfer Coulomb collisions with the target nuclei and electrons. Such beams arise in several applications of great interest in nuclear engineering, and include electron and ion radiotherapy, ion beam modification of materials, accelerator transmutation of waste, and accelerator production of tritium, to name some important candidates. These applications present unique and difficult modeling challenges, but from the outset aremore » amenable to the language of ''transport theory'', which is very familiar to nuclear engineers and considerably less-so to physicists and material scientists. Thus, our approach has been to adopt a fundamental description based on transport equations, but the forward peakedness associated with charged particle interactions precludes a direct application of solution methods developed for neutral particle transport. Unique problem formulations and solution techniques are necessary to describe the transport and interaction of charged particles. In particular, we have developed the Generalized Fokker-Planck (GFP) approach to describe the angular and radial spreading of a collimated beam and a renormalized transport model to describe the energy-loss straggling of an initially monoenergetic distribution. Both analytic and numerical solutions have been investigated and in particular novel finite element numerical methods have been developed. In the first phase of the project, asymptotic methods were used to develop closed form solutions to the GFP equation for different orders of expansion, and was described in a previous progress report. In this final report we present a detailed description of (i) a novel energy straggling model based on a Fokker-Planck approximation but which is adapted for a multigroup transport setting, and (ii) two unique families of discontinuous finite element schemes, one linear and the other nonlinear.« less
Numerical analysis of singular solutions of two-dimensional problems of asymmetric elasticity
NASA Astrophysics Data System (ADS)
Korepanov, V. V.; Matveenko, V. P.; Fedorov, A. Yu.; Shardakov, I. N.
2013-07-01
An algorithm for the numerical analysis of singular solutions of two-dimensional problems of asymmetric elasticity is considered. The algorithm is based on separation of a power-law dependence from the finite-element solution in a neighborhood of singular points in the domain under study, where singular solutions are possible. The obtained power-law dependencies allow one to conclude whether the stresses have singularities and what the character of these singularities is. The algorithm was tested for problems of classical elasticity by comparing the stress singularity exponents obtained by the proposed method and from known analytic solutions. Problems with various cases of singular points, namely, body surface points at which either the smoothness of the surface is violated, or the type of boundary conditions is changed, or distinct materials are in contact, are considered as applications. The stress singularity exponents obtained by using the models of classical and asymmetric elasticity are compared. It is shown that, in the case of cracks, the stress singularity exponents are the same for the elasticity models under study, but for other cases of singular points, the stress singularity exponents obtained on the basis of asymmetric elasticity have insignificant quantitative distinctions from the solutions of the classical elasticity.
Numerical solution of non-linear dual-phase-lag bioheat transfer equation within skin tissues.
Kumar, Dinesh; Kumar, P; Rai, K N
2017-11-01
This paper deals with numerical modeling and simulation of heat transfer in skin tissues using non-linear dual-phase-lag (DPL) bioheat transfer model under periodic heat flux boundary condition. The blood perfusion is assumed temperature-dependent which results in non-linear DPL bioheat transfer model in order to predict more accurate results. A numerical method of line which is based on finite difference and Runge-Kutta (4,5) schemes, is used to solve the present non-linear problem. Under specific case, the exact solution has been obtained and compared with the present numerical scheme, and we found that those are in good agreement. A comparison based on model selection criterion (AIC) has been made among non-linear DPL models when the variation of blood perfusion rate with temperature is of constant, linear and exponential type with the experimental data and it has been found that non-linear DPL model with exponential variation of blood perfusion rate is closest to the experimental data. In addition, it is found that due to absence of phase-lag phenomena in Pennes bioheat transfer model, it achieves steady state more quickly and always predict higher temperature than thermal and DPL non-linear models. The effect of coefficient of blood perfusion rate, dimensionless heating frequency and Kirchoff number on dimensionless temperature distribution has also been analyzed. The whole analysis is presented in dimensionless form. Copyright © 2017 Elsevier Inc. All rights reserved.
Numerical Asymptotic Solutions Of Differential Equations
NASA Technical Reports Server (NTRS)
Thurston, Gaylen A.
1992-01-01
Numerical algorithms derived and compared with classical analytical methods. In method, expansions replaced with integrals evaluated numerically. Resulting numerical solutions retain linear independence, main advantage of asymptotic solutions.
NASA Astrophysics Data System (ADS)
Jafari, Azadeh; Deville, Michel O.; Fiétier, Nicolas
2008-09-01
This study discusses the capability of the constitutive laws for the matrix logarithm of the conformation tensor (LCT model) within the framework of the spectral elements method. The high Weissenberg number problems (HWNP) usually produce a lack of convergence of the numerical algorithms. Even though the question whether the HWNP is a purely numerical problem or rather a breakdown of the constitutive law of the model has remained somewhat of a mystery, it has been recognized that the selection of an appropriate constitutive equation constitutes a very crucial step although implementing a suitable numerical technique is still important for successful discrete modeling of non-Newtonian flows. The LCT model formulation of the viscoelastic equations originally suggested by Fattal and Kupferman is applied for 2-dimensional (2D) FENE-CR model. The Planar Poiseuille flow is considered as a benchmark problem to test this representation at high Weissenberg number. The numerical results are compared with numerical solution of the standard constitutive equation.
Applications of numerical methods to simulate the movement of contaminants in groundwater.
Sun, N Z
1989-01-01
This paper reviews mathematical models and numerical methods that have been extensively used to simulate the movement of contaminants through the subsurface. The major emphasis is placed on the numerical methods of advection-dominated transport problems and inverse problems. Several mathematical models that are commonly used in field problems are listed. A variety of numerical solutions for three-dimensional models are introduced, including the multiple cell balance method that can be considered a variation of the finite element method. The multiple cell balance method is easy to understand and convenient for solving field problems. When the advection transport dominates the dispersion transport, two kinds of numerical difficulties, overshoot and numerical dispersion, are always involved in solving standard, finite difference methods and finite element methods. To overcome these numerical difficulties, various numerical techniques are developed, such as upstream weighting methods and moving point methods. A complete review of these methods is given and we also mention the problems of parameter identification, reliability analysis, and optimal-experiment design that are absolutely necessary for constructing a practical model. PMID:2695327
NASA Astrophysics Data System (ADS)
Crevoisier, David; Chanzy, André; Voltz, Marc
2009-06-01
Ross [Ross PJ. Modeling soil water and solute transport - fast, simplified numerical solutions. Agron J 2003;95:1352-61] developed a fast, simplified method for solving Richards' equation. This non-iterative 1D approach, using Brooks and Corey [Brooks RH, Corey AT. Hydraulic properties of porous media. Hydrol. papers, Colorado St. Univ., Fort Collins; 1964] hydraulic functions, allows a significant reduction in computing time while maintaining the accuracy of the results. The first aim of this work is to confirm these results in a more extensive set of problems, including those that would lead to serious numerical difficulties for the standard numerical method. The second aim is to validate a generalisation of the Ross method to other mathematical representations of hydraulic functions. The Ross method is compared with the standard finite element model, Hydrus-1D [Simunek J, Sejna M, Van Genuchten MTh. The HYDRUS-1D and HYDRUS-2D codes for estimating unsaturated soil hydraulic and solutes transport parameters. Agron Abstr 357; 1999]. Computing time, accuracy of results and robustness of numerical schemes are monitored in 1D simulations involving different types of homogeneous soils, grids and hydrological conditions. The Ross method associated with modified Van Genuchten hydraulic functions [Vogel T, Cislerova M. On the reliability of unsaturated hydraulic conductivity calculated from the moisture retention curve. Transport Porous Media 1988;3:1-15] proves in every tested scenario to be more robust numerically, and the compromise of computing time/accuracy is seen to be particularly improved on coarse grids. Ross method run from 1.25 to 14 times faster than Hydrus-1D.
NASA Astrophysics Data System (ADS)
Li, Chuan-Yao; Huang, Hai-Jun; Tang, Tie-Qiao
2017-03-01
This paper investigates the traffic flow dynamics under the social optimum (SO) principle in a single-entry traffic corridor with staggered shifts from the analytical and numerical perspectives. The LWR (Lighthill-Whitham and Richards) model and the Greenshield's velocity-density function are utilized to describe the dynamic properties of traffic flow. The closed-form SO solution is analytically derived and some numerical examples are used to further testify the analytical solution. The optimum proportion of the numbers of commuters with different desired arrival times is further discussed, where the analytical and numerical results both indicate that the cumulative outflow curve under the SO principle is piecewise smooth.
NASA Technical Reports Server (NTRS)
Bozeman, Robert E.
1987-01-01
An analytic technique for accounting for the joint effects of Earth oblateness and atmospheric drag on close-Earth satellites is investigated. The technique is analytic in the sense that explicit solutions to the Lagrange planetary equations are given; consequently, no numerical integrations are required in the solution process. The atmospheric density in the technique described is represented by a rotating spherical exponential model with superposed effects of the oblate atmosphere and the diurnal variations. A computer program implementing the process is discussed and sample output is compared with output from program NSEP (Numerical Satellite Ephemeris Program). NSEP uses a numerical integration technique to account for atmospheric drag effects.
NASA Astrophysics Data System (ADS)
Braun, Jean; van der Beek, Peter; Batt, Geoffrey
2006-05-01
Thermochronology, the study of the thermal history of rocks, enables us to quantify the nature and timing of tectonic processes. Quantitative Thermochronology is a robust review of isotopic ages, and presents a range of numerical modeling techniques to allow the physical implications of isotopic age data to be explored. The authors provide analytical, semi-analytical, and numerical solutions to the heat transfer equation in a range of tectonic settings and under varying boundary conditions. They then illustrate their modeling approach built around a large number of case studies. The benefits of different thermochronological techniques are also described. Computer programs on an accompanying website at www.cambridge.org/9780521830577 are introduced through the text and provide a means of solving the heat transport equation in the deforming Earth to predict the ages of rocks and compare them directly to geological and geochronological data. Several short tutorials, with hints and solutions, are also included. Numerous case studies help geologists to interpret age data and relate it to Earth processes Essential background material to aid understanding and using thermochronological data Provides a thorough treatise on numerical modeling of heat transport in the Earth's crust Supported by a website hosting relevant computer programs and colour slides of figures from the book for use in teaching
A model-adaptivity method for the solution of Lennard-Jones based adhesive contact problems
NASA Astrophysics Data System (ADS)
Ben Dhia, Hachmi; Du, Shuimiao
2018-05-01
The surface micro-interaction model of Lennard-Jones (LJ) is used for adhesive contact problems (ACP). To address theoretical and numerical pitfalls of this model, a sequence of partitions of contact models is adaptively constructed to both extend and approximate the LJ model. It is formed by a combination of the LJ model with a sequence of shifted-Signorini (or, alternatively, -Linearized-LJ) models, indexed by a shift parameter field. For each model of this sequence, a weak formulation of the associated local ACP is developed. To track critical localized adhesive areas, a two-step strategy is developed: firstly, a macroscopic frictionless (as first approach) linear-elastic contact problem is solved once to detect contact separation zones. Secondly, at each shift-adaptive iteration, a micro-macro ACP is re-formulated and solved within the multiscale Arlequin framework, with significant reduction of computational costs. Comparison of our results with available analytical and numerical solutions shows the effectiveness of our global strategy.
Algorithms for the Fractional Calculus: A Selection of Numerical Methods
NASA Technical Reports Server (NTRS)
Diethelm, K.; Ford, N. J.; Freed, A. D.; Luchko, Yu.
2003-01-01
Many recently developed models in areas like viscoelasticity, electrochemistry, diffusion processes, etc. are formulated in terms of derivatives (and integrals) of fractional (non-integer) order. In this paper we present a collection of numerical algorithms for the solution of the various problems arising in this context. We believe that this will give the engineer the necessary tools required to work with fractional models in an efficient way.
Avoiding numerical pitfalls in social force models
NASA Astrophysics Data System (ADS)
Köster, Gerta; Treml, Franz; Gödel, Marion
2013-06-01
The social force model of Helbing and Molnár is one of the best known approaches to simulate pedestrian motion, a collective phenomenon with nonlinear dynamics. It is based on the idea that the Newtonian laws of motion mostly carry over to pedestrian motion so that human trajectories can be computed by solving a set of ordinary differential equations for velocity and acceleration. The beauty and simplicity of this ansatz are strong reasons for its wide spread. However, the numerical implementation is not without pitfalls. Oscillations, collisions, and instabilities occur even for very small step sizes. Classic solution ideas from molecular dynamics do not apply to the problem because the system is not Hamiltonian despite its source of inspiration. Looking at the model through the eyes of a mathematician, however, we realize that the right hand side of the differential equation is nondifferentiable and even discontinuous at critical locations. This produces undesirable behavior in the exact solution and, at best, severe loss of accuracy in efficient numerical schemes even in short range simulations. We suggest a very simple mollified version of the social force model that conserves the desired dynamic properties of the original many-body system but elegantly and cost efficiently resolves several of the issues concerning stability and numerical resolution.
Computational reacting gas dynamics
NASA Technical Reports Server (NTRS)
Lam, S. H.
1993-01-01
In the study of high speed flows at high altitudes, such as that encountered by re-entry spacecrafts, the interaction of chemical reactions and other non-equilibrium processes in the flow field with the gas dynamics is crucial. Generally speaking, problems of this level of complexity must resort to numerical methods for solutions, using sophisticated computational fluid dynamics (CFD) codes. The difficulties introduced by reacting gas dynamics can be classified into three distinct headings: (1) the usually inadequate knowledge of the reaction rate coefficients in the non-equilibrium reaction system; (2) the vastly larger number of unknowns involved in the computation and the expected stiffness of the equations; and (3) the interpretation of the detailed reacting CFD numerical results. The research performed accepts the premise that reacting flows of practical interest in the future will in general be too complex or 'untractable' for traditional analytical developments. The power of modern computers must be exploited. However, instead of focusing solely on the construction of numerical solutions of full-model equations, attention is also directed to the 'derivation' of the simplified model from the given full-model. In other words, the present research aims to utilize computations to do tasks which have traditionally been done by skilled theoreticians: to reduce an originally complex full-model system into an approximate but otherwise equivalent simplified model system. The tacit assumption is that once the appropriate simplified model is derived, the interpretation of the detailed numerical reacting CFD numerical results will become much easier. The approach of the research is called computational singular perturbation (CSP).
NASA Astrophysics Data System (ADS)
Holgate, J. T.; Coppins, M.
2018-04-01
Plasma-surface interactions are ubiquitous in the field of plasma science and technology. Much of the physics of these interactions can be captured with a simple model comprising a cold ion fluid and electrons which satisfy the Boltzmann relation. However, this model permits analytical solutions in a very limited number of cases. This paper presents a versatile and robust numerical implementation of the model for arbitrary surface geometries in cartesian and axisymmetric cylindrical coordinates. Specific examples of surfaces with sinusoidal corrugations, trenches, and hemi-ellipsoidal protrusions verify this numerical implementation. The application of the code to problems involving plasma-liquid interactions, plasma etching, and electron emission from the surface is discussed.
A Gompertz population model with Allee effect and fuzzy initial values
NASA Astrophysics Data System (ADS)
Amarti, Zenia; Nurkholipah, Nenden Siti; Anggriani, Nursanti; Supriatna, Asep K.
2018-03-01
Growth and population dynamics models are important tools used in preparing a good management for society to predict the future of population or species. This has been done by various known methods, one among them is by developing a mathematical model that describes population growth. Models are usually formed into differential equations or systems of differential equations, depending on the complexity of the underlying properties of the population. One example of biological complexity is Allee effect. It is a phenomenon showing a high correlation between very small population size and the mean individual fitness of the population. In this paper the population growth model used is the Gompertz equation model by considering the Allee effect on the population. We explore the properties of the solution to the model numerically using the Runge-Kutta method. Further exploration is done via fuzzy theoretical approach to accommodate uncertainty of the initial values of the model. It is known that an initial value greater than the Allee threshold will cause the solution rises towards carrying capacity asymptotically. However, an initial value smaller than the Allee threshold will cause the solution decreases towards zero asymptotically, which means the population is eventually extinct. Numerical solutions show that modeling uncertain initial value of the critical point A (the Allee threshold) with a crisp initial value could cause the extinction of population of a certain possibilistic degree, depending on the predetermined membership function of the initial value.
2012-01-01
A lumped model of neural activity in neocortex is studied to identify regions of multi-stability of both steady states and periodic solutions. Presence of both steady states and periodic solutions is considered to correspond with epileptogenesis. The model, which consists of two delay differential equations with two fixed time lags is mainly studied for its dependency on varying connection strength between populations. Equilibria are identified, and using linear stability analysis, all transitions are determined under which both trivial and non-trivial fixed points lose stability. Periodic solutions arising at some of these bifurcations are numerically studied with a two-parameter bifurcation analysis. PMID:22655859
Unsteady magnetohydrodynamics mixed convection flow in a rotating medium with double diffusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiann, Lim Yeou; Ismail, Zulkhibri; Khan, Ilyas
2015-05-15
Exact solutions of an unsteady Magnetohydrodynamics (MHD) flow over an impulsively started vertical plate in a rotating medium are presented. The effects of thermal radiative and thermal diffusion on the fluid flow are also considered. The governing equations are modelled and solved for velocity, temperature and concentration using Laplace transforms technique. Expressions of velocity, temperature and concentration profiles are obtained and their numerical results are presented graphically. Skin friction, Sherwood number and Nusselt number are also computed and presented in tabular forms. The determined solutions can generate a large class of solutions as special cases corresponding to different motions withmore » technical relevance. The results obtained herein may be used to verify the validation of obtained numerical solutions for more complicated fluid flow problems.« less
ParaExp Using Leapfrog as Integrator for High-Frequency Electromagnetic Simulations
NASA Astrophysics Data System (ADS)
Merkel, M.; Niyonzima, I.; Schöps, S.
2017-12-01
Recently, ParaExp was proposed for the time integration of linear hyperbolic problems. It splits the time interval of interest into subintervals and computes the solution on each subinterval in parallel. The overall solution is decomposed into a particular solution defined on each subinterval with zero initial conditions and a homogeneous solution propagated by the matrix exponential applied to the initial conditions. The efficiency of the method depends on fast approximations of this matrix exponential based on recent results from numerical linear algebra. This paper deals with the application of ParaExp in combination with Leapfrog to electromagnetic wave problems in time domain. Numerical tests are carried out for a simple toy problem and a realistic spiral inductor model discretized by the Finite Integration Technique.
Challenges to Applying a Metamodel for Groundwater Flow Beyond Underlying Numerical Model Boundaries
NASA Astrophysics Data System (ADS)
Reeves, H. W.; Fienen, M. N.; Feinstein, D.
2015-12-01
Metamodels of environmental behavior offer opportunities for decision support, adaptive management, and increased stakeholder engagement through participatory modeling and model exploration. Metamodels are derived from calibrated, computationally demanding, numerical models. They may potentially be applied to non-modeled areas to provide screening or preliminary analysis tools for areas that do not yet have the benefit of more comprehensive study. In this decision-support mode, they may be fulfilling a role often accomplished by application of analytical solutions. The major challenge to transferring a metamodel to a non-modeled area is how to quantify the spatial data in the new area of interest in such a way that it is consistent with the data used to derive the metamodel. Tests based on transferring a metamodel derived from a numerical groundwater-flow model of the Lake Michigan Basin to other glacial settings across the northern U.S. show that the spatial scale of the numerical model must be appropriately scaled to adequately represent different settings. Careful GIS analysis of the numerical model, metamodel, and new area of interest is required for successful transfer of results.
Non-hydrostatic semi-elastic hybrid-coordinate SISL extension of HIRLAM. Part II: numerical testing
NASA Astrophysics Data System (ADS)
Rõõm, Rein; Männik, Aarne; Luhamaa, Andres; Zirk, Marko
2007-10-01
The semi-implicit semi-Lagrangian (SISL), two-time-level, non-hydrostatic numerical scheme, based on the non-hydrostatic, semi-elastic pressure-coordinate equations, is tested in model experiments with flow over given orography (elliptical hill, mountain ridge, system of successive ridges) in a rectangular domain with emphasis on the numerical accuracy and non-hydrostatic effect presentation capability. Comparison demonstrates good (in strong primary wave generation) to satisfactory (in weak secondary wave reproduction in some cases) consistency of the numerical modelling results with known stationary linear test solutions. Numerical stability of the developed model is investigated with respect to the reference state choice, modelling dynamics of a stationary front. The horizontally area-mean reference temperature proves to be the optimal stability warrant. The numerical scheme with explicit residual in the vertical forcing term becomes unstable for cross-frontal temperature differences exceeding 30 K. Stability is restored, if the vertical forcing is treated implicitly, which enables to use time steps, comparable with the hydrostatic SISL.
NASA Astrophysics Data System (ADS)
Jusoh, Rahimah; Nazar, Roslinda
2018-04-01
The magnetohydrodynamic (MHD) stagnation point flow and heat transfer of an electrically conducting nanofluid over a nonlinear stretching/shrinking sheet is studied numerically. Mathematical modelling and analysis are attended in the presence of viscous dissipation. Appropriate similarity transformations are used to reduce the boundary layer equations for momentum, energy and concentration into a set of ordinary differential equations. The reduced equations are solved numerically using the built in bvp4c function in Matlab. The numerical and graphical results on the effects of various parameters on the velocity and temperature profiles as well as the skin friction coefficient and the local Nusselt number are analyzed and discussed in this paper. The study discovers the existence of dual solutions for a certain range of the suction parameter. The conducted stability analysis reveals that the first solution is stable and feasible, while the second solution is unstable.
Numerical Analysis of Incipient Separation on 53 Deg Swept Diamond Wing
NASA Technical Reports Server (NTRS)
Frink, Neal T.
2015-01-01
A systematic analysis of incipient separation and subsequent vortex formation from moderately swept blunt leading edges is presented for a 53 deg swept diamond wing. This work contributes to a collective body of knowledge generated within the NATO/STO AVT-183 Task Group titled 'Reliable Prediction of Separated Flow Onset and Progression for Air and Sea Vehicles'. The objective is to extract insights from the experimentally measured and numerically computed flow fields that might enable turbulence experts to further improve their models for predicting swept blunt leading-edge flow separation. Details of vortex formation are inferred from numerical solutions after establishing a good correlation of the global flow field and surface pressure distributions between wind tunnel measurements and computed flow solutions. From this, significant and sometimes surprising insights into the nature of incipient separation and part-span vortex formation are derived from the wealth of information available in the computational solutions.
NASA Technical Reports Server (NTRS)
Cooke, C. H.; Blanchard, D. K.
1975-01-01
A finite element algorithm for solution of fluid flow problems characterized by the two-dimensional compressible Navier-Stokes equations was developed. The program is intended for viscous compressible high speed flow; hence, primitive variables are utilized. The physical solution was approximated by trial functions which at a fixed time are piecewise cubic on triangular elements. The Galerkin technique was employed to determine the finite-element model equations. A leapfrog time integration is used for marching asymptotically from initial to steady state, with iterated integrals evaluated by numerical quadratures. The nonsymmetric linear systems of equations governing time transition from step-to-step are solved using a rather economical block iterative triangular decomposition scheme. The concept was applied to the numerical computation of a free shear flow. Numerical results of the finite-element method are in excellent agreement with those obtained from a finite difference solution of the same problem.
An adaptive gridless methodology in one dimension
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snyder, N.T.; Hailey, C.E.
1996-09-01
Gridless numerical analysis offers great potential for accurately solving for flow about complex geometries or moving boundary problems. Because gridless methods do not require point connection, the mesh cannot twist or distort. The gridless method utilizes a Taylor series about each point to obtain the unknown derivative terms from the current field variable estimates. The governing equation is then numerically integrated to determine the field variables for the next iteration. Effects of point spacing and Taylor series order on accuracy are studied, and they follow similar trends of traditional numerical techniques. Introducing adaption by point movement using a spring analogymore » allows the solution method to track a moving boundary. The adaptive gridless method models linear, nonlinear, steady, and transient problems. Comparison with known analytic solutions is given for these examples. Although point movement adaption does not provide a significant increase in accuracy, it helps capture important features and provides an improved solution.« less
Gravity and large black holes in Randall-Sundrum II braneworlds.
Figueras, Pau; Wiseman, Toby
2011-08-19
We show how to construct low energy solutions to the Randall-Sundrum II (RSII) model by using an associated five-dimensional anti-de Sitter space (AdS(5)) and/or four-dimensional conformal field theory (CFT(4)) problem. The RSII solution is given as a perturbation of the AdS(5)-CFT(4) solution, with the perturbation parameter being the radius of curvature of the brane metric compared to the AdS length ℓ. The brane metric is then a specific perturbation of the AdS(5)-CFT(4) boundary metric. For low curvatures the RSII solution reproduces 4D general relativity on the brane. Recently, AdS(5)-CFT(4) solutions with a 4D Schwarzschild boundary metric were numerically constructed. We modify the boundary conditions to numerically construct large RSII static black holes with radius up to ~20ℓ. For a large radius, the RSII solutions are indeed close to the associated AdS(5)-CFT(4) solution. © 2011 American Physical Society
Numerical solution methods for viscoelastic orthotropic materials
NASA Technical Reports Server (NTRS)
Gramoll, K. C.; Dillard, D. A.; Brinson, H. F.
1988-01-01
Numerical solution methods for viscoelastic orthotropic materials, specifically fiber reinforced composite materials, are examined. The methods include classical lamination theory using time increments, direction solution of the Volterra Integral, Zienkiewicz's linear Prony series method, and a new method called Nonlinear Differential Equation Method (NDEM) which uses a nonlinear Prony series. The criteria used for comparison of the various methods include the stability of the solution technique, time step size stability, computer solution time length, and computer memory storage. The Volterra Integral allowed the implementation of higher order solution techniques but had difficulties solving singular and weakly singular compliance function. The Zienkiewicz solution technique, which requires the viscoelastic response to be modeled by a Prony series, works well for linear viscoelastic isotropic materials and small time steps. The new method, NDEM, uses a modified Prony series which allows nonlinear stress effects to be included and can be used with orthotropic nonlinear viscoelastic materials. The NDEM technique is shown to be accurate and stable for both linear and nonlinear conditions with minimal computer time.
40 CFR 194.23 - Models and computer codes.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Models and computer codes. 194.23... General Requirements § 194.23 Models and computer codes. (a) Any compliance application shall include: (1... obtain stable solutions; (iv) Computer models accurately implement the numerical models; i.e., computer...
40 CFR 194.23 - Models and computer codes.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Models and computer codes. 194.23... General Requirements § 194.23 Models and computer codes. (a) Any compliance application shall include: (1... obtain stable solutions; (iv) Computer models accurately implement the numerical models; i.e., computer...
40 CFR 194.23 - Models and computer codes.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Models and computer codes. 194.23... General Requirements § 194.23 Models and computer codes. (a) Any compliance application shall include: (1... obtain stable solutions; (iv) Computer models accurately implement the numerical models; i.e., computer...
40 CFR 194.23 - Models and computer codes.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Models and computer codes. 194.23... General Requirements § 194.23 Models and computer codes. (a) Any compliance application shall include: (1... obtain stable solutions; (iv) Computer models accurately implement the numerical models; i.e., computer...
40 CFR 194.23 - Models and computer codes.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Models and computer codes. 194.23... General Requirements § 194.23 Models and computer codes. (a) Any compliance application shall include: (1... obtain stable solutions; (iv) Computer models accurately implement the numerical models; i.e., computer...
Probabilistic numerical methods for PDE-constrained Bayesian inverse problems
NASA Astrophysics Data System (ADS)
Cockayne, Jon; Oates, Chris; Sullivan, Tim; Girolami, Mark
2017-06-01
This paper develops meshless methods for probabilistically describing discretisation error in the numerical solution of partial differential equations. This construction enables the solution of Bayesian inverse problems while accounting for the impact of the discretisation of the forward problem. In particular, this drives statistical inferences to be more conservative in the presence of significant solver error. Theoretical results are presented describing rates of convergence for the posteriors in both the forward and inverse problems. This method is tested on a challenging inverse problem with a nonlinear forward model.
Supercomputer modeling of flow past hypersonic flight vehicles
NASA Astrophysics Data System (ADS)
Ermakov, M. K.; Kryukov, I. A.
2017-02-01
A software platform for MPI-based parallel solution of the Navier-Stokes (Euler) equations for viscous heat-conductive compressible perfect gas on 3-D unstructured meshes is developed. The discretization and solution of the Navier-Stokes equations are constructed on generalized S.K. Godunov’s method and the second order approximation in space and time. Developed software platform allows to carry out effectively flow past hypersonic flight vehicles simulations for the Mach numbers 6 and higher, and numerical meshes with up to 1 billion numerical cells and with up to 128 processors.
Study of transient behavior of finned coil heat exchangers
NASA Technical Reports Server (NTRS)
Rooke, S. P.; Elissa, M. G.
1993-01-01
The status of research on the transient behavior of finned coil cross-flow heat exchangers using single phase fluids is reviewed. Applications with available analytical or numerical solutions are discussed. Investigation of water-to-air type cross-flow finned tube heat exchangers is examined through the use of simplified governing equations and an up-wind finite difference scheme. The degenerate case of zero air-side capacitance rate is compared with available exact solution. Generalization of the numerical model is discussed for application to multi-row multi-circuit heat exchangers.
Satellite recovery - Attitude dynamics of the targets
NASA Technical Reports Server (NTRS)
Cochran, J. E., Jr.; Lahr, B. S.
1986-01-01
The problems of categorizing and modeling the attitude dynamics of uncontrolled artificial earth satellites which may be targets in recovery attempts are addressed. Methods of classification presented are based on satellite rotational kinetic energy, rotational angular momentum and orbit and on the type of control present prior to the benign failure of the control system. The use of approximate analytical solutions and 'exact' numerical solutions to the equations governing satellite attitude motions to predict uncontrolled attitude motion is considered. Analytical and numerical results are presented for the evolution of satellite attitude motions after active control termination.
NASA Astrophysics Data System (ADS)
Dehghan, Mehdi; Mohammadi, Vahid
2017-03-01
As is said in [27], the tumor-growth model is the incorporation of nutrient within the mixture as opposed to being modeled with an auxiliary reaction-diffusion equation. The formulation involves systems of highly nonlinear partial differential equations of surface effects through diffuse-interface models [27]. Simulations of this practical model using numerical methods can be applied for evaluating it. The present paper investigates the solution of the tumor growth model with meshless techniques. Meshless methods are applied based on the collocation technique which employ multiquadrics (MQ) radial basis function (RBFs) and generalized moving least squares (GMLS) procedures. The main advantages of these choices come back to the natural behavior of meshless approaches. As well as, a method based on meshless approach can be applied easily for finding the solution of partial differential equations in high-dimension using any distributions of points on regular and irregular domains. The present paper involves a time-dependent system of partial differential equations that describes four-species tumor growth model. To overcome the time variable, two procedures will be used. One of them is a semi-implicit finite difference method based on Crank-Nicolson scheme and another one is based on explicit Runge-Kutta time integration. The first case gives a linear system of algebraic equations which will be solved at each time-step. The second case will be efficient but conditionally stable. The obtained numerical results are reported to confirm the ability of these techniques for solving the two and three-dimensional tumor-growth equations.
Lu, Benzhuo; Zhou, Y.C.
2011-01-01
The effects of finite particle size on electrostatics, density profiles, and diffusion have been a long existing topic in the study of ionic solution. The previous size-modified Poisson-Boltzmann and Poisson-Nernst-Planck models are revisited in this article. In contrast to many previous works that can only treat particle species with a single uniform size or two sizes, we generalize the Borukhov model to obtain a size-modified Poisson-Nernst-Planck (SMPNP) model that is able to treat nonuniform particle sizes. The numerical tractability of the model is demonstrated as well. The main contributions of this study are as follows. 1), We show that an (arbitrarily) size-modified PB model is indeed implied by the SMPNP equations under certain boundary/interface conditions, and can be reproduced through numerical solutions of the SMPNP. 2), The size effects in the SMPNP effectively reduce the densities of highly concentrated counterions around the biomolecule. 3), The SMPNP is applied to the diffusion-reaction process for the first time, to our knowledge. In the case of low substrate density near the enzyme reactive site, it is observed that the rate coefficients predicted by SMPNP model are considerably larger than those by the PNP model, suggesting both ions and substrates are subject to finite size effects. 4), An accurate finite element method and a convergent Gummel iteration are developed for the numerical solution of the completely coupled nonlinear system of SMPNP equations. PMID:21575582
Computational Models of Rock Failure
NASA Astrophysics Data System (ADS)
May, Dave A.; Spiegelman, Marc
2017-04-01
Practitioners in computational geodynamics, as per many other branches of applied science, typically do not analyse the underlying PDE's being solved in order to establish the existence or uniqueness of solutions. Rather, such proofs are left to the mathematicians, and all too frequently these results lag far behind (in time) the applied research being conducted, are often unintelligible to the non-specialist, are buried in journals applied scientists simply do not read, or simply have not been proven. As practitioners, we are by definition pragmatic. Thus, rather than first analysing our PDE's, we first attempt to find approximate solutions by throwing all our computational methods and machinery at the given problem and hoping for the best. Typically this approach leads to a satisfactory outcome. Usually it is only if the numerical solutions "look odd" that we start delving deeper into the math. In this presentation I summarise our findings in relation to using pressure dependent (Drucker-Prager type) flow laws in a simplified model of continental extension in which the material is assumed to be an incompressible, highly viscous fluid. Such assumptions represent the current mainstream adopted in computational studies of mantle and lithosphere deformation within our community. In short, we conclude that for the parameter range of cohesion and friction angle relevant to studying rocks, the incompressibility constraint combined with a Drucker-Prager flow law can result in problems which have no solution. This is proven by a 1D analytic model and convincingly demonstrated by 2D numerical simulations. To date, we do not have a robust "fix" for this fundamental problem. The intent of this submission is to highlight the importance of simple analytic models, highlight some of the dangers / risks of interpreting numerical solutions without understanding the properties of the PDE we solved, and lastly to stimulate discussions to develop an improved computational model of rock failure suitable for geodynamic studies.
Iasiello, Marcello; Vafai, Kambiz; Andreozzi, Assunta; Bianco, Nicola
2016-01-25
An analytical solution for Low-Density Lipoprotein transport through an arterial wall under hyperthermia conditions is established in this work. A four-layer model is used to characterize the arterial wall. Transport governing equations are obtained as a combination between Staverman-Kedem-Katchalsky membrane equations and volume-averaged porous media equations. Temperature and solute transport fields are coupled by means of Ludwig-Soret effect. Results are in excellent agreement with numerical and analytical literature data under isothermal conditions, and with numerical literature data for the hyperthermia case. Effects of hypertension combined with hyperthermia, are also analyzed in this work. Copyright © 2015 Elsevier Ltd. All rights reserved.
Abrams , Robert H.; Loague, Keith; Kent, Douglas B.
1998-01-01
The work reported here is the first part of a larger effort focused on efficient numerical simulation of redox zone development in contaminated aquifers. The sequential use of various electron acceptors, which is governed by the energy yield of each reaction, gives rise to redox zones. The large difference in energy yields between the various redox reactions leads to systems of equations that are extremely ill-conditioned. These equations are very difficult to solve, especially in the context of coupled fluid flow, solute transport, and geochemical simulations. We have developed a general, rational method to solve such systems where we focus on the dominant reactions, compartmentalizing them in a manner that is analogous to the redox zones that are often observed in the field. The compartmentalized approach allows us to easily solve a complex geochemical system as a function of time and energy yield, laying the foundation for our ongoing work in which we couple the reaction network, for the development of redox zones, to a model of subsurface fluid flow and solute transport. Our method (1) solves the numerical system without evoking a redox parameter, (2) improves the numerical stability of redox systems by choosing which compartment and thus which reaction network to use based upon the concentration ratios of key constituents, (3) simulates the development of redox zones as a function of time without the use of inhibition factors or switching functions, and (4) can reduce the number of transport equations that need to be solved in space and time. We show through the use of various model performance evaluation statistics that the appropriate compartment choice under different geochemical conditions leads to numerical solutions without significant error. The compartmentalized approach described here facilitates the next phase of this effort where we couple the redox zone reaction network to models of fluid flow and solute transport.
Hierarchic plate and shell models based on p-extension
NASA Technical Reports Server (NTRS)
Szabo, Barna A.; Sahrmann, Glenn J.
1988-01-01
Formulations of finite element models for beams, arches, plates and shells based on the principle of virtual work was studied. The focus is on computer implementation of hierarchic sequences of finite element models suitable for numerical solution of a large variety of practical problems which may concurrently contain thin and thick plates and shells, stiffeners, and regions where three dimensional representation is required. The approximate solutions corresponding to the hierarchic sequence of models converge to the exact solution of the fully three dimensional model. The stopping criterion is based on: (1) estimation of the relative error in energy norm; (2) equilibrium tests, and (3) observation of the convergence of quantities of interest.
An Iterative Method for Problems with Multiscale Conductivity
Kim, Hyea Hyun; Minhas, Atul S.; Woo, Eung Je
2012-01-01
A model with its conductivity varying highly across a very thin layer will be considered. It is related to a stable phantom model, which is invented to generate a certain apparent conductivity inside a region surrounded by a thin cylinder with holes. The thin cylinder is an insulator and both inside and outside the thin cylinderare filled with the same saline. The injected current can enter only through the holes adopted to the thin cylinder. The model has a high contrast of conductivity discontinuity across the thin cylinder and the thickness of the layer and the size of holes are very small compared to the domain of the model problem. Numerical methods for such a model require a very fine mesh near the thin layer to resolve the conductivity discontinuity. In this work, an efficient numerical method for such a model problem is proposed by employing a uniform mesh, which need not resolve the conductivity discontinuity. The discrete problem is then solved by an iterative method, where the solution is improved by solving a simple discrete problem with a uniform conductivity. At each iteration, the right-hand side is updated by integrating the previous iterate over the thin cylinder. This process results in a certain smoothing effect on microscopic structures and our discrete model can provide a more practical tool for simulating the apparent conductivity. The convergence of the iterative method is analyzed regarding the contrast in the conductivity and the relative thickness of the layer. In numerical experiments, solutions of our method are compared to reference solutions obtained from COMSOL, where very fine meshes are used to resolve the conductivity discontinuity in the model. Errors of the voltage in L2 norm follow O(h) asymptotically and the current density matches quitewell those from the reference solution for a sufficiently small mesh size h. The experimental results present a promising feature of our approach for simulating the apparent conductivity related to changes in microscopic cellular structures. PMID:23304238
Stochastic modeling of macrodispersion in unsaturated heterogeneous porous media. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yeh, T.C.J.
1995-02-01
Spatial heterogeneity of geologic media leads to uncertainty in predicting both flow and transport in the vadose zone. In this work an efficient and flexible, combined analytical-numerical Monte Carlo approach is developed for the analysis of steady-state flow and transient transport processes in highly heterogeneous, variably saturated porous media. The approach is also used for the investigation of the validity of linear, first order analytical stochastic models. With the Monte Carlo analysis accurate estimates of the ensemble conductivity, head, velocity, and concentration mean and covariance are obtained; the statistical moments describing displacement of solute plumes, solute breakthrough at a compliancemore » surface, and time of first exceedance of a given solute flux level are analyzed; and the cumulative probability density functions for solute flux across a compliance surface are investigated. The results of the Monte Carlo analysis show that for very heterogeneous flow fields, and particularly in anisotropic soils, the linearized, analytical predictions of soil water tension and soil moisture flux become erroneous. Analytical, linearized Lagrangian transport models also overestimate both the longitudinal and the transverse spreading of the mean solute plume in very heterogeneous soils and in dry soils. A combined analytical-numerical conditional simulation algorithm is also developed to estimate the impact of in-situ soil hydraulic measurements on reducing the uncertainty of concentration and solute flux predictions.« less
Wind laws for shockless initialization. [numerical forecasting model
NASA Technical Reports Server (NTRS)
Ghil, M.; Shkoller, B.
1976-01-01
A system of diagnostic equations for the velocity field, or wind laws, was derived for each of a number of models of large-scale atmospheric flow. The derivation in each case is mathematically exact and does not involve any physical assumptions not already present in the prognostic equations, such as nondivergence or vanishing of derivatives of the divergence. Therefore, initial states computed by solving these diagnostic equations should be compatible with the type of motion described by the prognostic equations of the model and should not generate initialization shocks when inserted into the model. Numerical solutions of the diagnostic system corresponding to a barotropic model are exhibited. Some problems concerning the possibility of implementing such a system in operational numerical weather prediction are discussed.
A comprehensive one-dimensional numerical model for solute transport in rivers
NASA Astrophysics Data System (ADS)
Barati Moghaddam, Maryam; Mazaheri, Mehdi; MohammadVali Samani, Jamal
2017-01-01
One of the mechanisms that greatly affect the pollutant transport in rivers, especially in mountain streams, is the effect of transient storage zones. The main effect of these zones is to retain pollutants temporarily and then release them gradually. Transient storage zones indirectly influence all phenomena related to mass transport in rivers. This paper presents the TOASTS (third-order accuracy simulation of transient storage) model to simulate 1-D pollutant transport in rivers with irregular cross-sections under unsteady flow and transient storage zones. The proposed model was verified versus some analytical solutions and a 2-D hydrodynamic model. In addition, in order to demonstrate the model applicability, two hypothetical examples were designed and four sets of well-established frequently cited tracer study data were used. These cases cover different processes governing transport, cross-section types and flow regimes. The results of the TOASTS model, in comparison with two common contaminant transport models, shows better accuracy and numerical stability.
Konikow, Leonard F.; Sanford, W.E.; Campbell, P.J.
1997-01-01
In a solute-transport model, if a constant-concentration boundary condition is applied at a node in an active flow field, a solute flux can occur by both advective and dispersive processes. The potential for advective release is demonstrated by reexamining the Hydrologic Code Intercomparison (HYDROCOIN) project case 5 problem, which represents a salt dome overlain by a shallow groundwater system. The resulting flow field includes significant salinity and fluid density variations. Several independent teams simulated this problem using finite difference or finite element numerical models. We applied a method-of-characteristics model (MOCDENSE). The previous numerical implementations by HYDROCOIN teams of a constant-concentration boundary to represent salt release by lateral dispersion only (as stipulated in the original problem definition) was flawed because this boundary condition allows the release of salt into the flow field by both dispersion and advection. When the constant-concentration boundary is modified to allow salt release by dispersion only, significantly less salt is released into the flow field. The calculated brine distribution for case 5 depends very little on which numerical model is used, as long as the selected model is solving the proper equations. Instead, the accuracy of the solution depends strongly on the proper conceptualization of the problem, including the detailed design of the constant-concentration boundary condition. The importance and sensitivity to the manner of specification of this boundary does not appear to have been recognized previously in the analysis of this problem.
A numerical solution for the diffusion equation in hydrogeologic systems
Ishii, A.L.; Healy, R.W.; Striegl, Robert G.
1989-01-01
The documentation of a computer code for the numerical solution of the linear diffusion equation in one or two dimensions in Cartesian or cylindrical coordinates is presented. Applications of the program include molecular diffusion, heat conduction, and fluid flow in confined systems. The flow media may be anisotropic and heterogeneous. The model is formulated by replacing the continuous linear diffusion equation by discrete finite-difference approximations at each node in a block-centered grid. The resulting matrix equation is solved by the method of preconditioned conjugate gradients. The conjugate gradient method does not require the estimation of iteration parameters and is guaranteed convergent in the absence of rounding error. The matrixes are preconditioned to decrease the steps to convergence. The model allows the specification of any number of boundary conditions for any number of stress periods, and the output of a summary table for selected nodes showing flux and the concentration of the flux quantity for each time step. The model is written in a modular format for ease of modification. The model was verified by comparison of numerical and analytical solutions for cases of molecular diffusion, two-dimensional heat transfer, and axisymmetric radial saturated fluid flow. Application of the model to a hypothetical two-dimensional field situation of gas diffusion in the unsaturated zone is demonstrated. The input and output files are included as a check on program installation. The definition of variables, input requirements, flow chart, and program listing are included in the attachments. (USGS)
Parametrization of turbulence models using 3DVAR data assimilation in laboratory conditions
NASA Astrophysics Data System (ADS)
Olbert, A. I.; Nash, S.; Ragnoli, E.; Hartnett, M.
2013-12-01
In this research the 3DVAR data assimilation scheme is implemented in the numerical model DIVAST in order to optimize the performance of the numerical model by selecting an appropriate turbulence scheme and tuning its parameters. Two turbulence closure schemes: the Prandtl mixing length model and the two-equation k-ɛ model were incorporated into DIVAST and examined with respect to their universality of application, complexity of solutions, computational efficiency and numerical stability. A square harbour with one symmetrical entrance subject to tide-induced flows was selected to investigate the structure of turbulent flows. The experimental part of the research was conducted in a tidal basin. A significant advantage of such laboratory experiment is a fully controlled environment where domain setup and forcing are user-defined. The research shows that the Prandtl mixing length model and the two-equation k-ɛ model, with default parameterization predefined according to literature recommendations, overestimate eddy viscosity which in turn results in a significant underestimation of velocity magnitudes in the harbour. The data assimilation of the model-predicted velocity and laboratory observations significantly improves model predictions for both turbulence models by adjusting modelled flows in the harbour to match de-errored observations. Such analysis gives an optimal solution based on which numerical model parameters can be estimated. The process of turbulence model optimization by reparameterization and tuning towards optimal state led to new constants that may be potentially applied to complex turbulent flows, such as rapidly developing flows or recirculating flows. This research further demonstrates how 3DVAR can be utilized to identify and quantify shortcomings of the numerical model and consequently to improve forecasting by correct parameterization of the turbulence models. Such improvements may greatly benefit physical oceanography in terms of understanding and monitoring of coastal systems and the engineering sector through applications in coastal structure design, marine renewable energy and pollutant transport.
A new frequency domain analytical solution of a cascade of diffusive channels for flood routing
NASA Astrophysics Data System (ADS)
Cimorelli, Luigi; Cozzolino, Luca; Della Morte, Renata; Pianese, Domenico; Singh, Vijay P.
2015-04-01
Simplified flood propagation models are often employed in practical applications for hydraulic and hydrologic analyses. In this paper, we present a new numerical method for the solution of the Linear Parabolic Approximation (LPA) of the De Saint Venant equations (DSVEs), accounting for the space variation of model parameters and the imposition of appropriate downstream boundary conditions. The new model is based on the analytical solution of a cascade of linear diffusive channels in the Laplace Transform domain. The time domain solutions are obtained using a Fourier series approximation of the Laplace Inversion formula. The new Inverse Laplace Transform Diffusive Flood Routing model (ILTDFR) can be used as a building block for the construction of real-time flood forecasting models or in optimization models, because it is unconditionally stable and allows fast and fairly precise computation.
The structure of shock wave in a gas consisting of ideally elastic, rigid spherical molecules
NASA Technical Reports Server (NTRS)
Cheremisin, F. G.
1972-01-01
Principal approaches are examined to the theoretical study of the shock layer structure. The choice of a molecular model is discussed and three procedures are formulated. These include a numerical calculation method, solution of the kinetic relaxation equation, and solution of the Boltzmann equation.
Analysis of silicon stress/strain relationships
NASA Technical Reports Server (NTRS)
Dillon, O.
1985-01-01
In the study of stress-strain relationships in silicon ribbon, numerous solutions were calculated for stresses, strain rates, and dislocation densities through the use of the Sumino model. It was concluded that many cases of failure of computer solutions to converge are analytical manifestations of shear bands (Luder's band) observed in experiments.
Modeling Morphogenesis with Reaction-Diffusion Equations Using Galerkin Spectral Methods
2002-05-06
reaction- diffusion equation is a difficult problem in analysis that will not be addressed here. Errors will also arise from numerically approx solutions to...the ODEs. When comparing the approximate solution to actual reaction- diffusion systems found in nature, we must also take into account errors that...
Spectral method for a kinetic swarming model
Gamba, Irene M.; Haack, Jeffrey R.; Motsch, Sebastien
2015-04-28
Here we present the first numerical method for a kinetic description of the Vicsek swarming model. The kinetic model poses a unique challenge, as there is a distribution dependent collision invariant to satisfy when computing the interaction term. We use a spectral representation linked with a discrete constrained optimization to compute these interactions. To test the numerical scheme we investigate the kinetic model at different scales and compare the solution with the microscopic and macroscopic descriptions of the Vicsek model. Lastly, we observe that the kinetic model captures key features such as vortex formation and traveling waves.
NASA Astrophysics Data System (ADS)
Pascal, K.; Neuberg, J. W.; Rivalta, E.
2011-12-01
The displacement field due to magma movements in the subsurface is commonly modelled using the solutions for a point source (Mogi, 1958), a finite spherical source (McTigue, 1987), or a dislocation source (Okada, 1992) embedded in a homogeneous elastic half-space. When the magmatic system is represented by several sources, their respective deformation fields are summed, and the assumption of homogeneity in the half-space is violated. We have investigated the effects of neglecting the interaction between sources on the surface deformation field. To do so, we calculated the vertical and horizontal displacements for models with adjacent sources and we tested them against the solutions of corresponding numerical 3D finite element models. We implemented several models combining spherical pressure sources and dislocation sources, varying the pressure or opening of the sources and their relative position. We also investigated various numerical methods to model a dike as a dislocation tensile source or as a pressurized tabular crack. In the former case, the dike opening was either defined as two boundaries displaced from a central location, or as one boundary displaced relative to the other. We finally considered two case studies based on Soufrière Hills Volcano (Montserrat, West Indies) and the Dabbahu rift segment (Afar, Ethiopia) magmatic systems. We found that the discrepancies between simple superposition of the displacement field and a fully interacting numerical solution depend mostly on the source types and on their spacing. Their magnitude may be comparable with the errors due to neglecting the topography, the inhomogeneities in crustal properties or more realistic rheologies. In the models considered, the errors induced when neglecting the source interaction can be neglected (<5%) when the sources are separated by at least 4 radii for two combined Mogi sources and by at least 3 radii for juxtaposed Mogi and Okada sources. Furthermore, this study underlines fundamental issues related to the numerical method chosen to model a dike or a magma chamber. It clearly demonstrates that, while the magma compressibility can be neglected to model the deformation due to one source or distant sources, it is necessary to take it into account in models combining close sources.
NASA Technical Reports Server (NTRS)
Yee, Helen M. C.; Kotov, D. V.; Wang, Wei; Shu, Chi-Wang
2013-01-01
The goal of this paper is to relate numerical dissipations that are inherited in high order shock-capturing schemes with the onset of wrong propagation speed of discontinuities. For pointwise evaluation of the source term, previous studies indicated that the phenomenon of wrong propagation speed of discontinuities is connected with the smearing of the discontinuity caused by the discretization of the advection term. The smearing introduces a nonequilibrium state into the calculation. Thus as soon as a nonequilibrium value is introduced in this manner, the source term turns on and immediately restores equilibrium, while at the same time shifting the discontinuity to a cell boundary. The present study is to show that the degree of wrong propagation speed of discontinuities is highly dependent on the accuracy of the numerical method. The manner in which the smearing of discontinuities is contained by the numerical method and the overall amount of numerical dissipation being employed play major roles. Moreover, employing finite time steps and grid spacings that are below the standard Courant-Friedrich-Levy (CFL) limit on shockcapturing methods for compressible Euler and Navier-Stokes equations containing stiff reacting source terms and discontinuities reveals surprising counter-intuitive results. Unlike non-reacting flows, for stiff reactions with discontinuities, employing a time step and grid spacing that are below the CFL limit (based on the homogeneous part or non-reacting part of the governing equations) does not guarantee a correct solution of the chosen governing equations. Instead, depending on the numerical method, time step and grid spacing, the numerical simulation may lead to (a) the correct solution (within the truncation error of the scheme), (b) a divergent solution, (c) a wrong propagation speed of discontinuities solution or (d) other spurious solutions that are solutions of the discretized counterparts but are not solutions of the governing equations. The present investigation for three very different stiff system cases confirms some of the findings of Lafon & Yee (1996) and LeVeque & Yee (1990) for a model scalar PDE. The findings might shed some light on the reported difficulties in numerical combustion and problems with stiff nonlinear (homogeneous) source terms and discontinuities in general.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samin, Adib; Lahti, Erik; Zhang, Jinsuo, E-mail: zhang.3558@osu.edu
Cyclic voltammetry is a powerful tool that is used for characterizing electrochemical processes. Models of cyclic voltammetry take into account the mass transport of species and the kinetics at the electrode surface. Analytical solutions of these models are not well-known due to the complexity of the boundary conditions. In this study we present closed form analytical solutions of the planar voltammetry model for two soluble species with fast electron transfer and equal diffusivities using the eigenfunction expansion method. Our solution methodology does not incorporate Laplace transforms and yields good agreement with the numerical solution. This solution method can be extendedmore » to cases that are more general and may be useful for benchmarking purposes.« less
Fractional dynamics pharmacokinetics–pharmacodynamic models
2010-01-01
While an increasing number of fractional order integrals and differential equations applications have been reported in the physics, signal processing, engineering and bioengineering literatures, little attention has been paid to this class of models in the pharmacokinetics–pharmacodynamic (PKPD) literature. One of the reasons is computational: while the analytical solution of fractional differential equations is available in special cases, it this turns out that even the simplest PKPD models that can be constructed using fractional calculus do not allow an analytical solution. In this paper, we first introduce new families of PKPD models incorporating fractional order integrals and differential equations, and, second, exemplify and investigate their qualitative behavior. The families represent extensions of frequently used PK link and PD direct and indirect action models, using the tools of fractional calculus. In addition the PD models can be a function of a variable, the active drug, which can smoothly transition from concentration to exposure, to hyper-exposure, according to a fractional integral transformation. To investigate the behavior of the models we propose, we implement numerical algorithms for fractional integration and for the numerical solution of a system of fractional differential equations. For simplicity, in our investigation we concentrate on the pharmacodynamic side of the models, assuming standard (integer order) pharmacokinetics. PMID:20455076
Efficient field-theoretic simulation of polymer solutions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Villet, Michael C.; Fredrickson, Glenn H., E-mail: ghf@mrl.ucsb.edu; Department of Materials, University of California, Santa Barbara, California 93106
2014-12-14
We present several developments that facilitate the efficient field-theoretic simulation of polymers by complex Langevin sampling. A regularization scheme using finite Gaussian excluded volume interactions is used to derive a polymer solution model that appears free of ultraviolet divergences and hence is well-suited for lattice-discretized field theoretic simulation. We show that such models can exhibit ultraviolet sensitivity, a numerical pathology that dramatically increases sampling error in the continuum lattice limit, and further show that this pathology can be eliminated by appropriate model reformulation by variable transformation. We present an exponential time differencing algorithm for integrating complex Langevin equations for fieldmore » theoretic simulation, and show that the algorithm exhibits excellent accuracy and stability properties for our regularized polymer model. These developments collectively enable substantially more efficient field-theoretic simulation of polymers, and illustrate the importance of simultaneously addressing analytical and numerical pathologies when implementing such computations.« less
Well balancing of the SWE schemes for moving-water steady flows
NASA Astrophysics Data System (ADS)
Caleffi, Valerio; Valiani, Alessandro
2017-08-01
In this work, the exact reproduction of a moving-water steady flow via the numerical solution of the one-dimensional shallow water equations is studied. A new scheme based on a modified version of the HLLEM approximate Riemann solver (Dumbser and Balsara (2016) [18]) that exactly preserves the total head and the discharge in the simulation of smooth steady flows and that correctly dissipates mechanical energy in the presence of hydraulic jumps is presented. This model is compared with a selected set of schemes from the literature, including models that exactly preserve quiescent flows and models that exactly preserve moving-water steady flows. The comparison highlights the strengths and weaknesses of the different approaches. In particular, the results show that the increase in accuracy in the steady state reproduction is counterbalanced by a reduced robustness and numerical efficiency of the models. Some solutions to reduce these drawbacks, at the cost of increased algorithm complexity, are presented.
Analytical Solution of the Radiative Transfer Equation in a Thin Dusty Circumstellar Shell
NASA Astrophysics Data System (ADS)
Cruzalèbes, P.; Sacuto, S.
The radiative transfer equation can be solved analytically for optically thin shells. The solution leads to a semi-analytical expression of the visibility function, which can be compared to the numerical solution given by the DUSTY code. Best-fit model parameters are given using real measurements of ISO fluxes, ISI and VLTI-MIDI visibilities for 3 late-type stars.
On a perturbed Sparre Andersen risk model with multi-layer dividend strategy
NASA Astrophysics Data System (ADS)
Yang, Hu; Zhang, Zhimin
2009-10-01
In this paper, we consider a perturbed Sparre Andersen risk model, in which the inter-claim times are generalized Erlang(n) distributed. Under the multi-layer dividend strategy, piece-wise integro-differential equations for the discounted penalty functions are derived, and a recursive approach is applied to express the solutions. A numerical example to calculate the ruin probabilities is given to illustrate the solution procedure.
NASA Astrophysics Data System (ADS)
Sarojkumar, K.; Krishna, S.
2016-08-01
Online dynamic security assessment (DSA) is a computationally intensive task. In order to reduce the amount of computation, screening of contingencies is performed. Screening involves analyzing the contingencies with the system described by a simpler model so that computation requirement is reduced. Screening identifies those contingencies which are sure to not cause instability and hence can be eliminated from further scrutiny. The numerical method and the step size used for screening should be chosen with a compromise between speed and accuracy. This paper proposes use of energy function as a measure of error in the numerical solution used for screening contingencies. The proposed measure of error can be used to determine the most accurate numerical method satisfying the time constraint of online DSA. Case studies on 17 generator system are reported.
Normal modes of the world's oceans: A numerical investigation using Proudman functions
NASA Technical Reports Server (NTRS)
Sanchez, Braulio V.; Morrow, Dennis
1993-01-01
The numerical modeling of the normal modes of the global oceans is addressed. The results of such modeling could be expected to serve as a guide in the analysis of observations and measurements intended to detect these modes. The numerical computation of normal modes of the global oceans is a field in which several investigations have obtained results during the past 15 years. The results seem to be model-dependent to an unsatisfactory extent. Some modeling areas, such as higher resolution of the bathymetry, inclusion of self-attraction and loading, the role of the Arctic Ocean, and systematic testing by means of diagnostic models are addressed. The results show that the present state of the art is such that a final solution to the normal mode problem still lies in the future. The numerical experiments show where some of the difficulties are and give some insight as to how to proceed in the future.
A gradient enhanced plasticity-damage microplane model for concrete
NASA Astrophysics Data System (ADS)
Zreid, Imadeddin; Kaliske, Michael
2018-03-01
Computational modeling of concrete poses two main types of challenges. The first is the mathematical description of local response for such a heterogeneous material under all stress states, and the second is the stability and efficiency of the numerical implementation in finite element codes. The paper at hand presents a comprehensive approach addressing both issues. Adopting the microplane theory, a combined plasticity-damage model is formulated and regularized by an implicit gradient enhancement. The plasticity part introduces a new microplane smooth 3-surface cap yield function, which provides a stable numerical solution within an implicit finite element algorithm. The damage part utilizes a split, which can describe the transition of loading between tension and compression. Regularization of the model by the implicit gradient approach eliminates the mesh sensitivity and numerical instabilities. Identification methods for model parameters are proposed and several numerical examples of plain and reinforced concrete are carried out for illustration.
NASA Astrophysics Data System (ADS)
Sun, HongGuang; Liu, Xiaoting; Zhang, Yong; Pang, Guofei; Garrard, Rhiannon
2017-09-01
Fractional-order diffusion equations (FDEs) extend classical diffusion equations by quantifying anomalous diffusion frequently observed in heterogeneous media. Real-world diffusion can be multi-dimensional, requiring efficient numerical solvers that can handle long-term memory embedded in mass transport. To address this challenge, a semi-discrete Kansa method is developed to approximate the two-dimensional spatiotemporal FDE, where the Kansa approach first discretizes the FDE, then the Gauss-Jacobi quadrature rule solves the corresponding matrix, and finally the Mittag-Leffler function provides an analytical solution for the resultant time-fractional ordinary differential equation. Numerical experiments are then conducted to check how the accuracy and convergence rate of the numerical solution are affected by the distribution mode and number of spatial discretization nodes. Applications further show that the numerical method can efficiently solve two-dimensional spatiotemporal FDE models with either a continuous or discrete mixing measure. Hence this study provides an efficient and fast computational method for modeling super-diffusive, sub-diffusive, and mixed diffusive processes in large, two-dimensional domains with irregular shapes.
Toward Effective Shell Modeling of Wrinkled Thin-Film Membranes Exhibiting Stress Concentrations
NASA Technical Reports Server (NTRS)
Tessler, Alexander; Sleight, David W.
2004-01-01
Geometrically nonlinear shell finite element analysis has recently been applied to solar-sail membrane problems in order to model the out-of-plane deformations due to structural wrinkling. Whereas certain problems lend themselves to achieving converged nonlinear solutions that compare favorably with experimental observations, solutions to tensioned membranes exhibiting high stress concentrations have been difficult to obtain even with the best nonlinear finite element codes and advanced shell element technology. In this paper, two numerical studies are presented that pave the way to improving the modeling of this class of nonlinear problems. The studies address the issues of mesh refinement and stress-concentration alleviation, and the effects of these modeling strategies on the ability to attain converged nonlinear deformations due to wrinkling. The numerical studies demonstrate that excessive mesh refinement in the regions of stress concentration may be disadvantageous to achieving wrinkled equilibrium states, causing the nonlinear solution to lock in the membrane response mode, while totally discarding the very low-energy bending response that is necessary to cause wrinkling deformation patterns. An element-level, strain-energy density criterion is suggested for facilitating automated, adaptive mesh refinements specifically aimed at the modeling of thin-film membranes undergoing wrinkling deformations.
Closed-form solution of decomposable stochastic models
NASA Technical Reports Server (NTRS)
Sjogren, Jon A.
1990-01-01
Markov and semi-Markov processes are increasingly being used in the modeling of complex reconfigurable systems (fault tolerant computers). The estimation of the reliability (or some measure of performance) of the system reduces to solving the process for its state probabilities. Such a model may exhibit numerous states and complicated transition distributions, contributing to an expensive and numerically delicate solution procedure. Thus, when a system exhibits a decomposition property, either structurally (autonomous subsystems), or behaviorally (component failure versus reconfiguration), it is desirable to exploit this decomposition in the reliability calculation. In interesting cases there can be failure states which arise from non-failure states of the subsystems. Equations are presented which allow the computation of failure probabilities of the total (combined) model without requiring a complete solution of the combined model. This material is presented within the context of closed-form functional representation of probabilities as utilized in the Symbolic Hierarchical Automated Reliability and Performance Evaluator (SHARPE) tool. The techniques adopted enable one to compute such probability functions for a much wider class of systems at a reduced computational cost. Several examples show how the method is used, especially in enhancing the versatility of the SHARPE tool.
Comparison with CLPX II airborne data using DMRT model
Xu, X.; Liang, D.; Andreadis, K.M.; Tsang, L.; Josberger, E.G.
2009-01-01
In this paper, we considered a physical-based model which use numerical solution of Maxwell Equations in three-dimensional simulations and apply into Dense Media Radiative Theory (DMRT). The model is validated in two specific dataset from the second Cold Land Processes Experiment (CLPX II) at Alaska and Colorado. The data were all obtain by the Ku-band (13.95GHz) observations using airborne imaging polarimetric scatterometer (POLSCAT). Snow is a densely packed media. To take into account the collective scattering and incoherent scattering, analytical Quasi-Crystalline Approximation (QCA) and Numerical Maxwell Equation Method of 3-D simulation (NMM3D) are used to calculate the extinction coefficient and phase matrix. DMRT equations were solved by iterative solution up to 2nd order for the case of small optical thickness and full multiple scattering solution by decomposing the diffuse intensities into Fourier series was used when optical thickness exceed unity. It was shown that the model predictions agree with the field experiment not only co-polarization but also cross-polarization. For Alaska region, the input snow structure data was obtain by the in situ ground observations, while for Colorado region, we combined the VIC model to get the snow profile. ??2009 IEEE.
The PAC-MAN model: Benchmark case for linear acoustics in computational physics
NASA Astrophysics Data System (ADS)
Ziegelwanger, Harald; Reiter, Paul
2017-10-01
Benchmark cases in the field of computational physics, on the one hand, have to contain a certain complexity to test numerical edge cases and, on the other hand, require the existence of an analytical solution, because an analytical solution allows the exact quantification of the accuracy of a numerical simulation method. This dilemma causes a need for analytical sound field formulations of complex acoustic problems. A well known example for such a benchmark case for harmonic linear acoustics is the ;Cat's Eye model;, which describes the three-dimensional sound field radiated from a sphere with a missing octant analytically. In this paper, a benchmark case for two-dimensional (2D) harmonic linear acoustic problems, viz., the ;PAC-MAN model;, is proposed. The PAC-MAN model describes the radiated and scattered sound field around an infinitely long cylinder with a cut out sector of variable angular width. While the analytical calculation of the 2D sound field allows different angular cut-out widths and arbitrarily positioned line sources, the computational cost associated with the solution of this problem is similar to a 1D problem because of a modal formulation of the sound field in the PAC-MAN model.
NASA Astrophysics Data System (ADS)
Voloshin, A. E.; Prostomolotov, A. I.; Verezub, N. A.
2016-11-01
The paper deals with the analysis of the accuracy of some one-dimensional (1D) analytical models of the axial distribution of impurities in the crystal grown from a melt. The models proposed by Burton-Prim-Slichter, Ostrogorsky-Muller and Garandet with co-authors are considered, these models are compared to the results of a two-dimensional (2D) numerical simulation. Stationary solutions as well as solutions for the initial transient regime obtained using these models are considered. The sources of errors are analyzed, a conclusion is made about the applicability of 1D analytical models for quantitative estimates of impurity incorporation into the crystal sample as well as for the solution of the inverse problems.
NASA Astrophysics Data System (ADS)
Yu, C. W.; Hodges, B. R.; Liu, F.
2017-12-01
Development of continental-scale river network models creates challenges where the massive amount of boundary condition data encounters the sensitivity of a dynamic nu- merical model. The topographic data sets used to define the river channel characteristics may include either corrupt data or complex configurations that cause instabilities in a numerical solution of the Saint-Venant equations. For local-scale river models (e.g. HEC- RAS), modelers typically rely on past experience to make ad hoc boundary condition adjustments that ensure a stable solution - the proof of the adjustment is merely the sta- bility of the solution. To date, there do not exist any formal methodologies or automated procedures for a priori detecting/fixing boundary conditions that cause instabilities in a dynamic model. Formal methodologies for data screening and adjustment are a critical need for simulations with a large number of river reaches that draw their boundary con- dition data from a wide variety of sources. At the continental scale, we simply cannot assume that we will have access to river-channel cross-section data that has been ade- quately analyzed and processed. Herein, we argue that problematic boundary condition data for unsteady dynamic modeling can be identified through numerical modeling with the steady-state Saint-Venant equations. The fragility of numerical stability increases with the complexity of branching in river network system and instabilities (even in an unsteady solution) are typically triggered by the nonlinear advection term in Saint-Venant equations. It follows that the behavior of the simpler steady-state equations (which retain the nonlin- ear term) can be used to screen the boundary condition data for problematic regions. In this research, we propose a graph-theory based method to isolate the location of corrupted boundary condition data in a continental-scale river network and demonstrate its utility with a network of O(10^4) elements. Acknowledgement: This research is supported by the National Science Foundation un- der grant number CCF-1331610.
K-TIF: a two-fluid computer program for downcomer flow dynamics. [PWR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amsden, A.A.; Harlow, F.H.
1977-10-01
The K-TIF computer program has been developed for numerical solution of the time-varying dynamics of steam and water in a pressurized water reactor downcomer. The current status of physical and mathematical modeling is presented in detail. The report also contains a complete description of the numerical solution technique, a full description and listing of the computer program, instructions for its use, with a sample printout for a specific test problem. A series of calculations, performed with no change in the modeling parameters, shows consistent agreement with the experimental trends over a wide range of conditions, which gives confidence to themore » calculations as a basis for investigating the complicated physics of steam-water flows in the downcomer.« less
Electro-magneto interaction in fractional Green-Naghdi thermoelastic solid with a cylindrical cavity
NASA Astrophysics Data System (ADS)
Ezzat, M. A.; El-Bary, A. A.
2018-01-01
A unified mathematical model of Green-Naghdi's thermoelasticty theories (GN), based on fractional time-derivative of heat transfer is constructed. The model is applied to solve a one-dimensional problem of a perfect conducting unbounded body with a cylindrical cavity subjected to sinusoidal pulse heating in the presence of an axial uniform magnetic field. Laplace transform techniques are used to get the general analytical solutions in Laplace domain, and the inverse Laplace transforms based on Fourier expansion techniques are numerically implemented to obtain the numerical solutions in time domain. Comparisons are made with the results predicted by the two theories. The effects of the fractional derivative parameter on thermoelastic fields for different theories are discussed.
NASA Astrophysics Data System (ADS)
Alfonso, Lester; Zamora, Jose; Cruz, Pedro
2015-04-01
The stochastic approach to coagulation considers the coalescence process going in a system of a finite number of particles enclosed in a finite volume. Within this approach, the full description of the system can be obtained from the solution of the multivariate master equation, which models the evolution of the probability distribution of the state vector for the number of particles of a given mass. Unfortunately, due to its complexity, only limited results were obtained for certain type of kernels and monodisperse initial conditions. In this work, a novel numerical algorithm for the solution of the multivariate master equation for stochastic coalescence that works for any type of kernels and initial conditions is introduced. The performance of the method was checked by comparing the numerically calculated particle mass spectrum with analytical solutions obtained for the constant and sum kernels, with an excellent correspondence between the analytical and numerical solutions. In order to increase the speedup of the algorithm, software parallelization techniques with OpenMP standard were used, along with an implementation in order to take advantage of new accelerator technologies. Simulations results show an important speedup of the parallelized algorithms. This study was funded by a grant from Consejo Nacional de Ciencia y Tecnologia de Mexico SEP-CONACYT CB-131879. The authors also thanks LUFAC® Computacion SA de CV for CPU time and all the support provided.
A theoretical study of a laminar diffusion flame
NASA Technical Reports Server (NTRS)
Frair, K. L.
1978-01-01
Theoretical models of an axisymmetric laminar diffusion flame are discussed, with an emphasis on the behavior of such flames at increasing pressures. The flame-sheet or Burke-Schumann model (in terms of Bessel functions) and various boundary layer numerical solutions are presented and their results compared with experimental data. The most promising theoretical model combines the numerical flow field solution of the Patankar-Spalding computer code with the Pratt-Wormeck chemical reaction subroutine. The flame shapes for pressures of 1, 5, 10, 20, and 50 atmospheres were computed and agree remarkably well with experimental data. There is a noticeable shape change with pressure, believed to be a result of buoyancy effects. The chemical concentration profiles do not exhibit much dependence on pressure, a reflection of the fact that only one chemical mechanism was utilized at all pressures.
An economical method of analyzing transient motion of gas-lubricated rotor-bearing systems.
NASA Technical Reports Server (NTRS)
Falkenhagen, G. L.; Ayers, A. L.; Barsalou, L. C.
1973-01-01
A method of economically evaluating the hydrodynamic forces generated in a gas-lubricated tilting-pad bearing is presented. The numerical method consists of solving the case of the infinite width bearing and then converting this solution to the case of the finite bearing by accounting for end leakage. The approximate method is compared to the finite-difference solution of Reynolds equation and yields acceptable accuracy while running about one-hundred times faster. A mathematical model of a gas-lubricated tilting-pad vertical rotor systems is developed. The model is capable of analyzing a two-bearing-rotor system in which the rotor center of mass is not at midspan by accounting for gyroscopic moments. The numerical results from the model are compared to actual test data as well as analytical results of other investigators.
Application of 2D-Nonlinear Shallow Water Model of Tsunami by using Adomian Decomposition Method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Waewcharoen, Sribudh; Boonyapibanwong, Supachai; Koonprasert, Sanoe
2008-09-01
One of the most important questions in tsunami modeling is the estimation of tsunami run-up heights at different points along a coastline. Methods for numerical simulation of tsunami wave propagation in deep and shallow seas are well developed and have been widely used by many scientists (2001-2008). In this paper, we consider a two-dimensional nonlinear shallow water model of tsunami given by Tivon Jacobson is work [1]. u{sub t}+uu{sub x}+{nu}u{sub y} -c{sup 2}(h{sub x}+(h{sub b}){sub x}) {nu}{sub t}+u{nu}{sub x}+{nu}{nu}{sub y} = -c{sup 2}(h{sub y}+(h{sub b}){sub y}) h{sub t}+(hu){sub x}+(h{nu}){sub y} = 0 g-shore, h is surface elevation and s, tmore » is time, u is velocity of cross-shore, {nu} is velocity of along-shore, h is surface elevation and h{sub b} is function of shore. This is a nondimensionalized model with the gravity g and constant reference depth H factored into c = {radical}(gH). We apply the Adomian Decompostion Method (ADM) to solve the tsunami model. This powerful method has been used to obtain explicit and numerical solutions of three types of diffusion-convection-reaction (DECR) equations. The ADM results for the tsunami model yield analytical solutions in terms of a rapidly convergent infinite power series. Symbolic computation, numerical results and graphs of solutions are obtained by Maple program.« less
Study of Magnetic Damping Effect on Convection and Solidification Under G-Jitter Conditions
NASA Technical Reports Server (NTRS)
Li, Ben Q.; deGroh, H. C.
2001-01-01
As shown in space flight experiments, g-jitter is a critical issue affecting solidification processing of materials in microgravity. This study aims to provide, through extensive numerical simulations and ground based experiments, an assessment of the use of magnetic fields in combination with microgravity to reduce the g-jitter induced convective flows in space processing systems. Analytical solutions and 2-D and 3-D numerical models for g-jitter driven flows in simple solidification systems with and without the presence of an applied magnetic field have been developed and extensive analyses were carried out. A physical model was also constructed and PIV measurements compared reasonably well with predictions from numerical models. Some key points may be summarized as follows: (1) the amplitude of the oscillating velocity decreases at a rate inversely proportional to the g-jitter frequency and with an increase in the applied magnetic field; (2) the induced flow oscillates at approximately the same frequency as the affecting g-jitter, but out of a phase angle; (3) the phase angle is a complicated function of geometry, applied magnetic field, temperature gradient and frequency; (4) g-jitter driven flows exhibit a complex fluid flow pattern evolving in time; (5) the damping effect is more effective for low frequency flows; and (6) the applied magnetic field helps to reduce the variation of solutal distribution along the solid-liquid interface. Work in progress includes developing numerical models for solidification phenomena with the presence of both g-jitter and magnetic fields and developing a ground-based physical model to verify numerical predictions.
NASA Astrophysics Data System (ADS)
Escobar Gómez, J. D.; Torres-Verdín, C.
2018-03-01
Single-well pressure-diffusion simulators enable improved quantitative understanding of hydraulic-testing measurements in the presence of arbitrary spatial variations of rock properties. Simulators of this type implement robust numerical algorithms which are often computationally expensive, thereby making the solution of the forward modeling problem onerous and inefficient. We introduce a time-domain perturbation theory for anisotropic permeable media to efficiently and accurately approximate the transient pressure response of spatially complex aquifers. Although theoretically valid for any spatially dependent rock/fluid property, our single-phase flow study emphasizes arbitrary spatial variations of permeability and anisotropy, which constitute key objectives of hydraulic-testing operations. Contrary to time-honored techniques, the perturbation method invokes pressure-flow deconvolution to compute the background medium's permeability sensitivity function (PSF) with a single numerical simulation run. Subsequently, the first-order term of the perturbed solution is obtained by solving an integral equation that weighs the spatial variations of permeability with the spatial-dependent and time-dependent PSF. Finally, discrete convolution transforms the constant-flow approximation to arbitrary multirate conditions. Multidimensional numerical simulation studies for a wide range of single-well field conditions indicate that perturbed solutions can be computed in less than a few CPU seconds with relative errors in pressure of <5%, corresponding to perturbations in background permeability of up to two orders of magnitude. Our work confirms that the proposed joint perturbation-convolution (JPC) method is an efficient alternative to analytical and numerical solutions for accurate modeling of pressure-diffusion phenomena induced by Neumann or Dirichlet boundary conditions.
NASA Astrophysics Data System (ADS)
Henclik, Sławomir
2018-03-01
The influence of dynamic fluid-structure interaction (FSI) onto the course of water hammer (WH) can be significant in non-rigid pipeline systems. The essence of this effect is the dynamic transfer of liquid energy to the pipeline structure and back, which is important for elastic structures and can be negligible for rigid ones. In the paper a special model of such behavior is analyzed. A straight pipeline with a steady flow, fixed to the floor with several rigid supports is assumed. The transient is generated by a quickly closed valve installed at the end of the pipeline. FSI effects are assumed to be present mainly at the valve which is fixed with a spring dash-pot attachment. Analysis of WH runs, especially transient pressure changes, for various stiffness and damping parameters of the spring dash-pot valve attachment is presented in the paper. The solutions are found analytically and numerically. Numerical results have been computed with the use of an own computer program developed on the basis of the four equation model of WH-FSI and the specific boundary conditions formulated at the valve. Analytical solutions have been found with the separation of variables method for slightly simplified assumptions. Damping at the dash-pot is taken into account within the numerical study. The influence of valve attachment parameters onto the WH courses was discovered and it was found the transient amplitudes can be reduced. Such a system, elastically attached shut-off valve in a pipeline or other, equivalent design can be a real solution applicable in practice.
An efficient approach for treating composition-dependent diffusion within organic particles
O'Meara, Simon; Topping, David O.; Zaveri, Rahul A.; ...
2017-09-07
Mounting evidence demonstrates that under certain conditions the rate of component partitioning between the gas and particle phase in atmospheric organic aerosol is limited by particle-phase diffusion. To date, however, particle-phase diffusion has not been incorporated into regional atmospheric models. An analytical rather than numerical solution to diffusion through organic particulate matter is desirable because of its comparatively small computational expense in regional models. Current analytical models assume diffusion to be independent of composition and therefore use a constant diffusion coefficient. To realistically model diffusion, however, it should be composition-dependent (e.g. due to the partitioning of components that plasticise, vitrifymore » or solidify). This study assesses the modelling capability of an analytical solution to diffusion corrected to account for composition dependence against a numerical solution. Results show reasonable agreement when the gas-phase saturation ratio of a partitioning component is constant and particle-phase diffusion limits partitioning rate (<10% discrepancy in estimated radius change). However, when the saturation ratio of the partitioning component varies, a generally applicable correction cannot be found, indicating that existing methodologies are incapable of deriving a general solution. Until such time as a general solution is found, caution should be given to sensitivity studies that assume constant diffusivity. Furthermore, the correction was implemented in the polydisperse, multi-process Model for Simulating Aerosol Interactions and Chemistry (MOSAIC) and is used to illustrate how the evolution of number size distribution may be accelerated by condensation of a plasticising component onto viscous organic particles.« less
An efficient approach for treating composition-dependent diffusion within organic particles
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Meara, Simon; Topping, David O.; Zaveri, Rahul A.
Mounting evidence demonstrates that under certain conditions the rate of component partitioning between the gas and particle phase in atmospheric organic aerosol is limited by particle-phase diffusion. To date, however, particle-phase diffusion has not been incorporated into regional atmospheric models. An analytical rather than numerical solution to diffusion through organic particulate matter is desirable because of its comparatively small computational expense in regional models. Current analytical models assume diffusion to be independent of composition and therefore use a constant diffusion coefficient. To realistically model diffusion, however, it should be composition-dependent (e.g. due to the partitioning of components that plasticise, vitrifymore » or solidify). This study assesses the modelling capability of an analytical solution to diffusion corrected to account for composition dependence against a numerical solution. Results show reasonable agreement when the gas-phase saturation ratio of a partitioning component is constant and particle-phase diffusion limits partitioning rate (<10% discrepancy in estimated radius change). However, when the saturation ratio of the partitioning component varies, a generally applicable correction cannot be found, indicating that existing methodologies are incapable of deriving a general solution. Until such time as a general solution is found, caution should be given to sensitivity studies that assume constant diffusivity. Furthermore, the correction was implemented in the polydisperse, multi-process Model for Simulating Aerosol Interactions and Chemistry (MOSAIC) and is used to illustrate how the evolution of number size distribution may be accelerated by condensation of a plasticising component onto viscous organic particles.« less
Numerical modelling of river morphodynamics: Latest developments and remaining challenges
NASA Astrophysics Data System (ADS)
Siviglia, Annunziato; Crosato, Alessandra
2016-07-01
Numerical morphodynamic models provide scientific frameworks for advancing our understanding of river systems. The research on involved topics is an important and socially relevant undertaking regarding our environment. Nowadays numerical models are used for different purposes, from answering questions about basic morphodynamic research to managing complex river engineering problems. Due to increasing computer power and the development of advanced numerical techniques, morphodynamic models are now more and more used to predict the bed patterns evolution to a broad spectrum of spatial and temporal scales. The development and the success of application of such models are based upon a wide range of disciplines from applied mathematics for the numerical solution of the equations to geomorphology for the physical interpretation of the results. In this light we organized this special issue (SI) soliciting multidisciplinary contributions which encompass any aspect needed for the development and applications of such models. Most of the papers in the SI stem from contributions to session HS9.5/GM7.11 on numerical modelling and experiments in river morphodynamics at the European Geosciences Union (EGU) General Assembly held in Vienna, April 27th to May 2nd 2014.
Buckling analysis of SMA bonded sandwich structure – using FEM
NASA Astrophysics Data System (ADS)
Katariya, Pankaj V.; Das, Arijit; Panda, Subrata K.
2018-03-01
Thermal buckling strength of smart sandwich composite structure (bonded with shape memory alloy; SMA) examined numerically via a higher-order finite element model in association with marching technique. The excess geometrical distortion of the structure under the elevated environment modeled through Green’s strain function whereas the material nonlinearity counted with the help of marching method. The system responses are computed numerically by solving the generalized eigenvalue equations via a customized MATLAB code. The comprehensive behaviour of the current finite element solutions (minimum buckling load parameter) is established by solving the adequate number of numerical examples including the given input parameter. The current numerical model is extended further to check the influence of various structural parameter of the sandwich panel on the buckling temperature including the SMA effect and reported in details.
Ill-posedness in modeling mixed sediment river morphodynamics
NASA Astrophysics Data System (ADS)
Chavarrías, Víctor; Stecca, Guglielmo; Blom, Astrid
2018-04-01
In this paper we analyze the Hirano active layer model used in mixed sediment river morphodynamics concerning its ill-posedness. Ill-posedness causes the solution to be unstable to short-wave perturbations. This implies that the solution presents spurious oscillations, the amplitude of which depends on the domain discretization. Ill-posedness not only produces physically unrealistic results but may also cause failure of numerical simulations. By considering a two-fraction sediment mixture we obtain analytical expressions for the mathematical characterization of the model. Using these we show that the ill-posed domain is larger than what was found in previous analyses, not only comprising cases of bed degradation into a substrate finer than the active layer but also in aggradational cases. Furthermore, by analyzing a three-fraction model we observe ill-posedness under conditions of bed degradation into a coarse substrate. We observe that oscillations in the numerical solution of ill-posed simulations grow until the model becomes well-posed, as the spurious mixing of the active layer sediment and substrate sediment acts as a regularization mechanism. Finally we conduct an eigenstructure analysis of a simplified vertically continuous model for mixed sediment for which we show that ill-posedness occurs in a wider range of conditions than the active layer model.
NASA Astrophysics Data System (ADS)
Hartland, Tucker A.; Schilling, Oleg
2016-11-01
Analytical self-similar solutions corresponding to Rayleigh-Taylor, Richtmyer-Meshkov and Kelvin-Helmholtz instability are combined with observed values of the growth parameters in these instabilities to derive coefficient sets for K- ɛ and K- L- a Reynolds-averaged turbulence models. It is shown that full numerical solutions of the model equations give mixing layer widths, fields, and budgets in good agreement with the corresponding self-similar quantities for small Atwood number. Both models are then applied to Rayleigh-Taylor instability with increasing density contrasts to estimate the Atwood number above which the self-similar solutions become invalid. The models are also applied to a reshocked Richtmyer-Meshkov instability, and the predictions are compared with data. The expressions for the growth parameters obtained from the similarity analysis are used to develop estimates for the sensitivity of their values to changes in important model coefficients. Numerical simulations using these modified coefficient values are then performed to provide bounds on the model predictions associated with uncertainties in these coefficient values. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. This work was supported by the 2016 LLNL High-Energy-Density Physics Summer Student Program.
NASA Astrophysics Data System (ADS)
Zhang, K.; Gasiewski, A. J.
2017-12-01
A horizontally inhomogeneous unified microwave radiative transfer (HI-UMRT) model based upon a nonspherical hydrometeor scattering model is being developed at the University of Colorado at Boulder to facilitate forward radiative simulations for 3-dimensionally inhomogeneous clouds in severe weather. The HI-UMRT 3-D analytical solution is based on incorporating a planar-stratified 1-D UMRT algorithm within a horizontally inhomogeneous iterative perturbation scheme. Single-scattering parameters are computed using the Discrete Dipole Scattering (DDSCAT v7.3) program for hundreds of carefully selected nonspherical complex frozen hydrometeors from the NASA/GSFC DDSCAT database. The required analytic factorization symmetry of transition matrix in a normalized RT equation was analytically proved and validated numerically using the DDSCAT-based full Stokes matrix of randomly oriented hydrometeors. The HI-UMRT model thus inherits the properties of unconditional numerical stability, efficiency, and accuracy from the UMRT algorithm and provides a practical 3-D two-Stokes parameter radiance solution with Jacobian to be used within microwave retrievals and data assimilation schemes. In addition, a fast forward radar reflectivity operator with Jacobian based on DDSCAT backscatter efficiency computed for large hydrometeors is incorporated into the HI-UMRT model to provide applicability to active radar sensors. The HI-UMRT will be validated strategically at two levels: 1) intercomparison of brightness temperature (Tb) results with those of several 1-D and 3-D RT models, including UMRT, CRTM and Monte Carlo models, 2) intercomparison of Tb with observed data from combined passive and active spaceborne sensors (e.g. GPM GMI and DPR). The precise expression for determining the required number of 3-D iterations to achieve an error bound on the perturbation solution will be developed to facilitate the numerical verification of the HI-UMRT code complexity and computation performance.
NASA Astrophysics Data System (ADS)
minatti, L.
2013-12-01
A finite volume model solving the shallow water equations coupled with the sediments continuity equation in composite channels with irregular geometry is presented. The model is essentially 1D but can handle composite cross-sections in which bedload transport is considered to occur inside the main channel only. This assumption is coherent with the observed behavior of rivers on short time scales where main channel areas exhibit more relevant morphological variations than overbanks. Furthermore, such a model allows a more precise prediction of thalweg elevation and cross section shape variations than fully 1D models where bedload transport is considered to occur uniformly over the entire cross section. The coupling of the equations describing water and sediments dynamics results in a hyperbolic non-conservative system that cannot be solved numerically with the use of a conservative scheme. Therefore, a path-conservative scheme, based on the approach proposed by Pares and Castro (2004) has been devised in order to account for the coupling with the sediments continuity equation and for the concurrent presence of bottom elevation and breadth variations of the cross section. In order to correctly compute numerical fluxes related to bedload transport in main channel areas, a special treatment of the equations is employed in the model. The resulting scheme is well balanced and fully coupled and can accurately model abrupt time variations of flow and bedload transport conditions in wide rivers, characterized by the presence of overbank areas that are less active than the main channel. The accuracy of the model has been first tested in fixed bed conditions by solving problems with a known analytical solution: in these tests the model proved to be able to handle shocks and supercritical flow conditions properly(see Fig. 01). A practical application of the model to the Ombrone river, southern Tuscany (Italy) is shown. The river has shown relevant morphological changes during the last fifteen years, most of them related to the occurrence of high flow rates. The employment of the model allowed to perform a detailed flood hazard assessment where potential risks associated to bedload transport,such as sediments filling of manufacts, excessive erosion or aggradation rates have been evaluated, together with the more 'classical' evaluation of water levels. The whole process also led to the identification of sensitive reaches of the river that require monitoring thus allowing better management practices of the public money allocated for river maintenance. Solution of the Riemann problem for a 10 m wide rectangular XS. The dotted lines represent the numerical solution, while the continuous ones represent the analytical solution
NASA Technical Reports Server (NTRS)
Dieudonne, J. E.
1978-01-01
A numerical technique was developed which generates linear perturbation models from nonlinear aircraft vehicle simulations. The technique is very general and can be applied to simulations of any system that is described by nonlinear differential equations. The computer program used to generate these models is discussed, with emphasis placed on generation of the Jacobian matrices, calculation of the coefficients needed for solving the perturbation model, and generation of the solution of the linear differential equations. An example application of the technique to a nonlinear model of the NASA terminal configured vehicle is included.
Temperature and solute-transport simulation in streamflow using a Lagrangian reference frame
Jobson, Harvey E.
1980-01-01
A computer program for simulating one-dimensional, unsteady temperature and solute transport in a river has been developed and documented for general use. The solution approach to the convective-diffusion equation uses a moving reference frame (Lagrangian) which greatly simplifies the mathematics of the solution procedure and dramatically reduces errors caused by numerical dispersion. The model documentation is presented as a series of four programs of increasing complexity. The conservative transport model can be used to route a single conservative substance. The simplified temperature model is used to predict water temperature in rivers when only temperature and windspeed data are available. The complete temperature model is highly accurate but requires rather complete meteorological data. Finally, the 10-parameter model can be used to route as many as 10 interacting constituents through a river reach. (USGS)
NASA Technical Reports Server (NTRS)
Chang, Sin-Chung; Wang, Xiao-Yen; Chow, Chuen-Yen
1998-01-01
A new high resolution and genuinely multidimensional numerical method for solving conservation laws is being, developed. It was designed to avoid the limitations of the traditional methods. and was built from round zero with extensive physics considerations. Nevertheless, its foundation is mathmatically simple enough that one can build from it a coherent, robust. efficient and accurate numerical framework. Two basic beliefs that set the new method apart from the established methods are at the core of its development. The first belief is that, in order to capture physics more efficiently and realistically, the modeling, focus should be placed on the original integral form of the physical conservation laws, rather than the differential form. The latter form follows from the integral form under the additional assumption that the physical solution is smooth, an assumption that is difficult to realize numerically in a region of rapid chance. such as a boundary layer or a shock. The second belief is that, with proper modeling of the integral and differential forms themselves, the resulting, numerical solution should automatically be consistent with the properties derived front the integral and differential forms, e.g., the jump conditions across a shock and the properties of characteristics. Therefore a much simpler and more robust method can be developed by not using the above derived properties explicitly.
Mean-Field Description of Ionic Size Effects with Non-Uniform Ionic Sizes: A Numerical Approach
Zhou, Shenggao; Wang, Zhongming; Li, Bo
2013-01-01
Ionic size effects are significant in many biological systems. Mean-field descriptions of such effects can be efficient but also challenging. When ionic sizes are different, explicit formulas in such descriptions are not available for the dependence of the ionic concentrations on the electrostatic potential, i.e., there is no explicit, Boltzmann type distributions. This work begins with a variational formulation of the continuum electrostatics of an ionic solution with such non-uniform ionic sizes as well as multiple ionic valences. An augmented Lagrange multiplier method is then developed and implemented to numerically solve the underlying constrained optimization problem. The method is shown to be accurate and efficient, and is applied to ionic systems with non-uniform ionic sizes such as the sodium chloride solution. Extensive numerical tests demonstrate that the mean-field model and numerical method capture qualitatively some significant ionic size effects, particularly those for multivalent ionic solutions, such as the stratification of multivalent counterions near a charged surface. The ionic valence-to-volume ratio is found to be the key physical parameter in the stratification of concentrations. All these are not well described by the classical Poisson–Boltzmann theory, or the generalized Poisson–Boltzmann theory that treats uniform ionic sizes. Finally, various issues such as the close packing, limitation of the continuum model, and generalization of this work to molecular solvation are discussed. PMID:21929014
NASA Astrophysics Data System (ADS)
Le, Tien Dung; Moyne, Christian; Murad, Marcio A.
2015-01-01
A new three-scale model is proposed to describe the movement of ionic species of different valences in swelling clays characterized by three separate length scales (nano, micro, and macro) and two levels of porosity (nano- and micropores). At the finest (nano) scale the medium is treated as charged clay particles saturated by aqueous electrolyte solution containing monovalent and divalent ions forming the electrical double layer. A new constitutive law is constructed for the disjoining pressure based on the numerical resolution of non-local problem at the nanoscale which, in contrast to the Poisson-Boltzmann theory for point charge ions, is capable of capturing the short-range interactions between the ions due to their finite size. At the intermediate scale (microscale), the two-phase homogenized particle/electrolyte solution system is represented by swollen clay clusters (or aggregates) with the nanoscale disjoining pressure incorporated in a modified form of Terzaghi's effective principle. At the macroscale, the electro-chemical-mechanical couplings within clay clusters is homogenized with the ion transport in the bulk fluid lying in the micro pores. The resultant macroscopic picture is governed by a three-scale model wherein ion transport takes place in the bulk solution strongly coupled with the mechanics of the clay clusters which play the role of sources/sinks of mass to the bulk fluid associated with ion adsorption/desorption in the electrical double layer at the nanoscale. Within the context of the quasi-steady version of the multiscale model, wherein the electrolyte solution in the nanopores is assumed at instantaneous thermodynamic equilibrium with the bulk fluid in the micropores, we build-up numerically the ion-adsorption isotherms along with the constitutive law of the retardation coefficients of monovalent and divalent ions. In addition, the constitutive law for the macroscopic swelling pressure is reconstructed numerically showing patterns of attractive forces between particles for bivalent ions for particular ranges of bulk concentrations. The three-scale model is applied to numerically simulate ion diffusion in a compacted clay liner underneath a sanitary landfill. Owing to the distinct constitutive behavior of the swelling pressure and partition coefficient for each ionic species, different compaction regimes and diffusion/adsorption patterns, with totally different characteristic time scales, are observed for sodium and calcium migration in the clay liner.
Modelling chemical reactions in dc plasma inside oxygen bubbles in water
NASA Astrophysics Data System (ADS)
Takeuchi, N.; Ishii, Y.; Yasuoka, K.
2012-02-01
Plasmas generated inside oxygen bubbles in water have been developed for water purification. Zero-dimensional numerical simulations were used to investigate the chemical reactions in plasmas driven by dc voltage. The numerical and experimental results of the concentrations of hydrogen peroxide and ozone in the solution were compared with a discharge current between 1 and 7 mA. Upon increasing the water vapour concentration inside bubbles, we saw from the numerical results that the concentration of hydrogen peroxide increased with discharge current, whereas the concentration of ozone decreased. This finding agreed with the experimental results. With an increase in the discharge current, the heat flux from the plasma to the solution increased, and a large amount of water was probably vaporized into the bubbles.
Derivation of phase functions from multiply scattered sunlight transmitted through a hazy atmosphere
NASA Technical Reports Server (NTRS)
Weinman, J. A.; Twitty, J. T.; Browning, S. R.; Herman, B. M.
1975-01-01
The intensity of sunlight multiply scattered in model atmospheres is derived from the equation of radiative transfer by an analytical small-angle approximation. The approximate analytical solutions are compared to rigorous numerical solutions of the same problem. Results obtained from an aerosol-laden model atmosphere are presented. Agreement between the rigorous and the approximate solutions is found to be within a few per cent. The analytical solution to the problem which considers an aerosol-laden atmosphere is then inverted to yield a phase function which describes a single scattering event at small angles. The effect of noisy data on the derived phase function is discussed.
Dynamics from a mathematical model of a two-state gas laser
NASA Astrophysics Data System (ADS)
Kleanthous, Antigoni; Hua, Tianshu; Manai, Alexandre; Yawar, Kamran; Van Gorder, Robert A.
2018-05-01
Motivated by recent work in the area, we consider the behavior of solutions to a nonlinear PDE model of a two-state gas laser. We first review the derivation of the two-state gas laser model, before deriving a non-dimensional model given in terms of coupled nonlinear partial differential equations. We then classify the steady states of this system, in order to determine the possible long-time asymptotic solutions to this model, as well as corresponding stability results, showing that the only uniform steady state (the zero motion state) is unstable, while a linear profile in space is stable. We then provide numerical simulations for the full unsteady model. We show for a wide variety of initial conditions that the solutions tend toward the stable linear steady state profiles. We also consider traveling wave solutions, and determine the unique wave speed (in terms of the other model parameters) which allows wave-like solutions to exist. Despite some similarities between the model and the inviscid Burger's equation, the solutions we obtain are much more regular than the solutions to the inviscid Burger's equation, with no evidence of shock formation or loss of regularity.
Numerical Simulation of Blood Flow in Human Artery Using (A, Q) and (A, u) Systems
NASA Astrophysics Data System (ADS)
Mungkasi, Sudi; Wijayanti Budiawan, Inge
2018-03-01
In this paper, we model blood flow in human artery in the form of (𝐴, 𝑄) and (𝐴, 𝑢) systems, then we use the Lax-Friedrichs finite volume method to find the numerical solution of each model. Here 𝐴 represents the cross sectional area of the artery, 𝑄 denotes the discharge of the blood flow, and 𝑢 is the velocity of the blood flow. We simulate the numerical scheme of each model and investigate how the blood pressure pulse propagates in human artery. Particularly, we use the residual of 𝐴 to determine which system is better numerically. We obtain that the (𝐴, 𝑄) system is better numerically than the (𝐴, 𝑢) system, because the absolute of the residual of 𝐴 using the (𝐴, 𝑄) system is smaller than the absolute of the residual of 𝐴 using the (𝐴, 𝑢) system.
Optimal implicit 2-D finite differences to model wave propagation in poroelastic media
NASA Astrophysics Data System (ADS)
Itzá, Reymundo; Iturrarán-Viveros, Ursula; Parra, Jorge O.
2016-08-01
Numerical modeling of seismic waves in heterogeneous porous reservoir rocks is an important tool for the interpretation of seismic surveys in reservoir engineering. We apply globally optimal implicit staggered-grid finite differences (FD) to model 2-D wave propagation in heterogeneous poroelastic media at a low-frequency range (<10 kHz). We validate the numerical solution by comparing it to an analytical-transient solution obtaining clear seismic wavefields including fast P and slow P and S waves (for a porous media saturated with fluid). The numerical dispersion and stability conditions are derived using von Neumann analysis, showing that over a wide range of porous materials the Courant condition governs the stability and this optimal implicit scheme improves the stability of explicit schemes. High-order explicit FD can be replaced by some lower order optimal implicit FD so computational cost will not be as expensive while maintaining the accuracy. Here, we compute weights for the optimal implicit FD scheme to attain an accuracy of γ = 10-8. The implicit spatial differentiation involves solving tridiagonal linear systems of equations through Thomas' algorithm.
Botello-Smith, Wesley M.; Luo, Ray
2016-01-01
Continuum solvent models have been widely used in biomolecular modeling applications. Recently much attention has been given to inclusion of implicit membrane into existing continuum Poisson-Boltzmann solvent models to extend their applications to membrane systems. Inclusion of an implicit membrane complicates numerical solutions of the underlining Poisson-Boltzmann equation due to the dielectric inhomogeneity on the boundary surfaces of a computation grid. This can be alleviated by the use of the periodic boundary condition, a common practice in electrostatic computations in particle simulations. The conjugate gradient and successive over-relaxation methods are relatively straightforward to be adapted to periodic calculations, but their convergence rates are quite low, limiting their applications to free energy simulations that require a large number of conformations to be processed. To accelerate convergence, the Incomplete Cholesky preconditioning and the geometric multi-grid methods have been extended to incorporate periodicity for biomolecular applications. Impressive convergence behaviors were found as in the previous applications of these numerical methods to tested biomolecules and MMPBSA calculations. PMID:26389966
NASA Astrophysics Data System (ADS)
Zhang, Fei; Huang, Weizhang; Li, Xianping; Zhang, Shicheng
2018-03-01
A moving mesh finite element method is studied for the numerical solution of a phase-field model for brittle fracture. The moving mesh partial differential equation approach is employed to dynamically track crack propagation. Meanwhile, the decomposition of the strain tensor into tensile and compressive components is essential for the success of the phase-field modeling of brittle fracture but results in a non-smooth elastic energy and stronger nonlinearity in the governing equation. This makes the governing equation much more difficult to solve and, in particular, Newton's iteration often fails to converge. Three regularization methods are proposed to smooth out the decomposition of the strain tensor. Numerical examples of fracture propagation under quasi-static load demonstrate that all of the methods can effectively improve the convergence of Newton's iteration for relatively small values of the regularization parameter but without compromising the accuracy of the numerical solution. They also show that the moving mesh finite element method is able to adaptively concentrate the mesh elements around propagating cracks and handle multiple and complex crack systems.
Numerical simulation of flow through the Langley parametric scramjet engine
NASA Technical Reports Server (NTRS)
Srinivasan, Shivakumar; Kamath, Pradeep S.; Mcclinton, Charles R.
1989-01-01
The numerical simulation of a three-dimensional turbulent, reacting flow through the entire Langley parametric scramjet engine has been obtained using a piecewise elliptic approach. The last section in the combustor has been analyzed using a parabolized Navier-Stokes code. The facility nozzle flow was analyzed as a first step. The outflow conditions from the nozzle were chosen as the inflow conditions of the scramjet inlet. The nozzle and the inlet simulation were accomplished by solving the three-dimensional Navier-Stokes equations with a perfect gas assumption. The inlet solution downstream of the scramjet throat was used to provide inflow conditions for the combustor region. The first two regions of the combustor were analyzed using the MacCormack's explicit scheme. However, the source terms in the species equations were solved implicitly. The finite rate chemistry was modeled using the two-step reaction model of Rogers and Chinitz. A complete reaction model was used in the PNS code to solve the last combustor region. The numerical solutions provide an insight of the flow details in a complete hydrogen-fueled scramjet engine module.
Numerical solution of a conspicuous consumption model with constant control delay☆
Huschto, Tony; Feichtinger, Gustav; Hartl, Richard F.; Kort, Peter M.; Sager, Sebastian; Seidl, Andrea
2011-01-01
We derive optimal pricing strategies for conspicuous consumption products in periods of recession. To that end, we formulate and investigate a two-stage economic optimal control problem that takes uncertainty of the recession period length and delay effects of the pricing strategy into account. This non-standard optimal control problem is difficult to solve analytically, and solutions depend on the variable model parameters. Therefore, we use a numerical result-driven approach. We propose a structure-exploiting direct method for optimal control to solve this challenging optimization problem. In particular, we discretize the uncertainties in the model formulation by using scenario trees and target the control delays by introduction of slack control functions. Numerical results illustrate the validity of our approach and show the impact of uncertainties and delay effects on optimal economic strategies. During the recession, delayed optimal prices are higher than the non-delayed ones. In the normal economic period, however, this effect is reversed and optimal prices with a delayed impact are smaller compared to the non-delayed case. PMID:22267871
Mass-conservative reconstruction of Galerkin velocity fields for transport simulations
NASA Astrophysics Data System (ADS)
Scudeler, C.; Putti, M.; Paniconi, C.
2016-08-01
Accurate calculation of mass-conservative velocity fields from numerical solutions of Richards' equation is central to reliable surface-subsurface flow and transport modeling, for example in long-term tracer simulations to determine catchment residence time distributions. In this study we assess the performance of a local Larson-Niklasson (LN) post-processing procedure for reconstructing mass-conservative velocities from a linear (P1) Galerkin finite element solution of Richards' equation. This approach, originally proposed for a-posteriori error estimation, modifies the standard finite element velocities by imposing local conservation on element patches. The resulting reconstructed flow field is characterized by continuous fluxes on element edges that can be efficiently used to drive a second order finite volume advective transport model. Through a series of tests of increasing complexity that compare results from the LN scheme to those using velocity fields derived directly from the P1 Galerkin solution, we show that a locally mass-conservative velocity field is necessary to obtain accurate transport results. We also show that the accuracy of the LN reconstruction procedure is comparable to that of the inherently conservative mixed finite element approach, taken as a reference solution, but that the LN scheme has much lower computational costs. The numerical tests examine steady and unsteady, saturated and variably saturated, and homogeneous and heterogeneous cases along with initial and boundary conditions that include dry soil infiltration, alternating solute and water injection, and seepage face outflow. Typical problems that arise with velocities derived from P1 Galerkin solutions include outgoing solute flux from no-flow boundaries, solute entrapment in zones of low hydraulic conductivity, and occurrences of anomalous sources and sinks. In addition to inducing significant mass balance errors, such manifestations often lead to oscillations in concentration values that can moreover cause the numerical solution to explode. These problems do not occur when using LN post-processed velocities.
Finite element analysis of low speed viscous and inviscid aerodynamic flows
NASA Technical Reports Server (NTRS)
Baker, A. J.; Manhardt, P. D.
1977-01-01
A weak interaction solution algorithm was established for aerodynamic flow about an isolated airfoil. Finite element numerical methodology was applied to solution of each of differential equations governing potential flow, and viscous and turbulent boundary layer and wake flow downstream of the sharp trailing edge. The algorithm accounts for computed viscous displacement effects on the potential flow. Closure for turbulence was accomplished using both first and second order models. The COMOC finite element fluid mechanics computer program was modified to solve the identified equation systems for two dimensional flows. A numerical program was completed to determine factors affecting solution accuracy, convergence and stability for the combined potential, boundary layer, and parabolic Navier-Stokes equation systems. Good accuracy and convergence are demonstrated. Each solution is obtained within the identical finite element framework of COMOC.
NASA Technical Reports Server (NTRS)
Pavish, D. L.; Spaulding, M. L.
1977-01-01
A computer coded Lagrangian marker particle in Eulerian finite difference cell solution to the three dimensional incompressible mass transport equation, Water Advective Particle in Cell Technique, WAPIC, was developed, verified against analytic solutions, and subsequently applied in the prediction of long term transport of a suspended sediment cloud resulting from an instantaneous dredge spoil release. Numerical results from WAPIC were verified against analytic solutions to the three dimensional incompressible mass transport equation for turbulent diffusion and advection of Gaussian dye releases in unbounded uniform and uniformly sheared uni-directional flow, and for steady-uniform plug channel flow. WAPIC was utilized to simulate an analytic solution for non-equilibrium sediment dropout from an initially vertically uniform particle distribution in one dimensional turbulent channel flow.
An exact solution for ideal dam-break floods on steep slopes
Ancey, C.; Iverson, R.M.; Rentschler, M.; Denlinger, R.P.
2008-01-01
The shallow-water equations are used to model the flow resulting from the sudden release of a finite volume of frictionless, incompressible fluid down a uniform slope of arbitrary inclination. The hodograph transformation and Riemann's method make it possible to transform the governing equations into a linear system and then deduce an exact analytical solution expressed in terms of readily evaluated integrals. Although the solution treats an idealized case never strictly realized in nature, it is uniquely well-suited for testing the robustness and accuracy of numerical models used to model shallow-water flows on steep slopes. Copyright 2008 by the American Geophysical Union.
Filter Strategies for Mars Science Laboratory Orbit Determination
NASA Technical Reports Server (NTRS)
Thompson, Paul F.; Gustafson, Eric D.; Kruizinga, Gerhard L.; Martin-Mur, Tomas J.
2013-01-01
The Mars Science Laboratory (MSL) spacecraft had ambitious navigation delivery and knowledge accuracy requirements for landing inside Gale Crater. Confidence in the orbit determination (OD) solutions was increased by investigating numerous filter strategies for solving the orbit determination problem. We will discuss the strategy for the different types of variations: for example, data types, data weights, solar pressure model covariance, and estimating versus considering model parameters. This process generated a set of plausible OD solutions that were compared to the baseline OD strategy. Even implausible or unrealistic results were helpful in isolating sensitivities in the OD solutions to certain model parameterizations or data types.
NASA Astrophysics Data System (ADS)
Zhuravlev, A. K.; Anokhin, A. O.; Irkhin, V. Yu.
2018-02-01
Simple scaling consideration and NRG solution of the one- and two-channel Kondo model in the presence of a logarithmic Van Hove singularity at the Fermi level is given. The temperature dependences of local and impurity magnetic susceptibility and impurity entropy are calculated. The low-temperature behavior of the impurity susceptibility and impurity entropy turns out to be non-universal in the Kondo sense and independent of the s-d coupling J. The resonant level model solution in the strong coupling regime confirms the NRG results. In the two-channel case the local susceptibility demonstrates a non-Fermi-liquid power-law behavior.
Simulation of a class of hazardous situations in the ICS «INM RAS - Baltic Sea»
NASA Astrophysics Data System (ADS)
Zakharova, Natalia; Agoshkov, Valery; Aseev, Nikita; Parmuzin, Eugene; Sheloput, Tateana; Shutyaev, Victor
2017-04-01
Development of Informational Computational Systems (ICS) for data assimilation procedures is one of multidisciplinary problems. To study and solve these problems one needs to apply modern results from different disciplines and recent developments in mathematical modeling, theory of adjoint equations and optimal control, inverse problems, numerical methods theory, numerical algebra, scientific computing and processing of satellite data. In this work the results on the ICS development for PC-ICS "INM RAS - Baltic Sea" are presented. We discuss practical problems studied by ICS. The System includes numerical model of the Baltic Sea thermodynamics, the new oil spill model describing the propagation of a slick at the Sea surface (Agoshkov, Aseev et al., 2014) and the optimal ship route calculating block (Agoshkov, Zayachkovsky et al., 2014). The ICS is based on the INMOM numerical model of the Baltic Sea thermodynamics (Zalesny et al., 2013). It is possible to calculate main hydrodynamic parameters (temperature, salinity, velocities, sea level) using user-friendly interface of the ICS. The System includes data assimilation procedures (Agoshkov, 2003, Parmuzin, Agoshkov, 2012) and one can use the block of variational assimilation of the sea surface temperature in order to obtain main hydrodynamic parameters. Main possibilities of the ICS and several numerical experiments are presented in the work. By the problem of risk control is meant a problem of determination of optimal resources quantity which are necessary for decreasing the risk to some acceptable value. Mass of oil slick is chosen as a function of control. For the realization of the random variable the quadratic "functional of cost" is introduced. It comprises cleaning costs and deviation of damage of oil pollution from its acceptable value. The problem of minimization of this functional is solved based on the methods of optimal control and the theory of adjoint equations. The solution of this problem is explicitly found. The study was supported by the Russian Foundation for Basic Research (project 16-31-00510) and by the Russian Science Foundation (project №14-11-00609). V. I. Agoshkov, Methods of Optimal Control and Adjoint Equations in Problems of Mathematical Physics. INM RAS, Moscow, 2003 (in Russian). V. B. Zalesny, A. V. Gusev, V. O. Ivchenko, R. Tamsalu, and R. Aps, Numerical model of the Baltic Sea circulation. Russ. J. Numer. Anal. Math. Modelling 28 (2013), No. 1, 85-100. V.I. Agoshkov, A.O. Zayachkovskiy, R. Aps, P. Kujala, and J. Rytkönen. Risk theory based solution to the problem of optimal vessel route // Russian Journal of Numerical Analysis and Mathematical Modelling. 2014. Volume 29, Issue 2, Pages 69-78. Agoshkov, V., Aseev, N., Aps, R., Kujala, P., Rytkönen, J., Zalesny, V. The problem of control of oil pollution risk in the Baltic Sea // Russian Journal of Numerical Analysis and Mathematical Modelling. 2014. Volume 29, Issue 2, Pages 93-105. E. I. Parmuzin and V. I. Agoshkov, Numerical solution of the variational assimilation problem for sea surface temperature in the model of the Black Sea dynamics. Russ. J. Numer. Anal. Math. Modelling 27 (2012), No. 1, 69-94. Olof Liungman and Johan Mattsson. Scientic Documentation of Seatrack Web; physical processes, algorithms and references, 2011.
NASA Astrophysics Data System (ADS)
Ren, Zhengyong; Qiu, Lewen; Tang, Jingtian; Wu, Xiaoping; Xiao, Xiao; Zhou, Zilong
2018-01-01
Although accurate numerical solvers for 3-D direct current (DC) isotropic resistivity models are current available even for complicated models with topography, reliable numerical solvers for the anisotropic case are still an open question. This study aims to develop a novel and optimal numerical solver for accurately calculating the DC potentials for complicated models with arbitrary anisotropic conductivity structures in the Earth. First, a secondary potential boundary value problem is derived by considering the topography and the anisotropic conductivity. Then, two a posteriori error estimators with one using the gradient-recovery technique and one measuring the discontinuity of the normal component of current density are developed for the anisotropic cases. Combing the goal-oriented and non-goal-oriented mesh refinements and these two error estimators, four different solving strategies are developed for complicated DC anisotropic forward modelling problems. A synthetic anisotropic two-layer model with analytic solutions verified the accuracy of our algorithms. A half-space model with a buried anisotropic cube and a mountain-valley model are adopted to test the convergence rates of these four solving strategies. We found that the error estimator based on the discontinuity of current density shows better performance than the gradient-recovery based a posteriori error estimator for anisotropic models with conductivity contrasts. Both error estimators working together with goal-oriented concepts can offer optimal mesh density distributions and highly accurate solutions.
A Numerical Scheme for the Solution of the Space Charge Problem on a Multiply Connected Region
NASA Astrophysics Data System (ADS)
Budd, C. J.; Wheeler, A. A.
1991-11-01
In this paper we extend the work of Budd and Wheeler ( Proc. R. Soc. London A, 417, 389, 1988) , who described a new numerical scheme for the solution of the space charge equation on a simple connected domain, to multiply connected regions. The space charge equation, ▿ · ( Δ overlineϕ ▽ overlineϕ) = 0 , is a third-order nonlinear partial differential equation for the electric potential overlineϕ which models the electric field in the vicinity of a coronating conductor. Budd and Wheeler described a new way of analysing this equation by constructing an orthogonal coordinate system ( overlineϕ, overlineψ) and recasting the equation in terms of x, y, and ▽ overlineϕ as functions of ( overlineϕ, overlineψ). This transformation is singular on multiply connected regions and in this paper we show how this may be overcome to provide an efficient numerical scheme for the solution of the space charge equation. This scheme also provides a new method for the solution of Laplaces equation and the calculation of orthogonal meshes on multiply connected regions.
Variational data assimilation system "INM RAS - Black Sea"
NASA Astrophysics Data System (ADS)
Parmuzin, Eugene; Agoshkov, Valery; Assovskiy, Maksim; Giniatulin, Sergey; Zakharova, Natalia; Kuimov, Grigory; Fomin, Vladimir
2013-04-01
Development of Informational-Computational Systems (ICS) for Data Assimilation Procedures is one of multidisciplinary problems. To study and solve these problems one needs to apply modern results from different disciplines and recent developments in: mathematical modeling; theory of adjoint equations and optimal control; inverse problems; numerical methods theory; numerical algebra and scientific computing. The problems discussed above are studied in the Institute of Numerical Mathematics of the Russian Academy of Science (INM RAS) in ICS for Personal Computers (PC). Special problems and questions arise while effective ICS versions for PC are being developed. These problems and questions can be solved with applying modern methods of numerical mathematics and by solving "parallelism problem" using OpenMP technology and special linear algebra packages. In this work the results on the ICS development for PC-ICS "INM RAS - Black Sea" are presented. In the work the following problems and questions are discussed: practical problems that can be studied by ICS; parallelism problems and their solutions with applying of OpenMP technology and the linear algebra packages used in ICS "INM - Black Sea"; Interface of ICS. The results of ICS "INM RAS - Black Sea" testing are presented. Efficiency of technologies and methods applied are discussed. The work was supported by RFBR, grants No. 13-01-00753, 13-05-00715 and by The Ministry of education and science of Russian Federation, project 8291, project 11.519.11.1005 References: [1] V.I. Agoshkov, M.V. Assovskii, S.A. Lebedev, Numerical simulation of Black Sea hydrothermodynamics taking into account tide-forming forces. Russ. J. Numer. Anal. Math. Modelling (2012) 27, No.1, 5-31 [2] E.I. Parmuzin, V.I. Agoshkov, Numerical solution of the variational assimilation problem for sea surface temperature in the model of the Black Sea dynamics. Russ. J. Numer. Anal. Math. Modelling (2012) 27, No.1, 69-94 [3] V.B. Zalesny, N.A. Diansky, V.V. Fomin, S.N. Moshonkin, S.G. Demyshev, Numerical model of the circulation of Black Sea and Sea of Azov. Russ. J. Numer. Anal. Math. Modelling (2012) 27, No.1, 95-111 [4] V.I. Agoshkov, S.V. Giniatulin, G.V. Kuimov. OpenMP technology and linear algebra packages in the variation data assimilation systems. - Abstracts of the 1-st China-Russia Conference on Numerical Algebra with Applications in Radiactive Hydrodynamics, Beijing, China, October 16-18, 2012. [5] Zakharova N.B., Agoshkov V.I., Parmuzin E.I., The new method of ARGO buoys system observation data interpolation. Russian Journal of Numerical Analysis and Mathematical Modelling. Vol. 28, Issue 1, 2013.
An application of a two-equation model of turbulence to three-dimensional chemically reacting flows
NASA Technical Reports Server (NTRS)
Lee, J.
1994-01-01
A numerical study of three dimensional chemically reacting and non-reacting flowfields is conducted using a two-equation model of turbulence. A generalized flow solver using an implicit Lower-Upper (LU) diagonal decomposition numerical technique and finite-rate chemistry has been coupled with a low-Reynolds number two-equation model of turbulence. This flow solver is then used to study chemically reacting turbulent supersonic flows inside combustors with synergetic fuel injectors. The reacting and non-reacting turbulent combustor solutions obtained are compared with zero-equation turbulence model solutions and with available experimental data. The hydrogen-air chemistry is modeled using a nine-species/eighteen reaction model. A low-Reynolds number k-epsilon model was used to model the effect of turbulence because, in general, the low-Reynolds number k-epsilon models are easier to implement numerically and are far more general than algebraic models. However, low-Reynolds number k-epsilon models require a much finer near-wall grid resolution than high-Reynolds number models to resolve accurately the near-wall physics. This is especially true in complex flowfields, where the stiff nature of the near-wall turbulence must be resolved. Therefore, the limitations imposed by the near-wall characteristics and compressible model corrections need to be evaluated further. The gradient-diffusion hypothesis is used to model the effects of turbulence on the mass diffusion process. The influence of this low-Reynolds number turbulence model on the reacting flowfield predictions was studied parametrically.
NASA Astrophysics Data System (ADS)
Jha, Pradeep Kumar
Capturing the effects of detailed-chemistry on turbulent combustion processes is a central challenge faced by the numerical combustion community. However, the inherent complexity and non-linear nature of both turbulence and chemistry require that combustion models rely heavily on engineering approximations to remain computationally tractable. This thesis proposes a computationally efficient algorithm for modelling detailed-chemistry effects in turbulent diffusion flames and numerically predicting the associated flame properties. The cornerstone of this combustion modelling tool is the use of parallel Adaptive Mesh Refinement (AMR) scheme with the recently proposed Flame Prolongation of Intrinsic low-dimensional manifold (FPI) tabulated-chemistry approach for modelling complex chemistry. The effect of turbulence on the mean chemistry is incorporated using a Presumed Conditional Moment (PCM) approach based on a beta-probability density function (PDF). The two-equation k-w turbulence model is used for modelling the effects of the unresolved turbulence on the mean flow field. The finite-rate of methane-air combustion is represented here by using the GRI-Mech 3.0 scheme. This detailed mechanism is used to build the FPI tables. A state of the art numerical scheme based on a parallel block-based solution-adaptive algorithm has been developed to solve the Favre-averaged Navier-Stokes (FANS) and other governing partial-differential equations using a second-order accurate, fully-coupled finite-volume formulation on body-fitted, multi-block, quadrilateral/hexahedral mesh for two-dimensional and three-dimensional flow geometries, respectively. A standard fourth-order Runge-Kutta time-marching scheme is used for time-accurate temporal discretizations. Numerical predictions of three different diffusion flames configurations are considered in the present work: a laminar counter-flow flame; a laminar co-flow diffusion flame; and a Sydney bluff-body turbulent reacting flow. Comparisons are made between the predicted results of the present FPI scheme and Steady Laminar Flamelet Model (SLFM) approach for diffusion flames. The effects of grid resolution on the predicted overall flame solutions are also assessed. Other non-reacting flows have also been considered to further validate other aspects of the numerical scheme. The present schemes predict results which are in good agreement with published experimental results and reduces the computational cost involved in modelling turbulent diffusion flames significantly, both in terms of storage and processing time.
NASA Astrophysics Data System (ADS)
Crescimanno, Michael; Hohensee, Michael; Hancox, Cindy; Phillips, David; Walsworth, Ron
2007-06-01
Of relevance to compact atomic frequency standards, we investigate a model of the N+CPT joint optical resonance. We compare analytical solutions of a 4-state theory, as well as numerical solutions of the optical Bloch equations, to experimental investigations of N+CPT resonances in 87Rb. Our results inform the optimization of N+CPT based frequency standards.
Runkel, Robert L.; Chapra, Steven C.
1993-01-01
Several investigators have proposed solute transport models that incorporate the effects of transient storage. Transient storage occurs in small streams when portions of the transported solute become isolated in zones of water that are immobile relative to water in the main channel (e.g., pools, gravel beds). Transient storage is modeled by adding a storage term to the advection-dispersion equation describing conservation of mass for the main channel. In addition, a separate mass balance equation is written for the storage zone. Although numerous applications of the transient storage equations may be found in the literature, little attention has been paid to the numerical aspects of the approach. Of particular interest is the coupled nature of the equations describing mass conservation for the main channel and the storage zone. In the work described herein, an implicit finite difference technique is developed that allows for a decoupling of the governing differential equations. This decoupling method may be applied to other sets of coupled equations such as those describing sediment-water interactions for toxic contaminants. For the case at hand, decoupling leads to a 50% reduction in simulation run time. Computational costs may be further reduced through efficient application of the Thomas algorithm. These techniques may be easily incorporated into existing codes and new applications in which simulation run time is of concern.
Diffusion in random networks: Asymptotic properties, and numerical and engineering approximations
NASA Astrophysics Data System (ADS)
Padrino, Juan C.; Zhang, Duan Z.
2016-11-01
The ensemble phase averaging technique is applied to model mass transport by diffusion in random networks. The system consists of an ensemble of random networks, where each network is made of a set of pockets connected by tortuous channels. Inside a channel, we assume that fluid transport is governed by the one-dimensional diffusion equation. Mass balance leads to an integro-differential equation for the pores mass density. The so-called dual porosity model is found to be equivalent to the leading order approximation of the integration kernel when the diffusion time scale inside the channels is small compared to the macroscopic time scale. As a test problem, we consider the one-dimensional mass diffusion in a semi-infinite domain, whose solution is sought numerically. Because of the required time to establish the linear concentration profile inside a channel, for early times the similarity variable is xt- 1 / 4 rather than xt- 1 / 2 as in the traditional theory. This early time sub-diffusive similarity can be explained by random walk theory through the network. In addition, by applying concepts of fractional calculus, we show that, for small time, the governing equation reduces to a fractional diffusion equation with known solution. We recast this solution in terms of special functions easier to compute. Comparison of the numerical and exact solutions shows excellent agreement.
On computing special functions in marine engineering
NASA Astrophysics Data System (ADS)
Constantinescu, E.; Bogdan, M.
2015-11-01
Important modeling applications in marine engineering conduct us to a special class of solutions for difficult differential equations with variable coefficients. In order to be able to solve and implement such models (in wave theory, in acoustics, in hydrodynamics, in electromagnetic waves, but also in many other engineering fields), it is necessary to compute so called special functions: Bessel functions, modified Bessel functions, spherical Bessel functions, Hankel functions. The aim of this paper is to develop numerical solutions in Matlab for the above mentioned special functions. Taking into account the main properties for Bessel and modified Bessel functions, we shortly present analytically solutions (where possible) in the form of series. Especially it is studied the behavior of these special functions using Matlab facilities: numerical solutions and plotting. Finally, it will be compared the behavior of the special functions and point out other directions for investigating properties of Bessel and spherical Bessel functions. The asymptotic forms of Bessel functions and modified Bessel functions allow determination of important properties of these functions. The modified Bessel functions tend to look more like decaying and growing exponentials.