NASA Technical Reports Server (NTRS)
Ahmed, Kazi Farzan; Wang, Guiling; Silander, John; Wilson, Adam M.; Allen, Jenica M.; Horton, Radley; Anyah, Richard
2013-01-01
Statistical downscaling can be used to efficiently downscale a large number of General Circulation Model (GCM) outputs to a fine temporal and spatial scale. To facilitate regional impact assessments, this study statistically downscales (to 1/8deg spatial resolution) and corrects the bias of daily maximum and minimum temperature and daily precipitation data from six GCMs and four Regional Climate Models (RCMs) for the northeast United States (US) using the Statistical Downscaling and Bias Correction (SDBC) approach. Based on these downscaled data from multiple models, five extreme indices were analyzed for the future climate to quantify future changes of climate extremes. For a subset of models and indices, results based on raw and bias corrected model outputs for the present-day climate were compared with observations, which demonstrated that bias correction is important not only for GCM outputs, but also for RCM outputs. For future climate, bias correction led to a higher level of agreements among the models in predicting the magnitude and capturing the spatial pattern of the extreme climate indices. We found that the incorporation of dynamical downscaling as an intermediate step does not lead to considerable differences in the results of statistical downscaling for the study domain.
Multi-level emulation of complex climate model responses to boundary forcing data
NASA Astrophysics Data System (ADS)
Tran, Giang T.; Oliver, Kevin I. C.; Holden, Philip B.; Edwards, Neil R.; Sóbester, András; Challenor, Peter
2018-04-01
Climate model components involve both high-dimensional input and output fields. It is desirable to efficiently generate spatio-temporal outputs of these models for applications in integrated assessment modelling or to assess the statistical relationship between such sets of inputs and outputs, for example, uncertainty analysis. However, the need for efficiency often compromises the fidelity of output through the use of low complexity models. Here, we develop a technique which combines statistical emulation with a dimensionality reduction technique to emulate a wide range of outputs from an atmospheric general circulation model, PLASIM, as functions of the boundary forcing prescribed by the ocean component of a lower complexity climate model, GENIE-1. Although accurate and detailed spatial information on atmospheric variables such as precipitation and wind speed is well beyond the capability of GENIE-1's energy-moisture balance model of the atmosphere, this study demonstrates that the output of this model is useful in predicting PLASIM's spatio-temporal fields through multi-level emulation. Meaningful information from the fast model, GENIE-1 was extracted by utilising the correlation between variables of the same type in the two models and between variables of different types in PLASIM. We present here the construction and validation of several PLASIM variable emulators and discuss their potential use in developing a hybrid model with statistical components.
Theoretic aspects of the identification of the parameters in the optimal control model
NASA Technical Reports Server (NTRS)
Vanwijk, R. A.; Kok, J. J.
1977-01-01
The identification of the parameters of the optimal control model from input-output data of the human operator is considered. Accepting the basic structure of the model as a cascade of a full-order observer and a feedback law, and suppressing the inherent optimality of the human controller, the parameters to be identified are the feedback matrix, the observer gain matrix, and the intensity matrices of the observation noise and the motor noise. The identification of the parameters is a statistical problem, because the system and output are corrupted by noise, and therefore the solution must be based on the statistics (probability density function) of the input and output data of the human operator. However, based on the statistics of the input-output data of the human operator, no distinction can be made between the observation and the motor noise, which shows that the model suffers from overparameterization.
Hydrological responses to dynamically and statistically downscaled climate model output
Wilby, R.L.; Hay, L.E.; Gutowski, W.J.; Arritt, R.W.; Takle, E.S.; Pan, Z.; Leavesley, G.H.; Clark, M.P.
2000-01-01
Daily rainfall and surface temperature series were simulated for the Animas River basin, Colorado using dynamically and statistically downscaled output from the National Center for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) re-analysis. A distributed hydrological model was then applied to the downscaled data. Relative to raw NCEP output, downscaled climate variables provided more realistic stimulations of basin scale hydrology. However, the results highlight the sensitivity of modeled processes to the choice of downscaling technique, and point to the need for caution when interpreting future hydrological scenarios.
1988-10-01
A statistical analysis on the output signals of an acousto - optic spectrum analyzer (AOSA) is performed for the case when the input signal is a...processing, Electronic warfare, Radar countermeasures, Acousto - optic , Spectrum analyzer, Statistical analysis, Detection, Estimation, Canada, Modelling.
Dynamic Modeling and Very Short-term Prediction of Wind Power Output Using Box-Cox Transformation
NASA Astrophysics Data System (ADS)
Urata, Kengo; Inoue, Masaki; Murayama, Dai; Adachi, Shuichi
2016-09-01
We propose a statistical modeling method of wind power output for very short-term prediction. The modeling method with a nonlinear model has cascade structure composed of two parts. One is a linear dynamic part that is driven by a Gaussian white noise and described by an autoregressive model. The other is a nonlinear static part that is driven by the output of the linear part. This nonlinear part is designed for output distribution matching: we shape the distribution of the model output to match with that of the wind power output. The constructed model is utilized for one-step ahead prediction of the wind power output. Furthermore, we study the relation between the prediction accuracy and the prediction horizon.
NASA Technical Reports Server (NTRS)
Forbes, G. S.; Pielke, R. A.
1985-01-01
Various empirical and statistical weather-forecasting studies which utilize stratification by weather regime are described. Objective classification was used to determine weather regime in some studies. In other cases the weather pattern was determined on the basis of a parameter representing the physical and dynamical processes relevant to the anticipated mesoscale phenomena, such as low level moisture convergence and convective precipitation, or the Froude number and the occurrence of cold-air damming. For mesoscale phenomena already in existence, new forecasting techniques were developed. The use of cloud models in operational forecasting is discussed. Models to calculate the spatial scales of forcings and resultant response for mesoscale systems are presented. The use of these models to represent the climatologically most prevalent systems, and to perform case-by-case simulations is reviewed. Operational implementation of mesoscale data into weather forecasts, using both actual simulation output and method-output statistics is discussed.
NASA Astrophysics Data System (ADS)
Hinckley, Sarah; Parada, Carolina; Horne, John K.; Mazur, Michael; Woillez, Mathieu
2016-10-01
Biophysical individual-based models (IBMs) have been used to study aspects of early life history of marine fishes such as recruitment, connectivity of spawning and nursery areas, and marine reserve design. However, there is no consistent approach to validating the spatial outputs of these models. In this study, we hope to rectify this gap. We document additions to an existing individual-based biophysical model for Alaska walleye pollock (Gadus chalcogrammus), some simulations made with this model and methods that were used to describe and compare spatial output of the model versus field data derived from ichthyoplankton surveys in the Gulf of Alaska. We used visual methods (e.g. distributional centroids with directional ellipses), several indices (such as a Normalized Difference Index (NDI), and an Overlap Coefficient (OC), and several statistical methods: the Syrjala method, the Getis-Ord Gi* statistic, and a geostatistical method for comparing spatial indices. We assess the utility of these different methods in analyzing spatial output and comparing model output to data, and give recommendations for their appropriate use. Visual methods are useful for initial comparisons of model and data distributions. Metrics such as the NDI and OC give useful measures of co-location and overlap, but care must be taken in discretizing the fields into bins. The Getis-Ord Gi* statistic is useful to determine the patchiness of the fields. The Syrjala method is an easily implemented statistical measure of the difference between the fields, but does not give information on the details of the distributions. Finally, the geostatistical comparison of spatial indices gives good information of details of the distributions and whether they differ significantly between the model and the data. We conclude that each technique gives quite different information about the model-data distribution comparison, and that some are easy to apply and some more complex. We also give recommendations for a multistep process to validate spatial output from IBMs.
1992-01-09
Crystal Polymers Tracy Reed Geophysics Laboratory (GEO) 9 Analysis of Model Output Statistics Thunderstorm Prediction Model Frank Lasley 10...four hours to twenty-four hours. It was predicted that the dogbones would turn brown once they reached the approximate annealing temperature. This was...LYS Hanscom AFB Frank A. Lasley Abstracft. Model Output Statistics (MOS) Thunderstorm prediction information and Service A weather observations
Fiori, Simone
2007-01-01
Bivariate statistical modeling from incomplete data is a useful statistical tool that allows to discover the model underlying two data sets when the data in the two sets do not correspond in size nor in ordering. Such situation may occur when the sizes of the two data sets do not match (i.e., there are “holes” in the data) or when the data sets have been acquired independently. Also, statistical modeling is useful when the amount of available data is enough to show relevant statistical features of the phenomenon underlying the data. We propose to tackle the problem of statistical modeling via a neural (nonlinear) system that is able to match its input-output statistic to the statistic of the available data sets. A key point of the new implementation proposed here is that it is based on look-up-table (LUT) neural systems, which guarantee a computationally advantageous way of implementing neural systems. A number of numerical experiments, performed on both synthetic and real-world data sets, illustrate the features of the proposed modeling procedure. PMID:18566641
Alpha1 LASSO data bundles Lamont, OK
Gustafson, William Jr; Vogelmann, Andrew; Endo, Satoshi; Toto, Tami; Xiao, Heng; Li, Zhijin; Cheng, Xiaoping; Krishna, Bhargavi (ORCID:000000018828528X)
2016-08-03
A data bundle is a unified package consisting of LASSO LES input and output, observations, evaluation diagnostics, and model skill scores. LES input includes model configuration information and forcing data. LES output includes profile statistics and full domain fields of cloud and environmental variables. Model evaluation data consists of LES output and ARM observations co-registered on the same grid and sampling frequency. Model performance is quantified by skill scores and diagnostics in terms of cloud and environmental variables.
NASA Astrophysics Data System (ADS)
Guadagnini, A.; Riva, M.; Dell'Oca, A.
2017-12-01
We propose to ground sensitivity of uncertain parameters of environmental models on a set of indices based on the main (statistical) moments, i.e., mean, variance, skewness and kurtosis, of the probability density function (pdf) of a target model output. This enables us to perform Global Sensitivity Analysis (GSA) of a model in terms of multiple statistical moments and yields a quantification of the impact of model parameters on features driving the shape of the pdf of model output. Our GSA approach includes the possibility of being coupled with the construction of a reduced complexity model that allows approximating the full model response at a reduced computational cost. We demonstrate our approach through a variety of test cases. These include a commonly used analytical benchmark, a simplified model representing pumping in a coastal aquifer, a laboratory-scale tracer experiment, and the migration of fracturing fluid through a naturally fractured reservoir (source) to reach an overlying formation (target). Our strategy allows discriminating the relative importance of model parameters to the four statistical moments considered. We also provide an appraisal of the error associated with the evaluation of our sensitivity metrics by replacing the original system model through the selected surrogate model. Our results suggest that one might need to construct a surrogate model with increasing level of accuracy depending on the statistical moment considered in the GSA. The methodological framework we propose can assist the development of analysis techniques targeted to model calibration, design of experiment, uncertainty quantification and risk assessment.
Regionalisation of statistical model outputs creating gridded data sets for Germany
NASA Astrophysics Data System (ADS)
Höpp, Simona Andrea; Rauthe, Monika; Deutschländer, Thomas
2016-04-01
The goal of the German research program ReKliEs-De (regional climate projection ensembles for Germany, http://.reklies.hlug.de) is to distribute robust information about the range and the extremes of future climate for Germany and its neighbouring river catchment areas. This joint research project is supported by the German Federal Ministry of Education and Research (BMBF) and was initiated by the German Federal States. The Project results are meant to support the development of adaptation strategies to mitigate the impacts of future climate change. The aim of our part of the project is to adapt and transfer the regionalisation methods of the gridded hydrological data set (HYRAS) from daily station data to the station based statistical regional climate model output of WETTREG (regionalisation method based on weather patterns). The WETTREG model output covers the period of 1951 to 2100 with a daily temporal resolution. For this, we generate a gridded data set of the WETTREG output for precipitation, air temperature and relative humidity with a spatial resolution of 12.5 km x 12.5 km, which is common for regional climate models. Thus, this regionalisation allows comparing statistical to dynamical climate model outputs. The HYRAS data set was developed by the German Meteorological Service within the German research program KLIWAS (www.kliwas.de) and consists of daily gridded data for Germany and its neighbouring river catchment areas. It has a spatial resolution of 5 km x 5 km for the entire domain for the hydro-meteorological elements precipitation, air temperature and relative humidity and covers the period of 1951 to 2006. After conservative remapping the HYRAS data set is also convenient for the validation of climate models. The presentation will consist of two parts to present the actual state of the adaptation of the HYRAS regionalisation methods to the statistical regional climate model WETTREG: First, an overview of the HYRAS data set and the regionalisation methods for precipitation (REGNIE method based on a combination of multiple linear regression with 5 predictors and inverse distance weighting), air temperature and relative humidity (optimal interpolation) will be given. Finally, results of the regionalisation of WETTREG model output will be shown.
Hydrologic Implications of Dynamical and Statistical Approaches to Downscaling Climate Model Outputs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wood, Andrew W; Leung, Lai R; Sridhar, V
Six approaches for downscaling climate model outputs for use in hydrologic simulation were evaluated, with particular emphasis on each method's ability to produce precipitation and other variables used to drive a macroscale hydrology model applied at much higher spatial resolution than the climate model. Comparisons were made on the basis of a twenty-year retrospective (1975–1995) climate simulation produced by the NCAR-DOE Parallel Climate Model (PCM), and the implications of the comparison for a future (2040–2060) PCM climate scenario were also explored. The six approaches were made up of three relatively simple statistical downscaling methods – linear interpolation (LI), spatial disaggregationmore » (SD), and bias-correction and spatial disaggregation (BCSD) – each applied to both PCM output directly (at T42 spatial resolution), and after dynamical downscaling via a Regional Climate Model (RCM – at ½-degree spatial resolution), for downscaling the climate model outputs to the 1/8-degree spatial resolution of the hydrological model. For the retrospective climate simulation, results were compared to an observed gridded climatology of temperature and precipitation, and gridded hydrologic variables resulting from forcing the hydrologic model with observations. The most significant findings are that the BCSD method was successful in reproducing the main features of the observed hydrometeorology from the retrospective climate simulation, when applied to both PCM and RCM outputs. Linear interpolation produced better results using RCM output than PCM output, but both methods (PCM-LI and RCM-LI) lead to unacceptably biased hydrologic simulations. Spatial disaggregation of the PCM output produced results similar to those achieved with the RCM interpolated output; nonetheless, neither PCM nor RCM output was useful for hydrologic simulation purposes without a bias-correction step. For the future climate scenario, only the BCSD-method (using PCM or RCM) was able to produce hydrologically plausible results. With the BCSD method, the RCM-derived hydrology was more sensitive to climate change than the PCM-derived hydrology.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vidal-Codina, F., E-mail: fvidal@mit.edu; Nguyen, N.C., E-mail: cuongng@mit.edu; Giles, M.B., E-mail: mike.giles@maths.ox.ac.uk
We present a model and variance reduction method for the fast and reliable computation of statistical outputs of stochastic elliptic partial differential equations. Our method consists of three main ingredients: (1) the hybridizable discontinuous Galerkin (HDG) discretization of elliptic partial differential equations (PDEs), which allows us to obtain high-order accurate solutions of the governing PDE; (2) the reduced basis method for a new HDG discretization of the underlying PDE to enable real-time solution of the parameterized PDE in the presence of stochastic parameters; and (3) a multilevel variance reduction method that exploits the statistical correlation among the different reduced basismore » approximations and the high-fidelity HDG discretization to accelerate the convergence of the Monte Carlo simulations. The multilevel variance reduction method provides efficient computation of the statistical outputs by shifting most of the computational burden from the high-fidelity HDG approximation to the reduced basis approximations. Furthermore, we develop a posteriori error estimates for our approximations of the statistical outputs. Based on these error estimates, we propose an algorithm for optimally choosing both the dimensions of the reduced basis approximations and the sizes of Monte Carlo samples to achieve a given error tolerance. We provide numerical examples to demonstrate the performance of the proposed method.« less
2017-09-01
efficacy of statistical post-processing methods downstream of these dynamical model components with a hierarchical multivariate Bayesian approach to...Bayesian hierarchical modeling, Markov chain Monte Carlo methods , Metropolis algorithm, machine learning, atmospheric prediction 15. NUMBER OF PAGES...scale processes. However, this dissertation explores the efficacy of statistical post-processing methods downstream of these dynamical model components
A Bayesian Approach to Evaluating Consistency between Climate Model Output and Observations
NASA Astrophysics Data System (ADS)
Braverman, A. J.; Cressie, N.; Teixeira, J.
2010-12-01
Like other scientific and engineering problems that involve physical modeling of complex systems, climate models can be evaluated and diagnosed by comparing their output to observations of similar quantities. Though the global remote sensing data record is relatively short by climate research standards, these data offer opportunities to evaluate model predictions in new ways. For example, remote sensing data are spatially and temporally dense enough to provide distributional information that goes beyond simple moments to allow quantification of temporal and spatial dependence structures. In this talk, we propose a new method for exploiting these rich data sets using a Bayesian paradigm. For a collection of climate models, we calculate posterior probabilities its members best represent the physical system each seeks to reproduce. The posterior probability is based on the likelihood that a chosen summary statistic, computed from observations, would be obtained when the model's output is considered as a realization from a stochastic process. By exploring how posterior probabilities change with different statistics, we may paint a more quantitative and complete picture of the strengths and weaknesses of the models relative to the observations. We demonstrate our method using model output from the CMIP archive, and observations from NASA's Atmospheric Infrared Sounder.
Quantification of downscaled precipitation uncertainties via Bayesian inference
NASA Astrophysics Data System (ADS)
Nury, A. H.; Sharma, A.; Marshall, L. A.
2017-12-01
Prediction of precipitation from global climate model (GCM) outputs remains critical to decision-making in water-stressed regions. In this regard, downscaling of GCM output has been a useful tool for analysing future hydro-climatological states. Several downscaling approaches have been developed for precipitation downscaling, including those using dynamical or statistical downscaling methods. Frequently, outputs from dynamical downscaling are not readily transferable across regions for significant methodical and computational difficulties. Statistical downscaling approaches provide a flexible and efficient alternative, providing hydro-climatological outputs across multiple temporal and spatial scales in many locations. However these approaches are subject to significant uncertainty, arising due to uncertainty in the downscaled model parameters and in the use of different reanalysis products for inferring appropriate model parameters. Consequently, these will affect the performance of simulation in catchment scale. This study develops a Bayesian framework for modelling downscaled daily precipitation from GCM outputs. This study aims to introduce uncertainties in downscaling evaluating reanalysis datasets against observational rainfall data over Australia. In this research a consistent technique for quantifying downscaling uncertainties by means of Bayesian downscaling frame work has been proposed. The results suggest that there are differences in downscaled precipitation occurrences and extremes.
NASA Astrophysics Data System (ADS)
Terando, A. J.; Grade, S.; Bowden, J.; Henareh Khalyani, A.; Wootten, A.; Misra, V.; Collazo, J.; Gould, W. A.; Boyles, R.
2016-12-01
Sub-tropical island nations may be particularly vulnerable to anthropogenic climate change because of predicted changes in the hydrologic cycle that would lead to significant drying in the future. However, decision makers in these regions have seen their adaptation planning efforts frustrated by the lack of island-resolving climate model information. Recently, two investigations have used statistical and dynamical downscaling techniques to develop climate change projections for the U.S. Caribbean region (Puerto Rico and U.S. Virgin Islands). We compare the results from these two studies with respect to three commonly downscaled CMIP5 global climate models (GCMs). The GCMs were dynamically downscaled at a convective-permitting scale using two different regional climate models. The statistical downscaling approach was conducted at locations with long-term climate observations and then further post-processed using climatologically aided interpolation (yielding two sets of projections). Overall, both approaches face unique challenges. The statistical approach suffers from a lack of observations necessary to constrain the model, particularly at the land-ocean boundary and in complex terrain. The dynamically downscaled model output has a systematic dry bias over the island despite ample availability of moisture in the atmospheric column. Notwithstanding these differences, both approaches are consistent in projecting a drier climate that is driven by the strong global-scale anthropogenic forcing.
Robust Combining of Disparate Classifiers Through Order Statistics
NASA Technical Reports Server (NTRS)
Tumer, Kagan; Ghosh, Joydeep
2001-01-01
Integrating the outputs of multiple classifiers via combiners or meta-learners has led to substantial improvements in several difficult pattern recognition problems. In this article we investigate a family of combiners based on order statistics, for robust handling of situations where there are large discrepancies in performance of individual classifiers. Based on a mathematical modeling of how the decision boundaries are affected by order statistic combiners, we derive expressions for the reductions in error expected when simple output combination methods based on the the median, the maximum and in general, the ith order statistic, are used. Furthermore, we analyze the trim and spread combiners, both based on linear combinations of the ordered classifier outputs, and show that in the presence of uneven classifier performance, they often provide substantial gains over both linear and simple order statistics combiners. Experimental results on both real world data and standard public domain data sets corroborate these findings.
Hay, L.E.; Clark, M.P.
2003-01-01
This paper examines the hydrologic model performance in three snowmelt-dominated basins in the western United States to dynamically- and statistically downscaled output from the National Centers for Environmental Prediction/National Center for Atmospheric Research Reanalysis (NCEP). Runoff produced using a distributed hydrologic model is compared using daily precipitation and maximum and minimum temperature timeseries derived from the following sources: (1) NCEP output (horizontal grid spacing of approximately 210 km); (2) dynamically downscaled (DDS) NCEP output using a Regional Climate Model (RegCM2, horizontal grid spacing of approximately 52 km); (3) statistically downscaled (SDS) NCEP output; (4) spatially averaged measured data used to calibrate the hydrologic model (Best-Sta) and (5) spatially averaged measured data derived from stations located within the area of the RegCM2 model output used for each basin, but excluding Best-Sta set (All-Sta). In all three basins the SDS-based simulations of daily runoff were as good as runoff produced using the Best-Sta timeseries. The NCEP, DDS, and All-Sta timeseries were able to capture the gross aspects of the seasonal cycles of precipitation and temperature. However, in all three basins, the NCEP-, DDS-, and All-Sta-based simulations of runoff showed little skill on a daily basis. When the precipitation and temperature biases were corrected in the NCEP, DDS, and All-Sta timeseries, the accuracy of the daily runoff simulations improved dramatically, but, with the exception of the bias-corrected All-Sta data set, these simulations were never as accurate as the SDS-based simulations. This need for a bias correction may be somewhat troubling, but in the case of the large station-timeseries (All-Sta), the bias correction did indeed 'correct' for the change in scale. It is unknown if bias corrections to model output will be valid in a future climate. Future work is warranted to identify the causes for (and removal of) systematic biases in DDS simulations, and improve DDS simulations of daily variability in local climate. Until then, SDS based simulations of runoff appear to be the safer downscaling choice.
Hay, Lauren E.; LaFontaine, Jacob H.; Markstrom, Steven
2014-01-01
The accuracy of statistically downscaled general circulation model (GCM) simulations of daily surface climate for historical conditions (1961–99) and the implications when they are used to drive hydrologic and stream temperature models were assessed for the Apalachicola–Chattahoochee–Flint River basin (ACFB). The ACFB is a 50 000 km2 basin located in the southeastern United States. Three GCMs were statistically downscaled, using an asynchronous regional regression model (ARRM), to ⅛° grids of daily precipitation and minimum and maximum air temperature. These ARRM-based climate datasets were used as input to the Precipitation-Runoff Modeling System (PRMS), a deterministic, distributed-parameter, physical-process watershed model used to simulate and evaluate the effects of various combinations of climate and land use on watershed response. The ACFB was divided into 258 hydrologic response units (HRUs) in which the components of flow (groundwater, subsurface, and surface) are computed in response to climate, land surface, and subsurface characteristics of the basin. Daily simulations of flow components from PRMS were used with the climate to simulate in-stream water temperatures using the Stream Network Temperature (SNTemp) model, a mechanistic, one-dimensional heat transport model for branched stream networks.The climate, hydrology, and stream temperature for historical conditions were evaluated by comparing model outputs produced from historical climate forcings developed from gridded station data (GSD) versus those produced from the three statistically downscaled GCMs using the ARRM methodology. The PRMS and SNTemp models were forced with the GSD and the outputs produced were treated as “truth.” This allowed for a spatial comparison by HRU of the GSD-based output with ARRM-based output. Distributional similarities between GSD- and ARRM-based model outputs were compared using the two-sample Kolmogorov–Smirnov (KS) test in combination with descriptive metrics such as the mean and variance and an evaluation of rare and sustained events. In general, precipitation and streamflow quantities were negatively biased in the downscaled GCM outputs, and results indicate that the downscaled GCM simulations consistently underestimate the largest precipitation events relative to the GSD. The KS test results indicate that ARRM-based air temperatures are similar to GSD at the daily time step for the majority of the ACFB, with perhaps subweekly averaging for stream temperature. Depending on GCM and spatial location, ARRM-based precipitation and streamflow requires averaging of up to 30 days to become similar to the GSD-based output.Evaluation of the model skill for historical conditions suggests some guidelines for use of future projections; while it seems correct to place greater confidence in evaluation metrics which perform well historically, this does not necessarily mean those metrics will accurately reflect model outputs for future climatic conditions. Results from this study indicate no “best” overall model, but the breadth of analysis can be used to give the product users an indication of the applicability of the results to address their particular problem. Since results for historical conditions indicate that model outputs can have significant biases associated with them, the range in future projections examined in terms of change relative to historical conditions for each individual GCM may be more appropriate.
Nonlinear Modeling of Causal Interrelationships in Neuronal Ensembles
Zanos, Theodoros P.; Courellis, Spiros H.; Berger, Theodore W.; Hampson, Robert E.; Deadwyler, Sam A.; Marmarelis, Vasilis Z.
2009-01-01
The increasing availability of multiunit recordings gives new urgency to the need for effective analysis of “multidimensional” time-series data that are derived from the recorded activity of neuronal ensembles in the form of multiple sequences of action potentials—treated mathematically as point-processes and computationally as spike-trains. Whether in conditions of spontaneous activity or under conditions of external stimulation, the objective is the identification and quantification of possible causal links among the neurons generating the observed binary signals. A multiple-input/multiple-output (MIMO) modeling methodology is presented that can be used to quantify the neuronal dynamics of causal interrelationships in neuronal ensembles using spike-train data recorded from individual neurons. These causal interrelationships are modeled as transformations of spike-trains recorded from a set of neurons designated as the “inputs” into spike-trains recorded from another set of neurons designated as the “outputs.” The MIMO model is composed of a set of multiinput/single-output (MISO) modules, one for each output. Each module is the cascade of a MISO Volterra model and a threshold operator generating the output spikes. The Laguerre expansion approach is used to estimate the Volterra kernels of each MISO module from the respective input–output data using the least-squares method. The predictive performance of the model is evaluated with the use of the receiver operating characteristic (ROC) curve, from which the optimum threshold is also selected. The Mann–Whitney statistic is used to select the significant inputs for each output by examining the statistical significance of improvements in the predictive accuracy of the model when the respective inputs is included. Illustrative examples are presented for a simulated system and for an actual application using multiunit data recordings from the hippocampus of a behaving rat. PMID:18701382
Statistical Emulation of Climate Model Projections Based on Precomputed GCM Runs*
Castruccio, Stefano; McInerney, David J.; Stein, Michael L.; ...
2014-02-24
The authors describe a new approach for emulating the output of a fully coupled climate model under arbitrary forcing scenarios that is based on a small set of precomputed runs from the model. Temperature and precipitation are expressed as simple functions of the past trajectory of atmospheric CO 2 concentrations, and a statistical model is fit using a limited set of training runs. The approach is demonstrated to be a useful and computationally efficient alternative to pattern scaling and captures the nonlinear evolution of spatial patterns of climate anomalies inherent in transient climates. The approach does as well as patternmore » scaling in all circumstances and substantially better in many; it is not computationally demanding; and, once the statistical model is fit, it produces emulated climate output effectively instantaneously. In conclusion, it may therefore find wide application in climate impacts assessments and other policy analyses requiring rapid climate projections.« less
van der Krieke, Lian; Emerencia, Ando C; Bos, Elisabeth H; Rosmalen, Judith Gm; Riese, Harriëtte; Aiello, Marco; Sytema, Sjoerd; de Jonge, Peter
2015-08-07
Health promotion can be tailored by combining ecological momentary assessments (EMA) with time series analysis. This combined method allows for studying the temporal order of dynamic relationships among variables, which may provide concrete indications for intervention. However, application of this method in health care practice is hampered because analyses are conducted manually and advanced statistical expertise is required. This study aims to show how this limitation can be overcome by introducing automated vector autoregressive modeling (VAR) of EMA data and to evaluate its feasibility through comparisons with results of previously published manual analyses. We developed a Web-based open source application, called AutoVAR, which automates time series analyses of EMA data and provides output that is intended to be interpretable by nonexperts. The statistical technique we used was VAR. AutoVAR tests and evaluates all possible VAR models within a given combinatorial search space and summarizes their results, thereby replacing the researcher's tasks of conducting the analysis, making an informed selection of models, and choosing the best model. We compared the output of AutoVAR to the output of a previously published manual analysis (n=4). An illustrative example consisting of 4 analyses was provided. Compared to the manual output, the AutoVAR output presents similar model characteristics and statistical results in terms of the Akaike information criterion, the Bayesian information criterion, and the test statistic of the Granger causality test. Results suggest that automated analysis and interpretation of times series is feasible. Compared to a manual procedure, the automated procedure is more robust and can save days of time. These findings may pave the way for using time series analysis for health promotion on a larger scale. AutoVAR was evaluated using the results of a previously conducted manual analysis. Analysis of additional datasets is needed in order to validate and refine the application for general use.
Emerencia, Ando C; Bos, Elisabeth H; Rosmalen, Judith GM; Riese, Harriëtte; Aiello, Marco; Sytema, Sjoerd; de Jonge, Peter
2015-01-01
Background Health promotion can be tailored by combining ecological momentary assessments (EMA) with time series analysis. This combined method allows for studying the temporal order of dynamic relationships among variables, which may provide concrete indications for intervention. However, application of this method in health care practice is hampered because analyses are conducted manually and advanced statistical expertise is required. Objective This study aims to show how this limitation can be overcome by introducing automated vector autoregressive modeling (VAR) of EMA data and to evaluate its feasibility through comparisons with results of previously published manual analyses. Methods We developed a Web-based open source application, called AutoVAR, which automates time series analyses of EMA data and provides output that is intended to be interpretable by nonexperts. The statistical technique we used was VAR. AutoVAR tests and evaluates all possible VAR models within a given combinatorial search space and summarizes their results, thereby replacing the researcher’s tasks of conducting the analysis, making an informed selection of models, and choosing the best model. We compared the output of AutoVAR to the output of a previously published manual analysis (n=4). Results An illustrative example consisting of 4 analyses was provided. Compared to the manual output, the AutoVAR output presents similar model characteristics and statistical results in terms of the Akaike information criterion, the Bayesian information criterion, and the test statistic of the Granger causality test. Conclusions Results suggest that automated analysis and interpretation of times series is feasible. Compared to a manual procedure, the automated procedure is more robust and can save days of time. These findings may pave the way for using time series analysis for health promotion on a larger scale. AutoVAR was evaluated using the results of a previously conducted manual analysis. Analysis of additional datasets is needed in order to validate and refine the application for general use. PMID:26254160
Applications of the DOE/NASA wind turbine engineering information system
NASA Technical Reports Server (NTRS)
Neustadter, H. E.; Spera, D. A.
1981-01-01
A statistical analysis of data obtained from the Technology and Engineering Information Systems was made. The systems analyzed consist of the following elements: (1) sensors which measure critical parameters (e.g., wind speed and direction, output power, blade loads and component vibrations); (2) remote multiplexing units (RMUs) on each wind turbine which frequency-modulate, multiplex and transmit sensor outputs; (3) on-site instrumentation to record, process and display the sensor output; and (4) statistical analysis of data. Two examples of the capabilities of these systems are presented. The first illustrates the standardized format for application of statistical analysis to each directly measured parameter. The second shows the use of a model to estimate the variability of the rotor thrust loading, which is a derived parameter.
Modelling innovation performance of European regions using multi-output neural networks
Henriques, Roberto
2017-01-01
Regional innovation performance is an important indicator for decision-making regarding the implementation of policies intended to support innovation. However, patterns in regional innovation structures are becoming increasingly diverse, complex and nonlinear. To address these issues, this study aims to develop a model based on a multi-output neural network. Both intra- and inter-regional determinants of innovation performance are empirically investigated using data from the 4th and 5th Community Innovation Surveys of NUTS 2 (Nomenclature of Territorial Units for Statistics) regions. The results suggest that specific innovation strategies must be developed based on the current state of input attributes in the region. Thus, it is possible to develop appropriate strategies and targeted interventions to improve regional innovation performance. We demonstrate that support of entrepreneurship is an effective instrument of innovation policy. We also provide empirical support that both business and government R&D activity have a sigmoidal effect, implying that the most effective R&D support should be directed to regions with below-average and average R&D activity. We further show that the multi-output neural network outperforms traditional statistical and machine learning regression models. In general, therefore, it seems that the proposed model can effectively reflect both the multiple-output nature of innovation performance and the interdependency of the output attributes. PMID:28968449
Modelling innovation performance of European regions using multi-output neural networks.
Hajek, Petr; Henriques, Roberto
2017-01-01
Regional innovation performance is an important indicator for decision-making regarding the implementation of policies intended to support innovation. However, patterns in regional innovation structures are becoming increasingly diverse, complex and nonlinear. To address these issues, this study aims to develop a model based on a multi-output neural network. Both intra- and inter-regional determinants of innovation performance are empirically investigated using data from the 4th and 5th Community Innovation Surveys of NUTS 2 (Nomenclature of Territorial Units for Statistics) regions. The results suggest that specific innovation strategies must be developed based on the current state of input attributes in the region. Thus, it is possible to develop appropriate strategies and targeted interventions to improve regional innovation performance. We demonstrate that support of entrepreneurship is an effective instrument of innovation policy. We also provide empirical support that both business and government R&D activity have a sigmoidal effect, implying that the most effective R&D support should be directed to regions with below-average and average R&D activity. We further show that the multi-output neural network outperforms traditional statistical and machine learning regression models. In general, therefore, it seems that the proposed model can effectively reflect both the multiple-output nature of innovation performance and the interdependency of the output attributes.
Probabilistic Evaluation of Competing Climate Models
NASA Astrophysics Data System (ADS)
Braverman, A. J.; Chatterjee, S.; Heyman, M.; Cressie, N.
2017-12-01
A standard paradigm for assessing the quality of climate model simulations is to compare what these models produce for past and present time periods, to observations of the past and present. Many of these comparisons are based on simple summary statistics called metrics. Here, we propose an alternative: evaluation of competing climate models through probabilities derived from tests of the hypothesis that climate-model-simulated and observed time sequences share common climate-scale signals. The probabilities are based on the behavior of summary statistics of climate model output and observational data, over ensembles of pseudo-realizations. These are obtained by partitioning the original time sequences into signal and noise components, and using a parametric bootstrap to create pseudo-realizations of the noise sequences. The statistics we choose come from working in the space of decorrelated and dimension-reduced wavelet coefficients. We compare monthly sequences of CMIP5 model output of average global near-surface temperature anomalies to similar sequences obtained from the well-known HadCRUT4 data set, as an illustration.
SCOUT: A Fast Monte-Carlo Modeling Tool of Scintillation Camera Output
Hunter, William C. J.; Barrett, Harrison H.; Lewellen, Thomas K.; Miyaoka, Robert S.; Muzi, John P.; Li, Xiaoli; McDougald, Wendy; MacDonald, Lawrence R.
2011-01-01
We have developed a Monte-Carlo photon-tracking and readout simulator called SCOUT to study the stochastic behavior of signals output from a simplified rectangular scintillation-camera design. SCOUT models the salient processes affecting signal generation, transport, and readout. Presently, we compare output signal statistics from SCOUT to experimental results for both a discrete and a monolithic camera. We also benchmark the speed of this simulation tool and compare it to existing simulation tools. We find this modeling tool to be relatively fast and predictive of experimental results. Depending on the modeled camera geometry, we found SCOUT to be 4 to 140 times faster than other modeling tools. PMID:22072297
Azad Henareh Khalyani; William A. Gould; Eric Harmsen; Adam Terando; Maya Quinones; Jaime A. Collazo
2016-01-01
The difficulty in assessing errors in numerical models of air quality is a major obstacle to improving their ability to predict and retrospectively map air quality. In this paper, using simulation outputs from the Community Multi-scale Air Quality Model (CMAQ), the statistic...
USDA-ARS?s Scientific Manuscript database
Resolution of climate model outputs are too coarse to be used as direct inputs to impact models for assessing climate change impacts on agricultural production, water resources, and eco-system services at local or site-specific scales. Statistical downscaling approaches are usually used to bridge th...
User's manual for the Simulated Life Analysis of Vehicle Elements (SLAVE) model
NASA Technical Reports Server (NTRS)
Paul, D. D., Jr.
1972-01-01
The simulated life analysis of vehicle elements model was designed to perform statistical simulation studies for any constant loss rate. The outputs of the model consist of the total number of stages required, stages successfully completing their lifetime, and average stage flight life. This report contains a complete description of the model. Users' instructions and interpretation of input and output data are presented such that a user with little or no prior programming knowledge can successfully implement the program.
NASA Astrophysics Data System (ADS)
Vogelmann, A. M.; Gustafson, W. I., Jr.; Toto, T.; Endo, S.; Cheng, X.; Li, Z.; Xiao, H.
2015-12-01
The Department of Energy's Atmospheric Radiation Measurement (ARM) Climate Research Facilities' Large-Eddy Simulation (LES) ARM Symbiotic Simulation and Observation (LASSO) Workflow is currently being designed to provide output from routine LES to complement its extensive observations. The modeling portion of the LASSO workflow is presented by Gustafson et al., which will initially focus on shallow convection over the ARM megasite in Oklahoma, USA. This presentation describes how the LES output will be combined with observations to construct multi-dimensional and dynamically consistent "data cubes", aimed at providing the best description of the atmospheric state for use in analyses by the community. The megasite observations are used to constrain large-eddy simulations that provide a complete spatial and temporal coverage of observables and, further, the simulations also provide information on processes that cannot be observed. Statistical comparisons of model output with their observables are used to assess the quality of a given simulated realization and its associated uncertainties. A data cube is a model-observation package that provides: (1) metrics of model-observation statistical summaries to assess the simulations and the ensemble spread; (2) statistical summaries of additional model property output that cannot be or are very difficult to observe; and (3) snapshots of the 4-D simulated fields from the integration period. Searchable metrics are provided that characterize the general atmospheric state to assist users in finding cases of interest, such as categorization of daily weather conditions and their specific attributes. The data cubes will be accompanied by tools designed for easy access to cube contents from within the ARM archive and externally, the ability to compare multiple data streams within an event as well as across events, and the ability to use common grids and time sampling, where appropriate.
Gustafson, William Jr; Vogelmann, Andrew; Endo, Satoshi; Toto, Tami; Xiao, Heng; Li, Zhijin; Cheng, Xiaoping; Kim, Jinwon; Krishna, Bhargavi
2015-08-31
The Alpha 2 release is the second release from the LASSO Pilot Phase that builds upon the Alpha 1 release. Alpha 2 contains additional diagnostics in the data bundles and focuses on cases from spring-summer 2016. A data bundle is a unified package consisting of LASSO LES input and output, observations, evaluation diagnostics, and model skill scores. LES input include model configuration information and forcing data. LES output includes profile statistics and full domain fields of cloud and environmental variables. Model evaluation data consists of LES output and ARM observations co-registered on the same grid and sampling frequency. Model performance is quantified by skill scores and diagnostics in terms of cloud and environmental variables.
Multi-criterion model ensemble of CMIP5 surface air temperature over China
NASA Astrophysics Data System (ADS)
Yang, Tiantian; Tao, Yumeng; Li, Jingjing; Zhu, Qian; Su, Lu; He, Xiaojia; Zhang, Xiaoming
2018-05-01
The global circulation models (GCMs) are useful tools for simulating climate change, projecting future temperature changes, and therefore, supporting the preparation of national climate adaptation plans. However, different GCMs are not always in agreement with each other over various regions. The reason is that GCMs' configurations, module characteristics, and dynamic forcings vary from one to another. Model ensemble techniques are extensively used to post-process the outputs from GCMs and improve the variability of model outputs. Root-mean-square error (RMSE), correlation coefficient (CC, or R) and uncertainty are commonly used statistics for evaluating the performances of GCMs. However, the simultaneous achievements of all satisfactory statistics cannot be guaranteed in using many model ensemble techniques. In this paper, we propose a multi-model ensemble framework, using a state-of-art evolutionary multi-objective optimization algorithm (termed MOSPD), to evaluate different characteristics of ensemble candidates and to provide comprehensive trade-off information for different model ensemble solutions. A case study of optimizing the surface air temperature (SAT) ensemble solutions over different geographical regions of China is carried out. The data covers from the period of 1900 to 2100, and the projections of SAT are analyzed with regard to three different statistical indices (i.e., RMSE, CC, and uncertainty). Among the derived ensemble solutions, the trade-off information is further analyzed with a robust Pareto front with respect to different statistics. The comparison results over historical period (1900-2005) show that the optimized solutions are superior over that obtained simple model average, as well as any single GCM output. The improvements of statistics are varying for different climatic regions over China. Future projection (2006-2100) with the proposed ensemble method identifies that the largest (smallest) temperature changes will happen in the South Central China (the Inner Mongolia), the North Eastern China (the South Central China), and the North Western China (the South Central China), under RCP 2.6, RCP 4.5, and RCP 8.5 scenarios, respectively.
Brandt, Laura A.; Benscoter, Allison; Harvey, Rebecca G.; Speroterra, Carolina; Bucklin, David N.; Romañach, Stephanie; Watling, James I.; Mazzotti, Frank J.
2017-01-01
Climate envelope models are widely used to describe potential future distribution of species under different climate change scenarios. It is broadly recognized that there are both strengths and limitations to using climate envelope models and that outcomes are sensitive to initial assumptions, inputs, and modeling methods Selection of predictor variables, a central step in modeling, is one of the areas where different techniques can yield varying results. Selection of climate variables to use as predictors is often done using statistical approaches that develop correlations between occurrences and climate data. These approaches have received criticism in that they rely on the statistical properties of the data rather than directly incorporating biological information about species responses to temperature and precipitation. We evaluated and compared models and prediction maps for 15 threatened or endangered species in Florida based on two variable selection techniques: expert opinion and a statistical method. We compared model performance between these two approaches for contemporary predictions, and the spatial correlation, spatial overlap and area predicted for contemporary and future climate predictions. In general, experts identified more variables as being important than the statistical method and there was low overlap in the variable sets (<40%) between the two methods Despite these differences in variable sets (expert versus statistical), models had high performance metrics (>0.9 for area under the curve (AUC) and >0.7 for true skill statistic (TSS). Spatial overlap, which compares the spatial configuration between maps constructed using the different variable selection techniques, was only moderate overall (about 60%), with a great deal of variability across species. Difference in spatial overlap was even greater under future climate projections, indicating additional divergence of model outputs from different variable selection techniques. Our work is in agreement with other studies which have found that for broad-scale species distribution modeling, using statistical methods of variable selection is a useful first step, especially when there is a need to model a large number of species or expert knowledge of the species is limited. Expert input can then be used to refine models that seem unrealistic or for species that experts believe are particularly sensitive to change. It also emphasizes the importance of using multiple models to reduce uncertainty and improve map outputs for conservation planning. Where outputs overlap or show the same direction of change there is greater certainty in the predictions. Areas of disagreement can be used for learning by asking why the models do not agree, and may highlight areas where additional on-the-ground data collection could improve the models.
2015-06-30
7. Building Statistical Metamodels using Simulation Experimental Designs ............................................... 34 7.1. Statistical Design...system design drivers across several different domain models, our methodology uses statistical metamodeling to approximate the simulations’ behavior. A...output. We build metamodels using a number of statistical methods that include stepwise regression, boosted trees, neural nets, and bootstrap forest
2015-06-01
7. Building Statistical Metamodels using Simulation Experimental Designs ............................................... 34 7.1. Statistical Design...system design drivers across several different domain models, our methodology uses statistical metamodeling to approximate the simulations’ behavior. A...output. We build metamodels using a number of statistical methods that include stepwise regression, boosted trees, neural nets, and bootstrap forest
Walking through the statistical black boxes of plant breeding.
Xavier, Alencar; Muir, William M; Craig, Bruce; Rainey, Katy Martin
2016-10-01
The main statistical procedures in plant breeding are based on Gaussian process and can be computed through mixed linear models. Intelligent decision making relies on our ability to extract useful information from data to help us achieve our goals more efficiently. Many plant breeders and geneticists perform statistical analyses without understanding the underlying assumptions of the methods or their strengths and pitfalls. In other words, they treat these statistical methods (software and programs) like black boxes. Black boxes represent complex pieces of machinery with contents that are not fully understood by the user. The user sees the inputs and outputs without knowing how the outputs are generated. By providing a general background on statistical methodologies, this review aims (1) to introduce basic concepts of machine learning and its applications to plant breeding; (2) to link classical selection theory to current statistical approaches; (3) to show how to solve mixed models and extend their application to pedigree-based and genomic-based prediction; and (4) to clarify how the algorithms of genome-wide association studies work, including their assumptions and limitations.
Statistical Signal Models and Algorithms for Image Analysis
1984-10-25
In this report, two-dimensional stochastic linear models are used in developing algorithms for image analysis such as classification, segmentation, and object detection in images characterized by textured backgrounds. These models generate two-dimensional random processes as outputs to which statistical inference procedures can naturally be applied. A common thread throughout our algorithms is the interpretation of the inference procedures in terms of linear prediction
Analysis of model output and science data in the Virtual Model Repository (VMR).
NASA Astrophysics Data System (ADS)
De Zeeuw, D.; Ridley, A. J.
2014-12-01
Big scientific data not only includes large repositories of data from scientific platforms like satelites and ground observation, but also the vast output of numerical models. The Virtual Model Repository (VMR) provides scientific analysis and visualization tools for a many numerical models of the Earth-Sun system. Individual runs can be analyzed in the VMR and compared to relevant data through relevant metadata, but larger collections of runs can also now be studied and statistics generated on the accuracy and tendancies of model output. The vast model repository at the CCMC with over 1000 simulations of the Earth's magnetosphere was used to look at overall trends in accuracy when compared to satelites such as GOES, Geotail, and Cluster. Methodology for this analysis as well as case studies will be presented.
Specification of ISS Plasma Environment Variability
NASA Technical Reports Server (NTRS)
Minow, Joseph I.; Neergaard, Linda F.; Bui, Them H.; Mikatarian, Ronald R.; Barsamian, H.; Koontz, Steven L.
2004-01-01
Quantifying spacecraft charging risks and associated hazards for the International Space Station (ISS) requires a plasma environment specification for the natural variability of ionospheric temperature (Te) and density (Ne). Empirical ionospheric specification and forecast models such as the International Reference Ionosphere (IRI) model typically only provide long term (seasonal) mean Te and Ne values for the low Earth orbit environment. This paper describes a statistical analysis of historical ionospheric low Earth orbit plasma measurements from the AE-C, AE-D, and DE-2 satellites used to derive a model of deviations of observed data values from IRI-2001 estimates of Ne, Te parameters for each data point to provide a statistical basis for modeling the deviations of the plasma environment from the IRI model output. Application of the deviation model with the IRI-2001 output yields a method for estimating extreme environments for the ISS spacecraft charging analysis.
NASA Astrophysics Data System (ADS)
Hagemann, Stefan; Chen, Cui; Haerter, Jan O.; Gerten, Dieter; Heinke, Jens; Piani, Claudio
2010-05-01
Future climate model scenarios depend crucially on their adequate representation of the hydrological cycle. Within the European project "Water and Global Change" (WATCH) special care is taken to couple state-of-the-art climate model output to a suite of hydrological models. This coupling is expected to lead to a better assessment of changes in the hydrological cycle. However, due to the systematic model errors of climate models, their output is often not directly applicable as input for hydrological models. Thus, the methodology of a statistical bias correction has been developed, which can be used for correcting climate model output to produce internally consistent fields that have the same statistical intensity distribution as the observations. As observations, global re-analysed daily data of precipitation and temperature are used that are obtained in the WATCH project. We will apply the bias correction to global climate model data of precipitation and temperature from the GCMs ECHAM5/MPIOM, CNRM-CM3 and LMDZ-4, and intercompare the bias corrected data to the original GCM data and the observations. Then, the orginal and the bias corrected GCM data will be used to force two global hydrology models: (1) the hydrological model of the Max Planck Institute for Meteorology (MPI-HM) consisting of the Simplified Land surface (SL) scheme and the Hydrological Discharge (HD) model, and (2) the dynamic vegetation model LPJmL operated by the Potsdam Institute for Climate Impact Research. The impact of the bias correction on the projected simulated hydrological changes will be analysed, and the resulting behaviour of the two hydrology models will be compared.
Evaluation of Regression Models of Balance Calibration Data Using an Empirical Criterion
NASA Technical Reports Server (NTRS)
Ulbrich, Norbert; Volden, Thomas R.
2012-01-01
An empirical criterion for assessing the significance of individual terms of regression models of wind tunnel strain gage balance outputs is evaluated. The criterion is based on the percent contribution of a regression model term. It considers a term to be significant if its percent contribution exceeds the empirical threshold of 0.05%. The criterion has the advantage that it can easily be computed using the regression coefficients of the gage outputs and the load capacities of the balance. First, a definition of the empirical criterion is provided. Then, it is compared with an alternate statistical criterion that is widely used in regression analysis. Finally, calibration data sets from a variety of balances are used to illustrate the connection between the empirical and the statistical criterion. A review of these results indicated that the empirical criterion seems to be suitable for a crude assessment of the significance of a regression model term as the boundary between a significant and an insignificant term cannot be defined very well. Therefore, regression model term reduction should only be performed by using the more universally applicable statistical criterion.
Finding the Root Causes of Statistical Inconsistency in Community Earth System Model Output
NASA Astrophysics Data System (ADS)
Milroy, D.; Hammerling, D.; Baker, A. H.
2017-12-01
Baker et al (2015) developed the Community Earth System Model Ensemble Consistency Test (CESM-ECT) to provide a metric for software quality assurance by determining statistical consistency between an ensemble of CESM outputs and new test runs. The test has proved useful for detecting statistical difference caused by compiler bugs and errors in physical modules. However, detection is only the necessary first step in finding the causes of statistical difference. The CESM is a vastly complex model comprised of millions of lines of code which is developed and maintained by a large community of software engineers and scientists. Any root cause analysis is correspondingly challenging. We propose a new capability for CESM-ECT: identifying the sections of code that cause statistical distinguishability. The first step is to discover CESM variables that cause CESM-ECT to classify new runs as statistically distinct, which we achieve via Randomized Logistic Regression. Next we use a tool developed to identify CESM components that define or compute the variables found in the first step. Finally, we employ the application Kernel GENerator (KGEN) created in Kim et al (2016) to detect fine-grained floating point differences. We demonstrate an example of the procedure and advance a plan to automate this process in our future work.
Computational and Statistical Models: A Comparison for Policy Modeling of Childhood Obesity
NASA Astrophysics Data System (ADS)
Mabry, Patricia L.; Hammond, Ross; Ip, Edward Hak-Sing; Huang, Terry T.-K.
As systems science methodologies have begun to emerge as a set of innovative approaches to address complex problems in behavioral, social science, and public health research, some apparent conflicts with traditional statistical methodologies for public health have arisen. Computational modeling is an approach set in context that integrates diverse sources of data to test the plausibility of working hypotheses and to elicit novel ones. Statistical models are reductionist approaches geared towards proving the null hypothesis. While these two approaches may seem contrary to each other, we propose that they are in fact complementary and can be used jointly to advance solutions to complex problems. Outputs from statistical models can be fed into computational models, and outputs from computational models can lead to further empirical data collection and statistical models. Together, this presents an iterative process that refines the models and contributes to a greater understanding of the problem and its potential solutions. The purpose of this panel is to foster communication and understanding between statistical and computational modelers. Our goal is to shed light on the differences between the approaches and convey what kinds of research inquiries each one is best for addressing and how they can serve complementary (and synergistic) roles in the research process, to mutual benefit. For each approach the panel will cover the relevant "assumptions" and how the differences in what is assumed can foster misunderstandings. The interpretations of the results from each approach will be compared and contrasted and the limitations for each approach will be delineated. We will use illustrative examples from CompMod, the Comparative Modeling Network for Childhood Obesity Policy. The panel will also incorporate interactive discussions with the audience on the issues raised here.
Gridded Calibration of Ensemble Wind Vector Forecasts Using Ensemble Model Output Statistics
NASA Astrophysics Data System (ADS)
Lazarus, S. M.; Holman, B. P.; Splitt, M. E.
2017-12-01
A computationally efficient method is developed that performs gridded post processing of ensemble wind vector forecasts. An expansive set of idealized WRF model simulations are generated to provide physically consistent high resolution winds over a coastal domain characterized by an intricate land / water mask. Ensemble model output statistics (EMOS) is used to calibrate the ensemble wind vector forecasts at observation locations. The local EMOS predictive parameters (mean and variance) are then spread throughout the grid utilizing flow-dependent statistical relationships extracted from the downscaled WRF winds. Using data withdrawal and 28 east central Florida stations, the method is applied to one year of 24 h wind forecasts from the Global Ensemble Forecast System (GEFS). Compared to the raw GEFS, the approach improves both the deterministic and probabilistic forecast skill. Analysis of multivariate rank histograms indicate the post processed forecasts are calibrated. Two downscaling case studies are presented, a quiescent easterly flow event and a frontal passage. Strengths and weaknesses of the approach are presented and discussed.
NASA Astrophysics Data System (ADS)
Lawler, Samantha M.; Kavelaars, J. J.; Alexandersen, Mike; Bannister, Michele T.; Gladman, Brett; Petit, Jean-Marc; Shankman, Cory
2018-05-01
All surveys include observational biases, which makes it impossible to directly compare properties of discovered trans-Neptunian Objects (TNOs) with dynamical models. However, by carefully keeping track of survey pointings on the sky, detection limits, tracking fractions, and rate cuts, the biases from a survey can be modelled in Survey Simulator software. A Survey Simulator takes an intrinsic orbital model (from, for example, the output of a dynamical Kuiper belt emplacement simulation) and applies the survey biases, so that the biased simulated objects can be directly compared with real discoveries. This methodology has been used with great success in the Outer Solar System Origins Survey (OSSOS) and its predecessor surveys. In this chapter, we give four examples of ways to use the OSSOS Survey Simulator to gain knowledge about the true structure of the Kuiper Belt. We demonstrate how to statistically compare different dynamical model outputs with real TNO discoveries, how to quantify detection biases within a TNO population, how to measure intrinsic population sizes, and how to use upper limits from non-detections. We hope this will provide a framework for dynamical modellers to statistically test the validity of their models.
Projecting climate change impacts on hydrology: the potential role of daily GCM output
NASA Astrophysics Data System (ADS)
Maurer, E. P.; Hidalgo, H. G.; Das, T.; Dettinger, M. D.; Cayan, D.
2008-12-01
A primary challenge facing resource managers in accommodating climate change is determining the range and uncertainty in regional and local climate projections. This is especially important for assessing changes in extreme events, which will drive many of the more severe impacts of a changed climate. Since global climate models (GCMs) produce output at a spatial scale incompatible with local impact assessment, different techniques have evolved to downscale GCM output so locally important climate features are expressed in the projections. We compared skill and hydrologic projections using two statistical downscaling methods and a distributed hydrology model. The downscaling methods are the constructed analogues (CA) and the bias correction and spatial downscaling (BCSD). CA uses daily GCM output, and can thus capture GCM projections for changing extreme event occurrence, while BCSD uses monthly output and statistically generates historical daily sequences. We evaluate the hydrologic impacts projected using downscaled climate (from the NCEP/NCAR reanalysis as a surrogate GCM) for the late 20th century with both methods, comparing skill in projecting soil moisture, snow pack, and streamflow at key locations in the Western United States. We include an assessment of a new method for correcting for GCM biases in a hybrid method combining the most important characteristics of both methods.
Robin M. Reich; C. Aguirre-Bravo; M.S. Williams
2006-01-01
A statistical strategy for spatial estimation and modeling of natural and environmental resource variables and indicators is presented. This strategy is part of an inventory and monitoring pilot study that is being carried out in the Mexican states of Jalisco and Colima. Fine spatial resolution estimates of key variables and indicators are outputs that will allow the...
Climate model biases and statistical downscaling for application in hydrologic model
USDA-ARS?s Scientific Manuscript database
Climate change impact studies use global climate model (GCM) simulations to define future temperature and precipitation. The best available bias-corrected GCM output was obtained from Coupled Model Intercomparison Project phase 5 (CMIP5). CMIP5 data (temperature and precipitation) are available in d...
London, Michael; Larkum, Matthew E; Häusser, Michael
2008-11-01
Synaptic information efficacy (SIE) is a statistical measure to quantify the efficacy of a synapse. It measures how much information is gained, on the average, about the output spike train of a postsynaptic neuron if the input spike train is known. It is a particularly appropriate measure for assessing the input-output relationship of neurons receiving dynamic stimuli. Here, we compare the SIE of simulated synaptic inputs measured experimentally in layer 5 cortical pyramidal neurons in vitro with the SIE computed from a minimal model constructed to fit the recorded data. We show that even with a simple model that is far from perfect in predicting the precise timing of the output spikes of the real neuron, the SIE can still be accurately predicted. This arises from the ability of the model to predict output spikes influenced by the input more accurately than those driven by the background current. This indicates that in this context, some spikes may be more important than others. Lastly we demonstrate another aspect where using mutual information could be beneficial in evaluating the quality of a model, by measuring the mutual information between the model's output and the neuron's output. The SIE, thus, could be a useful tool for assessing the quality of models of single neurons in preserving input-output relationship, a property that becomes crucial when we start connecting these reduced models to construct complex realistic neuronal networks.
Nonelastic nuclear reactions and accompanying gamma radiation
NASA Technical Reports Server (NTRS)
Snow, R.; Rosner, H. R.; George, M. C.; Hayes, J. D.
1971-01-01
Several aspects of nonelastic nuclear reactions which proceed through the formation of a compound nucleus are dealt with. The full statistical model and the partial statistical model are described and computer programs based on these models are presented along with operating instructions and input and output for sample problems. A theoretical development of the expression for the reaction cross section for the hybrid case which involves a combination of the continuum aspects of the full statistical model with the discrete level aspects of the partial statistical model is presented. Cross sections for level excitation and gamma production by neutron inelastic scattering from the nuclei Al-27, Fe-56, Si-28, and Pb-208 are calculated and compared with avaliable experimental data.
Synchronized Trajectories in a Climate "Supermodel"
NASA Astrophysics Data System (ADS)
Duane, Gregory; Schevenhoven, Francine; Selten, Frank
2017-04-01
Differences in climate projections among state-of-the-art models can be resolved by connecting the models in run-time, either through inter-model nudging or by directly combining the tendencies for corresponding variables. Since it is clearly established that averaging model outputs typically results in improvement as compared to any individual model output, averaged re-initializations at typical analysis time intervals also seems appropriate. The resulting "supermodel" is more like a single model than it is like an ensemble, because the constituent models tend to synchronize even with limited inter-model coupling. Thus one can examine the properties of specific trajectories, rather than averaging the statistical properties of the separate models. We apply this strategy to a study of the index cycle in a supermodel constructed from several imperfect copies of the SPEEDO model (a global primitive-equation atmosphere-ocean-land climate model). As with blocking frequency, typical weather statistics of interest like probabilities of heat waves or extreme precipitation events, are improved as compared to the standard multi-model ensemble approach. In contrast to the standard approach, the supermodel approach provides detailed descriptions of typical actual events.
Statistical Downscaling of WRF-Chem Model: An Air Quality Analysis over Bogota, Colombia
NASA Astrophysics Data System (ADS)
Kumar, Anikender; Rojas, Nestor
2015-04-01
Statistical downscaling is a technique that is used to extract high-resolution information from regional scale variables produced by coarse resolution models such as Chemical Transport Models (CTMs). The fully coupled WRF-Chem (Weather Research and Forecasting with Chemistry) model is used to simulate air quality over Bogota. Bogota is a tropical Andean megacity located over a high-altitude plateau in the middle of very complex terrain. The WRF-Chem model was adopted for simulating the hourly ozone concentrations. The computational domains were chosen of 120x120x32, 121x121x32 and 121x121x32 grid points with horizontal resolutions of 27, 9 and 3 km respectively. The model was initialized with real boundary conditions using NCAR-NCEP's Final Analysis (FNL) and a 1ox1o (~111 km x 111 km) resolution. Boundary conditions were updated every 6 hours using reanalysis data. The emission rates were obtained from global inventories, namely the REanalysis of the TROpospheric (RETRO) chemical composition and the Emission Database for Global Atmospheric Research (EDGAR). Multiple linear regression and artificial neural network techniques are used to downscale the model output at each monitoring stations. The results confirm that the statistically downscaled outputs reduce simulated errors by up to 25%. This study provides a general overview of statistical downscaling of chemical transport models and can constitute a reference for future air quality modeling exercises over Bogota and other Colombian cities.
Ensemble Solar Forecasting Statistical Quantification and Sensitivity Analysis: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheung, WanYin; Zhang, Jie; Florita, Anthony
2015-12-08
Uncertainties associated with solar forecasts present challenges to maintain grid reliability, especially at high solar penetrations. This study aims to quantify the errors associated with the day-ahead solar forecast parameters and the theoretical solar power output for a 51-kW solar power plant in a utility area in the state of Vermont, U.S. Forecasts were generated by three numerical weather prediction (NWP) models, including the Rapid Refresh, the High Resolution Rapid Refresh, and the North American Model, and a machine-learning ensemble model. A photovoltaic (PV) performance model was adopted to calculate theoretical solar power generation using the forecast parameters (e.g., irradiance,more » cell temperature, and wind speed). Errors of the power outputs were quantified using statistical moments and a suite of metrics, such as the normalized root mean squared error (NRMSE). In addition, the PV model's sensitivity to different forecast parameters was quantified and analyzed. Results showed that the ensemble model yielded forecasts in all parameters with the smallest NRMSE. The NRMSE of solar irradiance forecasts of the ensemble NWP model was reduced by 28.10% compared to the best of the three NWP models. Further, the sensitivity analysis indicated that the errors of the forecasted cell temperature attributed only approximately 0.12% to the NRMSE of the power output as opposed to 7.44% from the forecasted solar irradiance.« less
Posada, David
2006-01-01
ModelTest server is a web-based application for the selection of models of nucleotide substitution using the program ModelTest. The server takes as input a text file with likelihood scores for the set of candidate models. Models can be selected with hierarchical likelihood ratio tests, or with the Akaike or Bayesian information criteria. The output includes several statistics for the assessment of model selection uncertainty, for model averaging or to estimate the relative importance of model parameters. The server can be accessed at . PMID:16845102
NASA Astrophysics Data System (ADS)
Truhanov, V. N.; Sultanov, M. M.
2017-11-01
In the present article researches of statistical material on the refusals and malfunctions influencing operability of heat power installations have been conducted. In this article the mathematical model of change of output characteristics of the turbine depending on number of the refusals revealed in use has been presented. The mathematical model is based on methods of mathematical statistics, probability theory and methods of matrix calculation. The novelty of this model is that it allows to predict the change of the output characteristic in time, and the operating influences have been presented in an explicit form. As desirable dynamics of change of the output characteristic (function, reliability) the law of distribution of Veybull which is universal is adopted since at various values of parameters it turns into other types of distributions (for example, exponential, normal, etc.) It should be noted that the choice of the desirable law of management allows to determine the necessary management parameters with use of the saved-up change of the output characteristic in general. The output characteristic can be changed both on the speed of change of management parameters, and on acceleration of change of management parameters. In this article the technique of an assessment of the pseudo-return matrix has been stated in detail by the method of the smallest squares and the standard Microsoft Excel functions. Also the technique of finding of the operating effects when finding restrictions both for the output characteristic, and on management parameters has been considered. In the article the order and the sequence of finding of management parameters has been stated. A concrete example of finding of the operating effects in the course of long-term operation of turbines has been shown.
NASA Technical Reports Server (NTRS)
He, Yuning
2015-01-01
Safety of unmanned aerial systems (UAS) is paramount, but the large number of dynamically changing controller parameters makes it hard to determine if the system is currently stable, and the time before loss of control if not. We propose a hierarchical statistical model using Treed Gaussian Processes to predict (i) whether a flight will be stable (success) or become unstable (failure), (ii) the time-to-failure if unstable, and (iii) time series outputs for flight variables. We first classify the current flight input into success or failure types, and then use separate models for each class to predict the time-to-failure and time series outputs. As different inputs may cause failures at different times, we have to model variable length output curves. We use a basis representation for curves and learn the mappings from input to basis coefficients. We demonstrate the effectiveness of our prediction methods on a NASA neuro-adaptive flight control system.
NASA Astrophysics Data System (ADS)
Yiannikopoulou, I.; Philippopoulos, K.; Deligiorgi, D.
2012-04-01
The vertical thermal structure of the atmosphere is defined by a combination of dynamic and radiation transfer processes and plays an important role in describing the meteorological conditions at local scales. The scope of this work is to develop and quantify the predictive ability of a hybrid dynamic-statistical downscaling procedure to estimate the vertical profile of ambient temperature at finer spatial scales. The study focuses on the warm period of the year (June - August) and the method is applied to an urban coastal site (Hellinikon), located in eastern Mediterranean. The two-step methodology initially involves the dynamic downscaling of coarse resolution climate data via the RegCM4.0 regional climate model and subsequently the statistical downscaling of the modeled outputs by developing and training site-specific artificial neural networks (ANN). The 2.5ox2.5o gridded NCEP-DOE Reanalysis 2 dataset is used as initial and boundary conditions for the dynamic downscaling element of the methodology, which enhances the regional representivity of the dataset to 20km and provides modeled fields in 18 vertical levels. The regional climate modeling results are compared versus the upper-air Hellinikon radiosonde observations and the mean absolute error (MAE) is calculated between the four grid point values nearest to the station and the ambient temperature at the standard and significant pressure levels. The statistical downscaling element of the methodology consists of an ensemble of ANN models, one for each pressure level, which are trained separately and employ the regional scale RegCM4.0 output. The ANN models are theoretically capable of estimating any measurable input-output function to any desired degree of accuracy. In this study they are used as non-linear function approximators for identifying the relationship between a number of predictor variables and the ambient temperature at the various vertical levels. An insight of the statistically derived input-output transfer functions is obtained by utilizing the ANN weights method, which quantifies the relative importance of the predictor variables in the estimation procedure. The overall downscaling performance evaluation incorporates a set of correlation and statistical measures along with appropriate statistical tests. The hybrid downscaling method presented in this work can be extended to various locations by training different site-specific ANN models and the results, depending on the application, can be used for assisting the understanding of the past, present and future climatology. ____________________________ This research has been co-financed by the European Union and Greek national funds through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF) - Research Funding Program: Heracleitus II: Investing in knowledge society through the European Social Fund.
NASA Astrophysics Data System (ADS)
Manzanas, R.; Lucero, A.; Weisheimer, A.; Gutiérrez, J. M.
2018-02-01
Statistical downscaling methods are popular post-processing tools which are widely used in many sectors to adapt the coarse-resolution biased outputs from global climate simulations to the regional-to-local scale typically required by users. They range from simple and pragmatic Bias Correction (BC) methods, which directly adjust the model outputs of interest (e.g. precipitation) according to the available local observations, to more complex Perfect Prognosis (PP) ones, which indirectly derive local predictions (e.g. precipitation) from appropriate upper-air large-scale model variables (predictors). Statistical downscaling methods have been extensively used and critically assessed in climate change applications; however, their advantages and limitations in seasonal forecasting are not well understood yet. In particular, a key problem in this context is whether they serve to improve the forecast quality/skill of raw model outputs beyond the adjustment of their systematic biases. In this paper we analyze this issue by applying two state-of-the-art BC and two PP methods to downscale precipitation from a multimodel seasonal hindcast in a challenging tropical region, the Philippines. To properly assess the potential added value beyond the reduction of model biases, we consider two validation scores which are not sensitive to changes in the mean (correlation and reliability categories). Our results show that, whereas BC methods maintain or worsen the skill of the raw model forecasts, PP methods can yield significant skill improvement (worsening) in cases for which the large-scale predictor variables considered are better (worse) predicted by the model than precipitation. For instance, PP methods are found to increase (decrease) model reliability in nearly 40% of the stations considered in boreal summer (autumn). Therefore, the choice of a convenient downscaling approach (either BC or PP) depends on the region and the season.
Statistical basis and outputs of stable isotope mixing models: Comment on Fry (2013)
A recent article by Fry (2013; Mar Ecol Prog Ser 472:1−13) reviewed approaches to solving underdetermined stable isotope mixing systems, and presented a new graphical approach and set of summary statistics for the analysis of such systems. In his review, Fry (2013) mis-characteri...
NASA Astrophysics Data System (ADS)
Anikin, A. S.
2018-06-01
Conditional statistical characteristics of the phase difference are considered depending on the ratio of instantaneous output signal amplitudes of spatially separated weakly directional antennas for the normal field model for paths with radio-wave scattering. The dependences obtained are related to the physical processes on the radio-wave propagation path. The normal model parameters are established at which the statistical characteristics of the phase difference depend on the ratio of the instantaneous amplitudes and hence can be used to measure the phase difference. Using Shannon's formula, the amount of information on the phase difference of signals contained in the ratio of their amplitudes is calculated depending on the parameters of the normal field model. Approaches are suggested to reduce the shift of phase difference measured for paths with radio-wave scattering. A comparison with results of computer simulation by the Monte Carlo method is performed.
Quantum error-correction failure distributions: Comparison of coherent and stochastic error models
NASA Astrophysics Data System (ADS)
Barnes, Jeff P.; Trout, Colin J.; Lucarelli, Dennis; Clader, B. D.
2017-06-01
We compare failure distributions of quantum error correction circuits for stochastic errors and coherent errors. We utilize a fully coherent simulation of a fault-tolerant quantum error correcting circuit for a d =3 Steane and surface code. We find that the output distributions are markedly different for the two error models, showing that no simple mapping between the two error models exists. Coherent errors create very broad and heavy-tailed failure distributions. This suggests that they are susceptible to outlier events and that mean statistics, such as pseudothreshold estimates, may not provide the key figure of merit. This provides further statistical insight into why coherent errors can be so harmful for quantum error correction. These output probability distributions may also provide a useful metric that can be utilized when optimizing quantum error correcting codes and decoding procedures for purely coherent errors.
The USGS=s SPARROW Model is a statistical model with mechanistic features that has been used to calculate annual nutrient fluxes in nontidal streams nationally on the basis of nitrogen sources, landscape characteristics, and stream properties. This model has been useful for asses...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Breuker, M.S.; Braun, J.E.
This paper presents a detailed evaluation of the performance of a statistical, rule-based fault detection and diagnostic (FDD) technique presented by Rossi and Braun (1997). Steady-state and transient tests were performed on a simple rooftop air conditioner over a range of conditions and fault levels. The steady-state data without faults were used to train models that predict outputs for normal operation. The transient data with faults were used to evaluate FDD performance. The effect of a number of design variables on FDD sensitivity for different faults was evaluated and two prototype systems were specified for more complete evaluation. Good performancemore » was achieved in detecting and diagnosing five faults using only six temperatures (2 input and 4 output) and linear models. The performance improved by about a factor of two when ten measurements (three input and seven output) and higher order models were used. This approach for evaluating and optimizing the performance of the statistical, rule-based FDD technique could be used as a design and evaluation tool when applying this FDD method to other packaged air-conditioning systems. Furthermore, the approach could also be modified to evaluate the performance of other FDD methods.« less
Mankin, Romi; Rekker, Astrid
2016-12-01
The output interspike interval statistics of a stochastic perfect integrate-and-fire neuron model driven by an additive exogenous periodic stimulus is considered. The effect of temporally correlated random activity of synaptic inputs is modeled by an additive symmetric dichotomous noise. Using a first-passage-time formulation, exact expressions for the output interspike interval density and for the serial correlation coefficient are derived in the nonsteady regime, and their dependence on input parameters (e.g., the noise correlation time and amplitude as well as the frequency of an input current) is analyzed. It is shown that an interplay of a periodic forcing and colored noise can cause a variety of nonequilibrium cooperation effects, such as sign reversals of the interspike interval correlations versus noise-switching rate as well as versus the frequency of periodic forcing, a power-law-like decay of oscillations of the serial correlation coefficients in the long-lag limit, amplification of the output signal modulation in the instantaneous firing rate of the neural response, etc. The features of spike statistics in the limits of slow and fast noises are also discussed.
Response to a periodic stimulus in a perfect integrate-and-fire neuron model driven by colored noise
NASA Astrophysics Data System (ADS)
Mankin, Romi; Rekker, Astrid
2016-12-01
The output interspike interval statistics of a stochastic perfect integrate-and-fire neuron model driven by an additive exogenous periodic stimulus is considered. The effect of temporally correlated random activity of synaptic inputs is modeled by an additive symmetric dichotomous noise. Using a first-passage-time formulation, exact expressions for the output interspike interval density and for the serial correlation coefficient are derived in the nonsteady regime, and their dependence on input parameters (e.g., the noise correlation time and amplitude as well as the frequency of an input current) is analyzed. It is shown that an interplay of a periodic forcing and colored noise can cause a variety of nonequilibrium cooperation effects, such as sign reversals of the interspike interval correlations versus noise-switching rate as well as versus the frequency of periodic forcing, a power-law-like decay of oscillations of the serial correlation coefficients in the long-lag limit, amplification of the output signal modulation in the instantaneous firing rate of the neural response, etc. The features of spike statistics in the limits of slow and fast noises are also discussed.
SCOUT: a fast Monte-Carlo modeling tool of scintillation camera output†
Hunter, William C J; Barrett, Harrison H.; Muzi, John P.; McDougald, Wendy; MacDonald, Lawrence R.; Miyaoka, Robert S.; Lewellen, Thomas K.
2013-01-01
We have developed a Monte-Carlo photon-tracking and readout simulator called SCOUT to study the stochastic behavior of signals output from a simplified rectangular scintillation-camera design. SCOUT models the salient processes affecting signal generation, transport, and readout of a scintillation camera. Presently, we compare output signal statistics from SCOUT to experimental results for both a discrete and a monolithic camera. We also benchmark the speed of this simulation tool and compare it to existing simulation tools. We find this modeling tool to be relatively fast and predictive of experimental results. Depending on the modeled camera geometry, we found SCOUT to be 4 to 140 times faster than other modeling tools. PMID:23640136
NASA Technical Reports Server (NTRS)
Barth, Timothy J.
2014-01-01
This workshop presentation discusses the design and implementation of numerical methods for the quantification of statistical uncertainty, including a-posteriori error bounds, for output quantities computed using CFD methods. Hydrodynamic realizations often contain numerical error arising from finite-dimensional approximation (e.g. numerical methods using grids, basis functions, particles) and statistical uncertainty arising from incomplete information and/or statistical characterization of model parameters and random fields. The first task at hand is to derive formal error bounds for statistics given realizations containing finite-dimensional numerical error [1]. The error in computed output statistics contains contributions from both realization error and the error resulting from the calculation of statistics integrals using a numerical method. A second task is to devise computable a-posteriori error bounds by numerically approximating all terms arising in the error bound estimates. For the same reason that CFD calculations including error bounds but omitting uncertainty modeling are only of limited value, CFD calculations including uncertainty modeling but omitting error bounds are only of limited value. To gain maximum value from CFD calculations, a general software package for uncertainty quantification with quantified error bounds has been developed at NASA. The package provides implementations for a suite of numerical methods used in uncertainty quantification: Dense tensorization basis methods [3] and a subscale recovery variant [1] for non-smooth data, Sparse tensorization methods[2] utilizing node-nested hierarchies, Sampling methods[4] for high-dimensional random variable spaces.
User's Guide for Monthly Vector Wind Profile Model
NASA Technical Reports Server (NTRS)
Adelfang, S. I.
1999-01-01
The background, theoretical concepts, and methodology for construction of vector wind profiles based on a statistical model are presented. The derived monthly vector wind profiles are to be applied by the launch vehicle design community for establishing realistic estimates of critical vehicle design parameter dispersions related to wind profile dispersions. During initial studies a number of months are used to establish the model profiles that produce the largest monthly dispersions of ascent vehicle aerodynamic load indicators. The largest monthly dispersions for wind, which occur during the winter high-wind months, are used for establishing the design reference dispersions for the aerodynamic load indicators. This document includes a description of the computational process for the vector wind model including specification of input data, parameter settings, and output data formats. Sample output data listings are provided to aid the user in the verification of test output.
Modeling the Pineapple Express phenomenon via Multivariate Extreme Value Theory
NASA Astrophysics Data System (ADS)
Weller, G.; Cooley, D. S.
2011-12-01
The pineapple express (PE) phenomenon is responsible for producing extreme winter precipitation events in the coastal and mountainous regions of the western United States. Because the PE phenomenon is also associated with warm temperatures, the heavy precipitation and associated snowmelt can cause destructive flooding. In order to study impacts, it is important that regional climate models from NARCCAP are able to reproduce extreme precipitation events produced by PE. We define a daily precipitation quantity which captures the spatial extent and intensity of precipitation events produced by the PE phenomenon. We then use statistical extreme value theory to model the tail dependence of this quantity as seen in an observational data set and each of the six NARCCAP regional models driven by NCEP reanalysis. We find that most NCEP-driven NARCCAP models do exhibit tail dependence between daily model output and observations. Furthermore, we find that not all extreme precipitation events are pineapple express events, as identified by Dettinger et al. (2011). The synoptic-scale atmospheric processes that drive extreme precipitation events produced by PE have only recently begun to be examined. Much of the current work has focused on pattern recognition, rather than quantitative analysis. We use daily mean sea-level pressure (MSLP) fields from NCEP to develop a "pineapple express index" for extreme precipitation, which exhibits tail dependence with our observed precipitation quantity for pineapple express events. We build a statistical model that connects daily precipitation output from the WRFG model, daily MSLP fields from NCEP, and daily observed precipitation in the western US. Finally, we use this model to simulate future observed precipitation based on WRFG output driven by the CCSM model, and our pineapple express index derived from future CCSM output. Our aim is to use this model to develop a better understanding of the frequency and intensity of extreme precipitation events produced by PE under climate change.
Assimilator Ensemble Post-processor (EnsPost) Hydrologic Model Output Statistics (HMOS) Ensemble Verification capabilities (see diagram below): the Ensemble Pre-processor, the Ensemble Post-processor, the Hydrologic Model (OpenDA, http://www.openda.org/joomla/index.php) to be used within the CHPS environment. Ensemble Post
US EPA 2012 Air Quality Fused Surface for the Conterminous U.S. Map Service
This web service contains a polygon layer that depicts fused air quality predictions for 2012 for census tracts in the conterminous United States. Fused air quality predictions (for ozone and PM2.5) are modeled using a Bayesian space-time downscaling fusion model approach described in a series of three published journal papers: 1) (Berrocal, V., Gelfand, A. E. and Holland, D. M. (2012). Space-time fusion under error in computer model output: an application to modeling air quality. Biometrics 68, 837-848; 2) Berrocal, V., Gelfand, A. E. and Holland, D. M. (2010). A bivariate space-time downscaler under space and time misalignment. The Annals of Applied Statistics 4, 1942-1975; and 3) Berrocal, V., Gelfand, A. E., and Holland, D. M. (2010). A spatio-temporal downscaler for output from numerical models. J. of Agricultural, Biological,and Environmental Statistics 15, 176-197) is used to provide daily, predictive PM2.5 (daily average) and O3 (daily 8-hr maximum) surfaces for 2012. Summer (O3) and annual (PM2.5) means calculated and published. The downscaling fusion model uses both air quality monitoring data from the National Air Monitoring Stations/State and Local Air Monitoring Stations (NAMS/SLAMS) and numerical output from the Models-3/Community Multiscale Air Quality (CMAQ). Currently, predictions at the US census tract centroid locations within the 12 km CMAQ domain are archived. Predictions at the CMAQ grid cell centroids, or any desired set of locations co
NASA Astrophysics Data System (ADS)
Guillen, George; Rainey, Gail; Morin, Michelle
2004-04-01
Currently, the Minerals Management Service uses the Oil Spill Risk Analysis model (OSRAM) to predict the movement of potential oil spills greater than 1000 bbl originating from offshore oil and gas facilities. OSRAM generates oil spill trajectories using meteorological and hydrological data input from either actual physical measurements or estimates generated from other hydrological models. OSRAM and many other models produce output matrices of average, maximum and minimum contact probabilities to specific landfall or target segments (columns) from oil spills at specific points (rows). Analysts and managers are often interested in identifying geographic areas or groups of facilities that pose similar risks to specific targets or groups of targets if a spill occurred. Unfortunately, due to the potentially large matrix generated by many spill models, this question is difficult to answer without the use of data reduction and visualization methods. In our study we utilized a multivariate statistical method called cluster analysis to group areas of similar risk based on potential distribution of landfall target trajectory probabilities. We also utilized ArcView™ GIS to display spill launch point groupings. The combination of GIS and multivariate statistical techniques in the post-processing of trajectory model output is a powerful tool for identifying and delineating areas of similar risk from multiple spill sources. We strongly encourage modelers, statistical and GIS software programmers to closely collaborate to produce a more seamless integration of these technologies and approaches to analyzing data. They are complimentary methods that strengthen the overall assessment of spill risks.
Estimating the Regional Economic Significance of Airports
1992-09-01
following three options for estimating induced impacts: the economic base model , an econometric model , and a regional input-output model . One approach to...limitations, however, the economic base model has been widely used for regional economic analysis. A second approach is to develop an econometric model of...analysis is the principal statistical tool used to estimate the economic relationships. Regional econometric models are capable of estimating a single
NASA Technical Reports Server (NTRS)
Watson, Leela R.
2011-01-01
The 45th Weather Squadron Launch Weather Officers use the 12-km resolution North American Mesoscale model (MesoNAM) forecasts to support launch weather operations. In Phase I, the performance of the model at KSC/CCAFS was measured objectively by conducting a detailed statistical analysis of model output compared to observed values. The objective analysis compared the MesoNAM forecast winds, temperature, and dew point to the observed values from the sensors in the KSC/CCAFS wind tower network. In Phase II, the AMU modified the current tool by adding an additional 15 months of model output to the database and recalculating the verification statistics. The bias, standard deviation of bias, Root Mean Square Error, and Hypothesis test for bias were calculated to verify the performance of the model. The results indicated that the accuracy decreased as the forecast progressed, there was a diurnal signal in temperature with a cool bias during the late night and a warm bias during the afternoon, and there was a diurnal signal in dewpoint temperature with a low bias during the afternoon and a high bias during the late night.
NASA Astrophysics Data System (ADS)
Milroy, Daniel J.; Baker, Allison H.; Hammerling, Dorit M.; Jessup, Elizabeth R.
2018-02-01
The Community Earth System Model Ensemble Consistency Test (CESM-ECT) suite was developed as an alternative to requiring bitwise identical output for quality assurance. This objective test provides a statistical measurement of consistency between an accepted ensemble created by small initial temperature perturbations and a test set of CESM simulations. In this work, we extend the CESM-ECT suite with an inexpensive and robust test for ensemble consistency that is applied to Community Atmospheric Model (CAM) output after only nine model time steps. We demonstrate that adequate ensemble variability is achieved with instantaneous variable values at the ninth step, despite rapid perturbation growth and heterogeneous variable spread. We refer to this new test as the Ultra-Fast CAM Ensemble Consistency Test (UF-CAM-ECT) and demonstrate its effectiveness in practice, including its ability to detect small-scale events and its applicability to the Community Land Model (CLM). The new ultra-fast test facilitates CESM development, porting, and optimization efforts, particularly when used to complement information from the original CESM-ECT suite of tools.
NASA Astrophysics Data System (ADS)
Gallego, C.; Costa, A.; Cuerva, A.
2010-09-01
Since nowadays wind energy can't be neither scheduled nor large-scale storaged, wind power forecasting has been useful to minimize the impact of wind fluctuations. In particular, short-term forecasting (characterised by prediction horizons from minutes to a few days) is currently required by energy producers (in a daily electricity market context) and the TSO's (in order to keep the stability/balance of an electrical system). Within the short-term background, time-series based models (i.e., statistical models) have shown a better performance than NWP models for horizons up to few hours. These models try to learn and replicate the dynamic shown by the time series of a certain variable. When considering the power output of wind farms, ramp events are usually observed, being characterized by a large positive gradient in the time series (ramp-up) or negative (ramp-down) during relatively short time periods (few hours). Ramp events may be motivated by many different causes, involving generally several spatial scales, since the large scale (fronts, low pressure systems) up to the local scale (wind turbine shut-down due to high wind speed, yaw misalignment due to fast changes of wind direction). Hence, the output power may show unexpected dynamics during ramp events depending on the underlying processes; consequently, traditional statistical models considering only one dynamic for the hole power time series may be inappropriate. This work proposes a Regime Switching (RS) model based on Artificial Neural Nets (ANN). The RS-ANN model gathers as many ANN's as different dynamics considered (called regimes); a certain ANN is selected so as to predict the output power, depending on the current regime. The current regime is on-line updated based on a gradient criteria, regarding the past two values of the output power. 3 Regimes are established, concerning ramp events: ramp-up, ramp-down and no-ramp regime. In order to assess the skillness of the proposed RS-ANN model, a single-ANN model (without regime classification) is adopted as a reference model. Both models are evaluated in terms of Improvement over Persistence on the Mean Square Error basis (IoP%) when predicting horizons form 1 time-step to 5. The case of a wind farm located in the complex terrain of Alaiz (north of Spain) has been considered. Three years of available power output data with a hourly resolution have been employed: two years for training and validation of the model and the last year for assessing the accuracy. Results showed that the RS-ANN overcame the single-ANN model for one step-ahead forecasts: the overall IoP% was up to 8.66% for the RS-ANN model (depending on the gradient criterion selected to consider the ramp regime triggered) and 6.16% for the single-ANN. However, both models showed similar accuracy for larger horizons. A locally-weighted evaluation during ramp events for one-step ahead was also performed. It was found that the IoP% during ramps-up increased from 17.60% (case of single-ANN) to 22.25% (case of RS-ANN); however, during the ramps-down events this improvement increased from 18.55% to 19.55%. Three main conclusions are derived from this case study: It highlights the importance of considering statistical models capable of differentiate several regimes showed by the output power time series in order to improve the forecasting during extreme events like ramps. On-line regime classification based on available power output data didn't seem to contribute to improve forecasts for horizons beyond one-step ahead. Tacking into account other explanatory variables (local wind measurements, NWP outputs) could lead to a better understanding of ramp events, improving the regime assessment also for further horizons. The RS-ANN model slightly overcame the single-ANN during ramp-down events. If further research reinforce this effect, special attention should be addressed to understand the underlying processes during ramp-down events.
NASA Astrophysics Data System (ADS)
Faqih, A.
2017-03-01
Providing information regarding future climate scenarios is very important in climate change study. The climate scenario can be used as basic information to support adaptation and mitigation studies. In order to deliver future climate scenarios over specific region, baseline and projection data from the outputs of global climate models (GCM) is needed. However, due to its coarse resolution, the data have to be downscaled and bias corrected in order to get scenario data with better spatial resolution that match the characteristics of the observed data. Generating this downscaled data is mostly difficult for scientist who do not have specific background, experience and skill in dealing with the complex data from the GCM outputs. In this regards, it is necessary to develop a tool that can be used to simplify the downscaling processes in order to help scientist, especially in Indonesia, for generating future climate scenario data that can be used for their climate change-related studies. In this paper, we introduce a tool called as “Statistical Bias Correction for Climate Scenarios (SiBiaS)”. The tool is specially designed to facilitate the use of CMIP5 GCM data outputs and process their statistical bias corrections relative to the reference data from observations. It is prepared for supporting capacity building in climate modeling in Indonesia as part of the Indonesia 3rd National Communication (TNC) project activities.
NASA Astrophysics Data System (ADS)
Heinze, Rieke; Moseley, Christopher; Böske, Lennart Nils; Muppa, Shravan Kumar; Maurer, Vera; Raasch, Siegfried; Stevens, Bjorn
2017-06-01
Large-eddy simulations (LESs) of a multi-week period during the HD(CP)2 (High-Definition Clouds and Precipitation for advancing Climate Prediction) Observational Prototype Experiment (HOPE) conducted in Germany are evaluated with respect to mean boundary layer quantities and turbulence statistics. Two LES models are used in a semi-idealized setup through forcing with mesoscale model output to account for the synoptic-scale conditions. Evaluation is performed based on the HOPE observations. The mean boundary layer characteristics like the boundary layer depth are in a principal agreement with observations. Simulating shallow-cumulus layers in agreement with the measurements poses a challenge for both LES models. Variance profiles agree satisfactorily with lidar measurements. The results depend on how the forcing data stemming from mesoscale model output are constructed. The mean boundary layer characteristics become less sensitive if the averaging domain for the forcing is large enough to filter out mesoscale fluctuations.
NASA Astrophysics Data System (ADS)
Spampinato, A.; Axinte, D. A.
2017-12-01
The mechanisms of interaction between bodies with statistically arranged features present characteristics common to different abrasive processes, such as dressing of abrasive tools. In contrast with the current empirical approach used to estimate the results of operations based on attritive interactions, the method we present in this paper allows us to predict the output forces and the topography of a simulated grinding wheel for a set of specific operational parameters (speed ratio and radial feed-rate), providing a thorough understanding of the complex mechanisms regulating these processes. In modelling the dressing mechanisms, the abrasive characteristics of both bodies (grain size, geometry, inter-space and protrusion) are first simulated; thus, their interaction is simulated in terms of grain collisions. Exploiting a specifically designed contact/impact evaluation algorithm, the model simulates the collisional effects of the dresser abrasives on the grinding wheel topography (grain fracture/break-out). The method has been tested for the case of a diamond rotary dresser, predicting output forces within less than 10% error and obtaining experimentally validated grinding wheel topographies. The study provides a fundamental understanding of the dressing operation, enabling the improvement of its performance in an industrial scenario, while being of general interest in modelling collision-based processes involving statistically distributed elements.
Statistical Surrogate Modeling of Atmospheric Dispersion Events Using Bayesian Adaptive Splines
NASA Astrophysics Data System (ADS)
Francom, D.; Sansó, B.; Bulaevskaya, V.; Lucas, D. D.
2016-12-01
Uncertainty in the inputs of complex computer models, including atmospheric dispersion and transport codes, is often assessed via statistical surrogate models. Surrogate models are computationally efficient statistical approximations of expensive computer models that enable uncertainty analysis. We introduce Bayesian adaptive spline methods for producing surrogate models that capture the major spatiotemporal patterns of the parent model, while satisfying all the necessities of flexibility, accuracy and computational feasibility. We present novel methodological and computational approaches motivated by a controlled atmospheric tracer release experiment conducted at the Diablo Canyon nuclear power plant in California. Traditional methods for building statistical surrogate models often do not scale well to experiments with large amounts of data. Our approach is well suited to experiments involving large numbers of model inputs, large numbers of simulations, and functional output for each simulation. Our approach allows us to perform global sensitivity analysis with ease. We also present an approach to calibration of simulators using field data.
Sanov and central limit theorems for output statistics of quantum Markov chains
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horssen, Merlijn van, E-mail: merlijn.vanhorssen@nottingham.ac.uk; Guţă, Mădălin, E-mail: madalin.guta@nottingham.ac.uk
2015-02-15
In this paper, we consider the statistics of repeated measurements on the output of a quantum Markov chain. We establish a large deviations result analogous to Sanov’s theorem for the multi-site empirical measure associated to finite sequences of consecutive outcomes of a classical stochastic process. Our result relies on the construction of an extended quantum transition operator (which keeps track of previous outcomes) in terms of which we compute moment generating functions, and whose spectral radius is related to the large deviations rate function. As a corollary to this, we obtain a central limit theorem for the empirical measure. Suchmore » higher level statistics may be used to uncover critical behaviour such as dynamical phase transitions, which are not captured by lower level statistics such as the sample mean. As a step in this direction, we give an example of a finite system whose level-1 (empirical mean) rate function is independent of a model parameter while the level-2 (empirical measure) rate is not.« less
Sachindra, D. A.; Perera, B. J. C.
2016-01-01
This paper presents a novel approach to incorporate the non-stationarities characterised in the GCM outputs, into the Predictor-Predictand Relationships (PPRs) in statistical downscaling models. In this approach, a series of 42 PPRs based on multi-linear regression (MLR) technique were determined for each calendar month using a 20-year moving window moved at a 1-year time step on the predictor data obtained from the NCEP/NCAR reanalysis data archive and observations of precipitation at 3 stations located in Victoria, Australia, for the period 1950–2010. Then the relationships between the constants and coefficients in the PPRs and the statistics of reanalysis data of predictors were determined for the period 1950–2010, for each calendar month. Thereafter, using these relationships with the statistics of the past data of HadCM3 GCM pertaining to the predictors, new PPRs were derived for the periods 1950–69, 1970–89 and 1990–99 for each station. This process yielded a non-stationary downscaling model consisting of a PPR per calendar month for each of the above three periods for each station. The non-stationarities in the climate are characterised by the long-term changes in the statistics of the climate variables and above process enabled relating the non-stationarities in the climate to the PPRs. These new PPRs were then used with the past data of HadCM3, to reproduce the observed precipitation. It was found that the non-stationary MLR based downscaling model was able to produce more accurate simulations of observed precipitation more often than conventional stationary downscaling models developed with MLR and Genetic Programming (GP). PMID:27997609
Sachindra, D A; Perera, B J C
2016-01-01
This paper presents a novel approach to incorporate the non-stationarities characterised in the GCM outputs, into the Predictor-Predictand Relationships (PPRs) in statistical downscaling models. In this approach, a series of 42 PPRs based on multi-linear regression (MLR) technique were determined for each calendar month using a 20-year moving window moved at a 1-year time step on the predictor data obtained from the NCEP/NCAR reanalysis data archive and observations of precipitation at 3 stations located in Victoria, Australia, for the period 1950-2010. Then the relationships between the constants and coefficients in the PPRs and the statistics of reanalysis data of predictors were determined for the period 1950-2010, for each calendar month. Thereafter, using these relationships with the statistics of the past data of HadCM3 GCM pertaining to the predictors, new PPRs were derived for the periods 1950-69, 1970-89 and 1990-99 for each station. This process yielded a non-stationary downscaling model consisting of a PPR per calendar month for each of the above three periods for each station. The non-stationarities in the climate are characterised by the long-term changes in the statistics of the climate variables and above process enabled relating the non-stationarities in the climate to the PPRs. These new PPRs were then used with the past data of HadCM3, to reproduce the observed precipitation. It was found that the non-stationary MLR based downscaling model was able to produce more accurate simulations of observed precipitation more often than conventional stationary downscaling models developed with MLR and Genetic Programming (GP).
An effective drift correction for dynamical downscaling of decadal global climate predictions
NASA Astrophysics Data System (ADS)
Paeth, Heiko; Li, Jingmin; Pollinger, Felix; Müller, Wolfgang A.; Pohlmann, Holger; Feldmann, Hendrik; Panitz, Hans-Jürgen
2018-04-01
Initialized decadal climate predictions with coupled climate models are often marked by substantial climate drifts that emanate from a mismatch between the climatology of the coupled model system and the data set used for initialization. While such drifts may be easily removed from the prediction system when analyzing individual variables, a major problem prevails for multivariate issues and, especially, when the output of the global prediction system shall be used for dynamical downscaling. In this study, we present a statistical approach to remove climate drifts in a multivariate context and demonstrate the effect of this drift correction on regional climate model simulations over the Euro-Atlantic sector. The statistical approach is based on an empirical orthogonal function (EOF) analysis adapted to a very large data matrix. The climate drift emerges as a dramatic cooling trend in North Atlantic sea surface temperatures (SSTs) and is captured by the leading EOF of the multivariate output from the global prediction system, accounting for 7.7% of total variability. The SST cooling pattern also imposes drifts in various atmospheric variables and levels. The removal of the first EOF effectuates the drift correction while retaining other components of intra-annual, inter-annual and decadal variability. In the regional climate model, the multivariate drift correction of the input data removes the cooling trends in most western European land regions and systematically reduces the discrepancy between the output of the regional climate model and observational data. In contrast, removing the drift only in the SST field from the global model has hardly any positive effect on the regional climate model.
Economic Impacts of Wind Turbine Development in U.S. Counties
DOE Office of Scientific and Technical Information (OSTI.GOV)
J., Brown; B., Hoen; E., Lantz
2011-07-25
The objective is to address the research question using post-project construction, county-level data, and econometric evaluation methods. Wind energy is expanding rapidly in the United States: Over the last 4 years, wind power has contributed approximately 35 percent of all new electric power capacity. Wind power plants are often developed in rural areas where local economic development impacts from the installation are projected, including land lease and property tax payments and employment growth during plant construction and operation. Wind energy represented 2.3 percent of the U.S. electricity supply in 2010, but studies show that penetrations of at least 20 percentmore » are feasible. Several studies have used input-output models to predict direct, indirect, and induced economic development impacts. These analyses have often been completed prior to project construction. Available studies have not yet investigated the economic development impacts of wind development at the county level using post-construction econometric evaluation methods. Analysis of county-level impacts is limited. However, previous county-level analyses have estimated operation-period employment at 0.2 to 0.6 jobs per megawatt (MW) of power installed and earnings at $9,000/MW to $50,000/MW. We find statistically significant evidence of positive impacts of wind development on county-level per capita income from the OLS and spatial lag models when they are applied to the full set of wind and non-wind counties. The total impact on annual per capita income of wind turbine development (measured in MW per capita) in the spatial lag model was $21,604 per MW. This estimate is within the range of values estimated in the literature using input-output models. OLS results for the wind-only counties and matched samples are similar in magnitude, but are not statistically significant at the 10-percent level. We find a statistically significant impact of wind development on employment in the OLS analysis for wind counties only, but not in the other models. Our estimates of employment impacts are not precise enough to assess the validity of employment impacts from input-output models applied in advance of wind energy project construction. The analysis provides empirical evidence of positive income effects at the county level from cumulative wind turbine development, consistent with the range of impacts estimated using input-output models. Employment impacts are less clear.« less
RCHILD - an R-package for flexible use of the landscape evolution model CHILD
NASA Astrophysics Data System (ADS)
Dietze, Michael
2014-05-01
Landscape evolution models provide powerful approaches to numerically assess earth surface processes, to quantify rates of landscape change, infer sediment transfer rates, estimate sediment budgets, investigate the consequences of changes in external drivers on a geomorphic system, to provide spatio-temporal interpolations between known landscape states or to test conceptual hypotheses. CHILD (Channel-Hillslope Integrated Landscape Development Model) is one of the most-used models of landscape change in the context of at least tectonic and geomorphologic process interactions. Running CHILD from command line and working with the model output can be a rather awkward task (static model control via text input file, only numeric output in text files). The package RCHILD is a collection of functions for the free statistical software R that help using CHILD in a flexible, dynamic and user-friendly way. The comprised functions allow creating maps, real-time scenes, animations and further thematic plots from model output. The model input files can be modified dynamically and, hence, (feedback-related) changes in external factors can be implemented iteratively. Output files can be written to common formats that can be readily imported to standard GIS software. This contribution presents the basic functionality of the model CHILD as visualised and modified by the package. A rough overview of the available functions is given. Application examples help to illustrate the great potential of numeric modelling of geomorphologic processes.
Automated turbulence forecasts for aviation hazards
NASA Astrophysics Data System (ADS)
Sharman, R.; Frehlich, R.; Vandenberghe, F.
2010-09-01
An operational turbulence forecast system for commercial and aviation use is described that is based on an ensemble of turbulence diagnostics derived from standard NWP model outputs. In the U. S. this forecast product is named GTG (Graphical Turbulence Guidance) and has been described in detail in Sharman et al., WAF 2006. Since turbulence has many sources in the atmosphere, the ensemble approach of combining diagnostics has been shown to provide greater statistical accuracy than the use of a single diagnostic, or of a subgrid tke parameterization. GTG is sponsored by the FAA, and has undergone rigorous accuracy, safety, and usability evaluations. The GTG product is now hosted on NOAA's Aviation Data Service (ADDS), web site (http://aviationweather.gov/), for access by pilots, air traffic controllers, and dispatchers. During this talk the various turbulence diagnostics, their statistical properties, and their relative performance (based on comparisons to observations) will be presented. Importantly, the model output is ɛ1/3 (where ɛ is the eddy dissipation rate), so is aircraft independent. The diagnostics are individually and collectively calibrated so that their PDFs satisfy the expected log normal distribution of ɛ^1/3. Some of the diagnostics try to take into account the role of gravity waves and inertia-gravity waves in the turbulence generation process. Although the current GTG product is based on the RUC forecast model running over the CONUS, it is transitioning to a WRF based product, and in fact WRF-based versions are currently running operationally over Taiwan and has also been implemented for use by the French Navy in climatological studies. Yet another version has been developed which uses GFS model output to provide global turbulence forecasts. Thus the forecast product is available as a postprocessing program for WRF or other model output and provides 3D maps of turbulence likelihood of any region where NWP model data is available. Although the current GTG has been used mainly for large commercial aircraft, since the output is aircraft independent it could readily be scaled to smaller aircraft such as UAVs. Further, the ensemble technique allows the diagnostics to be used to form probabilistic forecasts, in a manner similar to ensemble NWP forecasts.
Towards simplification of hydrologic modeling: Identification of dominant processes
Markstrom, Steven; Hay, Lauren E.; Clark, Martyn P.
2016-01-01
The Precipitation–Runoff Modeling System (PRMS), a distributed-parameter hydrologic model, has been applied to the conterminous US (CONUS). Parameter sensitivity analysis was used to identify: (1) the sensitive input parameters and (2) particular model output variables that could be associated with the dominant hydrologic process(es). Sensitivity values of 35 PRMS calibration parameters were computed using the Fourier amplitude sensitivity test procedure on 110 000 independent hydrologically based spatial modeling units covering the CONUS and then summarized to process (snowmelt, surface runoff, infiltration, soil moisture, evapotranspiration, interflow, baseflow, and runoff) and model performance statistic (mean, coefficient of variation, and autoregressive lag 1). Identified parameters and processes provide insight into model performance at the location of each unit and allow the modeler to identify the most dominant process on the basis of which processes are associated with the most sensitive parameters. The results of this study indicate that: (1) the choice of performance statistic and output variables has a strong influence on parameter sensitivity, (2) the apparent model complexity to the modeler can be reduced by focusing on those processes that are associated with sensitive parameters and disregarding those that are not, (3) different processes require different numbers of parameters for simulation, and (4) some sensitive parameters influence only one hydrologic process, while others may influence many
A Numerical Simulation and Statistical Modeling of High Intensity Radiated Fields Experiment Data
NASA Technical Reports Server (NTRS)
Smith, Laura J.
2004-01-01
Tests are conducted on a quad-redundant fault tolerant flight control computer to establish upset characteristics of an avionics system in an electromagnetic field. A numerical simulation and statistical model are described in this work to analyze the open loop experiment data collected in the reverberation chamber at NASA LaRC as a part of an effort to examine the effects of electromagnetic interference on fly-by-wire aircraft control systems. By comparing thousands of simulation and model outputs, the models that best describe the data are first identified and then a systematic statistical analysis is performed on the data. All of these efforts are combined which culminate in an extrapolation of values that are in turn used to support previous efforts used in evaluating the data.
Hidden Connections between Regression Models of Strain-Gage Balance Calibration Data
NASA Technical Reports Server (NTRS)
Ulbrich, Norbert
2013-01-01
Hidden connections between regression models of wind tunnel strain-gage balance calibration data are investigated. These connections become visible whenever balance calibration data is supplied in its design format and both the Iterative and Non-Iterative Method are used to process the data. First, it is shown how the regression coefficients of the fitted balance loads of a force balance can be approximated by using the corresponding regression coefficients of the fitted strain-gage outputs. Then, data from the manual calibration of the Ames MK40 six-component force balance is chosen to illustrate how estimates of the regression coefficients of the fitted balance loads can be obtained from the regression coefficients of the fitted strain-gage outputs. The study illustrates that load predictions obtained by applying the Iterative or the Non-Iterative Method originate from two related regression solutions of the balance calibration data as long as balance loads are given in the design format of the balance, gage outputs behave highly linear, strict statistical quality metrics are used to assess regression models of the data, and regression model term combinations of the fitted loads and gage outputs can be obtained by a simple variable exchange.
Speckle noise in satellite based lidar systems
NASA Technical Reports Server (NTRS)
Gardner, C. S.
1977-01-01
The lidar system model was described, and the statistics of the signal and noise at the receiver output were derived. Scattering media effects were discussed along with polarization and atmospheric turbulence. The major equations were summarized and evaluated for some typical parameters.
User's Manual for Downscaler Fusion Software
Recently, a series of 3 papers has been published in the statistical literature that details the use of downscaling to obtain more accurate and precise predictions of air pollution across the conterminous U.S. This downscaling approach combines CMAQ gridded numerical model output...
LANDSCAPE ASSESSMENT TOOLS FOR WATERSHED CHARACTERIZATION
A combination of process-based, empirical and statistical models has been developed to assist states in their efforts to assess water quality, locate impairments over large areas, and calculate TMDL allocations. By synthesizing outputs from a number of these tools, LIPS demonstr...
NASA Astrophysics Data System (ADS)
Karl, Thomas R.; Wang, Wei-Chyung; Schlesinger, Michael E.; Knight, Richard W.; Portman, David
1990-10-01
Important surface observations such as the daily maximum and minimum temperature, daily precipitation, and cloud ceilings often have localized characteristics that are difficult to reproduce with the current resolution and the physical parameterizations in state-of-the-art General Circulation climate Models (GCMs). Many of the difficulties can be partially attributed to mismatches in scale, local topography. regional geography and boundary conditions between models and surface-based observations. Here, we present a method, called climatological projection by model statistics (CPMS), to relate GCM grid-point flee-atmosphere statistics, the predictors, to these important local surface observations. The method can be viewed as a generalization of the model output statistics (MOS) and perfect prog (PP) procedures used in numerical weather prediction (NWP) models. It consists of the application of three statistical methods: 1) principle component analysis (FICA), 2) canonical correlation, and 3) inflated regression analysis. The PCA reduces the redundancy of the predictors The canonical correlation is used to develop simultaneous relationships between linear combinations of the predictors, the canonical variables, and the surface-based observations. Finally, inflated regression is used to relate the important canonical variables to each of the surface-based observed variables.We demonstrate that even an early version of the Oregon State University two-level atmospheric GCM (with prescribed sea surface temperature) produces free-atmosphere statistics than can, when standardized using the model's internal means and variances (the MOS-like version of CPMS), closely approximate the observed local climate. When the model data are standardized by the observed free-atmosphere means and variances (the PP version of CPMS), however, the model does not reproduce the observed surface climate as well. Our results indicate that in the MOS-like version of CPMS the differences between the output of a ten-year GCM control run and the surface-based observations are often smaller than the differences between the observations of two ten-year periods. Such positive results suggest that GCMs may already contain important climatological information that can be used to infer the local climate.
Data free inference with processed data products
Chowdhary, K.; Najm, H. N.
2014-07-12
Here, we consider the context of probabilistic inference of model parameters given error bars or confidence intervals on model output values, when the data is unavailable. We introduce a class of algorithms in a Bayesian framework, relying on maximum entropy arguments and approximate Bayesian computation methods, to generate consistent data with the given summary statistics. Once we obtain consistent data sets, we pool the respective posteriors, to arrive at a single, averaged density on the parameters. This approach allows us to perform accurate forward uncertainty propagation consistent with the reported statistics.
NASA Astrophysics Data System (ADS)
Palomino-Lemus, Reiner; Córdoba-Machado, Samir; Quishpe-Vásquez, César; García-Valdecasas-Ojeda, Matilde; Raquel Gámiz-Fortis, Sonia; Castro-Díez, Yolanda; Jesús Esteban-Parra, María
2017-04-01
In this study the Principal Component Regression (PCR) method has been used as statistical downscaling technique for simulating boreal winter precipitation in Tropical America during the period 1950-2010, and then for generating climate change projections for 2071-2100 period. The study uses the Global Precipitation Climatology Centre (GPCC, version 6) data set over the Tropical America region [30°N-30°S, 120°W-30°W] as predictand variable in the downscaling model. The mean monthly sea level pressure (SLP) from the National Center for Environmental Prediction - National Center for Atmospheric Research (NCEP-NCAR reanalysis project), has been used as predictor variable, covering a more extended area [30°N-30°S, 180°W-30°W]. Also, the SLP outputs from 20 GCMs, taken from the Coupled Model Intercomparison Project (CMIP5) have been used. The model data include simulations with historical atmospheric concentrations and future projections for the representative concentration pathways RCP2.6, RCP4.5, and RCP8.5. The ability of the different GCMs to simulate the winter precipitation in the study area for present climate (1971-2000) was analyzed by calculating the differences between the simulated and observed precipitation values. Additionally, the statistical significance at 95% confidence level of these differences has been estimated by means of the bilateral rank sum test of Wilcoxon-Mann-Whitney. Finally, to project winter precipitation in the area for the period 2071-2100, the downscaling model, recalibrated for the total period 1950-2010, was applied to the SLP outputs of the GCMs under the RCP2.6, RCP4.5, and RCP8.5 scenarios. The results show that, generally, for present climate the statistical downscaling shows a high ability to faithfully reproduce the precipitation field, while the simulations performed directly by using not downscaled outputs of GCMs strongly distort the precipitation field. For future climate, the projected predictions under the RCP4.5 and RCP8.5 scenarios show large areas with significant changes. For the RCP2.6 scenario, projected results present a predominance of very moderate decreases in rainfall, although significant in some models. Keywords: climate change projections, precipitation, Tropical America, statistical downscaling. Acknowledgements: This work has been financed by the projects P11-RNM-7941 (Junta de Andalucía-Spain) and CGL2013-48539-R (MINECO-Spain, FEDER).
NASA Astrophysics Data System (ADS)
Ma, Chaoqun; Wang, Tijian; Zang, Zengliang; Li, Zhijin
2018-07-01
Atmospheric chemistry models usually perform badly in forecasting wintertime air pollution because of their uncertainties. Generally, such uncertainties can be decreased effectively by techniques such as data assimilation (DA) and model output statistics (MOS). However, the relative importance and combined effects of the two techniques have not been clarified. Here, a one-month air quality forecast with the Weather Research and Forecasting-Chemistry (WRF-Chem) model was carried out in a virtually operational setup focusing on Hebei Province, China. Meanwhile, three-dimensional variational (3DVar) DA and MOS based on one-dimensional Kalman filtering were implemented separately and simultaneously to investigate their performance in improving the model forecast. Comparison with observations shows that the chemistry forecast with MOS outperforms that with 3DVar DA, which could be seen in all the species tested over the whole 72 forecast hours. Combined use of both techniques does not guarantee a better forecast than MOS only, with the improvements and degradations being small and appearing rather randomly. Results indicate that the implementation of MOS is more suitable than 3DVar DA in improving the operational forecasting ability of WRF-Chem.
A network-base analysis of CMIP5 "historical" experiments
NASA Astrophysics Data System (ADS)
Bracco, A.; Foudalis, I.; Dovrolis, C.
2012-12-01
In computer science, "complex network analysis" refers to a set of metrics, modeling tools and algorithms commonly used in the study of complex nonlinear dynamical systems. Its main premise is that the underlying topology or network structure of a system has a strong impact on its dynamics and evolution. By allowing to investigate local and non-local statistical interaction, network analysis provides a powerful, but only marginally explored, framework to validate climate models and investigate teleconnections, assessing their strength, range, and impacts on the climate system. In this work we propose a new, fast, robust and scalable methodology to examine, quantify, and visualize climate sensitivity, while constraining general circulation models (GCMs) outputs with observations. The goal of our novel approach is to uncover relations in the climate system that are not (or not fully) captured by more traditional methodologies used in climate science and often adopted from nonlinear dynamical systems analysis, and to explain known climate phenomena in terms of the network structure or its metrics. Our methodology is based on a solid theoretical framework and employs mathematical and statistical tools, exploited only tentatively in climate research so far. Suitably adapted to the climate problem, these tools can assist in visualizing the trade-offs in representing global links and teleconnections among different data sets. Here we present the methodology, and compare network properties for different reanalysis data sets and a suite of CMIP5 coupled GCM outputs. With an extensive model intercomparison in terms of the climate network that each model leads to, we quantify how each model reproduces major teleconnections, rank model performances, and identify common or specific errors in comparing model outputs and observations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bao, Rong; Li, Yongdong; Liu, Chunliang
2016-07-15
The output power fluctuations caused by weights of macro particles used in particle-in-cell (PIC) simulations of a backward wave oscillator and a travelling wave tube are statistically analyzed. It is found that the velocities of electrons passed a specific slow-wave structure form a specific electron velocity distribution. The electron velocity distribution obtained in PIC simulation with a relative small weight of macro particles is considered as an initial distribution. By analyzing this initial distribution with a statistical method, the estimations of the output power fluctuations caused by different weights of macro particles are obtained. The statistical method is verified bymore » comparing the estimations with the simulation results. The fluctuations become stronger with increasing weight of macro particles, which can also be determined reversely from estimations of the output power fluctuations. With the weights of macro particles optimized by the statistical method, the output power fluctuations in PIC simulations are relatively small and acceptable.« less
Statistical Compression for Climate Model Output
NASA Astrophysics Data System (ADS)
Hammerling, D.; Guinness, J.; Soh, Y. J.
2017-12-01
Numerical climate model simulations run at high spatial and temporal resolutions generate massive quantities of data. As our computing capabilities continue to increase, storing all of the data is not sustainable, and thus is it important to develop methods for representing the full datasets by smaller compressed versions. We propose a statistical compression and decompression algorithm based on storing a set of summary statistics as well as a statistical model describing the conditional distribution of the full dataset given the summary statistics. We decompress the data by computing conditional expectations and conditional simulations from the model given the summary statistics. Conditional expectations represent our best estimate of the original data but are subject to oversmoothing in space and time. Conditional simulations introduce realistic small-scale noise so that the decompressed fields are neither too smooth nor too rough compared with the original data. Considerable attention is paid to accurately modeling the original dataset-one year of daily mean temperature data-particularly with regard to the inherent spatial nonstationarity in global fields, and to determining the statistics to be stored, so that the variation in the original data can be closely captured, while allowing for fast decompression and conditional emulation on modest computers.
Interactive vs. Non-Interactive Multi-Model Ensembles
NASA Astrophysics Data System (ADS)
Duane, G. S.
2013-12-01
If the members of an ensemble of different models are allowed to interact with one another in run time, predictive skill can be improved as compared to that of any individual model or any average of indvidual model outputs. Inter-model connections in such an interactive ensemble can be trained, using historical data, so that the resulting ``supermodel' synchronizes with reality when used in weather-prediction mode, where the individual models perform data assimilation from each other (with trainable inter-model 'observation error') as well as from real observations. In climate-projection mode, parameters of the individual models are changed, as might occur from an increase in GHG levels, and one obtains relevant statistical properties of the new supermodel attractor. In simple cases, it has been shown that training of the inter-model connections with the old parameter values gives a supermodel that is still predictive when the parameter values are changed. Here we inquire as to the circumstances under which supermodel performance can be expected to exceed that of the customary weighted average of model outputs. We consider a supermodel formed from quasigeostrophic (QG) channel models with different forcing coefficients, and introduce an effective training scheme for the inter-model connections. We show that the blocked-zonal index cycle is reproduced better by the supermodel than by any non-interactive ensemble in the extreme case where the forcing coefficients of the different models are very large or very small. With realistic differences in forcing coefficients, as would be representative of actual differences among IPCC-class models, the usual linearity assumption is justified and a weighted average of model outputs is adequate. It is therefore hypothesized that supermodeling is likely to be useful in situations where there are qualitative model differences, as arising from sub-gridscale parameterizations, that affect overall model behavior. Otherwise the usual ex post facto averaging will probably suffice. The advantage of supermodeling is seen in statistics such as anticorrelation between blocking activity in the Atlantic and Pacific sectors, in the case of the QG channel model, rather than in overall blocking frequency. Likewise in climate models, the advantage of supermodeling is typically manifest in higher-order statistics rather than in quantities such as mean temperature.
Soft Mixer Assignment in a Hierarchical Generative Model of Natural Scene Statistics
Schwartz, Odelia; Sejnowski, Terrence J.; Dayan, Peter
2010-01-01
Gaussian scale mixture models offer a top-down description of signal generation that captures key bottom-up statistical characteristics of filter responses to images. However, the pattern of dependence among the filters for this class of models is prespecified. We propose a novel extension to the gaussian scale mixture model that learns the pattern of dependence from observed inputs and thereby induces a hierarchical representation of these inputs. Specifically, we propose that inputs are generated by gaussian variables (modeling local filter structure), multiplied by a mixer variable that is assigned probabilistically to each input from a set of possible mixers. We demonstrate inference of both components of the generative model, for synthesized data and for different classes of natural images, such as a generic ensemble and faces. For natural images, the mixer variable assignments show invariances resembling those of complex cells in visual cortex; the statistics of the gaussian components of the model are in accord with the outputs of divisive normalization models. We also show how our model helps interrelate a wide range of models of image statistics and cortical processing. PMID:16999575
Ensuring Positiveness of the Scaled Difference Chi-square Test Statistic.
Satorra, Albert; Bentler, Peter M
2010-06-01
A scaled difference test statistic [Formula: see text] that can be computed from standard software of structural equation models (SEM) by hand calculations was proposed in Satorra and Bentler (2001). The statistic [Formula: see text] is asymptotically equivalent to the scaled difference test statistic T̄(d) introduced in Satorra (2000), which requires more involved computations beyond standard output of SEM software. The test statistic [Formula: see text] has been widely used in practice, but in some applications it is negative due to negativity of its associated scaling correction. Using the implicit function theorem, this note develops an improved scaling correction leading to a new scaled difference statistic T̄(d) that avoids negative chi-square values.
The NBS Energy Model Assessment project: Summary and overview
NASA Astrophysics Data System (ADS)
Gass, S. I.; Hoffman, K. L.; Jackson, R. H. F.; Joel, L. S.; Saunders, P. B.
1980-09-01
The activities and technical reports for the project are summarized. The reports cover: assessment of the documentation of Midterm Oil and Gas Supply Modeling System; analysis of the model methodology characteristics of the input and other supporting data; statistical procedures undergirding construction of the model and sensitivity of the outputs to variations in input, as well as guidelines and recommendations for the role of these in model building and developing procedures for their evaluation.
Innovative use of self-organising maps (SOMs) in model validation.
NASA Astrophysics Data System (ADS)
Jolly, Ben; McDonald, Adrian; Coggins, Jack
2016-04-01
We present an innovative combination of techniques for validation of numerical weather prediction (NWP) output against both observations and reanalyses using two classification schemes, demonstrated by a validation of the operational NWP 'AMPS' (the Antarctic Mesoscale Prediction System). Historically, model validation techniques have centred on case studies or statistics at various time scales (yearly/seasonal/monthly). Within the past decade the latter technique has been expanded by the addition of classification schemes in place of time scales, allowing more precise analysis. Classifications are typically generated for either the model or the observations, then used to create composites for both which are compared. Our method creates and trains a single self-organising map (SOM) on both the model output and observations, which is then used to classify both datasets using the same class definitions. In addition to the standard statistics on class composites, we compare the classifications themselves between the model and the observations. To add further context to the area studied, we use the same techniques to compare the SOM classifications with regimes developed for another study to great effect. The AMPS validation study compares model output against surface observations from SNOWWEB and existing University of Wisconsin-Madison Antarctic Automatic Weather Stations (AWS) during two months over the austral summer of 2014-15. Twelve SOM classes were defined in a '4 x 3' pattern, trained on both model output and observations of 2 m wind components, then used to classify both training datasets. Simple statistics (correlation, bias and normalised root-mean-square-difference) computed for SOM class composites showed that AMPS performed well during extreme weather events, but less well during lighter winds and poorly during the more changeable conditions between either extreme. Comparison of the classification time-series showed that, while correlations were lower during lighter wind periods, AMPS actually forecast the existence of those periods well suggesting that the correlations may be unfairly low. Further investigation showed poor temporal alignment during more changeable conditions, highlighting problems AMPS has around the exact timing of events. There was also a tendency for AMPS to over-predict certain wind flow patterns at the expense of others. In order to gain a larger scale perspective, we compared our mesoscale SOM classification time-series with synoptic scale regimes developed by another study using ERA-Interim reanalysis output and k-means clustering. There was good alignment between the regimes and the observations classifications (observations/regimes), highlighting the effect of synoptic scale forcing on the area. However, comparing the alignment between observations/regimes and AMPS/regimes showed that AMPS may have problems accurately resolving the strength and location of cyclones in the Ross Sea to the north of the target area.
Camera-Model Identification Using Markovian Transition Probability Matrix
NASA Astrophysics Data System (ADS)
Xu, Guanshuo; Gao, Shang; Shi, Yun Qing; Hu, Ruimin; Su, Wei
Detecting the (brands and) models of digital cameras from given digital images has become a popular research topic in the field of digital forensics. As most of images are JPEG compressed before they are output from cameras, we propose to use an effective image statistical model to characterize the difference JPEG 2-D arrays of Y and Cb components from the JPEG images taken by various camera models. Specifically, the transition probability matrices derived from four different directional Markov processes applied to the image difference JPEG 2-D arrays are used to identify statistical difference caused by image formation pipelines inside different camera models. All elements of the transition probability matrices, after a thresholding technique, are directly used as features for classification purpose. Multi-class support vector machines (SVM) are used as the classification tool. The effectiveness of our proposed statistical model is demonstrated by large-scale experimental results.
A downscaling method for the assessment of local climate change
NASA Astrophysics Data System (ADS)
Bruno, E.; Portoghese, I.; Vurro, M.
2009-04-01
The use of complimentary models is necessary to study the impact of climate change scenarios on the hydrological response at different space-time scales. However, the structure of GCMs is such that their space resolution (hundreds of kilometres) is too coarse and not adequate to describe the variability of extreme events at basin scale (Burlando and Rosso, 2002). To bridge the space-time gap between the climate scenarios and the usual scale of the inputs for hydrological prediction models is a fundamental requisite for the evaluation of climate change impacts on water resources. Since models operate a simplification of a complex reality, their results cannot be expected to fit with climate observations. Identifying local climate scenarios for impact analysis implies the definition of more detailed local scenario by downscaling GCMs or RCMs results. Among the output correction methods we consider the statistical approach by Déqué (2007) reported as a ‘Variable correction method' in which the correction of model outputs is obtained by a function build with the observation dataset and operating a quantile-quantile transformation (Q-Q transform). However, in the case of daily precipitation fields the Q-Q transform is not able to correct the temporal property of the model output concerning the dry-wet lacunarity process. An alternative correction method is proposed based on a stochastic description of the arrival-duration-intensity processes in coherence with the Poissonian Rectangular Pulse scheme (PRP) (Eagleson, 1972). In this proposed approach, the Q-Q transform is applied to the PRP variables derived from the daily rainfall datasets. Consequently the corrected PRP parameters are used for the synthetic generation of statistically homogeneous rainfall time series that mimic the persistency of daily observations for the reference period. Then the PRP parameters are forced through the GCM scenarios to generate local scale rainfall records for the 21st century. The statistical parameters characterizing daily storm occurrence, storm intensity and duration needed to apply the PRP scheme are considered among STARDEX collection of extreme indices.
NASA Technical Reports Server (NTRS)
Menga, G.
1975-01-01
An approach, is proposed for the design of approximate, fixed order, discrete time realizations of stochastic processes from the output covariance over a finite time interval, was proposed. No restrictive assumptions are imposed on the process; it can be nonstationary and lead to a high dimension realization. Classes of fixed order models are defined, having the joint covariance matrix of the combined vector of the outputs in the interval of definition greater or equal than the process covariance; (the difference matrix is nonnegative definite). The design is achieved by minimizing, in one of those classes, a measure of the approximation between the model and the process evaluated by the trace of the difference of the respective covariance matrices. Models belonging to these classes have the notable property that, under the same measurement system and estimator structure, the output estimation error covariance matrix computed on the model is an upper bound of the corresponding covariance on the real process. An application of the approach is illustrated by the modeling of random meteorological wind profiles from the statistical analysis of historical data.
Variation in the Mississippi River Plume from Data Synthesis of Model Outputs and MODIS Imagery
NASA Astrophysics Data System (ADS)
Fitzpatrick, C.; Kolker, A.; Chu, P. Y.
2017-12-01
Understanding the Mississippi River (MR) plume's interaction with the open ocean is crucial for understanding many processes in the Gulf of Mexico. Though the Mississippi River and its delta and plume have been studied extensively, recent archives of model products and satellite imagery have allowed us to highlight patterns in plume behavior over the last two decades through large scale data synthesis. Using 8 years of USGS discharge data and Landsat imagery, we identified the spatial extent, geographic patterns, depth, and freshwater concentration of the MR plume across seasons and years. Using 20 years of HYCOM (HYbrid Coordinate Ocean Model) analysis and reanalysis model output, and several years of NGOFS FVCOM model outputs, we mapped the minimum and maximum spatial area of the MR plume, and its varied extent east and west. From the synthesis and analysis of these data, the statistical probability of the MR plume's spatial area and geographical extent were computed. Measurements of the MR plume and its response to river discharge may predict future behavior and provide a path forward to understanding MR plume influence on nearby ecosystems.
Stochastic Short-term High-resolution Prediction of Solar Irradiance and Photovoltaic Power Output
DOE Office of Scientific and Technical Information (OSTI.GOV)
Melin, Alexander M.; Olama, Mohammed M.; Dong, Jin
The increased penetration of solar photovoltaic (PV) energy sources into electric grids has increased the need for accurate modeling and prediction of solar irradiance and power production. Existing modeling and prediction techniques focus on long-term low-resolution prediction over minutes to years. This paper examines the stochastic modeling and short-term high-resolution prediction of solar irradiance and PV power output. We propose a stochastic state-space model to characterize the behaviors of solar irradiance and PV power output. This prediction model is suitable for the development of optimal power controllers for PV sources. A filter-based expectation-maximization and Kalman filtering mechanism is employed tomore » estimate the parameters and states in the state-space model. The mechanism results in a finite dimensional filter which only uses the first and second order statistics. The structure of the scheme contributes to a direct prediction of the solar irradiance and PV power output without any linearization process or simplifying assumptions of the signal’s model. This enables the system to accurately predict small as well as large fluctuations of the solar signals. The mechanism is recursive allowing the solar irradiance and PV power to be predicted online from measurements. The mechanism is tested using solar irradiance and PV power measurement data collected locally in our lab.« less
NASA Astrophysics Data System (ADS)
Albert, Carlo; Ulzega, Simone; Stoop, Ruedi
2016-04-01
Measured time-series of both precipitation and runoff are known to exhibit highly non-trivial statistical properties. For making reliable probabilistic predictions in hydrology, it is therefore desirable to have stochastic models with output distributions that share these properties. When parameters of such models have to be inferred from data, we also need to quantify the associated parametric uncertainty. For non-trivial stochastic models, however, this latter step is typically very demanding, both conceptually and numerically, and always never done in hydrology. Here, we demonstrate that methods developed in statistical physics make a large class of stochastic differential equation (SDE) models amenable to a full-fledged Bayesian parameter inference. For concreteness we demonstrate these methods by means of a simple yet non-trivial toy SDE model. We consider a natural catchment that can be described by a linear reservoir, at the scale of observation. All the neglected processes are assumed to happen at much shorter time-scales and are therefore modeled with a Gaussian white noise term, the standard deviation of which is assumed to scale linearly with the system state (water volume in the catchment). Even for constant input, the outputs of this simple non-linear SDE model show a wealth of desirable statistical properties, such as fat-tailed distributions and long-range correlations. Standard algorithms for Bayesian inference fail, for models of this kind, because their likelihood functions are extremely high-dimensional intractable integrals over all possible model realizations. The use of Kalman filters is illegitimate due to the non-linearity of the model. Particle filters could be used but become increasingly inefficient with growing number of data points. Hamiltonian Monte Carlo algorithms allow us to translate this inference problem to the problem of simulating the dynamics of a statistical mechanics system and give us access to most sophisticated methods that have been developed in the statistical physics community over the last few decades. We demonstrate that such methods, along with automated differentiation algorithms, allow us to perform a full-fledged Bayesian inference, for a large class of SDE models, in a highly efficient and largely automatized manner. Furthermore, our algorithm is highly parallelizable. For our toy model, discretized with a few hundred points, a full Bayesian inference can be performed in a matter of seconds on a standard PC.
Karabatsos, George
2017-02-01
Most of applied statistics involves regression analysis of data. In practice, it is important to specify a regression model that has minimal assumptions which are not violated by data, to ensure that statistical inferences from the model are informative and not misleading. This paper presents a stand-alone and menu-driven software package, Bayesian Regression: Nonparametric and Parametric Models, constructed from MATLAB Compiler. Currently, this package gives the user a choice from 83 Bayesian models for data analysis. They include 47 Bayesian nonparametric (BNP) infinite-mixture regression models; 5 BNP infinite-mixture models for density estimation; and 31 normal random effects models (HLMs), including normal linear models. Each of the 78 regression models handles either a continuous, binary, or ordinal dependent variable, and can handle multi-level (grouped) data. All 83 Bayesian models can handle the analysis of weighted observations (e.g., for meta-analysis), and the analysis of left-censored, right-censored, and/or interval-censored data. Each BNP infinite-mixture model has a mixture distribution assigned one of various BNP prior distributions, including priors defined by either the Dirichlet process, Pitman-Yor process (including the normalized stable process), beta (two-parameter) process, normalized inverse-Gaussian process, geometric weights prior, dependent Dirichlet process, or the dependent infinite-probits prior. The software user can mouse-click to select a Bayesian model and perform data analysis via Markov chain Monte Carlo (MCMC) sampling. After the sampling completes, the software automatically opens text output that reports MCMC-based estimates of the model's posterior distribution and model predictive fit to the data. Additional text and/or graphical output can be generated by mouse-clicking other menu options. This includes output of MCMC convergence analyses, and estimates of the model's posterior predictive distribution, for selected functionals and values of covariates. The software is illustrated through the BNP regression analysis of real data.
Measuring Efficiency and Tradeoffs in Attainment of EEO Goals.
1982-02-01
in FY78 and FY79. i.e., T9tese goals Are based on undifferentiated Civilian Labor Force (CLF) ratios required for reporting by the Equal Employment...Lewis and R.J. Niehaus, "Design and Development of Equal Employment Opportunity Human Resources Planning Models," NPDRC TR79--141 (San Diego: Navy...Approach to Analysis of Tradeoffs Among Household Ptoduction Outputs," American Statistical Association 1979 Proceedings of the Social Statistics Section
NASA Astrophysics Data System (ADS)
Arif, Sajjad; Tanwir Alam, Md; Ansari, Akhter H.; Bilal Naim Shaikh, Mohd; Arif Siddiqui, M.
2018-05-01
The tribological performance of aluminium hybrid composites reinforced with micro SiC (5 wt%) and nano zirconia (0, 3, 6 and 9 wt%) fabricated through powder metallurgy technique were investigated using statistical and artificial neural network (ANN) approach. The influence of zirconia reinforcement, sliding distance and applied load were analyzed with test based on full factorial design of experiments. Analysis of variance (ANOVA) was used to evaluate the percentage contribution of each process parameters on wear loss. ANOVA approach suggested that wear loss be mainly influenced by sliding distance followed by zirconia reinforcement and applied load. Further, a feed forward back propagation neural network was applied on input/output date for predicting and analyzing the wear behaviour of fabricated composite. A very close correlation between experimental and ANN output were achieved by implementing the model. Finally, ANN model was effectively used to find the influence of various control factors on wear behaviour of hybrid composites.
Improvement of short-term numerical wind predictions
NASA Astrophysics Data System (ADS)
Bedard, Joel
Geophysic Model Output Statistics (GMOS) are developed to optimize the use of NWP for complex sites. GMOS differs from other MOS that are widely used by meteorological centers in the following aspects: it takes into account the surrounding geophysical parameters such as surface roughness, terrain height, etc., along with wind direction; it can be directly applied without any training, although training will further improve the results. The GMOS was applied to improve the Environment Canada GEM-LAM 2.5km forecasts at North Cape (PEI, Canada): It improves the predictions RMSE by 25-30% for all time horizons and almost all meteorological conditions; the topographic signature of the forecast error due to insufficient grid refinement is eliminated and the NWP combined with GMOS outperform the persistence from a 2h horizon, instead of 4h without GMOS. Finally, GMOS was applied at another site (Bouctouche, NB, Canada): similar improvements were observed, thus showing its general applicability. Keywords: wind energy, wind power forecast, numerical weather prediction, complex sites, model output statistics
A statistical approach to nuclear fuel design and performance
NASA Astrophysics Data System (ADS)
Cunning, Travis Andrew
As CANDU fuel failures can have significant economic and operational consequences on the Canadian nuclear power industry, it is essential that factors impacting fuel performance are adequately understood. Current industrial practice relies on deterministic safety analysis and the highly conservative "limit of operating envelope" approach, where all parameters are assumed to be at their limits simultaneously. This results in a conservative prediction of event consequences with little consideration given to the high quality and precision of current manufacturing processes. This study employs a novel approach to the prediction of CANDU fuel reliability. Probability distributions are fitted to actual fuel manufacturing datasets provided by Cameco Fuel Manufacturing, Inc. They are used to form input for two industry-standard fuel performance codes: ELESTRES for the steady-state case and ELOCA for the transient case---a hypothesized 80% reactor outlet header break loss of coolant accident. Using a Monte Carlo technique for input generation, 105 independent trials are conducted and probability distributions are fitted to key model output quantities. Comparing model output against recognized industrial acceptance criteria, no fuel failures are predicted for either case. Output distributions are well removed from failure limit values, implying that margin exists in current fuel manufacturing and design. To validate the results and attempt to reduce the simulation burden of the methodology, two dimensional reduction methods are assessed. Using just 36 trials, both methods are able to produce output distributions that agree strongly with those obtained via the brute-force Monte Carlo method, often to a relative discrepancy of less than 0.3% when predicting the first statistical moment, and a relative discrepancy of less than 5% when predicting the second statistical moment. In terms of global sensitivity, pellet density proves to have the greatest impact on fuel performance, with an average sensitivity index of 48.93% on key output quantities. Pellet grain size and dish depth are also significant contributors, at 31.53% and 13.46%, respectively. A traditional limit of operating envelope case is also evaluated. This case produces output values that exceed the maximum values observed during the 105 Monte Carlo trials for all output quantities of interest. In many cases the difference between the predictions of the two methods is very prominent, and the highly conservative nature of the deterministic approach is demonstrated. A reliability analysis of CANDU fuel manufacturing parametric data, specifically pertaining to the quantification of fuel performance margins, has not been conducted previously. Key Words: CANDU, nuclear fuel, Cameco, fuel manufacturing, fuel modelling, fuel performance, fuel reliability, ELESTRES, ELOCA, dimensional reduction methods, global sensitivity analysis, deterministic safety analysis, probabilistic safety analysis.
NASA Technical Reports Server (NTRS)
Davis, Brynmor; Kim, Edward; Piepmeier, Jeffrey; Hildebrand, Peter H. (Technical Monitor)
2001-01-01
Many new Earth remote-sensing instruments are embracing both the advantages and added complexity that result from interferometric or fully polarimetric operation. To increase instrument understanding and functionality a model of the signals these instruments measure is presented. A stochastic model is used as it recognizes the non-deterministic nature of any real-world measurements while also providing a tractable mathematical framework. A stationary, Gaussian-distributed model structure is proposed. Temporal and spectral correlation measures provide a statistical description of the physical properties of coherence and polarization-state. From this relationship the model is mathematically defined. The model is shown to be unique for any set of physical parameters. A method of realizing the model (necessary for applications such as synthetic calibration-signal generation) is given and computer simulation results are presented. The signals are constructed using the output of a multi-input multi-output linear filter system, driven with white noise.
Accessing National Water Model Output for Research and Application: An R package
NASA Astrophysics Data System (ADS)
Johnson, M.; Coll, J.
2017-12-01
With the National Water Model becoming operational in August of 2016, the need for a open source way to translate a huge amount of data into actionable intelligence and innovative research is apparent. The first step in doing this is to provide a package for accessing, managing, and writing data in a way that is both interpretable, portable, and useful to the end user in both the R environment, and other applications. This can be as simple as subsetting the outputs and writing to a CSV, but can also include converting discharge output to more meaningful statistics and measurements, and methods to visualize data in ways that are meaningful to a wider audience. The NWM R package presented here aims to serve this need through a suite of functions fit for researchers, first responders, and average citizens. A vignette of how this package can be applied to real-time flood mapping will be demonstrated.
NASA Astrophysics Data System (ADS)
Wetterhall, F.; Cloke, H. L.; He, Y.; Freer, J.; Pappenberger, F.
2012-04-01
Evidence provided by modelled assessments of climate change impact on flooding is fundamental to water resource and flood risk decision making. Impact models usually rely on climate projections from Global and Regional Climate Models, and there is no doubt that these provide a useful assessment of future climate change. However, cascading ensembles of climate projections into impact models is not straightforward because of problems of coarse resolution in Global and Regional Climate Models (GCM/RCM) and the deficiencies in modelling high-intensity precipitation events. Thus decisions must be made on how to appropriately pre-process the meteorological variables from GCM/RCMs, such as selection of downscaling methods and application of Model Output Statistics (MOS). In this paper a grand ensemble of projections from several GCM/RCM are used to drive a hydrological model and analyse the resulting future flood projections for the Upper Severn, UK. The impact and implications of applying MOS techniques to precipitation as well as hydrological model parameter uncertainty is taken into account. The resultant grand ensemble of future river discharge projections from the RCM/GCM-hydrological model chain is evaluated against a response surface technique combined with a perturbed physics experiment creating a probabilisic ensemble climate model outputs. The ensemble distribution of results show that future risk of flooding in the Upper Severn increases compared to present conditions, however, the study highlights that the uncertainties are large and that strong assumptions were made in using Model Output Statistics to produce the estimates of future discharge. The importance of analysing on a seasonal basis rather than just annual is highlighted. The inability of the RCMs (and GCMs) to produce realistic precipitation patterns, even in present conditions, is a major caveat of local climate impact studies on flooding, and this should be a focus for future development.
Prediction of the dollar to the ruble rate. A system-theoretic approach
NASA Astrophysics Data System (ADS)
Borodachev, Sergey M.
2017-07-01
Proposed a simple state-space model of dollar rate formation based on changes in oil prices and some mechanisms of money transfer between monetary and stock markets. Comparison of predictions by means of input-output model and state-space model is made. It concludes that with proper use of statistical data (Kalman filter) the second approach provides more adequate predictions of the dollar rate.
Robust DEA under discrete uncertain data: a case study of Iranian electricity distribution companies
NASA Astrophysics Data System (ADS)
Hafezalkotob, Ashkan; Haji-Sami, Elham; Omrani, Hashem
2015-06-01
Crisp input and output data are fundamentally indispensable in traditional data envelopment analysis (DEA). However, the real-world problems often deal with imprecise or ambiguous data. In this paper, we propose a novel robust data envelopment model (RDEA) to investigate the efficiencies of decision-making units (DMU) when there are discrete uncertain input and output data. The method is based upon the discrete robust optimization approaches proposed by Mulvey et al. (1995) that utilizes probable scenarios to capture the effect of ambiguous data in the case study. Our primary concern in this research is evaluating electricity distribution companies under uncertainty about input/output data. To illustrate the ability of proposed model, a numerical example of 38 Iranian electricity distribution companies is investigated. There are a large amount ambiguous data about these companies. Some electricity distribution companies may not report clear and real statistics to the government. Thus, it is needed to utilize a prominent approach to deal with this uncertainty. The results reveal that the RDEA model is suitable and reliable for target setting based on decision makers (DM's) preferences when there are uncertain input/output data.
NASA Astrophysics Data System (ADS)
Langousis, Andreas; Mamalakis, Antonis; Deidda, Roberto; Marrocu, Marino
2015-04-01
To improve the level skill of Global Climate Models (GCMs) and Regional Climate Models (RCMs) in reproducing the statistics of rainfall at a basin level and at hydrologically relevant temporal scales (e.g. daily), two types of statistical approaches have been suggested. One is the statistical correction of climate model rainfall outputs using historical series of precipitation. The other is the use of stochastic models of rainfall to conditionally simulate precipitation series, based on large-scale atmospheric predictors produced by climate models (e.g. geopotential height, relative vorticity, divergence, mean sea level pressure). The latter approach, usually referred to as statistical rainfall downscaling, aims at reproducing the statistical character of rainfall, while accounting for the effects of large-scale atmospheric circulation (and, therefore, climate forcing) on rainfall statistics. While promising, statistical rainfall downscaling has not attracted much attention in recent years, since the suggested approaches involved complex (i.e. subjective or computationally intense) identification procedures of the local weather, in addition to demonstrating limited success in reproducing several statistical features of rainfall, such as seasonal variations, the distributions of dry and wet spell lengths, the distribution of the mean rainfall intensity inside wet periods, and the distribution of rainfall extremes. In an effort to remedy those shortcomings, Langousis and Kaleris (2014) developed a statistical framework for simulation of daily rainfall intensities conditional on upper air variables, which accurately reproduces the statistical character of rainfall at multiple time-scales. Here, we study the relative performance of: a) quantile-quantile (Q-Q) correction of climate model rainfall products, and b) the statistical downscaling scheme of Langousis and Kaleris (2014), in reproducing the statistical structure of rainfall, as well as rainfall extremes, at a regional level. This is done for an intermediate-sized catchment in Italy, i.e. the Flumendosa catchment, using climate model rainfall and atmospheric data from the ENSEMBLES project (http://ensembleseu.metoffice.com). In doing so, we split the historical rainfall record of mean areal precipitation (MAP) in 15-year calibration and 45-year validation periods, and compare the historical rainfall statistics to those obtained from: a) Q-Q corrected climate model rainfall products, and b) synthetic rainfall series generated by the suggested downscaling scheme. To our knowledge, this is the first time that climate model rainfall and statistically downscaled precipitation are compared to catchment-averaged MAP at a daily resolution. The obtained results are promising, since the proposed downscaling scheme is more accurate and robust in reproducing a number of historical rainfall statistics, independent of the climate model used and the length of the calibration period. This is particularly the case for the yearly rainfall maxima, where direct statistical correction of climate model rainfall outputs shows increased sensitivity to the length of the calibration period and the climate model used. The robustness of the suggested downscaling scheme in modeling rainfall extremes at a daily resolution, is a notable feature that can effectively be used to assess hydrologic risk at a regional level under changing climatic conditions. Acknowledgments The research project is implemented within the framework of the Action «Supporting Postdoctoral Researchers» of the Operational Program "Education and Lifelong Learning" (Action's Beneficiary: General Secretariat for Research and Technology), and is co-financed by the European Social Fund (ESF) and the Greek State. CRS4 highly acknowledges the contribution of the Sardinian regional authorities.
RESTSIM: A Simulation Model That Highlights Decision Making under Conditions of Uncertainty.
ERIC Educational Resources Information Center
Zinkhan, George M.; Taylor, James R.
1983-01-01
Describes RESTSIM, an interactive computer simulation program for graduate and upper-level undergraduate management, marketing, and retailing courses, which introduces naive users to simulation as a decision support technique, and provides a vehicle for studying various statistical procedures for evaluating simulation output. (MBR)
Evaluation of Statistical Downscaling Skill at Reproducing Extreme Events
NASA Astrophysics Data System (ADS)
McGinnis, S. A.; Tye, M. R.; Nychka, D. W.; Mearns, L. O.
2015-12-01
Climate model outputs usually have much coarser spatial resolution than is needed by impacts models. Although higher resolution can be achieved using regional climate models for dynamical downscaling, further downscaling is often required. The final resolution gap is often closed with a combination of spatial interpolation and bias correction, which constitutes a form of statistical downscaling. We use this technique to downscale regional climate model data and evaluate its skill in reproducing extreme events. We downscale output from the North American Regional Climate Change Assessment Program (NARCCAP) dataset from its native 50-km spatial resolution to the 4-km resolution of University of Idaho's METDATA gridded surface meterological dataset, which derives from the PRISM and NLDAS-2 observational datasets. We operate on the major variables used in impacts analysis at a daily timescale: daily minimum and maximum temperature, precipitation, humidity, pressure, solar radiation, and winds. To interpolate the data, we use the patch recovery method from the Earth System Modeling Framework (ESMF) regridding package. We then bias correct the data using Kernel Density Distribution Mapping (KDDM), which has been shown to exhibit superior overall performance across multiple metrics. Finally, we evaluate the skill of this technique in reproducing extreme events by comparing raw and downscaled output with meterological station data in different bioclimatic regions according to the the skill scores defined by Perkins et al in 2013 for evaluation of AR4 climate models. We also investigate techniques for improving bias correction of values in the tails of the distributions. These techniques include binned kernel density estimation, logspline kernel density estimation, and transfer functions constructed by fitting the tails with a generalized pareto distribution.
Identification of Mobile Phones Using the Built-In Magnetometers Stimulated by Motion Patterns.
Baldini, Gianmarco; Dimc, Franc; Kamnik, Roman; Steri, Gary; Giuliani, Raimondo; Gentile, Claudio
2017-04-06
We investigate the identification of mobile phones through their built-in magnetometers. These electronic components have started to be widely deployed in mass market phones in recent years, and they can be exploited to uniquely identify mobile phones due their physical differences, which appear in the digital output generated by them. This is similar to approaches reported in the literature for other components of the mobile phone, including the digital camera, the microphones or their RF transmission components. In this paper, the identification is performed through an inexpensive device made up of a platform that rotates the mobile phone under test and a fixed magnet positioned on the edge of the rotating platform. When the mobile phone passes in front of the fixed magnet, the built-in magnetometer is stimulated, and its digital output is recorded and analyzed. For each mobile phone, the experiment is repeated over six different days to ensure consistency in the results. A total of 10 phones of different brands and models or of the same model were used in our experiment. The digital output from the magnetometers is synchronized and correlated, and statistical features are extracted to generate a fingerprint of the built-in magnetometer and, consequently, of the mobile phone. A SVM machine learning algorithm is used to classify the mobile phones on the basis of the extracted statistical features. Our results show that inter-model classification (i.e., different models and brands classification) is possible with great accuracy, but intra-model (i.e., phones with different serial numbers and same model) classification is more challenging, the resulting accuracy being just slightly above random choice.
Identification of Mobile Phones Using the Built-In Magnetometers Stimulated by Motion Patterns
Baldini, Gianmarco; Dimc, Franc; Kamnik, Roman; Steri, Gary; Giuliani, Raimondo; Gentile, Claudio
2017-01-01
We investigate the identification of mobile phones through their built-in magnetometers. These electronic components have started to be widely deployed in mass market phones in recent years, and they can be exploited to uniquely identify mobile phones due their physical differences, which appear in the digital output generated by them. This is similar to approaches reported in the literature for other components of the mobile phone, including the digital camera, the microphones or their RF transmission components. In this paper, the identification is performed through an inexpensive device made up of a platform that rotates the mobile phone under test and a fixed magnet positioned on the edge of the rotating platform. When the mobile phone passes in front of the fixed magnet, the built-in magnetometer is stimulated, and its digital output is recorded and analyzed. For each mobile phone, the experiment is repeated over six different days to ensure consistency in the results. A total of 10 phones of different brands and models or of the same model were used in our experiment. The digital output from the magnetometers is synchronized and correlated, and statistical features are extracted to generate a fingerprint of the built-in magnetometer and, consequently, of the mobile phone. A SVM machine learning algorithm is used to classify the mobile phones on the basis of the extracted statistical features. Our results show that inter-model classification (i.e., different models and brands classification) is possible with great accuracy, but intra-model (i.e., phones with different serial numbers and same model) classification is more challenging, the resulting accuracy being just slightly above random choice. PMID:28383482
ERIC Educational Resources Information Center
Sullivan, Sharon G.; Barr, Catherine; Grabois, Andrew
2002-01-01
Includes six articles that report on prices of U.S. and foreign published materials; book title output and average prices; book sales statistics; book exports and imports; book outlets in the U.S. and Canada; and review media statistics. (LRW)
NASA Astrophysics Data System (ADS)
Machguth, H.; Paul, F.; Kotlarski, S.; Hoelzle, M.
2009-04-01
Climate model output has been applied in several studies on glacier mass balance calculation. Hereby, computation of mass balance has mostly been performed at the native resolution of the climate model output or data from individual cells were selected and statistically downscaled. Little attention has been given to the issue of downscaling entire fields of climate model output to a resolution fine enough to compute glacier mass balance in rugged high-mountain terrain. In this study we explore the use of gridded output from a regional climate model (RCM) to drive a distributed mass balance model for the perimeter of the Swiss Alps and the time frame 1979-2003. Our focus lies on the development and testing of downscaling and validation methods. The mass balance model runs at daily steps and 100 m spatial resolution while the RCM REMO provides daily grids (approx. 18 km resolution) of dynamically downscaled re-analysis data. Interpolation techniques and sub-grid parametrizations are combined to bridge the gap in spatial resolution and to obtain daily input fields of air temperature, global radiation and precipitation. The meteorological input fields are compared to measurements at 14 high-elevation weather stations. Computed mass balances are compared to various sets of direct measurements, including stake readings and mass balances for entire glaciers. The validation procedure is performed separately for annual, winter and summer balances. Time series of mass balances for entire glaciers obtained from the model run agree well with observed time series. On the one hand, summer melt measured at stakes on several glaciers is well reproduced by the model, on the other hand, observed accumulation is either over- or underestimated. It is shown that these shifts are systematic and correlated to regional biases in the meteorological input fields. We conclude that the gap in spatial resolution is not a large drawback, while biases in RCM output are a major limitation to model performance. The development and testing of methods to reduce regionally variable biases in entire fields of RCM output should be a focus of pursuing studies.
NASA Astrophysics Data System (ADS)
Drobny, Jon; Curreli, Davide; Ruzic, David; Lasa, Ane; Green, David; Canik, John; Younkin, Tim; Blondel, Sophie; Wirth, Brian
2017-10-01
Surface roughness greatly impacts material erosion, and thus plays an important role in Plasma-Surface Interactions. Developing strategies for efficiently introducing rough surfaces into ion-solid interaction codes will be an important step towards whole-device modeling of plasma devices and future fusion reactors such as ITER. Fractal TRIDYN (F-TRIDYN) is an upgraded version of the Monte Carlo, BCA program TRIDYN developed for this purpose that includes an explicit fractal model of surface roughness and extended input and output options for file-based code coupling. Code coupling with both plasma and material codes has been achieved and allows for multi-scale, whole-device modeling of plasma experiments. These code coupling results will be presented. F-TRIDYN has been further upgraded with an alternative, statistical model of surface roughness. The statistical model is significantly faster than and compares favorably to the fractal model. Additionally, the statistical model compares well to alternative computational surface roughness models and experiments. Theoretical links between the fractal and statistical models are made, and further connections to experimental measurements of surface roughness are explored. This work was supported by the PSI-SciDAC Project funded by the U.S. Department of Energy through contract DOE-DE-SC0008658.
NASA Astrophysics Data System (ADS)
Canli, Ekrem; Thiebes, Benni; Petschko, Helene; Glade, Thomas
2015-04-01
By now there is a broad consensus that due to human-induced global change the frequency and magnitude of heavy precipitation events is expected to increase in certain parts of the world. Given the fact, that rainfall serves as the most common triggering agent for landslide initiation, also an increased landside activity can be expected there. Landslide occurrence is a globally spread phenomenon that clearly needs to be handled. The present and well known problems in modelling landslide susceptibility and hazard give uncertain results in the prediction. This includes the lack of a universal applicable modelling solution for adequately assessing landslide susceptibility (which can be seen as the relative indication of the spatial probability of landslide initiation). Generally speaking, there are three major approaches for performing landslide susceptibility analysis: heuristic, statistical and deterministic models, all with different assumptions, its distinctive data requirements and differently interpretable outcomes. Still, detailed comparison of resulting landslide susceptibility maps are rare. In this presentation, the susceptibility modelling outputs of a deterministic model (Stability INdex MAPping - SINMAP) and a statistical modelling approach (generalized additive model - GAM) are compared. SINMAP is an infinite slope stability model which requires parameterization of soil mechanical parameters. Modelling with the generalized additive model, which represents a non-linear extension of a generalized linear model, requires a high quality landslide inventory that serves as the dependent variable in the statistical approach. Both methods rely on topographical data derived from the DTM. The comparison has been carried out in a study area located in the district of Waidhofen/Ybbs in Lower Austria. For the whole district (ca. 132 km²), 1063 landslides have been mapped and partially used within the analysis and the validation of the model outputs. The respective susceptibility maps have been reclassified to contain three susceptibility classes each. The comparison of the susceptibility maps was performed on a grid cell basis. A match of the maps was observed for grid cells located in the same susceptibility class. In contrast, a mismatch or deviation was observed for locations with different assigned susceptibility classes (up to two classes' difference). Although the modelling approaches differ significantly, more than 70% of the pixels reveal a match in the same susceptibility class. A mismatch by two classes' difference occurred in less than 2% of all pixels. Although the result looks promising and strengthens the confidence in the susceptibility zonation for this area, some of the general drawbacks related to the respective approaches still have to be addressed in further detail. Future work is heading towards an integration of probabilistic aspects into deterministic modelling.
Hydrologic extremes - an intercomparison of multiple gridded statistical downscaling methods
NASA Astrophysics Data System (ADS)
Werner, A. T.; Cannon, A. J.
2015-06-01
Gridded statistical downscaling methods are the main means of preparing climate model data to drive distributed hydrological models. Past work on the validation of climate downscaling methods has focused on temperature and precipitation, with less attention paid to the ultimate outputs from hydrological models. Also, as attention shifts towards projections of extreme events, downscaling comparisons now commonly assess methods in terms of climate extremes, but hydrologic extremes are less well explored. Here, we test the ability of gridded downscaling models to replicate historical properties of climate and hydrologic extremes, as measured in terms of temporal sequencing (i.e., correlation tests) and distributional properties (i.e., tests for equality of probability distributions). Outputs from seven downscaling methods - bias correction constructed analogues (BCCA), double BCCA (DBCCA), BCCA with quantile mapping reordering (BCCAQ), bias correction spatial disaggregation (BCSD), BCSD using minimum/maximum temperature (BCSDX), climate imprint delta method (CI), and bias corrected CI (BCCI) - are used to drive the Variable Infiltration Capacity (VIC) model over the snow-dominated Peace River basin, British Columbia. Outputs are tested using split-sample validation on 26 climate extremes indices (ClimDEX) and two hydrologic extremes indices (3 day peak flow and 7 day peak flow). To characterize observational uncertainty, four atmospheric reanalyses are used as climate model surrogates and two gridded observational datasets are used as downscaling target data. The skill of the downscaling methods generally depended on reanalysis and gridded observational dataset. However, CI failed to reproduce the distribution and BCSD and BCSDX the timing of winter 7 day low flow events, regardless of reanalysis or observational dataset. Overall, DBCCA passed the greatest number of tests for the ClimDEX indices, while BCCAQ, which is designed to more accurately resolve event-scale spatial gradients, passed the greatest number of tests for hydrologic extremes. Non-stationarity in the observational/reanalysis datasets complicated the evaluation of downscaling performance. Comparing temporal homogeneity and trends in climate indices and hydrological model outputs calculated from downscaled reanalyses and gridded observations was useful for diagnosing the reliability of the various historical datasets. We recommend that such analyses be conducted before such data are used to construct future hydro-climatic change scenarios.
Hydrologic extremes - an intercomparison of multiple gridded statistical downscaling methods
NASA Astrophysics Data System (ADS)
Werner, Arelia T.; Cannon, Alex J.
2016-04-01
Gridded statistical downscaling methods are the main means of preparing climate model data to drive distributed hydrological models. Past work on the validation of climate downscaling methods has focused on temperature and precipitation, with less attention paid to the ultimate outputs from hydrological models. Also, as attention shifts towards projections of extreme events, downscaling comparisons now commonly assess methods in terms of climate extremes, but hydrologic extremes are less well explored. Here, we test the ability of gridded downscaling models to replicate historical properties of climate and hydrologic extremes, as measured in terms of temporal sequencing (i.e. correlation tests) and distributional properties (i.e. tests for equality of probability distributions). Outputs from seven downscaling methods - bias correction constructed analogues (BCCA), double BCCA (DBCCA), BCCA with quantile mapping reordering (BCCAQ), bias correction spatial disaggregation (BCSD), BCSD using minimum/maximum temperature (BCSDX), the climate imprint delta method (CI), and bias corrected CI (BCCI) - are used to drive the Variable Infiltration Capacity (VIC) model over the snow-dominated Peace River basin, British Columbia. Outputs are tested using split-sample validation on 26 climate extremes indices (ClimDEX) and two hydrologic extremes indices (3-day peak flow and 7-day peak flow). To characterize observational uncertainty, four atmospheric reanalyses are used as climate model surrogates and two gridded observational data sets are used as downscaling target data. The skill of the downscaling methods generally depended on reanalysis and gridded observational data set. However, CI failed to reproduce the distribution and BCSD and BCSDX the timing of winter 7-day low-flow events, regardless of reanalysis or observational data set. Overall, DBCCA passed the greatest number of tests for the ClimDEX indices, while BCCAQ, which is designed to more accurately resolve event-scale spatial gradients, passed the greatest number of tests for hydrologic extremes. Non-stationarity in the observational/reanalysis data sets complicated the evaluation of downscaling performance. Comparing temporal homogeneity and trends in climate indices and hydrological model outputs calculated from downscaled reanalyses and gridded observations was useful for diagnosing the reliability of the various historical data sets. We recommend that such analyses be conducted before such data are used to construct future hydro-climatic change scenarios.
The Binomial Model in Fluctuation Analysis of Quantal Neurotransmitter Release
Quastel, D. M. J.
1997-01-01
The mathematics of the binomial model for quantal neurotransmitter release is considered in general terms, to explore what information might be extractable from statistical aspects of data. For an array of N statistically independent release sites, each with a release probability p, the compound binomial always pertains, with , p′ ≡ 1 - var(m)/ (1 + cvp2) and n′ ≡ 2. Unless n′ is invariant with ambient conditions or stimulation paradigms, the simple binomial (cvp = 0) is untenable and n′ is neither N nor the number of “active” sites or sites with a quantum available. At each site p = popA, where po is the output probability if a site is “eligible” or “filled” despite previous quantal discharge, and pA (eligibility probability) depends at least on the replenishment rate, po, and interstimulus time. Assuming stochastic replenishment, a simple algorithm allows calculation of the full statistical composition of outputs for any hypothetical combinations of po's and refill rates, for any stimulation paradigm and spontaneous release. A rise in n′ (reduced cvp) tends to occur whenever po varies widely between sites, with a raised stimulation frequency or factors tending to increase po's. Unlike
Assessing privacy risks in population health publications using a checklist-based approach.
O'Keefe, Christine M; Ickowicz, Adrien; Churches, Tim; Westcott, Mark; O'Sullivan, Maree; Khan, Atikur
2017-11-10
Recent growth in the number of population health researchers accessing detailed datasets, either on their own computers or through virtual data centers, has the potential to increase privacy risks. In response, a checklist for identifying and reducing privacy risks in population health analysis outputs has been proposed for use by researchers themselves. In this study we explore the usability and reliability of such an approach by investigating whether different users identify the same privacy risks on applying the checklist to a sample of publications. The checklist was applied to a sample of 100 academic population health publications distributed among 5 readers. Cohen's κ was used to measure interrater agreement. Of the 566 instances of statistical output types found in the 100 publications, the most frequently occurring were counts, summary statistics, plots, and model outputs. Application of the checklist identified 128 outputs (22.6%) with potential privacy concerns. Most of these were associated with the reporting of small counts. Among these identified outputs, the readers found no substantial actual privacy concerns when context was taken into account. Interrater agreement for identifying potential privacy concerns was generally good. This study has demonstrated that a checklist can be a reliable tool to assist researchers with anonymizing analysis outputs in population health research. This further suggests that such an approach may have the potential to be developed into a broadly applicable standard providing consistent confidentiality protection across multiple analyses of the same data. © The Author 2017. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Book Trade Research and Statistics.
ERIC Educational Resources Information Center
Bosch, Stephen; Ink, Gary; Greco, Albert N.
1999-01-01
Presents: "Prices of United States and Foreign Published Materials"; "Book Title Output and Average Prices"; "Book Sales Statistics, 1998"; "United States Book Exports and Imports: 1998"; "International Book Title Output: 1990-96"; "Number of Book Outlets in the United States and Canada";…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bessac, Julie; Constantinescu, Emil; Anitescu, Mihai
We propose a statistical space-time model for predicting atmospheric wind speed based on deterministic numerical weather predictions and historical measurements. We consider a Gaussian multivariate space-time framework that combines multiple sources of past physical model outputs and measurements in order to produce a probabilistic wind speed forecast within the prediction window. We illustrate this strategy on wind speed forecasts during several months in 2012 for a region near the Great Lakes in the United States. The results show that the prediction is improved in the mean-squared sense relative to the numerical forecasts as well as in probabilistic scores. Moreover, themore » samples are shown to produce realistic wind scenarios based on sample spectra and space-time correlation structure.« less
Bessac, Julie; Constantinescu, Emil; Anitescu, Mihai
2018-03-01
We propose a statistical space-time model for predicting atmospheric wind speed based on deterministic numerical weather predictions and historical measurements. We consider a Gaussian multivariate space-time framework that combines multiple sources of past physical model outputs and measurements in order to produce a probabilistic wind speed forecast within the prediction window. We illustrate this strategy on wind speed forecasts during several months in 2012 for a region near the Great Lakes in the United States. The results show that the prediction is improved in the mean-squared sense relative to the numerical forecasts as well as in probabilistic scores. Moreover, themore » samples are shown to produce realistic wind scenarios based on sample spectra and space-time correlation structure.« less
Two-dimensional signal processing with application to image restoration
NASA Technical Reports Server (NTRS)
Assefi, T.
1974-01-01
A recursive technique for modeling and estimating a two-dimensional signal contaminated by noise is presented. A two-dimensional signal is assumed to be an undistorted picture, where the noise introduces the distortion. Both the signal and the noise are assumed to be wide-sense stationary processes with known statistics. Thus, to estimate the two-dimensional signal is to enhance the picture. The picture representing the two-dimensional signal is converted to one dimension by scanning the image horizontally one line at a time. The scanner output becomes a nonstationary random process due to the periodic nature of the scanner operation. Procedures to obtain a dynamical model corresponding to the autocorrelation function of the scanner output are derived. Utilizing the model, a discrete Kalman estimator is designed to enhance the image.
NASA Astrophysics Data System (ADS)
Sulis, M.; Paniconi, C.; Marrocu, M.; Huard, D.; Chaumont, D.
2012-12-01
General circulation models (GCMs) are the primary instruments for obtaining projections of future global climate change. Outputs from GCMs, aided by dynamical and/or statistical downscaling techniques, have long been used to simulate changes in regional climate systems over wide spatiotemporal scales. Numerous studies have acknowledged the disagreements between the various GCMs and between the different downscaling methods designed to compensate for the mismatch between climate model output and the spatial scale at which hydrological models are applied. Very little is known, however, about the importance of these differences once they have been input or assimilated by a nonlinear hydrological model. This issue is investigated here at the catchment scale using a process-based model of integrated surface and subsurface hydrologic response driven by outputs from 12 members of a multimodel climate ensemble. The data set consists of daily values of precipitation and min/max temperatures obtained by combining four regional climate models and five GCMs. The regional scenarios were downscaled using a quantile scaling bias-correction technique. The hydrologic response was simulated for the 690 km2des Anglais catchment in southwestern Quebec, Canada. The results show that different hydrological components (river discharge, aquifer recharge, and soil moisture storage) respond differently to precipitation and temperature anomalies in the multimodel climate output, with greater variability for annual discharge compared to recharge and soil moisture storage. We also find that runoff generation and extreme event-driven peak hydrograph flows are highly sensitive to any uncertainty in climate data. Finally, the results show the significant impact of changing sequences of rainy days on groundwater recharge fluxes and the influence of longer dry spells in modifying soil moisture spatial variability.
NASA Astrophysics Data System (ADS)
Jiang, L.
2017-12-01
Climate change is considered to be one of the greatest environmental threats. Global climate models (GCMs) are the primary tool used for studying climate change. However, GCMs are limited because of their coarse spatial resolution and inability to resolve important sub-grid scale features such as terrain and clouds. Statistical downscaling methods can be used to downscale large-scale variables to local-scale. In this study, we assess the applicability of the Statistical Downscaling Model (SDSM) in downscaling the outputs from Beijing Normal University Earth System Model (BNU-ESM). The study focus on the the Loess Plateau, China, and the variables for downscaling include daily mean temperature (TMEAN), maximum temperature (TMAX) and minimum temperature (TMIN). The results show that SDSM performs well for these three climatic variables on the Loess Plateau. After downscaling, the root mean square errors for TMEAN, TMAX, TMIN for BNU-ESM were reduced by 70.9%, 75.1%, and 67.2%, respectively. All the rates of change in TMEAN, TMAX and TMIN during the 21st century decreased after SDSM downscaling. We also show that SDSM can effectively reduce uncertainty, compared with the raw model outputs. TMEAN uncertainty was reduced by 27.1%, 26.8%, and 16.3% for the future scenarios of RCP 2.6, RCP 4.5 and RCP 8.5, respectively. The corresponding reductions in uncertainty were 23.6%, 30.7%, and 18.7% for TMAX; 37.6%, 31.8%, and 23.2% for TMIN.
Efficiency measurement and the operationalization of hospital production.
Magnussen, J
1996-04-01
To discuss the usefulness of efficiency measures as instruments of monitoring and resource allocation by analyzing their invariance to changes in the operationalization of hospital production. Norwegian hospitals over the three-year period 1989-1991. Efficiency is measured using Data Envelopment Analysis (DEA). The distribution of efficiency and the ranking of hospitals is compared across models using various distribution-free tests. Input and output data are collected by the Norwegian Central Bureau of Statistics. The distribution of efficiency is found to be unaffected by changes in the specification of hospital output. Both the ranking of hospitals and the scale properties of the technology, however, are found to depend on the choice of output specification. Extreme care should be taken before resource allocation is based on DEA-type efficiency measures alone. Both the identification of efficient and inefficient hospitals and the cardinal measure of inefficiency will depend on the specification of output. Since the scale properties of the technology also vary with the specification of output, the search for an optimal hospital size may be futile.
NASA Astrophysics Data System (ADS)
ElSaadani, M.; Quintero, F.; Goska, R.; Krajewski, W. F.; Lahmers, T.; Small, S.; Gochis, D. J.
2015-12-01
This study examines the performance of different Hydrologic models in estimating peak flows over the state of Iowa. In this study I will compare the output of the Iowa Flood Center (IFC) hydrologic model and WRF-Hydro (NFIE configuration) to the observed flows at the USGS stream gauges. During the National Flood Interoperability Experiment I explored the performance of WRF-Hydro over the state of Iowa using different rainfall products and the resulting hydrographs showed a "flashy" behavior of the model output due to lack of calibration and bad initial flows due to short model spin period. I would like to expand this study by including a second well established hydrologic model and include more rain gauge vs. radar rainfall direct comparisons. The IFC model is expected to outperform WRF-Hydro's out of the box results, however, I will test different calibration options for both the Noah-MP land surface model and RAPID, which is the routing component of the NFIE-Hydro configuration, to see if this will improve the model results. This study will explore the statistical structure of model output uncertainties across scales (as a function of drainage areas and/or stream orders). I will also evaluate the performance of different radar-based Quantitative Precipitation Estimation (QPE) products (e.g. Stage IV, MRMS and IFC's NEXRAD based radar rainfall product. Different basins will be evaluated in this study and they will be selected based on size, amount of rainfall received over the basin area and location. Basin location will be an important factor in this study due to our prior knowledge of the performance of different NEXRAD radars that cover the region, this will help observe the effect of rainfall biases on stream flows. Another possible addition to this study is to apply controlled spatial error fields to rainfall inputs and observer the propagation of these errors through the stream network.
Emulation for probabilistic weather forecasting
NASA Astrophysics Data System (ADS)
Cornford, Dan; Barillec, Remi
2010-05-01
Numerical weather prediction models are typically very expensive to run due to their complexity and resolution. Characterising the sensitivity of the model to its initial condition and/or to its parameters requires numerous runs of the model, which is impractical for all but the simplest models. To produce probabilistic forecasts requires knowledge of the distribution of the model outputs, given the distribution over the inputs, where the inputs include the initial conditions, boundary conditions and model parameters. Such uncertainty analysis for complex weather prediction models seems a long way off, given current computing power, with ensembles providing only a partial answer. One possible way forward that we develop in this work is the use of statistical emulators. Emulators provide an efficient statistical approximation to the model (or simulator) while quantifying the uncertainty introduced. In the emulator framework, a Gaussian process is fitted to the simulator response as a function of the simulator inputs using some training data. The emulator is essentially an interpolator of the simulator output and the response in unobserved areas is dictated by the choice of covariance structure and parameters in the Gaussian process. Suitable parameters are inferred from the data in a maximum likelihood, or Bayesian framework. Once trained, the emulator allows operations such as sensitivity analysis or uncertainty analysis to be performed at a much lower computational cost. The efficiency of emulators can be further improved by exploiting the redundancy in the simulator output through appropriate dimension reduction techniques. We demonstrate this using both Principal Component Analysis on the model output and a new reduced-rank emulator in which an optimal linear projection operator is estimated jointly with other parameters, in the context of simple low order models, such as the Lorenz 40D system. We present the application of emulators to probabilistic weather forecasting, where the construction of the emulator training set replaces the traditional ensemble model runs. Thus the actual forecast distributions are computed using the emulator conditioned on the ‘ensemble runs' which are chosen to explore the plausible input space using relatively crude experimental design methods. One benefit here is that the ensemble does not need to be a sample from the true distribution of the input space, rather it should cover that input space in some sense. The probabilistic forecasts are computed using Monte Carlo methods sampling from the input distribution and using the emulator to produce the output distribution. Finally we discuss the limitations of this approach and briefly mention how we might use similar methods to learn the model error within a framework that incorporates a data assimilation like aspect, using emulators and learning complex model error representations. We suggest future directions for research in the area that will be necessary to apply the method to more realistic numerical weather prediction models.
An efficient surrogate-based simulation-optimization method for calibrating a regional MODFLOW model
NASA Astrophysics Data System (ADS)
Chen, Mingjie; Izady, Azizallah; Abdalla, Osman A.
2017-01-01
Simulation-optimization method entails a large number of model simulations, which is computationally intensive or even prohibitive if the model simulation is extremely time-consuming. Statistical models have been examined as a surrogate of the high-fidelity physical model during simulation-optimization process to tackle this problem. Among them, Multivariate Adaptive Regression Splines (MARS), a non-parametric adaptive regression method, is superior in overcoming problems of high-dimensions and discontinuities of the data. Furthermore, the stability and accuracy of MARS model can be improved by bootstrap aggregating methods, namely, bagging. In this paper, Bagging MARS (BMARS) method is integrated to a surrogate-based simulation-optimization framework to calibrate a three-dimensional MODFLOW model, which is developed to simulate the groundwater flow in an arid hardrock-alluvium region in northwestern Oman. The physical MODFLOW model is surrogated by the statistical model developed using BMARS algorithm. The surrogate model, which is fitted and validated using training dataset generated by the physical model, can approximate solutions rapidly. An efficient Sobol' method is employed to calculate global sensitivities of head outputs to input parameters, which are used to analyze their importance for the model outputs spatiotemporally. Only sensitive parameters are included in the calibration process to further improve the computational efficiency. Normalized root mean square error (NRMSE) between measured and simulated heads at observation wells is used as the objective function to be minimized during optimization. The reasonable history match between the simulated and observed heads demonstrated feasibility of this high-efficient calibration framework.
Dunea, Daniel; Pohoata, Alin; Iordache, Stefania
2015-07-01
The paper presents the screening of various feedforward neural networks (FANN) and wavelet-feedforward neural networks (WFANN) applied to time series of ground-level ozone (O3), nitrogen dioxide (NO2), and particulate matter (PM10 and PM2.5 fractions) recorded at four monitoring stations located in various urban areas of Romania, to identify common configurations with optimal generalization performance. Two distinct model runs were performed as follows: data processing using hourly-recorded time series of airborne pollutants during cold months (O3, NO2, and PM10), when residential heating increases the local emissions, and data processing using 24-h daily averaged concentrations (PM2.5) recorded between 2009 and 2012. Dataset variability was assessed using statistical analysis. Time series were passed through various FANNs. Each time series was decomposed in four time-scale components using three-level wavelets, which have been passed also through FANN, and recomposed into a single time series. The agreement between observed and modelled output was evaluated based on the statistical significance (r coefficient and correlation between errors and data). Daubechies db3 wavelet-Rprop FANN (6-4-1) utilization gave positive results for O3 time series optimizing the exclusive use of the FANN for hourly-recorded time series. NO2 was difficult to model due to time series specificity, but wavelet integration improved FANN performances. Daubechies db3 wavelet did not improve the FANN outputs for PM10 time series. Both models (FANN/WFANN) overestimated PM2.5 forecasted values in the last quarter of time series. A potential improvement of the forecasted values could be the integration of a smoothing algorithm to adjust the PM2.5 model outputs.
ERIC Educational Resources Information Center
Nelson, Frank, Comp.
This report is a compilation of input and output measures and other statistics in reference to Idaho's public libraries, covering the period from October 1997 through September 1998. The introductory sections include notes on the statistics, definitions of performance measures, Idaho public library rankings for fiscal year 1996, and a state map…
A downscaling scheme for atmospheric variables to drive soil-vegetation-atmosphere transfer models
NASA Astrophysics Data System (ADS)
Schomburg, A.; Venema, V.; Lindau, R.; Ament, F.; Simmer, C.
2010-09-01
For driving soil-vegetation-transfer models or hydrological models, high-resolution atmospheric forcing data is needed. For most applications the resolution of atmospheric model output is too coarse. To avoid biases due to the non-linear processes, a downscaling system should predict the unresolved variability of the atmospheric forcing. For this purpose we derived a disaggregation system consisting of three steps: (1) a bi-quadratic spline-interpolation of the low-resolution data, (2) a so-called `deterministic' part, based on statistical rules between high-resolution surface variables and the desired atmospheric near-surface variables and (3) an autoregressive noise-generation step. The disaggregation system has been developed and tested based on high-resolution model output (400m horizontal grid spacing). A novel automatic search-algorithm has been developed for deriving the deterministic downscaling rules of step 2. When applied to the atmospheric variables of the lowest layer of the atmospheric COSMO-model, the disaggregation is able to adequately reconstruct the reference fields. Applying downscaling step 1 and 2, root mean square errors are decreased. Step 3 finally leads to a close match of the subgrid variability and temporal autocorrelation with the reference fields. The scheme can be applied to the output of atmospheric models, both for stand-alone offline simulations, and a fully coupled model system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Justin; Hund, Lauren
2017-02-01
Dynamic compression experiments are being performed on complicated materials using increasingly complex drivers. The data produced in these experiments are beginning to reach a regime where traditional analysis techniques break down; requiring the solution of an inverse problem. A common measurement in dynamic experiments is an interface velocity as a function of time, and often this functional output can be simulated using a hydrodynamics code. Bayesian model calibration is a statistical framework to estimate inputs into a computational model in the presence of multiple uncertainties, making it well suited to measurements of this type. In this article, we apply Bayesianmore » model calibration to high pressure (250 GPa) ramp compression measurements in tantalum. We address several issues speci c to this calibration including the functional nature of the output as well as parameter and model discrepancy identi ability. Speci cally, we propose scaling the likelihood function by an e ective sample size rather than modeling the autocorrelation function to accommodate the functional output and propose sensitivity analyses using the notion of `modularization' to assess the impact of experiment-speci c nuisance input parameters on estimates of material properties. We conclude that the proposed Bayesian model calibration procedure results in simple, fast, and valid inferences on the equation of state parameters for tantalum.« less
Independent validation of Swarm Level 2 magnetic field products and `Quick Look' for Level 1b data
NASA Astrophysics Data System (ADS)
Beggan, Ciarán D.; Macmillan, Susan; Hamilton, Brian; Thomson, Alan W. P.
2013-11-01
Magnetic field models are produced on behalf of the European Space Agency (ESA) by an independent scientific consortium known as the Swarm Satellite Constellation Application and Research Facility (SCARF), through the Level 2 Processor (L2PS). The consortium primarily produces magnetic field models for the core, lithosphere, ionosphere and magnetosphere. Typically, for each magnetic product, two magnetic field models are produced in separate chains using complementary data selection and processing techniques. Hence, the magnetic field models from the complementary processing chains will be similar but not identical. The final step in the overall L2PS therefore involves inspection and validation of the magnetic field models against each other and against data from (semi-) independent sources (e.g. ground observatories). We describe the validation steps for each magnetic field product and the comparison against independent datasets, and we show examples of the output of the validation. In addition, the L2PS also produces a daily set of `Quick Look' output graphics and statistics to monitor the overall quality of Level 1b data issued by ESA. We describe the outputs of the `Quick Look' chain.
ERIC Educational Resources Information Center
Sullivan, Sharon G.; Grabois, Andrew; Greco, Albert N.
2003-01-01
Includes six reports related to book trade statistics, including prices of U.S. and foreign materials; book title output and average prices; book sales statistics; book exports and imports; book outlets in the U.S. and Canada; and numbers of books and other media reviewed by major reviewing publications. (LRW)
On the Stability of Jump-Linear Systems Driven by Finite-State Machines with Markovian Inputs
NASA Technical Reports Server (NTRS)
Patilkulkarni, Sudarshan; Herencia-Zapana, Heber; Gray, W. Steven; Gonzalez, Oscar R.
2004-01-01
This paper presents two mean-square stability tests for a jump-linear system driven by a finite-state machine with a first-order Markovian input process. The first test is based on conventional Markov jump-linear theory and avoids the use of any higher-order statistics. The second test is developed directly using the higher-order statistics of the machine s output process. The two approaches are illustrated with a simple model for a recoverable computer control system.
Statistics, Uncertainty, and Transmitted Variation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wendelberger, Joanne Roth
2014-11-05
The field of Statistics provides methods for modeling and understanding data and making decisions in the presence of uncertainty. When examining response functions, variation present in the input variables will be transmitted via the response function to the output variables. This phenomenon can potentially have significant impacts on the uncertainty associated with results from subsequent analysis. This presentation will examine the concept of transmitted variation, its impact on designed experiments, and a method for identifying and estimating sources of transmitted variation in certain settings.
Arctic Ocean Model Intercomparison Using Sound Speed
NASA Astrophysics Data System (ADS)
Dukhovskoy, D. S.; Johnson, M. A.
2002-05-01
The monthly and annual means from three Arctic ocean - sea ice climate model simulations are compared for the period 1979-1997. Sound speed is used to integrate model outputs of temperature and salinity along a section between Barrow and Franz Josef Land. A statistical approach is used to test for differences among the three models for two basic data subsets. We integrated and then analyzed an upper layer between 2 m - 50 m, and also a deep layer from 500 m to the bottom. The deep layer is characterized by low time-variability. No high-frequency signals appear in the deep layer having been filtered out in the upper layer. There is no seasonal signal in the deep layer and the monthly means insignificantly oscillate about the long-period mean. For the deep ocean the long-period mean can be considered quasi-constant, at least within the 19 year period of our analysis. Thus we assumed that the deep ocean would be the best choice for comparing the means of the model outputs. The upper (mixed) layer was chosen to contrast the deep layer dynamics. There are distinct seasonal and interannual signals in the sound speed time series in this layer. The mixed layer is a major link in the ocean - air interaction mechanism. Thus, different mean states of the upper layer in the models might cause different responses in other components of the Arctic climate system. The upper layer also strongly reflects any differences in atmosphere forcing. To compare data from the three models we have used a one-way t-test for the population mean, the Wilcoxon one-sample signed-rank test (when the requirement of normality of tested data is violated), and one-way ANOVA method and F-test to verify our hypothesis that the model outputs have the same mean sound speed. The different statistical approaches have shown that all models have different mean characteristics of the deep and upper layers of the Arctic Ocean.
Forecasting runout of rock and debris avalanches
Iverson, Richard M.; Evans, S.G.; Mugnozza, G.S.; Strom, A.; Hermanns, R.L.
2006-01-01
Physically based mathematical models and statistically based empirical equations each may provide useful means of forecasting runout of rock and debris avalanches. This paper compares the foundations, strengths, and limitations of a physically based model and a statistically based forecasting method, both of which were developed to predict runout across three-dimensional topography. The chief advantage of the physically based model results from its ties to physical conservation laws and well-tested axioms of soil and rock mechanics, such as the Coulomb friction rule and effective-stress principle. The output of this model provides detailed information about the dynamics of avalanche runout, at the expense of high demands for accurate input data, numerical computation, and experimental testing. In comparison, the statistical method requires relatively modest computation and no input data except identification of prospective avalanche source areas and a range of postulated avalanche volumes. Like the physically based model, the statistical method yields maps of predicted runout, but it provides no information on runout dynamics. Although the two methods differ significantly in their structure and objectives, insights gained from one method can aid refinement of the other.
Quantum description of light propagation in generalized media
NASA Astrophysics Data System (ADS)
Häyrynen, Teppo; Oksanen, Jani
2016-02-01
Linear quantum input-output relation based models are widely applied to describe the light propagation in a lossy medium. The details of the interaction and the associated added noise depend on whether the device is configured to operate as an amplifier or an attenuator. Using the traveling wave (TW) approach, we generalize the linear material model to simultaneously account for both the emission and absorption processes and to have point-wise defined noise field statistics and intensity dependent interaction strengths. Thus, our approach describes the quantum input-output relations of linear media with net attenuation, amplification or transparency without pre-selection of the operation point. The TW approach is then applied to investigate materials at thermal equilibrium, inverted materials, the transparency limit where losses are compensated, and the saturating amplifiers. We also apply the approach to investigate media in nonuniform states which can be e.g. consequences of a temperature gradient over the medium or a position dependent inversion of the amplifier. Furthermore, by using the generalized model we investigate devices with intensity dependent interactions and show how an initial thermal field transforms to a field having coherent statistics due to gain saturation.
NASA Astrophysics Data System (ADS)
Yang, P.; Fekete, B. M.; Rosenzweig, B.; Lengyel, F.; Vorosmarty, C. J.
2012-12-01
Atmospheric dynamics are essential inputs to Regional-scale Earth System Models (RESMs). Variables including surface air temperature, total precipitation, solar radiation, wind speed and humidity must be downscaled from coarse-resolution, global General Circulation Models (GCMs) to the high temporal and spatial resolution required for regional modeling. However, this downscaling procedure can be challenging due to the need to correct for bias from the GCM and to capture the spatiotemporal heterogeneity of the regional dynamics. In this study, the results obtained using several downscaling techniques and observational datasets were compared for a RESM of the Northeast Corridor of the United States. Previous efforts have enhanced GCM model outputs through bias correction using novel techniques. For example, the Climate Impact Research at Potsdam Institute developed a series of bias-corrected GCMs towards the next generation climate change scenarios (Schiermeier, 2012; Moss et al., 2010). Techniques to better represent the heterogeneity of climate variables have also been improved using statistical approaches (Maurer, 2008; Abatzoglou, 2011). For this study, four downscaling approaches to transform bias-corrected HADGEM2-ES Model output (daily at .5 x .5 degree) to the 3'*3'(longitude*latitude) daily and monthly resolution required for the Northeast RESM were compared: 1) Bilinear Interpolation, 2) Daily bias-corrected spatial downscaling (D-BCSD) with Gridded Meteorological Datasets (developed by Abazoglou 2011), 3) Monthly bias-corrected spatial disaggregation (M-BCSD) with CRU(Climate Research Unit) and 4) Dynamic Downscaling based on Weather Research and Forecast (WRF) model. Spatio-temporal analysis of the variability in precipitation was conducted over the study domain. Validation of the variables of different downscaling methods against observational datasets was carried out for assessment of the downscaled climate model outputs. The effects of using the different approaches to downscale atmospheric variables (specifically air temperature and precipitation) for use as inputs to the Water Balance Model (WBMPlus, Vorosmarty et al., 1998;Wisser et al., 2008) for simulation of daily discharge and monthly stream flow in the Northeast US for a 100-year period in the 21st century were also assessed. Statistical techniques especially monthly bias-corrected spatial disaggregation (M-BCSD) showed potential advantage among other methods for the daily discharge and monthly stream flow simulation. However, Dynamic Downscaling will provide important complements to the statistical approaches tested.
The reservoir model: a differential equation model of psychological regulation.
Deboeck, Pascal R; Bergeman, C S
2013-06-01
Differential equation models can be used to describe the relationships between the current state of a system of constructs (e.g., stress) and how those constructs are changing (e.g., based on variable-like experiences). The following article describes a differential equation model based on the concept of a reservoir. With a physical reservoir, such as one for water, the level of the liquid in the reservoir at any time depends on the contributions to the reservoir (inputs) and the amount of liquid removed from the reservoir (outputs). This reservoir model might be useful for constructs such as stress, where events might "add up" over time (e.g., life stressors, inputs), but individuals simultaneously take action to "blow off steam" (e.g., engage coping resources, outputs). The reservoir model can provide descriptive statistics of the inputs that contribute to the "height" (level) of a construct and a parameter that describes a person's ability to dissipate the construct. After discussing the model, we describe a method of fitting the model as a structural equation model using latent differential equation modeling and latent distribution modeling. A simulation study is presented to examine recovery of the input distribution and output parameter. The model is then applied to the daily self-reports of negative affect and stress from a sample of older adults from the Notre Dame Longitudinal Study on Aging. (PsycINFO Database Record (c) 2013 APA, all rights reserved).
The Reservoir Model: A Differential Equation Model of Psychological Regulation
Deboeck, Pascal R.; Bergeman, C. S.
2017-01-01
Differential equation models can be used to describe the relationships between the current state of a system of constructs (e.g., stress) and how those constructs are changing (e.g., based on variable-like experiences). The following article describes a differential equation model based on the concept of a reservoir. With a physical reservoir, such as one for water, the level of the liquid in the reservoir at any time depends on the contributions to the reservoir (inputs) and the amount of liquid removed from the reservoir (outputs). This reservoir model might be useful for constructs such as stress, where events might “add up” over time (e.g., life stressors, inputs), but individuals simultaneously take action to “blow off steam” (e.g., engage coping resources, outputs). The reservoir model can provide descriptive statistics of the inputs that contribute to the “height” (level) of a construct and a parameter that describes a person's ability to dissipate the construct. After discussing the model, we describe a method of fitting the model as a structural equation model using latent differential equation modeling and latent distribution modeling. A simulation study is presented to examine recovery of the input distribution and output parameter. The model is then applied to the daily self-reports of negative affect and stress from a sample of older adults from the Notre Dame Longitudinal Study on Aging. PMID:23527605
Fast Query-Optimized Kernel-Machine Classification
NASA Technical Reports Server (NTRS)
Mazzoni, Dominic; DeCoste, Dennis
2004-01-01
A recently developed algorithm performs kernel-machine classification via incremental approximate nearest support vectors. The algorithm implements support-vector machines (SVMs) at speeds 10 to 100 times those attainable by use of conventional SVM algorithms. The algorithm offers potential benefits for classification of images, recognition of speech, recognition of handwriting, and diverse other applications in which there are requirements to discern patterns in large sets of data. SVMs constitute a subset of kernel machines (KMs), which have become popular as models for machine learning and, more specifically, for automated classification of input data on the basis of labeled training data. While similar in many ways to k-nearest-neighbors (k-NN) models and artificial neural networks (ANNs), SVMs tend to be more accurate. Using representations that scale only linearly in the numbers of training examples, while exploring nonlinear (kernelized) feature spaces that are exponentially larger than the original input dimensionality, KMs elegantly and practically overcome the classic curse of dimensionality. However, the price that one must pay for the power of KMs is that query-time complexity scales linearly with the number of training examples, making KMs often orders of magnitude more computationally expensive than are ANNs, decision trees, and other popular machine learning alternatives. The present algorithm treats an SVM classifier as a special form of a k-NN. The algorithm is based partly on an empirical observation that one can often achieve the same classification as that of an exact KM by using only small fraction of the nearest support vectors (SVs) of a query. The exact KM output is a weighted sum over the kernel values between the query and the SVs. In this algorithm, the KM output is approximated with a k-NN classifier, the output of which is a weighted sum only over the kernel values involving k selected SVs. Before query time, there are gathered statistics about how misleading the output of the k-NN model can be, relative to the outputs of the exact KM for a representative set of examples, for each possible k from 1 to the total number of SVs. From these statistics, there are derived upper and lower thresholds for each step k. These thresholds identify output levels for which the particular variant of the k-NN model already leans so strongly positively or negatively that a reversal in sign is unlikely, given the weaker SV neighbors still remaining. At query time, the partial output of each query is incrementally updated, stopping as soon as it exceeds the predetermined statistical thresholds of the current step. For an easy query, stopping can occur as early as step k = 1. For more difficult queries, stopping might not occur until nearly all SVs are touched. A key empirical observation is that this approach can tolerate very approximate nearest-neighbor orderings. In experiments, SVs and queries were projected to a subspace comprising the top few principal- component dimensions and neighbor orderings were computed in that subspace. This approach ensured that the overhead of the nearest-neighbor computations was insignificant, relative to that of the exact KM computation.
Post-processing of multi-hydrologic model simulations for improved streamflow projections
NASA Astrophysics Data System (ADS)
khajehei, sepideh; Ahmadalipour, Ali; Moradkhani, Hamid
2016-04-01
Hydrologic model outputs are prone to bias and uncertainty due to knowledge deficiency in model and data. Uncertainty in hydroclimatic projections arises due to uncertainty in hydrologic model as well as the epistemic or aleatory uncertainties in GCM parameterization and development. This study is conducted to: 1) evaluate the recently developed multi-variate post-processing method for historical simulations and 2) assess the effect of post-processing on uncertainty and reliability of future streamflow projections in both high-flow and low-flow conditions. The first objective is performed for historical period of 1970-1999. Future streamflow projections are generated for 10 statistically downscaled GCMs from two widely used downscaling methods: Bias Corrected Statistically Downscaled (BCSD) and Multivariate Adaptive Constructed Analogs (MACA), over the period of 2010-2099 for two representative concentration pathways of RCP4.5 and RCP8.5. Three semi-distributed hydrologic models were employed and calibrated at 1/16 degree latitude-longitude resolution for over 100 points across the Columbia River Basin (CRB) in the pacific northwest USA. Streamflow outputs are post-processed through a Bayesian framework based on copula functions. The post-processing approach is relying on a transfer function developed based on bivariate joint distribution between the observation and simulation in historical period. Results show that application of post-processing technique leads to considerably higher accuracy in historical simulations and also reducing model uncertainty in future streamflow projections.
Quantifying uncertainty in high-resolution coupled hydrodynamic-ecosystem models
NASA Astrophysics Data System (ADS)
Allen, J. I.; Somerfield, P. J.; Gilbert, F. J.
2007-01-01
Marine ecosystem models are becoming increasingly complex and sophisticated, and are being used to estimate the effects of future changes in the earth system with a view to informing important policy decisions. Despite their potential importance, far too little attention has been, and is generally, paid to model errors and the extent to which model outputs actually relate to real-world processes. With the increasing complexity of the models themselves comes an increasing complexity among model results. If we are to develop useful modelling tools for the marine environment we need to be able to understand and quantify the uncertainties inherent in the simulations. Analysing errors within highly multivariate model outputs, and relating them to even more complex and multivariate observational data, are not trivial tasks. Here we describe the application of a series of techniques, including a 2-stage self-organising map (SOM), non-parametric multivariate analysis, and error statistics, to a complex spatio-temporal model run for the period 1988-1989 in the Southern North Sea, coinciding with the North Sea Project which collected a wealth of observational data. We use model output, large spatio-temporally resolved data sets and a combination of methodologies (SOM, MDS, uncertainty metrics) to simplify the problem and to provide tractable information on model performance. The use of a SOM as a clustering tool allows us to simplify the dimensions of the problem while the use of MDS on independent data grouped according to the SOM classification allows us to validate the SOM. The combination of classification and uncertainty metrics allows us to pinpoint the variables and associated processes which require attention in each region. We recommend the use of this combination of techniques for simplifying complex comparisons of model outputs with real data, and analysis of error distributions.
A probabilistic framework to infer brain functional connectivity from anatomical connections.
Deligianni, Fani; Varoquaux, Gael; Thirion, Bertrand; Robinson, Emma; Sharp, David J; Edwards, A David; Rueckert, Daniel
2011-01-01
We present a novel probabilistic framework to learn across several subjects a mapping from brain anatomical connectivity to functional connectivity, i.e. the covariance structure of brain activity. This prediction problem must be formulated as a structured-output learning task, as the predicted parameters are strongly correlated. We introduce a model selection framework based on cross-validation with a parametrization-independent loss function suitable to the manifold of covariance matrices. Our model is based on constraining the conditional independence structure of functional activity by the anatomical connectivity. Subsequently, we learn a linear predictor of a stationary multivariate autoregressive model. This natural parameterization of functional connectivity also enforces the positive-definiteness of the predicted covariance and thus matches the structure of the output space. Our results show that functional connectivity can be explained by anatomical connectivity on a rigorous statistical basis, and that a proper model of functional connectivity is essential to assess this link.
NASA Astrophysics Data System (ADS)
Mistry, Malcolm; De Cian, Enrica; Wing, Ian Sue
2015-04-01
There is widespread concern that trends and variability in weather induced by climate change will detrimentally affect global agricultural productivity and food supplies. Reliable quantification of the risks of negative impacts at regional and global scales is a critical research need, which has so far been met by forcing state-of-the-art global gridded crop models with outputs of global climate model (GCM) simulations in exercises such as the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP)-Fastrack. Notwithstanding such progress, it remains challenging to use these simulation-based projections to assess agricultural risk because their gridded fields of crop yields are fundamentally denominated as discrete combinations of warming scenarios, GCMs and crop models, and not as model-specific or model-averaged yield response functions of meteorological shifts, which may have their own independent probability of occurrence. By contrast, the empirical climate economics literature has adeptly represented agricultural responses to meteorological variables as reduced-form statistical response surfaces which identify the crop productivity impacts of additional exposure to different intervals of temperature and precipitation [cf Schlenker and Roberts, 2009]. This raises several important questions: (1) what do the equivalent reduced-form statistical response surfaces look like for crop model outputs, (2) do they exhibit systematic variation over space (e.g., crop suitability zones) or across crop models with different characteristics, (3) how do they compare to estimates based on historical observations, and (4) what are the implications for the characterization of climate risks? We address these questions by estimating statistical yield response functions for four major crops (maize, rice, wheat and soybeans) over the historical period (1971-2004) as well as future climate change scenarios (2005-2099) using ISIMIP-Fastrack data for five GCMs and seven crop models under rain-fed and irrigated management regimes. Our approach, which is patterned after Lobell and Burke [2010], is a novel application of cross-section/time-series statistical techniques from the climate economics literature to large, high-dimension, multi-model datasets, and holds considerable promise as a diagnostic methodology to elucidate uncertainties in the processes simulated by crop models, and to support the development of climate impact intercomparison exercises.
USDA-ARS?s Scientific Manuscript database
The generation of realistic future precipitation scenarios is crucial for assessing their impacts on a range of environmental and socio-economic impact sectors. A scale mismatch exists, however, between the coarse spatial resolution at which global climate models (GCMs) output future climate scenari...
ACIRF user's guide: Theory and examples
NASA Astrophysics Data System (ADS)
Dana, Roger A.
1989-12-01
Design and evaluation of radio frequency systems that must operate through ionospheric disturbances resulting from high altitude nuclear detonations requires an accurate channel model. This model must include the effects of high gain antennas that may be used to receive the signals. Such a model can then be used to construct realizations of the received signal for use in digital simulations of trans-ionospheric links or for use in hardware channel simulators. The FORTRAN channel model ACIRF (Antenna Channel Impulse Response Function) generates random realizations of the impulse response function at the outputs of multiple antennas. This user's guide describes the FORTRAN program ACIRF (version 2.0) that generates realizations of channel impulse response functions at the outputs of multiple antennas with arbitrary beamwidths, pointing angles, and relatives positions. This channel model is valid under strong scattering conditions when Rayleigh fading statistics apply. Both frozen-in and turbulent models for the temporal fluctuations are included in this version of ACIRF. The theory of the channel model is described and several examples are given.
Moment-based metrics for global sensitivity analysis of hydrological systems
NASA Astrophysics Data System (ADS)
Dell'Oca, Aronne; Riva, Monica; Guadagnini, Alberto
2017-12-01
We propose new metrics to assist global sensitivity analysis, GSA, of hydrological and Earth systems. Our approach allows assessing the impact of uncertain parameters on main features of the probability density function, pdf, of a target model output, y. These include the expected value of y, the spread around the mean and the degree of symmetry and tailedness of the pdf of y. Since reliable assessment of higher-order statistical moments can be computationally demanding, we couple our GSA approach with a surrogate model, approximating the full model response at a reduced computational cost. Here, we consider the generalized polynomial chaos expansion (gPCE), other model reduction techniques being fully compatible with our theoretical framework. We demonstrate our approach through three test cases, including an analytical benchmark, a simplified scenario mimicking pumping in a coastal aquifer and a laboratory-scale conservative transport experiment. Our results allow ascertaining which parameters can impact some moments of the model output pdf while being uninfluential to others. We also investigate the error associated with the evaluation of our sensitivity metrics by replacing the original system model through a gPCE. Our results indicate that the construction of a surrogate model with increasing level of accuracy might be required depending on the statistical moment considered in the GSA. The approach is fully compatible with (and can assist the development of) analysis techniques employed in the context of reduction of model complexity, model calibration, design of experiment, uncertainty quantification and risk assessment.
Surrogates for numerical simulations; optimization of eddy-promoter heat exchangers
NASA Technical Reports Server (NTRS)
Patera, Anthony T.; Patera, Anthony
1993-01-01
Although the advent of fast and inexpensive parallel computers has rendered numerous previously intractable calculations feasible, many numerical simulations remain too resource-intensive to be directly inserted in engineering optimization efforts. An attractive alternative to direct insertion considers models for computational systems: the expensive simulation is evoked only to construct and validate a simplified, input-output model; this simplified input-output model then serves as a simulation surrogate in subsequent engineering optimization studies. A simple 'Bayesian-validated' statistical framework for the construction, validation, and purposive application of static computer simulation surrogates is presented. As an example, dissipation-transport optimization of laminar-flow eddy-promoter heat exchangers are considered: parallel spectral element Navier-Stokes calculations serve to construct and validate surrogates for the flowrate and Nusselt number; these surrogates then represent the originating Navier-Stokes equations in the ensuing design process.
Eloqayli, Haytham; Al-Yousef, Ali; Jaradat, Raid
2018-02-15
Despite the high prevalence of chronic neck pain, there is limited consensus about the primary etiology, risk factors, diagnostic criteria and therapeutic outcome. Here, we aimed to determine if Ferritin and Vitamin D are modifiable risk factors with chronic neck pain using slandered statistics and artificial intelligence neural network (ANN). Fifty-four patients with chronic neck pain treated between February 2016 and August 2016 in King Abdullah University Hospital and 54 patients age matched controls undergoing outpatient or minor procedures were enrolled. Patients and control demographic parameters, height, weight and single measurement of serum vitamin D, Vitamin B12, ferritin, calcium, phosphorus, zinc were obtained. An ANN prediction model was developed. The statistical analysis reveals that patients with chronic neck pain have significantly lower serum Vitamin D and Ferritin (p-value <.05). 90% of patients with chronic neck pain were females. Multilayer Feed Forward Neural Network with Back Propagation(MFFNN) prediction model were developed and designed based on vitamin D and ferritin as input variables and CNP as output. The ANN model output results show that, 92 out of 108 samples were correctly classified with 85% classification accuracy. Although Iron and vitamin D deficiency cannot be isolated as the sole risk factors of chronic neck pain, they should be considered as two modifiable risk. The high prevalence of chronic neck pain, hypovitaminosis D and low ferritin amongst women is of concern. Bioinformatics predictions with artificial neural network can be of future benefit in classification and prediction models for chronic neck pain. We hope this initial work will encourage a future larger cohort study addressing vitamin D and iron correction as modifiable factors and the application of artificial intelligence models in clinical practice.
The invariant statistical rule of aerosol scattering pulse signal modulated by random noise
NASA Astrophysics Data System (ADS)
Yan, Zhen-gang; Bian, Bao-Min; Yang, Juan; Peng, Gang; Li, Zhen-hua
2010-11-01
A model of the random background noise acting on particle signals is established to study the impact of the background noise of the photoelectric sensor in the laser airborne particle counter on the statistical character of the aerosol scattering pulse signals. The results show that the noises broaden the statistical distribution of the particle's measurement. Further numerical research shows that the output of the signal amplitude still has the same distribution when the airborne particle with the lognormal distribution was modulated by random noise which has lognormal distribution. Namely it follows the statistics law of invariance. Based on this model, the background noise of photoelectric sensor and the counting distributions of random signal for aerosol's scattering pulse are obtained and analyzed by using a high-speed data acquisition card PCI-9812. It is found that the experiment results and simulation results are well consistent.
New York Timber industries - a periodic assessment of timber output
Robert L., Jr. Nevel; Everett L Sochia; Thomas H. Wahl; Thomas H. Wahl
1982-01-01
Reports the results of a survey of the timber industries of New York; contains statistics on industrial timber production and receipts, and production and disposition of the manufacturing residues. Comparisons are made with the most recent survey, and trends in industrial wood output are noted. Includes 18 statistical tables.
ERIC Educational Resources Information Center
Fernandes, Tania; Kolinsky, Regine; Ventura, Paulo
2009-01-01
This study combined artificial language learning (ALL) with conventional experimental techniques to test whether statistical speech segmentation outputs are integrated into adult listeners' mental lexicon. Lexicalization was assessed through inhibitory effects of novel neighbors (created by the parsing process) on auditory lexical decisions to…
Toward an affective neuroscience account of financial risk taking.
Wu, Charlene C; Sacchet, Matthew D; Knutson, Brian
2012-01-01
To explain human financial risk taking, economic, and finance theories typically refer to the mathematical properties of financial options, whereas psychological theories have emphasized the influence of emotion and cognition on choice. From a neuroscience perspective, choice emanates from a dynamic multicomponential process. Recent technological advances in neuroimaging have made it possible for researchers to separately visualize perceptual input, intermediate processing, and motor output. An affective neuroscience account of financial risk taking thus might illuminate affective mediators that bridge the gap between statistical input and choice output. To test this hypothesis, we conducted a quantitative meta-analysis (via activation likelihood estimate or ALE) of functional magnetic resonance imaging experiments that focused on neural responses to financial options with varying statistical moments (i.e., mean, variance, skewness). Results suggested that different statistical moments elicit both common and distinct patterns of neural activity. Across studies, high versus low mean had the highest probability of increasing ventral striatal activity, but high versus low variance had the highest probability of increasing anterior insula activity. Further, high versus low skewness had the highest probability of increasing ventral striatal activity. Since ventral striatal activity has been associated with positive aroused affect (e.g., excitement), whereas anterior insular activity has been associated with negative aroused affect (e.g., anxiety) or general arousal, these findings are consistent with the notion that statistical input influences choice output by eliciting anticipatory affect. The findings also imply that neural activity can be used to predict financial risk taking - both when it conforms to and violates traditional models of choice.
Toward an Affective Neuroscience Account of Financial Risk Taking
Wu, Charlene C.; Sacchet, Matthew D.; Knutson, Brian
2012-01-01
To explain human financial risk taking, economic, and finance theories typically refer to the mathematical properties of financial options, whereas psychological theories have emphasized the influence of emotion and cognition on choice. From a neuroscience perspective, choice emanates from a dynamic multicomponential process. Recent technological advances in neuroimaging have made it possible for researchers to separately visualize perceptual input, intermediate processing, and motor output. An affective neuroscience account of financial risk taking thus might illuminate affective mediators that bridge the gap between statistical input and choice output. To test this hypothesis, we conducted a quantitative meta-analysis (via activation likelihood estimate or ALE) of functional magnetic resonance imaging experiments that focused on neural responses to financial options with varying statistical moments (i.e., mean, variance, skewness). Results suggested that different statistical moments elicit both common and distinct patterns of neural activity. Across studies, high versus low mean had the highest probability of increasing ventral striatal activity, but high versus low variance had the highest probability of increasing anterior insula activity. Further, high versus low skewness had the highest probability of increasing ventral striatal activity. Since ventral striatal activity has been associated with positive aroused affect (e.g., excitement), whereas anterior insular activity has been associated with negative aroused affect (e.g., anxiety) or general arousal, these findings are consistent with the notion that statistical input influences choice output by eliciting anticipatory affect. The findings also imply that neural activity can be used to predict financial risk taking – both when it conforms to and violates traditional models of choice. PMID:23129993
Determining A Purely Symbolic Transfer Function from Symbol Streams: Theory and Algorithms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Griffin, Christopher H
Transfer function modeling is a \\emph{standard technique} in classical Linear Time Invariant and Statistical Process Control. The work of Box and Jenkins was seminal in developing methods for identifying parameters associated with classicalmore » $(r,s,k)$$ transfer functions. Discrete event systems are often \\emph{used} for modeling hybrid control structures and high-level decision problems. \\emph{Examples include} discrete time, discrete strategy repeated games. For these games, a \\emph{discrete transfer function in the form of} an accurate hidden Markov model of input-output relations \\emph{could be used to derive optimal response strategies.} In this paper, we develop an algorithm \\emph{for} creating probabilistic \\textit{Mealy machines} that act as transfer function models for discrete event dynamic systems (DEDS). Our models are defined by three parameters, $$(l_1, l_2, k)$ just as the Box-Jenkins transfer function models. Here $$l_1$$ is the maximal input history lengths to consider, $$l_2$$ is the maximal output history lengths to consider and $k$ is the response lag. Using related results, We show that our Mealy machine transfer functions are optimal in the sense that they maximize the mutual information between the current known state of the DEDS and the next observed input/output pair.« less
NASA Technical Reports Server (NTRS)
Whitmore, Stephen A.; Moes, Timothy R.
1994-01-01
Presented is a feasibility and error analysis for a hypersonic flush airdata system on a hypersonic flight experiment (HYFLITE). HYFLITE heating loads make intrusive airdata measurement impractical. Although this analysis is specifically for the HYFLITE vehicle and trajectory, the problems analyzed are generally applicable to hypersonic vehicles. A layout of the flush-port matrix is shown. Surface pressures are related airdata parameters using a simple aerodynamic model. The model is linearized using small perturbations and inverted using nonlinear least-squares. Effects of various error sources on the overall uncertainty are evaluated using an error simulation. Error sources modeled include boundarylayer/viscous interactions, pneumatic lag, thermal transpiration in the sensor pressure tubing, misalignment in the matrix layout, thermal warping of the vehicle nose, sampling resolution, and transducer error. Using simulated pressure data for input to the estimation algorithm, effects caused by various error sources are analyzed by comparing estimator outputs with the original trajectory. To obtain ensemble averages the simulation is run repeatedly and output statistics are compiled. Output errors resulting from the various error sources are presented as a function of Mach number. Final uncertainties with all modeled error sources included are presented as a function of Mach number.
Estimating wheat and maize daily evapotranspiration using artificial neural network
NASA Astrophysics Data System (ADS)
Abrishami, Nazanin; Sepaskhah, Ali Reza; Shahrokhnia, Mohammad Hossein
2018-02-01
In this research, artificial neural network (ANN) is used for estimating wheat and maize daily standard evapotranspiration. Ten ANN models with different structures were designed for each crop. Daily climatic data [maximum temperature (T max), minimum temperature (T min), average temperature (T ave), maximum relative humidity (RHmax), minimum relative humidity (RHmin), average relative humidity (RHave), wind speed (U 2), sunshine hours (n), net radiation (Rn)], leaf area index (LAI), and plant height (h) were used as inputs. For five structures of ten, the evapotranspiration (ETC) values calculated by ETC = ET0 × K C equation (ET0 from Penman-Monteith equation and K C from FAO-56, ANNC) were used as outputs, and for the other five structures, the ETC values measured by weighing lysimeter (ANNM) were used as outputs. In all structures, a feed forward multiple-layer network with one or two hidden layers and sigmoid transfer function and BR or LM training algorithm was used. Favorite network was selected based on various statistical criteria. The results showed the suitable capability and acceptable accuracy of ANNs, particularly those having two hidden layers in their structure in estimating the daily evapotranspiration. Best model for estimation of maize daily evapotranspiration is «M»ANN1 C (8-4-2-1), with T max, T min, RHmax, RHmin, U 2, n, LAI, and h as input data and LM training rule and its statistical parameters (NRMSE, d, and R2) are 0.178, 0.980, and 0.982, respectively. Best model for estimation of wheat daily evapotranspiration is «W»ANN5 C (5-2-3-1), with T max, T min, Rn, LAI, and h as input data and LM training rule, its statistical parameters (NRMSE, d, and R 2) are 0.108, 0.987, and 0.981 respectively. In addition, if the calculated ETC used as the output of the network for both wheat and maize, higher accurate estimation was obtained. Therefore, ANN is suitable method for estimating evapotranspiration of wheat and maize.
Statistical surrogate models for prediction of high-consequence climate change.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Constantine, Paul; Field, Richard V., Jr.; Boslough, Mark Bruce Elrick
2011-09-01
In safety engineering, performance metrics are defined using probabilistic risk assessments focused on the low-probability, high-consequence tail of the distribution of possible events, as opposed to best estimates based on central tendencies. We frame the climate change problem and its associated risks in a similar manner. To properly explore the tails of the distribution requires extensive sampling, which is not possible with existing coupled atmospheric models due to the high computational cost of each simulation. We therefore propose the use of specialized statistical surrogate models (SSMs) for the purpose of exploring the probability law of various climate variables of interest.more » A SSM is different than a deterministic surrogate model in that it represents each climate variable of interest as a space/time random field. The SSM can be calibrated to available spatial and temporal data from existing climate databases, e.g., the Program for Climate Model Diagnosis and Intercomparison (PCMDI), or to a collection of outputs from a General Circulation Model (GCM), e.g., the Community Earth System Model (CESM) and its predecessors. Because of its reduced size and complexity, the realization of a large number of independent model outputs from a SSM becomes computationally straightforward, so that quantifying the risk associated with low-probability, high-consequence climate events becomes feasible. A Bayesian framework is developed to provide quantitative measures of confidence, via Bayesian credible intervals, in the use of the proposed approach to assess these risks.« less
The Lake Tahoe Basin Land Use Simulation Model
Forney, William M.; Oldham, I. Benson
2011-01-01
This U.S. Geological Survey Open-File Report describes the final modeling product for the Tahoe Decision Support System project for the Lake Tahoe Basin funded by the Southern Nevada Public Land Management Act and the U.S. Geological Survey's Geographic Analysis and Monitoring Program. This research was conducted by the U.S. Geological Survey Western Geographic Science Center. The purpose of this report is to describe the basic elements of the novel Lake Tahoe Basin Land Use Simulation Model, publish samples of the data inputs, basic outputs of the model, and the details of the Python code. The results of this report include a basic description of the Land Use Simulation Model, descriptions and summary statistics of model inputs, two figures showing the graphical user interface from the web-based tool, samples of the two input files, seven tables of basic output results from the web-based tool and descriptions of their parameters, and the fully functional Python code.
NASA Astrophysics Data System (ADS)
Sundberg, R.; Moberg, A.; Hind, A.
2012-08-01
A statistical framework for comparing the output of ensemble simulations from global climate models with networks of climate proxy and instrumental records has been developed, focusing on near-surface temperatures for the last millennium. This framework includes the formulation of a joint statistical model for proxy data, instrumental data and simulation data, which is used to optimize a quadratic distance measure for ranking climate model simulations. An essential underlying assumption is that the simulations and the proxy/instrumental series have a shared component of variability that is due to temporal changes in external forcing, such as volcanic aerosol load, solar irradiance or greenhouse gas concentrations. Two statistical tests have been formulated. Firstly, a preliminary test establishes whether a significant temporal correlation exists between instrumental/proxy and simulation data. Secondly, the distance measure is expressed in the form of a test statistic of whether a forced simulation is closer to the instrumental/proxy series than unforced simulations. The proposed framework allows any number of proxy locations to be used jointly, with different seasons, record lengths and statistical precision. The goal is to objectively rank several competing climate model simulations (e.g. with alternative model parameterizations or alternative forcing histories) by means of their goodness of fit to the unobservable true past climate variations, as estimated from noisy proxy data and instrumental observations.
2013-01-01
Background As a result of changes in climatic conditions and greater resistance to insecticides, many regions across the globe, including Colombia, have been facing a resurgence of vector-borne diseases, and dengue fever in particular. Timely information on both (1) the spatial distribution of the disease, and (2) prevailing vulnerabilities of the population are needed to adequately plan targeted preventive intervention. We propose a methodology for the spatial assessment of current socioeconomic vulnerabilities to dengue fever in Cali, a tropical urban environment of Colombia. Methods Based on a set of socioeconomic and demographic indicators derived from census data and ancillary geospatial datasets, we develop a spatial approach for both expert-based and purely statistical-based modeling of current vulnerability levels across 340 neighborhoods of the city using a Geographic Information System (GIS). The results of both approaches are comparatively evaluated by means of spatial statistics. A web-based approach is proposed to facilitate the visualization and the dissemination of the output vulnerability index to the community. Results The statistical and the expert-based modeling approach exhibit a high concordance, globally, and spatially. The expert-based approach indicates a slightly higher vulnerability mean (0.53) and vulnerability median (0.56) across all neighborhoods, compared to the purely statistical approach (mean = 0.48; median = 0.49). Both approaches reveal that high values of vulnerability tend to cluster in the eastern, north-eastern, and western part of the city. These are poor neighborhoods with high percentages of young (i.e., < 15 years) and illiterate residents, as well as a high proportion of individuals being either unemployed or doing housework. Conclusions Both modeling approaches reveal similar outputs, indicating that in the absence of local expertise, statistical approaches could be used, with caution. By decomposing identified vulnerability “hotspots” into their underlying factors, our approach provides valuable information on both (1) the location of neighborhoods, and (2) vulnerability factors that should be given priority in the context of targeted intervention strategies. The results support decision makers to allocate resources in a manner that may reduce existing susceptibilities and strengthen resilience, and thus help to reduce the burden of vector-borne diseases. PMID:23945265
Statistics & Input-Output Measures for Colorado Public Libraries, 1999.
ERIC Educational Resources Information Center
Colorado State Dept. of Education, Denver. State Library and Adult Education Office.
"Statistics and Input-Output Measures for Colorado Public Libraries, 1999" is a compilation of data collected from the Colorado Public Library Annual Report sent to each public library jurisdiction in February of 2000 and returned in March. The 1999 response rate was excellent: 100% of Colorado public libraries returned the Annual Report…
Approximate Bayesian Computation by Subset Simulation using hierarchical state-space models
NASA Astrophysics Data System (ADS)
Vakilzadeh, Majid K.; Huang, Yong; Beck, James L.; Abrahamsson, Thomas
2017-02-01
A new multi-level Markov Chain Monte Carlo algorithm for Approximate Bayesian Computation, ABC-SubSim, has recently appeared that exploits the Subset Simulation method for efficient rare-event simulation. ABC-SubSim adaptively creates a nested decreasing sequence of data-approximating regions in the output space that correspond to increasingly closer approximations of the observed output vector in this output space. At each level, multiple samples of the model parameter vector are generated by a component-wise Metropolis algorithm so that the predicted output corresponding to each parameter value falls in the current data-approximating region. Theoretically, if continued to the limit, the sequence of data-approximating regions would converge on to the observed output vector and the approximate posterior distributions, which are conditional on the data-approximation region, would become exact, but this is not practically feasible. In this paper we study the performance of the ABC-SubSim algorithm for Bayesian updating of the parameters of dynamical systems using a general hierarchical state-space model. We note that the ABC methodology gives an approximate posterior distribution that actually corresponds to an exact posterior where a uniformly distributed combined measurement and modeling error is added. We also note that ABC algorithms have a problem with learning the uncertain error variances in a stochastic state-space model and so we treat them as nuisance parameters and analytically integrate them out of the posterior distribution. In addition, the statistical efficiency of the original ABC-SubSim algorithm is improved by developing a novel strategy to regulate the proposal variance for the component-wise Metropolis algorithm at each level. We demonstrate that Self-regulated ABC-SubSim is well suited for Bayesian system identification by first applying it successfully to model updating of a two degree-of-freedom linear structure for three cases: globally, locally and un-identifiable model classes, and then to model updating of a two degree-of-freedom nonlinear structure with Duffing nonlinearities in its interstory force-deflection relationship.
One output function: a misconception of students studying digital systems - a case study
NASA Astrophysics Data System (ADS)
Trotskovsky, E.; Sabag, N.
2015-05-01
Background:Learning processes are usually characterized by students' misunderstandings and misconceptions. Engineering educators intend to help their students overcome their misconceptions and achieve correct understanding of the concept. This paper describes a misconception in digital systems held by many students who believe that combinational logic circuits should have only one output. Purpose:The current study aims to investigate the roots of the misconception about one-output function and the pedagogical methods that can help students overcome the misconception. Sample:Three hundred and eighty-one students in the Departments of Electrical and Electronics and Mechanical Engineering at an academic engineering college, who learned the same topics of a digital combinational system, participated in the research. Design and method:In the initial research stage, students were taught according to traditional method - first to design a one-output combinational logic system, and then to implement a system with a number of output functions. In the main stage, an experimental group was taught using a new method whereby they were shown how to implement a system with several output functions, prior to learning about one-output systems. A control group was taught using the traditional method. In the replication stage (the third stage), an experimental group was taught using the new method. A mixed research methodology was used to examine the results of the new learning method. Results:Quantitative research showed that the new teaching approach resulted in a statistically significant decrease in student errors, and qualitative research revealed students' erroneous thinking patterns. Conclusions:It can be assumed that the traditional teaching method generates an incorrect mental model of the one-output function among students. The new pedagogical approach prevented the creation of an erroneous mental model and helped students develop the correct conceptual understanding.
A probabilistic method for constructing wave time-series at inshore locations using model scenarios
Long, Joseph W.; Plant, Nathaniel G.; Dalyander, P. Soupy; Thompson, David M.
2014-01-01
Continuous time-series of wave characteristics (height, period, and direction) are constructed using a base set of model scenarios and simple probabilistic methods. This approach utilizes an archive of computationally intensive, highly spatially resolved numerical wave model output to develop time-series of historical or future wave conditions without performing additional, continuous numerical simulations. The archive of model output contains wave simulations from a set of model scenarios derived from an offshore wave climatology. Time-series of wave height, period, direction, and associated uncertainties are constructed at locations included in the numerical model domain. The confidence limits are derived using statistical variability of oceanographic parameters contained in the wave model scenarios. The method was applied to a region in the northern Gulf of Mexico and assessed using wave observations at 12 m and 30 m water depths. Prediction skill for significant wave height is 0.58 and 0.67 at the 12 m and 30 m locations, respectively, with similar performance for wave period and direction. The skill of this simplified, probabilistic time-series construction method is comparable to existing large-scale, high-fidelity operational wave models but provides higher spatial resolution output at low computational expense. The constructed time-series can be developed to support a variety of applications including climate studies and other situations where a comprehensive survey of wave impacts on the coastal area is of interest.
Analysis of Sting Balance Calibration Data Using Optimized Regression Models
NASA Technical Reports Server (NTRS)
Ulbrich, Norbert; Bader, Jon B.
2009-01-01
Calibration data of a wind tunnel sting balance was processed using a search algorithm that identifies an optimized regression model for the data analysis. The selected sting balance had two moment gages that were mounted forward and aft of the balance moment center. The difference and the sum of the two gage outputs were fitted in the least squares sense using the normal force and the pitching moment at the balance moment center as independent variables. The regression model search algorithm predicted that the difference of the gage outputs should be modeled using the intercept and the normal force. The sum of the two gage outputs, on the other hand, should be modeled using the intercept, the pitching moment, and the square of the pitching moment. Equations of the deflection of a cantilever beam are used to show that the search algorithm s two recommended math models can also be obtained after performing a rigorous theoretical analysis of the deflection of the sting balance under load. The analysis of the sting balance calibration data set is a rare example of a situation when regression models of balance calibration data can directly be derived from first principles of physics and engineering. In addition, it is interesting to see that the search algorithm recommended the same regression models for the data analysis using only a set of statistical quality metrics.
Analysis of Sting Balance Calibration Data Using Optimized Regression Models
NASA Technical Reports Server (NTRS)
Ulbrich, N.; Bader, Jon B.
2010-01-01
Calibration data of a wind tunnel sting balance was processed using a candidate math model search algorithm that recommends an optimized regression model for the data analysis. During the calibration the normal force and the moment at the balance moment center were selected as independent calibration variables. The sting balance itself had two moment gages. Therefore, after analyzing the connection between calibration loads and gage outputs, it was decided to choose the difference and the sum of the gage outputs as the two responses that best describe the behavior of the balance. The math model search algorithm was applied to these two responses. An optimized regression model was obtained for each response. Classical strain gage balance load transformations and the equations of the deflection of a cantilever beam under load are used to show that the search algorithm s two optimized regression models are supported by a theoretical analysis of the relationship between the applied calibration loads and the measured gage outputs. The analysis of the sting balance calibration data set is a rare example of a situation when terms of a regression model of a balance can directly be derived from first principles of physics. In addition, it is interesting to note that the search algorithm recommended the correct regression model term combinations using only a set of statistical quality metrics that were applied to the experimental data during the algorithm s term selection process.
Efficiency measurement and the operationalization of hospital production.
Magnussen, J
1996-01-01
OBJECTIVE. To discuss the usefulness of efficiency measures as instruments of monitoring and resource allocation by analyzing their invariance to changes in the operationalization of hospital production. STUDY SETTING. Norwegian hospitals over the three-year period 1989-1991. STUDY DESIGN. Efficiency is measured using Data Envelopment Analysis (DEA). The distribution of efficiency and the ranking of hospitals is compared across models using various distribution-free tests. DATA COLLECTION. Input and output data are collected by the Norwegian Central Bureau of Statistics. PRINCIPAL FINDINGS. The distribution of efficiency is found to be unaffected by changes in the specification of hospital output. Both the ranking of hospitals and the scale properties of the technology, however, are found to depend on the choice of output specification. CONCLUSION. Extreme care should be taken before resource allocation is based on DEA-type efficiency measures alone. Both the identification of efficient and inefficient hospitals and the cardinal measure of inefficiency will depend on the specification of output. Since the scale properties of the technology also vary with the specification of output, the search for an optimal hospital size may be futile. PMID:8617607
Firm productivity, pollution, and output: theory and empirical evidence from China.
Tang, Erzi; Zhang, Jingjing; Haider, Zulfiqar
2015-11-01
Using a theoretical model, this paper argues that as firm productivity increases, there is a decrease in firm-level pollution intensity. However, as productivity increases, firms tend to increase their aggregate output, which requires the use of additional resources that increase pollution. Hence, an increase in productivity results in two opposing effects where increased productivity may in fact increase pollution created by a firm. We describe the joint effect of these two mechanisms on pollution emissions as the "productivity dilemma" of pollution emission. Based on firm-level data from China, we also empirically test this productivity dilemma hypothesis. Our empirical results suggest that, in general, firm productivity has a positive and statistically significant impact on pollution emission in China. However, the impact of productivity on pollution becomes negative when we control for increases in firm output. The empirical evidence also confirms the positive influence of productivity on output, which suggests that the main determinant of pollution is the firm's output. The empirical results provide evidence of the existence of, what we describe as, the productivity dilemma of pollution emission.
NASA Astrophysics Data System (ADS)
Lin, Jiang; Miao, Chiyuan
2017-04-01
Climate change is considered to be one of the greatest environmental threats. This has urged scientific communities to focus on the hot topic. Global climate models (GCMs) are the primary tool used for studying climate change. However, GCMs are limited because of their coarse spatial resolution and inability to resolve important sub-grid scale features such as terrain and clouds. Statistical downscaling methods can be used to downscale large-scale variables to local-scale. In this study, we assess the applicability of the widely used Statistical Downscaling Model (SDSM) for the Loess Plateau, China. The observed variables included daily mean temperature (TMEAN), maximum temperature (TMAX) and minimum temperature (TMIN) from 1961 to 2005. The and the daily atmospheric data were taken from reanalysis data from 1961 to 2005, and global climate model outputs from Beijing Normal University Earth System Model (BNU-ESM) from 1961 to 2099 and from observations . The results show that SDSM performs well for these three climatic variables on the Loess Plateau. After downscaling, the root mean square errors for TMEAN, TMAX, TMIN for BNU-ESM were reduced by 70.9%, 75.1%, and 67.2%, respectively. All the rates of change in TMEAN, TMAX and TMIN during the 21st century decreased after SDSM downscaling. We also show that SDSM can effectively reduce uncertainty, compared with the raw model outputs. TMEAN uncertainty was reduced by 27.1%, 26.8%, and 16.3% for the future scenarios of RCP 2.6, RCP 4.5 and RCP 8.5, respectively. The corresponding reductions in uncertainty were 23.6%, 30.7%, and 18.7% for TMAX, ; and 37.6%, 31.8%, and 23.2% for TMIN.
John Hof; Curtis Flather; Tony Baltic; Stephen Davies
1999-01-01
The 1999 forest and rangeland condition indicator model is a set of independent econometric production functions for environmental outputs (measured with condition indicators) at the national scale. This report documents the development of the database and the statistical estimation required by this particular production structure with emphasis on two special...
Deep space network software cost estimation model
NASA Technical Reports Server (NTRS)
Tausworthe, R. C.
1981-01-01
A parametric software cost estimation model prepared for Deep Space Network (DSN) Data Systems implementation tasks is presented. The resource estimation model incorporates principles and data from a number of existing models. The model calibrates task magnitude and difficulty, development environment, and software technology effects through prompted responses to a set of approximately 50 questions. Parameters in the model are adjusted to fit DSN software life cycle statistics. The estimation model output scales a standard DSN Work Breakdown Structure skeleton, which is then input into a PERT/CPM system, producing a detailed schedule and resource budget for the project being planned.
LP-search and its use in analysis of the accuracy of control systems with acoustical models
NASA Technical Reports Server (NTRS)
Sergeyev, V. I.; Sobol, I. M.; Statnikov, R. B.; Statnikov, I. N.
1973-01-01
The LP-search is proposed as an analog of the Monte Carlo method for finding values in nonlinear statistical systems. It is concluded that: To attain the required accuracy in solution to the problem of control for a statistical system in the LP-search, a considerably smaller number of tests is required than in the Monte Carlo method. The LP-search allows the possibility of multiple repetitions of tests under identical conditions and observability of the output variables of the system.
New output improvements for CLASSY
NASA Technical Reports Server (NTRS)
Rassbach, M. E. (Principal Investigator)
1981-01-01
Additional output data and formats for the CLASSY clustering algorithm were developed. Four such aids to the CLASSY user are described. These are: (1) statistical measures; (2) special map types; (3) formats for standard output; and (4) special cluster display method.
Assessing the Impact of Climate Change on Stream Temperatures in the Methow River Basin, Washington
NASA Astrophysics Data System (ADS)
Gangopadhyay, S.; Caldwell, R. J.; Lai, Y.; Bountry, J.
2011-12-01
The Methow River in Washington offers prime spawning habitat for salmon and other cold-water fishes. During the summer months, low streamflows on the Methow result in cutoff side channels that limit the habitat available to these fishes. Future climate scenarios of increasing air temperature and decreasing precipitation suggest the potential for increasing loss of habitat and fish mortality as stream temperatures rise in response to lower flows and additional heating. To assess the impacts of climate change on stream temperature in the Methow River, the US Bureau of Reclamation is developing an hourly time-step, two-dimensional hydraulic model of the confluence of the Methow and Chewuch Rivers above Winthrop. The model will be coupled with a physical stream temperature model to generate spatial representations of stream conditions conducive for fish habitat. In this study, we develop a statistical framework for generating stream temperature time series from global climate model (GCM) and hydrologic model outputs. Regional observations of stream temperature and hydrometeorological conditions are used to develop statistical models of daily mean stream temperature for the Methow River at Winthrop, WA. Temperature and precipitation projections from 10 global climate models (GCMs) are coupled with the streamflow generated using the University of Washington Variable Infiltration Capacity model. The projections serve as input to the statistical models to generate daily time series of mean daily stream temperature. Since the output from the GCM, VIC, and statistical models offer only daily data, a k-nearest neighbor (k-nn) resampling technique is employed to select appropriate proportion vectors for disaggregating the Winthrop daily flow and temperature to an upstream location on each of the rivers above the confluence. Hourly proportion vectors are then used to disaggregate the daily flow and temperature to hourly values to be used in the hydraulic model. Historical meteorological variables are also selected using the k-nn method. We present the statistical modeling framework using Generalized Linear Models (GLMs), along with diagnostics and measurements of skill. We will also provide a comparison of the stream temperature projections from the future years of 2020, 2040, and 2080 and discuss the potential implications on fish habitat in the Methow River. Future integration of the hourly climate scenarios in the hydraulic model will provide the ability to assess the spatial extent of habitat impacts and allow the USBR to evaluate the effectiveness of various river restoration projects in maintaining or improving habitat in a changing climate.
NASA Astrophysics Data System (ADS)
Curci, Gabriele; Falasca, Serena
2017-04-01
Deterministic air quality forecast is routinely carried out at many local Environmental Agencies in Europe and throughout the world by means of eulerian chemistry-transport models. The skill of these models in predicting the ground-level concentrations of relevant pollutants (ozone, nitrogen dioxide, particulate matter) a few days ahead has greatly improved in recent years, but it is not yet always compliant with the required quality level for decision making (e.g. the European Commission has set a maximum uncertainty of 50% on daily values of relevant pollutants). Post-processing of deterministic model output is thus still regarded as a useful tool to make the forecast more reliable. In this work, we test several bias correction techniques applied to a long-term dataset of air quality forecasts over Europe and Italy. We used the WRF-CHIMERE modelling system, which provides operational experimental chemical weather forecast at CETEMPS (http://pumpkin.aquila.infn.it/forechem/), to simulate the years 2008-2012 at low resolution over Europe (0.5° x 0.5°) and moderate resolution over Italy (0.15° x 0.15°). We compared the simulated dataset with available observation from the European Environmental Agency database (AirBase) and characterized model skill and compliance with EU legislation using the Delta tool from FAIRMODE project (http://fairmode.jrc.ec.europa.eu/). The bias correction techniques adopted are, in order of complexity: (1) application of multiplicative factors calculated as the ratio of model-to-observed concentrations averaged over the previous days; (2) correction of the statistical distribution of model forecasts, in order to make it similar to that of the observations; (3) development and application of Model Output Statistics (MOS) regression equations. We illustrate differences and advantages/disadvantages of the three approaches. All the methods are relatively easy to implement for other modelling systems.
X-ray light curves of active galactic nuclei are phase incoherent
NASA Technical Reports Server (NTRS)
Krolik, Julian; Done, Chris; Madejski, Grzegorz
1993-01-01
We compute the Fourier phase spectra for the light curves of five low-luminosity active galactic nuclei observed by EXOSAT. There is no statistically significant phase coherence in any of them. This statement is equivalent, subject to a technical caveat, to a demonstration that their fluctuation statistics are Gaussian. Models in which the X-ray output is controlled wholly by a unitary process undergoing a nonlinear limit cycle are therefore ruled out, while models with either a large number of randomly excited independent oscillation modes or nonlinearly interacting spatially dependent oscillations are favored. We also demonstrate how the degree of phase coherence in light curve fluctuations influences the application of causality bounds on internal length scales.
Binary recursive partitioning: background, methods, and application to psychology.
Merkle, Edgar C; Shaffer, Victoria A
2011-02-01
Binary recursive partitioning (BRP) is a computationally intensive statistical method that can be used in situations where linear models are often used. Instead of imposing many assumptions to arrive at a tractable statistical model, BRP simply seeks to accurately predict a response variable based on values of predictor variables. The method outputs a decision tree depicting the predictor variables that were related to the response variable, along with the nature of the variables' relationships. No significance tests are involved, and the tree's 'goodness' is judged based on its predictive accuracy. In this paper, we describe BRP methods in a detailed manner and illustrate their use in psychological research. We also provide R code for carrying out the methods.
A Simplified Algorithm for Statistical Investigation of Damage Spreading
NASA Astrophysics Data System (ADS)
Gecow, Andrzej
2009-04-01
On the way to simulating adaptive evolution of complex system describing a living object or human developed project, a fitness should be defined on node states or network external outputs. Feedbacks lead to circular attractors of these states or outputs which make it difficult to define a fitness. The main statistical effects of adaptive condition are the result of small change tendency and to appear, they only need a statistically correct size of damage initiated by evolutionary change of system. This observation allows to cut loops of feedbacks and in effect to obtain a particular statistically correct state instead of a long circular attractor which in the quenched model is expected for chaotic network with feedback. Defining fitness on such states is simple. We calculate only damaged nodes and only once. Such an algorithm is optimal for investigation of damage spreading i.e. statistical connections of structural parameters of initial change with the size of effected damage. It is a reversed-annealed method—function and states (signals) may be randomly substituted but connections are important and are preserved. The small damages important for adaptive evolution are correctly depicted in comparison to Derrida annealed approximation which expects equilibrium levels for large networks. The algorithm indicates these levels correctly. The relevant program in Pascal, which executes the algorithm for a wide range of parameters, can be obtained from the author.
Styron, J D; Cooper, G W; Ruiz, C L; Hahn, K D; Chandler, G A; Nelson, A J; Torres, J A; McWatters, B R; Carpenter, Ken; Bonura, M A
2014-11-01
A methodology for obtaining empirical curves relating absolute measured scintillation light output to beta energy deposited is presented. Output signals were measured from thin plastic scintillator using NIST traceable beta and gamma sources and MCNP5 was used to model the energy deposition from each source. Combining the experimental and calculated results gives the desired empirical relationships. To validate, the sensitivity of a beryllium/scintillator-layer neutron activation detector was predicted and then exposed to a known neutron fluence from a Deuterium-Deuterium fusion plasma (DD). The predicted and the measured sensitivity were in statistical agreement.
Large signal design - Performance and simulation of a 3 W C-band GaAs power MMIC
NASA Astrophysics Data System (ADS)
White, Paul M.; Hendrickson, Mary A.; Chang, Wayne H.; Curtice, Walter R.
1990-04-01
This paper describes a C-band GaAs power MMIC amplifier that achieved a gain of 17 dB and 1 dB compressed CW power output of 34 dBm across a 4.5-6.25-GHz frequency range, without design iteration. The first-pass design success was achieved due to the application of a harmonic balance simulator to define the optimum output load, using a large-signal FET model determined statistically on a well controlled foundry-ready process line. The measured performance was close to that predicted by a full harmonic balance circuit analysis.
Puch-Solis, Roberto; Clayton, Tim
2014-07-01
The high sensitivity of the technology for producing profiles means that it has become routine to produce profiles from relatively small quantities of DNA. The profiles obtained from low template DNA (LTDNA) are affected by several phenomena which must be taken into consideration when interpreting and evaluating this evidence. Furthermore, many of the same phenomena affect profiles from higher amounts of DNA (e.g. where complex mixtures has been revealed). In this article we present a statistical model, which forms the basis of software DNA LiRa, and that is able to calculate likelihood ratios where one to four donors are postulated and for any number of replicates. The model can take into account dropin and allelic dropout for different contributors, template degradation and uncertain allele designations. In this statistical model unknown parameters are treated following the Empirical Bayesian paradigm. The performance of LiRa is tested using examples and the outputs are compared with those generated using two other statistical software packages likeLTD and LRmix. The concept of ban efficiency is introduced as a measure for assessing model sensitivity. Copyright © 2014. Published by Elsevier Ireland Ltd.
Statistical Mechanics of Node-perturbation Learning with Noisy Baseline
NASA Astrophysics Data System (ADS)
Hara, Kazuyuki; Katahira, Kentaro; Okada, Masato
2017-02-01
Node-perturbation learning is a type of statistical gradient descent algorithm that can be applied to problems where the objective function is not explicitly formulated, including reinforcement learning. It estimates the gradient of an objective function by using the change in the object function in response to the perturbation. The value of the objective function for an unperturbed output is called a baseline. Cho et al. proposed node-perturbation learning with a noisy baseline. In this paper, we report on building the statistical mechanics of Cho's model and on deriving coupled differential equations of order parameters that depict learning dynamics. We also show how to derive the generalization error by solving the differential equations of order parameters. On the basis of the results, we show that Cho's results are also apply in general cases and show some general performances of Cho's model.
An application of hybrid downscaling model to forecast summer precipitation at stations in China
NASA Astrophysics Data System (ADS)
Liu, Ying; Fan, Ke
2014-06-01
A pattern prediction hybrid downscaling method was applied to predict summer (June-July-August) precipitation at China 160 stations. The predicted precipitation from the downscaling scheme is available one month before. Four predictors were chosen to establish the hybrid downscaling scheme. The 500-hPa geopotential height (GH5) and 850-hPa specific humidity (q85) were from the skillful predicted output of three DEMETER (Development of a European Multi-model Ensemble System for Seasonal to Interannual Prediction) general circulation models (GCMs). The 700-hPa geopotential height (GH7) and sea level pressure (SLP) were from reanalysis datasets. The hybrid downscaling scheme (HD-4P) has better prediction skill than a conventional statistical downscaling model (SD-2P) which contains two predictors derived from the output of GCMs, although two downscaling schemes were performed to improve the seasonal prediction of summer rainfall in comparison with the original output of the DEMETER GCMs. In particular, HD-4P downscaling predictions showed lower root mean square errors than those based on the SD-2P model. Furthermore, the HD-4P downscaling model reproduced the China summer precipitation anomaly centers more accurately than the scenario of the SD-2P model in 1998. A hybrid downscaling prediction should be effective to improve the prediction skill of summer rainfall at stations in China.
A comparative verification of high resolution precipitation forecasts using model output statistics
NASA Astrophysics Data System (ADS)
van der Plas, Emiel; Schmeits, Maurice; Hooijman, Nicolien; Kok, Kees
2017-04-01
Verification of localized events such as precipitation has become even more challenging with the advent of high-resolution meso-scale numerical weather prediction (NWP). The realism of a forecast suggests that it should compare well against precipitation radar imagery with similar resolution, both spatially and temporally. Spatial verification methods solve some of the representativity issues that point verification gives rise to. In this study a verification strategy based on model output statistics is applied that aims to address both double penalty and resolution effects that are inherent to comparisons of NWP models with different resolutions. Using predictors based on spatial precipitation patterns around a set of stations, an extended logistic regression (ELR) equation is deduced, leading to a probability forecast distribution of precipitation for each NWP model, analysis and lead time. The ELR equations are derived for predictands based on areal calibrated radar precipitation and SYNOP observations. The aim is to extract maximum information from a series of precipitation forecasts, like a trained forecaster would. The method is applied to the non-hydrostatic model Harmonie (2.5 km resolution), Hirlam (11 km resolution) and the ECMWF model (16 km resolution), overall yielding similar Brier skill scores for the 3 post-processed models, but larger differences for individual lead times. Besides, the Fractions Skill Score is computed using the 3 deterministic forecasts, showing somewhat better skill for the Harmonie model. In other words, despite the realism of Harmonie precipitation forecasts, they only perform similarly or somewhat better than precipitation forecasts from the 2 lower resolution models, at least in the Netherlands.
Statistically Qualified Neuro-Analytic system and Method for Process Monitoring
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vilim, Richard B.; Garcia, Humberto E.; Chen, Frederick W.
1998-11-04
An apparatus and method for monitoring a process involves development and application of a statistically qualified neuro-analytic (SQNA) model to accurately and reliably identify process change. The development of the SQNA model is accomplished in two steps: deterministic model adaption and stochastic model adaptation. Deterministic model adaption involves formulating an analytic model of the process representing known process characteristics,augmenting the analytic model with a neural network that captures unknown process characteristics, and training the resulting neuro-analytic model by adjusting the neural network weights according to a unique scaled equation emor minimization technique. Stochastic model adaptation involves qualifying any remaining uncertaintymore » in the trained neuro-analytic model by formulating a likelihood function, given an error propagation equation, for computing the probability that the neuro-analytic model generates measured process output. Preferably, the developed SQNA model is validated using known sequential probability ratio tests and applied to the process as an on-line monitoring system.« less
Hare, Jonathan A.; Wuenschel, Mark J.; Kimball, Matthew E.
2012-01-01
We couple a species range limit hypothesis with the output of an ensemble of general circulation models to project the poleward range limit of gray snapper. Using laboratory-derived thermal limits and statistical downscaling from IPCC AR4 general circulation models, we project that gray snapper will shift northwards; the magnitude of this shift is dependent on the magnitude of climate change. We also evaluate the uncertainty in our projection and find that statistical uncertainty associated with the experimentally-derived thermal limits is the largest contributor (∼ 65%) to overall quantified uncertainty. This finding argues for more experimental work aimed at understanding and parameterizing the effects of climate change and variability on marine species. PMID:23284974
Jackson, B Scott
2004-10-01
Many different types of integrate-and-fire models have been designed in order to explain how it is possible for a cortical neuron to integrate over many independent inputs while still producing highly variable spike trains. Within this context, the variability of spike trains has been almost exclusively measured using the coefficient of variation of interspike intervals. However, another important statistical property that has been found in cortical spike trains and is closely associated with their high firing variability is long-range dependence. We investigate the conditions, if any, under which such models produce output spike trains with both interspike-interval variability and long-range dependence similar to those that have previously been measured from actual cortical neurons. We first show analytically that a large class of high-variability integrate-and-fire models is incapable of producing such outputs based on the fact that their output spike trains are always mathematically equivalent to renewal processes. This class of models subsumes a majority of previously published models, including those that use excitation-inhibition balance, correlated inputs, partial reset, or nonlinear leakage to produce outputs with high variability. Next, we study integrate-and-fire models that have (nonPoissonian) renewal point process inputs instead of the Poisson point process inputs used in the preceding class of models. The confluence of our analytical and simulation results implies that the renewal-input model is capable of producing high variability and long-range dependence comparable to that seen in spike trains recorded from cortical neurons, but only if the interspike intervals of the inputs have infinite variance, a physiologically unrealistic condition. Finally, we suggest a new integrate-and-fire model that does not suffer any of the previously mentioned shortcomings. By analyzing simulation results for this model, we show that it is capable of producing output spike trains with interspike-interval variability and long-range dependence that match empirical data from cortical spike trains. This model is similar to the other models in this study, except that its inputs are fractional-gaussian-noise-driven Poisson processes rather than renewal point processes. In addition to this model's success in producing realistic output spike trains, its inputs have long-range dependence similar to that found in most subcortical neurons in sensory pathways, including the inputs to cortex. Analysis of output spike trains from simulations of this model also shows that a tight balance between the amounts of excitation and inhibition at the inputs to cortical neurons is not necessary for high interspike-interval variability at their outputs. Furthermore, in our analysis of this model, we show that the superposition of many fractional-gaussian-noise-driven Poisson processes does not approximate a Poisson process, which challenges the common assumption that the total effect of a large number of inputs on a neuron is well represented by a Poisson process.
Akimoto, Yuki; Yugi, Katsuyuki; Uda, Shinsuke; Kudo, Takamasa; Komori, Yasunori; Kubota, Hiroyuki; Kuroda, Shinya
2013-01-01
Cells use common signaling molecules for the selective control of downstream gene expression and cell-fate decisions. The relationship between signaling molecules and downstream gene expression and cellular phenotypes is a multiple-input and multiple-output (MIMO) system and is difficult to understand due to its complexity. For example, it has been reported that, in PC12 cells, different types of growth factors activate MAP kinases (MAPKs) including ERK, JNK, and p38, and CREB, for selective protein expression of immediate early genes (IEGs) such as c-FOS, c-JUN, EGR1, JUNB, and FOSB, leading to cell differentiation, proliferation and cell death; however, how multiple-inputs such as MAPKs and CREB regulate multiple-outputs such as expression of the IEGs and cellular phenotypes remains unclear. To address this issue, we employed a statistical method called partial least squares (PLS) regression, which involves a reduction of the dimensionality of the inputs and outputs into latent variables and a linear regression between these latent variables. We measured 1,200 data points for MAPKs and CREB as the inputs and 1,900 data points for IEGs and cellular phenotypes as the outputs, and we constructed the PLS model from these data. The PLS model highlighted the complexity of the MIMO system and growth factor-specific input-output relationships of cell-fate decisions in PC12 cells. Furthermore, to reduce the complexity, we applied a backward elimination method to the PLS regression, in which 60 input variables were reduced to 5 variables, including the phosphorylation of ERK at 10 min, CREB at 5 min and 60 min, AKT at 5 min and JNK at 30 min. The simple PLS model with only 5 input variables demonstrated a predictive ability comparable to that of the full PLS model. The 5 input variables effectively extracted the growth factor-specific simple relationships within the MIMO system in cell-fate decisions in PC12 cells.
ERIC Educational Resources Information Center
Kalender, Ilker
2012-01-01
catcher is a software program designed to compute the [omega] index, a common statistical index for the identification of collusions (cheating) among examinees taking an educational or psychological test. It requires (a) responses and (b) ability estimations of individuals, and (c) item parameters to make computations and outputs the results of…
Value of Forecaster in the Loop
2014-09-01
forecast system IFR instrument flight rules IMC instrument meteorological conditions LAMP Localized Aviation Model Output Statistics Program METOC...obtaining valuable experience. Additional factors have impacted the Navy weather forecast process. There has been a the realignment of the meteorology...forecasts that are assessed, it may be a relatively small number that have direct impact on the decision-making process. Whether the value is minimal or
A Statistical Representation of Pyrotechnic Igniter Output
NASA Astrophysics Data System (ADS)
Guo, Shuyue; Cooper, Marcia
2017-06-01
The output of simplified pyrotechnic igniters for research investigations is statistically characterized by monitoring the post-ignition external flow field with Schlieren imaging. Unique to this work is a detailed quantification of all measurable manufacturing parameters (e.g., bridgewire length, charge cavity dimensions, powder bed density) and associated shock-motion variability in the tested igniters. To demonstrate experimental precision of the recorded Schlieren images and developed image processing methodologies, commercial exploding bridgewires using wires of different parameters were tested. Finally, a statistically-significant population of manufactured igniters were tested within the Schlieren arrangement resulting in a characterization of the nominal output. Comparisons between the variances measured throughout the manufacturing processes and the calculated output variance provide insight into the critical device phenomena that dominate performance. Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's NNSA under contract DE-AC04-94AL85000.
Statistics & Input-Output Measures for School Libraries in Colorado, 2002.
ERIC Educational Resources Information Center
Colorado State Library, Denver.
This document presents statistics and input-output measures for K-12 school libraries in Colorado for 2002. Data are presented by type and size of school, i.e., high schools (six categories ranging from 2,000 and over to under 300), junior high/middle schools (five categories ranging from 1,000-1,999 to under 300), elementary schools (four…
NASA Astrophysics Data System (ADS)
Olson, R.; An, S. I.
2016-12-01
Atlantic Meridional Overturning Circulation (AMOC) in the ocean might slow down in the future, which can lead to a host of climatic effects in North Atlantic and throughout the world. Despite improvements in climate models and availability of new observations, AMOC projections remain uncertain. Here we constrain CMIP5 multi-model ensemble output with observations of a recently developed AMOC index to provide improved Bayesian predictions of future AMOC. Specifically, we first calculate yearly AMOC index loosely based on Rahmstorf et al. (2015) for years 1880—2004 for both observations, and the CMIP5 models for which relevant output is available. We then assign a weight to each model based on a Bayesian Model Averaging method that accounts for differential model skill in terms of both mean state and variability. We include the temporal autocorrelation in climate model errors, and account for the uncertainty in the parameters of our statistical model. We use the weights to provide future weighted projections of AMOC, and compare them to un-weighted ones. Our projections use bootstrapping to account for uncertainty in internal AMOC variability. We also perform spectral and other statistical analyses to show that AMOC index variability, both in models and in observations, is consistent with red noise. Our results improve on and complement previous work by using a new ensemble of climate models, a different observational metric, and an improved Bayesian weighting method that accounts for differential model skill at reproducing internal variability. Reference: Rahmstorf, S., Box, J. E., Feulner, G., Mann, M. E., Robinson, A., Rutherford, S., & Schaffernicht, E. J. (2015). Exceptional twentieth-century slowdown in atlantic ocean overturning circulation. Nature Climate Change, 5(5), 475-480. doi:10.1038/nclimate2554
Parallel computing for automated model calibration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burke, John S.; Danielson, Gary R.; Schulz, Douglas A.
2002-07-29
Natural resources model calibration is a significant burden on computing and staff resources in modeling efforts. Most assessments must consider multiple calibration objectives (for example magnitude and timing of stream flow peak). An automated calibration process that allows real time updating of data/models, allowing scientists to focus effort on improving models is needed. We are in the process of building a fully featured multi objective calibration tool capable of processing multiple models cheaply and efficiently using null cycle computing. Our parallel processing and calibration software routines have been generically, but our focus has been on natural resources model calibration. Somore » far, the natural resources models have been friendly to parallel calibration efforts in that they require no inter-process communication, only need a small amount of input data and only output a small amount of statistical information for each calibration run. A typical auto calibration run might involve running a model 10,000 times with a variety of input parameters and summary statistical output. In the past model calibration has been done against individual models for each data set. The individual model runs are relatively fast, ranging from seconds to minutes. The process was run on a single computer using a simple iterative process. We have completed two Auto Calibration prototypes and are currently designing a more feature rich tool. Our prototypes have focused on running the calibration in a distributed computing cross platform environment. They allow incorporation of?smart? calibration parameter generation (using artificial intelligence processing techniques). Null cycle computing similar to SETI@Home has also been a focus of our efforts. This paper details the design of the latest prototype and discusses our plans for the next revision of the software.« less
Assessment of Surface Air Temperature over China Using Multi-criterion Model Ensemble Framework
NASA Astrophysics Data System (ADS)
Li, J.; Zhu, Q.; Su, L.; He, X.; Zhang, X.
2017-12-01
The General Circulation Models (GCMs) are designed to simulate the present climate and project future trends. It has been noticed that the performances of GCMs are not always in agreement with each other over different regions. Model ensemble techniques have been developed to post-process the GCMs' outputs and improve their prediction reliabilities. To evaluate the performances of GCMs, root-mean-square error, correlation coefficient, and uncertainty are commonly used statistical measures. However, the simultaneous achievements of these satisfactory statistics cannot be guaranteed when using many model ensemble techniques. Meanwhile, uncertainties and future scenarios are critical for Water-Energy management and operation. In this study, a new multi-model ensemble framework was proposed. It uses a state-of-art evolutionary multi-objective optimization algorithm, termed Multi-Objective Complex Evolution Global Optimization with Principle Component Analysis and Crowding Distance (MOSPD), to derive optimal GCM ensembles and demonstrate the trade-offs among various solutions. Such trade-off information was further analyzed with a robust Pareto front with respect to different statistical measures. A case study was conducted to optimize the surface air temperature (SAT) ensemble solutions over seven geographical regions of China for the historical period (1900-2005) and future projection (2006-2100). The results showed that the ensemble solutions derived with MOSPD algorithm are superior over the simple model average and any single model output during the historical simulation period. For the future prediction, the proposed ensemble framework identified that the largest SAT change would occur in the South Central China under RCP 2.6 scenario, North Eastern China under RCP 4.5 scenario, and North Western China under RCP 8.5 scenario, while the smallest SAT change would occur in the Inner Mongolia under RCP 2.6 scenario, South Central China under RCP 4.5 scenario, and South Central China under RCP 8.5 scenario.
XXI century projections of wind-wave conditions and sea-level rise in the Black sea
NASA Astrophysics Data System (ADS)
Polonsky, A.; Garmashov, A.; Fomin, V.; Valchev, N.; Trifonova, E.
2012-04-01
Projection of regional climate changes for XXI century is one of the priorities of EC environmental programme. Potential worsening of the waves' statistics, sea level rise and extreme surges are the principal negative consequences of the climate change for marine environment. That is why the main purpose of this presentation is to discuss the above issue for the Black sea region (with a strong focus to the south-west subregion because the maximum heights of waves exceeding 10 m occur just here) using output of several global coupled models (GCM) for XXI century, wave simulation, long-term observations of sea level and statistical techniques. First of all we tried to choose the best coupled model (s) simulated the Black sea climate change and variability using the control experiments for 20 century (203). The principal result is as follows. There is not one model which is simulating adequately even one atmospheric parameter for all seasons. Therefore we considered (for the climate projection) different outputs form various models. When it was possible we calculated also the ensemble mean projection for the selected model (s) and emission scenarios. To calculate the wave projection we used the output of SWAN model forced by the GCM wind projection for 2010 to 2100. To estimate the sea level rise in XXI century and future surges statistics we extrapolate the observed sea level rise tendencies, statistical relation between wave heights and sea level and wave scenarios. Results show that in general, the climate change in XXI century doesn't lead to the catastrophic change of the Black sea wind-wave statistics including the extreme waves in the S-W Black sea. The typical atmospheric pattern leading to the intense storm in the S-W Black sea is characterized by the persistent anticyclonic area to the North of the Black sea and cyclonic conditions in the Southern Black sea region. Such pressure pattern causes persistent and strong eastern or north-eastern wind which generates the high waves in the S-E Black sea. The climate projections show that the frequency of such atmospheric pattern will not principally increase. The recent probability of the extreme wave height (exceeding 8 to10 m) in the S-W Black sea (~1 occurrence per 10 years) will not be much worse in XXI century. Similar conclusion is true for the storm surges along the Bulgarian coastline. Expected sea level rise in the Black sea basin for XXI century due to regional climate changes is about 2 mm per year (±50%). However, some Black sea subregions (such as Odessa and Varna bay) are characterized by fivefold sea level rise because of the local land subsidence. So, this geomorphologic effect is the most dangerous local consequence for the sustainable development and management of the coastal zone in such subregions. This study was supported by EC project "THESEUS".
Application of support vector machines for copper potential mapping in Kerman region, Iran
NASA Astrophysics Data System (ADS)
Shabankareh, Mahdi; Hezarkhani, Ardeshir
2017-04-01
The first step in systematic exploration studies is mineral potential mapping, which involves classification of the study area to favorable and unfavorable parts. Support vector machines (SVM) are designed for supervised classification based on statistical learning theory. This method named support vector classification (SVC). This paper describes SVC model, which combine exploration data in the regional-scale for copper potential mapping in Kerman copper bearing belt in south of Iran. Data layers or evidential maps were in six datasets namely lithology, tectonic, airborne geophysics, ferric alteration, hydroxide alteration and geochemistry. The SVC modeling result selected 2220 pixels as favorable zones, approximately 25 percent of the study area. Besides, 66 out of 86 copper indices, approximately 78.6% of all, were located in favorable zones. Other main goal of this study was to determine how each input affects favorable output. For this purpose, the histogram of each normalized input data to its favorable output was drawn. The histograms of each input dataset for favorable output showed that each information layer had a certain pattern. These patterns of SVC results could be considered as regional copper exploration characteristics.
User’s guide for MapMark4GUI—A graphical user interface for the MapMark4 R package
Shapiro, Jason
2018-05-29
MapMark4GUI is an R graphical user interface (GUI) developed by the U.S. Geological Survey to support user implementation of the MapMark4 R statistical software package. MapMark4 was developed by the U.S. Geological Survey to implement probability calculations for simulating undiscovered mineral resources in quantitative mineral resource assessments. The GUI provides an easy-to-use tool to input data, run simulations, and format output results for the MapMark4 package. The GUI is written and accessed in the R statistical programming language. This user’s guide includes instructions on installing and running MapMark4GUI and descriptions of the statistical output processes, output files, and test data files.
NASA Technical Reports Server (NTRS)
Craft, R.; Dunn, C.; Mccord, J.; Simeone, L.
1980-01-01
A user guide and programmer documentation is provided for a system of PRIME 400 minicomputer programs. The system was designed to support loading analyses on the Tracking Data Relay Satellite System (TDRSS). The system is a scheduler for various types of data relays (including tape recorder dumps and real time relays) from orbiting payloads to the TDRSS. Several model options are available to statistically generate data relay requirements. TDRSS time lines (representing resources available for scheduling) and payload/TDRSS acquisition and loss of sight time lines are input to the scheduler from disk. Tabulated output from the interactive system includes a summary of the scheduler activities over time intervals specified by the user and overall summary of scheduler input and output information. A history file, which records every event generated by the scheduler, is written to disk to allow further scheduling on remaining resources and to provide data for graphic displays or additional statistical analysis.
Modeling of the spectral evolution in a narrow-linewidth fiber amplifier
NASA Astrophysics Data System (ADS)
Liu, Wei; Kuang, Wenjun; Jiang, Man; Xu, Jiangming; Zhou, Pu; Liu, Zejin
2016-03-01
Efficient numerical modeling of the spectral evolution in a narrow-linewidth fiber amplifier is presented. By describing the seeds using a statistical model and simulating the amplification process through power balanced equations combined with the nonlinear Schrödinger equations, the spectral evolution of different seeds in the fiber amplifier can be evaluated accurately. The simulation results show that the output spectra are affected by the temporal stability of the seeds and the seeds with constant amplitude in time are beneficial to maintain the linewidth of the seed in the fiber amplifier.
Binny, Diana; Mezzenga, Emilio; Lancaster, Craig M; Trapp, Jamie V; Kairn, Tanya; Crowe, Scott B
2017-06-01
The aims of this study were to investigate machine beam parameters using the TomoTherapy quality assurance (TQA) tool, establish a correlation to patient delivery quality assurance results and to evaluate the relationship between energy variations detected using different TQA modules. TQA daily measurement results from two treatment machines for periods of up to 4years were acquired. Analyses of beam quality, helical and static output variations were made. Variations from planned dose were also analysed using Statistical Process Control (SPC) technique and their relationship to output trends were studied. Energy variations appeared to be one of the contributing factors to delivery output dose seen in the analysis. Ion chamber measurements were reliable indicators of energy and output variations and were linear with patient dose verifications. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.
Scaling of global input-output networks
NASA Astrophysics Data System (ADS)
Liang, Sai; Qi, Zhengling; Qu, Shen; Zhu, Ji; Chiu, Anthony S. F.; Jia, Xiaoping; Xu, Ming
2016-06-01
Examining scaling patterns of networks can help understand how structural features relate to the behavior of the networks. Input-output networks consist of industries as nodes and inter-industrial exchanges of products as links. Previous studies consider limited measures for node strengths and link weights, and also ignore the impact of dataset choice. We consider a comprehensive set of indicators in this study that are important in economic analysis, and also examine the impact of dataset choice, by studying input-output networks in individual countries and the entire world. Results show that Burr, Log-Logistic, Log-normal, and Weibull distributions can better describe scaling patterns of global input-output networks. We also find that dataset choice has limited impacts on the observed scaling patterns. Our findings can help examine the quality of economic statistics, estimate missing data in economic statistics, and identify key nodes and links in input-output networks to support economic policymaking.
NASA Astrophysics Data System (ADS)
Mitchell, M. J.; Pichugina, Y. L.; Banta, R. M.
2015-12-01
Models are important tools for assessing potential of wind energy sites, but the accuracy of these projections has not been properly validated. In this study, High Resolution Doppler Lidar (HRDL) data obtained with high temporal and spatial resolution at heights of modern turbine rotors were compared to output from the WRF-chem model in order to help improve the performance of the model in producing accurate wind forecasts for the industry. HRDL data were collected from January 23-March 1, 2012 during the Uintah Basin Winter Ozone Study (UBWOS) field campaign. A model validation method was based on the qualitative comparison of the wind field images, time-series analysis and statistical analysis of the observed and modeled wind speed and direction, both for case studies and for the whole experiment. To compare the WRF-chem model output to the HRDL observations, the model heights and forecast times were interpolated to match the observed times and heights. Then, time-height cross-sections of the HRDL and WRF-Chem wind speed and directions were plotted to select case studies. Cross-sections of the differences between the observed and forecasted wind speed and directions were also plotted to visually analyze the model performance in different wind flow conditions. A statistical analysis includes the calculation of vertical profiles and time series of bias, correlation coefficient, root mean squared error, and coefficient of determination between two datasets. The results from this analysis reveals where and when the model typically struggles in forecasting winds at heights of modern turbine rotors so that in the future the model can be improved for the industry.
Reversibility in Quantum Models of Stochastic Processes
NASA Astrophysics Data System (ADS)
Gier, David; Crutchfield, James; Mahoney, John; James, Ryan
Natural phenomena such as time series of neural firing, orientation of layers in crystal stacking and successive measurements in spin-systems are inherently probabilistic. The provably minimal classical models of such stochastic processes are ɛ-machines, which consist of internal states, transition probabilities between states and output values. The topological properties of the ɛ-machine for a given process characterize the structure, memory and patterns of that process. However ɛ-machines are often not ideal because their statistical complexity (Cμ) is demonstrably greater than the excess entropy (E) of the processes they represent. Quantum models (q-machines) of the same processes can do better in that their statistical complexity (Cq) obeys the relation Cμ >= Cq >= E. q-machines can be constructed to consider longer lengths of strings, resulting in greater compression. With code-words of sufficiently long length, the statistical complexity becomes time-symmetric - a feature apparently novel to this quantum representation. This result has ramifications for compression of classical information in quantum computing and quantum communication technology.
A statistical approach to the brittle fracture of a multi-phase solid
NASA Technical Reports Server (NTRS)
Liu, W. K.; Lua, Y. I.; Belytschko, T.
1991-01-01
A stochastic damage model is proposed to quantify the inherent statistical distribution of the fracture toughness of a brittle, multi-phase solid. The model, based on the macrocrack-microcrack interaction, incorporates uncertainties in locations and orientations of microcracks. Due to the high concentration of microcracks near the macro-tip, a higher order analysis based on traction boundary integral equations is formulated first for an arbitrary array of cracks. The effects of uncertainties in locations and orientations of microcracks at a macro-tip are analyzed quantitatively by using the boundary integral equations method in conjunction with the computer simulation of the random microcrack array. The short range interactions resulting from surrounding microcracks closet to the main crack tip are investigated. The effects of microcrack density parameter are also explored in the present study. The validity of the present model is demonstrated by comparing its statistical output with the Neville distribution function, which gives correct fits to sets of experimental data from multi-phase solids.
NASA Astrophysics Data System (ADS)
Preston, L. A.
2017-12-01
Marine hydrokinetic (MHK) devices offer a clean, renewable alternative energy source for the future. Responsible utilization of MHK devices, however, requires that the effects of acoustic noise produced by these devices on marine life and marine-related human activities be well understood. Paracousti is a 3-D full waveform acoustic modeling suite that can accurately propagate MHK noise signals in the complex bathymetry found in the near-shore to open ocean environment and considers real properties of the seabed, water column, and air-surface interface. However, this is a deterministic simulation that assumes the environment and source are exactly known. In reality, environmental and source characteristics are often only known in a statistical sense. Thus, to fully characterize the expected noise levels within the marine environment, this uncertainty in environmental and source factors should be incorporated into the acoustic simulations. One method is to use Monte Carlo (MC) techniques where simulation results from a large number of deterministic solutions are aggregated to provide statistical properties of the output signal. However, MC methods can be computationally prohibitive since they can require tens of thousands or more simulations to build up an accurate representation of those statistical properties. An alternative method, using the technique of stochastic partial differential equations (SPDE), allows computation of the statistical properties of output signals at a small fraction of the computational cost of MC. We are developing a SPDE solver for the 3-D acoustic wave propagation problem called Paracousti-UQ to help regulators and operators assess the statistical properties of environmental noise produced by MHK devices. In this presentation, we present the SPDE method and compare statistical distributions of simulated acoustic signals in simple models to MC simulations to show the accuracy and efficiency of the SPDE method. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.
NASA Technical Reports Server (NTRS)
Coy, James; Schultz, Christopher J.; Case, Jonathan L.
2017-01-01
Can we use modeled information of the land surface and characteristics of lightning beyond flash occurrence to increase the identification and prediction of wildfires? Combine observed cloud-to-ground (CG) flashes with real-time land surface model output, and Compare data with areas where lightning did not start a wildfire to determine what land surface conditions and lightning characteristics were responsible for causing wildfires. Statistical differences between suspected fire-starters and non-fire-starters were peak-current dependent 0-10 cm Volumetric and Relative Soil Moisture comparisons were statistically dependent to at least the p = 0.05 independence level for both polarity flash types Suspected fire-starters typically occurred in areas of lower soil moisture than non-fire-starters. GVF value comparisons were only found to be statistically dependent for -CG flashes. However, random sampling of the -CG non-fire starter dataset revealed that this relationship may not always hold.
Evaluating wind extremes in CMIP5 climate models
NASA Astrophysics Data System (ADS)
Kumar, Devashish; Mishra, Vimal; Ganguly, Auroop R.
2015-07-01
Wind extremes have consequences for renewable energy sectors, critical infrastructures, coastal ecosystems, and insurance industry. Considerable debates remain regarding the impacts of climate change on wind extremes. While climate models have occasionally shown increases in regional wind extremes, a decline in the magnitude of mean and extreme near-surface wind speeds has been recently reported over most regions of the Northern Hemisphere using observed data. Previous studies of wind extremes under climate change have focused on selected regions and employed outputs from the regional climate models (RCMs). However, RCMs ultimately rely on the outputs of global circulation models (GCMs), and the value-addition from the former over the latter has been questioned. Regional model runs rarely employ the full suite of GCM ensembles, and hence may not be able to encapsulate the most likely projections or their variability. Here we evaluate the performance of the latest generation of GCMs, the Coupled Model Intercomparison Project phase 5 (CMIP5), in simulating extreme winds. We find that the multimodel ensemble (MME) mean captures the spatial variability of annual maximum wind speeds over most regions except over the mountainous terrains. However, the historical temporal trends in annual maximum wind speeds for the reanalysis data, ERA-Interim, are not well represented in the GCMs. The historical trends in extreme winds from GCMs are statistically not significant over most regions. The MME model simulates the spatial patterns of extreme winds for 25-100 year return periods. The projected extreme winds from GCMs exhibit statistically less significant trends compared to the historical reference period.
Generalized Polynomial Chaos Based Uncertainty Quantification for Planning MRgLITT Procedures
Fahrenholtz, S.; Stafford, R. J.; Maier, F.; Hazle, J. D.; Fuentes, D.
2014-01-01
Purpose A generalized polynomial chaos (gPC) method is used to incorporate constitutive parameter uncertainties within the Pennes representation of bioheat transfer phenomena. The stochastic temperature predictions of the mathematical model are critically evaluated against MR thermometry data for planning MR-guided Laser Induced Thermal Therapies (MRgLITT). Methods Pennes bioheat transfer model coupled with a diffusion theory approximation of laser tissue interaction was implemented as the underlying deterministic kernel. A probabilistic sensitivity study was used to identify parameters that provide the most variance in temperature output. Confidence intervals of the temperature predictions are compared to MR temperature imaging (MRTI) obtained during phantom and in vivo canine (n=4) MRgLITT experiments. The gPC predictions were quantitatively compared to MRTI data using probabilistic linear and temporal profiles as well as 2-D 60 °C isotherms. Results Within the range of physically meaningful constitutive values relevant to the ablative temperature regime of MRgLITT, the sensitivity study indicated that the optical parameters, particularly the anisotropy factor, created the most variance in the stochastic model's output temperature prediction. Further, within the statistical sense considered, a nonlinear model of the temperature and damage dependent perfusion, absorption, and scattering is captured within the confidence intervals of the linear gPC method. Multivariate stochastic model predictions using parameters with the dominant sensitivities show good agreement with experimental MRTI data. Conclusions Given parameter uncertainties and mathematical modeling approximations of the Pennes bioheat model, the statistical framework demonstrates conservative estimates of the therapeutic heating and has potential for use as a computational prediction tool for thermal therapy planning. PMID:23692295
Regional model simulations of New Zealand climate
NASA Astrophysics Data System (ADS)
Renwick, James A.; Katzfey, Jack J.; Nguyen, Kim C.; McGregor, John L.
1998-03-01
Simulation of New Zealand climate is examined through the use of a regional climate model nested within the output of the Commonwealth Scientific and Industrial Research Organisation nine-level general circulation model (GCM). R21 resolution GCM output is used to drive a regional model run at 125 km grid spacing over the Australasian region. The 125 km run is used in turn to drive a simulation at 50 km resolution over New Zealand. Simulations with a full seasonal cycle are performed for 10 model years. The focus is on the quality of the simulation of present-day climate, but results of a doubled-CO2 run are discussed briefly. Spatial patterns of mean simulated precipitation and surface temperatures improve markedly as horizontal resolution is increased, through the better resolution of the country's orography. However, increased horizontal resolution leads to a positive bias in precipitation. At 50 km resolution, simulated frequency distributions of daily maximum/minimum temperatures are statistically similar to those of observations at many stations, while frequency distributions of daily precipitation appear to be statistically different to those of observations at most stations. Modeled daily precipitation variability at 125 km resolution is considerably less than observed, but is comparable to, or exceeds, observed variability at 50 km resolution. The sensitivity of the simulated climate to changes in the specification of the land surface is discussed briefly. Spatial patterns of the frequency of extreme temperatures and precipitation are generally well modeled. Under a doubling of CO2, the frequency of precipitation extremes changes only slightly at most locations, while air frosts become virtually unknown except at high-elevation sites.
Monetary policy and the effects of oil price shocks on the Japanese economy
NASA Astrophysics Data System (ADS)
Lee, Byung Rhae
1998-12-01
The evidence of output decreases and price level increases following oil price shocks in the Japanese economy is presented in this paper. These negative effects of oil shocks are better explained by Hamilton's (1996) net oil price increase measure (NOPI) than by other oil measures. The fact that an oil shock has a statistically significant effect on the call money rate and real output and that the call money rate also has a statistically significant effect on real output appears to explain that the effects of oil price shocks on economic activity are partially attributed to contractionary monetary policy responses. The asymmetric effects of positive and negative oil shocks are also found in the Japanese economy and this asymmetry can also be partially explained by monetary policy responses. To assess the relative contribution of oil shocks and endogenous monetary policy responses to the economic downturns, I shut off the responses of the call money rate to oil shocks utilizing the impulse response results from the VAR model. Then, I re-run the VAR with the adjusted call money rate series. The empirical results show that around 30--40% of the negative effects of oil price shocks on the Japanese economy can be accounted for by oil shock induced monetary tightening.
Applying Monte Carlo Simulation to Launch Vehicle Design and Requirements Analysis
NASA Technical Reports Server (NTRS)
Hanson, J. M.; Beard, B. B.
2010-01-01
This Technical Publication (TP) is meant to address a number of topics related to the application of Monte Carlo simulation to launch vehicle design and requirements analysis. Although the focus is on a launch vehicle application, the methods may be applied to other complex systems as well. The TP is organized so that all the important topics are covered in the main text, and detailed derivations are in the appendices. The TP first introduces Monte Carlo simulation and the major topics to be discussed, including discussion of the input distributions for Monte Carlo runs, testing the simulation, how many runs are necessary for verification of requirements, what to do if results are desired for events that happen only rarely, and postprocessing, including analyzing any failed runs, examples of useful output products, and statistical information for generating desired results from the output data. Topics in the appendices include some tables for requirements verification, derivation of the number of runs required and generation of output probabilistic data with consumer risk included, derivation of launch vehicle models to include possible variations of assembled vehicles, minimization of a consumable to achieve a two-dimensional statistical result, recontact probability during staging, ensuring duplicated Monte Carlo random variations, and importance sampling.
The Assessment of Climatological Impacts on Agricultural Production and Residential Energy Demand
NASA Astrophysics Data System (ADS)
Cooter, Ellen Jean
The assessment of climatological impacts on selected economic activities is presented as a multi-step, inter -disciplinary problem. The assessment process which is addressed explicitly in this report focuses on (1) user identification, (2) direct impact model selection, (3) methodological development, (4) product development and (5) product communication. Two user groups of major economic importance were selected for study; agriculture and gas utilities. The broad agricultural sector is further defined as U.S.A. corn production. The general category of utilities is narrowed to Oklahoma residential gas heating demand. The CERES physiological growth model was selected as the process model for corn production. The statistical analysis for corn production suggests that (1) although this is a statistically complex model, it can yield useful impact information, (2) as a result of output distributional biases, traditional statistical techniques are not adequate analytical tools, (3) the model yield distribution as a whole is probably non-Gausian, particularly in the tails and (4) there appears to be identifiable weekly patterns of forecasted yields throughout the growing season. Agricultural quantities developed include point yield impact estimates and distributional characteristics, geographic corn weather distributions, return period estimates, decision making criteria (confidence limits) and time series of indices. These products were communicated in economic terms through the use of a Bayesian decision example and an econometric model. The NBSLD energy load model was selected to represent residential gas heating consumption. A cursory statistical analysis suggests relationships among weather variables across the Oklahoma study sites. No linear trend in "technology -free" modeled energy demand or input weather variables which would correspond to that contained in observed state -level residential energy use was detected. It is suggested that this trend is largely the result of non-weather factors such as population and home usage patterns rather than regional climate change. Year-to-year changes in modeled residential heating demand on the order of 10('6) Btu's per household were determined and later related to state -level components of the Oklahoma economy. Products developed include the definition of regional forecast areas, likelihood estimates of extreme seasonal conditions and an energy/climate index. This information is communicated in economic terms through an input/output model which is used to estimate changes in Gross State Product and Household income attributable to weather variability.
2015-03-01
statistically significant increase in systemic vascular resistance compared to control, but not whole blood, with a concomitant decrease in cardiac...increasing blood pressure as well as sys- temic vascular resistance in a hypovolemic hemorrhagic swine model.18 The primary hypothesis of this study is...output, sys- temic vascular resistance , mixed venous oxygen satura- tion, central venous pressure, pulmonary artery pressure, and core temperature. The
A Regional Analysis of Non-Methane Hydrocarbons And Meteorology of The Rural Southeast United States
1996-01-01
Zt is an ARIMA time series. This is a typical regression model , except that it allows for autocorrelation in the error term Z. In this work, an ARMA...data=folder; var residual; run; II Statistical output of 1992 regression model on 1993 ozone data ARIMA Procedure Maximum Likelihood Estimation Approx...at each of the sites, and to show the effect of synoptic meteorology on high ozone by examining NOAA daily weather maps and climatic data
1998-04-28
be discussed. 2.1 ECONOMIC REPLACEMENT THEORY Decisions about heavy equipment should be made based on sound economic principles , not emotions...Life) will be less than L*. The converse is also true. 2.1.3 The Repair Limit Theory A different way of looking at the economic replacement decision...Summary Three different economic models have been reviewed in this section. The output of each is distinct. One seeks to minimize costs, one seeks to
NASA Technical Reports Server (NTRS)
1973-01-01
The HD 220 program was created as part of the space shuttle solid rocket booster recovery system definition. The model was generated to investigate the damage to SRB components under water impact loads. The random nature of environmental parameters, such as ocean waves and wind conditions, necessitates estimation of the relative frequency of occurrence for these parameters. The nondeterministic nature of component strengths also lends itself to probabilistic simulation. The Monte Carlo technique allows the simultaneous perturbation of multiple independent parameters and provides outputs describing the probability distribution functions of the dependent parameters. This allows the user to determine the required statistics for each output parameter.
An Overview of R in Health Decision Sciences.
Jalal, Hawre; Pechlivanoglou, Petros; Krijkamp, Eline; Alarid-Escudero, Fernando; Enns, Eva; Hunink, M G Myriam
2017-10-01
As the complexity of health decision science applications increases, high-level programming languages are increasingly adopted for statistical analyses and numerical computations. These programming languages facilitate sophisticated modeling, model documentation, and analysis reproducibility. Among the high-level programming languages, the statistical programming framework R is gaining increased recognition. R is freely available, cross-platform compatible, and open source. A large community of users who have generated an extensive collection of well-documented packages and functions supports it. These functions facilitate applications of health decision science methodology as well as the visualization and communication of results. Although R's popularity is increasing among health decision scientists, methodological extensions of R in the field of decision analysis remain isolated. The purpose of this article is to provide an overview of existing R functionality that is applicable to the various stages of decision analysis, including model design, input parameter estimation, and analysis of model outputs.
A Climate Statistics Tool and Data Repository
NASA Astrophysics Data System (ADS)
Wang, J.; Kotamarthi, V. R.; Kuiper, J. A.; Orr, A.
2017-12-01
Researchers at Argonne National Laboratory and collaborating organizations have generated regional scale, dynamically downscaled climate model output using Weather Research and Forecasting (WRF) version 3.3.1 at a 12km horizontal spatial resolution over much of North America. The WRF model is driven by boundary conditions obtained from three independent global scale climate models and two different future greenhouse gas emission scenarios, named representative concentration pathways (RCPs). The repository of results has a temporal resolution of three hours for all the simulations, includes more than 50 variables, is stored in Network Common Data Form (NetCDF) files, and the data volume is nearly 600Tb. A condensed 800Gb set of NetCDF files were made for selected variables most useful for climate-related planning, including daily precipitation, relative humidity, solar radiation, maximum temperature, minimum temperature, and wind. The WRF model simulations are conducted for three 10-year time periods (1995-2004, 2045-2054, and 2085-2094), and two future scenarios RCP4.5 and RCP8.5). An open-source tool was coded using Python 2.7.8 and ESRI ArcGIS 10.3.1 programming libraries to parse the NetCDF files, compute summary statistics, and output results as GIS layers. Eight sets of summary statistics were generated as examples for the contiguous U.S. states and much of Alaska, including number of days over 90°F, number of days with a heat index over 90°F, heat waves, monthly and annual precipitation, drought, extreme precipitation, multi-model averages, and model bias. This paper will provide an overview of the project to generate the main and condensed data repositories, describe the Python tool and how to use it, present the GIS results of the computed examples, and discuss some of the ways they can be used for planning. The condensed climate data, Python tool, computed GIS results, and documentation of the work are shared on the Internet.
SU-G-206-03: CTDI Per KV at Phantom Center and Periphery: Comparison Between Major CT Manufacturers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Al-Senan, R; Demirkaya, O
Purpose: The purpose of this study was to: 1) compare scanners output by measuring normalized CTDIw (mGy/100mAs) in different CT makes and models and at different kV’s, and 2) quantify the relationship between kV and CTDI and compare this relationship between the different manufacturers. Methods: Study included forty scanners of major CT manufacturers and of various models. Exposure was measured at center and 12 o’clock holes of head and body CTDI phantoms, at all available kV’s, and with the largest or second largest available collimation in each scanner. Average measured CTDI’s from each CT manufacturer were also plotted against kVmore » and the fitting equation: CTDIw (normalized) = a.kVb was calculated. The power (b) value may be considered as an indicator of spectral filtration, which affects the degree of beam hardening. Also, HVLs were measured at several scanners. Results: Results showed GE scanners, on average, had higher normalized CTDIw than those of Siemens and Philips, in both phantom sizes and at all kV’s. ANOVA statistic indicated the difference was statistically significant (p < 0.05). Comparison between Philips and Siemens, however, was not statistically significant. Curve fitting showed b values ranged from 2.4 to 2.9 (for Head periphery and center, respectively); and was about 2.8 for Body phantom periphery, and 3.2 at the center of Body phantom. Fitting equations (kV vs. CTDI) will be presented and discussed. GE’s CTDIw vs. HVL showed very strong correlation (r > 0.99). Conclusion: Partial characterization of scanners output was performed which may be helpful in dose estimation to internal organs. The relatively higher output from GE scanners may be attributed to lower filtration. Work is still in progress to obtain CTDI values from other scanners as well as to measure their HVLs.« less
Collaboration and Synergy among Government, Industry and Academia in M&S Domain: Turkey’s Approach
2009-10-01
Analysis, Decision Support System Design and Implementation, Simulation Output Analysis, Statistical Data Analysis, Virtual Reality , Artificial... virtual and constructive visual simulation systems as well as integrated advanced analytical models. Collaboration and Synergy among Government...simulation systems that are ready to use, credible, integrated with C4ISR systems. Creating synthetic environments and/or virtual prototypes of concepts
NASA Technical Reports Server (NTRS)
Gardner, Adrian
2010-01-01
National Aeronautical and Space Administration (NASA) weather and atmospheric environmental organizations are insatiable consumers of geophysical, hydrometeorological and solar weather statistics. The expanding array of internet-worked sensors producing targeted physical measurements has generated an almost factorial explosion of near real-time inputs to topical statistical datasets. Normalizing and value-based parsing of such statistical datasets in support of time-constrained weather and environmental alerts and warnings is essential, even with dedicated high-performance computational capabilities. What are the optimal indicators for advanced decision making? How do we recognize the line between sufficient statistical sampling and excessive, mission destructive sampling ? How do we assure that the normalization and parsing process, when interpolated through numerical models, yields accurate and actionable alerts and warnings? This presentation will address the integrated means and methods to achieve desired outputs for NASA and consumers of its data.
Determining Reduced Order Models for Optimal Stochastic Reduced Order Models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bonney, Matthew S.; Brake, Matthew R.W.
2015-08-01
The use of parameterized reduced order models(PROMs) within the stochastic reduced order model (SROM) framework is a logical progression for both methods. In this report, five different parameterized reduced order models are selected and critiqued against the other models along with truth model for the example of the Brake-Reuss beam. The models are: a Taylor series using finite difference, a proper orthogonal decomposition of the the output, a Craig-Bampton representation of the model, a method that uses Hyper-Dual numbers to determine the sensitivities, and a Meta-Model method that uses the Hyper-Dual results and constructs a polynomial curve to better representmore » the output data. The methods are compared against a parameter sweep and a distribution propagation where the first four statistical moments are used as a comparison. Each method produces very accurate results with the Craig-Bampton reduction having the least accurate results. The models are also compared based on time requirements for the evaluation of each model where the Meta- Model requires the least amount of time for computation by a significant amount. Each of the five models provided accurate results in a reasonable time frame. The determination of which model to use is dependent on the availability of the high-fidelity model and how many evaluations can be performed. Analysis of the output distribution is examined by using a large Monte-Carlo simulation along with a reduced simulation using Latin Hypercube and the stochastic reduced order model sampling technique. Both techniques produced accurate results. The stochastic reduced order modeling technique produced less error when compared to an exhaustive sampling for the majority of methods.« less
Mizukami, Naoki; Clark, Martyn P.; Gutmann, Ethan D.; Mendoza, Pablo A.; Newman, Andrew J.; Nijssen, Bart; Livneh, Ben; Hay, Lauren E.; Arnold, Jeffrey R.; Brekke, Levi D.
2016-01-01
Continental-domain assessments of climate change impacts on water resources typically rely on statistically downscaled climate model outputs to force hydrologic models at a finer spatial resolution. This study examines the effects of four statistical downscaling methods [bias-corrected constructed analog (BCCA), bias-corrected spatial disaggregation applied at daily (BCSDd) and monthly scales (BCSDm), and asynchronous regression (AR)] on retrospective hydrologic simulations using three hydrologic models with their default parameters (the Community Land Model, version 4.0; the Variable Infiltration Capacity model, version 4.1.2; and the Precipitation–Runoff Modeling System, version 3.0.4) over the contiguous United States (CONUS). Biases of hydrologic simulations forced by statistically downscaled climate data relative to the simulation with observation-based gridded data are presented. Each statistical downscaling method produces different meteorological portrayals including precipitation amount, wet-day frequency, and the energy input (i.e., shortwave radiation), and their interplay affects estimations of precipitation partitioning between evapotranspiration and runoff, extreme runoff, and hydrologic states (i.e., snow and soil moisture). The analyses show that BCCA underestimates annual precipitation by as much as −250 mm, leading to unreasonable hydrologic portrayals over the CONUS for all models. Although the other three statistical downscaling methods produce a comparable precipitation bias ranging from −10 to 8 mm across the CONUS, BCSDd severely overestimates the wet-day fraction by up to 0.25, leading to different precipitation partitioning compared to the simulations with other downscaled data. Overall, the choice of downscaling method contributes to less spread in runoff estimates (by a factor of 1.5–3) than the choice of hydrologic model with use of the default parameters if BCCA is excluded.
Towards a Statistical Model of Tropical Cyclone Genesis
NASA Astrophysics Data System (ADS)
Fernandez, A.; Kashinath, K.; McAuliffe, J.; Prabhat, M.; Stark, P. B.; Wehner, M. F.
2017-12-01
Tropical Cyclones (TCs) are important extreme weather phenomena that have a strong impact on humans. TC forecasts are largely based on global numerical models that produce TC-like features. Aspects of Tropical Cyclones such as their formation/genesis, evolution, intensification and dissipation over land are important and challenging problems in climate science. This study investigates the environmental conditions associated with Tropical Cyclone Genesis (TCG) by testing how accurately a statistical model can predict TCG in the CAM5.1 climate model. TCG events are defined using TECA software @inproceedings{Prabhat2015teca, title={TECA: Petascale Pattern Recognition for Climate Science}, author={Prabhat and Byna, Surendra and Vishwanath, Venkatram and Dart, Eli and Wehner, Michael and Collins, William D}, booktitle={Computer Analysis of Images and Patterns}, pages={426-436}, year={2015}, organization={Springer}} to extract TC trajectories from CAM5.1. L1-regularized logistic regression (L1LR) is applied to the CAM5.1 output. The predictions have nearly perfect accuracy for data not associated with TC tracks and high accuracy differentiating between high vorticity and low vorticity systems. The model's active variables largely correspond to current hypotheses about important factors for TCG, such as wind field patterns and local pressure minima, and suggests new routes for investigation. Furthermore, our model's predictions of TC activity are competitive with the output of an instantaneous version of Emanuel and Nolan's Genesis Potential Index (GPI) @inproceedings{eman04, title = "Tropical cyclone activity and the global climate system", author = "Kerry Emanuel and Nolan, {David S.}", year = "2004", pages = "240-241", booktitle = "26th Conference on Hurricanes and Tropical Meteorology"}.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gecow, Andrzej
On the way to simulating adaptive evolution of complex system describing a living object or human developed project, a fitness should be defined on node states or network external outputs. Feedbacks lead to circular attractors of these states or outputs which make it difficult to define a fitness. The main statistical effects of adaptive condition are the result of small change tendency and to appear, they only need a statistically correct size of damage initiated by evolutionary change of system. This observation allows to cut loops of feedbacks and in effect to obtain a particular statistically correct state instead ofmore » a long circular attractor which in the quenched model is expected for chaotic network with feedback. Defining fitness on such states is simple. We calculate only damaged nodes and only once. Such an algorithm is optimal for investigation of damage spreading i.e. statistical connections of structural parameters of initial change with the size of effected damage. It is a reversed-annealed method--function and states (signals) may be randomly substituted but connections are important and are preserved. The small damages important for adaptive evolution are correctly depicted in comparison to Derrida annealed approximation which expects equilibrium levels for large networks. The algorithm indicates these levels correctly. The relevant program in Pascal, which executes the algorithm for a wide range of parameters, can be obtained from the author.« less
NASA Astrophysics Data System (ADS)
Villas Boas, M. D.; Olivera, F.; Azevedo, J. S.
2013-12-01
The evaluation of water quality through 'indexes' is widely used in environmental sciences. There are a number of methods available for calculating water quality indexes (WQI), usually based on site-specific parameters. In Brazil, WQI were initially used in the 1970s and were adapted from the methodology developed in association with the National Science Foundation (Brown et al, 1970). Specifically, the WQI 'IQA/SCQA', developed by the Institute of Water Management of Minas Gerais (IGAM), is estimated based on nine parameters: Temperature Range, Biochemical Oxygen Demand, Fecal Coliforms, Nitrate, Phosphate, Turbidity, Dissolved Oxygen, pH and Electrical Conductivity. The goal of this study was to develop a model for calculating the IQA/SCQA, for the Piabanha River basin in the State of Rio de Janeiro (Brazil), using only the parameters measurable by a Multiparameter Water Quality Sonde (MWQS) available in the study area. These parameters are: Dissolved Oxygen, pH and Electrical Conductivity. The use of this model will allow to further the water quality monitoring network in the basin, without requiring significant increases of resources. The water quality measurement with MWQS is less expensive than the laboratory analysis required for the other parameters. The water quality data used in the study were obtained by the Geological Survey of Brazil in partnership with other public institutions (i.e. universities and environmental institutes) as part of the project "Integrated Studies in Experimental and Representative Watersheds". Two models were developed to correlate the values of the three measured parameters and the IQA/SCQA values calculated based on all nine parameters. The results were evaluated according to the following validation statistics: coefficient of determination (R2), Root Mean Square Error (RMSE), Akaike information criterion (AIC) and Final Prediction Error (FPE). The first model was a linear stepwise regression between three independent variables (input) and one dependent variable (output) to establish an equation relating input to output. This model produced the following statistics: R2 = 0.85, RMSE = 6.19, AIC =0.65 and FPE = 1.93. The second model was a Feedforward Neural Network with one tan-sigmoid hidden layer (4 neurons) and one linear output layer. The neural network was trained based on a backpropagation algorithm using the input as predictors and the output as target. The following statistics were found: R2 = 0.95, RMSE = 4.86, AIC= 0.33 and FPE = 1.39. The second model produced a better fit than the first one, having a greater R2 and smaller RMSE, AIC and FPE. The best performance of the second method can be attributed to the fact that the water quality parameters often exhibit nonlinear behaviors and neural networks are capable of representing nonlinear relationship efficiently, while the regression is limited to linear relationships. References: Brown, R.M., McLelland, N.I., Deininger, R.A., Tozer, R.G.1970. A Water Quality Index-Do we dare? Water & Sewage Works, October: 339-343.
Machine learning of frustrated classical spin models. I. Principal component analysis
NASA Astrophysics Data System (ADS)
Wang, Ce; Zhai, Hui
2017-10-01
This work aims at determining whether artificial intelligence can recognize a phase transition without prior human knowledge. If this were successful, it could be applied to, for instance, analyzing data from the quantum simulation of unsolved physical models. Toward this goal, we first need to apply the machine learning algorithm to well-understood models and see whether the outputs are consistent with our prior knowledge, which serves as the benchmark for this approach. In this work, we feed the computer data generated by the classical Monte Carlo simulation for the X Y model in frustrated triangular and union jack lattices, which has two order parameters and exhibits two phase transitions. We show that the outputs of the principal component analysis agree very well with our understanding of different orders in different phases, and the temperature dependences of the major components detect the nature and the locations of the phase transitions. Our work offers promise for using machine learning techniques to study sophisticated statistical models, and our results can be further improved by using principal component analysis with kernel tricks and the neural network method.
Bayesian model calibration of ramp compression experiments on Z
NASA Astrophysics Data System (ADS)
Brown, Justin; Hund, Lauren
2017-06-01
Bayesian model calibration (BMC) is a statistical framework to estimate inputs for a computational model in the presence of multiple uncertainties, making it well suited to dynamic experiments which must be coupled with numerical simulations to interpret the results. Often, dynamic experiments are diagnosed using velocimetry and this output can be modeled using a hydrocode. Several calibration issues unique to this type of scenario including the functional nature of the output, uncertainty of nuisance parameters within the simulation, and model discrepancy identifiability are addressed, and a novel BMC process is proposed. As a proof of concept, we examine experiments conducted on Sandia National Laboratories' Z-machine which ramp compressed tantalum to peak stresses of 250 GPa. The proposed BMC framework is used to calibrate the cold curve of Ta (with uncertainty), and we conclude that the procedure results in simple, fast, and valid inferences. Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Bayesian Processor of Output for Probabilistic Quantitative Precipitation Forecasting
NASA Astrophysics Data System (ADS)
Krzysztofowicz, R.; Maranzano, C. J.
2006-05-01
The Bayesian Processor of Output (BPO) is a new, theoretically-based technique for probabilistic forecasting of weather variates. It processes output from a numerical weather prediction (NWP) model and optimally fuses it with climatic data in order to quantify uncertainty about a predictand. The BPO is being tested by producing Probabilistic Quantitative Precipitation Forecasts (PQPFs) for a set of climatically diverse stations in the contiguous U.S. For each station, the PQPFs are produced for the same 6-h, 12-h, and 24-h periods up to 84- h ahead for which operational forecasts are produced by the AVN-MOS (Model Output Statistics technique applied to output fields from the Global Spectral Model run under the code name AVN). The inputs into the BPO are estimated as follows. The prior distribution is estimated from a (relatively long) climatic sample of the predictand; this sample is retrieved from the archives of the National Climatic Data Center. The family of the likelihood functions is estimated from a (relatively short) joint sample of the predictor vector and the predictand; this sample is retrieved from the same archive that the Meteorological Development Laboratory of the National Weather Service utilized to develop the AVN-MOS system. This talk gives a tutorial introduction to the principles and procedures behind the BPO, and highlights some results from the testing: a numerical example of the estimation of the BPO, and a comparative verification of the BPO forecasts and the MOS forecasts. It concludes with a list of demonstrated attributes of the BPO (vis- à-vis the MOS): more parsimonious definitions of predictors, more efficient extraction of predictive information, better representation of the distribution function of predictand, and equal or better performance (in terms of calibration and informativeness).
Statistical Surrogate Models for Estimating Probability of High-Consequence Climate Change
NASA Astrophysics Data System (ADS)
Field, R.; Constantine, P.; Boslough, M.
2011-12-01
We have posed the climate change problem in a framework similar to that used in safety engineering, by acknowledging that probabilistic risk assessments focused on low-probability, high-consequence climate events are perhaps more appropriate than studies focused simply on best estimates. To properly explore the tails of the distribution requires extensive sampling, which is not possible with existing coupled atmospheric models due to the high computational cost of each simulation. We have developed specialized statistical surrogate models (SSMs) that can be used to make predictions about the tails of the associated probability distributions. A SSM is different than a deterministic surrogate model in that it represents each climate variable of interest as a space/time random field, that is, a random variable for every fixed location in the atmosphere at all times. The SSM can be calibrated to available spatial and temporal data from existing climate databases, or to a collection of outputs from general circulation models. Because of its reduced size and complexity, the realization of a large number of independent model outputs from a SSM becomes computationally straightforward, so that quantifying the risk associated with low-probability, high-consequence climate events becomes feasible. A Bayesian framework was also developed to provide quantitative measures of confidence, via Bayesian credible intervals, to assess these risks. To illustrate the use of the SSM, we considered two collections of NCAR CCSM 3.0 output data. The first collection corresponds to average December surface temperature for years 1990-1999 based on a collection of 8 different model runs obtained from the Program for Climate Model Diagnosis and Intercomparison (PCMDI). We calibrated the surrogate model to the available model data and make various point predictions. We also analyzed average precipitation rate in June, July, and August over a 54-year period assuming a cyclic Y2K ocean model. We applied the calibrated surrogate model to study the probability that the precipitation rate falls below certain thresholds and utilized the Bayesian approach to quantify our confidence in these predictions. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.
Integrated Wind Power Planning Tool
NASA Astrophysics Data System (ADS)
Rosgaard, M. H.; Giebel, G.; Nielsen, T. S.; Hahmann, A.; Sørensen, P.; Madsen, H.
2012-04-01
This poster presents the current state of the public service obligation (PSO) funded project PSO 10464, with the working title "Integrated Wind Power Planning Tool". The project commenced October 1, 2011, and the goal is to integrate a numerical weather prediction (NWP) model with purely statistical tools in order to assess wind power fluctuations, with focus on long term power system planning for future wind farms as well as short term forecasting for existing wind farms. Currently, wind power fluctuation models are either purely statistical or integrated with NWP models of limited resolution. With regard to the latter, one such simulation tool has been developed at the Wind Energy Division, Risø DTU, intended for long term power system planning. As part of the PSO project the inferior NWP model used at present will be replaced by the state-of-the-art Weather Research & Forecasting (WRF) model. Furthermore, the integrated simulation tool will be improved so it can handle simultaneously 10-50 times more turbines than the present ~ 300, as well as additional atmospheric parameters will be included in the model. The WRF data will also be input for a statistical short term prediction model to be developed in collaboration with ENFOR A/S; a danish company that specialises in forecasting and optimisation for the energy sector. This integrated prediction model will allow for the description of the expected variability in wind power production in the coming hours to days, accounting for its spatio-temporal dependencies, and depending on the prevailing weather conditions defined by the WRF output. The output from the integrated prediction tool constitute scenario forecasts for the coming period, which can then be fed into any type of system model or decision making problem to be solved. The high resolution of the WRF results loaded into the integrated prediction model will ensure a high accuracy data basis is available for use in the decision making process of the Danish transmission system operator, and the need for high accuracy predictions will only increase over the next decade as Denmark approaches the goal of 50% wind power based electricity in 2020, from the current 20%.
NASA Astrophysics Data System (ADS)
Lan, Ganhui; Tu, Yuhai
2016-05-01
Living systems have to constantly sense their external environment and adjust their internal state in order to survive and reproduce. Biological systems, from as complex as the brain to a single E. coli cell, have to process these data in order to make appropriate decisions. How do biological systems sense external signals? How do they process the information? How do they respond to signals? Through years of intense study by biologists, many key molecular players and their interactions have been identified in different biological machineries that carry out these signaling functions. However, an integrated, quantitative understanding of the whole system is still lacking for most cellular signaling pathways, not to say the more complicated neural circuits. To study signaling processes in biology, the key thing to measure is the input-output relationship. The input is the signal itself, such as chemical concentration, external temperature, light (intensity and frequency), and more complex signals such as the face of a cat. The output can be protein conformational changes and covalent modifications (phosphorylation, methylation, etc), gene expression, cell growth and motility, as well as more complex output such as neuron firing patterns and behaviors of higher animals. Due to the inherent noise in biological systems, the measured input-output dependence is often noisy. These noisy data can be analysed by using powerful tools and concepts from information theory such as mutual information, channel capacity, and the maximum entropy hypothesis. This information theory approach has been successfully used to reveal the underlying correlations between key components of biological networks, to set bounds for network performance, and to understand possible network architecture in generating observed correlations. Although the information theory approach provides a general tool in analysing noisy biological data and may be used to suggest possible network architectures in preserving information, it does not reveal the underlying mechanism that leads to the observed input-output relationship, nor does it tell us much about which information is important for the organism and how biological systems use information to carry out specific functions. To do that, we need to develop models of the biological machineries, e.g. biochemical networks and neural networks, to understand the dynamics of biological information processes. This is a much more difficult task. It requires deep knowledge of the underlying biological network—the main players (nodes) and their interactions (links)—in sufficient detail to build a model with predictive power, as well as quantitative input-output measurements of the system under different perturbations (both genetic variations and different external conditions) to test the model predictions to guide further development of the model. Due to the recent growth of biological knowledge thanks in part to high throughput methods (sequencing, gene expression microarray, etc) and development of quantitative in vivo techniques such as various florescence technology, these requirements are starting to be realized in different biological systems. The possible close interaction between quantitative experimentation and theoretical modeling has made systems biology an attractive field for physicists interested in quantitative biology. In this review, we describe some of the recent work in developing a quantitative predictive model of bacterial chemotaxis, which can be considered as the hydrogen atom of systems biology. Using statistical physics approaches, such as the Ising model and Langevin equation, we study how bacteria, such as E. coli, sense and amplify external signals, how they keep a working memory of the stimuli, and how they use these data to compute the chemical gradient. In particular, we will describe how E. coli cells avoid cross-talk in a heterogeneous receptor cluster to keep a ligand-specific memory. We will also study the thermodynamic costs of adaptation for cells to maintain an accurate memory. The statistical physics based approach described here should be useful in understanding design principles for cellular biochemical circuits in general.
Lan, Ganhui; Tu, Yuhai
2016-05-01
Living systems have to constantly sense their external environment and adjust their internal state in order to survive and reproduce. Biological systems, from as complex as the brain to a single E. coli cell, have to process these data in order to make appropriate decisions. How do biological systems sense external signals? How do they process the information? How do they respond to signals? Through years of intense study by biologists, many key molecular players and their interactions have been identified in different biological machineries that carry out these signaling functions. However, an integrated, quantitative understanding of the whole system is still lacking for most cellular signaling pathways, not to say the more complicated neural circuits. To study signaling processes in biology, the key thing to measure is the input-output relationship. The input is the signal itself, such as chemical concentration, external temperature, light (intensity and frequency), and more complex signals such as the face of a cat. The output can be protein conformational changes and covalent modifications (phosphorylation, methylation, etc), gene expression, cell growth and motility, as well as more complex output such as neuron firing patterns and behaviors of higher animals. Due to the inherent noise in biological systems, the measured input-output dependence is often noisy. These noisy data can be analysed by using powerful tools and concepts from information theory such as mutual information, channel capacity, and the maximum entropy hypothesis. This information theory approach has been successfully used to reveal the underlying correlations between key components of biological networks, to set bounds for network performance, and to understand possible network architecture in generating observed correlations. Although the information theory approach provides a general tool in analysing noisy biological data and may be used to suggest possible network architectures in preserving information, it does not reveal the underlying mechanism that leads to the observed input-output relationship, nor does it tell us much about which information is important for the organism and how biological systems use information to carry out specific functions. To do that, we need to develop models of the biological machineries, e.g. biochemical networks and neural networks, to understand the dynamics of biological information processes. This is a much more difficult task. It requires deep knowledge of the underlying biological network-the main players (nodes) and their interactions (links)-in sufficient detail to build a model with predictive power, as well as quantitative input-output measurements of the system under different perturbations (both genetic variations and different external conditions) to test the model predictions to guide further development of the model. Due to the recent growth of biological knowledge thanks in part to high throughput methods (sequencing, gene expression microarray, etc) and development of quantitative in vivo techniques such as various florescence technology, these requirements are starting to be realized in different biological systems. The possible close interaction between quantitative experimentation and theoretical modeling has made systems biology an attractive field for physicists interested in quantitative biology. In this review, we describe some of the recent work in developing a quantitative predictive model of bacterial chemotaxis, which can be considered as the hydrogen atom of systems biology. Using statistical physics approaches, such as the Ising model and Langevin equation, we study how bacteria, such as E. coli, sense and amplify external signals, how they keep a working memory of the stimuli, and how they use these data to compute the chemical gradient. In particular, we will describe how E. coli cells avoid cross-talk in a heterogeneous receptor cluster to keep a ligand-specific memory. We will also study the thermodynamic costs of adaptation for cells to maintain an accurate memory. The statistical physics based approach described here should be useful in understanding design principles for cellular biochemical circuits in general.
NASA Astrophysics Data System (ADS)
Yan, Maoling; Liu, Pingzeng; Zhang, Chao; Zheng, Yong; Wang, Xizhi; Zhang, Yan; Chen, Weijie; Zhao, Rui
2018-01-01
Agroclimatological resources provide material and energy for agricultural production. This study is aimed to analyze the impact of selected climate factors change on wheat yield over the different growth period applied quantitatively method, by comparing two different time division modules of wheat growth cycle- monthly empirical-statistical multiple regression models ( From October to June of next year ) and growth stage empirical-statistical multiple regression models (Including sowing stage, seedling stage, tillering stage, overwintering period, regreening period, jointing stage, heading stage, maturity stage) analysis of relationship between agrometeorological data and growth stage records and winter wheat production in Yanzhou, Shandong Province of China. Correlation analysis(CA)was done for 35 years (from 1981 to 2015) between crop yield and corresponding weather parameters including daily mean temperature, sunshine duration, and average daily precipitation selected from 18 different meteorological factors. The results shows that the greatest impact on the winter wheat yield is the precipitation overwintering period in this area, each 1mm increase in daily mean rainfall was associated with 201.64 kg/hm2 lowered output. Moreover, the temperature and sunshine duration in heading period and maturity stage also exert significant influence on the output, every 1°C increase in daily mean temperature was associated with 199.85kg/hm2 adding output, every 1h increase in mean sunshine duration was associated with 130.68kg/hm2 reduced output. Comparing with the results of experiment which using months as step sizes and using farming as step sizes was in better agreement with the fluctuation in meteorological yield, offered a better explanation on the growth mechanism of wheat. Eventually the results indicated that 3 factors affects the yield during different growing periods of wheat in different extent and provided more specific reference to guide the agricultural production management in this area.
Statistically qualified neuro-analytic failure detection method and system
Vilim, Richard B.; Garcia, Humberto E.; Chen, Frederick W.
2002-03-02
An apparatus and method for monitoring a process involve development and application of a statistically qualified neuro-analytic (SQNA) model to accurately and reliably identify process change. The development of the SQNA model is accomplished in two stages: deterministic model adaption and stochastic model modification of the deterministic model adaptation. Deterministic model adaption involves formulating an analytic model of the process representing known process characteristics, augmenting the analytic model with a neural network that captures unknown process characteristics, and training the resulting neuro-analytic model by adjusting the neural network weights according to a unique scaled equation error minimization technique. Stochastic model modification involves qualifying any remaining uncertainty in the trained neuro-analytic model by formulating a likelihood function, given an error propagation equation, for computing the probability that the neuro-analytic model generates measured process output. Preferably, the developed SQNA model is validated using known sequential probability ratio tests and applied to the process as an on-line monitoring system. Illustrative of the method and apparatus, the method is applied to a peristaltic pump system.
Reduced-Drift Virtual Gyro from an Array of Low-Cost Gyros.
Vaccaro, Richard J; Zaki, Ahmed S
2017-02-11
A Kalman filter approach for combining the outputs of an array of high-drift gyros to obtain a virtual lower-drift gyro has been known in the literature for more than a decade. The success of this approach depends on the correlations of the random drift components of the individual gyros. However, no method of estimating these correlations has appeared in the literature. This paper presents an algorithm for obtaining the statistical model for an array of gyros, including the cross-correlations of the individual random drift components. In order to obtain this model, a new statistic, called the "Allan covariance" between two gyros, is introduced. The gyro array model can be used to obtain the Kalman filter-based (KFB) virtual gyro. Instead, we consider a virtual gyro obtained by taking a linear combination of individual gyro outputs. The gyro array model is used to calculate the optimal coefficients, as well as to derive a formula for the drift of the resulting virtual gyro. The drift formula for the optimal linear combination (OLC) virtual gyro is identical to that previously derived for the KFB virtual gyro. Thus, a Kalman filter is not necessary to obtain a minimum drift virtual gyro. The theoretical results of this paper are demonstrated using simulated as well as experimental data. In experimental results with a 28-gyro array, the OLC virtual gyro has a drift spectral density 40 times smaller than that obtained by taking the average of the gyro signals.
NASA Technical Reports Server (NTRS)
Shafer, Jaclyn A.; Watson, Leela R.
2015-01-01
Customer: NASA's Launch Services Program (LSP), Ground Systems Development and Operations (GSDO), and Space Launch System (SLS) programs. NASA's LSP, GSDO, SLS and other programs at Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS) use the daily and weekly weather forecasts issued by the 45th Weather Squadron (45 WS) as decision tools for their day-to-day and launch operations on the Eastern Range (ER). For example, to determine if they need to limit activities such as vehicle transport to the launch pad, protect people, structures or exposed launch vehicles given a threat of severe weather, or reschedule other critical operations. The 45 WS uses numerical weather prediction models as a guide for these weather forecasts, particularly the Air Force Weather Agency (AFWA) 1.67 kilometer Weather Research and Forecasting (WRF) model. Considering the 45 WS forecasters' and Launch Weather Officers' (LWO) extensive use of the AFWA model, the 45 WS proposed a task at the September 2013 Applied Meteorology Unit (AMU) Tasking Meeting requesting the AMU verify this model. Due to the lack of archived model data available from AFWA, verification is not yet possible. Instead, the AMU proposed to implement and verify the performance of an ER version of the AMU high-resolution WRF Environmental Modeling System (EMS) model (Watson 2013) in real-time. The tasking group agreed to this proposal; therefore the AMU implemented the WRF-EMS model on the second of two NASA AMU modeling clusters. The model was set up with a triple-nested grid configuration over KSC/CCAFS based on previous AMU work (Watson 2013). The outer domain (D01) has 12-kilometer grid spacing, the middle domain (D02) has 4-kilometer grid spacing, and the inner domain (D03) has 1.33-kilometer grid spacing. The model runs a 12-hour forecast every hour, D01 and D02 domain outputs are available once an hour and D03 is every 15 minutes during the forecast period. The AMU assessed the WRF-EMS 1.33-kilometer domain model performance for the 2014 warm season (May-September). Verification statistics were computed using the Model Evaluation Tools, which compared the model forecasts to observations. The mean error values were close to 0 and the root mean square error values were less than 1.8 for mean sea-level pressure (millibars), temperature (degrees Kelvin), dewpoint temperature (degrees Kelvin), and wind speed (per millisecond), all very small differences between the forecast and observations considering the normal magnitudes of the parameters. The precipitation forecast verification results showed consistent under-forecasting of the precipitation object size. This could be an artifact of calculating the statistics for each hour rather than for the entire 12-hour period. The AMU will continue to generate verification statistics for the 1.33-kilometer WRF-EMS domain as data become available in future cool and warm seasons. More data will produce more robust statistics and reveal a more accurate assessment of model performance. Once the formal task was complete, the AMU conducted additional work to better understand the wind direction results. The results were stratified diurnally and by wind speed to determine what effects the stratifications would have on the model wind direction verification statistics. The results are summarized in the addendum at the end of this report. In addition to verifying the model's performance, the AMU also made the output available in the Advanced Weather Interactive Processing System II (AWIPS II). This allows the 45 WS and AMU staff to customize the model output display on the AMU and Range Weather Operations AWIPS II client computers and conduct real-time subjective analyses. In the future, the AMU will implement an updated version of the WRF-EMS model that incorporates local data assimilation. This model will also run in real-time and be made available in AWIPS II.
Optical Parametric Amplification of Single Photon: Statistical Properties and Quantum Interference
NASA Astrophysics Data System (ADS)
Xu, Xue-Xiang; Yuan, Hong-Chun
2014-05-01
By using phase space method, we theoretically investigate the quantum statistical properties and quantum interference of optical parametric amplification of single photon. The statistical properties, such as the Wigner function (WF), average photon number, photon number distribution and parity, are derived analytically for the fields of the two output ports. The results indicate that the fields in the output ports are multiphoton states rather than single photon state due to the amplification of the optical parametric amplifiers (OPA). In addition, the phase sensitivity is also examined by using the detection scheme of parity measurement.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weimar, Mark R.; Daly, Don S.; Wood, Thomas W.
Both nuclear power and nuclear weapons programs should have (related) economic signatures which are detectible at some scale. We evaluated this premise in a series of studies using national economic input/output (IO) data. Statistical discrimination models using economic IO tables predict with a high probability whether a country with an unknown predilection for nuclear weapons proliferation is in fact engaged in nuclear power development or nuclear weapons proliferation. We analyzed 93 IO tables, spanning the years 1993 to 2005 for 37 countries that are either members or associates of the Organization for Economic Cooperation and Development (OECD). The 2009 OECDmore » input/output tables featured 48 industrial sectors based on International Standard Industrial Classification (ISIC) Revision 3, and described the respective economies in current country-of-origin valued currency. We converted and transformed these reported values to US 2005 dollars using appropriate exchange rates and implicit price deflators, and addressed discrepancies in reported industrial sectors across tables. We then classified countries with Random Forest using either the adjusted or industry-normalized values. Random Forest, a classification tree technique, separates and categorizes countries using a very small, select subset of the 2304 individual cells in the IO table. A nation’s efforts in nuclear power, be it for electricity or nuclear weapons, are an enterprise with a large economic footprint -- an effort so large that it should discernibly perturb coarse country-level economics data such as that found in yearly input-output economic tables. The neoclassical economic input-output model describes a country’s or region’s economy in terms of the requirements of industries to produce the current level of economic output. An IO table row shows the distribution of an industry’s output to the industrial sectors while a table column shows the input required of each industrial sector by a given industry.« less
Statistical fluctuations of an ocean surface inferred from shoes and ships
NASA Astrophysics Data System (ADS)
Lerche, Ian; Maubeuge, Frédéric
1995-12-01
This paper shows that it is possible to roughly estimate some ocean properties using simple time-dependent statistical models of ocean fluctuations. Based on a real incident, the loss by a vessel of a Nike shoes container in the North Pacific Ocean, a statistical model was tested on data sets consisting of the Nike shoes found by beachcombers a few months later. This statistical treatment of the shoes' motion allows one to infer velocity trends of the Pacific Ocean, together with their fluctuation strengths. The idea is to suppose that there is a mean bulk flow speed that can depend on location on the ocean surface and time. The fluctuations of the surface flow speed are then treated as statistically random. The distribution of shoes is described in space and time using Markov probability processes related to the mean and fluctuating ocean properties. The aim of the exercise is to provide some of the properties of the Pacific Ocean that are otherwise calculated using a sophisticated numerical model, OSCURS, where numerous data are needed. Relevant quantities are sharply estimated, which can be useful to (1) constrain output results from OSCURS computations, and (2) elucidate the behavior patterns of ocean flow characteristics on long time scales.
Neural network uncertainty assessment using Bayesian statistics: a remote sensing application
NASA Technical Reports Server (NTRS)
Aires, F.; Prigent, C.; Rossow, W. B.
2004-01-01
Neural network (NN) techniques have proved successful for many regression problems, in particular for remote sensing; however, uncertainty estimates are rarely provided. In this article, a Bayesian technique to evaluate uncertainties of the NN parameters (i.e., synaptic weights) is first presented. In contrast to more traditional approaches based on point estimation of the NN weights, we assess uncertainties on such estimates to monitor the robustness of the NN model. These theoretical developments are illustrated by applying them to the problem of retrieving surface skin temperature, microwave surface emissivities, and integrated water vapor content from a combined analysis of satellite microwave and infrared observations over land. The weight uncertainty estimates are then used to compute analytically the uncertainties in the network outputs (i.e., error bars and correlation structure of these errors). Such quantities are very important for evaluating any application of an NN model. The uncertainties on the NN Jacobians are then considered in the third part of this article. Used for regression fitting, NN models can be used effectively to represent highly nonlinear, multivariate functions. In this situation, most emphasis is put on estimating the output errors, but almost no attention has been given to errors associated with the internal structure of the regression model. The complex structure of dependency inside the NN is the essence of the model, and assessing its quality, coherency, and physical character makes all the difference between a blackbox model with small output errors and a reliable, robust, and physically coherent model. Such dependency structures are described to the first order by the NN Jacobians: they indicate the sensitivity of one output with respect to the inputs of the model for given input data. We use a Monte Carlo integration procedure to estimate the robustness of the NN Jacobians. A regularization strategy based on principal component analysis is proposed to suppress the multicollinearities in order to make these Jacobians robust and physically meaningful.
Integrated Wind Power Planning Tool
NASA Astrophysics Data System (ADS)
Rosgaard, Martin; Giebel, Gregor; Skov Nielsen, Torben; Hahmann, Andrea; Sørensen, Poul; Madsen, Henrik
2013-04-01
This poster presents the current state of the public service obligation (PSO) funded project PSO 10464, with the title "Integrated Wind Power Planning Tool". The goal is to integrate a mesoscale numerical weather prediction (NWP) model with purely statistical tools in order to assess wind power fluctuations, with focus on long term power system planning for future wind farms as well as short term forecasting for existing wind farms. Currently, wind power fluctuation models are either purely statistical or integrated with NWP models of limited resolution. Using the state-of-the-art mesoscale NWP model Weather Research & Forecasting model (WRF) the forecast error is sought quantified in dependence of the time scale involved. This task constitutes a preparative study for later implementation of features accounting for NWP forecast errors in the DTU Wind Energy maintained Corwind code - a long term wind power planning tool. Within the framework of PSO 10464 research related to operational short term wind power prediction will be carried out, including a comparison of forecast quality at different mesoscale NWP model resolutions and development of a statistical wind power prediction tool taking input from WRF. The short term prediction part of the project is carried out in collaboration with ENFOR A/S; a Danish company that specialises in forecasting and optimisation for the energy sector. The integrated prediction model will allow for the description of the expected variability in wind power production in the coming hours to days, accounting for its spatio-temporal dependencies, and depending on the prevailing weather conditions defined by the WRF output. The output from the integrated short term prediction tool constitutes scenario forecasts for the coming period, which can then be fed into any type of system model or decision making problem to be solved. The high resolution of the WRF results loaded into the integrated prediction model will ensure a high accuracy data basis is available for use in the decision making process of the Danish transmission system operator. The need for high accuracy predictions will only increase over the next decade as Denmark approaches the goal of 50% wind power based electricity in 2025 from the current 20%.
The relative efficiency of Iranian's rural traffic police: a three-stage DEA model.
Rahimi, Habibollah; Soori, Hamid; Nazari, Seyed Saeed Hashemi; Motevalian, Seyed Abbas; Azar, Adel; Momeni, Eskandar; Javartani, Mehdi
2017-10-13
Road traffic Injuries (RTIs) as a health problem imposes governments to implement different interventions. Target achievement in this issue required effective and efficient measures. Efficiency evaluation of traffic police as one of the responsible administrators is necessary for resource management. Therefore, this study conducted to measure Iran's rural traffic police efficiency. This was an ecological study. To obtain pure efficiency score, three-stage DEA model was conducted with seven inputs and three output variables. At the first stage, crude efficiency score was measured with BCC-O model. Next, to extract the effects of socioeconomic, demographic, traffic count and road infrastructure as the environmental variables and statistical noise, the Stochastic Frontier Analysis (SFA) model was applied and the output values were modified according to similar environment and statistical noise conditions. Then, the pure efficiency score was measured using modified outputs and BCC-O model. In total, the efficiency score of 198 police stations from 24 provinces of 31 provinces were measured. The annual means (standard deviation) of damage, injury and fatal accidents were 247.7 (258.4), 184.9 (176.9), and 28.7 (19.5), respectively. Input averages were 5.9 (3.0) patrol teams, 0.5% (0.2) manpower proportions, 7.5 (2.9) patrol cars, 0.5 (1.3) motorcycles, 77,279.1 (46,794.7) penalties, 90.9 (2.8) cultural and educational activity score, 0.7 (2.4) speed cameras. The SFA model showed non-significant differences between police station performances and the most differences attributed to the environmental and random error. One-way main road, by road, traffic count and the number of household owning motorcycle had significant positive relations with inefficiency score. The length of freeway/highway and literacy rate variables had negative relations, significantly. Pure efficiency score was with mean of 0.95 and SD of 0.09. Iran's traffic police has potential opportunity to reduce RTIs. Adjusting police performance with environmental conditions is necessary. Capability of DEA method in setting quantitative targets for every station induces motivation for managers to reduce RTIs. Repetition of this study is recommended, annually.
NASA Astrophysics Data System (ADS)
Sherwood, John; Clabeaux, Raeanne; Carbajales-Dale, Michael
2017-10-01
We developed a physically-based environmental account of US food production systems and integrated these data into the environmental-input-output life cycle assessment (EIO-LCA) model. The extended model was used to characterize the food, energy, and water (FEW) intensities of every US economic sector. The model was then applied to every Bureau of Economic Analysis metropolitan statistical area (MSA) to determine their FEW usages. The extended EIO-LCA model can determine the water resource use (kGal), energy resource use (TJ), and food resource use in units of mass (kg) or energy content (kcal) of any economic activity within the United States. We analyzed every economic sector to determine its FEW intensities per dollar of economic output. This data was applied to each of the 382 MSAs to determine their total and per dollar of GDP FEW usages by allocating MSA economic production to the corresponding FEW intensities of US economic sectors. Additionally, a longitudinal study was performed for the Los Angeles-Long Beach-Anaheim, CA, metropolitan statistical area to examine trends from this singular MSA and compare it to the overall results. Results show a strong correlation between GDP and energy use, and between food and water use across MSAs. There is also a correlation between GDP and greenhouse gas emissions. The longitudinal study indicates that these correlations can shift alongside a shifting industrial composition. Comparing MSAs on a per GDP basis reveals that central and southern California tend to be more resource intensive than many other parts of the country, while much of Florida has abnormally low resource requirements. Results of this study enable a more complete understanding of food, energy, and water as key ingredients to a functioning economy. With the addition of the food data to the EIO-LCA framework, researchers will be able to better study the food-energy-water nexus and gain insight into how these three vital resources are interconnected. Applying this extended model to MSAs has demonstrated that all three resources are important to a MSA’s vitality, though the exact proportion of each resource may differ across urban areas.
The magnitude and effects of extreme solar particle events
NASA Astrophysics Data System (ADS)
Jiggens, Piers; Chavy-Macdonald, Marc-Andre; Santin, Giovanni; Menicucci, Alessandra; Evans, Hugh; Hilgers, Alain
2014-06-01
The solar energetic particle (SEP) radiation environment is an important consideration for spacecraft design, spacecraft mission planning and human spaceflight. Herein is presented an investigation into the likely severity of effects of a very large Solar Particle Event (SPE) on technology and humans in space. Fluences for SPEs derived using statistical models are compared to historical SPEs to verify their appropriateness for use in the analysis which follows. By combining environment tools with tools to model effects behind varying layers of spacecraft shielding it is possible to predict what impact a large SPE would be likely to have on a spacecraft in Near-Earth interplanetary space or geostationary Earth orbit. Also presented is a comparison of results generated using the traditional method of inputting the environment spectra, determined using a statistical model, into effects tools and a new method developed as part of the ESA SEPEM Project allowing for the creation of an effect time series on which statistics, previously applied to the flux data, can be run directly. The SPE environment spectra is determined and presented as energy integrated proton fluence (cm-2) as a function of particle energy (in MeV). This is input into the SHIELDOSE-2, MULASSIS, NIEL, GRAS and SEU effects tools to provide the output results. In the case of the new method for analysis, the flux time series is fed directly into the MULASSIS and GEMAT tools integrated into the SEPEM system. The output effect quantities include total ionising dose (in rads), non-ionising energy loss (MeV g-1), single event upsets (upsets/bit) and the dose in humans compared to established limits for stochastic (or cancer-causing) effects and tissue reactions (such as acute radiation sickness) in humans given in grey-equivalent and sieverts respectively.
NASA Astrophysics Data System (ADS)
Manzanas, R., Sr.; Brands, S.; San Martin, D., Sr.; Gutiérrez, J. M., Sr.
2014-12-01
This work shows that local-scale climate projections obtained by means of statistical downscaling are sensitive to the choice of reanalysis used for calibration. To this aim, a Generalized Linear Model (GLM) approach is applied to downscale daily precipitation in the Philippines. First, the GLMs are trained and tested -under a cross-validation scheme- separately for two distinct reanalyses (ERA-Interim and JRA-25) for the period 1981-2000. When the observed and downscaled time-series are compared, the attained performance is found to be sensitive to the reanalysis considered if climate change signal bearing variables (temperature and/or specific humidity) are included in the predictor field. Moreover, performance differences are shown to be in correspondence with the disagreement found between the raw predictors from the two reanalyses. Second, the regression coefficients calibrated either with ERA-Interim or JRA-25 are subsequently applied to the output of a Global Climate Model (MPI-ECHAM5) in order to assess the sensitivity of local-scale climate change projections (up to 2100) to reanalysis choice. In this case, the differences detected in present climate conditions are considerably amplified, leading to "delta-change" estimates differing by up to a 35% (on average for the entire country) depending on the reanalysis used for calibration. Therefore, reanalysis choice is shown to importantly contribute to the uncertainty of local-scale climate change projections, and, consequently, should be treated with equal care as other, well-known, sources of uncertainty -e.g., the choice of the GCM and/or downscaling method.- Implications of the results for the entire tropics, as well as for the Model Output Statistics downscaling approach are also briefly discussed.
Mezzenga, Emilio; D'Errico, Vincenzo; Sarnelli, Anna; Strigari, Lidia; Menghi, Enrico; Marcocci, Francesco; Bianchini, David; Benassi, Marcello
2016-01-01
The purpose of this study was to retrospectively evaluate the results from a Helical TomoTherapy Hi-Art treatment system relating to quality controls based on daily static and dynamic output checks using statistical process control methods. Individual value X-charts, exponentially weighted moving average charts, and process capability and acceptability indices were used to monitor the treatment system performance. Daily output values measured from January 2014 to January 2015 were considered. The results obtained showed that, although the process was in control, there was an out-of-control situation in the principal maintenance intervention for the treatment system. In particular, process capability indices showed a decreasing percentage of points in control which was, however, acceptable according to AAPM TG148 guidelines. Our findings underline the importance of restricting the acceptable range of daily output checks and suggest a future line of investigation for a detailed process control of daily output checks for the Helical TomoTherapy Hi-Art treatment system.
NASA Technical Reports Server (NTRS)
Barth, Timothy J.
2016-01-01
This chapter discusses the ongoing development of combined uncertainty and error bound estimates for computational fluid dynamics (CFD) calculations subject to imposed random parameters and random fields. An objective of this work is the construction of computable error bound formulas for output uncertainty statistics that guide CFD practitioners in systematically determining how accurately CFD realizations should be approximated and how accurately uncertainty statistics should be approximated for output quantities of interest. Formal error bounds formulas for moment statistics that properly account for the presence of numerical errors in CFD calculations and numerical quadrature errors in the calculation of moment statistics have been previously presented in [8]. In this past work, hierarchical node-nested dense and sparse tensor product quadratures are used to calculate moment statistics integrals. In the present work, a framework has been developed that exploits the hierarchical structure of these quadratures in order to simplify the calculation of an estimate of the quadrature error needed in error bound formulas. When signed estimates of realization error are available, this signed error may also be used to estimate output quantity of interest probability densities as a means to assess the impact of realization error on these density estimates. Numerical results are presented for CFD problems with uncertainty to demonstrate the capabilities of this framework.
NASA Technical Reports Server (NTRS)
Shafer, Jaclyn; Watson, Leela R.
2015-01-01
NASA's Launch Services Program, Ground Systems Development and Operations, Space Launch System and other programs at Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS) use the daily and weekly weather forecasts issued by the 45th Weather Squadron (45 WS) as decision tools for their day-to-day and launch operations on the Eastern Range (ER). Examples include determining if they need to limit activities such as vehicle transport to the launch pad, protect people, structures or exposed launch vehicles given a threat of severe weather, or reschedule other critical operations. The 45 WS uses numerical weather prediction models as a guide for these weather forecasts, particularly the Air Force Weather Agency (AFWA) 1.67 km Weather Research and Forecasting (WRF) model. Considering the 45 WS forecasters' and Launch Weather Officers' (LWO) extensive use of the AFWA model, the 45 WS proposed a task at the September 2013 Applied Meteorology Unit (AMU) Tasking Meeting requesting the AMU verify this model. Due to the lack of archived model data available from AFWA, verification is not yet possible. Instead, the AMU proposed to implement and verify the performance of an ER version of the high-resolution WRF Environmental Modeling System (EMS) model configured by the AMU (Watson 2013) in real time. Implementing a real-time version of the ER WRF-EMS would generate a larger database of model output than in the previous AMU task for determining model performance, and allows the AMU more control over and access to the model output archive. The tasking group agreed to this proposal; therefore the AMU implemented the WRF-EMS model on the second of two NASA AMU modeling clusters. The AMU also calculated verification statistics to determine model performance compared to observational data. Finally, the AMU made the model output available on the AMU Advanced Weather Interactive Processing System II (AWIPS II) servers, which allows the 45 WS and AMU staff to customize the model output display on the AMU and Range Weather Operations (RWO) AWIPS II client computers and conduct real-time subjective analyses.
Statistics of optimal information flow in ensembles of regulatory motifs
NASA Astrophysics Data System (ADS)
Crisanti, Andrea; De Martino, Andrea; Fiorentino, Jonathan
2018-02-01
Genetic regulatory circuits universally cope with different sources of noise that limit their ability to coordinate input and output signals. In many cases, optimal regulatory performance can be thought to correspond to configurations of variables and parameters that maximize the mutual information between inputs and outputs. Since the mid-2000s, such optima have been well characterized in several biologically relevant cases. Here we use methods of statistical field theory to calculate the statistics of the maximal mutual information (the "capacity") achievable by tuning the input variable only in an ensemble of regulatory motifs, such that a single controller regulates N targets. Assuming (i) sufficiently large N , (ii) quenched random kinetic parameters, and (iii) small noise affecting the input-output channels, we can accurately reproduce numerical simulations both for the mean capacity and for the whole distribution. Our results provide insight into the inherent variability in effectiveness occurring in regulatory systems with heterogeneous kinetic parameters.
Modelling parasite aggregation: disentangling statistical and ecological approaches.
Yakob, Laith; Soares Magalhães, Ricardo J; Gray, Darren J; Milinovich, Gabriel; Wardrop, Nicola; Dunning, Rebecca; Barendregt, Jan; Bieri, Franziska; Williams, Gail M; Clements, Archie C A
2014-05-01
The overdispersion in macroparasite infection intensity among host populations is commonly simulated using a constant negative binomial aggregation parameter. We describe an alternative to utilising the negative binomial approach and demonstrate important disparities in intervention efficacy projections that can come about from opting for pattern-fitting models that are not process-explicit. We present model output in the context of the epidemiology and control of soil-transmitted helminths due to the significant public health burden imposed by these parasites, but our methods are applicable to other infections with demonstrable aggregation in parasite numbers among hosts. Copyright © 2014. Published by Elsevier Ltd.
A Primary Care Workload Production Model for Estimating Relative Value Unit Output
2011-03-01
for Medicare and Medicaid Services, Office of the Actuary , National Health Statistics Group; and U.S. Department of Commerce, Bureau of Economic...The systematic variation in a relationship can be represented by a mathematical expression, whereas stochastic variation cannot. Further, stochastic...expressed mathematically as an equation, whereby a response variable Y is fitted to a function of “regressor variables and parameters” (SAS©, 2010). A
Cooley, Richard L.
1993-01-01
A new method is developed to efficiently compute exact Scheffé-type confidence intervals for output (or other function of parameters) g(β) derived from a groundwater flow model. The method is general in that parameter uncertainty can be specified by any statistical distribution having a log probability density function (log pdf) that can be expanded in a Taylor series. However, for this study parameter uncertainty is specified by a statistical multivariate beta distribution that incorporates hydrogeologic information in the form of the investigator's best estimates of parameters and a grouping of random variables representing possible parameter values so that each group is defined by maximum and minimum bounds and an ordering according to increasing value. The new method forms the confidence intervals from maximum and minimum limits of g(β) on a contour of a linear combination of (1) the quadratic form for the parameters used by Cooley and Vecchia (1987) and (2) the log pdf for the multivariate beta distribution. Three example problems are used to compare characteristics of the confidence intervals for hydraulic head obtained using different weights for the linear combination. Different weights generally produced similar confidence intervals, whereas the method of Cooley and Vecchia (1987) often produced much larger confidence intervals.
SPSS macros to compare any two fitted values from a regression model.
Weaver, Bruce; Dubois, Sacha
2012-12-01
In regression models with first-order terms only, the coefficient for a given variable is typically interpreted as the change in the fitted value of Y for a one-unit increase in that variable, with all other variables held constant. Therefore, each regression coefficient represents the difference between two fitted values of Y. But the coefficients represent only a fraction of the possible fitted value comparisons that might be of interest to researchers. For many fitted value comparisons that are not captured by any of the regression coefficients, common statistical software packages do not provide the standard errors needed to compute confidence intervals or carry out statistical tests-particularly in more complex models that include interactions, polynomial terms, or regression splines. We describe two SPSS macros that implement a matrix algebra method for comparing any two fitted values from a regression model. The !OLScomp and !MLEcomp macros are for use with models fitted via ordinary least squares and maximum likelihood estimation, respectively. The output from the macros includes the standard error of the difference between the two fitted values, a 95% confidence interval for the difference, and a corresponding statistical test with its p-value.
Statistical downscaling of precipitation using long short-term memory recurrent neural networks
NASA Astrophysics Data System (ADS)
Misra, Saptarshi; Sarkar, Sudeshna; Mitra, Pabitra
2017-11-01
Hydrological impacts of global climate change on regional scale are generally assessed by downscaling large-scale climatic variables, simulated by General Circulation Models (GCMs), to regional, small-scale hydrometeorological variables like precipitation, temperature, etc. In this study, we propose a new statistical downscaling model based on Recurrent Neural Network with Long Short-Term Memory which captures the spatio-temporal dependencies in local rainfall. The previous studies have used several other methods such as linear regression, quantile regression, kernel regression, beta regression, and artificial neural networks. Deep neural networks and recurrent neural networks have been shown to be highly promising in modeling complex and highly non-linear relationships between input and output variables in different domains and hence we investigated their performance in the task of statistical downscaling. We have tested this model on two datasets—one on precipitation in Mahanadi basin in India and the second on precipitation in Campbell River basin in Canada. Our autoencoder coupled long short-term memory recurrent neural network model performs the best compared to other existing methods on both the datasets with respect to temporal cross-correlation, mean squared error, and capturing the extremes.
NASA Astrophysics Data System (ADS)
Häme, Tuomas; Mutanen, Teemu; Rauste, Yrjö; Antropov, Oleg; Molinier, Matthieu; Quegan, Shaun; Kantzas, Euripides; Mäkelä, Annikki; Minunno, Francesco; Atli Benediktsson, Jon; Falco, Nicola; Arnason, Kolbeinn; Storvold, Rune; Haarpaintner, Jörg; Elsakov, Vladimir; Rasinmäki, Jussi
2015-04-01
The objective of project North State, funded by Framework Program 7 of the European Union, is to develop innovative data fusion methods that exploit the new generation of multi-source data from Sentinels and other satellites in an intelligent, self-learning framework. The remote sensing outputs are interfaced with state-of-the-art carbon and water flux models for monitoring the fluxes over boreal Europe to reduce current large uncertainties. This will provide a paradigm for the development of products for future Copernicus services. The models to be interfaced are a dynamic vegetation model and a light use efficiency model. We have identified four groups of variables that will be estimated with remote sensed data: land cover variables, forest characteristics, vegetation activity, and hydrological variables. The estimates will be used as model inputs and to validate the model outputs. The earth observation variables are computed as automatically as possible, with an objective to completely automatic estimation. North State has two sites for intensive studies in southern and northern Finland, respectively, one in Iceland and one in state Komi of Russia. Additionally, the model input variables will be estimated and models applied over European boreal and sub-arctic region from Ural Mountains to Iceland. The accuracy assessment of the earth observation variables will follow statistical sampling design. Model output predictions are compared to earth observation variables. Also flux tower measurements are applied in the model assessment. In the paper, results of hyperspectral, Sentinel-1, and Landsat data and their use in the models is presented. Also an example of a completely automatic land cover class prediction is reported.
Quantile Mapping Bias correction for daily precipitation over Vietnam in a regional climate model
NASA Astrophysics Data System (ADS)
Trinh, L. T.; Matsumoto, J.; Ngo-Duc, T.
2017-12-01
In the past decades, Regional Climate Models (RCMs) have been developed significantly, allowing climate simulation to be conducted at a higher resolution. However, RCMs often contained biases when comparing with observations. Therefore, statistical correction methods were commonly employed to reduce/minimize the model biases. In this study, outputs of the Regional Climate Model (RegCM) version 4.3 driven by the CNRM-CM5 global products were evaluated with and without the Quantile Mapping (QM) bias correction method. The model domain covered the area from 90oE to 145oE and from 15oS to 40oN with a horizontal resolution of 25km. The QM bias correction processes were implemented by using the Vietnam Gridded precipitation dataset (VnGP) and the outputs of RegCM historical run in the period 1986-1995 and then validated for the period 1996-2005. Based on the statistical quantity of spatial correlation and intensity distributions, the QM method showed a significant improvement in rainfall compared to the non-bias correction method. The improvements both in time and space were recognized in all seasons and all climatic sub-regions of Vietnam. Moreover, not only the rainfall amount but also some extreme indices such as R10m, R20mm, R50m, CDD, CWD, R95pTOT, R99pTOT were much better after the correction. The results suggested that the QM correction method should be taken into practice for the projections of the future precipitation over Vietnam.
NASA Astrophysics Data System (ADS)
Mehrotra, Rajeshwar; Sharma, Ashish
2012-12-01
The quality of the absolute estimates of general circulation models (GCMs) calls into question the direct use of GCM outputs for climate change impact assessment studies, particularly at regional scales. Statistical correction of GCM output is often necessary when significant systematic biasesoccur between the modeled output and observations. A common procedure is to correct the GCM output by removing the systematic biases in low-order moments relative to observations or to reanalysis data at daily, monthly, or seasonal timescales. In this paper, we present an extension of a recently published nested bias correction (NBC) technique to correct for the low- as well as higher-order moments biases in the GCM-derived variables across selected multiple time-scales. The proposed recursive nested bias correction (RNBC) approach offers an improved basis for applying bias correction at multiple timescales over the original NBC procedure. The method ensures that the bias-corrected series exhibits improvements that are consistently spread over all of the timescales considered. Different variations of the approach starting from the standard NBC to the more complex recursive alternatives are tested to assess their impacts on a range of GCM-simulated atmospheric variables of interest in downscaling applications related to hydrology and water resources. Results of the study suggest that three to five iteration RNBCs are the most effective in removing distributional and persistence related biases across the timescales considered.
Nonlinear Wave Chaos and the Random Coupling Model
NASA Astrophysics Data System (ADS)
Zhou, Min; Ott, Edward; Antonsen, Thomas M.; Anlage, Steven
The Random Coupling Model (RCM) has been shown to successfully predict the statistical properties of linear wave chaotic cavities in the highly over-moded regime. It is of interest to extend the RCM to strongly nonlinear systems. To introduce nonlinearity, an active nonlinear circuit is connected to two ports of the wave chaotic 1/4-bowtie cavity. The active nonlinear circuit consists of a frequency multiplier, an amplifier and several passive filters. It acts to double the input frequency in the range from 3.5 GHz to 5 GHz, and operates for microwaves going in only one direction. Measurements are taken between two additional ports of the cavity and we measure the statistics of the second harmonic voltage over an ensemble of realizations of the scattering system. We developed an RCM-based model of this system as two chaotic cavities coupled by means of a nonlinear transfer function. The harmonics received at the output are predicted to be the product of three statistical quantities that describe the three elements correspondingly. Statistical results from simulation, RCM-based modeling, and direct experimental measurements will be compared. ONR under Grant No. N000141512134, AFOSR under COE Grant FA9550-15-1-0171,0 and the Maryland Center for Nanophysics and Advanced Materials.
Whole Frog Project and Virtual Frog Dissection Statistics wwwstats output for January 1 through duplicate or extraneous accesses. For example, in these statistics, while a POST requesting an image is as well. Note that this under-represents the bytes requested. Starting date for following statistics
NASA Astrophysics Data System (ADS)
Bratchikov, A. N.; Glukhov, I. P.
1992-02-01
An analysis is made of a theoretical model of an interference fiber channel for transmission of microwave signals. It is assumed that the channel consists of a multimode fiber waveguide with a step or graded refractive-index profile. A typical statistic of a longitudinal distribution of inhomogeneities is also assumed. Calculations are reported of the interference losses, the spectral profile of the output radio signal, the signal/noise ratio in the channel, and of the dependences of these parameters on: the type, diameter, and the length of the multimode fiber waveguide; the spectral width of the radiation source; the frequency offset between the interfering optical signals.
Shot noise startup of the 6 NM SASE FEL at the Tesla Test Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pierini, P.; Fawley, W.M.
We present here an analysis of the shot noise startup of the 6 nm SASE FEI proposal at the TESLA Test Facility in DESY The statistical of the saturation length and output power due to the intrinsic randomness of the noise startup are investigated with the use of the 2D time dependent code GINGER, that takes into account propagation effects and models shot noise. We then provide estimates for the spectral contents and linewidth of the emitted radiation and describe its spiking characteristics. The output radiation will develop superradiant spikes seeded by the shot noise in the electron beam, whichmore » can entrance the average emitted power at the expense of some spectral broadening.« less
Assessing first-order emulator inference for physical parameters in nonlinear mechanistic models
Hooten, Mevin B.; Leeds, William B.; Fiechter, Jerome; Wikle, Christopher K.
2011-01-01
We present an approach for estimating physical parameters in nonlinear models that relies on an approximation to the mechanistic model itself for computational efficiency. The proposed methodology is validated and applied in two different modeling scenarios: (a) Simulation and (b) lower trophic level ocean ecosystem model. The approach we develop relies on the ability to predict right singular vectors (resulting from a decomposition of computer model experimental output) based on the computer model input and an experimental set of parameters. Critically, we model the right singular vectors in terms of the model parameters via a nonlinear statistical model. Specifically, we focus our attention on first-order models of these right singular vectors rather than the second-order (covariance) structure.
NASA Technical Reports Server (NTRS)
Berg, R. F.; Holcomb, J. E.; Kelroy, E. A.; Levine, D. A.; Mee, C., III
1970-01-01
Generalized information storage and retrieval system capable of generating and maintaining a file, gathering statistics, sorting output, and generating final reports for output is reviewed. File generation and file maintenance programs written for the system are general purpose routines.
Modeling velocity space-time correlations in wind farms
NASA Astrophysics Data System (ADS)
Lukassen, Laura J.; Stevens, Richard J. A. M.; Meneveau, Charles; Wilczek, Michael
2016-11-01
Turbulent fluctuations of wind velocities cause power-output fluctuations in wind farms. The statistics of velocity fluctuations can be described by velocity space-time correlations in the atmospheric boundary layer. In this context, it is important to derive simple physics-based models. The so-called Tennekes-Kraichnan random sweeping hypothesis states that small-scale velocity fluctuations are passively advected by large-scale velocity perturbations in a random fashion. In the present work, this hypothesis is used with an additional mean wind velocity to derive a model for the spatial and temporal decorrelation of velocities in wind farms. It turns out that in the framework of this model, space-time correlations are a convolution of the spatial correlation function with a temporal decorrelation kernel. In this presentation, first results on the comparison to large eddy simulations will be presented and the potential of the approach to characterize power output fluctuations of wind farms will be discussed. Acknowledgements: 'Fellowships for Young Energy Scientists' (YES!) of FOM, the US National Science Foundation Grant IIA 1243482, and support by the Max Planck Society.
Analysis of the performance of a wireless optical multi-input to multi-output communication system.
Bushuev, Denis; Arnon, Shlomi
2006-07-01
We investigate robust optical wireless communication in a highly scattering propagation medium using multielement optical detector arrays. The communication setup consists of synchronized multiple transmitters that send information to a receiver array and an atmospheric propagation channel. The mathematical model that best describes this scenario is multi-input to multi-output communication through stochastic slow changing channels. In this model, signals from m transmitters are received by n receiver-detectors. The channel transfer function matrix is G, and its size is n x m. G(i,j) is the transfer function from transmitter i to detector j, and m > or = n. We adopt a quasi-stationary approach in which the channel time variation has a negligible effect on communication performance over a burst. The G matrix is calculated on the basis of the optical transfer function of the atmospheric channel (composed of aerosol and turbulence elements) and the receiver's optics. In this work we derive a performance model using environmental data, such as documented turbulence and aerosol models and noise statistics. We also present the results of simulations conducted for the proposed detection algorithm.
Sassani, Farrokh
2014-01-01
The simulation results for electromagnetic energy harvesters (EMEHs) under broad band stationary Gaussian random excitations indicate the importance of both a high transformation factor and a high mechanical quality factor to achieve favourable mean power, mean square load voltage, and output spectral density. The optimum load is different for random vibrations and for sinusoidal vibration. Reducing the total damping ratio under band-limited random excitation yields a higher mean square load voltage. Reduced bandwidth resulting from decreased mechanical damping can be compensated by increasing the electrical damping (transformation factor) leading to a higher mean square load voltage and power. Nonlinear EMEHs with a Duffing spring and with linear plus cubic damping are modeled using the method of statistical linearization. These nonlinear EMEHs exhibit approximately linear behaviour under low levels of broadband stationary Gaussian random vibration; however, at higher levels of such excitation the central (resonant) frequency of the spectral density of the output voltage shifts due to the increased nonlinear stiffness and the bandwidth broadens slightly. Nonlinear EMEHs exhibit lower maximum output voltage and central frequency of the spectral density with nonlinear damping compared to linear damping. Stronger nonlinear damping yields broader bandwidths at stable resonant frequency. PMID:24605063
Schick, Robert S; Kraus, Scott D; Rolland, Rosalind M; Knowlton, Amy R; Hamilton, Philip K; Pettis, Heather M; Thomas, Len; Harwood, John; Clark, James S
2016-01-01
Right whales are vulnerable to many sources of anthropogenic disturbance including ship strikes, entanglement with fishing gear, and anthropogenic noise. The effect of these factors on individual health is unclear. A statistical model using photographic evidence of health was recently built to infer the true or hidden health of individual right whales. However, two important prior assumptions about the role of missing data and unexplained variance on the estimates were not previously assessed. Here we tested these factors by varying prior assumptions and model formulation. We found sensitivity to each assumption and used the output to make guidelines on future model formulation.
Surrogate model approach for improving the performance of reactive transport simulations
NASA Astrophysics Data System (ADS)
Jatnieks, Janis; De Lucia, Marco; Sips, Mike; Dransch, Doris
2016-04-01
Reactive transport models can serve a large number of important geoscientific applications involving underground resources in industry and scientific research. It is common for simulation of reactive transport to consist of at least two coupled simulation models. First is a hydrodynamics simulator that is responsible for simulating the flow of groundwaters and transport of solutes. Hydrodynamics simulators are well established technology and can be very efficient. When hydrodynamics simulations are performed without coupled geochemistry, their spatial geometries can span millions of elements even when running on desktop workstations. Second is a geochemical simulation model that is coupled to the hydrodynamics simulator. Geochemical simulation models are much more computationally costly. This is a problem that makes reactive transport simulations spanning millions of spatial elements very difficult to achieve. To address this problem we propose to replace the coupled geochemical simulation model with a surrogate model. A surrogate is a statistical model created to include only the necessary subset of simulator complexity for a particular scenario. To demonstrate the viability of such an approach we tested it on a popular reactive transport benchmark problem that involves 1D Calcite transport. This is a published benchmark problem (Kolditz, 2012) for simulation models and for this reason we use it to test the surrogate model approach. To do this we tried a number of statistical models available through the caret and DiceEval packages for R, to be used as surrogate models. These were trained on randomly sampled subset of the input-output data from the geochemical simulation model used in the original reactive transport simulation. For validation we use the surrogate model to predict the simulator output using the part of sampled input data that was not used for training the statistical model. For this scenario we find that the multivariate adaptive regression splines (MARS) method provides the best trade-off between speed and accuracy. This proof-of-concept forms an essential step towards building an interactive visual analytics system to enable user-driven systematic creation of geochemical surrogate models. Such a system shall enable reactive transport simulations with unprecedented spatial and temporal detail to become possible. References: Kolditz, O., Görke, U.J., Shao, H. and Wang, W., 2012. Thermo-hydro-mechanical-chemical processes in porous media: benchmarks and examples (Vol. 86). Springer Science & Business Media.
A Backscatter-Lidar Forward-Operator
NASA Astrophysics Data System (ADS)
Geisinger, Armin; Behrendt, Andreas; Wulfmeyer, Volker; Vogel, Bernhard; Mattis, Ina; Flentje, Harald; Förstner, Jochen; Potthast, Roland
2015-04-01
We have developed a forward-operator which is capable of calculating virtual lidar profiles from atmospheric state simulations. The operator allows us to compare lidar measurements and model simulations based on the same measurement parameter: the lidar backscatter profile. This method simplifies qualitative comparisons and also makes quantitative comparisons possible, including statistical error quantification. Implemented into an aerosol-capable model system, the operator will act as a component to assimilate backscatter-lidar measurements. As many weather services maintain already networks of backscatter-lidars, such data are acquired already in an operational manner. To estimate and quantify errors due to missing or uncertain aerosol information, we started sensitivity studies about several scattering parameters such as the aerosol size and both the real and imaginary part of the complex index of refraction. Furthermore, quantitative and statistical comparisons between measurements and virtual measurements are shown in this study, i.e. applying the backscatter-lidar forward-operator on model output.
A statistical model for water quality predictions from a river discharge using coastal observations
NASA Astrophysics Data System (ADS)
Kim, S.; Terrill, E. J.
2007-12-01
Understanding and predicting coastal ocean water quality has benefits for reducing human health risks, protecting the environment, and improving local economies which depend on clean beaches. Continuous observations of coastal physical oceanography increase the understanding of the processes which control the fate and transport of a riverine plume which potentially contains high levels of contaminants from the upstream watershed. A data-driven model of the fate and transport of river plume water from the Tijuana River has been developed using surface current observations provided by a network of HF radar operated as part of a local coastal observatory that has been in place since 2002. The model outputs are compared with water quality sampling of shoreline indicator bacteria, and the skill of an alarm for low water quality is evaluated using the receiver operating characteristic (ROC) curve. In addition, statistical analysis of beach closures in comparison with environmental variables is also discussed.
Statistical Inference in Hidden Markov Models Using k-Segment Constraints
Titsias, Michalis K.; Holmes, Christopher C.; Yau, Christopher
2016-01-01
Hidden Markov models (HMMs) are one of the most widely used statistical methods for analyzing sequence data. However, the reporting of output from HMMs has largely been restricted to the presentation of the most-probable (MAP) hidden state sequence, found via the Viterbi algorithm, or the sequence of most probable marginals using the forward–backward algorithm. In this article, we expand the amount of information we could obtain from the posterior distribution of an HMM by introducing linear-time dynamic programming recursions that, conditional on a user-specified constraint in the number of segments, allow us to (i) find MAP sequences, (ii) compute posterior probabilities, and (iii) simulate sample paths. We collectively call these recursions k-segment algorithms and illustrate their utility using simulated and real examples. We also highlight the prospective and retrospective use of k-segment constraints for fitting HMMs or exploring existing model fits. Supplementary materials for this article are available online. PMID:27226674
NASA Astrophysics Data System (ADS)
Vislocky, Robert L.; Fritsch, J. Michael
1997-12-01
A prototype advanced model output statistics (MOS) forecast system that was entered in the 1996-97 National Collegiate Weather Forecast Contest is described and its performance compared to that of widely available objective guidance and to contest participants. The prototype system uses an optimal blend of aviation (AVN) and nested grid model (NGM) MOS forecasts, explicit output from the NGM and Eta guidance, and the latest surface weather observations from the forecast site. The forecasts are totally objective and can be generated quickly on a personal computer. Other "objective" forms of guidance tracked in the contest are 1) the consensus forecast (i.e., the average of the forecasts from all of the human participants), 2) the combination of NGM raw output (for precipitation forecasts) and NGM MOS guidance (for temperature forecasts), and 3) the combination of Eta Model raw output (for precipitation forecasts) and AVN MOS guidance (for temperature forecasts).Results show that the advanced MOS system finished in 20th place out of 737 original entrants, or better than approximately 97% of the human forecasters who entered the contest. Moreover, the advanced MOS system was slightly better than consensus (23d place). The fact that an objective forecast system finished ahead of consensus is a significant accomplishment since consensus is traditionally a very formidable "opponent" in forecast competitions. Equally significant is that the advanced MOS system was superior to the traditional guidance products available from the National Centers for Environmental Prediction (NCEP). Specifically, the combination of NGM raw output and NGM MOS guidance finished in 175th place, and the combination of Eta Model raw output and AVN MOS guidance finished in 266th place. The latter result is most intriguing since the proposed elimination of all NGM products would likely result in a serious degradation of objective products disseminated by NCEP, unless they are replaced with equal or better substitutes. On the other hand, the positive performance of the prototype advanced MOS system shows that it is possible to create a single objective product that is not only superior to currently available objective guidance products, but is also on par with some of the better human forecasters.
An integrated system for rainfall induced shallow landslides modeling
NASA Astrophysics Data System (ADS)
Formetta, Giuseppe; Capparelli, Giovanna; Rigon, Riccardo; Versace, Pasquale
2014-05-01
Rainfall induced shallow landslides (RISL) cause significant damages involving loss of life and properties. Predict susceptible locations for RISL is a complex task that involves many disciplines: hydrology, geotechnical science, geomorphology, statistic. Usually to accomplish this task two main approaches are used: statistical or physically based model. In this work an open source (OS), 3-D, fully distributed hydrological model was integrated in an OS modeling framework (Object Modeling System). The chain is closed by linking the system to a component for safety factor computation with infinite slope approximation able to take into account layered soils and suction contribution to hillslope stability. The model composition was tested for a case study in Calabria (Italy) in order to simulate the triggering of a landslide happened in the Cosenza Province. The integration in OMS allows the use of other components such as a GIS to manage inputs-output processes, and automatic calibration algorithms to estimate model parameters. Finally, model performances were quantified by comparing modelled and simulated trigger time. This research is supported by Ambito/Settore AMBIENTE E SICUREZZA (PON01_01503) project.
Modeling and forecasting the distribution of Vibrio vulnificus in Chesapeake Bay
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacobs, John M.; Rhodes, M.; Brown, C. W.
The aim is to construct statistical models to predict the presence, abundance and potential virulence of Vibrio vulnificus in surface waters. A variety of statistical techniques were used in concert to identify water quality parameters associated with V. vulnificus presence, abundance and virulence markers in the interest of developing strong predictive models for use in regional oceanographic modeling systems. A suite of models are provided to represent the best model fit and alternatives using environmental variables that allow them to be put to immediate use in current ecological forecasting efforts. Conclusions: Environmental parameters such as temperature, salinity and turbidity aremore » capable of accurately predicting abundance and distribution of V. vulnificus in Chesapeake Bay. Forcing these empirical models with output from ocean modeling systems allows for spatially explicit forecasts for up to 48 h in the future. This study uses one of the largest data sets compiled to model Vibrio in an estuary, enhances our understanding of environmental correlates with abundance, distribution and presence of potentially virulent strains and offers a method to forecast these pathogens that may be replicated in other regions.« less
PROC IRT: A SAS Procedure for Item Response Theory
Matlock Cole, Ki; Paek, Insu
2017-01-01
This article reviews the procedure for item response theory (PROC IRT) procedure in SAS/STAT 14.1 to conduct item response theory (IRT) analyses of dichotomous and polytomous datasets that are unidimensional or multidimensional. The review provides an overview of available features, including models, estimation procedures, interfacing, input, and output files. A small-scale simulation study evaluates the IRT model parameter recovery of the PROC IRT procedure. The use of the IRT procedure in Statistical Analysis Software (SAS) may be useful for researchers who frequently utilize SAS for analyses, research, and teaching.
ACIRF User’s Guide for the General Model (Version 3.5)
1992-06-01
61 3c Example ACIRF formatted output for the frozen-in model (summary of measured realization statistics for antenr.. 2...must be delta correlated in angle, delay, and Doppler frequency: < z(KL,O)o) *(Kijj",o) = S(K±,T, O)D) 5(KL-K’) 8(T-r’) 8(0D-Oab) .( 61 ) The first-order... 61 , and the central limit theorem could be invoked to argue that h(p,r,t) and hA(p,rt) are zero- mean, normally-distributed complex quantities. Indeed
Computing Reliabilities Of Ceramic Components Subject To Fracture
NASA Technical Reports Server (NTRS)
Nemeth, N. N.; Gyekenyesi, J. P.; Manderscheid, J. M.
1992-01-01
CARES calculates fast-fracture reliability or failure probability of macroscopically isotropic ceramic components. Program uses results from commercial structural-analysis program (MSC/NASTRAN or ANSYS) to evaluate reliability of component in presence of inherent surface- and/or volume-type flaws. Computes measure of reliability by use of finite-element mathematical model applicable to multiple materials in sense model made function of statistical characterizations of many ceramic materials. Reliability analysis uses element stress, temperature, area, and volume outputs, obtained from two-dimensional shell and three-dimensional solid isoparametric or axisymmetric finite elements. Written in FORTRAN 77.
Uniting statistical and individual-based approaches for animal movement modelling.
Latombe, Guillaume; Parrott, Lael; Basille, Mathieu; Fortin, Daniel
2014-01-01
The dynamic nature of their internal states and the environment directly shape animals' spatial behaviours and give rise to emergent properties at broader scales in natural systems. However, integrating these dynamic features into habitat selection studies remains challenging, due to practically impossible field work to access internal states and the inability of current statistical models to produce dynamic outputs. To address these issues, we developed a robust method, which combines statistical and individual-based modelling. Using a statistical technique for forward modelling of the IBM has the advantage of being faster for parameterization than a pure inverse modelling technique and allows for robust selection of parameters. Using GPS locations from caribou monitored in Québec, caribou movements were modelled based on generative mechanisms accounting for dynamic variables at a low level of emergence. These variables were accessed by replicating real individuals' movements in parallel sub-models, and movement parameters were then empirically parameterized using Step Selection Functions. The final IBM model was validated using both k-fold cross-validation and emergent patterns validation and was tested for two different scenarios, with varying hardwood encroachment. Our results highlighted a functional response in habitat selection, which suggests that our method was able to capture the complexity of the natural system, and adequately provided projections on future possible states of the system in response to different management plans. This is especially relevant for testing the long-term impact of scenarios corresponding to environmental configurations that have yet to be observed in real systems.
Uniting Statistical and Individual-Based Approaches for Animal Movement Modelling
Latombe, Guillaume; Parrott, Lael; Basille, Mathieu; Fortin, Daniel
2014-01-01
The dynamic nature of their internal states and the environment directly shape animals' spatial behaviours and give rise to emergent properties at broader scales in natural systems. However, integrating these dynamic features into habitat selection studies remains challenging, due to practically impossible field work to access internal states and the inability of current statistical models to produce dynamic outputs. To address these issues, we developed a robust method, which combines statistical and individual-based modelling. Using a statistical technique for forward modelling of the IBM has the advantage of being faster for parameterization than a pure inverse modelling technique and allows for robust selection of parameters. Using GPS locations from caribou monitored in Québec, caribou movements were modelled based on generative mechanisms accounting for dynamic variables at a low level of emergence. These variables were accessed by replicating real individuals' movements in parallel sub-models, and movement parameters were then empirically parameterized using Step Selection Functions. The final IBM model was validated using both k-fold cross-validation and emergent patterns validation and was tested for two different scenarios, with varying hardwood encroachment. Our results highlighted a functional response in habitat selection, which suggests that our method was able to capture the complexity of the natural system, and adequately provided projections on future possible states of the system in response to different management plans. This is especially relevant for testing the long-term impact of scenarios corresponding to environmental configurations that have yet to be observed in real systems. PMID:24979047
Sadeghi, Fatemeh; Nasseri, Simin; Mosaferi, Mohammad; Nabizadeh, Ramin; Yunesian, Masud; Mesdaghinia, Alireza
2017-05-01
In this research, probable arsenic contamination in drinking water in the city of Ardabil was studied in 163 samples during four seasons. In each season, sampling was carried out randomly in the study area. Results were analyzed statistically applying SPSS 19 software, and the data was also modeled by Arc GIS 10.1 software. The maximum permissible arsenic concentration in drinking water defined by the World Health Organization and Iranian national standard is 10 μg/L. Statistical analysis showed 75, 88, 47, and 69% of samples in autumn, winter, spring, and summer, respectively, had concentrations higher than the national standard. The mean concentrations of arsenic in autumn, winter, spring, and summer were 19.89, 15.9, 10.87, and 14.6 μg/L, respectively, and the overall average in all samples through the year was 15.32 μg/L. Although GIS outputs indicated that the concentration distribution profiles changed in four consecutive seasons, variance analysis of the results showed that statistically there is no significant difference in arsenic levels in four seasons.
PAH concentrations simulated with the AURAMS-PAH chemical transport model over Canada and the USA
NASA Astrophysics Data System (ADS)
Galarneau, E.; Makar, P. A.; Zheng, Q.; Narayan, J.; Zhang, J.; Moran, M. D.; Bari, M. A.; Pathela, S.; Chen, A.; Chlumsky, R.
2014-04-01
The offline Eulerian AURAMS (A Unified Regional Air quality Modelling System) chemical transport model was adapted to simulate airborne concentrations of seven PAHs (polycyclic aromatic hydrocarbons): phenanthrene, anthracene, fluoranthene, pyrene, benz[a]anthracene, chrysene + triphenylene, and benzo[a]pyrene. The model was then run for the year 2002 with hourly output on a grid covering southern Canada and the continental USA with 42 km horizontal grid spacing. Model predictions were compared to ~5000 24 h-average PAH measurements from 45 sites, most of which were located in urban or industrial areas. Eight of the measurement sites also provided data on particle/gas partitioning which had been modelled using two alternative schemes. This is the first known regional modelling study for PAHs over a North American domain and the first modelling study at any scale to compare alternative particle/gas partitioning schemes against paired field measurements. The goal of the study was to provide output concentration maps of use to assessing human inhalation exposure to PAHs in ambient air. Annual average modelled total (gas + particle) concentrations were statistically indistinguishable from measured values for fluoranthene, pyrene and benz[a]anthracene whereas the model underestimated concentrations of phenanthrene, anthracene and chrysene + triphenylene. Significance for benzo[a]pyrene performance was close to the statistical threshold and depended on the particle/gas partitioning scheme employed. On a day-to-day basis, the model simulated total PAH concentrations to the correct order of magnitude the majority of the time. The model showed seasonal differences in prediction quality for volatile species which suggests that a missing emission source such as air-surface exchange should be included in future versions. Model performance differed substantially between measurement locations and the limited available evidence suggests that the model's spatial resolution was too coarse to capture the distribution of concentrations in densely populated areas. A more detailed analysis of the factors influencing modelled particle/gas partitioning is warranted based on the findings in this study.
Chiu, Chia-Yi; Köhn, Hans-Friedrich
2016-09-01
The asymptotic classification theory of cognitive diagnosis (ACTCD) provided the theoretical foundation for using clustering methods that do not rely on a parametric statistical model for assigning examinees to proficiency classes. Like general diagnostic classification models, clustering methods can be useful in situations where the true diagnostic classification model (DCM) underlying the data is unknown and possibly misspecified, or the items of a test conform to a mix of multiple DCMs. Clustering methods can also be an option when fitting advanced and complex DCMs encounters computational difficulties. These can range from the use of excessive CPU times to plain computational infeasibility. However, the propositions of the ACTCD have only been proven for the Deterministic Input Noisy Output "AND" gate (DINA) model and the Deterministic Input Noisy Output "OR" gate (DINO) model. For other DCMs, there does not exist a theoretical justification to use clustering for assigning examinees to proficiency classes. But if clustering is to be used legitimately, then the ACTCD must cover a larger number of DCMs than just the DINA model and the DINO model. Thus, the purpose of this article is to prove the theoretical propositions of the ACTCD for two other important DCMs, the Reduced Reparameterized Unified Model and the General Diagnostic Model.
One Yard Below: Education Statistics from a Different Angle.
ERIC Educational Resources Information Center
Education Intelligence Agency, Carmichael, CA.
This report offers a different perspective on education statistics by highlighting rarely used "stand-alone" statistics on public education, inputs, outputs, and descriptions, and it uses interactive statistics that combine two or more statistics in an unusual way. It is a report that presents much evidence, but few conclusions. It is not intended…
Minnesota forest statistics, 1977.
Pamela J. Jakes
1980-01-01
Presents highlights and statistics from the Fourth Minnesota Forest Inventory. Includes detailed tables of forest area, timber volume, net annual growth, timber removals, mortality, and timber products output.
Fuzzy logic-based analogue forecasting and hybrid modelling of horizontal visibility
NASA Astrophysics Data System (ADS)
Tuba, Zoltán; Bottyán, Zsolt
2018-04-01
Forecasting visibility is one of the greatest challenges in aviation meteorology. At the same time, high accuracy visibility forecasts can significantly reduce or make avoidable weather-related risk in aviation as well. To improve forecasting visibility, this research links fuzzy logic-based analogue forecasting and post-processed numerical weather prediction model outputs in hybrid forecast. Performance of analogue forecasting model was improved by the application of Analytic Hierarchy Process. Then, linear combination of the mentioned outputs was applied to create ultra-short term hybrid visibility prediction which gradually shifts the focus from statistical to numerical products taking their advantages during the forecast period. It gives the opportunity to bring closer the numerical visibility forecast to the observations even it is wrong initially. Complete verification of categorical forecasts was carried out; results are available for persistence and terminal aerodrome forecasts (TAF) as well in order to compare. The average value of Heidke Skill Score (HSS) of examined airports of analogue and hybrid forecasts shows very similar results even at the end of forecast period where the rate of analogue prediction in the final hybrid output is 0.1-0.2 only. However, in case of poor visibility (1000-2500 m), hybrid (0.65) and analogue forecasts (0.64) have similar average of HSS in the first 6 h of forecast period, and have better performance than persistence (0.60) or TAF (0.56). Important achievement that hybrid model takes into consideration physics and dynamics of the atmosphere due to the increasing part of the numerical weather prediction. In spite of this, its performance is similar to the most effective visibility forecasting methods and does not follow the poor verification results of clearly numerical outputs.
Clark, M.R.; Gangopadhyay, S.; Hay, L.; Rajagopalan, B.; Wilby, R.
2004-01-01
A number of statistical methods that are used to provide local-scale ensemble forecasts of precipitation and temperature do not contain realistic spatial covariability between neighboring stations or realistic temporal persistence for subsequent forecast lead times. To demonstrate this point, output from a global-scale numerical weather prediction model is used in a stepwise multiple linear regression approach to downscale precipitation and temperature to individual stations located in and around four study basins in the United States. Output from the forecast model is downscaled for lead times up to 14 days. Residuals in the regression equation are modeled stochastically to provide 100 ensemble forecasts. The precipitation and temperature ensembles from this approach have a poor representation of the spatial variability and temporal persistence. The spatial correlations for downscaled output are considerably lower than observed spatial correlations at short forecast lead times (e.g., less than 5 days) when there is high accuracy in the forecasts. At longer forecast lead times, the downscaled spatial correlations are close to zero. Similarly, the observed temporal persistence is only partly present at short forecast lead times. A method is presented for reordering the ensemble output in order to recover the space-time variability in precipitation and temperature fields. In this approach, the ensemble members for a given forecast day are ranked and matched with the rank of precipitation and temperature data from days randomly selected from similar dates in the historical record. The ensembles are then reordered to correspond to the original order of the selection of historical data. Using this approach, the observed intersite correlations, intervariable correlations, and the observed temporal persistence are almost entirely recovered. This reordering methodology also has applications for recovering the space-time variability in modeled streamflow. ?? 2004 American Meteorological Society.
Linear and Order Statistics Combiners for Pattern Classification
NASA Technical Reports Server (NTRS)
Tumer, Kagan; Ghosh, Joydeep; Lau, Sonie (Technical Monitor)
2001-01-01
Several researchers have experimentally shown that substantial improvements can be obtained in difficult pattern recognition problems by combining or integrating the outputs of multiple classifiers. This chapter provides an analytical framework to quantify the improvements in classification results due to combining. The results apply to both linear combiners and order statistics combiners. We first show that to a first order approximation, the error rate obtained over and above the Bayes error rate, is directly proportional to the variance of the actual decision boundaries around the Bayes optimum boundary. Combining classifiers in output space reduces this variance, and hence reduces the 'added' error. If N unbiased classifiers are combined by simple averaging. the added error rate can be reduced by a factor of N if the individual errors in approximating the decision boundaries are uncorrelated. Expressions are then derived for linear combiners which are biased or correlated, and the effect of output correlations on ensemble performance is quantified. For order statistics based non-linear combiners, we derive expressions that indicate how much the median, the maximum and in general the i-th order statistic can improve classifier performance. The analysis presented here facilitates the understanding of the relationships among error rates, classifier boundary distributions, and combining in output space. Experimental results on several public domain data sets are provided to illustrate the benefits of combining and to support the analytical results.
Analysis of fMRI data using noise-diffusion network models: a new covariance-coding perspective.
Gilson, Matthieu
2018-04-01
Since the middle of the 1990s, studies of resting-state fMRI/BOLD data have explored the correlation patterns of activity across the whole brain, which is referred to as functional connectivity (FC). Among the many methods that have been developed to interpret FC, a recently proposed model-based approach describes the propagation of fluctuating BOLD activity within the recurrently connected brain network by inferring the effective connectivity (EC). In this model, EC quantifies the strengths of directional interactions between brain regions, viewed from the proxy of BOLD activity. In addition, the tuning procedure for the model provides estimates for the local variability (input variances) to explain how the observed FC is generated. Generalizing, the network dynamics can be studied in the context of an input-output mapping-determined by EC-for the second-order statistics of fluctuating nodal activities. The present paper focuses on the following detection paradigm: observing output covariances, how discriminative is the (estimated) network model with respect to various input covariance patterns? An application with the model fitted to experimental fMRI data-movie viewing versus resting state-illustrates that changes in local variability and changes in brain coordination go hand in hand.
NASA Astrophysics Data System (ADS)
Wang, Sicheng; Huang, Sixun; Xiang, Jie; Fang, Hanxian; Feng, Jian; Wang, Yu
2016-12-01
Ionospheric tomography is based on the observed slant total electron content (sTEC) along different satellite-receiver rays to reconstruct the three-dimensional electron density distributions. Due to incomplete measurements provided by the satellite-receiver geometry, it is a typical ill-posed problem, and how to overcome the ill-posedness is still a crucial content of research. In this paper, Tikhonov regularization method is used and the model function approach is applied to determine the optimal regularization parameter. This algorithm not only balances the weights between sTEC observations and background electron density field but also converges globally and rapidly. The background error covariance is given by multiplying background model variance and location-dependent spatial correlation, and the correlation model is developed by using sample statistics from an ensemble of the International Reference Ionosphere 2012 (IRI2012) model outputs. The Global Navigation Satellite System (GNSS) observations in China are used to present the reconstruction results, and measurements from two ionosondes are used to make independent validations. Both the test cases using artificial sTEC observations and actual GNSS sTEC measurements show that the regularization method can effectively improve the background model outputs.
NASA Astrophysics Data System (ADS)
Verfaillie, Deborah; Déqué, Michel; Morin, Samuel; Lafaysse, Matthieu
2017-04-01
Projections of future climate change have been increasingly called for lately, as the reality of climate change has been gradually accepted and societies and governments have started to plan upcoming mitigation and adaptation policies. In mountain regions such as the Alps or the Pyrenees, where winter tourism and hydropower production are large contributors to the regional revenue, particular attention is brought to current and future snow availability. The question of the vulnerability of mountain ecosystems as well as the occurrence of climate-related hazards such as avalanches and debris-flows is also under consideration. In order to generate projections of snow conditions, however, downscaling global climate models (GCMs) by using regional climate models (RCMs) is not sufficient to capture the fine-scale processes and thresholds at play. In particular, the altitudinal resolution matters, since the phase of precipitation is mainly controlled by the temperature which is altitude-dependent. Simulations from GCMs and RCMs moreover suffer from biases compared to local observations, due to their rather coarse spatial and altitudinal resolution, and often provide outputs at too coarse time resolution to drive impact models. RCM simulations must therefore be adjusted using empirical-statistical downscaling and error correction methods, before they can be used to drive specific models such as energy balance land surface models. In this study, time series of hourly temperature, precipitation, wind speed, humidity, and short- and longwave radiation were generated over the Pyrenees and the French Alps for the period 1950-2100, by using a new approach (named ADAMONT for ADjustment of RCM outputs to MOuNTain regions) based on quantile mapping applied to daily data, followed by time disaggregation accounting for weather patterns selection. We first introduce a thorough evaluation of the method using using model runs from the ALADIN RCM driven by a global reanalysis over the French Alps. We then illustrate the potential of this method by processing outputs from EURO-CORDEX simulations spanning 6 different RCMs forced by 6 different GCMs under 3 representative concentration pathways scenarios (RCP 2.6, 4.5 and 8.5) over Europe, downscaled at the massif scale and for 300 m elevation bands and statistically adjusted against the extensive SAFRAN reanalysis (1958-2015). These corrected fields were then used to force the SURFEX/ISBA-Crocus land surface model over the Pyrenees and the French Alps. We show the wealth of information, which can be obtained through the systematic application of such a method to a large ensemble of climate projections, in order to capture upcoming trends with an explicit representation of their uncertainty.
Paracousti-UQ: A Stochastic 3-D Acoustic Wave Propagation Algorithm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Preston, Leiph
Acoustic full waveform algorithms, such as Paracousti, provide deterministic solutions in complex, 3-D variable environments. In reality, environmental and source characteristics are often only known in a statistical sense. Thus, to fully characterize the expected sound levels within an environment, this uncertainty in environmental and source factors should be incorporated into the acoustic simulations. Performing Monte Carlo (MC) simulations is one method of assessing this uncertainty, but it can quickly become computationally intractable for realistic problems. An alternative method, using the technique of stochastic partial differential equations (SPDE), allows computation of the statistical properties of output signals at a fractionmore » of the computational cost of MC. Paracousti-UQ solves the SPDE system of 3-D acoustic wave propagation equations and provides estimates of the uncertainty of the output simulated wave field (e.g., amplitudes, waveforms) based on estimated probability distributions of the input medium and source parameters. This report describes the derivation of the stochastic partial differential equations, their implementation, and comparison of Paracousti-UQ results with MC simulations using simple models.« less
NASA Technical Reports Server (NTRS)
Gyekenyesi, J. P.
1985-01-01
A computer program was developed for calculating the statistical fast fracture reliability and failure probability of ceramic components. The program includes the two-parameter Weibull material fracture strength distribution model, using the principle of independent action for polyaxial stress states and Batdorf's shear-sensitive as well as shear-insensitive crack theories, all for volume distributed flaws in macroscopically isotropic solids. Both penny-shaped cracks and Griffith cracks are included in the Batdorf shear-sensitive crack response calculations, using Griffith's maximum tensile stress or critical coplanar strain energy release rate criteria to predict mixed mode fracture. Weibull material parameters can also be calculated from modulus of rupture bar tests, using the least squares method with known specimen geometry and fracture data. The reliability prediction analysis uses MSC/NASTRAN stress, temperature and volume output, obtained from the use of three-dimensional, quadratic, isoparametric, or axisymmetric finite elements. The statistical fast fracture theories employed, along with selected input and output formats and options, are summarized. An example problem to demonstrate various features of the program is included.
NASA Astrophysics Data System (ADS)
Pengvanich, P.; Chernin, D. P.; Lau, Y. Y.; Luginsland, J. W.; Gilgenbach, R. M.
2007-11-01
Motivated by the current interest in mm-wave and THz sources, which use miniature, difficult-to-fabricate circuit components, we evaluate the statistical effects of random fabrication errors on a helix traveling wave tube amplifier's small signal characteristics. The small signal theory is treated in a continuum model in which the electron beam is assumed to be monoenergetic, and axially symmetric about the helix axis. Perturbations that vary randomly along the beam axis are introduced in the dimensionless Pierce parameters b, the beam-wave velocity mismatch, C, the gain parameter, and d, the cold tube circuit loss. Our study shows, as expected, that perturbation in b dominates the other two. The extensive numerical data have been confirmed by our analytic theory. They show in particular that the standard deviation of the output phase is linearly proportional to standard deviation of the individual perturbations in b, C, and d. Simple formulas have been derived which yield the output phase variations in terms of the statistical random manufacturing errors. This work was supported by AFOSR and by ONR.
Development of a funding, cost, and spending model for satellite projects
NASA Technical Reports Server (NTRS)
Johnson, Jesse P.
1989-01-01
The need for a predictive budget/funging model is obvious. The current models used by the Resource Analysis Office (RAO) are used to predict the total costs of satellite projects. An effort to extend the modeling capabilities from total budget analysis to total budget and budget outlays over time analysis was conducted. A statistical based and data driven methodology was used to derive and develop the model. Th budget data for the last 18 GSFC-sponsored satellite projects were analyzed and used to build a funding model which would describe the historical spending patterns. This raw data consisted of dollars spent in that specific year and their 1989 dollar equivalent. This data was converted to the standard format used by the RAO group and placed in a database. A simple statistical analysis was performed to calculate the gross statistics associated with project length and project cost ant the conditional statistics on project length and project cost. The modeling approach used is derived form the theory of embedded statistics which states that properly analyzed data will produce the underlying generating function. The process of funding large scale projects over extended periods of time is described by Life Cycle Cost Models (LCCM). The data was analyzed to find a model in the generic form of a LCCM. The model developed is based on a Weibull function whose parameters are found by both nonlinear optimization and nonlinear regression. In order to use this model it is necessary to transform the problem from a dollar/time space to a percentage of total budget/time space. This transformation is equivalent to moving to a probability space. By using the basic rules of probability, the validity of both the optimization and the regression steps are insured. This statistically significant model is then integrated and inverted. The resulting output represents a project schedule which relates the amount of money spent to the percentage of project completion.
Fernandes, Tânia; Kolinsky, Régine; Ventura, Paulo
2009-09-01
This study combined artificial language learning (ALL) with conventional experimental techniques to test whether statistical speech segmentation outputs are integrated into adult listeners' mental lexicon. Lexicalization was assessed through inhibitory effects of novel neighbors (created by the parsing process) on auditory lexical decisions to real words. Both immediately after familiarization and post-one week, ALL outputs were lexicalized only when the cues available during familiarization (transitional probabilities and wordlikeness) suggested the same parsing (Experiments 1 and 3). No lexicalization effect occurred with incongruent cues (Experiments 2 and 4). Yet, ALL differed from chance, suggesting a dissociation between item knowledge and lexicalization. Similarly contrasted results were found when frequency of occurrence of the stimuli was equated during familiarization (Experiments 3 and 4). Our findings thus indicate that ALL outputs may be lexicalized as far as the segmentation cues are congruent, and that this process cannot be accounted for by raw frequency.
NASA Astrophysics Data System (ADS)
Marchesan, Melissa A.; Geurisoli, Danilo M. Z.; Brugnera, Aldo, Jr.; Barbin, Eduardo L.; Pecora, Jesus D.
2002-06-01
The present study examined root canal cleaning, using the optic microscope, after rotary instrumentation with ProFile.04 with or without laser application with different output energies. Cleaning and shaping can be accomplished manually, with ultra-sonic and sub-sonic devices, with rotary instruments and recently, increasing development in laser radiation has shown promising results for disinfection and smear layer removal. In this study, 30 palatal maxillary molar roots were examined using an optic microscope after rotary instrumentation with ProFile .04 with or without Er:YAG laser application (KaVo KeyLaser II, Germany) with different output energies (2940 nm, 15 Hz, 300 pulses, 500 milli-sec duration, 42 J, 140 mJ showed on the display- input, 61 mJ at fiberoptic tip-output and 140 mJ showed on the display-input and 51 mJ at fiberoptic tip-output). Statistical analysis showed no statistical differences between the tested treatments (ANOVA, p>0.05). ANOVA also showed a statistically significant difference (p<0.01) between the root canal thirds, indicating that the middle third had less debris than the apical third. We conclude that: 1) none of the tested treatments led to totally cleaned root canals; 2) all treatments removed debris similarly, 3) the middle third had less debris than the apical third; 4) variation in output energy did not increase cleaning.
Multivariate postprocessing techniques for probabilistic hydrological forecasting
NASA Astrophysics Data System (ADS)
Hemri, Stephan; Lisniak, Dmytro; Klein, Bastian
2016-04-01
Hydrologic ensemble forecasts driven by atmospheric ensemble prediction systems need statistical postprocessing in order to account for systematic errors in terms of both mean and spread. Runoff is an inherently multivariate process with typical events lasting from hours in case of floods to weeks or even months in case of droughts. This calls for multivariate postprocessing techniques that yield well calibrated forecasts in univariate terms and ensure a realistic temporal dependence structure at the same time. To this end, the univariate ensemble model output statistics (EMOS; Gneiting et al., 2005) postprocessing method is combined with two different copula approaches that ensure multivariate calibration throughout the entire forecast horizon. These approaches comprise ensemble copula coupling (ECC; Schefzik et al., 2013), which preserves the dependence structure of the raw ensemble, and a Gaussian copula approach (GCA; Pinson and Girard, 2012), which estimates the temporal correlations from training observations. Both methods are tested in a case study covering three subcatchments of the river Rhine that represent different sizes and hydrological regimes: the Upper Rhine up to the gauge Maxau, the river Moselle up to the gauge Trier, and the river Lahn up to the gauge Kalkofen. The results indicate that both ECC and GCA are suitable for modelling the temporal dependences of probabilistic hydrologic forecasts (Hemri et al., 2015). References Gneiting, T., A. E. Raftery, A. H. Westveld, and T. Goldman (2005), Calibrated probabilistic forecasting using ensemble model output statistics and minimum CRPS estimation, Monthly Weather Review, 133(5), 1098-1118, DOI: 10.1175/MWR2904.1. Hemri, S., D. Lisniak, and B. Klein, Multivariate postprocessing techniques for probabilistic hydrological forecasting, Water Resources Research, 51(9), 7436-7451, DOI: 10.1002/2014WR016473. Pinson, P., and R. Girard (2012), Evaluating the quality of scenarios of short-term wind power generation, Applied Energy, 96, 12-20, DOI: 10.1016/j.apenergy.2011.11.004. Schefzik, R., T. L. Thorarinsdottir, and T. Gneiting (2013), Uncertainty quantification in complex simulation models using ensemble copula coupling, Statistical Science, 28, 616-640, DOI: 10.1214/13-STS443.
NASA Technical Reports Server (NTRS)
Bauman, William H., III
2010-01-01
The 45th Weather Squadron (45 WS) Launch Weather Officers use the 12-km resolution North American Mesoscale (NAM) model (MesoNAM) text and graphical product forecasts extensively to support launch weather operations. However, the actual performance of the model at Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS) has not been measured objectively. In order to have tangible evidence of model performance, the 45 WS tasked the Applied Meteorology Unit to conduct a detailed statistical analysis of model output compared to observed values. The model products are provided to the 45 WS by ACTA, Inc. and include hourly forecasts from 0 to 84 hours based on model initialization times of 00, 06, 12 and 18 UTC. The objective analysis compared the MesoNAM forecast winds, temperature and dew point, as well as the changes in these parameters over time, to the observed values from the sensors in the KSC/CCAFS wind tower network. Objective statistics will give the forecasters knowledge of the model's strength and weaknesses, which will result in improved forecasts for operations.
Linking the Agricultural Production and Climate Change in Central Asia: 1991-2015
NASA Astrophysics Data System (ADS)
Tatarskii, V.; Shemyakina, O.; Sokolik, I. N.
2016-12-01
We present results of the impact of climate change on the agricultural output in Central Asia (CA) since 1991. While profit-maximizing farmers in the market based economies would be expected to change their cropping patterns fairly fast in response to climate change, we do not expect that to happen in the CA region that was for a long time driven by Soviet production plans with a limited room for personal choice. We explore the relationship between the agricultural productivity (measured by the actual output) and the variations in average monthly temperatures during growing seasons and precipitation. The climate data for Central Asia are generated using the Weather Research (WRF) Model for 1985-2012. We make use of data on air temperature on 2m height, C, and total precipitation. The data on the agricultural production comes from the State Statistical Agencies of the three Central Asian countries: Kazakhstan, Kyrgyzstan and Tajikistan. Data on agricultural production for Turkmenistan and Uzbekistan are not available from online government sources. We model the agricultural production as a function of annual realization of weather in a specific region. This economic approach includes converting daily temperature into degree days, which represents heating units. The two key weather variables are a measure of heat (degree days) and total precipitation in the growing season, April 1st to October 30th. Preliminary regression results estimated for Kazakhstan, indicate that degree days during growing season is negatively and total precipitation is positively associated with the agricultural output. Both coefficients are not statistically significant. Further analysis will include data from other countries and also by the region.
Two statistics for evaluating parameter identifiability and error reduction
Doherty, John; Hunt, Randall J.
2009-01-01
Two statistics are presented that can be used to rank input parameters utilized by a model in terms of their relative identifiability based on a given or possible future calibration dataset. Identifiability is defined here as the capability of model calibration to constrain parameters used by a model. Both statistics require that the sensitivity of each model parameter be calculated for each model output for which there are actual or presumed field measurements. Singular value decomposition (SVD) of the weighted sensitivity matrix is then undertaken to quantify the relation between the parameters and observations that, in turn, allows selection of calibration solution and null spaces spanned by unit orthogonal vectors. The first statistic presented, "parameter identifiability", is quantitatively defined as the direction cosine between a parameter and its projection onto the calibration solution space. This varies between zero and one, with zero indicating complete non-identifiability and one indicating complete identifiability. The second statistic, "relative error reduction", indicates the extent to which the calibration process reduces error in estimation of a parameter from its pre-calibration level where its value must be assigned purely on the basis of prior expert knowledge. This is more sophisticated than identifiability, in that it takes greater account of the noise associated with the calibration dataset. Like identifiability, it has a maximum value of one (which can only be achieved if there is no measurement noise). Conceptually it can fall to zero; and even below zero if a calibration problem is poorly posed. An example, based on a coupled groundwater/surface-water model, is included that demonstrates the utility of the statistics. ?? 2009 Elsevier B.V.
AutoBayes Program Synthesis System Users Manual
NASA Technical Reports Server (NTRS)
Schumann, Johann; Jafari, Hamed; Pressburger, Tom; Denney, Ewen; Buntine, Wray; Fischer, Bernd
2008-01-01
Program synthesis is the systematic, automatic construction of efficient executable code from high-level declarative specifications. AutoBayes is a fully automatic program synthesis system for the statistical data analysis domain; in particular, it solves parameter estimation problems. It has seen many successful applications at NASA and is currently being used, for example, to analyze simulation results for Orion. The input to AutoBayes is a concise description of a data analysis problem composed of a parameterized statistical model and a goal that is a probability term involving parameters and input data. The output is optimized and fully documented C/C++ code computing the values for those parameters that maximize the probability term. AutoBayes can solve many subproblems symbolically rather than having to rely on numeric approximation algorithms, thus yielding effective, efficient, and compact code. Statistical analysis is faster and more reliable, because effort can be focused on model development and validation rather than manual development of solution algorithms and code.
Yue Xu, Selene; Nelson, Sandahl; Kerr, Jacqueline; Godbole, Suneeta; Patterson, Ruth; Merchant, Gina; Abramson, Ian; Staudenmayer, John; Natarajan, Loki
2018-04-01
Physical inactivity is a recognized risk factor for many chronic diseases. Accelerometers are increasingly used as an objective means to measure daily physical activity. One challenge in using these devices is missing data due to device nonwear. We used a well-characterized cohort of 333 overweight postmenopausal breast cancer survivors to examine missing data patterns of accelerometer outputs over the day. Based on these observed missingness patterns, we created psuedo-simulated datasets with realistic missing data patterns. We developed statistical methods to design imputation and variance weighting algorithms to account for missing data effects when fitting regression models. Bias and precision of each method were evaluated and compared. Our results indicated that not accounting for missing data in the analysis yielded unstable estimates in the regression analysis. Incorporating variance weights and/or subject-level imputation improved precision by >50%, compared to ignoring missing data. We recommend that these simple easy-to-implement statistical tools be used to improve analysis of accelerometer data.
CMIP5 downscaling and its uncertainty in China
NASA Astrophysics Data System (ADS)
Yue, TianXiang; Zhao, Na; Fan, ZeMeng; Li, Jing; Chen, ChuanFa; Lu, YiMin; Wang, ChenLiang; Xu, Bing; Wilson, John
2016-11-01
A comparison between the Coupled Model Intercomparison Project Phase 5 (CMIP5) data and observations at 735 meteorological stations indicated that mean annual temperature (MAT) was underestimated about 1.8 °C while mean annual precipitation (MAP) was overestimated about 263 mm in general across the whole of China. A statistical analysis of China-CMIP5 data demonstrated that MAT exhibits spatial stationarity, while MAP exhibits spatial non-stationarity. MAT and MAP data from the China-CMIP5 dataset were downscaled by combining statistical approaches with a method for high accuracy surface modeling (HASM). A statistical transfer function (STF) of MAT was formulated using minimized residuals output by HASM with an ordinary least squares (OLS) linear equation that used latitude and elevation as independent variables, abbreviated as HASM-OLS. The STF of MAP under a BOX-COX transformation was derived as a combination of minimized residuals output by HASM with a geographically weight regression (GWR) using latitude, longitude, elevation and impact coefficient of aspect as independent variables, abbreviated as HASM-GB. Cross validation, using observational data from the 735 meteorological stations across China for the period 1976 to 2005, indicates that the largest uncertainty occurred on the Tibet plateau with mean absolute errors (MAEs) of MAT and MAP as high as 4.64 °C and 770.51 mm, respectively. The downscaling processes of HASM-OLS and HASM-GB generated MAEs of MAT and MAP that were 67.16% and 77.43% lower, respectively across the whole of China on average, and 88.48% and 97.09% lower for the Tibet plateau.
NASA Astrophysics Data System (ADS)
Ghotbi, Saba; Sotoudeheian, Saeed; Arhami, Mohammad
2016-09-01
Satellite remote sensing products of AOD from MODIS along with appropriate meteorological parameters were used to develop statistical models and estimate ground-level PM10. Most of previous studies obtained meteorological data from synoptic weather stations, with rather sparse spatial distribution, and used it along with 10 km AOD product to develop statistical models, applicable for PM variations in regional scale (resolution of ≥10 km). In the current study, meteorological parameters were simulated with 3 km resolution using WRF model and used along with the rather new 3 km AOD product (launched in 2014). The resulting PM statistical models were assessed for a polluted and largely variable urban area, Tehran, Iran. Despite the critical particulate pollution problem, very few PM studies were conducted in this area. The issue of rather poor direct PM-AOD associations existed, due to different factors such as variations in particles optical properties, in addition to bright background issue for satellite data, as the studied area located in the semi-arid areas of Middle East. Statistical approach of linear mixed effect (LME) was used, and three types of statistical models including single variable LME model (using AOD as independent variable) and multiple variables LME model by using meteorological data from two sources, WRF model and synoptic stations, were examined. Meteorological simulations were performed using a multiscale approach and creating an appropriate physic for the studied region, and the results showed rather good agreements with recordings of the synoptic stations. The single variable LME model was able to explain about 61%-73% of daily PM10 variations, reflecting a rather acceptable performance. Statistical models performance improved through using multivariable LME and incorporating meteorological data as auxiliary variables, particularly by using fine resolution outputs from WRF (R2 = 0.73-0.81). In addition, rather fine resolution for PM estimates was mapped for the studied city, and resulting concentration maps were consistent with PM recordings at the existing stations.
van IJsseldijk, E A; Valstar, E R; Stoel, B C; Nelissen, R G H H; Baka, N; Van't Klooster, R; Kaptein, B L
2016-08-01
An important measure for the diagnosis and monitoring of knee osteoarthritis is the minimum joint space width (mJSW). This requires accurate alignment of the x-ray beam with the tibial plateau, which may not be accomplished in practice. We investigate the feasibility of a new mJSW measurement method from stereo radiographs using 3D statistical shape models (SSM) and evaluate its sensitivity to changes in the mJSW and its robustness to variations in patient positioning and bone geometry. A validation study was performed using five cadaver specimens. The actual mJSW was varied and images were acquired with variation in the cadaver positioning. For comparison purposes, the mJSW was also assessed from plain radiographs. To study the influence of SSM model accuracy, the 3D mJSW measurement was repeated with models from the actual bones, obtained from CT scans. The SSM-based measurement method was more robust (consistent output for a wide range of input data/consistent output under varying measurement circumstances) than the conventional 2D method, showing that the 3D reconstruction indeed reduces the influence of patient positioning. However, the SSM-based method showed comparable sensitivity to changes in the mJSW with respect to the conventional method. The CT-based measurement was more accurate than the SSM-based measurement (smallest detectable differences 0.55 mm versus 0. 82 mm, respectively). The proposed measurement method is not a substitute for the conventional 2D measurement due to limitations in the SSM model accuracy. However, further improvement of the model accuracy and optimisation technique can be obtained. Combined with the promising options for applications using quantitative information on bone morphology, SSM based 3D reconstructions of natural knees are attractive for further development.Cite this article: E. A. van IJsseldijk, E. R. Valstar, B. C. Stoel, R. G. H. H. Nelissen, N. Baka, R. van't Klooster, B. L. Kaptein. Three dimensional measurement of minimum joint space width in the knee from stereo radiographs using statistical shape models. Bone Joint Res 2016;320-327. DOI: 10.1302/2046-3758.58.2000626. © 2016 van IJsseldijk et al.
Modelling the distribution of chickens, ducks, and geese in China
Prosser, Diann J.; Wu, Junxi; Ellis, Erie C.; Gale, Fred; Van Boeckel, Thomas P.; Wint, William; Robinson, Tim; Xiao, Xiangming; Gilbert, Marius
2011-01-01
Global concerns over the emergence of zoonotic pandemics emphasize the need for high-resolution population distribution mapping and spatial modelling. Ongoing efforts to model disease risk in China have been hindered by a lack of available species level distribution maps for poultry. The goal of this study was to develop 1 km resolution population density models for China's chickens, ducks, and geese. We used an information theoretic approach to predict poultry densities based on statistical relationships between poultry census data and high-resolution agro-ecological predictor variables. Model predictions were validated by comparing goodness of fit measures (root mean square error and correlation coefficient) for observed and predicted values for 1/4 of the sample data which were not used for model training. Final output included mean and coefficient of variation maps for each species. We tested the quality of models produced using three predictor datasets and 4 regional stratification methods. For predictor variables, a combination of traditional predictors for livestock mapping and land use predictors produced the best goodness of fit scores. Comparison of regional stratifications indicated that for chickens and ducks, a stratification based on livestock production systems produced the best results; for geese, an agro-ecological stratification produced best results. However, for all species, each method of regional stratification produced significantly better goodness of fit scores than the global model. Here we provide descriptive methods, analytical comparisons, and model output for China's first high resolution, species level poultry distribution maps. Output will be made available to the scientific and public community for use in a wide range of applications from epidemiological studies to livestock policy and management initiatives.
NASA Astrophysics Data System (ADS)
Bisht, K.; Dodamani, S. S.
2016-12-01
Modelling of Land Surface Temperature is essential for short term and long term management of environmental studies and management activities of the Earth's resources. The objective of this research is to estimate and model Land Surface Temperatures (LST). For this purpose, Landsat 7 ETM+ images period from 2007 to 2012 were used for retrieving LST and processed through MATLAB software using Mamdani fuzzy inference systems (MFIS), which includes pre-monsoon and post-monsoon LST in the fuzzy model. The Mangalore City of Karnataka state, India has been taken for this research work. Fuzzy model inputs are considered as the pre-monsoon and post-monsoon retrieved temperatures and LST was chosen as output. In order to develop a fuzzy model for LST, seven fuzzy subsets, nineteen rules and one output are considered for the estimation of weekly mean air temperature. These are very low (VL), low (L), medium low (ML), medium (M), medium high (MH), high (H) and very high (VH). The TVX (Surface Temperature Vegetation Index) and the empirical method have provided estimated LST. The study showed that the Fuzzy model M4/7-19-1 (model 4, 7 fuzzy sets, 19 rules and 1 output) which developed over Mangalore City has provided more accurate outcomes than other models (M1, M2, M3, M5). The result of this research was evaluated according to statistical rules. The best correlation coefficient (R) and root mean squared error (RMSE) between estimated and measured values for pre-monsoon and post-monsoon LST found to be 0.966 - 1.607 K and 0.963- 1.623 respectively.
Modelling the distribution of chickens, ducks, and geese in China
Prosser, Diann J.; Wu, Junxi; Ellis, Erle C.; Gale, Fred; Van Boeckel, Thomas P.; Wint, William; Robinson, Tim; Xiao, Xiangming; Gilbert, Marius
2011-01-01
Global concerns over the emergence of zoonotic pandemics emphasize the need for high-resolution population distribution mapping and spatial modelling. Ongoing efforts to model disease risk in China have been hindered by a lack of available species level distribution maps for poultry. The goal of this study was to develop 1 km resolution population density models for China’s chickens, ducks, and geese. We used an information theoretic approach to predict poultry densities based on statistical relationships between poultry census data and high-resolution agro-ecological predictor variables. Model predictions were validated by comparing goodness of fit measures (root mean square error and correlation coefficient) for observed and predicted values for ¼ of the sample data which was not used for model training. Final output included mean and coefficient of variation maps for each species. We tested the quality of models produced using three predictor datasets and 4 regional stratification methods. For predictor variables, a combination of traditional predictors for livestock mapping and land use predictors produced the best goodness of fit scores. Comparison of regional stratifications indicated that for chickens and ducks, a stratification based on livestock production systems produced the best results; for geese, an agro-ecological stratification produced best results. However, for all species, each method of regional stratification produced significantly better goodness of fit scores than the global model. Here we provide descriptive methods, analytical comparisons, and model output for China’s first high resolution, species level poultry distribution maps. Output will be made available to the scientific and public community for use in a wide range of applications from epidemiological studies to livestock policy and management initiatives. PMID:21765567
NASA Astrophysics Data System (ADS)
Sippel, S.; Otto, F. E. L.; Forkel, M.; Allen, M. R.; Guillod, B. P.; Heimann, M.; Reichstein, M.; Seneviratne, S. I.; Kirsten, T.; Mahecha, M. D.
2015-12-01
Understanding, quantifying and attributing the impacts of climatic extreme events and variability is crucial for societal adaptation in a changing climate. However, climate model simulations generated for this purpose typically exhibit pronounced biases in their output that hinders any straightforward assessment of impacts. To overcome this issue, various bias correction strategies are routinely used to alleviate climate model deficiencies most of which have been criticized for physical inconsistency and the non-preservation of the multivariate correlation structure. We assess how biases and their correction affect the quantification and attribution of simulated extremes and variability in i) climatological variables and ii) impacts on ecosystem functioning as simulated by a terrestrial biosphere model. Our study demonstrates that assessments of simulated climatic extreme events and impacts in the terrestrial biosphere are highly sensitive to bias correction schemes with major implications for the detection and attribution of these events. We introduce a novel ensemble-based resampling scheme based on a large regional climate model ensemble generated by the distributed weather@home setup[1], which fully preserves the physical consistency and multivariate correlation structure of the model output. We use extreme value statistics to show that this procedure considerably improves the representation of climatic extremes and variability. Subsequently, biosphere-atmosphere carbon fluxes are simulated using a terrestrial ecosystem model (LPJ-GSI) to further demonstrate the sensitivity of ecosystem impacts to the methodology of bias correcting climate model output. We find that uncertainties arising from bias correction schemes are comparable in magnitude to model structural and parameter uncertainties. The present study consists of a first attempt to alleviate climate model biases in a physically consistent way and demonstrates that this yields improved simulations of climate extremes and associated impacts. [1] http://www.climateprediction.net/weatherathome/
Total probabilities of ensemble runoff forecasts
NASA Astrophysics Data System (ADS)
Olav Skøien, Jon; Bogner, Konrad; Salamon, Peter; Smith, Paul; Pappenberger, Florian
2017-04-01
Ensemble forecasting has a long history from meteorological modelling, as an indication of the uncertainty of the forecasts. However, it is necessary to calibrate and post-process the ensembles as the they often exhibit both bias and dispersion errors. Two of the most common methods for this are Bayesian Model Averaging (Raftery et al., 2005) and Ensemble Model Output Statistics (EMOS) (Gneiting et al., 2005). There are also methods for regionalizing these methods (Berrocal et al., 2007) and for incorporating the correlation between lead times (Hemri et al., 2013). Engeland and Steinsland Engeland and Steinsland (2014) developed a framework which can estimate post-processing parameters varying in space and time, while giving a spatially and temporally consistent output. However, their method is computationally complex for our larger number of stations, which makes it unsuitable for our purpose. Our post-processing method of the ensembles is developed in the framework of the European Flood Awareness System (EFAS - http://www.efas.eu), where we are making forecasts for whole Europe, and based on observations from around 700 catchments. As the target is flood forecasting, we are also more interested in improving the forecast skill for high-flows rather than in a good prediction of the entire flow regime. EFAS uses a combination of ensemble forecasts and deterministic forecasts from different meteorological forecasters to force a distributed hydrologic model and to compute runoff ensembles for each river pixel within the model domain. Instead of showing the mean and the variability of each forecast ensemble individually, we will now post-process all model outputs to estimate the total probability, the post-processed mean and uncertainty of all ensembles. The post-processing parameters are first calibrated for each calibration location, but we are adding a spatial penalty in the calibration process to force a spatial correlation of the parameters. The penalty takes distance, stream-connectivity and size of the catchment areas into account. This can in some cases have a slight negative impact on the calibration error, but avoids large differences between parameters of nearby locations, whether stream connected or not. The spatial calibration also makes it easier to interpolate the post-processing parameters to uncalibrated locations. We also look into different methods for handling the non-normal distributions of runoff data and the effect of different data transformations on forecasts skills in general and for floods in particular. Berrocal, V. J., Raftery, A. E. and Gneiting, T.: Combining Spatial Statistical and Ensemble Information in Probabilistic Weather Forecasts, Mon. Weather Rev., 135(4), 1386-1402, doi:10.1175/MWR3341.1, 2007. Engeland, K. and Steinsland, I.: Probabilistic postprocessing models for flow forecasts for a system of catchments and several lead times, Water Resour. Res., 50(1), 182-197, doi:10.1002/2012WR012757, 2014. Gneiting, T., Raftery, A. E., Westveld, A. H. and Goldman, T.: Calibrated Probabilistic Forecasting Using Ensemble Model Output Statistics and Minimum CRPS Estimation, Mon. Weather Rev., 133(5), 1098-1118, doi:10.1175/MWR2904.1, 2005. Hemri, S., Fundel, F. and Zappa, M.: Simultaneous calibration of ensemble river flow predictions over an entire range of lead times, Water Resour. Res., 49(10), 6744-6755, doi:10.1002/wrcr.20542, 2013. Raftery, A. E., Gneiting, T., Balabdaoui, F. and Polakowski, M.: Using Bayesian Model Averaging to Calibrate Forecast Ensembles, Mon. Weather Rev., 133(5), 1155-1174, doi:10.1175/MWR2906.1, 2005.
Total probabilities of ensemble runoff forecasts
NASA Astrophysics Data System (ADS)
Olav Skøien, Jon; Bogner, Konrad; Salamon, Peter; Smith, Paul; Pappenberger, Florian
2016-04-01
Ensemble forecasting has for a long time been used as a method in meteorological modelling to indicate the uncertainty of the forecasts. However, as the ensembles often exhibit both bias and dispersion errors, it is necessary to calibrate and post-process them. Two of the most common methods for this are Bayesian Model Averaging (Raftery et al., 2005) and Ensemble Model Output Statistics (EMOS) (Gneiting et al., 2005). There are also methods for regionalizing these methods (Berrocal et al., 2007) and for incorporating the correlation between lead times (Hemri et al., 2013). Engeland and Steinsland Engeland and Steinsland (2014) developed a framework which can estimate post-processing parameters which are different in space and time, but still can give a spatially and temporally consistent output. However, their method is computationally complex for our larger number of stations, and cannot directly be regionalized in the way we would like, so we suggest a different path below. The target of our work is to create a mean forecast with uncertainty bounds for a large number of locations in the framework of the European Flood Awareness System (EFAS - http://www.efas.eu) We are therefore more interested in improving the forecast skill for high-flows rather than the forecast skill of lower runoff levels. EFAS uses a combination of ensemble forecasts and deterministic forecasts from different forecasters to force a distributed hydrologic model and to compute runoff ensembles for each river pixel within the model domain. Instead of showing the mean and the variability of each forecast ensemble individually, we will now post-process all model outputs to find a total probability, the post-processed mean and uncertainty of all ensembles. The post-processing parameters are first calibrated for each calibration location, but assuring that they have some spatial correlation, by adding a spatial penalty in the calibration process. This can in some cases have a slight negative impact on the calibration error, but makes it easier to interpolate the post-processing parameters to uncalibrated locations. We also look into different methods for handling the non-normal distributions of runoff data and the effect of different data transformations on forecasts skills in general and for floods in particular. Berrocal, V. J., Raftery, A. E. and Gneiting, T.: Combining Spatial Statistical and Ensemble Information in Probabilistic Weather Forecasts, Mon. Weather Rev., 135(4), 1386-1402, doi:10.1175/MWR3341.1, 2007. Engeland, K. and Steinsland, I.: Probabilistic postprocessing models for flow forecasts for a system of catchments and several lead times, Water Resour. Res., 50(1), 182-197, doi:10.1002/2012WR012757, 2014. Gneiting, T., Raftery, A. E., Westveld, A. H. and Goldman, T.: Calibrated Probabilistic Forecasting Using Ensemble Model Output Statistics and Minimum CRPS Estimation, Mon. Weather Rev., 133(5), 1098-1118, doi:10.1175/MWR2904.1, 2005. Hemri, S., Fundel, F. and Zappa, M.: Simultaneous calibration of ensemble river flow predictions over an entire range of lead times, Water Resour. Res., 49(10), 6744-6755, doi:10.1002/wrcr.20542, 2013. Raftery, A. E., Gneiting, T., Balabdaoui, F. and Polakowski, M.: Using Bayesian Model Averaging to Calibrate Forecast Ensembles, Mon. Weather Rev., 133(5), 1155-1174, doi:10.1175/MWR2906.1, 2005.
Characterizing and Addressing the Need for Statistical Adjustment of Global Climate Model Data
NASA Astrophysics Data System (ADS)
White, K. D.; Baker, B.; Mueller, C.; Villarini, G.; Foley, P.; Friedman, D.
2017-12-01
As part of its mission to research and measure the effects of the changing climate, the U. S. Army Corps of Engineers (USACE) regularly uses the World Climate Research Programme's Coupled Model Intercomparison Project Phase 5 (CMIP5) multi-model dataset. However, these data are generated at a global level and are not fine-tuned for specific watersheds. This often causes CMIP5 output to vary from locally observed patterns in the climate. Several downscaling methods have been developed to increase the resolution of the CMIP5 data and decrease systemic differences to support decision-makers as they evaluate results at the watershed scale. Evaluating preliminary comparisons of observed and projected flow frequency curves over the US revealed a simple framework for water resources decision makers to plan and design water resources management measures under changing conditions using standard tools. Using this framework as a basis, USACE has begun to explore to use of statistical adjustment to alter global climate model data to better match the locally observed patterns while preserving the general structure and behavior of the model data. When paired with careful measurement and hypothesis testing, statistical adjustment can be particularly effective at navigating the compromise between the locally observed patterns and the global climate model structures for decision makers.
NASA Astrophysics Data System (ADS)
Sommer, Philipp S.; Kaplan, Jed O.
2017-10-01
While a wide range of Earth system processes occur at daily and even subdaily timescales, many global vegetation and other terrestrial dynamics models historically used monthly meteorological forcing both to reduce computational demand and because global datasets were lacking. Recently, dynamic land surface modeling has moved towards resolving daily and subdaily processes, and global datasets containing daily and subdaily meteorology have become available. These meteorological datasets, however, cover only the instrumental era of the last approximately 120 years at best, are subject to considerable uncertainty, and represent extremely large data files with associated computational costs of data input/output and file transfer. For periods before the recent past or in the future, global meteorological forcing can be provided by climate model output, but the quality of these data at high temporal resolution is low, particularly for daily precipitation frequency and amount. Here, we present GWGEN, a globally applicable statistical weather generator for the temporal downscaling of monthly climatology to daily meteorology. Our weather generator is parameterized using a global meteorological database and simulates daily values of five common variables: minimum and maximum temperature, precipitation, cloud cover, and wind speed. GWGEN is lightweight, modular, and requires a minimal set of monthly mean variables as input. The weather generator may be used in a range of applications, for example, in global vegetation, crop, soil erosion, or hydrological models. While GWGEN does not currently perform spatially autocorrelated multi-point downscaling of daily weather, this additional functionality could be implemented in future versions.
Iriza, Amalia; Dumitrache, Rodica C.; Lupascu, Aurelia; ...
2016-01-01
Our paper aims to evaluate the quality of high-resolution weather forecasts from the Weather Research and Forecasting (WRF) numerical weather prediction model. The lateral and boundary conditions were obtained from the numerical output of the Consortium for Small-scale Modeling (COSMO) model at 7 km horizontal resolution. Furthermore, the WRF model was run for January and July 2013 at two horizontal resolutions (3 and 1 km). The numerical forecasts of the WRF model were evaluated using different statistical scores for 2 m temperature and 10 m wind speed. Our results showed a tendency of the WRF model to overestimate the valuesmore » of the analyzed parameters in comparison to observations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iriza, Amalia; Dumitrache, Rodica C.; Lupascu, Aurelia
Our paper aims to evaluate the quality of high-resolution weather forecasts from the Weather Research and Forecasting (WRF) numerical weather prediction model. The lateral and boundary conditions were obtained from the numerical output of the Consortium for Small-scale Modeling (COSMO) model at 7 km horizontal resolution. Furthermore, the WRF model was run for January and July 2013 at two horizontal resolutions (3 and 1 km). The numerical forecasts of the WRF model were evaluated using different statistical scores for 2 m temperature and 10 m wind speed. Our results showed a tendency of the WRF model to overestimate the valuesmore » of the analyzed parameters in comparison to observations.« less
A Comparison of the Forecast Skills among Three Numerical Models
NASA Astrophysics Data System (ADS)
Lu, D.; Reddy, S. R.; White, L. J.
2003-12-01
Three numerical weather forecast models, MM5, COAMPS and WRF, operating with a joint effort of NOAA HU-NCAS and Jackson State University (JSU) during summer 2003 have been chosen to study their forecast skills against observations. The models forecast over the same region with the same initialization, boundary condition, forecast length and spatial resolution. AVN global dataset have been ingested as initial conditions. Grib resolution of 27 km is chosen to represent the current mesoscale model. The forecasts with the length of 36h are performed to output the result with 12h interval. The key parameters used to evaluate the forecast skill include 12h accumulated precipitation, sea level pressure, wind, surface temperature and dew point. Precipitation is evaluated statistically using conventional skill scores, Threat Score (TS) and Bias Score (BS), for different threshold values based on 12h rainfall observations whereas other statistical methods such as Mean Error (ME), Mean Absolute Error(MAE) and Root Mean Square Error (RMSE) are applied to other forecast parameters.
Reaction times to weak test lights. [psychophysics biological model
NASA Technical Reports Server (NTRS)
Wandell, B. A.; Ahumada, P.; Welsh, D.
1984-01-01
Maloney and Wandell (1984) describe a model of the response of a single visual channel to weak test lights. The initial channel response is a linearly filtered version of the stimulus. The filter output is randomly sampled over time. Each time a sample occurs there is some probability increasing with the magnitude of the sampled response - that a discrete detection event is generated. Maloney and Wandell derive the statistics of the detection events. In this paper a test is conducted of the hypothesis that the reaction time responses to the presence of a weak test light are initiated at the first detection event. This makes it possible to extend the application of the model to lights that are slightly above threshold, but still within the linear operating range of the visual system. A parameter-free prediction of the model proposed by Maloney and Wandell for lights detected by this statistic is tested. The data are in agreement with the prediction.
Pal, Partha S; Kar, R; Mandal, D; Ghoshal, S P
2015-11-01
This paper presents an efficient approach to identify different stable and practically useful Hammerstein models as well as unstable nonlinear process along with its stable closed loop counterpart with the help of an evolutionary algorithm as Colliding Bodies Optimization (CBO) optimization algorithm. The performance measures of the CBO based optimization approach such as precision, accuracy are justified with the minimum output mean square value (MSE) which signifies that the amount of bias and variance in the output domain are also the least. It is also observed that the optimization of output MSE in the presence of outliers has resulted in a very close estimation of the output parameters consistently, which also justifies the effective general applicability of the CBO algorithm towards the system identification problem and also establishes the practical usefulness of the applied approach. Optimum values of the MSEs, computational times and statistical information of the MSEs are all found to be the superior as compared with those of the other existing similar types of stochastic algorithms based approaches reported in different recent literature, which establish the robustness and efficiency of the applied CBO based identification scheme. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
An enhanced archive facilitating climate impacts analysis
Maurer, E.P.; Brekke, L.; Pruitt, T.; Thrasher, B.; Long, J.; Duffy, P.; Dettinger, M.; Cayan, D.; Arnold, J.
2014-01-01
We describe the expansion of a publicly available archive of downscaled climate and hydrology projections for the United States. Those studying or planning to adapt to future climate impacts demand downscaled climate model output for local or regional use. The archive we describe attempts to fulfill this need by providing data in several formats, selectable to meet user needs. Our archive has served as a resource for climate impacts modelers, water managers, educators, and others. Over 1,400 individuals have transferred more than 50 TB of data from the archive. In response to user demands, the archive has expanded from monthly downscaled data to include daily data to facilitate investigations of phenomena sensitive to daily to monthly temperature and precipitation, including extremes in these quantities. New developments include downscaled output from the new Coupled Model Intercomparison Project phase 5 (CMIP5) climate model simulations at both the monthly and daily time scales, as well as simulations of surface hydrologi- cal variables. The web interface allows the extraction of individual projections or ensemble statistics for user-defined regions, promoting the rapid assessment of model consensus and uncertainty for future projections of precipitation, temperature, and hydrology. The archive is accessible online (http://gdo-dcp.ucllnl.org/downscaled_ cmip_projections).
1988-12-19
Statistics [CEI Database 4 Nov] 17 Construction Bank Checks on Investment Loans [XINHUA] 17 Gold Output Rising 10 Percent Annually [CHINA DAILY 8...Industrial Output for September [CEI Database 11 Nov] 23 Energy Industry Grows Steadily in 1988 [CEI Database 11 Nov] 23 Government Plans To Boost...Plastics Industry [XINHUA] 24 Chongqing’s Industrial Output Increases [XINHUA] 24 Haikou Boosts Power Industry [CEI Database 27 Oct] 24 Jilin
Book Trade Research and Statistics.
ERIC Educational Resources Information Center
Alexander, Adrian W.; And Others
1994-01-01
The six articles in this section examine prices of U.S. and foreign materials; book title output and average prices; book sales statistics; U.S. book exports and imports; number of book outlets in the United States and Canada; and book review media statistics. (LRW)
2016-01-01
Although heavy-tailed fluctuations are ubiquitous in complex systems, a good understanding of the mechanisms that generate them is still lacking. Optical complex systems are ideal candidates for investigating heavy-tailed fluctuations, as they allow recording large datasets under controllable experimental conditions. A dynamical regime that has attracted a lot of attention over the years is the so-called low-frequency fluctuations (LFFs) of semiconductor lasers with optical feedback. In this regime, the laser output intensity is characterized by abrupt and apparently random dropouts. The statistical analysis of the inter-dropout-intervals (IDIs) has provided many useful insights into the underlying dynamics. However, the presence of large temporal fluctuations in the IDI sequence has not yet been investigated. Here, by applying fluctuation analysis we show that the experimental distribution of IDI fluctuations is heavy-tailed, and specifically, is well-modeled by a non-Gaussian stable distribution. We find a good qualitative agreement with simulations of the Lang-Kobayashi model. Moreover, we uncover a transition from a less-heavy-tailed state at low pump current to a more-heavy-tailed state at higher pump current. Our results indicate that fluctuation analysis can be a useful tool for investigating the output signals of complex optical systems; it can be used for detecting underlying regime shifts, for model validation and parameter estimation. PMID:26901346
Dual control and prevention of the turn-off phenomenon in a class of mimo systems
NASA Technical Reports Server (NTRS)
Mookerjee, P.; Bar-Shalom, Y.; Molusis, J. A.
1985-01-01
A recently developed methodology of adaptive dual control based upon sensitivity functions is applied here to a multivariable input-output model. The plant has constant but unknown parameters. It represents a simplified linear version of the relationship between the vibration output and the higher harmonic control input for a helicopter. The cautious and the new dual controller are examined. In many instances, the cautious controller is seen to turn off. The new dual controller modifies the cautious control design by numerator and denominator correction terms which depend upon the sensitivity functions of the expected future cost and avoids the turn-off and burst phenomena. Monte Carlo simulations and statistical tests of significance indicate the superiority of the dual controller over the cautious and the heuristic certainity equivalence controllers.
Prediction of climate change in Brunei Darussalam using statistical downscaling model
NASA Astrophysics Data System (ADS)
Hasan, Dk. Siti Nurul Ain binti Pg. Ali; Ratnayake, Uditha; Shams, Shahriar; Nayan, Zuliana Binti Hj; Rahman, Ena Kartina Abdul
2017-06-01
Climate is changing and evidence suggests that the impact of climate change would influence our everyday lives, including agriculture, built environment, energy management, food security and water resources. Brunei Darussalam located within the heart of Borneo will be affected both in terms of precipitation and temperature. Therefore, it is crucial to comprehend and assess how important climate indicators like temperature and precipitation are expected to vary in the future in order to minimise its impact. This study assesses the application of a statistical downscaling model (SDSM) for downscaling General Circulation Model (GCM) results for maximum and minimum temperatures along with precipitation in Brunei Darussalam. It investigates future climate changes based on numerous scenarios using Hadley Centre Coupled Model, version 3 (HadCM3), Canadian Earth System Model (CanESM2) and third-generation Coupled Global Climate Model (CGCM3) outputs. The SDSM outputs were improved with the implementation of bias correction and also using a monthly sub-model instead of an annual sub-model. The outcomes of this assessment show that monthly sub-model performed better than the annual sub-model. This study indicates a satisfactory applicability for generation of maximum temperatures, minimum temperatures and precipitation for future periods of 2017-2046 and 2047-2076. All considered models and the scenarios were consistent in predicting increasing trend of maximum temperature, increasing trend of minimum temperature and decreasing trend of precipitations. Maximum overall trend of Tmax was also observed for CanESM2 with Representative Concentration Pathways (RCP) 8.5 scenario. The increasing trend is 0.014 °C per year. Accordingly, by 2076, the highest prediction of average maximum temperatures is that it will increase by 1.4 °C. The same model predicts an increasing trend of Tmin of 0.004 °C per year, while the highest trend is seen under CGCM3-A2 scenario which is 0.009 °C per year. The highest change predicted for the Tmin is therefore 0.9 °C by 2076. The precipitation showed a maximum trend of decrease of 12.7 mm year. It is also seen in the output using CanESM2 data that precipitation will be more chaotic with some reaching 4800 mm per year and also producing low rainfall about 1800 mm per year. All GCMs considered are consistent in predicting it is very likely that Brunei is expected to experience more warming as well as less frequent precipitation events but with a possibility of intensified and drastically high rainfalls in the future.
The total probabilities from high-resolution ensemble forecasting of floods
NASA Astrophysics Data System (ADS)
Olav Skøien, Jon; Bogner, Konrad; Salamon, Peter; Smith, Paul; Pappenberger, Florian
2015-04-01
Ensemble forecasting has for a long time been used in meteorological modelling, to give an indication of the uncertainty of the forecasts. As meteorological ensemble forecasts often show some bias and dispersion errors, there is a need for calibration and post-processing of the ensembles. Typical methods for this are Bayesian Model Averaging (Raftery et al., 2005) and Ensemble Model Output Statistics (EMOS) (Gneiting et al., 2005). There are also methods for regionalizing these methods (Berrocal et al., 2007) and for incorporating the correlation between lead times (Hemri et al., 2013). To make optimal predictions of floods along the stream network in hydrology, we can easily use the ensemble members as input to the hydrological models. However, some of the post-processing methods will need modifications when regionalizing the forecasts outside the calibration locations, as done by Hemri et al. (2013). We present a method for spatial regionalization of the post-processed forecasts based on EMOS and top-kriging (Skøien et al., 2006). We will also look into different methods for handling the non-normality of runoff and the effect on forecasts skills in general and for floods in particular. Berrocal, V. J., Raftery, A. E. and Gneiting, T.: Combining Spatial Statistical and Ensemble Information in Probabilistic Weather Forecasts, Mon. Weather Rev., 135(4), 1386-1402, doi:10.1175/MWR3341.1, 2007. Gneiting, T., Raftery, A. E., Westveld, A. H. and Goldman, T.: Calibrated Probabilistic Forecasting Using Ensemble Model Output Statistics and Minimum CRPS Estimation, Mon. Weather Rev., 133(5), 1098-1118, doi:10.1175/MWR2904.1, 2005. Hemri, S., Fundel, F. and Zappa, M.: Simultaneous calibration of ensemble river flow predictions over an entire range of lead times, Water Resour. Res., 49(10), 6744-6755, doi:10.1002/wrcr.20542, 2013. Raftery, A. E., Gneiting, T., Balabdaoui, F. and Polakowski, M.: Using Bayesian Model Averaging to Calibrate Forecast Ensembles, Mon. Weather Rev., 133(5), 1155-1174, doi:10.1175/MWR2906.1, 2005. Skøien, J. O., Merz, R. and Blöschl, G.: Top-kriging - Geostatistics on stream networks, Hydrol. Earth Syst. Sci., 10(2), 277-287, 2006.
Modelled vs. reconstructed past fire dynamics - how can we compare?
NASA Astrophysics Data System (ADS)
Brücher, Tim; Brovkin, Victor; Kloster, Silvia; Marlon, Jennifer R.; Power, Mitch J.
2015-04-01
Fire is an important process that affects climate through changes in CO2 emissions, albedo, and aerosols (Ward et al. 2012). Fire-history reconstructions from charcoal accumulations in sediment indicate that biomass burning has increased since the Last Glacial Maximum (Power et al. 2008; Marlon et al. 2013). Recent comparisons with transient climate model output suggest that this increase in global ?re activity is linked primarily to variations in temperature and secondarily to variations in precipitation (Daniau et al. 2012). In this study, we discuss the best way to compare global ?re model output with charcoal records. Fire models generate quantitative output for burned area and fire-related emissions of CO2, whereas charcoal data indicate relative changes in biomass burning for specific regions and time periods only. However, models can be used to relate trends in charcoal data to trends in quantitative changes in burned area or fire carbon emissions. Charcoal records are often reported as Z-scores (Power et al. 2008). Since Z-scores are non-linear power transformations of charcoal influxes, we must evaluate if, for example, a two-fold increase in the standardized charcoal reconstruction corresponds to a 2- or 200-fold increase in the area burned. In our study we apply the Z-score metric to the model output. This allows us to test how well the model can quantitatively reproduce the charcoal-based reconstructions and how Z-score metrics affect the statistics of model output. The Global Charcoal Database (GCD version 2.5; www.gpwg.org/gpwgdb.html) is used to determine regional and global paleofire trends from 218 sedimentary charcoal records covering part or all of the last 8 ka BP. To retrieve regional and global composites of changes in fire activity over the Holocene the time series of Z-scores are linearly averaged to achieve regional composites. A coupled climate-carbon cycle model, CLIMBA (Brücher et al. 2014), is used for this study. It consists of the CLIMBER-2 Earth system model of intermediate complexity and the JSBACH land component of the Max Planck Institute Earth System Model. The fire algorithm in JSBACH assumes a constant annual lightning cycle as the sole fire ignition mechanism (Arora and Boer 2005). To eliminate data processing differences as a source for potential discrepancies, the processing of both reconstructed and modeled data, including e.g. normalisation with respect to a given base period and aggregation of time series was done in exactly the same way. Here, we compare the aggregated time series on a hemispheric and regional scale.
Development and Implementation of an Empirical Ionosphere Variability Model
NASA Technical Reports Server (NTRS)
Minow, Joesph I.; Almond, Deborah (Technical Monitor)
2002-01-01
Spacecraft designers and operations support personnel involved in space environment analysis for low Earth orbit missions require ionospheric specification and forecast models that provide not only average ionospheric plasma parameters for a given set of geophysical conditions but the statistical variations about the mean as well. This presentation describes the development of a prototype empirical model intended for use with the International Reference Ionosphere (IRI) to provide ionospheric Ne and Te variability. We first describe the database of on-orbit observations from a variety of spacecraft and ground based radars over a wide range of latitudes and altitudes used to obtain estimates of the environment variability. Next, comparison of the observations with the IRI model provide estimates of the deviations from the average model as well as the range of possible values that may correspond to a given IRI output. Options for implementation of the statistical variations in software that can be run with the IRI model are described. Finally, we provide example applications including thrust estimates for tethered satellites and specification of sunrise Ne, Te conditions required to support spacecraft charging issues for satellites with high voltage solar arrays.
Improvement and extension of a radar forest backscattering model
NASA Technical Reports Server (NTRS)
Simonett, David S.; Wang, Yong
1989-01-01
Radar modeling of mangal forest stands, in the Sundarbans area of Southern Bangladesh, was developed. The modeling employs radar system parameters with forest data on tree height, spacing, biomass, species combinations, and water (including slightly conductive water), content both in leaves and trunks of the mangal. For Sundri and Gewa tropical mangal forests, six model components are proposed, which are required to explain the contributions of various forest species combinations in the attenuation and scattering of mangal vegetated nonflooded or flooded surfaces. Statistical data of simulated images were compared with those of SIR-B images both to refine the modeling procedures and to appropriately characterize the model output. The possibility of delineation of flooded or nonflooded boundaries is discussed.
The Empirical Low Energy Ion Flux Model for the Terrestrial Magnetosphere
NASA Technical Reports Server (NTRS)
Blackwell, William C.; Minow, Joseph I.; Diekmann, Anne M.
2007-01-01
This document includes a viewgraph presentation plus the full paper presented at the conference. The Living With a Star Ion Flux Model (IFM) is a radiation environment risk mitigation tool that provides magnetospheric ion flux values for varying geomagnetic disturbance levels in the geospace environment. IFM incorporates flux observations from the Polar and Geotail spacecraft in a single statistical flux model. IFM is an engineering environment model which predicts the proton flux not only in the magnetosphere, but also in the solar wind and magnetosheath phenomenological regions. This paper describes the ion flux databases that allows for IFM output to be correlated with the geomagnetic activity level, as represented by the Kp index.
Impact of nonzero boresight pointing error on ergodic capacity of MIMO FSO communication systems.
Boluda-Ruiz, Rubén; García-Zambrana, Antonio; Castillo-Vázquez, Beatriz; Castillo-Vázquez, Carmen
2016-02-22
A thorough investigation of the impact of nonzero boresight pointing errors on the ergodic capacity of multiple-input/multiple-output (MIMO) free-space optical (FSO) systems with equal gain combining (EGC) reception under different turbulence models, which are modeled as statistically independent, but not necessarily identically distributed (i.n.i.d.) is addressed in this paper. Novel closed-form asymptotic expressions at high signal-to-noise ratio (SNR) for the ergodic capacity of MIMO FSO systems are derived when different geometric arrangements of the receive apertures at the receiver are considered in order to reduce the effect of nonzero inherent boresight displacement, which is inevitably present when more than one receive aperture is considered. As a result, the asymptotic ergodic capacity of MIMO FSO systems is evaluated over log-normal (LN), gamma-gamma (GG) and exponentiated Weibull (EW) atmospheric turbulence in order to study different turbulence conditions, different sizes of receive apertures as well as different aperture averaging conditions. It is concluded that the use of single-input/multiple-output (SIMO) and MIMO techniques can significantly increase the ergodic capacity respect to the direct path link when the inherent boresight displacement takes small values, i.e. when the spacing among receive apertures is not too big. The effect of nonzero additional boresight errors, which is due to the thermal expansion of the building, is evaluated in multiple-input/single-output (MISO) and single-input/single-output (SISO) FSO systems. Simulation results are further included to confirm the analytical results.
NASA Astrophysics Data System (ADS)
Sakellariou, J. S.; Fassois, S. D.
2006-11-01
A stochastic output error (OE) vibration-based methodology for damage detection and assessment (localization and quantification) in structures under earthquake excitation is introduced. The methodology is intended for assessing the state of a structure following potential damage occurrence by exploiting vibration signal measurements produced by low-level earthquake excitations. It is based upon (a) stochastic OE model identification, (b) statistical hypothesis testing procedures for damage detection, and (c) a geometric method (GM) for damage assessment. The methodology's advantages include the effective use of the non-stationary and limited duration earthquake excitation, the handling of stochastic uncertainties, the tackling of the damage localization and quantification subproblems, the use of "small" size, simple and partial (in both the spatial and frequency bandwidth senses) identified OE-type models, and the use of a minimal number of measured vibration signals. Its feasibility and effectiveness are assessed via Monte Carlo experiments employing a simple simulation model of a 6 storey building. It is demonstrated that damage levels of 5% and 20% reduction in a storey's stiffness characteristics may be properly detected and assessed using noise-corrupted vibration signals.
1991-06-24
52 Gross Industrial Output in April [CEI Database ...Jan-Apr Statistics on Payments to Employees [CEI Database ] ....................................................... 56 Jan-Apr Statistics on Labor...Productivity [CEI Database ] .............................................................. 56 TRANSPORTATION Hebei Province Opens Two Air Routes [HEBEI
NASA Astrophysics Data System (ADS)
Liu, L.; Du, L.; Liao, Y.
2017-12-01
Based on the ensemble hindcast dataset of CSM1.1m by NCC, CMA, Bayesian merging models and a two-step statistical model are developed and employed to predict monthly grid/station precipitation in the Huaihe River China during summer at the lead-time of 1 to 3 months. The hindcast datasets span a period of 1991 to 2014. The skill of the two models is evaluated using area under the ROC curve (AUC) in a leave-one-out cross-validation framework, and is compared to the skill of CSM1.1m. CSM1.1m has highest skill for summer precipitation from April while lowest from May, and has highest skill for precipitation in June but lowest for precipitation in July. Compared with raw outputs of climate models, some schemes of the two approaches have higher skill for the prediction from March and May, but almost schemes have lower skill for prediction from April. Compared to two-step approach, one sampling scheme of Bayesian merging approach has higher skill for the prediction from March, but has lower skill from May. The results suggest that there is potential to apply the two statistical models for monthly precipitation forecast in summer from March and from May over Huaihe River basin, but is potential to apply CSM1.1m forecast from April. Finally, the summer runoff during 1991 to 2014 is simulated based on one hydrological model using the climate hindcast of CSM1.1m and the two statistical models.
User manual for Blossom statistical package for R
Talbert, Marian; Cade, Brian S.
2005-01-01
Blossom is an R package with functions for making statistical comparisons with distance-function based permutation tests developed by P.W. Mielke, Jr. and colleagues at Colorado State University (Mielke and Berry, 2001) and for testing parameters estimated in linear models with permutation procedures developed by B. S. Cade and colleagues at the Fort Collins Science Center, U.S. Geological Survey. This manual is intended to provide identical documentation of the statistical methods and interpretations as the manual by Cade and Richards (2005) does for the original Fortran program, but with changes made with respect to command inputs and outputs to reflect the new implementation as a package for R (R Development Core Team, 2012). This implementation in R has allowed for numerous improvements not supported by the Cade and Richards (2005) Fortran implementation, including use of categorical predictor variables in most routines.
Exploiting Sparsity in Hyperspectral Image Classification via Graphical Models
2013-05-01
distribution p by minimizing the Kullback – Leibler (KL) distance D(p‖p̂) = Ep[log(p/p̂)] using first- and second-order statistics, via a maximum-weight...Obtain sparse representations αl, l = 1, . . . , T , in RN from test image. 6: Inference: Classify based on the output of the resulting classifier using ...The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
NASA Astrophysics Data System (ADS)
Nieto, Paulino José García; García-Gonzalo, Esperanza; Vilán, José Antonio Vilán; Robleda, Abraham Segade
2015-12-01
The main aim of this research work is to build a new practical hybrid regression model to predict the milling tool wear in a regular cut as well as entry cut and exit cut of a milling tool. The model was based on Particle Swarm Optimization (PSO) in combination with support vector machines (SVMs). This optimization mechanism involved kernel parameter setting in the SVM training procedure, which significantly influences the regression accuracy. Bearing this in mind, a PSO-SVM-based model, which is based on the statistical learning theory, was successfully used here to predict the milling tool flank wear (output variable) as a function of the following input variables: the time duration of experiment, depth of cut, feed, type of material, etc. To accomplish the objective of this study, the experimental dataset represents experiments from runs on a milling machine under various operating conditions. In this way, data sampled by three different types of sensors (acoustic emission sensor, vibration sensor and current sensor) were acquired at several positions. A second aim is to determine the factors with the greatest bearing on the milling tool flank wear with a view to proposing milling machine's improvements. Firstly, this hybrid PSO-SVM-based regression model captures the main perception of statistical learning theory in order to obtain a good prediction of the dependence among the flank wear (output variable) and input variables (time, depth of cut, feed, etc.). Indeed, regression with optimal hyperparameters was performed and a determination coefficient of 0.95 was obtained. The agreement of this model with experimental data confirmed its good performance. Secondly, the main advantages of this PSO-SVM-based model are its capacity to produce a simple, easy-to-interpret model, its ability to estimate the contributions of the input variables, and its computational efficiency. Finally, the main conclusions of this study are exposed.
A new framework to increase the efficiency of large-scale solar power plants.
NASA Astrophysics Data System (ADS)
Alimohammadi, Shahrouz; Kleissl, Jan P.
2015-11-01
A new framework to estimate the spatio-temporal behavior of solar power is introduced, which predicts the statistical behavior of power output at utility scale Photo-Voltaic (PV) power plants. The framework is based on spatio-temporal Gaussian Processes Regression (Kriging) models, which incorporates satellite data with the UCSD version of the Weather and Research Forecasting model. This framework is designed to improve the efficiency of the large-scale solar power plants. The results are also validated from measurements of the local pyranometer sensors, and some improvements in different scenarios are observed. Solar energy.
Tukker, Arnold; de Koning, Arjan; Wood, Richard; Moll, Stephan; Bouwmeester, Maaike C
2013-02-19
Environmentally extended input output (EE IO) analysis is increasingly used to assess the carbon footprint of final consumption. Official EE IO data are, however, at best available for single countries or regions such as the EU27. This causes problems in assessing pollution embodied in imported products. The popular "domestic technology assumption (DTA)" leads to errors. Improved approaches based on Life Cycle Inventory data, Multiregional EE IO tables, etc. rely on unofficial research data and modeling, making them difficult to implement by statistical offices. The DTA can lead to errors for three main reasons: exporting countries can have higher impact intensities; may use more intermediate inputs for the same output; or may sell the imported products for lower/other prices than those produced domestically. The last factor is relevant for sustainable consumption policies of importing countries, whereas the first factors are mainly a matter of making production in exporting countries more eco-efficient. We elaborated a simple correction for price differences in imports and domestic production using monetary and physical data from official import and export statistics. A case study for the EU27 shows that this "price-adjusted DTA" gives a partial but meaningful adjustment of pollution embodied in trade compared to multiregional EE IO studies.
Scolletta, Sabino; Franchi, Federico; Romagnoli, Stefano; Carlà, Rossella; Donati, Abele; Fabbri, Lea P; Forfori, Francesco; Alonso-Iñigo, José M; Laviola, Silvia; Mangani, Valerio; Maj, Giulia; Martinelli, Giampaolo; Mirabella, Lucia; Morelli, Andrea; Persona, Paolo; Payen, Didier
2016-07-01
Echocardiography and pulse contour methods allow, respectively, noninvasive and less invasive cardiac output estimation. The aim of the present study was to compare Doppler echocardiography with the pulse contour method MostCare for cardiac output estimation in a large and nonselected critically ill population. A prospective multicenter observational comparison study. The study was conducted in 15 European medicosurgical ICUs. We assessed cardiac output in 400 patients in whom an echocardiographic evaluation was performed as a routine need or for cardiocirculatory assessment. None. One echocardiographic cardiac output measurement was compared with the corresponding MostCare cardiac output value per patient, considering different ICU admission categories and clinical conditions. For statistical analysis, we used Bland-Altman and linear regression analyses. To assess heterogeneity in results of individual centers, Cochran Q, and the I statistics were applied. A total of 400 paired echocardiographic cardiac output and MostCare cardiac output measures were compared. MostCare cardiac output values ranged from 1.95 to 9.90 L/min, and echocardiographic cardiac output ranged from 1.82 to 9.75 L/min. A significant correlation was found between echocardiographic cardiac output and MostCare cardiac output (r = 0.85; p < 0.0001). Among the different ICUs, the mean bias between echocardiographic cardiac output and MostCare cardiac output ranged from -0.40 to 0.45 L/min, and the percentage error ranged from 13.2% to 47.2%. Overall, the mean bias was -0.03 L/min, with 95% limits of agreement of -1.54 to 1.47 L/min and a relative percentage error of 30.1%. The percentage error was 24% in the sepsis category, 26% in the trauma category, 30% in the surgical category, and 33% in the medical admission category. The final overall percentage error was 27.3% with a 95% CI of 22.2-32.4%. Our results suggest that MostCare could be an alternative to echocardiography to assess cardiac output in ICU patients with a large spectrum of clinical conditions.
Software cost/resource modeling: Deep space network software cost estimation model
NASA Technical Reports Server (NTRS)
Tausworthe, R. J.
1980-01-01
A parametric software cost estimation model prepared for JPL deep space network (DSN) data systems implementation tasks is presented. The resource estimation model incorporates principles and data from a number of existing models, such as those of the General Research Corporation, Doty Associates, IBM (Walston-Felix), Rome Air Force Development Center, University of Maryland, and Rayleigh-Norden-Putnam. The model calibrates task magnitude and difficulty, development environment, and software technology effects through prompted responses to a set of approximately 50 questions. Parameters in the model are adjusted to fit JPL software lifecycle statistics. The estimation model output scales a standard DSN work breakdown structure skeleton, which is then input to a PERT/CPM system, producing a detailed schedule and resource budget for the project being planned.
Pulse pileup statistics for energy discriminating photon counting x-ray detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Adam S.; Harrison, Daniel; Lobastov, Vladimir
Purpose: Energy discriminating photon counting x-ray detectors can be subject to a wide range of flux rates if applied in clinical settings. Even when the incident rate is a small fraction of the detector's maximum periodic rate N{sub 0}, pulse pileup leads to count rate losses and spectral distortion. Although the deterministic effects can be corrected, the detrimental effect of pileup on image noise is not well understood and may limit the performance of photon counting systems. Therefore, the authors devise a method to determine the detector count statistics and imaging performance. Methods: The detector count statistics are derived analyticallymore » for an idealized pileup model with delta pulses of a nonparalyzable detector. These statistics are then used to compute the performance (e.g., contrast-to-noise ratio) for both single material and material decomposition contrast detection tasks via the Cramer-Rao lower bound (CRLB) as a function of the detector input count rate. With more realistic unipolar and bipolar pulse pileup models of a nonparalyzable detector, the imaging task performance is determined by Monte Carlo simulations and also approximated by a multinomial method based solely on the mean detected output spectrum. Photon counting performance at different count rates is compared with ideal energy integration, which is unaffected by count rate. Results: The authors found that an ideal photon counting detector with perfect energy resolution outperforms energy integration for our contrast detection tasks, but when the input count rate exceeds 20%N{sub 0}, many of these benefits disappear. The benefit with iodine contrast falls rapidly with increased count rate while water contrast is not as sensitive to count rates. The performance with a delta pulse model is overoptimistic when compared to the more realistic bipolar pulse model. The multinomial approximation predicts imaging performance very close to the prediction from Monte Carlo simulations. The monoenergetic image with maximum contrast-to-noise ratio from dual energy imaging with ideal photon counting is only slightly better than with dual kVp energy integration, and with a bipolar pulse model, energy integration outperforms photon counting for this particular metric because of the count rate losses. However, the material resolving capability of photon counting can be superior to energy integration with dual kVp even in the presence of pileup because of the energy information available to photon counting. Conclusions: A computationally efficient multinomial approximation of the count statistics that is based on the mean output spectrum can accurately predict imaging performance. This enables photon counting system designers to directly relate the effect of pileup to its impact on imaging statistics and how to best take advantage of the benefits of energy discriminating photon counting detectors, such as material separation with spectral imaging.« less
Book Trade Research and Statistics.
ERIC Educational Resources Information Center
Sullivan, Sharon G.; Ink, Gary; Grabois, Andrew; Barr, Catherine
2001-01-01
Includes six articles that discuss research and statistics relating to the book trade. Topics include prices of U.S. and foreign materials; book title output and average prices; book sales statistics; book exports and imports; book outlets in the U.S. and Canada; and books and other media reviewed. (LRW)
State estimation of spatio-temporal phenomena
NASA Astrophysics Data System (ADS)
Yu, Dan
This dissertation addresses the state estimation problem of spatio-temporal phenomena which can be modeled by partial differential equations (PDEs), such as pollutant dispersion in the atmosphere. After discretizing the PDE, the dynamical system has a large number of degrees of freedom (DOF). State estimation using Kalman Filter (KF) is computationally intractable, and hence, a reduced order model (ROM) needs to be constructed first. Moreover, the nonlinear terms, external disturbances or unknown boundary conditions can be modeled as unknown inputs, which leads to an unknown input filtering problem. Furthermore, the performance of KF could be improved by placing sensors at feasible locations. Therefore, the sensor scheduling problem to place multiple mobile sensors is of interest. The first part of the dissertation focuses on model reduction for large scale systems with a large number of inputs/outputs. A commonly used model reduction algorithm, the balanced proper orthogonal decomposition (BPOD) algorithm, is not computationally tractable for large systems with a large number of inputs/outputs. Inspired by the BPOD and randomized algorithms, we propose a randomized proper orthogonal decomposition (RPOD) algorithm and a computationally optimal RPOD (RPOD*) algorithm, which construct an ROM to capture the input-output behaviour of the full order model, while reducing the computational cost of BPOD by orders of magnitude. It is demonstrated that the proposed RPOD* algorithm could construct the ROM in real-time, and the performance of the proposed algorithms on different advection-diffusion equations. Next, we consider the state estimation problem of linear discrete-time systems with unknown inputs which can be treated as a wide-sense stationary process with rational power spectral density, while no other prior information needs to be known. We propose an autoregressive (AR) model based unknown input realization technique which allows us to recover the input statistics from the output data by solving an appropriate least squares problem, then fit an AR model to the recovered input statistics and construct an innovations model of the unknown inputs using the eigensystem realization algorithm. The proposed algorithm outperforms the augmented two-stage Kalman Filter (ASKF) and the unbiased minimum-variance (UMV) algorithm are shown in several examples. Finally, we propose a framework to place multiple mobile sensors to optimize the long-term performance of KF in the estimation of the state of a PDE. The major challenges are that placing multiple sensors is an NP-hard problem, and the optimization problem is non-convex in general. In this dissertation, first, we construct an ROM using RPOD* algorithm, and then reduce the feasible sensor locations into a subset using the ROM. The Information Space Receding Horizon Control (I-RHC) approach and a modified Monte Carlo Tree Search (MCTS) approach are applied to solve the sensor scheduling problem using the subset. Various applications have been provided to demonstrate the performance of the proposed approach.
Design and implementation of the NaI(Tl)/CsI(Na) detectors output signal generator
NASA Astrophysics Data System (ADS)
Zhou, Xu; Liu, Cong-Zhan; Zhao, Jian-Ling; Zhang, Fei; Zhang, Yi-Fei; Li, Zheng-Wei; Zhang, Shuo; Li, Xu-Fang; Lu, Xue-Feng; Xu, Zhen-Ling; Lu, Fang-Jun
2014-02-01
We designed and implemented a signal generator that can simulate the output of the NaI(Tl)/CsI(Na) detectors' pre-amplifier onboard the Hard X-ray Modulation Telescope (HXMT). Using the development of the FPGA (Field Programmable Gate Array) with VHDL language and adding a random constituent, we have finally produced the double exponential random pulse signal generator. The statistical distribution of the signal amplitude is programmable. The occurrence time intervals of the adjacent signals contain negative exponential distribution statistically.
Use of medium-range numerical weather prediction model output to produce forecasts of streamflow
Clark, M.P.; Hay, L.E.
2004-01-01
This paper examines an archive containing over 40 years of 8-day atmospheric forecasts over the contiguous United States from the NCEP reanalysis project to assess the possibilities for using medium-range numerical weather prediction model output for predictions of streamflow. This analysis shows the biases in the NCEP forecasts to be quite extreme. In many regions, systematic precipitation biases exceed 100% of the mean, with temperature biases exceeding 3??C. In some locations, biases are even higher. The accuracy of NCEP precipitation and 2-m maximum temperature forecasts is computed by interpolating the NCEP model output for each forecast day to the location of each station in the NWS cooperative network and computing the correlation with station observations. Results show that the accuracy of the NCEP forecasts is rather low in many areas of the country. Most apparent is the generally low skill in precipitation forecasts (particularly in July) and low skill in temperature forecasts in the western United States, the eastern seaboard, and the southern tier of states. These results outline a clear need for additional processing of the NCEP Medium-Range Forecast Model (MRF) output before it is used for hydrologic predictions. Techniques of model output statistics (MOS) are used in this paper to downscale the NCEP forecasts to station locations. Forecasted atmospheric variables (e.g., total column precipitable water, 2-m air temperature) are used as predictors in a forward screening multiple linear regression model to improve forecasts of precipitation and temperature for stations in the National Weather Service cooperative network. This procedure effectively removes all systematic biases in the raw NCEP precipitation and temperature forecasts. MOS guidance also results in substantial improvements in the accuracy of maximum and minimum temperature forecasts throughout the country. For precipitation, forecast improvements were less impressive. MOS guidance increases he accuracy of precipitation forecasts over the northeastern United States, but overall, the accuracy of MOS-based precipitation forecasts is slightly lower than the raw NCEP forecasts. Four basins in the United States were chosen as case studies to evaluate the value of MRF output for predictions of streamflow. Streamflow forecasts using MRF output were generated for one rainfall-dominated basin (Alapaha River at Statenville, Georgia) and three snowmelt-dominated basins (Animas River at Durango, Colorado: East Fork of the Carson River near Gardnerville, Nevada: and Cle Elum River near Roslyn, Washington). Hydrologic model output forced with measured-station data were used as "truth" to focus attention on the hydrologic effects of errors in the MRF forecasts. Eight-day streamflow forecasts produced using the MOS-corrected MRF output as input (MOS) were compared with those produced using the climatic Ensemble Streamflow Prediction (ESP) technique. MOS-based streamflow forecasts showed increased skill in the snowmelt-dominated river basins, where daily variations in streamflow are strongly forced by temperature. In contrast, the skill of MOS forecasts in the rainfall-dominated basin (the Alapaha River) were equivalent to the skill of the ESP forecasts. Further improvements in streamflow forecasts require more accurate local-scale forecasts of precipitation and temperature, more accurate specification of basin initial conditions, and more accurate model simulations of streamflow. ?? 2004 American Meteorological Society.
Marshall, F.E.; Wingard, G.L.
2012-01-01
The upgraded method of coupled paleosalinity and hydrologic models was applied to the analysis of the circa-1900 CE segments of five estuarine sediment cores collected in Florida Bay. Comparisons of the observed mean stage (water level) data to the paleoecology-based model's averaged output show that the estimated stage in the Everglades wetlands was 0.3 to 1.6 feet higher at different locations. Observed mean flow data compared to the paleoecology-based model output show an estimated flow into Shark River Slough at Tamiami Trail of 401 to 2,539 cubic feet per second (cfs) higher than existing flows, and at Taylor Slough Bridge an estimated flow of 48 to 218 cfs above existing flows. For salinity in Florida Bay, the difference between paleoecology-based and observed mean salinity varies across the bay, from an aggregated average salinity of 14.7 less than existing in the northeastern basin to 1.0 less than existing in the western basin near the transition into the Gulf of Mexico. When the salinity differences are compared by region, the difference between paleoecology-based conditions and existing conditions are spatially consistent.
NASA Astrophysics Data System (ADS)
von Storch, Hans; Zorita, Eduardo; Cubasch, Ulrich
1993-06-01
A statistical strategy to deduct regional-scale features from climate general circulation model (GCM) simulations has been designed and tested. The main idea is to interrelate the characteristic patterns of observed simultaneous variations of regional climate parameters and of large-scale atmospheric flow using the canonical correlation technique.The large-scale North Atlantic sea level pressure (SLP) is related to the regional, variable, winter (DJF) mean Iberian Peninsula rainfall. The skill of the resulting statistical model is shown by reproducing, to a good approximation, the winter mean Iberian rainfall from 1900 to present from the observed North Atlantic mean SLP distributions. It is shown that this observed relationship between these two variables is not well reproduced in the output of a general circulation model (GCM).The implications for Iberian rainfall changes as the response to increasing atmospheric greenhouse-gas concentrations simulated by two GCM experiments are examined with the proposed statistical model. In an instantaneous `2 C02' doubling experiment, using the simulated change of the mean North Atlantic SLP field to predict Iberian rainfall yields, there is an insignificant increase of area-averaged rainfall of 1 mm/month, with maximum values of 4 mm/month in the northwest of the peninsula. In contrast, for the four GCM grid points representing the Iberian Peninsula, the change is 10 mm/month, with a minimum of 19 mm/month in the southwest. In the second experiment, with the IPCC scenario A ("business as usual") increase Of C02, the statistical-model results partially differ from the directly simulated rainfall changes: in the experimental range of 100 years, the area-averaged rainfall decreases by 7 mm/month (statistical model), and by 9 mm/month (GCM); at the same time the amplitude of the interdecadal variability is quite different.
Decision-making for foot-and-mouth disease control: Objectives matter
Probert, William J. M.; Shea, Katriona; Fonnesbeck, Christopher J.; Runge, Michael C.; Carpenter, Tim E.; Durr, Salome; Garner, M. Graeme; Harvey, Neil; Stevenson, Mark A.; Webb, Colleen T.; Werkman, Marleen; Tildesley, Michael J.; Ferrari, Matthew J.
2016-01-01
Formal decision-analytic methods can be used to frame disease control problems, the first step of which is to define a clear and specific objective. We demonstrate the imperative of framing clearly-defined management objectives in finding optimal control actions for control of disease outbreaks. We illustrate an analysis that can be applied rapidly at the start of an outbreak when there are multiple stakeholders involved with potentially multiple objectives, and when there are also multiple disease models upon which to compare control actions. The output of our analysis frames subsequent discourse between policy-makers, modellers and other stakeholders, by highlighting areas of discord among different management objectives and also among different models used in the analysis. We illustrate this approach in the context of a hypothetical foot-and-mouth disease (FMD) outbreak in Cumbria, UK using outputs from five rigorously-studied simulation models of FMD spread. We present both relative rankings and relative performance of controls within each model and across a range of objectives. Results illustrate how control actions change across both the base metric used to measure management success and across the statistic used to rank control actions according to said metric. This work represents a first step towards reconciling the extensive modelling work on disease control problems with frameworks for structured decision making.
NASA Astrophysics Data System (ADS)
Del Giudice, Dario; Löwe, Roland; Madsen, Henrik; Mikkelsen, Peter Steen; Rieckermann, Jörg
2015-07-01
In urban rainfall-runoff, commonly applied statistical techniques for uncertainty quantification mostly ignore systematic output errors originating from simplified models and erroneous inputs. Consequently, the resulting predictive uncertainty is often unreliable. Our objective is to present two approaches which use stochastic processes to describe systematic deviations and to discuss their advantages and drawbacks for urban drainage modeling. The two methodologies are an external bias description (EBD) and an internal noise description (IND, also known as stochastic gray-box modeling). They emerge from different fields and have not yet been compared in environmental modeling. To compare the two approaches, we develop a unifying terminology, evaluate them theoretically, and apply them to conceptual rainfall-runoff modeling in the same drainage system. Our results show that both approaches can provide probabilistic predictions of wastewater discharge in a similarly reliable way, both for periods ranging from a few hours up to more than 1 week ahead of time. The EBD produces more accurate predictions on long horizons but relies on computationally heavy MCMC routines for parameter inferences. These properties make it more suitable for off-line applications. The IND can help in diagnosing the causes of output errors and is computationally inexpensive. It produces best results on short forecast horizons that are typical for online applications.
NASA Astrophysics Data System (ADS)
Quinn, Kevin Martin
The total amount of precipitation integrated across a precipitation cluster (contiguous precipitating grid cells exceeding a minimum rain rate) is a useful measure of the aggregate size of the disturbance, expressed as the rate of water mass lost or latent heat released, i.e. the power of the disturbance. Probability distributions of cluster power are examined during boreal summer (May-September) and winter (January-March) using satellite-retrieved rain rates from the Tropical Rainfall Measuring Mission (TRMM) 3B42 and Special Sensor Microwave Imager and Sounder (SSM/I and SSMIS) programs, model output from the High Resolution Atmospheric Model (HIRAM, roughly 0.25-0.5 0 resolution), seven 1-2° resolution members of the Coupled Model Intercomparison Project Phase 5 (CMIP5) experiment, and National Center for Atmospheric Research Large Ensemble (NCAR LENS). Spatial distributions of precipitation-weighted centroids are also investigated in observations (TRMM-3B42) and climate models during winter as a metric for changes in mid-latitude storm tracks. Observed probability distributions for both seasons are scale-free from the smallest clusters up to a cutoff scale at high cluster power, after which the probability density drops rapidly. When low rain rates are excluded by choosing a minimum rain rate threshold in defining clusters, the models accurately reproduce observed cluster power statistics and winter storm tracks. Changes in behavior in the tail of the distribution, above the cutoff, are important for impacts since these quantify the frequency of the most powerful storms. End-of-century cluster power distributions and storm track locations are investigated in these models under a "business as usual" global warming scenario. The probability of high cluster power events increases by end-of-century across all models, by up to an order of magnitude for the highest-power events for which statistics can be computed. For the three models in the suite with continuous time series of high resolution output, there is substantial variability on when these probability increases for the most powerful precipitation clusters become detectable, ranging from detectable within the observational period to statistically significant trends emerging only after 2050. A similar analysis of National Centers for Environmental Prediction (NCEP) Reanalysis 2 and SSM/I-SSMIS rain rate retrievals in the recent observational record does not yield reliable evidence of trends in high-power cluster probabilities at this time. Large impacts to mid-latitude storm tracks are projected over the West Coast and eastern North America, with no less than 8 of the 9 models examined showing large increases by end-of-century in the probability density of the most powerful storms, ranging up to a factor of 6.5 in the highest range bin for which historical statistics are computed. However, within these regional domains, there is considerable variation among models in pinpointing exactly where the largest increases will occur.
NASA Astrophysics Data System (ADS)
Dubrovsky, M.; Hirschi, M.; Spirig, C.
2014-12-01
To quantify impact of the climate change on a specific pest (or any weather-dependent process) in a specific site, we may use a site-calibrated pest (or other) model and compare its outputs obtained with site-specific weather data representing present vs. perturbed climates. The input weather data may be produced by the stochastic weather generator. Apart from the quality of the pest model, the reliability of the results obtained in such experiment depend on an ability of the generator to represent the statistical structure of the real world weather series, and on the sensitivity of the pest model to possible imperfections of the generator. This contribution deals with the multivariate HOWGH weather generator, which is based on a combination of parametric and non-parametric statistical methods. Here, HOWGH is used to generate synthetic hourly series of three weather variables (solar radiation, temperature and precipitation) required by a dynamic pest model SOPRA to simulate the development of codling moth. The contribution presents results of the direct and indirect validation of HOWGH. In the direct validation, the synthetic series generated by HOWGH (various settings of its underlying model are assumed) are validated in terms of multiple climatic characteristics, focusing on the subdaily wet/dry and hot/cold spells. In the indirect validation, we assess the generator in terms of characteristics derived from the outputs of SOPRA model fed by the observed vs. synthetic series. The weather generator may be used to produce weather series representing present and future climates. In the latter case, the parameters of the generator may be modified by the climate change scenarios based on Global or Regional Climate Models. To demonstrate this feature, the results of codling moth simulations for future climate will be shown. Acknowledgements: The weather generator is developed and validated within the frame of projects WG4VALUE (project LD12029 sponsored by the Ministry of Education, Youth and Sports of CR), and VALUE (COST ES 1102 action).
Greenhouse gas footprinting for small businesses--the use of input-output data.
Berners-Lee, M; Howard, D C; Moss, J; Kaivanto, K; Scott, W A
2011-02-01
To mitigate anthropogenic climate change greenhouse gas emissions (GHG) must be reduced; their major source is man's use of energy. A key way to manage emissions is for the energy consumer to understand their impact and the consequences of changing their activities. This paper addresses the challenge of delivering relevant, practical and reliable greenhouse gas 'footprint' information for small and medium sized businesses. The tool we describe is capable of ascribing parts of the total footprint to specific actions to which the business can relate and is sensitive enough to reflect the consequences of change. It provides a comprehensive description of all emissions for each business and sets them in the context of local, national and global statistics. It includes the GHG costs of all goods and services irrespective of their origin and without double accounting. We describe the development and use of the tool, which draws upon both national input-output data and process-based life cycle analysis techniques; a hybrid model. The use of national data sets the output in context and makes the results consistent with national and global targets, while the life cycle techniques provide a means of reflecting the dynamics of actions. The model is described in some detail along with a rationale and a short discussion of validity. As the tool is designed for small commercial users, we have taken care to combine rigour with practicality; parameterising from readily available client data whilst being clear about uncertainties. As an additional incentive, we also report on the potential costs or savings of switching activities. For users to benefit from the tool, they need to understand the output and know how much confidence they should place in the results. We not only describe an application of non-parametric statistics to generate confidence intervals, but also offer users the option of and guidance on adjusting figures to examine the sensitivity of the model to its components. It is important that the user does not see the model as a calculator that will generate one truth, but as a method of gaining insight and informing management decisions. We describe its application in tourism businesses in North West England as a demonstrator for the service sector remote from simple primary production, with brief case studies. We discuss its success compared to traditional approaches and outline further development work. Crown Copyright © 2010. Published by Elsevier B.V. All rights reserved.
An application of a multi model approach for solar energy prediction in Southern Italy
NASA Astrophysics Data System (ADS)
Avolio, Elenio; Lo Feudo, Teresa; Calidonna, Claudia Roberta; Contini, Daniele; Torcasio, Rosa Claudia; Tiriolo, Luca; Montesanti, Stefania; Transerici, Claudio; Federico, Stefano
2015-04-01
The accuracy of the short and medium range forecast of solar irradiance is very important for solar energy integration into the grid. This issue is particularly important for Southern Italy where a significant availability of solar energy is associated with a poor development of the grid. In this work we analyse the performance of two deterministic models for the prediction of surface temperature and short-wavelength radiance for two sites in southern Italy. Both parameters are needed to forecast the power production from solar power plants, so the performance of the forecast for these meteorological parameters is of paramount importance. The models considered in this work are the RAMS (Regional Atmospheric Modeling System) and the WRF (Weather Research and Forecasting Model) and they were run for the summer 2013 at 4 km horizontal resolution over Italy. The forecast lasts three days. Initial and dynamic boundary conditions are given by the 12 UTC deterministic forecast of the ECMWF-IFS (European Centre for Medium Weather Range Forecast - Integrated Forecasting System) model, and were available every 6 hours. Verification is given against two surface stations located in Southern Italy, Lamezia Terme and Lecce, and are based on hourly output of models forecast. Results for the whole period for temperature show a positive bias for the RAMS model and a negative bias for the WRF model. RMSE is between 1 and 2 °C for both models. Results for the whole period for the short-wavelength radiance show a positive bias for both models (about 30 W/m2 for both models) and a RMSE of 100 W/m2. To reduce the model errors, a statistical post-processing technique, i.e the multi-model, is adopted. In this approach the two model's outputs are weighted with an adequate set of weights computed for a training period. In general, the performance is improved by the application of the technique, and the RMSE is reduced by a sizeable fraction (i.e. larger than 10% of the initial RMSE) depending on the forecasting time and parameter. The performance of the multi model is discussed as a function of the length of the training period and is compared with the performance of the MOS (Model Output Statistics) approach. ACKNOWLEDGMENTS This work is partially supported by projects PON04a2E Sinergreen-ResNovae - "Smart Energy Master for the energetic government of the territory" and PONa3_00363 "High Technology Infrastructure for Climate and Environment Monitoring" (I-AMICA) founded by Italian Ministry of University and Research (MIUR) PON 2007-2013. The ECMWF and CNMCA (Centro Nazionale di Meteorologia e Climatologia Aeronautica) are acknowledged for the use of the MARS (Meteorological Archive and Retrieval System).
Wang, Dan; Silkie, Sarah S; Nelson, Kara L; Wuertz, Stefan
2010-09-01
Cultivation- and library-independent, quantitative PCR-based methods have become the method of choice in microbial source tracking. However, these qPCR assays are not 100% specific and sensitive for the target sequence in their respective hosts' genome. The factors that can lead to false positive and false negative information in qPCR results are well defined. It is highly desirable to have a way of removing such false information to estimate the true concentration of host-specific genetic markers and help guide the interpretation of environmental monitoring studies. Here we propose a statistical model based on the Law of Total Probability to predict the true concentration of these markers. The distributions of the probabilities of obtaining false information are estimated from representative fecal samples of known origin. Measurement error is derived from the sample precision error of replicated qPCR reactions. Then, the Monte Carlo method is applied to sample from these distributions of probabilities and measurement error. The set of equations given by the Law of Total Probability allows one to calculate the distribution of true concentrations, from which their expected value, confidence interval and other statistical characteristics can be easily evaluated. The output distributions of predicted true concentrations can then be used as input to watershed-wide total maximum daily load determinations, quantitative microbial risk assessment and other environmental models. This model was validated by both statistical simulations and real world samples. It was able to correct the intrinsic false information associated with qPCR assays and output the distribution of true concentrations of Bacteroidales for each animal host group. Model performance was strongly affected by the precision error. It could perform reliably and precisely when the standard deviation of the precision error was small (≤ 0.1). Further improvement on the precision of sample processing and qPCR reaction would greatly improve the performance of the model. This methodology, built upon Bacteroidales assays, is readily transferable to any other microbial source indicator where a universal assay for fecal sources of that indicator exists. Copyright © 2010 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Bauman, William H., III
2010-01-01
The 45th Weather Squadron (45 WS) Launch Weather Officers (LWO's) use the 12-km resolution North American Mesoscale (NAM) model (MesoNAM) text and graphical product forecasts extensively to support launch weather operations. However, the actual performance of the model at Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS) has not been measured objectively. In order to have tangible evidence of model performance, the 45 WS tasked the Applied Meteorology Unit (AMU; Bauman et ai, 2004) to conduct a detailed statistical analysis of model output compared to observed values. The model products are provided to the 45 WS by ACTA, Inc. and include hourly forecasts from 0 to 84 hours based on model initialization times of 00, 06, 12 and 18 UTC. The objective analysis compared the MesoNAM forecast winds, temperature (T) and dew pOint (T d), as well as the changes in these parameters over time, to the observed values from the sensors in the KSC/CCAFS wind tower network shown in Table 1. These objective statistics give the forecasters knowledge of the model's strengths and weaknesses, which will result in improved forecasts for operations.
Decompression models: review, relevance and validation capabilities.
Hugon, J
2014-01-01
For more than a century, several types of mathematical models have been proposed to describe tissue desaturation mechanisms in order to limit decompression sickness. These models are statistically assessed by DCS cases, and, over time, have gradually included bubble formation biophysics. This paper proposes to review this evolution and discuss its limitations. This review is organized around the comparison of decompression model biophysical criteria and theoretical foundations. Then, the DCS-predictive capability was analyzed to assess whether it could be improved by combining different approaches. Most of the operational decompression models have a neo-Haldanian form. Nevertheless, bubble modeling has been gaining popularity, and the circulating bubble amount has become a major output. By merging both views, it seems possible to build a relevant global decompression model that intends to simulate bubble production while predicting DCS risks for all types of exposures and decompression profiles. A statistical approach combining both DCS and bubble detection databases has to be developed to calibrate a global decompression model. Doppler ultrasound and DCS data are essential: i. to make correlation and validation phases reliable; ii. to adjust biophysical criteria to fit at best the observed bubble kinetics; and iii. to build a relevant risk function.
NASA Astrophysics Data System (ADS)
Ribalaygua, Jaime; Gaitán, Emma; Pórtoles, Javier; Monjo, Robert
2018-05-01
A two-step statistical downscaling method has been reviewed and adapted to simulate twenty-first-century climate projections for the Gulf of Fonseca (Central America, Pacific Coast) using Coupled Model Intercomparison Project (CMIP5) climate models. The downscaling methodology is adjusted after looking for good predictor fields for this area (where the geostrophic approximation fails and the real wind fields are the most applicable). The method's performance for daily precipitation and maximum and minimum temperature is analysed and revealed suitable results for all variables. For instance, the method is able to simulate the characteristic cycle of the wet season for this area, which includes a mid-summer drought between two peaks. Future projections show a gradual temperature increase throughout the twenty-first century and a change in the features of the wet season (the first peak and mid-summer rainfall being reduced relative to the second peak, earlier onset of the wet season and a broader second peak).
NASA Astrophysics Data System (ADS)
Wang, S.; Huang, G. H.; Huang, W.; Fan, Y. R.; Li, Z.
2015-10-01
In this study, a fractional factorial probabilistic collocation method is proposed to reveal statistical significance of hydrologic model parameters and their multi-level interactions affecting model outputs, facilitating uncertainty propagation in a reduced dimensional space. The proposed methodology is applied to the Xiangxi River watershed in China to demonstrate its validity and applicability, as well as its capability of revealing complex and dynamic parameter interactions. A set of reduced polynomial chaos expansions (PCEs) only with statistically significant terms can be obtained based on the results of factorial analysis of variance (ANOVA), achieving a reduction of uncertainty in hydrologic predictions. The predictive performance of reduced PCEs is verified by comparing against standard PCEs and the Monte Carlo with Latin hypercube sampling (MC-LHS) method in terms of reliability, sharpness, and Nash-Sutcliffe efficiency (NSE). Results reveal that the reduced PCEs are able to capture hydrologic behaviors of the Xiangxi River watershed, and they are efficient functional representations for propagating uncertainties in hydrologic predictions.
Using iMCFA to Perform the CFA, Multilevel CFA, and Maximum Model for Analyzing Complex Survey Data.
Wu, Jiun-Yu; Lee, Yuan-Hsuan; Lin, John J H
2018-01-01
To construct CFA, MCFA, and maximum MCFA with LISREL v.8 and below, we provide iMCFA (integrated Multilevel Confirmatory Analysis) to examine the potential multilevel factorial structure in the complex survey data. Modeling multilevel structure for complex survey data is complicated because building a multilevel model is not an infallible statistical strategy unless the hypothesized model is close to the real data structure. Methodologists have suggested using different modeling techniques to investigate potential multilevel structure of survey data. Using iMCFA, researchers can visually set the between- and within-level factorial structure to fit MCFA, CFA and/or MAX MCFA models for complex survey data. iMCFA can then yield between- and within-level variance-covariance matrices, calculate intraclass correlations, perform the analyses and generate the outputs for respective models. The summary of the analytical outputs from LISREL is gathered and tabulated for further model comparison and interpretation. iMCFA also provides LISREL syntax of different models for researchers' future use. An empirical and a simulated multilevel dataset with complex and simple structures in the within or between level was used to illustrate the usability and the effectiveness of the iMCFA procedure on analyzing complex survey data. The analytic results of iMCFA using Muthen's limited information estimator were compared with those of Mplus using Full Information Maximum Likelihood regarding the effectiveness of different estimation methods.
Corbett, David M.; Sweeting, Alice J.; Robertson, Sam
2017-01-01
Australian Rules football comprises physical and skilled performance for more than 90 min of play. The cognitive and physiological fatigue experienced by participants during a match may reduce performance. Consequently, the length of time an athlete is on the field before being interchanged (known as a stint), is a key tactic which could maximize the skill and physical output of the Australian Rules athlete. This study developed two methods to quantify the relationship between athlete time on field, skilled and physical output. Professional male athletes (n = 39) from a single elite Australian Rules football club participated, with physical output quantified via player tracking systems across 22 competitive matches. Skilled output was calculated as the sum of involvements performed by each athlete, collected from a commercial statistics company. A random intercept and slope model was built to identify how a team and individuals respond to physical outputs and stint lengths. Stint duration (mins), high intensity running (speeds >14.4 km · hr−1) per minute, meterage per minute and very high intensity running (speeds >25 km·hr−1) per minute had some relationship with skilled involvements. However, none of these relationships were strong, and the direction of influence for each player was varied. Three conditional inference trees were computed to identify the extent to which combinations of physical parameters altered the anticipated skilled output of players. Meterage per minute, player, round number and duration were all related to player involvement. All methods had an average error of 10 to 11 involvements, per player per match. Therefore, other factors aside from physical parameters extracted from wearable technologies may be needed to explain skilled output within Australian Rules football matches. PMID:29109688
Climate change impacts on the Lehman-Baker Creek drainage in the Great Basin National Park
NASA Astrophysics Data System (ADS)
Volk, J. M.
2013-12-01
Global climate models (GCMs) forced by increased CO2 emissions forecast anomalously dry and warm trends over the southwestern U.S. for the 21st century. The effect of warmer conditions may result in decreased surface water resources within the Great Basin physiographic region critical for ecology, irrigation and municipal water supply. Here we use downscaled GCM output from the A2 and B1 greenhouse gas emission scenarios to force a Precipitation-Runoff Modeling System (PRMS) watershed model developed for the Lehman and Baker Creeks Drainage (LBCD) in the Great Basin National Park, NV for a century long time period. The goal is to quantify the effects of rising temperature to the water budget in the LBCD at monthly and annual timescales. Dynamically downscaled GCM projections are attained from the NSF EPSCoR Nevada Infrastructure for Climate Change Science, Education, and Outreach project and statistically downscaled output is retrieved from the "U.S. Bias Corrected and Downscaled WCRP CMIP3 Climate Projections". Historical daily climate and streamflow data have been collected simultaneously for periods extending 20 years or longer. Mann-Kendal trend test results showed a statistically significant (α= 0.05) long-term rising trend from 1895 to 2012 in annual and monthly average temperatures for the study area. A grid-based, PRMS watershed model of the LBCD has been created within ArcGIS 10, and physical parameters have been estimated at a spatial resolution of 100m. Simulation results will be available soon. Snow cover is expected to decrease and peak runoff to occur earlier in the spring, resulting in increased runoff, decreased infiltration/recharge, decreased baseflows, and decreased evapo-transpiration.
Multispectral scanner system parameter study and analysis software system description, volume 2
NASA Technical Reports Server (NTRS)
Landgrebe, D. A. (Principal Investigator); Mobasseri, B. G.; Wiersma, D. J.; Wiswell, E. R.; Mcgillem, C. D.; Anuta, P. E.
1978-01-01
The author has identified the following significant results. The integration of the available methods provided the analyst with the unified scanner analysis package (USAP), the flexibility and versatility of which was superior to many previous integrated techniques. The USAP consisted of three main subsystems; (1) a spatial path, (2) a spectral path, and (3) a set of analytic classification accuracy estimators which evaluated the system performance. The spatial path consisted of satellite and/or aircraft data, data correlation analyzer, scanner IFOV, and random noise model. The output of the spatial path was fed into the analytic classification and accuracy predictor. The spectral path consisted of laboratory and/or field spectral data, EXOSYS data retrieval, optimum spectral function calculation, data transformation, and statistics calculation. The output of the spectral path was fended into the stratified posterior performance estimator.
2011-11-20
Breivik and Reistad 1994; Lionello et al. 1992, 1995; Abdalla et al. 2005; Emmanouil et al. 2007) and optimization of the direct model outputs by using...neutral winds and new stress tables in WAM. ECMWF Research Department Memo R60.9/JB/0400 Breivik LA, Reistad M (1994) Assimilation of ERS-1...geometry graduate texts in mathematics, vol 120, 2nd edn. Springer-Verlag, Berlin Emmanouil G, Galanis G, Kallos G, Breivik LA, Heilberg H, Reistad M
NASA Astrophysics Data System (ADS)
Xu, Y.; Jones, A. D.; Rhoades, A.
2017-12-01
Precipitation is a key component in hydrologic cycles, and changing precipitation regimes contribute to more intense and frequent drought and flood events around the world. Numerical climate modeling is a powerful tool to study climatology and to predict future changes. Despite the continuous improvement in numerical models, long-term precipitation prediction remains a challenge especially at regional scales. To improve numerical simulations of precipitation, it is important to find out where the uncertainty in precipitation simulations comes from. There are two types of uncertainty in numerical model predictions. One is related to uncertainty in the input data, such as model's boundary and initial conditions. These uncertainties would propagate to the final model outcomes even if the numerical model has exactly replicated the true world. But a numerical model cannot exactly replicate the true world. Therefore, the other type of model uncertainty is related the errors in the model physics, such as the parameterization of sub-grid scale processes, i.e., given precise input conditions, how much error could be generated by the in-precise model. Here, we build two statistical models based on a neural network algorithm to predict long-term variation of precipitation over California: one uses "true world" information derived from observations, and the other uses "modeled world" information using model inputs and outputs from the North America Coordinated Regional Downscaling Project (NA CORDEX). We derive multiple climate feature metrics as the predictors for the statistical model to represent the impact of global climate on local hydrology, and include topography as a predictor to represent the local control. We first compare the predictors between the true world and the modeled world to determine the errors contained in the input data. By perturbing the predictors in the statistical model, we estimate how much uncertainty in the model's final outcomes is accounted for by each predictor. By comparing the statistical model derived from true world information and modeled world information, we assess the errors lying in the physics of the numerical models. This work provides a unique insight to assess the performance of numerical climate models, and can be used to guide improvement of precipitation prediction.
A Bayesian approach for parameter estimation and prediction using a computationally intensive model
Higdon, Dave; McDonnell, Jordan D.; Schunck, Nicolas; ...
2015-02-05
Bayesian methods have been successful in quantifying uncertainty in physics-based problems in parameter estimation and prediction. In these cases, physical measurements y are modeled as the best fit of a physics-based modelmore » $$\\eta (\\theta )$$, where θ denotes the uncertain, best input setting. Hence the statistical model is of the form $$y=\\eta (\\theta )+\\epsilon ,$$ where $$\\epsilon $$ accounts for measurement, and possibly other, error sources. When nonlinearity is present in $$\\eta (\\cdot )$$, the resulting posterior distribution for the unknown parameters in the Bayesian formulation is typically complex and nonstandard, requiring computationally demanding computational approaches such as Markov chain Monte Carlo (MCMC) to produce multivariate draws from the posterior. Although generally applicable, MCMC requires thousands (or even millions) of evaluations of the physics model $$\\eta (\\cdot )$$. This requirement is problematic if the model takes hours or days to evaluate. To overcome this computational bottleneck, we present an approach adapted from Bayesian model calibration. This approach combines output from an ensemble of computational model runs with physical measurements, within a statistical formulation, to carry out inference. A key component of this approach is a statistical response surface, or emulator, estimated from the ensemble of model runs. We demonstrate this approach with a case study in estimating parameters for a density functional theory model, using experimental mass/binding energy measurements from a collection of atomic nuclei. Lastly, we also demonstrate how this approach produces uncertainties in predictions for recent mass measurements obtained at Argonne National Laboratory.« less
From Zero to Sixty: Calibrating Real-Time Responses
ERIC Educational Resources Information Center
Koulis, Theodoro; Ramsay, James O.; Levitin, Daniel J.
2008-01-01
Recent advances in data recording technology have given researchers new ways of collecting on-line and continuous data for analyzing input-output systems. For example, continuous response digital interfaces are increasingly used in psychophysics. The statistical problem related to these input-output systems reduces to linking time-varying…
Improvement and extension of a radar forest backscattering model
NASA Technical Reports Server (NTRS)
Simonett, David S.; Wang, Yong
1989-01-01
Radar modeling of mangal forest stands, in the Sundarbans area of Southern Bangladesh, was developed. The modeling employs radar system parameters such as wavelength, polarization, and incidence angle, with forest data on tree height, spacing, biomass, species combinations, and water content (including slightly conductive water) both in leaves and trunks of the mangal. For Sundri and Gewa tropical mangal forests, five model components are proposed, which are required to explain the contributions of various forest species combinations in the attenuation and scattering of mangal vegetated nonflooded or flooded surfaces. Statistical data of simulated images (HH components only) were compared with those of SIR-B images both to refine the modeling procedures and to appropriately characterize the model output. The possibility of delineation of flooded or non-flooded boundaries is discussed.
NASA Astrophysics Data System (ADS)
Havens, Timothy C.; Cummings, Ian; Botts, Jonathan; Summers, Jason E.
2017-05-01
The linear ordered statistic (LOS) is a parameterized ordered statistic (OS) that is a weighted average of a rank-ordered sample. LOS operators are useful generalizations of aggregation as they can represent any linear aggregation, from minimum to maximum, including conventional aggregations, such as mean and median. In the fuzzy logic field, these aggregations are called ordered weighted averages (OWAs). Here, we present a method for learning LOS operators from training data, viz., data for which you know the output of the desired LOS. We then extend the learning process with regularization, such that a lower complexity or sparse LOS can be learned. Hence, we discuss what 'lower complexity' means in this context and how to represent that in the optimization procedure. Finally, we apply our learning methods to the well-known constant-false-alarm-rate (CFAR) detection problem, specifically for the case of background levels modeled by long-tailed distributions, such as the K-distribution. These backgrounds arise in several pertinent imaging problems, including the modeling of clutter in synthetic aperture radar and sonar (SAR and SAS) and in wireless communications.
Asymptotic inference in system identification for the atom maser.
Catana, Catalin; van Horssen, Merlijn; Guta, Madalin
2012-11-28
System identification is closely related to control theory and plays an increasing role in quantum engineering. In the quantum set-up, system identification is usually equated to process tomography, i.e. estimating a channel by probing it repeatedly with different input states. However, for quantum dynamical systems such as quantum Markov processes, it is more natural to consider the estimation based on continuous measurements of the output, with a given input that may be stationary. We address this problem using asymptotic statistics tools, for the specific example of estimating the Rabi frequency of an atom maser. We compute the Fisher information of different measurement processes as well as the quantum Fisher information of the atom maser, and establish the local asymptotic normality of these statistical models. The statistical notions can be expressed in terms of spectral properties of certain deformed Markov generators, and the connection to large deviations is briefly discussed.
CORDEX.be: COmbining Regional climate Downscaling EXpertise in Belgium
NASA Astrophysics Data System (ADS)
Termonia, P.
2015-12-01
The main objective of the ongoing project CORDEX.be, "COmbining Regional Downscaling EXpertise in Belgium: CORDEX and Beyond", is to gather existing and ongoing Belgian research activities in the domain of climate modelling to create a coherent scientific basis for future climate services in Belgium. The project regroups 8 Belgian Institutes under a single research program of the Belgian Science Policy (BELSPO). The project involves three regional climate models: the ALARO model, the COSMO-CLM model and the MAR model running according to the guidelines of the CORDEX project and at convection permitting resolution on small domains over Belgium. The project creates a framework to address four objectives/challenges. First, this projects aims to contribute to the EURO-CORDEX project. Secondly, RCP simulations are executed at convection-permitting resolutions (3 to 5 km) on small domains. Thirdly, the output of the atmospheric models is used to drive land surface models (the SURFEX model and the Urbclim model) with urban modules, a crop model (REGCROP), a tides and storm model (COHERENS) and the MEGAN-MOHYCAN model that simulates the fluxes emitted by vegetation. Finally, one work package will translate the uncertainty present in the CORDEX database to the high-resolution output of the CORDEX.be project. The organization of the project will be presented and first results will be shown, demonstrating that convection-permitting models can add extra skill to the mesoscale version of the regional climate models, in particular regarding the extreme value statistics and the diurnal cycle.
CORDEX.be: COmbining Regional climate Downscaling EXpertise in Belgium
NASA Astrophysics Data System (ADS)
Termonia, Piet; Van Schaeybroeck, Bert; De Ridder, Koen; Fettweis, Xavier; Gobin, Anne; Luyten, Patrick; Marbaix, Philippe; Pottiaux, Eric; Stavrakou, Trissevgeni; Van Lipzig, Nicole; van Ypersele, Jean-Pascal; Willems, Patrick
2016-04-01
The main objective of the ongoing project CORDEX.be, "COmbining Regional Downscaling EXpertise in Belgium: CORDEX and Beyond" is to gather existing and ongoing Belgian research activities in the domain of climate modelling to create a coherent scientific basis for future climate services in Belgium. The project regroups eight Belgian Institutes under a single research program of the Belgian Science Policy (BELSPO). The project involves three regional climate models: the ALARO model, the COSMO-CLM model and the MAR model running according to the guidelines of the CORDEX project and at convection permitting resolution on small domains over Belgium. The project creates a framework to address four objectives/challenges. First, this projects aims to contribute to the EURO-CORDEX project. Secondly, RCP simulations are executed at convection-permitting resolutions (3 to 5 km) on small domains. Thirdly, the output of the atmospheric models is used to drive land surface models (the SURFEX model and the Urbclim model) with urban modules, a crop model (REGCROP), a tides and storm model (COHERENS) and the MEGAN-MOHYCAN model that simulates the fluxes emitted by vegetation. Finally, one work package will translate the uncertainty present in the CORDEX database to the high-resolution output of the CORDEX.be project. The organization of the project will be presented and first results will be shown, demonstrating that convection-permitting models can add extra skill to the mesoscale version of the regional climate models, in particular regarding the extreme value statistics and the diurnal cycle.
Ten Years of Cloud Properties from MODIS: Global Statistics and Use in Climate Model Evaluation
NASA Technical Reports Server (NTRS)
Platnick, Steven E.
2011-01-01
The NASA Moderate Resolution Imaging Spectroradiometer (MODIS), launched onboard the Terra and Aqua spacecrafts, began Earth observations on February 24, 2000 and June 24,2002, respectively. Among the algorithms developed and applied to this sensor, a suite of cloud products includes cloud masking/detection, cloud-top properties (temperature, pressure), and optical properties (optical thickness, effective particle radius, water path, and thermodynamic phase). All cloud algorithms underwent numerous changes and enhancements between for the latest Collection 5 production version; this process continues with the current Collection 6 development. We will show example MODIS Collection 5 cloud climatologies derived from global spatial . and temporal aggregations provided in the archived gridded Level-3 MODIS atmosphere team product (product names MOD08 and MYD08 for MODIS Terra and Aqua, respectively). Data sets in this Level-3 product include scalar statistics as well as 1- and 2-D histograms of many cloud properties, allowing for higher order information and correlation studies. In addition to these statistics, we will show trends and statistical significance in annual and seasonal means for a variety of the MODIS cloud properties, as well as the time required for detection given assumed trends. To assist in climate model evaluation, we have developed a MODIS cloud simulator with an accompanying netCDF file containing subsetted monthly Level-3 statistical data sets that correspond to the simulator output. Correlations of cloud properties with ENSO offer the potential to evaluate model cloud sensitivity; initial results will be discussed.
Modeling laser velocimeter signals as triply stochastic Poisson processes
NASA Technical Reports Server (NTRS)
Mayo, W. T., Jr.
1976-01-01
Previous models of laser Doppler velocimeter (LDV) systems have not adequately described dual-scatter signals in a manner useful for analysis and simulation of low-level photon-limited signals. At low photon rates, an LDV signal at the output of a photomultiplier tube is a compound nonhomogeneous filtered Poisson process, whose intensity function is another (slower) Poisson process with the nonstationary rate and frequency parameters controlled by a random flow (slowest) process. In the present paper, generalized Poisson shot noise models are developed for low-level LDV signals. Theoretical results useful in detection error analysis and simulation are presented, along with measurements of burst amplitude statistics. Computer generated simulations illustrate the difference between Gaussian and Poisson models of low-level signals.
DREAM: An Efficient Methodology for DSMC Simulation of Unsteady Processes
NASA Astrophysics Data System (ADS)
Cave, H. M.; Jermy, M. C.; Tseng, K. C.; Wu, J. S.
2008-12-01
A technique called the DSMC Rapid Ensemble Averaging Method (DREAM) for reducing the statistical scatter in the output from unsteady DSMC simulations is introduced. During post-processing by DREAM, the DSMC algorithm is re-run multiple times over a short period before the temporal point of interest thus building up a combination of time- and ensemble-averaged sampling data. The particle data is regenerated several mean collision times before the output time using the particle data generated during the original DSMC run. This methodology conserves the original phase space data from the DSMC run and so is suitable for reducing the statistical scatter in highly non-equilibrium flows. In this paper, the DREAM-II method is investigated and verified in detail. Propagating shock waves at high Mach numbers (Mach 8 and 12) are simulated using a parallel DSMC code (PDSC) and then post-processed using DREAM. The ability of DREAM to obtain the correct particle velocity distribution in the shock structure is demonstrated and the reduction of statistical scatter in the output macroscopic properties is measured. DREAM is also used to reduce the statistical scatter in the results from the interaction of a Mach 4 shock with a square cavity and for the interaction of a Mach 12 shock on a wedge in a channel.
NASA Astrophysics Data System (ADS)
Darko, Deborah; Adjei, Kwaku A.; Appiah-Adjei, Emmanuel K.; Odai, Samuel N.; Obuobie, Emmanuel; Asmah, Ruby
2018-06-01
The extent to which statistical bias-adjusted outputs of two regional climate models alter the projected change signals for the mean (and extreme) rainfall and temperature over the Volta Basin is evaluated. The outputs from two regional climate models in the Coordinated Regional Climate Downscaling Experiment for Africa (CORDEX-Africa) are bias adjusted using the quantile mapping technique. Annual maxima rainfall and temperature with their 10- and 20-year return values for the present (1981-2010) and future (2051-2080) climates are estimated using extreme value analyses. Moderate extremes are evaluated using extreme indices (viz. percentile-based, duration-based, and intensity-based). Bias adjustment of the original (bias-unadjusted) models improves the reproduction of mean rainfall and temperature for the present climate. However, the bias-adjusted models poorly reproduce the 10- and 20-year return values for rainfall and maximum temperature whereas the extreme indices are reproduced satisfactorily for the present climate. Consequently, projected changes in rainfall and temperature extremes were weak. The bias adjustment results in the reduction of the change signals for the mean rainfall while the mean temperature signals are rather magnified. The projected changes for the original mean climate and extremes are not conserved after bias adjustment with the exception of duration-based extreme indices.
NASA Astrophysics Data System (ADS)
Quattrochi, D. A.; Crosson, W. L.; Al-Hamdan, M. Z.; Estes, M. G., Jr.
2013-12-01
In the United States, extreme heat is the most deadly weather-related hazard. In the face of a warming climate and urbanization, which contributes to local-scale urban heat islands, it is very likely that extreme heat events (EHEs) will become more common and more severe in the U.S. This research seeks to provide historical and future measures of climate-driven extreme heat events to enable assessments of the impacts of heat on public health over the coterminous U.S. We use atmospheric temperature and humidity information from meteorological reanalysis and from Global Climate Models (GCMs) to provide data on past and future heat events. The focus of research is on providing assessments of the magnitude, frequency and geographic distribution of extreme heat in the U.S. to facilitate public health studies. In our approach, long-term climate change is captured with GCM outputs, and the temporal and spatial characteristics of short-term extremes are represented by the reanalysis data. Two future time horizons for 2040 and 2090 are compared to the recent past period of 1981-2000. We characterize regional-scale temperature and humidity conditions using GCM outputs for two climate change scenarios (A2 and A1B) defined in the Special Report on Emissions Scenarios (SRES). For each future period, 20 years of multi-model GCM outputs are analyzed to develop a ';heat stress climatology' based on statistics of extreme heat indicators. Differences between the two future and the past period are used to define temperature and humidity changes on a monthly time scale and regional spatial scale. These changes are combined with the historical meteorological data, which is hourly and at a spatial scale (12 km) much finer than that of GCMs, to create future climate realizations. From these realizations, we compute the daily heat stress measures and related spatially-specific climatological fields, such as the mean annual number of days above certain thresholds of maximum and minimum air temperatures, heat indices, and a new heat stress variable developed as part of this research that gives an integrated measure of heat stress (and relief) over the course of a day. Comparisons are made between projected (2040 and 2090) and past (1990) heat stress statistics. Outputs are aggregated to the county level, which is a popular scale of analysis for public health interests. County-level statistics are made available to public health researchers by the Centers for Disease Control and Prevention (CDC) via the Wide-ranging Online Data for Epidemiologic Research (WONDER) system. This addition of heat stress measures to CDC WONDER allows decision and policy makers to assess the impact of alternative approaches to optimize the public health response to EHEs. Through CDC WONDER, users are able to spatially and temporally query public health and heat-related data sets and create county-level maps and statistical charts of such data across the coterminous U.S.
NASA Technical Reports Server (NTRS)
Quattrochi, Dale A.; Crosson, William L.; Al-Hamdan, Mohammad Z.; Estes, Maurice G., Jr.
2013-01-01
In the United States, extreme heat is the most deadly weather-related hazard. In the face of a warming climate and urbanization, which contributes to local-scale urban heat islands, it is very likely that extreme heat events (EHEs) will become more common and more severe in the U.S. This research seeks to provide historical and future measures of climate-driven extreme heat events to enable assessments of the impacts of heat on public health over the coterminous U.S. We use atmospheric temperature and humidity information from meteorological reanalysis and from Global Climate Models (GCMs) to provide data on past and future heat events. The focus of research is on providing assessments of the magnitude, frequency and geographic distribution of extreme heat in the U.S. to facilitate public health studies. In our approach, long-term climate change is captured with GCM outputs, and the temporal and spatial characteristics of short-term extremes are represented by the reanalysis data. Two future time horizons for 2040 and 2090 are compared to the recent past period of 1981- 2000. We characterize regional-scale temperature and humidity conditions using GCM outputs for two climate change scenarios (A2 and A1B) defined in the Special Report on Emissions Scenarios (SRES). For each future period, 20 years of multi-model GCM outputs are analyzed to develop a 'heat stress climatology' based on statistics of extreme heat indicators. Differences between the two future and the past period are used to define temperature and humidity changes on a monthly time scale and regional spatial scale. These changes are combined with the historical meteorological data, which is hourly and at a spatial scale (12 km), to create future climate realizations. From these realizations, we compute the daily heat stress measures and related spatially-specific climatological fields, such as the mean annual number of days above certain thresholds of maximum and minimum air temperatures, heat indices and a new heat stress variable developed as part of this research that gives an integrated measure of heat stress (and relief) over the course of a day. Comparisons are made between projected (2040 and 2090) and past (1990) heat stress statistics. Outputs are aggregated to the county level, which is a popular scale of analysis for public health interests. County-level statistics are made available to public health researchers by the Centers for Disease Control and Prevention (CDC) via the Wideranging Online Data for Epidemiologic Research (WONDER) system. This addition of heat stress measures to CDC WONDER allows decision and policy makers to assess the impact of alternative approaches to optimize the public health response to EHEs. Through CDC WONDER, users are able to spatially and temporally query public health and heat-related data sets and create county-level maps and statistical charts of such data across the coterminous U.S
Linking Excessive Heat with Daily Heat-Related Mortality over the Coterminous United States
NASA Technical Reports Server (NTRS)
Quattrochi, Dale A.; Crosson, William L.; Al-Hamdan, Mohammad Z.; Estes, Maurice G., Jr.
2014-01-01
In the United States, extreme heat is the most deadly weather-related hazard. In the face of a warming climate and urbanization, which contributes to local-scale urban heat islands, it is very likely that extreme heat events (EHEs) will become more common and more severe in the U.S. This research seeks to provide historical and future measures of climate-driven extreme heat events to enable assessments of the impacts of heat on public health over the coterminous U.S. We use atmospheric temperature and humidity information from meteorological reanalysis and from Global Climate Models (GCMs) to provide data on past and future heat events. The focus of research is on providing assessments of the magnitude, frequency and geographic distribution of extreme heat in the U.S. to facilitate public health studies. In our approach, long-term climate change is captured with GCM outputs, and the temporal and spatial characteristics of short-term extremes are represented by the reanalysis data. Two future time horizons for 2040 and 2090 are compared to the recent past period of 1981- 2000. We characterize regional-scale temperature and humidity conditions using GCM outputs for two climate change scenarios (A2 and A1B) defined in the Special Report on Emissions Scenarios (SRES). For each future period, 20 years of multi-model GCM outputs are analyzed to develop a 'heat stress climatology' based on statistics of extreme heat indicators. Differences between the two future and the past period are used to define temperature and humidity changes on a monthly time scale and regional spatial scale. These changes are combined with the historical meteorological data, which is hourly and at a spatial scale (12 km) much finer than that of GCMs, to create future climate realizations. From these realizations, we compute the daily heat stress measures and related spatially-specific climatological fields, such as the mean annual number of days above certain thresholds of maximum and minimum air temperatures, heat indices, and a new heat stress variable developed as part of this research that gives an integrated measure of heat stress (and relief) over the course of a day. Comparisons are made between projected (2040 and 2090) and past (1990) heat stress statistics. Outputs are aggregated to the county level, which is a popular scale of analysis for public health interests. County-level statistics are made available to public health researchers by the Centers for Disease Control and Prevention (CDC) via the Wide-ranging Online Data for Epidemiologic Research (WONDER) system. This addition of heat stress measures to CDC WONDER allows decision and policy makers to assess the impact of alternative approaches to optimize the public health response to EHEs. Through CDC WONDER, users are able to spatially and temporally query public health and heat-related data sets and create county-level maps and statistical charts of such data across the coterminous U.S.
Linking the Weather Generator with Regional Climate Model
NASA Astrophysics Data System (ADS)
Dubrovsky, Martin; Farda, Ales; Skalak, Petr; Huth, Radan
2013-04-01
One of the downscaling approaches, which transform the raw outputs from the climate models (GCMs or RCMs) into data with more realistic structure, is based on linking the stochastic weather generator with the climate model output. The present contribution, in which the parametric daily surface weather generator (WG) M&Rfi is linked to the RCM output, follows two aims: (1) Validation of the new simulations of the present climate (1961-1990) made by the ALADIN-Climate Regional Climate Model at 25 km resolution. The WG parameters are derived from the RCM-simulated surface weather series and compared to those derived from weather series observed in 125 Czech meteorological stations. The set of WG parameters will include statistics of the surface temperature and precipitation series (including probability of wet day occurrence). (2) Presenting a methodology for linking the WG with RCM output. This methodology, which is based on merging information from observations and RCM, may be interpreted as a downscaling procedure, whose product is a gridded WG capable of producing realistic synthetic multivariate weather series for weather-ungauged locations. In this procedure, WG is calibrated with RCM-simulated multi-variate weather series in the first step, and the grid specific WG parameters are then de-biased by spatially interpolated correction factors based on comparison of WG parameters calibrated with gridded RCM weather series and spatially scarcer observations. The quality of the weather series produced by the resultant gridded WG will be assessed in terms of selected climatic characteristics (focusing on characteristics related to variability and extremes of surface temperature and precipitation). Acknowledgements: The present experiment is made within the frame of projects ALARO-Climate (project P209/11/2405 sponsored by the Czech Science Foundation), WG4VALUE (project LD12029 sponsored by the Ministry of Education, Youth and Sports of CR) and VALUE (COST ES 1102 action).
Forest statistics for New Hampshire
Thomas S. Frieswyk; Anne M. Malley
1985-01-01
This is a statistical report on the fourth forest survey of New Hampshire conducted in 1982-83 by the Forest Inventory and Analysis Unit, Northeastern Forest Experiment Station. Statistics for forest area, numbers of trees, timber volume, tree biomass, and timber products output are displayed at the state, unit, and county levels. The current inventory indicates that...
Forest Statistics for Pennsylvania - 1978
Thomas J. Considine; Douglas S. Powell
1980-01-01
A statistical report on the third forest survey of Pennsylvania conducted in 1977 and 1978. Statistical findings are based on data from remeasured 115-acre plots and both remeasured and new 10-point variable-radius plots. The current status of forestland area, timber volume, and annual growth and removals is presented. Timber products output by timber industries, based...
Downscaling climate model output for water resources impacts assessment (Invited)
NASA Astrophysics Data System (ADS)
Maurer, E. P.; Pierce, D. W.; Cayan, D. R.
2013-12-01
Water agencies in the U.S. and around the globe are beginning to wrap climate change projections into their planning procedures, recognizing that ongoing human-induced changes to hydrology can affect water management in significant ways. Future hydrology changes are derived using global climate model (GCM) projections, though their output is at a spatial scale that is too coarse to meet the needs of those concerned with local and regional impacts. Those investigating local impacts have employed a range of techniques for downscaling, the process of translating GCM output to a more locally-relevant spatial scale. Recent projects have produced libraries of publicly-available downscaled climate projections, enabling managers, researchers and others to focus on impacts studies, drawing from a shared pool of fine-scale climate data. Besides the obvious advantage to data users, who no longer need to develop expertise in downscaling prior to examining impacts, the use of the downscaled data by hundreds of people has allowed a crowdsourcing approach to examining the data. The wide variety of applications employed by different users has revealed characteristics not discovered during the initial data set production. This has led to a deeper look at the downscaling methods, including the assumptions and effect of bias correction of GCM output. Here new findings are presented related to the assumption of stationarity in the relationships between large- and fine-scale climate, as well as the impact of quantile mapping bias correction on precipitation trends. The validity of these assumptions can influence the interpretations of impacts studies using data derived using these standard statistical methods and help point the way to improved methods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gerhard Strydom
2011-01-01
The need for a defendable and systematic uncertainty and sensitivity approach that conforms to the Code Scaling, Applicability, and Uncertainty (CSAU) process, and that could be used for a wide variety of software codes, was defined in 2008. The GRS (Gesellschaft für Anlagen und Reaktorsicherheit) company of Germany has developed one type of CSAU approach that is particularly well suited for legacy coupled core analysis codes, and a trial version of their commercial software product SUSA (Software for Uncertainty and Sensitivity Analyses) was acquired on May 12, 2010. This report summarized the results of the initial investigations performed with SUSA,more » utilizing a typical High Temperature Reactor benchmark (the IAEA CRP-5 PBMR 400MW Exercise 2) and the PEBBED-THERMIX suite of codes. The following steps were performed as part of the uncertainty and sensitivity analysis: 1. Eight PEBBED-THERMIX model input parameters were selected for inclusion in the uncertainty study: the total reactor power, inlet gas temperature, decay heat, and the specific heat capability and thermal conductivity of the fuel, pebble bed and reflector graphite. 2. The input parameters variations and probability density functions were specified, and a total of 800 PEBBED-THERMIX model calculations were performed, divided into 4 sets of 100 and 2 sets of 200 Steady State and Depressurized Loss of Forced Cooling (DLOFC) transient calculations each. 3. The steady state and DLOFC maximum fuel temperature, as well as the daily pebble fuel load rate data, were supplied to SUSA as model output parameters of interest. The 6 data sets were statistically analyzed to determine the 5% and 95% percentile values for each of the 3 output parameters with a 95% confidence level, and typical statistical indictors were also generated (e.g. Kendall, Pearson and Spearman coefficients). 4. A SUSA sensitivity study was performed to obtain correlation data between the input and output parameters, and to identify the primary contributors to the output data uncertainties. It was found that the uncertainties in the decay heat, pebble bed and reflector thermal conductivities were responsible for the bulk of the propagated uncertainty in the DLOFC maximum fuel temperature. It was also determined that the two standard deviation (2s) uncertainty on the maximum fuel temperature was between ±58oC (3.6%) and ±76oC (4.7%) on a mean value of 1604 oC. These values mostly depended on the selection of the distributions types, and not on the number of model calculations above the required Wilks criteria (a (95%,95%) statement would usually require 93 model runs).« less
General Circulation Model Output for Forest Climate Change Research and Applications
Ellen J. Cooter; Brian K. Eder; Sharon K. LeDuc; Lawrence Truppi
1993-01-01
This report reviews technical aspects of and summarizes output from four climate models. Recommendations concerning the use of these outputs in forest impact assessments are made. This report reviews technical aspects of and summarizes output from four climate models. Recommendations concerning the use of these outputs in forest impact assessments are made.
A classification procedure for the effective management of changes during the maintenance process
NASA Technical Reports Server (NTRS)
Briand, Lionel C.; Basili, Victor R.
1992-01-01
During software operation, maintainers are often faced with numerous change requests. Given available resources such as effort and calendar time, changes, if approved, have to be planned to fit within budget and schedule constraints. In this paper, we address the issue of assessing the difficulty of a change based on known or predictable data. This paper should be considered as a first step towards the construction of customized economic models for maintainers. In it, we propose a modeling approach, based on regular statistical techniques, that can be used in a variety of software maintenance environments. The approach can be easily automated, and is simple for people with limited statistical experience to use. Moreover, it deals effectively with the uncertainty usually associated with both model inputs and outputs. The modeling approach is validated on a data set provided by NASA/GSFC which shows it was effective in classifying changes with respect to the effort involved in implementing them. Other advantages of the approach are discussed along with additional steps to improve the results.
Confounding factors in determining causal soil moisture-precipitation feedback
NASA Astrophysics Data System (ADS)
Tuttle, Samuel E.; Salvucci, Guido D.
2017-07-01
Identification of causal links in the land-atmosphere system is important for construction and testing of land surface and general circulation models. However, the land and atmosphere are highly coupled and linked by a vast number of complex, interdependent processes. Statistical methods, such as Granger causality, can help to identify feedbacks from observational data, independent of the different parameterizations of physical processes and spatiotemporal resolution effects that influence feedbacks in models. However, statistical causal identification methods can easily be misapplied, leading to erroneous conclusions about feedback strength and sign. Here, we discuss three factors that must be accounted for in determination of causal soil moisture-precipitation feedback in observations and model output: seasonal and interannual variability, precipitation persistence, and endogeneity. The effect of neglecting these factors is demonstrated in simulated and observational data. The results show that long-timescale variability and precipitation persistence can have a substantial effect on detected soil moisture-precipitation feedback strength, while endogeneity has a smaller effect that is often masked by measurement error and thus is more likely to be an issue when analyzing model data or highly accurate observational data.
Statistical Evaluation of Utilization of the ISS
NASA Technical Reports Server (NTRS)
Andrews, Ross; Andrews, Alida
2006-01-01
PayLoad Utilization Modeler (PLUM) is a statistical-modeling computer program used to evaluate the effectiveness of utilization of the International Space Station (ISS) in terms of the number of research facilities that can be operated within a specified interval of time. PLUM is designed to balance the requirements of research facilities aboard the ISS against the resources available on the ISS. PLUM comprises three parts: an interface for the entry of data on constraints and on required and available resources, a database that stores these data as well as the program output, and a modeler. The modeler comprises two subparts: one that generates tens of thousands of random combinations of research facilities and another that calculates the usage of resources for each of those combinations. The results of these calculations are used to generate graphical and tabular reports to determine which facilities are most likely to be operable on the ISS, to identify which ISS resources are inadequate to satisfy the demands upon them, and to generate other data useful in allocation of and planning of resources.
Sediment fingerprinting experiments to test the sensitivity of multivariate mixing models
NASA Astrophysics Data System (ADS)
Gaspar, Leticia; Blake, Will; Smith, Hugh; Navas, Ana
2014-05-01
Sediment fingerprinting techniques provide insight into the dynamics of sediment transfer processes and support for catchment management decisions. As questions being asked of fingerprinting datasets become increasingly complex, validation of model output and sensitivity tests are increasingly important. This study adopts an experimental approach to explore the validity and sensitivity of mixing model outputs for materials with contrasting geochemical and particle size composition. The experiments reported here focused on (i) the sensitivity of model output to different fingerprint selection procedures and (ii) the influence of source material particle size distributions on model output. Five soils with significantly different geochemistry, soil organic matter and particle size distributions were selected as experimental source materials. A total of twelve sediment mixtures were prepared in the laboratory by combining different quantified proportions of the < 63 µm fraction of the five source soils i.e. assuming no fluvial sorting of the mixture. The geochemistry of all source and mixture samples (5 source soils and 12 mixed soils) were analysed using X-ray fluorescence (XRF). Tracer properties were selected from 18 elements for which mass concentrations were found to be significantly different between sources. Sets of fingerprint properties that discriminate target sources were selected using a range of different independent statistical approaches (e.g. Kruskal-Wallis test, Discriminant Function Analysis (DFA), Principal Component Analysis (PCA), or correlation matrix). Summary results for the use of the mixing model with the different sets of fingerprint properties for the twelve mixed soils were reasonably consistent with the initial mixing percentages initially known. Given the experimental nature of the work and dry mixing of materials, geochemical conservative behavior was assumed for all elements, even for those that might be disregarded in aquatic systems (e.g. P). In general, the best fits between actual and modeled proportions were found using a set of nine tracer properties (Sr, Rb, Fe, Ti, Ca, Al, P, Si, K, Si) that were derived using DFA coupled with a multivariate stepwise algorithm, with errors between real and estimated value that did not exceed 6.7 % and values of GOF above 94.5 %. The second set of experiments aimed to explore the sensitivity of model output to variability in the particle size of source materials assuming that a degree of fluvial sorting of the resulting mixture took place. Most particle size correction procedures assume grain size affects are consistent across sources and tracer properties which is not always the case. Consequently, the < 40 µm fraction of selected soil mixtures was analysed to simulate the effect of selective fluvial transport of finer particles and the results were compared to those for source materials. Preliminary findings from this experiment demonstrate the sensitivity of the numerical mixing model outputs to different particle size distributions of source material and the variable impact of fluvial sorting on end member signatures used in mixing models. The results suggest that particle size correction procedures require careful scrutiny in the context of variable source characteristics.
Sensitivity analysis of radionuclides atmospheric dispersion following the Fukushima accident
NASA Astrophysics Data System (ADS)
Girard, Sylvain; Korsakissok, Irène; Mallet, Vivien
2014-05-01
Atmospheric dispersion models are used in response to accidental releases with two purposes: - minimising the population exposure during the accident; - complementing field measurements for the assessment of short and long term environmental and sanitary impacts. The predictions of these models are subject to considerable uncertainties of various origins. Notably, input data, such as meteorological fields or estimations of emitted quantities as function of time, are highly uncertain. The case studied here is the atmospheric release of radionuclides following the Fukushima Daiichi disaster. The model used in this study is Polyphemus/Polair3D, from which derives IRSN's operational long distance atmospheric dispersion model ldX. A sensitivity analysis was conducted in order to estimate the relative importance of a set of identified uncertainty sources. The complexity of this task was increased by four characteristics shared by most environmental models: - high dimensional inputs; - correlated inputs or inputs with complex structures; - high dimensional output; - multiplicity of purposes that require sophisticated and non-systematic post-processing of the output. The sensitivities of a set of outputs were estimated with the Morris screening method. The input ranking was highly dependent on the considered output. Yet, a few variables, such as horizontal diffusion coefficient or clouds thickness, were found to have a weak influence on most of them and could be discarded from further studies. The sensitivity analysis procedure was also applied to indicators of the model performance computed on a set of gamma dose rates observations. This original approach is of particular interest since observations could be used later to calibrate the input variables probability distributions. Indeed, only the variables that are influential on performance scores are likely to allow for calibration. An indicator based on emission peaks time matching was elaborated in order to complement classical statistical scores which were dominated by deposit dose rates and almost insensitive to lower atmosphere dose rates. The substantial sensitivity of these performance indicators is auspicious for future calibration attempts and indicates that the simple perturbations used here may be sufficient to represent an essential part of the overall uncertainty.
A response surface methodology based damage identification technique
NASA Astrophysics Data System (ADS)
Fang, S. E.; Perera, R.
2009-06-01
Response surface methodology (RSM) is a combination of statistical and mathematical techniques to represent the relationship between the inputs and outputs of a physical system by explicit functions. This methodology has been widely employed in many applications such as design optimization, response prediction and model validation. But so far the literature related to its application in structural damage identification (SDI) is scarce. Therefore this study attempts to present a systematic SDI procedure comprising four sequential steps of feature selection, parameter screening, primary response surface (RS) modeling and updating, and reference-state RS modeling with SDI realization using the factorial design (FD) and the central composite design (CCD). The last two steps imply the implementation of inverse problems by model updating in which the RS models substitute the FE models. The proposed method was verified against a numerical beam, a tested reinforced concrete (RC) frame and an experimental full-scale bridge with the modal frequency being the output responses. It was found that the proposed RSM-based method performs well in predicting the damage of both numerical and experimental structures having single and multiple damage scenarios. The screening capacity of the FD can provide quantitative estimation of the significance levels of updating parameters. Meanwhile, the second-order polynomial model established by the CCD provides adequate accuracy in expressing the dynamic behavior of a physical system.
Sun, Xingshu; Silverman, Timothy; Garris, Rebekah; ...
2016-07-18
In this study, we present a physics-based analytical model for copper indium gallium diselenide (CIGS) solar cells that describes the illumination- and temperature-dependent current-voltage (I-V) characteristics and accounts for the statistical shunt variation of each cell. The model is derived by solving the drift-diffusion transport equation so that its parameters are physical and, therefore, can be obtained from independent characterization experiments. The model is validated against CIGS I-V characteristics as a function of temperature and illumination intensity. This physics-based model can be integrated into a large-scale simulation framework to optimize the performance of solar modules, as well as predict themore » long-term output yields of photovoltaic farms under different environmental conditions.« less
Adams, G.P.
1995-01-01
This report contains MODFLOW input and output listings for the simulation of ground-water flow in alluvium and terrace deposits associated with the Cimarron River from Freedom to Guthrie, Oklahoma. These values are to be used in conjuction with the report, 'Geohydrology of alluvium and terrace deposits of the Cimarron River from Freedom to Guthrie, Oklahoma,' by G.P. Adams and D.L. Bergman, published as U.S. Geological Survey Water-Resources Investigatons Report 95-4066. The simulation used a digital ground-water flow model and was evaluated by a management and statistical program.
NASA Astrophysics Data System (ADS)
Ripamonti, Francesco; Resta, Ferruccio; Borroni, Massimo; Cazzulani, Gabriele
2014-04-01
A new method for the real-time identification of mechanical system modal parameters is used in order to design different adaptive control logics aiming to reduce the vibrations in a carbon fiber plate smart structure. It is instrumented with three piezoelectric actuators, three accelerometers and three strain gauges. The real-time identification is based on a recursive subspace tracking algorithm whose outputs are elaborated by an ARMA model. A statistical approach is finally applied to choose the modal parameter correct values. These are given in input to model-based control logics such as a gain scheduling and an adaptive LQR control.
A Blueprint for Demonstrating Quantum Supremacy with Superconducting Qubits
NASA Technical Reports Server (NTRS)
Kechedzhi, Kostyantyn
2018-01-01
Long coherence times and high fidelity control recently achieved in scalable superconducting circuits paved the way for the growing number of experimental studies of many-qubit quantum coherent phenomena in these devices. Albeit full implementation of quantum error correction and fault tolerant quantum computation remains a challenge the near term pre-error correction devices could allow new fundamental experiments despite inevitable accumulation of errors. One such open question foundational for quantum computing is achieving the so called quantum supremacy, an experimental demonstration of a computational task that takes polynomial time on the quantum computer whereas the best classical algorithm would require exponential time and/or resources. It is possible to formulate such a task for a quantum computer consisting of less than a 100 qubits. The computational task we consider is to provide approximate samples from a non-trivial quantum distribution. This is a generalization for the case of superconducting circuits of ideas behind boson sampling protocol for quantum optics introduced by Arkhipov and Aaronson. In this presentation we discuss a proof-of-principle demonstration of such a sampling task on a 9-qubit chain of superconducting gmon qubits developed by Google. We discuss theoretical analysis of the driven evolution of the device resulting in output approximating samples from a uniform distribution in the Hilbert space, a quantum chaotic state. We analyze quantum chaotic characteristics of the output of the circuit and the time required to generate a sufficiently complex quantum distribution. We demonstrate that the classical simulation of the sampling output requires exponential resources by connecting the task of calculating the output amplitudes to the sign problem of the Quantum Monte Carlo method. We also discuss the detailed theoretical modeling required to achieve high fidelity control and calibration of the multi-qubit unitary evolution in the device. We use a novel cross-entropy statistical metric as a figure of merit to verify the output and calibrate the device controls. Finally, we demonstrate the statistics of the wave function amplitudes generated on the 9-gmon chain and verify the quantum chaotic nature of the generated quantum distribution. This verifies the implementation of the quantum supremacy protocol.
MEASURE: An integrated data-analysis and model identification facility
NASA Technical Reports Server (NTRS)
Singh, Jaidip; Iyer, Ravi K.
1990-01-01
The first phase of the development of MEASURE, an integrated data analysis and model identification facility is described. The facility takes system activity data as input and produces as output representative behavioral models of the system in near real time. In addition a wide range of statistical characteristics of the measured system are also available. The usage of the system is illustrated on data collected via software instrumentation of a network of SUN workstations at the University of Illinois. Initially, statistical clustering is used to identify high density regions of resource-usage in a given environment. The identified regions form the states for building a state-transition model to evaluate system and program performance in real time. The model is then solved to obtain useful parameters such as the response-time distribution and the mean waiting time in each state. A graphical interface which displays the identified models and their characteristics (with real time updates) was also developed. The results provide an understanding of the resource-usage in the system under various workload conditions. This work is targeted for a testbed of UNIX workstations with the initial phase ported to SUN workstations on the NASA, Ames Research Center Advanced Automation Testbed.
A new SAS program for behavioral analysis of Electrical Penetration Graph (EPG) data
USDA-ARS?s Scientific Manuscript database
A new program is introduced that uses SAS software to duplicate output of descriptive statistics from the Sarria Excel workbook for EPG waveform analysis. Not only are publishable means and standard errors or deviations output, the user also is guided through four relatively simple sub-programs for ...
Exploring the calibration of a wind forecast ensemble for energy applications
NASA Astrophysics Data System (ADS)
Heppelmann, Tobias; Ben Bouallegue, Zied; Theis, Susanne
2015-04-01
In the German research project EWeLiNE, Deutscher Wetterdienst (DWD) and Fraunhofer Institute for Wind Energy and Energy System Technology (IWES) are collaborating with three German Transmission System Operators (TSO) in order to provide the TSOs with improved probabilistic power forecasts. Probabilistic power forecasts are derived from probabilistic weather forecasts, themselves derived from ensemble prediction systems (EPS). Since the considered raw ensemble wind forecasts suffer from underdispersiveness and bias, calibration methods are developed for the correction of the model bias and the ensemble spread bias. The overall aim is to improve the ensemble forecasts such that the uncertainty of the possible weather deployment is depicted by the ensemble spread from the first forecast hours. Additionally, the ensemble members after calibration should remain physically consistent scenarios. We focus on probabilistic hourly wind forecasts with horizon of 21 h delivered by the convection permitting high-resolution ensemble system COSMO-DE-EPS which has become operational in 2012 at DWD. The ensemble consists of 20 ensemble members driven by four different global models. The model area includes whole Germany and parts of Central Europe with a horizontal resolution of 2.8 km and a vertical resolution of 50 model levels. For verification we use wind mast measurements around 100 m height that corresponds to the hub height of wind energy plants that belong to wind farms within the model area. Calibration of the ensemble forecasts can be performed by different statistical methods applied to the raw ensemble output. Here, we explore local bivariate Ensemble Model Output Statistics at individual sites and quantile regression with different predictors. Applying different methods, we already show an improvement of ensemble wind forecasts from COSMO-DE-EPS for energy applications. In addition, an ensemble copula coupling approach transfers the time-dependencies of the raw ensemble to the calibrated ensemble. The calibrated wind forecasts are evaluated first with univariate probabilistic scores and additionally with diagnostics of wind ramps in order to assess the time-consistency of the calibrated ensemble members.
NASA Astrophysics Data System (ADS)
Powell, M. A.; Rawlinson, K. S.
A kinetic Stirling cycle engine, the Stirling Thermal Motors (STM) STM4-120, was tested at the Sandia National Laboratories Engine Test Facility (ETF) from March 1989-August 1992. Sandia is interested in determining this engine's potential for solar-thermal-electric applications. The last round of testing was conducted from July-August 1992 using Sandia-designed gas-fired heat pipe evaporators as the heat input system to the engine. The STM4-120 was performance mapped over a range of sodium vapor temperatures, cooling water temperatures, and cycle pressures. The resulting shaft power output levels ranged from 5-9 kW. The engine demonstrated high conversion efficiency (24-31%) even though the power output level was less than 40% of the rated output of 25 kW. The engine had been previously derated from 25 kW to 10 kW shaft power due to mechanical limitations that were identified by STM during parallel testing at their facility in Ann Arbor, MI. A statistical method was used to design the experiment, to choose the experimental points, and to generate correlation equations describing the engine performance given the operating parameters. The testing was truncated due to a failure of the heat pipe system caused by entrainment of liquid sodium in the condenser section of the heat pipes. Enough data was gathered to generate the correlations and to demonstrate the experimental technique. The correlation is accurate in the experimental space and is simple enough for use in hand calculations and spreadsheet-based system models. Use of this method can simplify the construction of accurate performance and economic models of systems in which the engine is a component. The purpose of this paper is to present the method used to design the experiments and to analyze the performance data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Urrego-Blanco, Jorge R.; Hunke, Elizabeth C.; Urban, Nathan M.
Here, we implement a variance-based distance metric (D n) to objectively assess skill of sea ice models when multiple output variables or uncertainties in both model predictions and observations need to be considered. The metric compares observations and model data pairs on common spatial and temporal grids improving upon highly aggregated metrics (e.g., total sea ice extent or volume) by capturing the spatial character of model skill. The D n metric is a gamma-distributed statistic that is more general than the χ 2 statistic commonly used to assess model fit, which requires the assumption that the model is unbiased andmore » can only incorporate observational error in the analysis. The D n statistic does not assume that the model is unbiased, and allows the incorporation of multiple observational data sets for the same variable and simultaneously for different variables, along with different types of variances that can characterize uncertainties in both observations and the model. This approach represents a step to establish a systematic framework for probabilistic validation of sea ice models. The methodology is also useful for model tuning by using the D n metric as a cost function and incorporating model parametric uncertainty as part of a scheme to optimize model functionality. We apply this approach to evaluate different configurations of the standalone Los Alamos sea ice model (CICE) encompassing the parametric uncertainty in the model, and to find new sets of model configurations that produce better agreement than previous configurations between model and observational estimates of sea ice concentration and thickness.« less
Urrego-Blanco, Jorge R.; Hunke, Elizabeth C.; Urban, Nathan M.; ...
2017-04-01
Here, we implement a variance-based distance metric (D n) to objectively assess skill of sea ice models when multiple output variables or uncertainties in both model predictions and observations need to be considered. The metric compares observations and model data pairs on common spatial and temporal grids improving upon highly aggregated metrics (e.g., total sea ice extent or volume) by capturing the spatial character of model skill. The D n metric is a gamma-distributed statistic that is more general than the χ 2 statistic commonly used to assess model fit, which requires the assumption that the model is unbiased andmore » can only incorporate observational error in the analysis. The D n statistic does not assume that the model is unbiased, and allows the incorporation of multiple observational data sets for the same variable and simultaneously for different variables, along with different types of variances that can characterize uncertainties in both observations and the model. This approach represents a step to establish a systematic framework for probabilistic validation of sea ice models. The methodology is also useful for model tuning by using the D n metric as a cost function and incorporating model parametric uncertainty as part of a scheme to optimize model functionality. We apply this approach to evaluate different configurations of the standalone Los Alamos sea ice model (CICE) encompassing the parametric uncertainty in the model, and to find new sets of model configurations that produce better agreement than previous configurations between model and observational estimates of sea ice concentration and thickness.« less
Phase 1 Free Air CO2 Enrichment Model-Data Synthesis (FACE-MDS): Model Output Data (2015)
Walker, A. P.; De Kauwe, M. G.; Medlyn, B. E.; Zaehle, S.; Asao, S.; Dietze, M.; El-Masri, B.; Hanson, P. J.; Hickler, T.; Jain, A.; Luo, Y.; Parton, W. J.; Prentice, I. C.; Ricciuto, D. M.; Thornton, P. E.; Wang, S.; Wang, Y -P; Warlind, D.; Weng, E.; Oren, R.; Norby, R. J.
2015-01-01
These datasets comprise the model output from phase 1 of the FACE-MDS. These include simulations of the Duke and Oak Ridge experiments and also idealised long-term (300 year) simulations at both sites (please see the modelling protocol for details). Included as part of this dataset are modelling and output protocols. The model datasets are formatted according to the output protocols. Phase 1 datasets are reproduced here for posterity and reproducibility although the model output for the experimental period have been somewhat superseded by the Phase 2 datasets.
NASA Astrophysics Data System (ADS)
Mullan, Donal; Chen, Jie; Zhang, Xunchang John
2016-02-01
Statistical downscaling (SD) methods have become a popular, low-cost and accessible means of bridging the gap between the coarse spatial resolution at which climate models output climate scenarios and the finer spatial scale at which impact modellers require these scenarios, with various different SD techniques used for a wide range of applications across the world. This paper compares the Generator for Point Climate Change (GPCC) model and the Statistical DownScaling Model (SDSM)—two contrasting SD methods—in terms of their ability to generate precipitation series under non-stationary conditions across ten contrasting global climates. The mean, maximum and a selection of distribution statistics as well as the cumulative frequencies of dry and wet spells for four different temporal resolutions were compared between the models and the observed series for a validation period. Results indicate that both methods can generate daily precipitation series that generally closely mirror observed series for a wide range of non-stationary climates. However, GPCC tends to overestimate higher precipitation amounts, whilst SDSM tends to underestimate these. This infers that GPCC is more likely to overestimate the effects of precipitation on a given impact sector, whilst SDSM is likely to underestimate the effects. GPCC performs better than SDSM in reproducing wet and dry day frequency, which is a key advantage for many impact sectors. Overall, the mixed performance of the two methods illustrates the importance of users performing a thorough validation in order to determine the influence of simulated precipitation on their chosen impact sector.
NASA Astrophysics Data System (ADS)
Singh, A.; Mohanty, U. C.; Ghosh, K.
2015-12-01
Most regions of India experience varied rainfall duration during the southwest monsoon, changes in which exhibit major impact not only agriculture, but also other sectors like hydrology, agriculture, food and fodder storage etc. In addition, changes in sub-seasonal rainfall characteristics highly impact the rice production. As part of the endeavor seasonal climate outlook, as well as information for weather within climate may be helpful for advance planning and risk management in agriculture. The General Circulation Model (GCM) provide an alternative to gather information for weather within climate but variability is very low in comparison to observation. On the other hand, the spatial resolution of GCM predicted rainfall is not found at the observed station/grid point. To tackle the problem, initially a statistical downscaling over 19 station of Odisha state is undertaken using the atmospheric parameters predicted by a GCM (NCEP-CFSv2). For the purpose, an extended domain is taken for analyzing the significant zone for the atmospheric parameters like zonal wind at 850hPa, Sea Surface Temperature (SST), geopotential height. A statistical model using the pattern projection method is further developed based on empirical orthogonal function. The downscaled rainfall is found better in association with station observation in comparison to raw GCM prediction in view of deterministic and probabilistic skill measure. Further, the sub-seasonal and seasonal forecast from the GCMs can be used at different time steps for risk management. Therefore, downscaled seasonal/monthly rainfall is further converted to sub-seasonal/daily time scale using a non-homogeneous markov model. The simulated weather sequences are further compared with the observed sequence in view of categorical rainfall events. The outcomes suggest that the rainfall amount are overestimated for excess rainfall and henceforth larger excess rainfall events can be realized. The skill for prediction of rainfall events corresponding to lower thresholds is found higher. A detail discussion regarding skill of spatial downscale rainfall at observed stations and its further representation of sub-seasonal characteristics (spells, less rainfall, heavy rainfall, and moderate rainfall events) of rainfall for disaggregated outputs will be presented.
Forest statistics for New Jersey--1987
Dawn M. DiGiovanni; Charles T. Scott; Charles T. Scott
1990-01-01
A statistical report on the third forest survey of New Jersey (1987). Findings are displayed in 66 tables containing estimates of forest area, numbers of trees, timber volume, tree biomass, and timber products output. Data are presented at two levels: state and county.
Bureau of Labor Statistics Takes a New Look at Employee Benefits.
ERIC Educational Resources Information Center
Frumkin, Robert; Wiatrowski, William
1982-01-01
Describes the design, coverage, output, and availability of results of a new annual survey on the incidence and characteristics of employee benefit plans in the private sector, which is conducted by the Bureau of Labor Statistics. (SK)
Forest Statistics for Connecticut--1972 and 1985
David R. Dickson; Carol L. McAfee; Carol L. McAfee
1988-01-01
A statistical report on the third forest survey of Connecticut (1984). Findings are displayed in 77 tables containing estimates of forest area, numbers of trees, timber volume, tree biomass, and timber products output. Data are presented at two levels: state and county.
Forest statistics for Delaware-1972 and 1986
Thomas S. Frieswyk; Dawn M. DiGiovanni; Dawn M. DiGiovanni
1989-01-01
A statistical report on the third forest survey of Delaware (1986). Findings are displayed in 65 tables containing estimates of forest area, number of trees, timber volume, tree biomass, and timber products output. Data are presented at two levels: state and county.
Forest Statistics for Massachusetts--1972 and 1985
David R. Dickson; Carol L. McAfee; Carol L. McAfee
1988-01-01
A statistical report on the third forest survey of Massachusetts (1984). Findings are displayed in 76 tables containing estimates of forest area, numbers of trees, timber volume, tree biomass, and timber products output. Data are presented at two levels: state and county.
Ménard, Richard; Deshaies-Jacques, Martin; Gasset, Nicolas
2016-09-01
An objective analysis is one of the main components of data assimilation. By combining observations with the output of a predictive model we combine the best features of each source of information: the complete spatial and temporal coverage provided by models, with a close representation of the truth provided by observations. The process of combining observations with a model output is called an analysis. To produce an analysis requires the knowledge of observation and model errors, as well as its spatial correlation. This paper is devoted to the development of methods of estimation of these error variances and the characteristic length-scale of the model error correlation for its operational use in the Canadian objective analysis system. We first argue in favor of using compact support correlation functions, and then introduce three estimation methods: the Hollingsworth-Lönnberg (HL) method in local and global form, the maximum likelihood method (ML), and the [Formula: see text] diagnostic method. We perform one-dimensional (1D) simulation studies where the error variance and true correlation length are known, and perform an estimation of both error variances and correlation length where both are non-uniform. We show that a local version of the HL method can capture accurately the error variances and correlation length at each observation site, provided that spatial variability is not too strong. However, the operational objective analysis requires only a single and globally valid correlation length. We examine whether any statistics of the local HL correlation lengths could be a useful estimate, or whether other global estimation methods such as by the global HL, ML, or [Formula: see text] should be used. We found in both 1D simulation and using real data that the ML method is able to capture physically significant aspects of the correlation length, while most other estimates give unphysical and larger length-scale values. This paper describes a proposed improvement of the objective analysis of surface pollutants at Environment and Climate Change Canada (formerly known as Environment Canada). Objective analyses are essentially surface maps of air pollutants that are obtained by combining observations with an air quality model output, and are thought to provide a complete and more accurate representation of the air quality. The highlight of this study is an analysis of methods to estimate the model (or background) error correlation length-scale. The error statistics are an important and critical component to the analysis scheme.
NASA Astrophysics Data System (ADS)
Olson, R.; Evans, J. P.; Fan, Y.
2015-12-01
NARCliM (NSW/ACT Regional Climate Modelling Project) is a regional climate project for Australia and the surrounding region. It dynamically downscales 4 General Circulation Models (GCMs) using three Regional Climate Models (RCMs) to provide climate projections for the CORDEX-AustralAsia region at 50 km resolution, and for south-east Australia at 10 km resolution. The project differs from previous work in the level of sophistication of model selection. Specifically, the selection process for GCMs included (i) conducting literature review to evaluate model performance, (ii) analysing model independence, and (iii) selecting models that span future temperature and precipitation change space. RCMs for downscaling the GCMs were chosen based on their performance for several precipitation events over South-East Australia, and on model independence.Bayesian Model Averaging (BMA) provides a statistically consistent framework for weighing the models based on their likelihood given the available observations. These weights are used to provide probability distribution functions (pdfs) for model projections. We develop a BMA framework for constructing probabilistic climate projections for spatially-averaged variables from the NARCliM project. The first step in the procedure is smoothing model output in order to exclude the influence of internal climate variability. Our statistical model for model-observations residuals is a homoskedastic iid process. Comparing RCMs with Australian Water Availability Project (AWAP) observations is used to determine model weights through Monte Carlo integration. Posterior pdfs of statistical parameters of model-data residuals are obtained using Markov Chain Monte Carlo. The uncertainty in the properties of the model-data residuals is fully accounted for when constructing the projections. We present the preliminary results of the BMA analysis for yearly maximum temperature for New South Wales state planning regions for the period 2060-2079.
Cournane, S; Sheehy, N; Cooke, J
2014-06-01
Benford's law is an empirical observation which predicts the expected frequency of digits in naturally occurring datasets spanning multiple orders of magnitude, with the law having been most successfully applied as an audit tool in accountancy. This study investigated the sensitivity of the technique in identifying system output changes using simulated changes in interventional radiology Dose-Area-Product (DAP) data, with any deviations from Benford's distribution identified using z-statistics. The radiation output for interventional radiology X-ray equipment is monitored annually during quality control testing; however, for a considerable portion of the year an increased output of the system, potentially caused by engineering adjustments or spontaneous system faults may go unnoticed, leading to a potential increase in the radiation dose to patients. In normal operation recorded examination radiation outputs vary over multiple orders of magnitude rendering the application of normal statistics ineffective for detecting systematic changes in the output. In this work, the annual DAP datasets complied with Benford's first order law for first, second and combinations of the first and second digits. Further, a continuous 'rolling' second order technique was devised for trending simulated changes over shorter timescales. This distribution analysis, the first employment of the method for radiation output trending, detected significant changes simulated on the original data, proving the technique useful in this case. The potential is demonstrated for implementation of this novel analysis for monitoring and identifying change in suitable datasets for the purpose of system process control. Copyright © 2013 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Statistics & Input-Output Measures for School Library Media Centers in Colorado, 1996.
ERIC Educational Resources Information Center
Lance, Keith Curry; Cox, Marti A.
This compilation of statistics on Colorado's school media centers (LMCs) consists of three major components: (1) a 220-page tabulation of data arranged by school level and student enrollment level; (2) tables reporting statewide totals for school library statistics; and (3) tables with benchmark ratios for school library media center resources and…
Using DEWIS and R for Multi-Staged Statistics e-Assessments
ERIC Educational Resources Information Center
Gwynllyw, D. Rhys; Weir, Iain S.; Henderson, Karen L.
2016-01-01
We demonstrate how the DEWIS e-Assessment system may use embedded R code to facilitate the assessment of students' ability to perform involved statistical analyses. The R code has been written to emulate SPSS output and thus the statistical results for each bespoke data set can be generated efficiently and accurately using standard R routines.…
Forest Statistics for Ohio--1979
Donald F. Dennis; Thomas W. Birch; Thomas W. Birch
1981-01-01
A statistical report on the third forest survey of Ohio conducted in 1978 and 1979. Statistical findings are based on data from remeasured and new 10-point variable radius plots. The current status of forest-land area, timber volume, and annual growth and removals is presented. Timber products output by timber industries, based on a 1978 updated canvass of...
Forest statistics for Vermont: 1973 and 1983
Thomas S. Frieswyk; Anne M. Malley
1985-01-01
A statistical report on the fourth forest survey of Vermont conducted in 1982-1983 by the Forest Inventory and Analysis Unit, Northeastern Forest Experiment Station. Statistics for forest area, numbers of trees, timber volume, tree biomass, and timber products output are displayed at the state, unit, and county levels. The current inventory indicates that the state has...
Forest statistics for New York--1980
Thomas J., Jr. Considine; Thomas S. Frieswyk; Thomas S. Frieswyk
1982-01-01
A statistical report on the third forest survey of New York conducted in 1978 and 1979. Statistical findings are based on data from remeasured and new 10-point variable-radius plots. The current status of forest-land area, timber volume, and annual growth and removals is presented. Timber products output by timber industries, based on a 1979 updated canvass of...
Lam, Lun Tak; Sun, Yi; Davey, Neil; Adams, Rod; Prapopoulou, Maria; Brown, Marc B; Moss, Gary P
2010-06-01
The aim was to employ Gaussian processes to assess mathematically the nature of a skin permeability dataset and to employ these methods, particularly feature selection, to determine the key physicochemical descriptors which exert the most significant influence on percutaneous absorption, and to compare such models with established existing models. Gaussian processes, including automatic relevance detection (GPRARD) methods, were employed to develop models of percutaneous absorption that identified key physicochemical descriptors of percutaneous absorption. Using MatLab software, the statistical performance of these models was compared with single linear networks (SLN) and quantitative structure-permeability relationships (QSPRs). Feature selection methods were used to examine in more detail the physicochemical parameters used in this study. A range of statistical measures to determine model quality were used. The inherently nonlinear nature of the skin data set was confirmed. The Gaussian process regression (GPR) methods yielded predictive models that offered statistically significant improvements over SLN and QSPR models with regard to predictivity (where the rank order was: GPR > SLN > QSPR). Feature selection analysis determined that the best GPR models were those that contained log P, melting point and the number of hydrogen bond donor groups as significant descriptors. Further statistical analysis also found that great synergy existed between certain parameters. It suggested that a number of the descriptors employed were effectively interchangeable, thus questioning the use of models where discrete variables are output, usually in the form of an equation. The use of a nonlinear GPR method produced models with significantly improved predictivity, compared with SLN or QSPR models. Feature selection methods were able to provide important mechanistic information. However, it was also shown that significant synergy existed between certain parameters, and as such it was possible to interchange certain descriptors (i.e. molecular weight and melting point) without incurring a loss of model quality. Such synergy suggested that a model constructed from discrete terms in an equation may not be the most appropriate way of representing mechanistic understandings of skin absorption.
System dynamic modeling: an alternative method for budgeting.
Srijariya, Witsanuchai; Riewpaiboon, Arthorn; Chaikledkaew, Usa
2008-03-01
To construct, validate, and simulate a system dynamic financial model and compare it against the conventional method. The study was a cross-sectional analysis of secondary data retrieved from the National Health Security Office (NHSO) in the fiscal year 2004. The sample consisted of all emergency patients who received emergency services outside their registered hospital-catchments area. The dependent variable used was the amount of reimbursed money. Two types of model were constructed, namely, the system dynamic model using the STELLA software and the multiple linear regression model. The outputs of both methods were compared. The study covered 284,716 patients from various levels of providers. The system dynamic model had the capability of producing various types of outputs, for example, financial and graphical analyses. For the regression analysis, statistically significant predictors were composed of service types (outpatient or inpatient), operating procedures, length of stay, illness types (accident or not), hospital characteristics, age, and hospital location (adjusted R(2) = 0.74). The total budget arrived at from using the system dynamic model and regression model was US$12,159,614.38 and US$7,301,217.18, respectively, whereas the actual NHSO reimbursement cost was US$12,840,805.69. The study illustrated that the system dynamic model is a useful financial management tool, although it is not easy to construct. The model is not only more accurate in prediction but is also more capable of analyzing large and complex real-world situations than the conventional method.
Trapped Proton Environment in Medium-Earth Orbit (2000-2010)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Yue; Friedel, Reinhard Hans; Kippen, Richard Marc
This report describes the method used to derive fluxes of the trapped proton belt along the GPS orbit (i.e., a Medium-Earth Orbit) during 2000 – 2010, a period almost covering a solar cycle. This method utilizes a newly developed empirical proton radiation-belt model, with the model output scaled by GPS in-situ measurements, to generate proton fluxes that cover a wide range of energies (50keV- 6MeV) and keep temporal features as well. The new proton radiation-belt model is developed based upon CEPPAD proton measurements from the Polar mission (1996 – 2007). Comparing to the de-facto standard empirical model of AP8, thismore » model is not only based upon a new data set representative of the proton belt during the same period covered by GPS, but can also provide statistical information of flux values such as worst cases and occurrence percentiles instead of solely the mean values. The comparison shows quite different results from the two models and suggests that the commonly accepted error factor of 2 on the AP8 flux output over-simplifies and thus underestimates variations of the proton belt. Output fluxes from this new model along the GPS orbit are further scaled by the ns41 in-situ data so as to reflect the dynamic nature of protons in the outer radiation belt at geomagnetically active times. Derived daily proton fluxes along the GPS ns41 orbit, whose data files are delivered along with this report, are depicted to illustrate the trapped proton environment in the Medium-Earth Orbit. Uncertainties on those daily proton fluxes from two sources are evaluated: One is from the new proton-belt model that has error factors < ~3; the other is from the in-situ measurements and the error factors could be ~ 5.« less
Noise behavior of microwave amplifiers operating under nonlinear conditions
NASA Astrophysics Data System (ADS)
Escotte, L.; Gonneau, E.; Chambon, C.; Graffeuil, J.
2005-12-01
B The noise behavior of microwave amplifiers operating under a large-signal condition has been studied in this paper. A Gaussian noise is added to a microwave signal and they are applied at the input of several amplifying devices. Experimental data show a decrease of the output noise spectral density when the power of the microwave signal at the input of the devices increases due to the compression of the amplifiers. A distortion component due to the interaction of the signal and its harmonics with the noise is also demonstrated from a simplified theoretical model. The statistical properties of the signal and the noise have also been investigated in order to verify the Gaussianity of the noise at the output of the nonlinear circuits. We have also observed that the majority of the measured devices show some variations of their additive noise versus the input power level.
SNDR enhancement in noisy sinusoidal signals by non-linear processing elements
NASA Astrophysics Data System (ADS)
Martorell, Ferran; McDonnell, Mark D.; Abbott, Derek; Rubio, Antonio
2007-06-01
We investigate the possibility of building linear amplifiers capable of enhancing the Signal-to-Noise and Distortion Ratio (SNDR) of sinusoidal input signals using simple non-linear elements. Other works have proven that it is possible to enhance the Signal-to-Noise Ratio (SNR) by using limiters. In this work we study a soft limiter non-linear element with and without hysteresis. We show that the SNDR of sinusoidal signals can be enhanced by 0.94 dB using a wideband soft limiter and up to 9.68 dB using a wideband soft limiter with hysteresis. These results indicate that linear amplifiers could be constructed using non-linear circuits with hysteresis. This paper presents mathematical descriptions for the non-linear elements using statistical parameters. Using these models, the input-output SNDR enhancement is obtained by optimizing the non-linear transfer function parameters to maximize the output SNDR.
Interactive vs. Non-Interactive Ensembles for Weather Prediction and Climate Projection
NASA Astrophysics Data System (ADS)
Duane, Gregory
2013-04-01
If the members of an ensemble of different models are allowed to interact with one another in run time, predictive skill can be improved as compared to that of any individual model or any average of indvidual model outputs. Inter-model connections in such an interactive ensemble can be trained, using historical data, so that the resulting ``supermodel" synchronizes with reality when used in weather-prediction mode, where the individual models perform data assimilation from each other (with trainable inter-model "observation error") as well as from real observations. In climate-projection mode, parameters of the individual models are changed, as might occur from an increase in GHG levels, and one obtains relevant statistical properties of the new supermodel attractor. In simple cases, it has been shown that training of the inter-model connections with the old parameter values gives a supermodel that is still predictive when the parameter values are changed. Here we inquire as to the circumstances under which supermodel performance can be expected to exceed that of the customary weighted average of model outputs. We consider a supermodel formed from quasigeostrophic channel models with different forcing coefficients, and introduce an effective training scheme for the inter-model connections. We show that the blocked-zonal index cycle is reproduced better by the supermodel than by any non-interactive ensemble in the extreme case where the forcing coefficients of the different models are very large or very small. With realistic differences in forcing coefficients, as would be representative of actual differences among IPCC-class models, the usual linearity assumption is justified and a weighted average of model outputs is adequate. It is therefore hypothesized that supermodeling is likely to be useful in situations where there are qualitative model differences, as arising from sub-gridscale parameterizations, that affect overall model behavior. Otherwise the usual ex post facto averaging will probably suffice. Previous results from an ENSO-prediction supermodel [Kirtman et al.] are re-examined in light of the hypothesis about the importance of qualitative inter-model differences.
A two-stage DEA approach for environmental efficiency measurement.
Song, Malin; Wang, Shuhong; Liu, Wei
2014-05-01
The slacks-based measure (SBM) model based on the constant returns to scale has achieved some good results in addressing the undesirable outputs, such as waste water and water gas, in measuring environmental efficiency. However, the traditional SBM model cannot deal with the scenario in which desirable outputs are constant. Based on the axiomatic theory of productivity, this paper carries out a systematic research on the SBM model considering undesirable outputs, and further expands the SBM model from the perspective of network analysis. The new model can not only perform efficiency evaluation considering undesirable outputs, but also calculate desirable and undesirable outputs separately. The latter advantage successfully solves the "dependence" problem of outputs, that is, we can not increase the desirable outputs without producing any undesirable outputs. The following illustration shows that the efficiency values obtained by two-stage approach are smaller than those obtained by the traditional SBM model. Our approach provides a more profound analysis on how to improve environmental efficiency of the decision making units.
Johnsen Lind, Andreas; Helge Johnsen, Bjorn; Hill, Labarron K; Sollers Iii, John J; Thayer, Julian F
2011-01-01
The aim of the present manuscript is to present a user-friendly and flexible platform for transforming Kubios HRV output files to an .xls-file format, used by MS Excel. The program utilizes either native or bundled Java and is platform-independent and mobile. This means that it can run without being installed on a computer. It also has an option of continuous transferring of data indicating that it can run in the background while Kubios produces output files. The program checks for changes in the file structure and automatically updates the .xls- output file.
Szekér, Szabolcs; Vathy-Fogarassy, Ágnes
2018-01-01
Logistic regression based propensity score matching is a widely used method in case-control studies to select the individuals of the control group. This method creates a suitable control group if all factors affecting the output variable are known. However, if relevant latent variables exist as well, which are not taken into account during the calculations, the quality of the control group is uncertain. In this paper, we present a statistics-based research in which we try to determine the relationship between the accuracy of the logistic regression model and the uncertainty of the dependent variable of the control group defined by propensity score matching. Our analyses show that there is a linear correlation between the fit of the logistic regression model and the uncertainty of the output variable. In certain cases, a latent binary explanatory variable can result in a relative error of up to 70% in the prediction of the outcome variable. The observed phenomenon calls the attention of analysts to an important point, which must be taken into account when deducting conclusions.
SRNL PARTICIPATION IN THE MULTI-SCALE ENSEMBLE EXERCISES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buckley, R
2007-10-29
Consequence assessment during emergency response often requires atmospheric transport and dispersion modeling to guide decision making. A statistical analysis of the ensemble of results from several models is a useful way of estimating the uncertainty for a given forecast. ENSEMBLE is a European Union program that utilizes an internet-based system to ingest transport results from numerous modeling agencies. A recent set of exercises required output on three distinct spatial and temporal scales. The Savannah River National Laboratory (SRNL) uses a regional prognostic model nested within a larger-scale synoptic model to generate the meteorological conditions which are in turn used inmore » a Lagrangian particle dispersion model. A discussion of SRNL participation in these exercises is given, with particular emphasis on requirements for provision of results in a timely manner with regard to the various spatial scales.« less
Reid, Colleen E; Jerrett, Michael; Petersen, Maya L; Pfister, Gabriele G; Morefield, Philip E; Tager, Ira B; Raffuse, Sean M; Balmes, John R
2015-03-17
Estimating population exposure to particulate matter during wildfires can be difficult because of insufficient monitoring data to capture the spatiotemporal variability of smoke plumes. Chemical transport models (CTMs) and satellite retrievals provide spatiotemporal data that may be useful in predicting PM2.5 during wildfires. We estimated PM2.5 concentrations during the 2008 northern California wildfires using 10-fold cross-validation (CV) to select an optimal prediction model from a set of 11 statistical algorithms and 29 predictor variables. The variables included CTM output, three measures of satellite aerosol optical depth, distance to the nearest fires, meteorological data, and land use, traffic, spatial location, and temporal characteristics. The generalized boosting model (GBM) with 29 predictor variables had the lowest CV root mean squared error and a CV-R2 of 0.803. The most important predictor variable was the Geostationary Operational Environmental Satellite Aerosol/Smoke Product (GASP) Aerosol Optical Depth (AOD), followed by the CTM output and distance to the nearest fire cluster. Parsimonious models with various combinations of fewer variables also predicted PM2.5 well. Using machine learning algorithms to combine spatiotemporal data from satellites and CTMs can reliably predict PM2.5 concentrations during a major wildfire event.
Forest statistics for Rhode Island--1972 and 1985
David R. Dickson; Carol L. McAfee; Carol L. McAfee
1988-01-01
A statistical report on the third forest survey of Rhode Island (1984). Findings are displayed in 77 tables containing estimates of forest area, numbers of trees, timber volume, tree biomass, and timber products output. Data are presented at two levels: state and county.
Forest Statistics for Kentucky - 1975 and 1988
Carol L. Alerich
1990-01-01
A statistical report on the fourth forest survey of Kentucky (1988). Findings are displayed in 204 tables containing estimates of forest area, number of trees, timber volume, tree biomass, and timber products output. Data are presented at three levels: state, geographic unit, and county.
Forest statistics for Maryland--1976 and 1986
Thomas S. Frieswyk; Dawn M. DiGiovanni; Dawn M. DiGiovanni
1988-01-01
A statistical report on the fourth forest survey of Maryland (1986). Findings are displayed in 115 tables containing estimates of forest area, numbers of trees, timber volume, tree biomass, and timber products output. Data are presented at three levels: state, geographic unit, and county.
Characterizing bias correction uncertainty in wheat yield predictions
NASA Astrophysics Data System (ADS)
Ortiz, Andrea Monica; Jones, Julie; Freckleton, Robert; Scaife, Adam
2017-04-01
Farming systems are under increased pressure due to current and future climate change, variability and extremes. Research on the impacts of climate change on crop production typically rely on the output of complex Global and Regional Climate Models, which are used as input to crop impact models. Yield predictions from these top-down approaches can have high uncertainty for several reasons, including diverse model construction and parameterization, future emissions scenarios, and inherent or response uncertainty. These uncertainties propagate down each step of the 'cascade of uncertainty' that flows from climate input to impact predictions, leading to yield predictions that may be too complex for their intended use in practical adaptation options. In addition to uncertainty from impact models, uncertainty can also stem from the intermediate steps that are used in impact studies to adjust climate model simulations to become more realistic when compared to observations, or to correct the spatial or temporal resolution of climate simulations, which are often not directly applicable as input into impact models. These important steps of bias correction or calibration also add uncertainty to final yield predictions, given the various approaches that exist to correct climate model simulations. In order to address how much uncertainty the choice of bias correction method can add to yield predictions, we use several evaluation runs from Regional Climate Models from the Coordinated Regional Downscaling Experiment over Europe (EURO-CORDEX) at different resolutions together with different bias correction methods (linear and variance scaling, power transformation, quantile-quantile mapping) as input to a statistical crop model for wheat, a staple European food crop. The objective of our work is to compare the resulting simulation-driven hindcasted wheat yields to climate observation-driven wheat yield hindcasts from the UK and Germany in order to determine ranges of yield uncertainty that result from different climate model simulation input and bias correction methods. We simulate wheat yields using a General Linear Model that includes the effects of seasonal maximum temperatures and precipitation, since wheat is sensitive to heat stress during important developmental stages. We use the same statistical model to predict future wheat yields using the recently available bias-corrected simulations of EURO-CORDEX-Adjust. While statistical models are often criticized for their lack of complexity, an advantage is that we are here able to consider only the effect of the choice of climate model, resolution or bias correction method on yield. Initial results using both past and future bias-corrected climate simulations with a process-based model will also be presented. Through these methods, we make recommendations in preparing climate model output for crop models.
Model-Based Linkage Analysis of a Quantitative Trait.
Song, Yeunjoo E; Song, Sunah; Schnell, Audrey H
2017-01-01
Linkage Analysis is a family-based method of analysis to examine whether any typed genetic markers cosegregate with a given trait, in this case a quantitative trait. If linkage exists, this is taken as evidence in support of a genetic basis for the trait. Historically, linkage analysis was performed using a binary disease trait, but has been extended to include quantitative disease measures. Quantitative traits are desirable as they provide more information than binary traits. Linkage analysis can be performed using single-marker methods (one marker at a time) or multipoint (using multiple markers simultaneously). In model-based linkage analysis the genetic model for the trait of interest is specified. There are many software options for performing linkage analysis. Here, we use the program package Statistical Analysis for Genetic Epidemiology (S.A.G.E.). S.A.G.E. was chosen because it also includes programs to perform data cleaning procedures and to generate and test genetic models for a quantitative trait, in addition to performing linkage analysis. We demonstrate in detail the process of running the program LODLINK to perform single-marker analysis, and MLOD to perform multipoint analysis using output from SEGREG, where SEGREG was used to determine the best fitting statistical model for the trait.
Spatial Pattern Classification for More Accurate Forecasting of Variable Energy Resources
NASA Astrophysics Data System (ADS)
Novakovskaia, E.; Hayes, C.; Collier, C.
2014-12-01
The accuracy of solar and wind forecasts is becoming increasingly essential as grid operators continue to integrate additional renewable generation onto the electric grid. Forecast errors affect rate payers, grid operators, wind and solar plant maintenance crews and energy traders through increases in prices, project down time or lost revenue. While extensive and beneficial efforts were undertaken in recent years to improve physical weather models for a broad spectrum of applications these improvements have generally not been sufficient to meet the accuracy demands of system planners. For renewables, these models are often used in conjunction with additional statistical models utilizing both meteorological observations and the power generation data. Forecast accuracy can be dependent on specific weather regimes for a given location. To account for these dependencies it is important that parameterizations used in statistical models change as the regime changes. An automated tool, based on an artificial neural network model, has been developed to identify different weather regimes as they impact power output forecast accuracy at wind or solar farms. In this study, improvements in forecast accuracy were analyzed for varying time horizons for wind farms and utility-scale PV plants located in different geographical regions.
Operation quality assessment model for video conference system
NASA Astrophysics Data System (ADS)
Du, Bangshi; Qi, Feng; Shao, Sujie; Wang, Ying; Li, Weijian
2018-01-01
Video conference system has become an important support platform for smart grid operation and management, its operation quality is gradually concerning grid enterprise. First, the evaluation indicator system covering network, business and operation maintenance aspects was established on basis of video conference system's operation statistics. Then, the operation quality assessment model combining genetic algorithm with regularized BP neural network was proposed, which outputs operation quality level of the system within a time period and provides company manager with some optimization advice. The simulation results show that the proposed evaluation model offers the advantages of fast convergence and high prediction accuracy in contrast with regularized BP neural network, and its generalization ability is superior to LM-BP neural network and Bayesian BP neural network.
The timber industries of southern New England--a periodic assessment of timber output
Robert L., Jr. Nevel; Eric H. Wharton; Eric H. Wharton
1988-01-01
Evaluates regional timber output based on the results of a survey of the timber industries of southern New England. Contains statistics on industrial timber production and receipts in Connecticut, Massachusetts and Rhode Island, by state and species, log shipments between states, sawmills and lumber production, and the production and disposition of manufacturing...
Pennsylvania timber industries - a periodic assessment of timber output
James T. Bones; John K., Jr. Sherwood
1978-01-01
A periodic evaluation of statewide industrial timber output based on a survey of the primary wood-manufacturing plants in Pennsylvania. Contains statistics on the industrial timber harvest and plant wood-receipts in 1976, and the production and disposition of the manufacturing residues that resulted. The 166 million cubic feet of industrial wood produced in 1976...
Veneer, 1980--A periodic assessment of regional timber output
Robert L., Jr. Nevel; Robert L. Nevel
1983-01-01
Evaluates regional timber output based on a canvass of the veneer plants in the Northeast and contains statistics for 1980 on the veneer-log production and receipts by states and species, log shipments between states and regions, and the disposition of manufacturing residues. Between 1976 and 1980, veneer log production jumped 19 percent and northeastern veneer plant...
Measuring Equity: Creating a New Standard for Inputs and Outputs
ERIC Educational Resources Information Center
Knoeppel, Robert C.; Della Sala, Matthew R.
2013-01-01
The purpose of this article is to introduce a new statistic to capture the ratio of equitable student outcomes given equitable inputs. Given the fact that finance structures should be aligned to outcome standards according to judicial interpretation, a ratio of outputs to inputs, or "equity ratio," is introduced to discern if conclusions can be…
Ohio timber industries - a periodic assessment of timber output
Robert L., Jr. Nevel; Robert B. Redett
1980-01-01
A periodic evaluation of industrial timber output in Ohio based on a statewide survey of the primary wood manufacturing plants. Contains statistics on the industrial timber harvest and plant wood receipts in 1978, and the production and disposition of the manufacturing residues that resulted. The 74 million cubic feet (ft³) or 2.2 million cubic meters (m...
Multi-Product Total Cost of Function for Higher Education: A Case of Bible Colleges.
ERIC Educational Resources Information Center
Koshal, Rajindar K.; Koshal, Manjulika; Gupta, Ashok
2001-01-01
This study empirically estimates a multiproduct total cost function and output relationship for comprehensive U.S. universities. Statistical results for 184 Bible colleges suggest that there are both economies of scale and of scope in higher education. Additionally, product-specific economies of scope exist for all output levels and activities.…
Enhancing seasonal climate prediction capacity for the Pacific countries
NASA Astrophysics Data System (ADS)
Kuleshov, Y.; Jones, D.; Hendon, H.; Charles, A.; Cottrill, A.; Lim, E.-P.; Langford, S.; de Wit, R.; Shelton, K.
2012-04-01
Seasonal and inter-annual climate variability is a major factor in determining the vulnerability of many Pacific Island Countries to climate change and there is need to improve weekly to seasonal range climate prediction capabilities beyond what is currently available from statistical models. In the seasonal climate prediction project under the Australian Government's Pacific Adaptation Strategy Assistance Program (PASAP), we describe a comprehensive project to strengthen the climate prediction capacities in National Meteorological Services in 14 Pacific Island Countries and East Timor. The intent is particularly to reduce the vulnerability of current services to a changing climate, and improve the overall level of information available assist with managing climate variability. Statistical models cannot account for aspects of climate variability and change that are not represented in the historical record. In contrast, dynamical physics-based models implicitly include the effects of a changing climate whatever its character or cause and can predict outcomes not seen previously. The transition from a statistical to a dynamical prediction system provides more valuable and applicable climate information to a wide range of climate sensitive sectors throughout the countries of the Pacific region. In this project, we have developed seasonal climate outlooks which are based upon the current dynamical model POAMA (Predictive Ocean-Atmosphere Model for Australia) seasonal forecast system. At present, meteorological services of the Pacific Island Countries largely employ statistical models for seasonal outlooks. Outcomes of the PASAP project enhanced capabilities of the Pacific Island Countries in seasonal prediction providing National Meteorological Services with an additional tool to analyse meteorological variables such as sea surface temperatures, air temperature, pressure and rainfall using POAMA outputs and prepare more accurate seasonal climate outlooks.
FastSim: A Fast Simulation for the SuperB Detector
NASA Astrophysics Data System (ADS)
Andreassen, R.; Arnaud, N.; Brown, D. N.; Burmistrov, L.; Carlson, J.; Cheng, C.-h.; Di Simone, A.; Gaponenko, I.; Manoni, E.; Perez, A.; Rama, M.; Roberts, D.; Rotondo, M.; Simi, G.; Sokoloff, M.; Suzuki, A.; Walsh, J.
2011-12-01
We have developed a parameterized (fast) simulation for detector optimization and physics reach studies of the proposed SuperB Flavor Factory in Italy. Detector components are modeled as thin sections of planes, cylinders, disks or cones. Particle-material interactions are modeled using simplified cross-sections and formulas. Active detectors are modeled using parameterized response functions. Geometry and response parameters are configured using xml files with a custom-designed schema. Reconstruction algorithms adapted from BaBar are used to build tracks and clusters. Multiple sources of background signals can be merged with primary signals. Pattern recognition errors are modeled statistically by randomly misassigning nearby tracking hits. Standard BaBar analysis tuples are used as an event output. Hadronic B meson pair events can be simulated at roughly 10Hz.
Spatial diffusion of influenza outbreak-related climate factors in Chiang Mai Province, Thailand.
Nakapan, Supachai; Tripathi, Nitin Kumar; Tipdecho, Taravudh; Souris, Marc
2012-10-24
Influenza is one of the most important leading causes of respiratory illness in the countries located in the tropical areas of South East Asia and Thailand. In this study the climate factors associated with influenza incidence in Chiang Mai Province, Northern Thailand, were investigated. Identification of factors responsible for influenza outbreaks and the mapping of potential risk areas in Chiang Mai are long overdue. This work examines the association between yearly climate patterns between 2001 and 2008 and influenza outbreaks in the Chiang Mai Province. The climatic factors included the amount of rainfall, percent of rainy days, relative humidity, maximum, minimum temperatures and temperature difference. The study develops a statistical analysis to quantitatively assess the relationship between climate and influenza outbreaks and then evaluate its suitability for predicting influenza outbreaks. A multiple linear regression technique was used to fit the statistical model. The Inverse Distance Weighted (IDW) interpolation and Geographic Information System (GIS) techniques were used in mapping the spatial diffusion of influenza risk zones. The results show that there is a significance correlation between influenza outbreaks and climate factors for the majority of the studied area. A statistical analysis was conducted to assess the validity of the model comparing model outputs and actual outbreaks.
Statistical machine translation for biomedical text: are we there yet?
Wu, Cuijun; Xia, Fei; Deleger, Louise; Solti, Imre
2011-01-01
In our paper we addressed the research question: "Has machine translation achieved sufficiently high quality to translate PubMed titles for patients?". We analyzed statistical machine translation output for six foreign language - English translation pairs (bi-directionally). We built a high performing in-house system and evaluated its output for each translation pair on large scale both with automated BLEU scores and human judgment. In addition to the in-house system, we also evaluated Google Translate's performance specifically within the biomedical domain. We report high performance for German, French and Spanish -- English bi-directional translation pairs for both Google Translate and our system.
Using luminosity data as a proxy for economic statistics
Chen, Xi
2011-01-01
A pervasive issue in social and environmental research has been how to improve the quality of socioeconomic data in developing countries. Given the shortcomings of standard sources, the present study examines luminosity (measures of nighttime lights visible from space) as a proxy for standard measures of output (gross domestic product). We compare output and luminosity at the country level and at the 1° latitude × 1° longitude grid-cell level for the period 1992–2008. We find that luminosity has informational value for countries with low-quality statistical systems, particularly for those countries with no recent population or economic censuses. PMID:21576474
NASA Technical Reports Server (NTRS)
Manning, Robert M.
2002-01-01
The work presented here formulates the rigorous statistical basis for the correct estimation of communication link SNR of a BPSK, QPSK, and for that matter, any M-ary phase-modulated digital signal from what is known about its statistical behavior at the output of the receiver demodulator. Many methods to accomplish this have been proposed and implemented in the past but all of them are based on tacit and unwarranted assumptions and are thus defective. However, the basic idea is well founded, i.e., the signal at the output of a communications demodulator has convolved within it the prevailing SNR characteristic of the link. The acquisition of the SNR characteristic is of the utmost importance to a communications system that must remain reliable in adverse propagation conditions. This work provides a correct and consistent mathematical basis for the proper statistical 'deconvolution' of the output of a demodulator to yield a measure of the SNR. The use of such techniques will alleviate the need and expense for a separate propagation link to assess the propagation conditions prevailing on the communications link. Furthermore, they are applicable for every situation involving the digital transmission of data over planetary and space communications links.
The Research of Multiple Attenuation Based on Feedback Iteration and Independent Component Analysis
NASA Astrophysics Data System (ADS)
Xu, X.; Tong, S.; Wang, L.
2017-12-01
How to solve the problem of multiple suppression is a difficult problem in seismic data processing. The traditional technology for multiple attenuation is based on the principle of the minimum output energy of the seismic signal, this criterion is based on the second order statistics, and it can't achieve the multiple attenuation when the primaries and multiples are non-orthogonal. In order to solve the above problems, we combine the feedback iteration method based on the wave equation and the improved independent component analysis (ICA) based on high order statistics to suppress the multiple waves. We first use iterative feedback method to predict the free surface multiples of each order. Then, in order to predict multiples from real multiple in amplitude and phase, we design an expanded pseudo multi-channel matching filtering method to get a more accurate matching multiple result. Finally, we present the improved fast ICA algorithm which is based on the maximum non-Gauss criterion of output signal to the matching multiples and get better separation results of the primaries and the multiples. The advantage of our method is that we don't need any priori information to the prediction of the multiples, and can have a better separation result. The method has been applied to several synthetic data generated by finite-difference model technique and the Sigsbee2B model multiple data, the primaries and multiples are non-orthogonal in these models. The experiments show that after three to four iterations, we can get the perfect multiple results. Using our matching method and Fast ICA adaptive multiple subtraction, we can not only effectively preserve the effective wave energy in seismic records, but also can effectively suppress the free surface multiples, especially the multiples related to the middle and deep areas.
Calibration and Data Analysis of the MC-130 Air Balance
NASA Technical Reports Server (NTRS)
Booth, Dennis; Ulbrich, N.
2012-01-01
Design, calibration, calibration analysis, and intended use of the MC-130 air balance are discussed. The MC-130 balance is an 8.0 inch diameter force balance that has two separate internal air flow systems and one external bellows system. The manual calibration of the balance consisted of a total of 1854 data points with both unpressurized and pressurized air flowing through the balance. A subset of 1160 data points was chosen for the calibration data analysis. The regression analysis of the subset was performed using two fundamentally different analysis approaches. First, the data analysis was performed using a recently developed extension of the Iterative Method. This approach fits gage outputs as a function of both applied balance loads and bellows pressures while still allowing the application of the iteration scheme that is used with the Iterative Method. Then, for comparison, the axial force was also analyzed using the Non-Iterative Method. This alternate approach directly fits loads as a function of measured gage outputs and bellows pressures and does not require a load iteration. The regression models used by both the extended Iterative and Non-Iterative Method were constructed such that they met a set of widely accepted statistical quality requirements. These requirements lead to reliable regression models and prevent overfitting of data because they ensure that no hidden near-linear dependencies between regression model terms exist and that only statistically significant terms are included. Finally, a comparison of the axial force residuals was performed. Overall, axial force estimates obtained from both methods show excellent agreement as the differences of the standard deviation of the axial force residuals are on the order of 0.001 % of the axial force capacity.
Statistical benchmark for BosonSampling
NASA Astrophysics Data System (ADS)
Walschaers, Mattia; Kuipers, Jack; Urbina, Juan-Diego; Mayer, Klaus; Tichy, Malte Christopher; Richter, Klaus; Buchleitner, Andreas
2016-03-01
Boson samplers—set-ups that generate complex many-particle output states through the transmission of elementary many-particle input states across a multitude of mutually coupled modes—promise the efficient quantum simulation of a classically intractable computational task, and challenge the extended Church-Turing thesis, one of the fundamental dogmas of computer science. However, as in all experimental quantum simulations of truly complex systems, one crucial problem remains: how to certify that a given experimental measurement record unambiguously results from enforcing the claimed dynamics, on bosons, fermions or distinguishable particles? Here we offer a statistical solution to the certification problem, identifying an unambiguous statistical signature of many-body quantum interference upon transmission across a multimode, random scattering device. We show that statistical analysis of only partial information on the output state allows to characterise the imparted dynamics through particle type-specific features of the emerging interference patterns. The relevant statistical quantifiers are classically computable, define a falsifiable benchmark for BosonSampling, and reveal distinctive features of many-particle quantum dynamics, which go much beyond mere bunching or anti-bunching effects.
Output statistics of laser anemometers in sparsely seeded flows
NASA Technical Reports Server (NTRS)
Edwards, R. V.; Jensen, A. S.
1982-01-01
It is noted that until very recently, research on this topic concentrated on the particle arrival statistics and the influence of the optical parameters on them. Little attention has been paid to the influence of subsequent processing on the measurement statistics. There is also controversy over whether the effects of the particle statistics can be measured. It is shown here that some of the confusion derives from a lack of understanding of the experimental parameters that are to be controlled or known. A rigorous framework is presented for examining the measurement statistics of such systems. To provide examples, two problems are then addressed. The first has to do with a sample and hold processor, the second with what is called a saturable processor. The sample and hold processor converts the output to a continuous signal by holding the last reading until a new one is obtained. The saturable system is one where the maximum processable rate is arrived at by the dead time of some unit in the system. At high particle rates, the processed rate is determined through the dead time.
Updated Model of the Solar Energetic Proton Environment in Space
NASA Astrophysics Data System (ADS)
Jiggens, Piers; Heynderickx, Daniel; Sandberg, Ingmar; Truscott, Pete; Raukunen, Osku; Vainio, Rami
2018-05-01
The Solar Accumulated and Peak Proton and Heavy Ion Radiation Environment (SAPPHIRE) model provides environment specification outputs for all aspects of the Solar Energetic Particle (SEP) environment. The model is based upon a thoroughly cleaned and carefully processed data set. Herein the evolution of the solar proton model is discussed with comparisons to other models and data. This paper discusses the construction of the underlying data set, the modelling methodology, optimisation of fitted flux distributions and extrapolation of model outputs to cover a range of proton energies from 0.1 MeV to 1 GeV. The model provides outputs in terms of mission cumulative fluence, maximum event fluence and peak flux for both solar maximum and solar minimum periods. A new method for describing maximum event fluence and peak flux outputs in terms of 1-in-x-year SPEs is also described. SAPPHIRE proton model outputs are compared with previous models including CREME96, ESP-PSYCHIC and the JPL model. Low energy outputs are compared to SEP data from ACE/EPAM whilst high energy outputs are compared to a new model based on GLEs detected by Neutron Monitors (NMs).
Sequential CFAR detectors using a dead-zone limiter
NASA Astrophysics Data System (ADS)
Tantaratana, Sawasd
1990-09-01
The performances of some proposed sequential constant-false-alarm-rate (CFAR) detectors are evaluated. The observations are passed through a dead-zone limiter, the output of which is -1, 0, or +1, depending on whether the input is less than -c, between -c and c, or greater than c, where c is a constant. The test statistic is the sum of the outputs. The test is performed on a reduced set of data (those with absolute value larger than c), with the test statistic being the sum of the signs of the reduced set of data. Both constant and linear boundaries are considered. Numerical results show a significant reduction of the average number of observations needed to achieve the same false alarm and detection probabilities as a fixed-sample-size CFAR detector using the same kind of test statistic.
NASA Technical Reports Server (NTRS)
Hinrichs, C. A.
1974-01-01
A digital simulation is presented for a candidate modem in a modeled atmospheric scintillation environment with Doppler, Doppler rate, and signal attenuation typical of the radio link conditions for an outer planets atmospheric entry probe. The results indicate that the signal acquisition characteristics and the channel error rate are acceptable for the system requirements of the radio link. The simulation also outputs data for calculating other error statistics and a quantized symbol stream from which error correction decoding can be analyzed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morton, April M; Piburn, Jesse O; McManamay, Ryan A
2017-01-01
Monte Carlo simulation is a popular numerical experimentation technique used in a range of scientific fields to obtain the statistics of unknown random output variables. Despite its widespread applicability, it can be difficult to infer required input probability distributions when they are related to population counts unknown at desired spatial resolutions. To overcome this challenge, we propose a framework that uses a dasymetric model to infer the probability distributions needed for a specific class of Monte Carlo simulations which depend on population counts.
Computational tools for multi-linked flexible structures
NASA Technical Reports Server (NTRS)
Lee, Gordon K. F.; Brubaker, Thomas A.; Shults, James R.
1990-01-01
A software module which designs and tests controllers and filters in Kalman Estimator form, based on a polynomial state-space model is discussed. The user-friendly program employs an interactive graphics approach to simplify the design process. A variety of input methods are provided to test the effectiveness of the estimator. Utilities are provided which address important issues in filter design such as graphical analysis, statistical analysis, and calculation time. The program also provides the user with the ability to save filter parameters, inputs, and outputs for future use.
Uncertainty and variability in computational and mathematical models of cardiac physiology.
Mirams, Gary R; Pathmanathan, Pras; Gray, Richard A; Challenor, Peter; Clayton, Richard H
2016-12-01
Mathematical and computational models of cardiac physiology have been an integral component of cardiac electrophysiology since its inception, and are collectively known as the Cardiac Physiome. We identify and classify the numerous sources of variability and uncertainty in model formulation, parameters and other inputs that arise from both natural variation in experimental data and lack of knowledge. The impact of uncertainty on the outputs of Cardiac Physiome models is not well understood, and this limits their utility as clinical tools. We argue that incorporating variability and uncertainty should be a high priority for the future of the Cardiac Physiome. We suggest investigating the adoption of approaches developed in other areas of science and engineering while recognising unique challenges for the Cardiac Physiome; it is likely that novel methods will be necessary that require engagement with the mathematics and statistics community. The Cardiac Physiome effort is one of the most mature and successful applications of mathematical and computational modelling for describing and advancing the understanding of physiology. After five decades of development, physiological cardiac models are poised to realise the promise of translational research via clinical applications such as drug development and patient-specific approaches as well as ablation, cardiac resynchronisation and contractility modulation therapies. For models to be included as a vital component of the decision process in safety-critical applications, rigorous assessment of model credibility will be required. This White Paper describes one aspect of this process by identifying and classifying sources of variability and uncertainty in models as well as their implications for the application and development of cardiac models. We stress the need to understand and quantify the sources of variability and uncertainty in model inputs, and the impact of model structure and complexity and their consequences for predictive model outputs. We propose that the future of the Cardiac Physiome should include a probabilistic approach to quantify the relationship of variability and uncertainty of model inputs and outputs. © 2016 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Yan; Notaro, Michael; Wang, Fuyao
Generalized equilibrium feedback assessment (GEFA) is a potentially valuable multivariate statistical tool for extracting vegetation feedbacks to the atmosphere in either observations or coupled Earth system models. The reliability of GEFA at capturing the terrestrial impacts on regional climate is demonstrated in this paper using the National Center for Atmospheric Research Community Earth System Model (CESM), with focus on North Africa. The feedback is assessed statistically by applying GEFA to output from a fully coupled control run. To reduce the sampling error caused by short data records, the traditional or full GEFA is refined through stepwise GEFA by dropping unimportantmore » forcings. Two ensembles of dynamical experiments are developed for the Sahel or West African monsoon region against which GEFA-based vegetation feedbacks are evaluated. In these dynamical experiments, regional leaf area index (LAI) is modified either alone or in conjunction with soil moisture, with the latter runs motivated by strong regional soil moisture–LAI coupling. Stepwise GEFA boasts higher consistency between statistically and dynamically assessed atmospheric responses to land surface anomalies than full GEFA, especially with short data records. GEFA-based atmospheric responses are more consistent with the coupled soil moisture–LAI experiments, indicating that GEFA is assessing the combined impacts of coupled vegetation and soil moisture. Finally, both the statistical and dynamical assessments reveal a negative vegetation–rainfall feedback in the Sahel associated with an atmospheric stability mechanism in CESM versus a weaker positive feedback in the West African monsoon region associated with a moisture recycling mechanism in CESM.« less
Yu, Yan; Notaro, Michael; Wang, Fuyao; ...
2018-02-05
Generalized equilibrium feedback assessment (GEFA) is a potentially valuable multivariate statistical tool for extracting vegetation feedbacks to the atmosphere in either observations or coupled Earth system models. The reliability of GEFA at capturing the terrestrial impacts on regional climate is demonstrated in this paper using the National Center for Atmospheric Research Community Earth System Model (CESM), with focus on North Africa. The feedback is assessed statistically by applying GEFA to output from a fully coupled control run. To reduce the sampling error caused by short data records, the traditional or full GEFA is refined through stepwise GEFA by dropping unimportantmore » forcings. Two ensembles of dynamical experiments are developed for the Sahel or West African monsoon region against which GEFA-based vegetation feedbacks are evaluated. In these dynamical experiments, regional leaf area index (LAI) is modified either alone or in conjunction with soil moisture, with the latter runs motivated by strong regional soil moisture–LAI coupling. Stepwise GEFA boasts higher consistency between statistically and dynamically assessed atmospheric responses to land surface anomalies than full GEFA, especially with short data records. GEFA-based atmospheric responses are more consistent with the coupled soil moisture–LAI experiments, indicating that GEFA is assessing the combined impacts of coupled vegetation and soil moisture. Finally, both the statistical and dynamical assessments reveal a negative vegetation–rainfall feedback in the Sahel associated with an atmospheric stability mechanism in CESM versus a weaker positive feedback in the West African monsoon region associated with a moisture recycling mechanism in CESM.« less
NASA Astrophysics Data System (ADS)
Nouri, Milad; Homaee, Mehdi; Bannayan, Mohammad
2017-06-01
This study was undertaken to investigate the reference evapotranspiration (ET0) changes in semi-arid and humid regions of Iran during the past (1966-2010) and future (2011-2099). For detecting possible trend in ET0 over 1966-2010, the Mann-Kendall trend test was employed. The outputs of Hadley Centre coupled model version 3 (HadCM3) and the third generation couple global climate model (CGCM3) under A2, B2, and A1B emission scenarios were also used to simulate the future ET0 changes by statistical downscaling model (SDSM). The results indicated upward trends in annual ET0 during 1966-2010 in the most sites. Furthermore, the significant increasing ET0 trends were identified for 54.5, 18.2, 27.3, 22.7, and 36.3% of studied locations during winter, spring, summer, autumn, and entire year, respectively. Positive trends in ET0 were mostly found in northeast, west, and northwest Iran, and insignificant downward ET0 trends were primarily detected in southwestern and southern stations in 1966-2010. The ET0 changes were attributed to wind speed changes in semi-arid regions and mean temperature changes in humid areas in the past period. An increase in ET0 was projected under all scenarios due mainly to temperature rise and declined relative humidity in the investigated regions from 2011 to 2100. Averaged over all stations, the lowest and highest ET0 increment were, respectively, modeled for autumn and summer using CGCM3 outputs and winter and autumn using HadCM3 outputs. Given significant ET0 increase over the twenty-first century, appropriate adaptive measures are required to reduce negative impacts of climate change on water resources and agricultural productions.
NASA Astrophysics Data System (ADS)
Pham, Minh Tu; Vernieuwe, Hilde; De Baets, Bernard; Verhoest, Niko E. C.
2016-04-01
In this study, the impacts of climate change on future river discharge are evaluated using equiratio CDF-matching and a stochastic copula-based evapotranspiration generator. In recent years, much effort has been dedicated to improve the performances of RCMs outputs, i.e. the downscaled precipitation and temperature, to use in regional studies. However, these outputs usually suffer from bias due to the fact that many important small-scale processes, e.g. the representations of clouds and convection, are not represented explicitly within the models. To solve this problem, several bias correction techniques are developed. In this study, an advanced quantile bias approach called equiratio cumulative distribution function matching (EQCDF) is applied for the outputs from three RCMs for central Belgium, i.e. daily precipitation, temperature and evapotranspiration, for the current (1961-1990) and future climate (2071-2100). The rescaled precipitation and temperature are then used to simulate evapotranspiration via a stochastic copula-based model in which the statistical dependence between evapotranspiration, temperature and precipitation is described by a three-dimensional vine copula. The simulated precipitation and stochastic evapotranspiration are then used to model discharge under present and future climate. To validate, the observations of daily precipitation, temperature and evapotranspiration during 1961 - 1990 in Uccle, Belgium are used. It is found that under current climate, the basic properties of discharge, e.g. mean and frequency distribution, are well modelled; however there is an overestimation of the extreme discharges with return periods higher than 10 years. For the future climate change, compared with historical events, a considerable increase of the discharge magnitude and the number of extreme events is estimated for the studied area in the time period of 2071-2100.
Systems approach to managing educational quality in the engineering classroom
NASA Astrophysics Data System (ADS)
Grygoryev, Kostyantyn
Today's competitive environment in post-secondary education requires universities to demonstrate the quality of their programs in order to attract financing, and student and academic talent. Despite significant efforts devoted to improving the quality of higher education, systematic, continuous performance measurement and management still have not reached the level where educational outputs and outcomes are actually produced---the classroom. An engineering classroom is a complex environment in which educational inputs are transformed by educational processes into educational outputs and outcomes. By treating a classroom as a system, one can apply tools such as Structural Equation Modeling, Statistical Process Control, and System Dynamics in order to discover cause-and-effect relationships among the classroom variables, control the classroom processes, and evaluate the effect of changes to the course organization, content, and delivery, on educational processes and outcomes. Quality improvement is best achieved through the continuous, systematic application of efforts and resources. Improving classroom processes and outcomes is an iterative process that starts with identifying opportunities for improvement, designing the action plan, implementing the changes, and evaluating their effects. Once the desired objectives are achieved, the quality improvement cycle may start again. The goal of this research was to improve the educational processes and outcomes in an undergraduate engineering management course taught at the University of Alberta. The author was involved with the course, first, as a teaching assistant, and, then, as a primary instructor. The data collected from the course over four years were used to create, first, a static and, then, a dynamic model of a classroom system. By using model output and qualitative feedback from students, changes to the course organization and content were introduced. These changes led to a lower perceived course workload and increased the students' satisfaction with the instructor, but the students' overall satisfaction with the course did not change significantly, and their attitude toward the course subject actually became more negative. This research brought performance measurement to the level of a classroom, created a dynamic model of the classroom system based on the cause-and-effect relationships discovered by using statistical analysis, and used a systematic, continuous improvement approach to modify the course in order to improve selected educational processes and outcomes.
NASA Technical Reports Server (NTRS)
Purves, L.; Strang, R. F.; Dube, M. P.; Alea, P.; Ferragut, N.; Hershfeld, D.
1983-01-01
The software and procedures of a system of programs used to generate a report of the statistical correlation between NASTRAN modal analysis results and physical tests results from modal surveys are described. Topics discussed include: a mathematical description of statistical correlation, a user's guide for generating a statistical correlation report, a programmer's guide describing the organization and functions of individual programs leading to a statistical correlation report, and a set of examples including complete listings of programs, and input and output data.
Maximum Likelihood Time-of-Arrival Estimation of Optical Pulses via Photon-Counting Photodetectors
NASA Technical Reports Server (NTRS)
Erkmen, Baris I.; Moision, Bruce E.
2010-01-01
Many optical imaging, ranging, and communications systems rely on the estimation of the arrival time of an optical pulse. Recently, such systems have been increasingly employing photon-counting photodetector technology, which changes the statistics of the observed photocurrent. This requires time-of-arrival estimators to be developed and their performances characterized. The statistics of the output of an ideal photodetector, which are well modeled as a Poisson point process, were considered. An analytical model was developed for the mean-square error of the maximum likelihood (ML) estimator, demonstrating two phenomena that cause deviations from the minimum achievable error at low signal power. An approximation was derived to the threshold at which the ML estimator essentially fails to provide better than a random guess of the pulse arrival time. Comparing the analytic model performance predictions to those obtained via simulations, it was verified that the model accurately predicts the ML performance over all regimes considered. There is little prior art that attempts to understand the fundamental limitations to time-of-arrival estimation from Poisson statistics. This work establishes both a simple mathematical description of the error behavior, and the associated physical processes that yield this behavior. Previous work on mean-square error characterization for ML estimators has predominantly focused on additive Gaussian noise. This work demonstrates that the discrete nature of the Poisson noise process leads to a distinctly different error behavior.
Specifying the ISS Plasma Environment
NASA Technical Reports Server (NTRS)
Minow, Joseph I.; Diekmann, Anne; Neergaard, Linda; Bui, Them; Mikatarian, Ronald; Barsamian, Hagop; Koontz, Steven
2002-01-01
Quantifying the spacecraft charging risks and corresponding hazards for the International Space Station (ISS) requires a plasma environment specification describing the natural variability of ionospheric temperature (Te) and density (Ne). Empirical ionospheric specification and forecast models such as the International Reference Ionosphere (IN) model typically only provide estimates of long term (seasonal) mean Te and Ne values for the low Earth orbit environment. Knowledge of the Te and Ne variability as well as the likelihood of extreme deviations from the mean values are required to estimate both the magnitude and frequency of occurrence of potentially hazardous spacecraft charging environments for a given ISS construction stage and flight configuration. This paper describes the statistical analysis of historical ionospheric low Earth orbit plasma measurements used to estimate Ne, Te variability in the ISS flight environment. The statistical variability analysis of Ne and Te enables calculation of the expected frequency of occurrence of any particular values of Ne and Te, especially those that correspond to possibly hazardous spacecraft charging environments. The database used in the original analysis included measurements from the AE-C, AE-D, and DE-2 satellites. Recent work on the database has added additional satellites to the database and ground based incoherent scatter radar observations as well. Deviations of the data values from the IRI estimated Ne, Te parameters for each data point provide a statistical basis for modeling the deviations of the plasma environment from the IRI model output.
Production cost structure in US outpatient physical therapy health care.
Lubiani, Gregory G; Okunade, Albert A
2013-02-01
This paper investigates the technology cost structure in US physical therapy care. We exploit formal economic theories and a rich national data of providers to tease out implications for operational cost efficiencies. The 2008-2009 dataset comprising over 19 000 bi-weekly, site-specific physical therapy center observations across 28 US states and Occupational Employment Statistics data (Bureau of Labor Statistics) includes measures of output, three labor types (clinical, support, and administrative), and facilities (capital). We discuss findings from the iterative seemingly unrelated regression estimation system model. The generalized translog cost estimates indicate a well-behaved underlying technology structure. We also find the following: (i) factor demands are downwardly sloped; (ii) pair-wise factor relationships largely reflect substitutions; (iii) factor demand for physical therapists is more inelastic compared with that for administrative staff; and (iv) diminishing scale economies exist at the 25%, 50%, and 75% output (patient visits) levels. Our findings advance the timely economic understanding of operations in an increasingly important segment of the medical care sector that has, up-to-now (because of data paucity), been missing from healthcare efficiency analysis. Our work further provides baseline estimates for comparing operational efficiencies in physical therapy care after implementations of the 2010 US healthcare reforms. Copyright © 2012 John Wiley & Sons, Ltd.
The purpose of this report is to describe the outputs of the Data Quality Objectives (DQOs) Process and discussions about developing a statistical design that will be used to implement the research study of recreational beach waters.
STATWIZ - AN ELECTRONIC STATISTICAL TOOL (ABSTRACT)
StatWiz is a web-based, interactive, and dynamic statistical tool for researchers. It will allow researchers to input information and/or data and then receive experimental design options, or outputs from data analysis. StatWiz is envisioned as an expert system that will walk rese...
Forest statistics for West Virginia--1975 and 1989
Dawn M. Di Giovanni; Dawn M. Di Giovanni
1990-01-01
A statistical report on the fourth forest survey of West Virginia (1989). Findings are displayed in 119 tables containing estimates of forest area, number of trees, timber volume, tree biomass, and timber products output. Data are presented at three levels: state, geographic unit, and county.
Ensemble downscaling in coupled solar wind-magnetosphere modeling for space weather forecasting.
Owens, M J; Horbury, T S; Wicks, R T; McGregor, S L; Savani, N P; Xiong, M
2014-06-01
Advanced forecasting of space weather requires simulation of the whole Sun-to-Earth system, which necessitates driving magnetospheric models with the outputs from solar wind models. This presents a fundamental difficulty, as the magnetosphere is sensitive to both large-scale solar wind structures, which can be captured by solar wind models, and small-scale solar wind "noise," which is far below typical solar wind model resolution and results primarily from stochastic processes. Following similar approaches in terrestrial climate modeling, we propose statistical "downscaling" of solar wind model results prior to their use as input to a magnetospheric model. As magnetospheric response can be highly nonlinear, this is preferable to downscaling the results of magnetospheric modeling. To demonstrate the benefit of this approach, we first approximate solar wind model output by smoothing solar wind observations with an 8 h filter, then add small-scale structure back in through the addition of random noise with the observed spectral characteristics. Here we use a very simple parameterization of noise based upon the observed probability distribution functions of solar wind parameters, but more sophisticated methods will be developed in the future. An ensemble of results from the simple downscaling scheme are tested using a model-independent method and shown to add value to the magnetospheric forecast, both improving the best estimate and quantifying the uncertainty. We suggest a number of features desirable in an operational solar wind downscaling scheme. Solar wind models must be downscaled in order to drive magnetospheric models Ensemble downscaling is more effective than deterministic downscaling The magnetosphere responds nonlinearly to small-scale solar wind fluctuations.
NASA Astrophysics Data System (ADS)
Amesbury, Matthew J.; Swindles, Graeme T.; Bobrov, Anatoly; Charman, Dan J.; Holden, Joseph; Lamentowicz, Mariusz; Mallon, Gunnar; Mazei, Yuri; Mitchell, Edward A. D.; Payne, Richard J.; Roland, Thomas P.; Turner, T. Edward; Warner, Barry G.
2016-11-01
In the decade since the first pan-European testate amoeba-based transfer function for peatland palaeohydrological reconstruction was published, a vast amount of additional data collection has been undertaken by the research community. Here, we expand the pan-European dataset from 128 to 1799 samples, spanning 35° of latitude and 55° of longitude. After the development of a new taxonomic scheme to permit compilation of data from a wide range of contributors and the removal of samples with high pH values, we developed ecological transfer functions using a range of model types and a dataset of ∼1300 samples. We rigorously tested the efficacy of these models using both statistical validation and independent test sets with associated instrumental data. Model performance measured by statistical indicators was comparable to other published models. Comparison to test sets showed that taxonomic resolution did not impair model performance and that the new pan-European model can therefore be used as an effective tool for palaeohydrological reconstruction. Our results question the efficacy of relying on statistical validation of transfer functions alone and support a multi-faceted approach to the assessment of new models. We substantiated recent advice that model outputs should be standardised and presented as residual values in order to focus interpretation on secure directional shifts, avoiding potentially inaccurate conclusions relating to specific water-table depths. The extent and diversity of the dataset highlighted that, at the taxonomic resolution applied, a majority of taxa had broad geographic distributions, though some morphotypes appeared to have restricted ranges.
NASA Astrophysics Data System (ADS)
Guse, B.; Sulc, D.; Schmalz, B.; Fohrer, N.
2012-04-01
The European Water Framework Directive (WFD) requires a catchment-based approach, which is assessed in the IMPACT project by combining abiotic and biotic models. The core point of IMPACT is a model chain (catchment model -> 1-D-hydraulic model -> 3-D-hydro-morphodynamic model -> biotic habitat model) with the aim to estimate the occurrence of the target species of the WFD. Firstly, the model chain is developed for the current land use and climate conditions. Secondly, land use and climate change scenarios are developed at the catchment scale. The outputs of the catchment model for the scenarios are used as input for the next models within the model chain to estimate the effect of these changes on the target species. The eco-hydrological catchment model SWAT is applied for the Treene catchment in Northern Germany and delivers discharge and water quality parameters as a spatial explicit output for each subbasin. There is no water level information given by SWAT. However, water level values are needed as lower boundary condition for the hydro-dynamic and habitat models which are applied for the 300 m candidate reference reach. In order to fill the gap between the catchment and the hydro-morphodynamic model, the 1-D hydraulic model HEC-RAS is applied for a 3 km long reach transect from the next upstream hydrological station until the upper bound of the candidate study reach. The channel geometry for HEC-RAS was estimated based on 96 cross-sections which were measured in the IMPACT project. By using available discharge and water level measurements from the hydrological station and own flow velocity measurements, the channel resistence was estimated. HEC-RAS was run with different statistical indices (mean annual drought, mean discharge, …) for steady flow conditions. The rating curve was then constructed for the target cross-section, i.e. the lower bound of the candidate study reach, to fulfill the combining with the hydro- and morphodynamic models. These statistical indices can also be calculated for the discharge series provided by land use and climate scenarios. In this way, the effect of land use and climate change on the catchment and the hydraulic processes can be assessed.
NASA Astrophysics Data System (ADS)
Videau, Laurent; Bar, Emmanuel; Rouyer, Claude; Gouedard, Claude; Garnier, Josselin C.; Migus, Arnold
1999-07-01
We study nonlinear effects in amplification of partially coherent pulses in a high power laser chain. We compare statistical models with experimental results for temporal and spatial effects. First we show the interplay between self-phase modulation which broadens spectrum bandwidth and gain narrowing which reduces output spectrum. Theoretical results are presented for spectral broadening and energy limitation in case of time-incoherent pulses. In a second part, we introduce spatial incoherence with a multimode optical fiber which provides a smoothed beam. We show with experimental result that spatial filter pinholes are responsible for additive energy losses in the amplification. We develop a statistical model which takes into account the deformation of the focused beam as a function of B integral. We estimate the energy transmission of the spatial filter pinholes and compare this model with experimental data. We find a good agreement between theory and experiments. As a conclusion, we present an analogy between temporal and spatial effects with spectral broadening and spectral filter. Finally, we propose some solutions to control energy limitations in smoothed pulses amplification.