Sample records for model parameter calibration

  1. Impact of the calibration period on the conceptual rainfall-runoff model parameter estimates

    NASA Astrophysics Data System (ADS)

    Todorovic, Andrijana; Plavsic, Jasna

    2015-04-01

    A conceptual rainfall-runoff model is defined by its structure and parameters, which are commonly inferred through model calibration. Parameter estimates depend on objective function(s), optimisation method, and calibration period. Model calibration over different periods may result in dissimilar parameter estimates, while model efficiency decreases outside calibration period. Problem of model (parameter) transferability, which conditions reliability of hydrologic simulations, has been investigated for decades. In this paper, dependence of the parameter estimates and model performance on calibration period is analysed. The main question that is addressed is: are there any changes in optimised parameters and model efficiency that can be linked to the changes in hydrologic or meteorological variables (flow, precipitation and temperature)? Conceptual, semi-distributed HBV-light model is calibrated over five-year periods shifted by a year (sliding time windows). Length of the calibration periods is selected to enable identification of all parameters. One water year of model warm-up precedes every simulation, which starts with the beginning of a water year. The model is calibrated using the built-in GAP optimisation algorithm. The objective function used for calibration is composed of Nash-Sutcliffe coefficient for flows and logarithms of flows, and volumetric error, all of which participate in the composite objective function with approximately equal weights. Same prior parameter ranges are used in all simulations. The model is calibrated against flows observed at the Slovac stream gauge on the Kolubara River in Serbia (records from 1954 to 2013). There are no trends in precipitation nor in flows, however, there is a statistically significant increasing trend in temperatures at this catchment. Parameter variability across the calibration periods is quantified in terms of standard deviations of normalised parameters, enabling detection of the most variable parameters. Correlation coefficients among optimised model parameters and total precipitation P, mean temperature T and mean flow Q are calculated to give an insight into parameter dependence on the hydrometeorological drivers. The results reveal high sensitivity of almost all model parameters towards calibration period. The highest variability is displayed by the refreezing coefficient, water holding capacity, and temperature gradient. The only statistically significant (decreasing) trend is detected in the evapotranspiration reduction threshold. Statistically significant correlation is detected between the precipitation gradient and precipitation depth, and between the time-area histogram base and flows. All other correlations are not statistically significant, implying that changes in optimised parameters cannot generally be linked to the changes in P, T or Q. As for the model performance, the model reproduces the observed runoff satisfactorily, though the runoff is slightly overestimated in wet periods. The Nash-Sutcliffe efficiency coefficient (NSE) ranges from 0.44 to 0.79. Higher NSE values are obtained over wetter periods, what is supported by statistically significant correlation between NSE and flows. Overall, no systematic variations in parameters or in model performance are detected. Parameter variability may therefore rather be attributed to errors in data or inadequacies in the model structure. Further research is required to examine the impact of the calibration strategy or model structure on the variability in optimised parameters in time.

  2. Estimation of k-ε parameters using surrogate models and jet-in-crossflow data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lefantzi, Sophia; Ray, Jaideep; Arunajatesan, Srinivasan

    2014-11-01

    We demonstrate a Bayesian method that can be used to calibrate computationally expensive 3D RANS (Reynolds Av- eraged Navier Stokes) models with complex response surfaces. Such calibrations, conditioned on experimental data, can yield turbulence model parameters as probability density functions (PDF), concisely capturing the uncertainty in the parameter estimates. Methods such as Markov chain Monte Carlo (MCMC) estimate the PDF by sampling, with each sample requiring a run of the RANS model. Consequently a quick-running surrogate is used instead to the RANS simulator. The surrogate can be very difficult to design if the model's response i.e., the dependence of themore » calibration variable (the observable) on the parameter being estimated is complex. We show how the training data used to construct the surrogate can be employed to isolate a promising and physically realistic part of the parameter space, within which the response is well-behaved and easily modeled. We design a classifier, based on treed linear models, to model the "well-behaved region". This classifier serves as a prior in a Bayesian calibration study aimed at estimating 3 k - ε parameters ( C μ, C ε2 , C ε1 ) from experimental data of a transonic jet-in-crossflow interaction. The robustness of the calibration is investigated by checking its predictions of variables not included in the cal- ibration data. We also check the limit of applicability of the calibration by testing at off-calibration flow regimes. We find that calibration yield turbulence model parameters which predict the flowfield far better than when the nomi- nal values of the parameters are used. Substantial improvements are still obtained when we use the calibrated RANS model to predict jet-in-crossflow at Mach numbers and jet strengths quite different from those used to generate the ex- perimental (calibration) data. Thus the primary reason for poor predictive skill of RANS, when using nominal values of the turbulence model parameters, was parametric uncertainty, which was rectified by calibration. Post-calibration, the dominant contribution to model inaccuraries are due to the structural errors in RANS.« less

  3. Effects of temporal and spatial resolution of calibration data on integrated hydrologic water quality model identification

    NASA Astrophysics Data System (ADS)

    Jiang, Sanyuan; Jomaa, Seifeddine; Büttner, Olaf; Rode, Michael

    2014-05-01

    Hydrological water quality modeling is increasingly used for investigating runoff and nutrient transport processes as well as watershed management but it is mostly unclear how data availablity determins model identification. In this study, the HYPE (HYdrological Predictions for the Environment) model, which is a process-based, semi-distributed hydrological water quality model, was applied in two different mesoscale catchments (Selke (463 km2) and Weida (99 km2)) located in central Germany to simulate discharge and inorganic nitrogen (IN) transport. PEST and DREAM(ZS) were combined with the HYPE model to conduct parameter calibration and uncertainty analysis. Split-sample test was used for model calibration (1994-1999) and validation (1999-2004). IN concentration and daily IN load were found to be highly correlated with discharge, indicating that IN leaching is mainly controlled by runoff. Both dynamics and balances of water and IN load were well captured with NSE greater than 0.83 during validation period. Multi-objective calibration (calibrating hydrological and water quality parameters simultaneously) was found to outperform step-wise calibration in terms of model robustness. Multi-site calibration was able to improve model performance at internal sites, decrease parameter posterior uncertainty and prediction uncertainty. Nitrogen-process parameters calibrated using continuous daily averages of nitrate-N concentration observations produced better and more robust simulations of IN concentration and load, lower posterior parameter uncertainty and IN concentration prediction uncertainty compared to the calibration against uncontinuous biweekly nitrate-N concentration measurements. Both PEST and DREAM(ZS) are efficient in parameter calibration. However, DREAM(ZS) is more sound in terms of parameter identification and uncertainty analysis than PEST because of its capability to evolve parameter posterior distributions and estimate prediction uncertainty based on global search and Bayesian inference schemes.

  4. Calibration of sea ice dynamic parameters in an ocean-sea ice model using an ensemble Kalman filter

    NASA Astrophysics Data System (ADS)

    Massonnet, F.; Goosse, H.; Fichefet, T.; Counillon, F.

    2014-07-01

    The choice of parameter values is crucial in the course of sea ice model development, since parameters largely affect the modeled mean sea ice state. Manual tuning of parameters will soon become impractical, as sea ice models will likely include more parameters to calibrate, leading to an exponential increase of the number of possible combinations to test. Objective and automatic methods for parameter calibration are thus progressively called on to replace the traditional heuristic, "trial-and-error" recipes. Here a method for calibration of parameters based on the ensemble Kalman filter is implemented, tested and validated in the ocean-sea ice model NEMO-LIM3. Three dynamic parameters are calibrated: the ice strength parameter P*, the ocean-sea ice drag parameter Cw, and the atmosphere-sea ice drag parameter Ca. In twin, perfect-model experiments, the default parameter values are retrieved within 1 year of simulation. Using 2007-2012 real sea ice drift data, the calibration of the ice strength parameter P* and the oceanic drag parameter Cw improves clearly the Arctic sea ice drift properties. It is found that the estimation of the atmospheric drag Ca is not necessary if P* and Cw are already estimated. The large reduction in the sea ice speed bias with calibrated parameters comes with a slight overestimation of the winter sea ice areal export through Fram Strait and a slight improvement in the sea ice thickness distribution. Overall, the estimation of parameters with the ensemble Kalman filter represents an encouraging alternative to manual tuning for ocean-sea ice models.

  5. METHODOLOGIES FOR CALIBRATION AND PREDICTIVE ANALYSIS OF A WATERSHED MODEL

    EPA Science Inventory

    The use of a fitted-parameter watershed model to address water quantity and quality management issues requires that it be calibrated under a wide range of hydrologic conditions. However, rarely does model calibration result in a unique parameter set. Parameter nonuniqueness can l...

  6. When to Make Mountains out of Molehills: The Pros and Cons of Simple and Complex Model Calibration Procedures

    NASA Astrophysics Data System (ADS)

    Smith, K. A.; Barker, L. J.; Harrigan, S.; Prudhomme, C.; Hannaford, J.; Tanguy, M.; Parry, S.

    2017-12-01

    Earth and environmental models are relied upon to investigate system responses that cannot otherwise be examined. In simulating physical processes, models have adjustable parameters which may, or may not, have a physical meaning. Determining the values to assign to these model parameters is an enduring challenge for earth and environmental modellers. Selecting different error metrics by which the models results are compared to observations will lead to different sets of calibrated model parameters, and thus different model results. Furthermore, models may exhibit `equifinal' behaviour, where multiple combinations of model parameters lead to equally acceptable model performance against observations. These decisions in model calibration introduce uncertainty that must be considered when model results are used to inform environmental decision-making. This presentation focusses on the uncertainties that derive from the calibration of a four parameter lumped catchment hydrological model (GR4J). The GR models contain an inbuilt automatic calibration algorithm that can satisfactorily calibrate against four error metrics in only a few seconds. However, a single, deterministic model result does not provide information on parameter uncertainty. Furthermore, a modeller interested in extreme events, such as droughts, may wish to calibrate against more low flows specific error metrics. In a comprehensive assessment, the GR4J model has been run with 500,000 Latin Hypercube Sampled parameter sets across 303 catchments in the United Kingdom. These parameter sets have been assessed against six error metrics, including two drought specific metrics. This presentation compares the two approaches, and demonstrates that the inbuilt automatic calibration can outperform the Latin Hypercube experiment approach in single metric assessed performance. However, it is also shown that there are many merits of the more comprehensive assessment, which allows for probabilistic model results, multi-objective optimisation, and better tailoring to calibrate the model for specific applications such as drought event characterisation. Modellers and decision-makers may be constrained in their choice of calibration method, so it is important that they recognise the strengths and limitations of their chosen approach.

  7. Nitrous oxide emissions from cropland: a procedure for calibrating the DayCent biogeochemical model using inverse modelling

    USGS Publications Warehouse

    Rafique, Rashad; Fienen, Michael N.; Parkin, Timothy B.; Anex, Robert P.

    2013-01-01

    DayCent is a biogeochemical model of intermediate complexity widely used to simulate greenhouse gases (GHG), soil organic carbon and nutrients in crop, grassland, forest and savannah ecosystems. Although this model has been applied to a wide range of ecosystems, it is still typically parameterized through a traditional “trial and error” approach and has not been calibrated using statistical inverse modelling (i.e. algorithmic parameter estimation). The aim of this study is to establish and demonstrate a procedure for calibration of DayCent to improve estimation of GHG emissions. We coupled DayCent with the parameter estimation (PEST) software for inverse modelling. The PEST software can be used for calibration through regularized inversion as well as model sensitivity and uncertainty analysis. The DayCent model was analysed and calibrated using N2O flux data collected over 2 years at the Iowa State University Agronomy and Agricultural Engineering Research Farms, Boone, IA. Crop year 2003 data were used for model calibration and 2004 data were used for validation. The optimization of DayCent model parameters using PEST significantly reduced model residuals relative to the default DayCent parameter values. Parameter estimation improved the model performance by reducing the sum of weighted squared residual difference between measured and modelled outputs by up to 67 %. For the calibration period, simulation with the default model parameter values underestimated mean daily N2O flux by 98 %. After parameter estimation, the model underestimated the mean daily fluxes by 35 %. During the validation period, the calibrated model reduced sum of weighted squared residuals by 20 % relative to the default simulation. Sensitivity analysis performed provides important insights into the model structure providing guidance for model improvement.

  8. Calibration of a flexible measurement system based on industrial articulated robot and structured light sensor

    NASA Astrophysics Data System (ADS)

    Mu, Nan; Wang, Kun; Xie, Zexiao; Ren, Ping

    2017-05-01

    To realize online rapid measurement for complex workpieces, a flexible measurement system based on an articulated industrial robot with a structured light sensor mounted on the end-effector is developed. A method for calibrating the system parameters is proposed in which the hand-eye transformation parameters and the robot kinematic parameters are synthesized in the calibration process. An initial hand-eye calibration is first performed using a standard sphere as the calibration target. By applying the modified complete and parametrically continuous method, we establish a synthesized kinematic model that combines the initial hand-eye transformation and distal link parameters as a whole with the sensor coordinate system as the tool frame. According to the synthesized kinematic model, an error model is constructed based on spheres' center-to-center distance errors. Consequently, the error model parameters can be identified in a calibration experiment using a three-standard-sphere target. Furthermore, the redundancy of error model parameters is eliminated to ensure the accuracy and robustness of the parameter identification. Calibration and measurement experiments are carried out based on an ER3A-C60 robot. The experimental results show that the proposed calibration method enjoys high measurement accuracy, and this efficient and flexible system is suitable for online measurement in industrial scenes.

  9. Using Active Learning for Speeding up Calibration in Simulation Models.

    PubMed

    Cevik, Mucahit; Ergun, Mehmet Ali; Stout, Natasha K; Trentham-Dietz, Amy; Craven, Mark; Alagoz, Oguzhan

    2016-07-01

    Most cancer simulation models include unobservable parameters that determine disease onset and tumor growth. These parameters play an important role in matching key outcomes such as cancer incidence and mortality, and their values are typically estimated via a lengthy calibration procedure, which involves evaluating a large number of combinations of parameter values via simulation. The objective of this study is to demonstrate how machine learning approaches can be used to accelerate the calibration process by reducing the number of parameter combinations that are actually evaluated. Active learning is a popular machine learning method that enables a learning algorithm such as artificial neural networks to interactively choose which parameter combinations to evaluate. We developed an active learning algorithm to expedite the calibration process. Our algorithm determines the parameter combinations that are more likely to produce desired outputs and therefore reduces the number of simulation runs performed during calibration. We demonstrate our method using the previously developed University of Wisconsin breast cancer simulation model (UWBCS). In a recent study, calibration of the UWBCS required the evaluation of 378 000 input parameter combinations to build a race-specific model, and only 69 of these combinations produced results that closely matched observed data. By using the active learning algorithm in conjunction with standard calibration methods, we identify all 69 parameter combinations by evaluating only 5620 of the 378 000 combinations. Machine learning methods hold potential in guiding model developers in the selection of more promising parameter combinations and hence speeding up the calibration process. Applying our machine learning algorithm to one model shows that evaluating only 1.49% of all parameter combinations would be sufficient for the calibration. © The Author(s) 2015.

  10. Using Active Learning for Speeding up Calibration in Simulation Models

    PubMed Central

    Cevik, Mucahit; Ali Ergun, Mehmet; Stout, Natasha K.; Trentham-Dietz, Amy; Craven, Mark; Alagoz, Oguzhan

    2015-01-01

    Background Most cancer simulation models include unobservable parameters that determine the disease onset and tumor growth. These parameters play an important role in matching key outcomes such as cancer incidence and mortality and their values are typically estimated via lengthy calibration procedure, which involves evaluating large number of combinations of parameter values via simulation. The objective of this study is to demonstrate how machine learning approaches can be used to accelerate the calibration process by reducing the number of parameter combinations that are actually evaluated. Methods Active learning is a popular machine learning method that enables a learning algorithm such as artificial neural networks to interactively choose which parameter combinations to evaluate. We develop an active learning algorithm to expedite the calibration process. Our algorithm determines the parameter combinations that are more likely to produce desired outputs, therefore reduces the number of simulation runs performed during calibration. We demonstrate our method using previously developed University of Wisconsin Breast Cancer Simulation Model (UWBCS). Results In a recent study, calibration of the UWBCS required the evaluation of 378,000 input parameter combinations to build a race-specific model and only 69 of these combinations produced results that closely matched observed data. By using the active learning algorithm in conjunction with standard calibration methods, we identify all 69 parameter combinations by evaluating only 5620 of the 378,000 combinations. Conclusion Machine learning methods hold potential in guiding model developers in the selection of more promising parameter combinations and hence speeding up the calibration process. Applying our machine learning algorithm to one model shows that evaluating only 1.49% of all parameter combinations would be sufficient for the calibration. PMID:26471190

  11. The benefits of using remotely sensed soil moisture in parameter identification of large-scale hydrological models

    NASA Astrophysics Data System (ADS)

    Karssenberg, D.; Wanders, N.; de Roo, A.; de Jong, S.; Bierkens, M. F.

    2013-12-01

    Large-scale hydrological models are nowadays mostly calibrated using observed discharge. As a result, a large part of the hydrological system that is not directly linked to discharge, in particular the unsaturated zone, remains uncalibrated, or might be modified unrealistically. Soil moisture observations from satellites have the potential to fill this gap, as these provide the closest thing to a direct measurement of the state of the unsaturated zone, and thus are potentially useful in calibrating unsaturated zone model parameters. This is expected to result in a better identification of the complete hydrological system, potentially leading to improved forecasts of the hydrograph as well. Here we evaluate this added value of remotely sensed soil moisture in calibration of large-scale hydrological models by addressing two research questions: 1) Which parameters of hydrological models can be identified by calibration with remotely sensed soil moisture? 2) Does calibration with remotely sensed soil moisture lead to an improved calibration of hydrological models compared to approaches that calibrate only with discharge, such that this leads to improved forecasts of soil moisture content and discharge as well? To answer these questions we use a dual state and parameter ensemble Kalman filter to calibrate the hydrological model LISFLOOD for the Upper Danube area. Calibration is done with discharge and remotely sensed soil moisture acquired by AMSR-E, SMOS and ASCAT. Four scenarios are studied: no calibration (expert knowledge), calibration on discharge, calibration on remote sensing data (three satellites) and calibration on both discharge and remote sensing data. Using a split-sample approach, the model is calibrated for a period of 2 years and validated for the calibrated model parameters on a validation period of 10 years. Results show that calibration with discharge data improves the estimation of groundwater parameters (e.g., groundwater reservoir constant) and routing parameters. Calibration with only remotely sensed soil moisture results in an accurate calibration of parameters related to land surface process (e.g., the saturated conductivity of the soil), which is not possible when calibrating on discharge alone. For the upstream area up to 40000 km2, calibration on both discharge and soil moisture results in a reduction by 10-30 % in the RMSE for discharge simulations, compared to calibration on discharge alone. For discharge in the downstream area, the model performance due to assimilation of remotely sensed soil moisture is not increased or slightly decreased, most probably due to the longer relative importance of the routing and contribution of groundwater in downstream areas. When microwave soil moisture is used for calibration the RMSE of soil moisture simulations decreases from 0.072 m3m-3 to 0.062 m3m-3. The conclusion is that remotely sensed soil moisture holds potential for calibration of hydrological models leading to a better simulation of soil moisture content throughout and a better simulation of discharge in upstream areas, particularly if discharge observations are sparse.

  12. Automatic Calibration of a Semi-Distributed Hydrologic Model Using Particle Swarm Optimization

    NASA Astrophysics Data System (ADS)

    Bekele, E. G.; Nicklow, J. W.

    2005-12-01

    Hydrologic simulation models need to be calibrated and validated before using them for operational predictions. Spatially-distributed hydrologic models generally have a large number of parameters to capture the various physical characteristics of a hydrologic system. Manual calibration of such models is a very tedious and daunting task, and its success depends on the subjective assessment of a particular modeler, which includes knowledge of the basic approaches and interactions in the model. In order to alleviate these shortcomings, an automatic calibration model, which employs an evolutionary optimization technique known as Particle Swarm Optimizer (PSO) for parameter estimation, is developed. PSO is a heuristic search algorithm that is inspired by social behavior of bird flocking or fish schooling. The newly-developed calibration model is integrated to the U.S. Department of Agriculture's Soil and Water Assessment Tool (SWAT). SWAT is a physically-based, semi-distributed hydrologic model that was developed to predict the long term impacts of land management practices on water, sediment and agricultural chemical yields in large complex watersheds with varying soils, land use, and management conditions. SWAT was calibrated for streamflow and sediment concentration. The calibration process involves parameter specification, whereby sensitive model parameters are identified, and parameter estimation. In order to reduce the number of parameters to be calibrated, parameterization was performed. The methodology is applied to a demonstration watershed known as Big Creek, which is located in southern Illinois. Application results show the effectiveness of the approach and model predictions are significantly improved.

  13. Utilization of Expert Knowledge in a Multi-Objective Hydrologic Model Automatic Calibration Process

    NASA Astrophysics Data System (ADS)

    Quebbeman, J.; Park, G. H.; Carney, S.; Day, G. N.; Micheletty, P. D.

    2016-12-01

    Spatially distributed continuous simulation hydrologic models have a large number of parameters for potential adjustment during the calibration process. Traditional manual calibration approaches of such a modeling system is extremely laborious, which has historically motivated the use of automatic calibration procedures. With a large selection of model parameters, achieving high degrees of objective space fitness - measured with typical metrics such as Nash-Sutcliffe, Kling-Gupta, RMSE, etc. - can easily be achieved using a range of evolutionary algorithms. A concern with this approach is the high degree of compensatory calibration, with many similarly performing solutions, and yet grossly varying parameter set solutions. To help alleviate this concern, and mimic manual calibration processes, expert knowledge is proposed for inclusion within the multi-objective functions, which evaluates the parameter decision space. As a result, Pareto solutions are identified with high degrees of fitness, but also create parameter sets that maintain and utilize available expert knowledge resulting in more realistic and consistent solutions. This process was tested using the joint SNOW-17 and Sacramento Soil Moisture Accounting method (SAC-SMA) within the Animas River basin in Colorado. Three different elevation zones, each with a range of parameters, resulted in over 35 model parameters simultaneously calibrated. As a result, high degrees of fitness were achieved, in addition to the development of more realistic and consistent parameter sets such as those typically achieved during manual calibration procedures.

  14. Stand level height-diameter mixed effects models: parameters fitted using loblolly pine but calibrated for sweetgum

    Treesearch

    Curtis L. Vanderschaaf

    2008-01-01

    Mixed effects models can be used to obtain site-specific parameters through the use of model calibration that often produces better predictions of independent data. This study examined whether parameters of a mixed effect height-diameter model estimated using loblolly pine plantation data but calibrated using sweetgum plantation data would produce reasonable...

  15. A new methodology based on sensitivity analysis to simplify the recalibration of functional-structural plant models in new conditions.

    PubMed

    Mathieu, Amélie; Vidal, Tiphaine; Jullien, Alexandra; Wu, QiongLi; Chambon, Camille; Bayol, Benoit; Cournède, Paul-Henry

    2018-06-19

    Functional-structural plant models (FSPMs) describe explicitly the interactions between plants and their environment at organ to plant scale. However, the high level of description of the structure or model mechanisms makes this type of model very complex and hard to calibrate. A two-step methodology to facilitate the calibration process is proposed here. First, a global sensitivity analysis method was applied to the calibration loss function. It provided first-order and total-order sensitivity indexes that allow parameters to be ranked by importance in order to select the most influential ones. Second, the Akaike information criterion (AIC) was used to quantify the model's quality of fit after calibration with different combinations of selected parameters. The model with the lowest AIC gives the best combination of parameters to select. This methodology was validated by calibrating the model on an independent data set (same cultivar, another year) with the parameters selected in the second step. All the parameters were set to their nominal value; only the most influential ones were re-estimated. Sensitivity analysis applied to the calibration loss function is a relevant method to underline the most significant parameters in the estimation process. For the studied winter oilseed rape model, 11 out of 26 estimated parameters were selected. Then, the model could be recalibrated for a different data set by re-estimating only three parameters selected with the model selection method. Fitting only a small number of parameters dramatically increases the efficiency of recalibration, increases the robustness of the model and helps identify the principal sources of variation in varying environmental conditions. This innovative method still needs to be more widely validated but already gives interesting avenues to improve the calibration of FSPMs.

  16. Integrating satellite actual evapotranspiration patterns into distributed model parametrization and evaluation for a mesoscale catchment

    NASA Astrophysics Data System (ADS)

    Demirel, M. C.; Mai, J.; Stisen, S.; Mendiguren González, G.; Koch, J.; Samaniego, L. E.

    2016-12-01

    Distributed hydrologic models are traditionally calibrated and evaluated against observations of streamflow. Spatially distributed remote sensing observations offer a great opportunity to enhance spatial model calibration schemes. For that it is important to identify the model parameters that can change spatial patterns before the satellite based hydrologic model calibration. Our study is based on two main pillars: first we use spatial sensitivity analysis to identify the key parameters controlling the spatial distribution of actual evapotranspiration (AET). Second, we investigate the potential benefits of incorporating spatial patterns from MODIS data to calibrate the mesoscale Hydrologic Model (mHM). This distributed model is selected as it allows for a change in the spatial distribution of key soil parameters through the calibration of pedo-transfer function parameters and includes options for using fully distributed daily Leaf Area Index (LAI) directly as input. In addition the simulated AET can be estimated at the spatial resolution suitable for comparison to the spatial patterns observed using MODIS data. We introduce a new dynamic scaling function employing remotely sensed vegetation to downscale coarse reference evapotranspiration. In total, 17 parameters of 47 mHM parameters are identified using both sequential screening and Latin hypercube one-at-a-time sampling methods. The spatial patterns are found to be sensitive to the vegetation parameters whereas streamflow dynamics are sensitive to the PTF parameters. The results of multi-objective model calibration show that calibration of mHM against observed streamflow does not reduce the spatial errors in AET while they improve only the streamflow simulations. We will further examine the results of model calibration using only multi spatial objective functions measuring the association between observed AET and simulated AET maps and another case including spatial and streamflow metrics together.

  17. Management of groundwater in-situ bioremediation system using reactive transport modelling under parametric uncertainty: field scale application

    NASA Astrophysics Data System (ADS)

    Verardo, E.; Atteia, O.; Rouvreau, L.

    2015-12-01

    In-situ bioremediation is a commonly used remediation technology to clean up the subsurface of petroleum-contaminated sites. Forecasting remedial performance (in terms of flux and mass reduction) is a challenge due to uncertainties associated with source properties and the uncertainties associated with contribution and efficiency of concentration reducing mechanisms. In this study, predictive uncertainty analysis of bio-remediation system efficiency is carried out with the null-space Monte Carlo (NSMC) method which combines the calibration solution-space parameters with the ensemble of null-space parameters, creating sets of calibration-constrained parameters for input to follow-on remedial efficiency. The first step in the NSMC methodology for uncertainty analysis is model calibration. The model calibration was conducted by matching simulated BTEX concentration to a total of 48 observations from historical data before implementation of treatment. Two different bio-remediation designs were then implemented in the calibrated model. The first consists in pumping/injection wells and the second in permeable barrier coupled with infiltration across slotted piping. The NSMC method was used to calculate 1000 calibration-constrained parameter sets for the two different models. Several variants of the method were implemented to investigate their effect on the efficiency of the NSMC method. The first variant implementation of the NSMC is based on a single calibrated model. In the second variant, models were calibrated from different initial parameter sets. NSMC calibration-constrained parameter sets were sampled from these different calibrated models. We demonstrate that in context of nonlinear model, second variant avoids to underestimate parameter uncertainty which may lead to a poor quantification of predictive uncertainty. Application of the proposed approach to manage bioremediation of groundwater in a real site shows that it is effective to provide support in management of the in-situ bioremediation systems. Moreover, this study demonstrates that the NSMC method provides a computationally efficient and practical methodology of utilizing model predictive uncertainty methods in environmental management.

  18. The benefits of using remotely sensed soil moisture in parameter identification of large-scale hydrological models

    NASA Astrophysics Data System (ADS)

    Wanders, N.; Bierkens, M. F. P.; de Jong, S. M.; de Roo, A.; Karssenberg, D.

    2014-08-01

    Large-scale hydrological models are nowadays mostly calibrated using observed discharge. As a result, a large part of the hydrological system, in particular the unsaturated zone, remains uncalibrated. Soil moisture observations from satellites have the potential to fill this gap. Here we evaluate the added value of remotely sensed soil moisture in calibration of large-scale hydrological models by addressing two research questions: (1) Which parameters of hydrological models can be identified by calibration with remotely sensed soil moisture? (2) Does calibration with remotely sensed soil moisture lead to an improved calibration of hydrological models compared to calibration based only on discharge observations, such that this leads to improved simulations of soil moisture content and discharge? A dual state and parameter Ensemble Kalman Filter is used to calibrate the hydrological model LISFLOOD for the Upper Danube. Calibration is done using discharge and remotely sensed soil moisture acquired by AMSR-E, SMOS, and ASCAT. Calibration with discharge data improves the estimation of groundwater and routing parameters. Calibration with only remotely sensed soil moisture results in an accurate identification of parameters related to land-surface processes. For the Upper Danube upstream area up to 40,000 km2, calibration on both discharge and soil moisture results in a reduction by 10-30% in the RMSE for discharge simulations, compared to calibration on discharge alone. The conclusion is that remotely sensed soil moisture holds potential for calibration of hydrological models, leading to a better simulation of soil moisture content throughout the catchment and a better simulation of discharge in upstream areas. This article was corrected on 15 SEP 2014. See the end of the full text for details.

  19. A multi-objective approach to improve SWAT model calibration in alpine catchments

    NASA Astrophysics Data System (ADS)

    Tuo, Ye; Marcolini, Giorgia; Disse, Markus; Chiogna, Gabriele

    2018-04-01

    Multi-objective hydrological model calibration can represent a valuable solution to reduce model equifinality and parameter uncertainty. The Soil and Water Assessment Tool (SWAT) model is widely applied to investigate water quality and water management issues in alpine catchments. However, the model calibration is generally based on discharge records only, and most of the previous studies have defined a unique set of snow parameters for an entire basin. Only a few studies have considered snow observations to validate model results or have taken into account the possible variability of snow parameters for different subbasins. This work presents and compares three possible calibration approaches. The first two procedures are single-objective calibration procedures, for which all parameters of the SWAT model were calibrated according to river discharge alone. Procedures I and II differ from each other by the assumption used to define snow parameters: The first approach assigned a unique set of snow parameters to the entire basin, whereas the second approach assigned different subbasin-specific sets of snow parameters to each subbasin. The third procedure is a multi-objective calibration, in which we considered snow water equivalent (SWE) information at two different spatial scales (i.e. subbasin and elevation band), in addition to discharge measurements. We tested these approaches in the Upper Adige river basin where a dense network of snow depth measurement stations is available. Only the set of parameters obtained with this multi-objective procedure provided an acceptable prediction of both river discharge and SWE. These findings offer the large community of SWAT users a strategy to improve SWAT modeling in alpine catchments.

  20. Calibration by Hydrological Response Unit of a National Hydrologic Model to Improve Spatial Representation and Distribution of Parameters

    NASA Astrophysics Data System (ADS)

    Norton, P. A., II

    2015-12-01

    The U. S. Geological Survey is developing a National Hydrologic Model (NHM) to support consistent hydrologic modeling across the conterminous United States (CONUS). The Precipitation-Runoff Modeling System (PRMS) simulates daily hydrologic and energy processes in watersheds, and is used for the NHM application. For PRMS each watershed is divided into hydrologic response units (HRUs); by default each HRU is assumed to have a uniform hydrologic response. The Geospatial Fabric (GF) is a database containing initial parameter values for input to PRMS and was created for the NHM. The parameter values in the GF were derived from datasets that characterize the physical features of the entire CONUS. The NHM application is composed of more than 100,000 HRUs from the GF. Selected parameter values commonly are adjusted by basin in PRMS using an automated calibration process based on calibration targets, such as streamflow. Providing each HRU with distinct values that captures variability within the CONUS may improve simulation performance of the NHM. During calibration of the NHM by HRU, selected parameter values are adjusted for PRMS based on calibration targets, such as streamflow, snow water equivalent (SWE) and actual evapotranspiration (AET). Simulated SWE, AET, and runoff were compared to value ranges derived from multiple sources (e.g. the Snow Data Assimilation System, the Moderate Resolution Imaging Spectroradiometer (i.e. MODIS) Global Evapotranspiration Project, the Simplified Surface Energy Balance model, and the Monthly Water Balance Model). This provides each HRU with a distinct set of parameter values that captures the variability within the CONUS, leading to improved model performance. We present simulation results from the NHM after preliminary calibration, including the results of basin-level calibration for the NHM using: 1) default initial GF parameter values, and 2) parameter values calibrated by HRU.

  1. Generator Dynamic Model Validation and Parameter Calibration Using Phasor Measurements at the Point of Connection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Zhenyu; Du, Pengwei; Kosterev, Dmitry

    2013-05-01

    Disturbance data recorded by phasor measurement units (PMU) offers opportunities to improve the integrity of dynamic models. However, manually tuning parameters through play-back events demands significant efforts and engineering experiences. In this paper, a calibration method using the extended Kalman filter (EKF) technique is proposed. The formulation of EKF with parameter calibration is discussed. Case studies are presented to demonstrate its validity. The proposed calibration method is cost-effective, complementary to traditional equipment testing for improving dynamic model quality.

  2. An Open-Source Auto-Calibration Routine Supporting the Stormwater Management Model

    NASA Astrophysics Data System (ADS)

    Tiernan, E. D.; Hodges, B. R.

    2017-12-01

    The stormwater management model (SWMM) is a clustered model that relies on subcatchment-averaged parameter assignments to correctly capture catchment stormwater runoff behavior. Model calibration is considered a critical step for SWMM performance, an arduous task that most stormwater management designers undertake manually. This research presents an open-source, automated calibration routine that increases the efficiency and accuracy of the model calibration process. The routine makes use of a preliminary sensitivity analysis to reduce the dimensions of the parameter space, at which point a multi-objective function, genetic algorithm (modified Non-dominated Sorting Genetic Algorithm II) determines the Pareto front for the objective functions within the parameter space. The solutions on this Pareto front represent the optimized parameter value sets for the catchment behavior that could not have been reasonably obtained through manual calibration.

  3. Parameter estimation for groundwater models under uncertain irrigation data

    USGS Publications Warehouse

    Demissie, Yonas; Valocchi, Albert J.; Cai, Ximing; Brozovic, Nicholas; Senay, Gabriel; Gebremichael, Mekonnen

    2015-01-01

    The success of modeling groundwater is strongly influenced by the accuracy of the model parameters that are used to characterize the subsurface system. However, the presence of uncertainty and possibly bias in groundwater model source/sink terms may lead to biased estimates of model parameters and model predictions when the standard regression-based inverse modeling techniques are used. This study first quantifies the levels of bias in groundwater model parameters and predictions due to the presence of errors in irrigation data. Then, a new inverse modeling technique called input uncertainty weighted least-squares (IUWLS) is presented for unbiased estimation of the parameters when pumping and other source/sink data are uncertain. The approach uses the concept of generalized least-squares method with the weight of the objective function depending on the level of pumping uncertainty and iteratively adjusted during the parameter optimization process. We have conducted both analytical and numerical experiments, using irrigation pumping data from the Republican River Basin in Nebraska, to evaluate the performance of ordinary least-squares (OLS) and IUWLS calibration methods under different levels of uncertainty of irrigation data and calibration conditions. The result from the OLS method shows the presence of statistically significant (p < 0.05) bias in estimated parameters and model predictions that persist despite calibrating the models to different calibration data and sample sizes. However, by directly accounting for the irrigation pumping uncertainties during the calibration procedures, the proposed IUWLS is able to minimize the bias effectively without adding significant computational burden to the calibration processes.

  4. Sensitivity and Uncertainty Analysis for Streamflow Prediction Using Different Objective Functions and Optimization Algorithms: San Joaquin California

    NASA Astrophysics Data System (ADS)

    Paul, M.; Negahban-Azar, M.

    2017-12-01

    The hydrologic models usually need to be calibrated against observed streamflow at the outlet of a particular drainage area through a careful model calibration. However, a large number of parameters are required to fit in the model due to their unavailability of the field measurement. Therefore, it is difficult to calibrate the model for a large number of potential uncertain model parameters. This even becomes more challenging if the model is for a large watershed with multiple land uses and various geophysical characteristics. Sensitivity analysis (SA) can be used as a tool to identify most sensitive model parameters which affect the calibrated model performance. There are many different calibration and uncertainty analysis algorithms which can be performed with different objective functions. By incorporating sensitive parameters in streamflow simulation, effects of the suitable algorithm in improving model performance can be demonstrated by the Soil and Water Assessment Tool (SWAT) modeling. In this study, the SWAT was applied in the San Joaquin Watershed in California covering 19704 km2 to calibrate the daily streamflow. Recently, sever water stress escalating due to intensified climate variability, prolonged drought and depleting groundwater for agricultural irrigation in this watershed. Therefore it is important to perform a proper uncertainty analysis given the uncertainties inherent in hydrologic modeling to predict the spatial and temporal variation of the hydrologic process to evaluate the impacts of different hydrologic variables. The purpose of this study was to evaluate the sensitivity and uncertainty of the calibrated parameters for predicting streamflow. To evaluate the sensitivity of the calibrated parameters three different optimization algorithms (Sequential Uncertainty Fitting- SUFI-2, Generalized Likelihood Uncertainty Estimation- GLUE and Parameter Solution- ParaSol) were used with four different objective functions (coefficient of determination- r2, Nash-Sutcliffe efficiency- NSE, percent bias- PBIAS, and Kling-Gupta efficiency- KGE). The preliminary results showed that using the SUFI-2 algorithm with the objective function NSE and KGE has improved significantly the calibration (e.g. R2 and NSE is found 0.52 and 0.47 respectively for daily streamflow calibration).

  5. Bayesian calibration of the Community Land Model using surrogates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ray, Jaideep; Hou, Zhangshuan; Huang, Maoyi

    2014-02-01

    We present results from the Bayesian calibration of hydrological parameters of the Community Land Model (CLM), which is often used in climate simulations and Earth system models. A statistical inverse problem is formulated for three hydrological parameters, conditional on observations of latent heat surface fluxes over 48 months. Our calibration method uses polynomial and Gaussian process surrogates of the CLM, and solves the parameter estimation problem using a Markov chain Monte Carlo sampler. Posterior probability densities for the parameters are developed for two sites with different soil and vegetation covers. Our method also allows us to examine the structural errormore » in CLM under two error models. We find that surrogate models can be created for CLM in most cases. The posterior distributions are more predictive than the default parameter values in CLM. Climatologically averaging the observations does not modify the parameters' distributions significantly. The structural error model reveals a correlation time-scale which can be used to identify the physical process that could be contributing to it. While the calibrated CLM has a higher predictive skill, the calibration is under-dispersive.« less

  6. Multi-objective vs. single-objective calibration of a hydrologic model using single- and multi-objective screening

    NASA Astrophysics Data System (ADS)

    Mai, Juliane; Cuntz, Matthias; Shafii, Mahyar; Zink, Matthias; Schäfer, David; Thober, Stephan; Samaniego, Luis; Tolson, Bryan

    2016-04-01

    Hydrologic models are traditionally calibrated against observed streamflow. Recent studies have shown however, that only a few global model parameters are constrained using this kind of integral signal. They can be identified using prior screening techniques. Since different objectives might constrain different parameters, it is advisable to use multiple information to calibrate those models. One common approach is to combine these multiple objectives (MO) into one single objective (SO) function and allow the use of a SO optimization algorithm. Another strategy is to consider the different objectives separately and apply a MO Pareto optimization algorithm. In this study, two major research questions will be addressed: 1) How do multi-objective calibrations compare with corresponding single-objective calibrations? 2) How much do calibration results deteriorate when the number of calibrated parameters is reduced by a prior screening technique? The hydrologic model employed in this study is a distributed hydrologic model (mHM) with 52 model parameters, i.e. transfer coefficients. The model uses grid cells as a primary hydrologic unit, and accounts for processes like snow accumulation and melting, soil moisture dynamics, infiltration, surface runoff, evapotranspiration, subsurface storage and discharge generation. The model is applied in three distinct catchments over Europe. The SO calibrations are performed using the Dynamically Dimensioned Search (DDS) algorithm with a fixed budget while the MO calibrations are achieved using the Pareto Dynamically Dimensioned Search (PA-DDS) algorithm allowing for the same budget. The two objectives used here are the Nash Sutcliffe Efficiency (NSE) of the simulated streamflow and the NSE of the logarithmic transformation. It is shown that the SO DDS results are located close to the edges of the Pareto fronts of the PA-DDS. The MO calibrations are hence preferable due to their supply of multiple equivalent solutions from which the user can choose at the end due to the specific needs. The sequential single-objective parameter screening was employed prior to the calibrations reducing the number of parameters by at least 50% in the different catchments and for the different single objectives. The single-objective calibrations led to a faster convergence of the objectives and are hence beneficial when using a DDS on single-objectives. The above mentioned parameter screening technique is generalized for multi-objectives and applied before calibration using the PA-DDS algorithm. Two different alternatives of this MO-screening are tested. The comparison of the calibration results using all parameters and using only screened parameters shows for both alternatives that the PA-DDS algorithm does not profit in terms of trade-off size and function evaluations required to achieve converged pareto fronts. This is because the PA-DDS algorithm automatically reduces search space with progress of the calibration run. This automatic reduction should be different for other search algorithms. It is therefore hypothesized that prior screening can but must not be beneficial for parameter estimation dependent on the chosen optimization algorithm.

  7. Methods for Calibration of Prout-Tompkins Kinetics Parameters Using EZM Iteration and GLO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wemhoff, A P; Burnham, A K; de Supinski, B

    2006-11-07

    This document contains information regarding the standard procedures used to calibrate chemical kinetics parameters for the extended Prout-Tompkins model to match experimental data. Two methods for calibration are mentioned: EZM calibration and GLO calibration. EZM calibration matches kinetics parameters to three data points, while GLO calibration slightly adjusts kinetic parameters to match multiple points. Information is provided regarding the theoretical approach and application procedure for both of these calibration algorithms. It is recommended that for the calibration process, the user begin with EZM calibration to provide a good estimate, and then fine-tune the parameters using GLO. Two examples have beenmore » provided to guide the reader through a general calibrating process.« less

  8. Two statistics for evaluating parameter identifiability and error reduction

    USGS Publications Warehouse

    Doherty, John; Hunt, Randall J.

    2009-01-01

    Two statistics are presented that can be used to rank input parameters utilized by a model in terms of their relative identifiability based on a given or possible future calibration dataset. Identifiability is defined here as the capability of model calibration to constrain parameters used by a model. Both statistics require that the sensitivity of each model parameter be calculated for each model output for which there are actual or presumed field measurements. Singular value decomposition (SVD) of the weighted sensitivity matrix is then undertaken to quantify the relation between the parameters and observations that, in turn, allows selection of calibration solution and null spaces spanned by unit orthogonal vectors. The first statistic presented, "parameter identifiability", is quantitatively defined as the direction cosine between a parameter and its projection onto the calibration solution space. This varies between zero and one, with zero indicating complete non-identifiability and one indicating complete identifiability. The second statistic, "relative error reduction", indicates the extent to which the calibration process reduces error in estimation of a parameter from its pre-calibration level where its value must be assigned purely on the basis of prior expert knowledge. This is more sophisticated than identifiability, in that it takes greater account of the noise associated with the calibration dataset. Like identifiability, it has a maximum value of one (which can only be achieved if there is no measurement noise). Conceptually it can fall to zero; and even below zero if a calibration problem is poorly posed. An example, based on a coupled groundwater/surface-water model, is included that demonstrates the utility of the statistics. ?? 2009 Elsevier B.V.

  9. How does higher frequency monitoring data affect the calibration of a process-based water quality model?

    NASA Astrophysics Data System (ADS)

    Jackson-Blake, Leah; Helliwell, Rachel

    2015-04-01

    Process-based catchment water quality models are increasingly used as tools to inform land management. However, for such models to be reliable they need to be well calibrated and shown to reproduce key catchment processes. Calibration can be challenging for process-based models, which tend to be complex and highly parameterised. Calibrating a large number of parameters generally requires a large amount of monitoring data, spanning all hydrochemical conditions. However, regulatory agencies and research organisations generally only sample at a fortnightly or monthly frequency, even in well-studied catchments, often missing peak flow events. The primary aim of this study was therefore to investigate how the quality and uncertainty of model simulations produced by a process-based, semi-distributed catchment model, INCA-P (the INtegrated CAtchment model of Phosphorus dynamics), were improved by calibration to higher frequency water chemistry data. Two model calibrations were carried out for a small rural Scottish catchment: one using 18 months of daily total dissolved phosphorus (TDP) concentration data, another using a fortnightly dataset derived from the daily data. To aid comparability, calibrations were carried out automatically using the Markov Chain Monte Carlo - DiffeRential Evolution Adaptive Metropolis (MCMC-DREAM) algorithm. Calibration to daily data resulted in improved simulation of peak TDP concentrations and improved model performance statistics. Parameter-related uncertainty in simulated TDP was large when fortnightly data was used for calibration, with a 95% credible interval of 26 μg/l. This uncertainty is comparable in size to the difference between Water Framework Directive (WFD) chemical status classes, and would therefore make it difficult to use this calibration to predict shifts in WFD status. The 95% credible interval reduced markedly with the higher frequency monitoring data, to 6 μg/l. The number of parameters that could be reliably auto-calibrated was lower for the fortnightly data, with a physically unrealistic TDP simulation being produced when too many parameters were allowed to vary during model calibration. Parameters should not therefore be varied spatially for models such as INCA-P unless there is solid evidence that this is appropriate, or there is a real need to do so for the model to fulfil its purpose. This study highlights the potential pitfalls of using low frequency timeseries of observed water quality to calibrate complex process-based models. For reliable model calibrations to be produced, monitoring programmes need to be designed which capture system variability, in particular nutrient dynamics during high flow events. In addition, there is a need for simpler models, so that all model parameters can be included in auto-calibration and uncertainty analysis, and to reduce the data needs during calibration.

  10. Regional estimation of response routine parameters

    NASA Astrophysics Data System (ADS)

    Tøfte, Lena S.

    2015-04-01

    Reducing the number of calibration parameters is of a considerable advantage when area distributed hydrological models are to be calibrated, both due to equifinality and over-parameterization of the model in general, and for making the calibration process more efficient. A simple non-threshold response model for drainage in natural catchments based on among others Kirchner's article in WRR 2009 is implemented in the gridded hydrological model in the ENKI framework. This response model takes only the hydrogram into account; it has one state and two parameters, and is adapted to catchments that are dominated by terrain drainage. In former analyses of natural discharge series from a large number of catchments in different regions of Norway, we found that these response model parameters can be calculated from some known catchment characteristics, as catchment area and lake percentage, found in maps or data bases, meaning that the parameters can easily be found also for ungauged catchments. In the presented work from the EU project COMPLEX a large region in Mid-Norway containing 27 simulated catchments of different sizes and characteristics is calibrated. Results from two different calibration strategies are compared: 1) removing the response parameters from the calibration by calculating them in advance, based on the results from our former studies, and 2) including the response parameters in the calibration, both as maps with different values for each catchment, and as a constant number for the total region. The resulting simulation performances are compared and discussed.

  11. Calibration of the ARID robot

    NASA Technical Reports Server (NTRS)

    Doty, Keith L

    1992-01-01

    The author has formulated a new, general model for specifying the kinematic properties of serial manipulators. The new model kinematic parameters do not suffer discontinuities when nominally parallel adjacent axes deviate from exact parallelism. From this new theory the author develops a first-order, lumped-parameter, calibration-model for the ARID manipulator. Next, the author develops a calibration methodology for the ARID based on visual and acoustic sensing. A sensor platform, consisting of a camera and four sonars attached to the ARID end frame, performs calibration measurements. A calibration measurement consists of processing one visual frame of an accurately placed calibration image and recording four acoustic range measurements. A minimum of two measurement protocols determine the kinematics calibration-model of the ARID for a particular region: assuming the joint displacements are accurately measured, the calibration surface is planar, and the kinematic parameters do not vary rapidly in the region. No theoretical or practical limitations appear to contra-indicate the feasibility of the calibration method developed here.

  12. How Does Higher Frequency Monitoring Data Affect the Calibration of a Process-Based Water Quality Model?

    NASA Astrophysics Data System (ADS)

    Jackson-Blake, L.

    2014-12-01

    Process-based catchment water quality models are increasingly used as tools to inform land management. However, for such models to be reliable they need to be well calibrated and shown to reproduce key catchment processes. Calibration can be challenging for process-based models, which tend to be complex and highly parameterised. Calibrating a large number of parameters generally requires a large amount of monitoring data, but even in well-studied catchments, streams are often only sampled at a fortnightly or monthly frequency. The primary aim of this study was therefore to investigate how the quality and uncertainty of model simulations produced by one process-based catchment model, INCA-P (the INtegrated CAtchment model of Phosphorus dynamics), were improved by calibration to higher frequency water chemistry data. Two model calibrations were carried out for a small rural Scottish catchment: one using 18 months of daily total dissolved phosphorus (TDP) concentration data, another using a fortnightly dataset derived from the daily data. To aid comparability, calibrations were carried out automatically using the MCMC-DREAM algorithm. Using daily rather than fortnightly data resulted in improved simulation of the magnitude of peak TDP concentrations, in turn resulting in improved model performance statistics. Marginal posteriors were better constrained by the higher frequency data, resulting in a large reduction in parameter-related uncertainty in simulated TDP (the 95% credible interval decreased from 26 to 6 μg/l). The number of parameters that could be reliably auto-calibrated was lower for the fortnightly data, leading to the recommendation that parameters should not be varied spatially for models such as INCA-P unless there is solid evidence that this is appropriate, or there is a real need to do so for the model to fulfil its purpose. Secondary study aims were to highlight the subjective elements involved in auto-calibration and suggest practical improvements that could make models such as INCA-P more suited to auto-calibration and uncertainty analyses. Two key improvements include model simplification, so that all model parameters can be included in an analysis of this kind, and better documenting of recommended ranges for each parameter, to help in choosing sensible priors.

  13. Design of a Two-Step Calibration Method of Kinematic Parameters for Serial Robots

    NASA Astrophysics Data System (ADS)

    WANG, Wei; WANG, Lei; YUN, Chao

    2017-03-01

    Serial robots are used to handle workpieces with large dimensions, and calibrating kinematic parameters is one of the most efficient ways to upgrade their accuracy. Many models are set up to investigate how many kinematic parameters can be identified to meet the minimal principle, but the base frame and the kinematic parameter are indistinctly calibrated in a one-step way. A two-step method of calibrating kinematic parameters is proposed to improve the accuracy of the robot's base frame and kinematic parameters. The forward kinematics described with respect to the measuring coordinate frame are established based on the product-of-exponential (POE) formula. In the first step the robot's base coordinate frame is calibrated by the unit quaternion form. The errors of both the robot's reference configuration and the base coordinate frame's pose are equivalently transformed to the zero-position errors of the robot's joints. The simplified model of the robot's positioning error is established in second-power explicit expressions. Then the identification model is finished by the least square method, requiring measuring position coordinates only. The complete subtasks of calibrating the robot's 39 kinematic parameters are finished in the second step. It's proved by a group of calibration experiments that by the proposed two-step calibration method the average absolute accuracy of industrial robots is updated to 0.23 mm. This paper presents that the robot's base frame should be calibrated before its kinematic parameters in order to upgrade its absolute positioning accuracy.

  14. Parameter estimation uncertainty: Comparing apples and apples?

    NASA Astrophysics Data System (ADS)

    Hart, D.; Yoon, H.; McKenna, S. A.

    2012-12-01

    Given a highly parameterized ground water model in which the conceptual model of the heterogeneity is stochastic, an ensemble of inverse calibrations from multiple starting points (MSP) provides an ensemble of calibrated parameters and follow-on transport predictions. However, the multiple calibrations are computationally expensive. Parameter estimation uncertainty can also be modeled by decomposing the parameterization into a solution space and a null space. From a single calibration (single starting point) a single set of parameters defining the solution space can be extracted. The solution space is held constant while Monte Carlo sampling of the parameter set covering the null space creates an ensemble of the null space parameter set. A recently developed null-space Monte Carlo (NSMC) method combines the calibration solution space parameters with the ensemble of null space parameters, creating sets of calibration-constrained parameters for input to the follow-on transport predictions. Here, we examine the consistency between probabilistic ensembles of parameter estimates and predictions using the MSP calibration and the NSMC approaches. A highly parameterized model of the Culebra dolomite previously developed for the WIPP project in New Mexico is used as the test case. A total of 100 estimated fields are retained from the MSP approach and the ensemble of results defining the model fit to the data, the reproduction of the variogram model and prediction of an advective travel time are compared to the same results obtained using NSMC. We demonstrate that the NSMC fields based on a single calibration model can be significantly constrained by the calibrated solution space and the resulting distribution of advective travel times is biased toward the travel time from the single calibrated field. To overcome this, newly proposed strategies to employ a multiple calibration-constrained NSMC approach (M-NSMC) are evaluated. Comparison of the M-NSMC and MSP methods suggests that M-NSMC can provide a computationally efficient and practical solution for predictive uncertainty analysis in highly nonlinear and complex subsurface flow and transport models. This material is based upon work supported as part of the Center for Frontiers of Subsurface Energy Security, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001114. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  15. Approaches to highly parameterized inversion: A guide to using PEST for model-parameter and predictive-uncertainty analysis

    USGS Publications Warehouse

    Doherty, John E.; Hunt, Randall J.; Tonkin, Matthew J.

    2010-01-01

    Analysis of the uncertainty associated with parameters used by a numerical model, and with predictions that depend on those parameters, is fundamental to the use of modeling in support of decisionmaking. Unfortunately, predictive uncertainty analysis with regard to models can be very computationally demanding, due in part to complex constraints on parameters that arise from expert knowledge of system properties on the one hand (knowledge constraints) and from the necessity for the model parameters to assume values that allow the model to reproduce historical system behavior on the other hand (calibration constraints). Enforcement of knowledge and calibration constraints on parameters used by a model does not eliminate the uncertainty in those parameters. In fact, in many cases, enforcement of calibration constraints simply reduces the uncertainties associated with a number of broad-scale combinations of model parameters that collectively describe spatially averaged system properties. The uncertainties associated with other combinations of parameters, especially those that pertain to small-scale parameter heterogeneity, may not be reduced through the calibration process. To the extent that a prediction depends on system-property detail, its postcalibration variability may be reduced very little, if at all, by applying calibration constraints; knowledge constraints remain the only limits on the variability of predictions that depend on such detail. Regrettably, in many common modeling applications, these constraints are weak. Though the PEST software suite was initially developed as a tool for model calibration, recent developments have focused on the evaluation of model-parameter and predictive uncertainty. As a complement to functionality that it provides for highly parameterized inversion (calibration) by means of formal mathematical regularization techniques, the PEST suite provides utilities for linear and nonlinear error-variance and uncertainty analysis in these highly parameterized modeling contexts. Availability of these utilities is particularly important because, in many cases, a significant proportion of the uncertainty associated with model parameters-and the predictions that depend on them-arises from differences between the complex properties of the real world and the simplified representation of those properties that is expressed by the calibrated model. This report is intended to guide intermediate to advanced modelers in the use of capabilities available with the PEST suite of programs for evaluating model predictive error and uncertainty. A brief theoretical background is presented on sources of parameter and predictive uncertainty and on the means for evaluating this uncertainty. Applications of PEST tools are then discussed for overdetermined and underdetermined problems, both linear and nonlinear. PEST tools for calculating contributions to model predictive uncertainty, as well as optimization of data acquisition for reducing parameter and predictive uncertainty, are presented. The appendixes list the relevant PEST variables, files, and utilities required for the analyses described in the document.

  16. A Hierarchical Bayesian Model for Calibrating Estimates of Species Divergence Times

    PubMed Central

    Heath, Tracy A.

    2012-01-01

    In Bayesian divergence time estimation methods, incorporating calibrating information from the fossil record is commonly done by assigning prior densities to ancestral nodes in the tree. Calibration prior densities are typically parametric distributions offset by minimum age estimates provided by the fossil record. Specification of the parameters of calibration densities requires the user to quantify his or her prior knowledge of the age of the ancestral node relative to the age of its calibrating fossil. The values of these parameters can, potentially, result in biased estimates of node ages if they lead to overly informative prior distributions. Accordingly, determining parameter values that lead to adequate prior densities is not straightforward. In this study, I present a hierarchical Bayesian model for calibrating divergence time analyses with multiple fossil age constraints. This approach applies a Dirichlet process prior as a hyperprior on the parameters of calibration prior densities. Specifically, this model assumes that the rate parameters of exponential prior distributions on calibrated nodes are distributed according to a Dirichlet process, whereby the rate parameters are clustered into distinct parameter categories. Both simulated and biological data are analyzed to evaluate the performance of the Dirichlet process hyperprior. Compared with fixed exponential prior densities, the hierarchical Bayesian approach results in more accurate and precise estimates of internal node ages. When this hyperprior is applied using Markov chain Monte Carlo methods, the ages of calibrated nodes are sampled from mixtures of exponential distributions and uncertainty in the values of calibration density parameters is taken into account. PMID:22334343

  17. Probabilistic calibration of the SPITFIRE fire spread model using Earth observation data

    NASA Astrophysics Data System (ADS)

    Gomez-Dans, Jose; Wooster, Martin; Lewis, Philip; Spessa, Allan

    2010-05-01

    There is a great interest in understanding how fire affects vegetation distribution and dynamics in the context of global vegetation modelling. A way to include these effects is through the development of embedded fire spread models. However, fire is a complex phenomenon, thus difficult to model. Statistical models based on fire return intervals, or fire danger indices need large amounts of data for calibration, and are often prisoner to the epoch they were calibrated to. Mechanistic models, such as SPITFIRE, try to model the complete fire phenomenon based on simple physical rules, making these models mostly independent of calibration data. However, the processes expressed in models such as SPITFIRE require many parameters. These parametrisations are often reliant on site-specific experiments, or in some other cases, paremeters might not be measured directly. Additionally, in many cases, changes in temporal and/or spatial resolution result in parameters becoming effective. To address the difficulties with parametrisation and the often-used fitting methodologies, we propose using a probabilistic framework to calibrate some areas of the SPITFIRE fire spread model. We calibrate the model against Earth Observation (EO) data, a global and ever-expanding source of relevant data. We develop a methodology that tries to incorporate the limitations of the EO data, reasonable prior values for parameters and that results in distributions of parameters, which can be used to infer uncertainty due to parameter estimates. Additionally, the covariance structure of parameters and observations is also derived, whcih can help inform data gathering efforts and model development, respectively. For this work, we focus on Southern African savannas, an important ecosystem for fire studies, and one with a good amount of EO data relevnt to fire studies. As calibration datasets, we use burned area data, estimated number of fires and vegetation moisture dynamics.

  18. Objective calibration of regional climate models

    NASA Astrophysics Data System (ADS)

    Bellprat, O.; Kotlarski, S.; Lüthi, D.; SchäR, C.

    2012-12-01

    Climate models are subject to high parametric uncertainty induced by poorly confined model parameters of parameterized physical processes. Uncertain model parameters are typically calibrated in order to increase the agreement of the model with available observations. The common practice is to adjust uncertain model parameters manually, often referred to as expert tuning, which lacks objectivity and transparency in the use of observations. These shortcomings often haze model inter-comparisons and hinder the implementation of new model parameterizations. Methods which would allow to systematically calibrate model parameters are unfortunately often not applicable to state-of-the-art climate models, due to computational constraints facing the high dimensionality and non-linearity of the problem. Here we present an approach to objectively calibrate a regional climate model, using reanalysis driven simulations and building upon a quadratic metamodel presented by Neelin et al. (2010) that serves as a computationally cheap surrogate of the model. Five model parameters originating from different parameterizations are selected for the optimization according to their influence on the model performance. The metamodel accurately estimates spatial averages of 2 m temperature, precipitation and total cloud cover, with an uncertainty of similar magnitude as the internal variability of the regional climate model. The non-linearities of the parameter perturbations are well captured, such that only a limited number of 20-50 simulations are needed to estimate optimal parameter settings. Parameter interactions are small, which allows to further reduce the number of simulations. In comparison to an ensemble of the same model which has undergone expert tuning, the calibration yields similar optimal model configurations, but leading to an additional reduction of the model error. The performance range captured is much wider than sampled with the expert-tuned ensemble and the presented methodology is effective and objective. It is argued that objective calibration is an attractive tool and could become standard procedure after introducing new model implementations, or after a spatial transfer of a regional climate model. Objective calibration of parameterizations with regional models could also serve as a strategy toward improving parameterization packages of global climate models.

  19. Global Sensitivity Analysis and Parameter Calibration for an Ecosystem Carbon Model

    NASA Astrophysics Data System (ADS)

    Safta, C.; Ricciuto, D. M.; Sargsyan, K.; Najm, H. N.; Debusschere, B.; Thornton, P. E.

    2013-12-01

    We present uncertainty quantification results for a process-based ecosystem carbon model. The model employs 18 parameters and is driven by meteorological data corresponding to years 1992-2006 at the Harvard Forest site. Daily Net Ecosystem Exchange (NEE) observations were available to calibrate the model parameters and test the performance of the model. Posterior distributions show good predictive capabilities for the calibrated model. A global sensitivity analysis was first performed to determine the important model parameters based on their contribution to the variance of NEE. We then proceed to calibrate the model parameters in a Bayesian framework. The daily discrepancies between measured and predicted NEE values were modeled as independent and identically distributed Gaussians with prescribed daily variance according to the recorded instrument error. All model parameters were assumed to have uninformative priors with bounds set according to expert opinion. The global sensitivity results show that the rate of leaf fall (LEAFALL) is responsible for approximately 25% of the total variance in the average NEE for 1992-2005. A set of 4 other parameters, Nitrogen use efficiency (NUE), base rate for maintenance respiration (BR_MR), growth respiration fraction (RG_FRAC), and allocation to plant stem pool (ASTEM) contribute between 5% and 12% to the variance in average NEE, while the rest of the parameters have smaller contributions. The posterior distributions, sampled with a Markov Chain Monte Carlo algorithm, exhibit significant correlations between model parameters. However LEAFALL, the most important parameter for the average NEE, is not informed by the observational data, while less important parameters show significant updates between their prior and posterior densities. The Fisher information matrix values, indicating which parameters are most informed by the experimental observations, are examined to augment the comparison between the calibration and global sensitivity analysis results.

  20. Efficient Calibration of Distributed Catchment Models Using Perceptual Understanding and Hydrologic Signatures

    NASA Astrophysics Data System (ADS)

    Hutton, C.; Wagener, T.; Freer, J. E.; Duffy, C.; Han, D.

    2015-12-01

    Distributed models offer the potential to resolve catchment systems in more detail, and therefore simulate the hydrological impacts of spatial changes in catchment forcing (e.g. landscape change). Such models may contain a large number of model parameters which are computationally expensive to calibrate. Even when calibration is possible, insufficient data can result in model parameter and structural equifinality. In order to help reduce the space of feasible models and supplement traditional outlet discharge calibration data, semi-quantitative information (e.g. knowledge of relative groundwater levels), may also be used to identify behavioural models when applied to constrain spatially distributed predictions of states and fluxes. The challenge is to combine these different sources of information together to identify a behavioural region of state-space, and efficiently search a large, complex parameter space to identify behavioural parameter sets that produce predictions that fall within this behavioural region. Here we present a methodology to incorporate different sources of data to efficiently calibrate distributed catchment models. Metrics of model performance may be derived from multiple sources of data (e.g. perceptual understanding and measured or regionalised hydrologic signatures). For each metric, an interval or inequality is used to define the behaviour of the catchment system, accounting for data uncertainties. These intervals are then combined to produce a hyper-volume in state space. The state space is then recast as a multi-objective optimisation problem, and the Borg MOEA is applied to first find, and then populate the hyper-volume, thereby identifying acceptable model parameter sets. We apply the methodology to calibrate the PIHM model at Plynlimon, UK by incorporating perceptual and hydrologic data into the calibration problem. Furthermore, we explore how to improve calibration efficiency through search initialisation from shorter model runs.

  1. Application of the precipitation-runoff model in the Warrior coal field, Alabama

    USGS Publications Warehouse

    Kidd, Robert E.; Bossong, C.R.

    1987-01-01

    A deterministic precipitation-runoff model, the Precipitation-Runoff Modeling System, was applied in two small basins located in the Warrior coal field, Alabama. Each basin has distinct geologic, hydrologic, and land-use characteristics. Bear Creek basin (15.03 square miles) is undisturbed, is underlain almost entirely by consolidated coal-bearing rocks of Pennsylvanian age (Pottsville Formation), and is drained by an intermittent stream. Turkey Creek basin (6.08 square miles) contains a surface coal mine and is underlain by both the Pottsville Formation and unconsolidated clay, sand, and gravel deposits of Cretaceous age (Coker Formation). Aquifers in the Coker Formation sustain flow through extended rainless periods. Preliminary daily and storm calibrations were developed for each basin. Initial parameter and variable values were determined according to techniques recommended in the user's manual for the modeling system and through field reconnaissance. Parameters with meaningful sensitivity were identified and adjusted to match hydrograph shapes and to compute realistic water year budgets. When the developed calibrations were applied to data exclusive of the calibration period as a verification exercise, results were comparable to those for the calibration period. The model calibrations included preliminary parameter values for the various categories of geology and land use in each basin. The parameter values for areas underlain by the Pottsville Formation in the Bear Creek basin were transferred directly to similar areas in the Turkey Creek basin, and these parameter values were held constant throughout the model calibration. Parameter values for all geologic and land-use categories addressed in the two calibrations can probably be used in ungaged basins where similar conditions exist. The parameter transfer worked well, as a good calibration was obtained for Turkey Creek basin.

  2. Estimation of adsorption isotherm and mass transfer parameters in protein chromatography using artificial neural networks.

    PubMed

    Wang, Gang; Briskot, Till; Hahn, Tobias; Baumann, Pascal; Hubbuch, Jürgen

    2017-03-03

    Mechanistic modeling has been repeatedly successfully applied in process development and control of protein chromatography. For each combination of adsorbate and adsorbent, the mechanistic models have to be calibrated. Some of the model parameters, such as system characteristics, can be determined reliably by applying well-established experimental methods, whereas others cannot be measured directly. In common practice of protein chromatography modeling, these parameters are identified by applying time-consuming methods such as frontal analysis combined with gradient experiments, curve-fitting, or combined Yamamoto approach. For new components in the chromatographic system, these traditional calibration approaches require to be conducted repeatedly. In the presented work, a novel method for the calibration of mechanistic models based on artificial neural network (ANN) modeling was applied. An in silico screening of possible model parameter combinations was performed to generate learning material for the ANN model. Once the ANN model was trained to recognize chromatograms and to respond with the corresponding model parameter set, it was used to calibrate the mechanistic model from measured chromatograms. The ANN model's capability of parameter estimation was tested by predicting gradient elution chromatograms. The time-consuming model parameter estimation process itself could be reduced down to milliseconds. The functionality of the method was successfully demonstrated in a study with the calibration of the transport-dispersive model (TDM) and the stoichiometric displacement model (SDM) for a protein mixture. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  3. Definition and sensitivity of the conceptual MORDOR rainfall-runoff model parameters using different multi-criteria calibration strategies

    NASA Astrophysics Data System (ADS)

    Garavaglia, F.; Seyve, E.; Gottardi, F.; Le Lay, M.; Gailhard, J.; Garçon, R.

    2014-12-01

    MORDOR is a conceptual hydrological model extensively used in Électricité de France (EDF, French electric utility company) operational applications: (i) hydrological forecasting, (ii) flood risk assessment, (iii) water balance and (iv) climate change studies. MORDOR is a lumped, reservoir, elevation based model with hourly or daily areal rainfall and air temperature as the driving input data. The principal hydrological processes represented are evapotranspiration, direct and indirect runoff, ground water, snow accumulation and melt and routing. The model has been intensively used at EDF for more than 20 years, in particular for modeling French mountainous watersheds. In the matter of parameters calibration we propose and test alternative multi-criteria techniques based on two specific approaches: automatic calibration using single-objective functions and a priori parameter calibration founded on hydrological watershed features. The automatic calibration approach uses single-objective functions, based on Kling-Gupta efficiency, to quantify the good agreement between the simulated and observed runoff focusing on four different runoff samples: (i) time-series sample, (I) annual hydrological regime, (iii) monthly cumulative distribution functions and (iv) recession sequences.The primary purpose of this study is to analyze the definition and sensitivity of MORDOR parameters testing different calibration techniques in order to: (i) simplify the model structure, (ii) increase the calibration-validation performance of the model and (iii) reduce the equifinality problem of calibration process. We propose an alternative calibration strategy that reaches these goals. The analysis is illustrated by calibrating MORDOR model to daily data for 50 watersheds located in French mountainous regions.

  4. An Improved Interferometric Calibration Method Based on Independent Parameter Decomposition

    NASA Astrophysics Data System (ADS)

    Fan, J.; Zuo, X.; Li, T.; Chen, Q.; Geng, X.

    2018-04-01

    Interferometric SAR is sensitive to earth surface undulation. The accuracy of interferometric parameters plays a significant role in precise digital elevation model (DEM). The interferometric calibration is to obtain high-precision global DEM by calculating the interferometric parameters using ground control points (GCPs). However, interferometric parameters are always calculated jointly, making them difficult to decompose precisely. In this paper, we propose an interferometric calibration method based on independent parameter decomposition (IPD). Firstly, the parameters related to the interferometric SAR measurement are determined based on the three-dimensional reconstruction model. Secondly, the sensitivity of interferometric parameters is quantitatively analyzed after the geometric parameters are completely decomposed. Finally, each interferometric parameter is calculated based on IPD and interferometric calibration model is established. We take Weinan of Shanxi province as an example and choose 4 TerraDEM-X image pairs to carry out interferometric calibration experiment. The results show that the elevation accuracy of all SAR images is better than 2.54 m after interferometric calibration. Furthermore, the proposed method can obtain the accuracy of DEM products better than 2.43 m in the flat area and 6.97 m in the mountainous area, which can prove the correctness and effectiveness of the proposed IPD based interferometric calibration method. The results provide a technical basis for topographic mapping of 1 : 50000 and even larger scale in the flat area and mountainous area.

  5. MOESHA: A genetic algorithm for automatic calibration and estimation of parameter uncertainty and sensitivity of hydrologic models

    EPA Science Inventory

    Characterization of uncertainty and sensitivity of model parameters is an essential and often overlooked facet of hydrological modeling. This paper introduces an algorithm called MOESHA that combines input parameter sensitivity analyses with a genetic algorithm calibration routin...

  6. Uncertainty quantification for constitutive model calibration of brain tissue.

    PubMed

    Brewick, Patrick T; Teferra, Kirubel

    2018-05-31

    The results of a study comparing model calibration techniques for Ogden's constitutive model that describes the hyperelastic behavior of brain tissue are presented. One and two-term Ogden models are fit to two different sets of stress-strain experimental data for brain tissue using both least squares optimization and Bayesian estimation. For the Bayesian estimation, the joint posterior distribution of the constitutive parameters is calculated by employing Hamiltonian Monte Carlo (HMC) sampling, a type of Markov Chain Monte Carlo method. The HMC method is enriched in this work to intrinsically enforce the Drucker stability criterion by formulating a nonlinear parameter constraint function, which ensures the constitutive model produces physically meaningful results. Through application of the nested sampling technique, 95% confidence bounds on the constitutive model parameters are identified, and these bounds are then propagated through the constitutive model to produce the resultant bounds on the stress-strain response. The behavior of the model calibration procedures and the effect of the characteristics of the experimental data are extensively evaluated. It is demonstrated that increasing model complexity (i.e., adding an additional term in the Ogden model) improves the accuracy of the best-fit set of parameters while also increasing the uncertainty via the widening of the confidence bounds of the calibrated parameters. Despite some similarity between the two data sets, the resulting distributions are noticeably different, highlighting the sensitivity of the calibration procedures to the characteristics of the data. For example, the amount of uncertainty reported on the experimental data plays an essential role in how data points are weighted during the calibration, and this significantly affects how the parameters are calibrated when combining experimental data sets from disparate sources. Published by Elsevier Ltd.

  7. The on-orbit calibration of geometric parameters of the Tian-Hui 1 (TH-1) satellite

    NASA Astrophysics Data System (ADS)

    Wang, Jianrong; Wang, Renxiang; Hu, Xin; Su, Zhongbo

    2017-02-01

    The on-orbit calibration of geometric parameters is a key step in improving the location accuracy of satellite images without using Ground Control Points (GCPs). Most methods of on-orbit calibration are based on the self-calibration using additional parameters. When using additional parameters, different number of additional parameters may lead to different results. The triangulation bundle adjustment is another way to calibrate the geometric parameters of camera, which can describe the changes in each geometric parameter. When triangulation bundle adjustment method is applied to calibrate geometric parameters, a prerequisite is that the strip model can avoid systematic deformation caused by the rate of attitude changes. Concerning the stereo camera, the influence of the intersection angle should be considered during calibration. The Equivalent Frame Photo (EFP) bundle adjustment based on the Line-Matrix CCD (LMCCD) image can solve the systematic distortion of the strip model, and obtain high accuracy location without using GCPs. In this paper, the triangulation bundle adjustment is used to calibrate the geometric parameters of TH-1 satellite cameras based on LMCCD image. During the bundle adjustment, the three-line array cameras are reconstructed by adopting the principle of inverse triangulation. Finally, the geometric accuracy is validated before and after on-orbit calibration using 5 testing fields. After on-orbit calibration, the 3D geometric accuracy is improved to 11.8 m from 170 m. The results show that the location accuracy of TH-1 without using GCPs is significantly improved using the on-orbit calibration of the geometric parameters.

  8. Device-scale CFD modeling of gas-liquid multiphase flow and amine absorption for CO 2 capture: Original Research Article: Device-scale CFD modeling of gas-liquid multiphase flow and amine absorption for CO 2 capture

    DOE PAGES

    Pan, Wenxiao; Galvin, Janine; Huang, Wei Ling; ...

    2018-03-25

    In this paper we aim to develop a validated device-scale CFD model that can predict quantitatively both hydrodynamics and CO 2 capture efficiency for an amine-based solvent absorber column with random Pall ring packing. A Eulerian porous-media approach and a two-fluid model were employed, in which the momentum and mass transfer equations were closed by literature-based empirical closure models. We proposed a hierarchical approach for calibrating the parameters in the closure models to make them accurate for the packed column. Specifically, a parameter for momentum transfer in the closure was first calibrated based on data from a single experiment. Withmore » this calibrated parameter, a parameter in the closure for mass transfer was next calibrated under a single operating condition. Last, the closure of the wetting area was calibrated for each gas velocity at three different liquid flow rates. For each calibration, cross validations were pursued using the experimental data under operating conditions different from those used for calibrations. This hierarchical approach can be generally applied to develop validated device-scale CFD models for different absorption columns.« less

  9. Device-scale CFD modeling of gas-liquid multiphase flow and amine absorption for CO 2 capture: Original Research Article: Device-scale CFD modeling of gas-liquid multiphase flow and amine absorption for CO 2 capture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Wenxiao; Galvin, Janine; Huang, Wei Ling

    In this paper we aim to develop a validated device-scale CFD model that can predict quantitatively both hydrodynamics and CO 2 capture efficiency for an amine-based solvent absorber column with random Pall ring packing. A Eulerian porous-media approach and a two-fluid model were employed, in which the momentum and mass transfer equations were closed by literature-based empirical closure models. We proposed a hierarchical approach for calibrating the parameters in the closure models to make them accurate for the packed column. Specifically, a parameter for momentum transfer in the closure was first calibrated based on data from a single experiment. Withmore » this calibrated parameter, a parameter in the closure for mass transfer was next calibrated under a single operating condition. Last, the closure of the wetting area was calibrated for each gas velocity at three different liquid flow rates. For each calibration, cross validations were pursued using the experimental data under operating conditions different from those used for calibrations. This hierarchical approach can be generally applied to develop validated device-scale CFD models for different absorption columns.« less

  10. Model Calibration in Watershed Hydrology

    NASA Technical Reports Server (NTRS)

    Yilmaz, Koray K.; Vrugt, Jasper A.; Gupta, Hoshin V.; Sorooshian, Soroosh

    2009-01-01

    Hydrologic models use relatively simple mathematical equations to conceptualize and aggregate the complex, spatially distributed, and highly interrelated water, energy, and vegetation processes in a watershed. A consequence of process aggregation is that the model parameters often do not represent directly measurable entities and must, therefore, be estimated using measurements of the system inputs and outputs. During this process, known as model calibration, the parameters are adjusted so that the behavior of the model approximates, as closely and consistently as possible, the observed response of the hydrologic system over some historical period of time. This Chapter reviews the current state-of-the-art of model calibration in watershed hydrology with special emphasis on our own contributions in the last few decades. We discuss the historical background that has led to current perspectives, and review different approaches for manual and automatic single- and multi-objective parameter estimation. In particular, we highlight the recent developments in the calibration of distributed hydrologic models using parameter dimensionality reduction sampling, parameter regularization and parallel computing.

  11. Perceptual Calibration for Immersive Display Environments

    PubMed Central

    Ponto, Kevin; Gleicher, Michael; Radwin, Robert G.; Shin, Hyun Joon

    2013-01-01

    The perception of objects, depth, and distance has been repeatedly shown to be divergent between virtual and physical environments. We hypothesize that many of these discrepancies stem from incorrect geometric viewing parameters, specifically that physical measurements of eye position are insufficiently precise to provide proper viewing parameters. In this paper, we introduce a perceptual calibration procedure derived from geometric models. While most research has used geometric models to predict perceptual errors, we instead use these models inversely to determine perceptually correct viewing parameters. We study the advantages of these new psychophysically determined viewing parameters compared to the commonly used measured viewing parameters in an experiment with 20 subjects. The perceptually calibrated viewing parameters for the subjects generally produced new virtual eye positions that were wider and deeper than standard practices would estimate. Our study shows that perceptually calibrated viewing parameters can significantly improve depth acuity, distance estimation, and the perception of shape. PMID:23428454

  12. Parameter Estimation of Computationally Expensive Watershed Models Through Efficient Multi-objective Optimization and Interactive Decision Analytics

    NASA Astrophysics Data System (ADS)

    Akhtar, Taimoor; Shoemaker, Christine

    2016-04-01

    Watershed model calibration is inherently a multi-criteria problem. Conflicting trade-offs exist between different quantifiable calibration criterions indicating the non-existence of a single optimal parameterization. Hence, many experts prefer a manual approach to calibration where the inherent multi-objective nature of the calibration problem is addressed through an interactive, subjective, time-intensive and complex decision making process. Multi-objective optimization can be used to efficiently identify multiple plausible calibration alternatives and assist calibration experts during the parameter estimation process. However, there are key challenges to the use of multi objective optimization in the parameter estimation process which include: 1) multi-objective optimization usually requires many model simulations, which is difficult for complex simulation models that are computationally expensive; and 2) selection of one from numerous calibration alternatives provided by multi-objective optimization is non-trivial. This study proposes a "Hybrid Automatic Manual Strategy" (HAMS) for watershed model calibration to specifically address the above-mentioned challenges. HAMS employs a 3-stage framework for parameter estimation. Stage 1 incorporates the use of an efficient surrogate multi-objective algorithm, GOMORS, for identification of numerous calibration alternatives within a limited simulation evaluation budget. The novelty of HAMS is embedded in Stages 2 and 3 where an interactive visual and metric based analytics framework is available as a decision support tool to choose a single calibration from the numerous alternatives identified in Stage 1. Stage 2 of HAMS provides a goodness-of-fit measure / metric based interactive framework for identification of a small subset (typically less than 10) of meaningful and diverse set of calibration alternatives from the numerous alternatives obtained in Stage 1. Stage 3 incorporates the use of an interactive visual analytics framework for decision support in selection of one parameter combination from the alternatives identified in Stage 2. HAMS is applied for calibration of flow parameters of a SWAT model, (Soil and Water Assessment Tool) designed to simulate flow in the Cannonsville watershed in upstate New York. Results from the application of HAMS to Cannonsville indicate that efficient multi-objective optimization and interactive visual and metric based analytics can bridge the gap between the effective use of both automatic and manual strategies for parameter estimation of computationally expensive watershed models.

  13. DEM Calibration Approach: design of experiment

    NASA Astrophysics Data System (ADS)

    Boikov, A. V.; Savelev, R. V.; Payor, V. A.

    2018-05-01

    The problem of DEM models calibration is considered in the article. It is proposed to divide models input parameters into those that require iterative calibration and those that are recommended to measure directly. A new method for model calibration based on the design of the experiment for iteratively calibrated parameters is proposed. The experiment is conducted using a specially designed stand. The results are processed with technical vision algorithms. Approximating functions are obtained and the error of the implemented software and hardware complex is estimated. The prospects of the obtained results are discussed.

  14. Evaluation of calibration efficacy under different levels of uncertainty

    DOE PAGES

    Heo, Yeonsook; Graziano, Diane J.; Guzowski, Leah; ...

    2014-06-10

    This study examines how calibration performs under different levels of uncertainty in model input data. It specifically assesses the efficacy of Bayesian calibration to enhance the reliability of EnergyPlus model predictions. A Bayesian approach can be used to update uncertain values of parameters, given measured energy-use data, and to quantify the associated uncertainty.We assess the efficacy of Bayesian calibration under a controlled virtual-reality setup, which enables rigorous validation of the accuracy of calibration results in terms of both calibrated parameter values and model predictions. Case studies demonstrate the performance of Bayesian calibration of base models developed from audit data withmore » differing levels of detail in building design, usage, and operation.« less

  15. Improving Hydrological Simulations by Incorporating GRACE Data for Parameter Calibration

    NASA Astrophysics Data System (ADS)

    Bai, P.

    2017-12-01

    Hydrological model parameters are commonly calibrated by observed streamflow data. This calibration strategy is questioned when the modeled hydrological variables of interest are not limited to streamflow. Well-performed streamflow simulations do not guarantee the reliable reproduction of other hydrological variables. One of the reasons is that hydrological model parameters are not reasonably identified. The Gravity Recovery and Climate Experiment (GRACE) satellite-derived total water storage change (TWSC) data provide an opportunity to constrain hydrological model parameterizations in combination with streamflow observations. We constructed a multi-objective calibration scheme based on GRACE-derived TWSC and streamflow observations, with the aim of improving the parameterizations of hydrological models. The multi-objective calibration scheme was compared with the traditional single-objective calibration scheme, which is based only on streamflow observations. Two monthly hydrological models were employed on 22 Chinese catchments with different hydroclimatic conditions. The model evaluation was performed using observed streamflows, GRACE-derived TWSC, and evapotranspiraiton (ET) estimates from flux towers and from the water balance approach. Results showed that the multi-objective calibration provided more reliable TWSC and ET simulations without significant deterioration in the accuracy of streamflow simulations than the single-objective calibration. In addition, the improvements of TWSC and ET simulations were more significant in relatively dry catchments than in relatively wet catchments. This study highlights the importance of including additional constraints besides streamflow observations in the parameter estimation to improve the performances of hydrological models.

  16. Root zone water quality model (RZWQM2): Model use, calibration and validation

    USGS Publications Warehouse

    Ma, Liwang; Ahuja, Lajpat; Nolan, B.T.; Malone, Robert; Trout, Thomas; Qi, Z.

    2012-01-01

    The Root Zone Water Quality Model (RZWQM2) has been used widely for simulating agricultural management effects on crop production and soil and water quality. Although it is a one-dimensional model, it has many desirable features for the modeling community. This article outlines the principles of calibrating the model component by component with one or more datasets and validating the model with independent datasets. Users should consult the RZWQM2 user manual distributed along with the model and a more detailed protocol on how to calibrate RZWQM2 provided in a book chapter. Two case studies (or examples) are included in this article. One is from an irrigated maize study in Colorado to illustrate the use of field and laboratory measured soil hydraulic properties on simulated soil water and crop production. It also demonstrates the interaction between soil and plant parameters in simulated plant responses to water stresses. The other is from a maize-soybean rotation study in Iowa to show a manual calibration of the model for crop yield, soil water, and N leaching in tile-drained soils. Although the commonly used trial-and-error calibration method works well for experienced users, as shown in the second example, an automated calibration procedure is more objective, as shown in the first example. Furthermore, the incorporation of the Parameter Estimation Software (PEST) into RZWQM2 made the calibration of the model more efficient than a grid (ordered) search of model parameters. In addition, PEST provides sensitivity and uncertainty analyses that should help users in selecting the right parameters to calibrate.

  17. Deriving global parameter estimates for the Noah land surface model using FLUXNET and machine learning

    NASA Astrophysics Data System (ADS)

    Chaney, Nathaniel W.; Herman, Jonathan D.; Ek, Michael B.; Wood, Eric F.

    2016-11-01

    With their origins in numerical weather prediction and climate modeling, land surface models aim to accurately partition the surface energy balance. An overlooked challenge in these schemes is the role of model parameter uncertainty, particularly at unmonitored sites. This study provides global parameter estimates for the Noah land surface model using 85 eddy covariance sites in the global FLUXNET network. The at-site parameters are first calibrated using a Latin Hypercube-based ensemble of the most sensitive parameters, determined by the Sobol method, to be the minimum stomatal resistance (rs,min), the Zilitinkevich empirical constant (Czil), and the bare soil evaporation exponent (fxexp). Calibration leads to an increase in the mean Kling-Gupta Efficiency performance metric from 0.54 to 0.71. These calibrated parameter sets are then related to local environmental characteristics using the Extra-Trees machine learning algorithm. The fitted Extra-Trees model is used to map the optimal parameter sets over the globe at a 5 km spatial resolution. The leave-one-out cross validation of the mapped parameters using the Noah land surface model suggests that there is the potential to skillfully relate calibrated model parameter sets to local environmental characteristics. The results demonstrate the potential to use FLUXNET to tune the parameterizations of surface fluxes in land surface models and to provide improved parameter estimates over the globe.

  18. The impact of standard and hard-coded parameters on the hydrologic fluxes in the Noah-MP land surface model

    NASA Astrophysics Data System (ADS)

    Cuntz, Matthias; Mai, Juliane; Samaniego, Luis; Clark, Martyn; Wulfmeyer, Volker; Branch, Oliver; Attinger, Sabine; Thober, Stephan

    2016-09-01

    Land surface models incorporate a large number of process descriptions, containing a multitude of parameters. These parameters are typically read from tabulated input files. Some of these parameters might be fixed numbers in the computer code though, which hinder model agility during calibration. Here we identified 139 hard-coded parameters in the model code of the Noah land surface model with multiple process options (Noah-MP). We performed a Sobol' global sensitivity analysis of Noah-MP for a specific set of process options, which includes 42 out of the 71 standard parameters and 75 out of the 139 hard-coded parameters. The sensitivities of the hydrologic output fluxes latent heat and total runoff as well as their component fluxes were evaluated at 12 catchments within the United States with very different hydrometeorological regimes. Noah-MP's hydrologic output fluxes are sensitive to two thirds of its applicable standard parameters (i.e., Sobol' indexes above 1%). The most sensitive parameter is, however, a hard-coded value in the formulation of soil surface resistance for direct evaporation, which proved to be oversensitive in other land surface models as well. Surface runoff is sensitive to almost all hard-coded parameters of the snow processes and the meteorological inputs. These parameter sensitivities diminish in total runoff. Assessing these parameters in model calibration would require detailed snow observations or the calculation of hydrologic signatures of the runoff data. Latent heat and total runoff exhibit very similar sensitivities because of their tight coupling via the water balance. A calibration of Noah-MP against either of these fluxes should therefore give comparable results. Moreover, these fluxes are sensitive to both plant and soil parameters. Calibrating, for example, only soil parameters hence limit the ability to derive realistic model parameters. It is thus recommended to include the most sensitive hard-coded model parameters that were exposed in this study when calibrating Noah-MP.

  19. Parameter regionalization of a monthly water balance model for the conterminous United States

    NASA Astrophysics Data System (ADS)

    Bock, A. R.; Hay, L. E.; McCabe, G. J.; Markstrom, S. L.; Atkinson, R. D.

    2015-09-01

    A parameter regionalization scheme to transfer parameter values and model uncertainty information from gaged to ungaged areas for a monthly water balance model (MWBM) was developed and tested for the conterminous United States (CONUS). The Fourier Amplitude Sensitivity Test, a global-sensitivity algorithm, was implemented on a MWBM to generate parameter sensitivities on a set of 109 951 hydrologic response units (HRUs) across the CONUS. The HRUs were grouped into 110 calibration regions based on similar parameter sensitivities. Subsequently, measured runoff from 1575 streamgages within the calibration regions were used to calibrate the MWBM parameters to produce parameter sets for each calibration region. Measured and simulated runoff at the 1575 streamgages showed good correspondence for the majority of the CONUS, with a median computed Nash-Sutcliffe Efficiency coefficient of 0.76 over all streamgages. These methods maximize the use of available runoff information, resulting in a calibrated CONUS-wide application of the MWBM suitable for providing estimates of water availability at the HRU resolution for both gaged and ungaged areas of the CONUS.

  20. Ability Estimation and Item Calibration Using the One and Three Parameter Logistic Models: A Comparative Study. Research Report 77-1.

    ERIC Educational Resources Information Center

    Reckase, Mark D.

    Latent trait model calibration procedures were used on data obtained from a group testing program. The one-parameter model of Wright and Panchapakesan and the three-parameter logistic model of Wingersky, Wood, and Lord were selected for comparison. These models and their corresponding estimation procedures were compared, using actual and simulated…

  1. SWAT: Model use, calibration, and validation

    USDA-ARS?s Scientific Manuscript database

    SWAT (Soil and Water Assessment Tool) is a comprehensive, semi-distributed river basin model that requires a large number of input parameters which complicates model parameterization and calibration. Several calibration techniques have been developed for SWAT including manual calibration procedures...

  2. Determining geometric error model parameters of a terrestrial laser scanner through Two-face, Length-consistency, and Network methods

    PubMed Central

    Wang, Ling; Muralikrishnan, Bala; Rachakonda, Prem; Sawyer, Daniel

    2017-01-01

    Terrestrial laser scanners (TLS) are increasingly used in large-scale manufacturing and assembly where required measurement uncertainties are on the order of few tenths of a millimeter or smaller. In order to meet these stringent requirements, systematic errors within a TLS are compensated in-situ through self-calibration. In the Network method of self-calibration, numerous targets distributed in the work-volume are measured from multiple locations with the TLS to determine parameters of the TLS error model. In this paper, we propose two new self-calibration methods, the Two-face method and the Length-consistency method. The Length-consistency method is proposed as a more efficient way of realizing the Network method where the length between any pair of targets from multiple TLS positions are compared to determine TLS model parameters. The Two-face method is a two-step process. In the first step, many model parameters are determined directly from the difference between front-face and back-face measurements of targets distributed in the work volume. In the second step, all remaining model parameters are determined through the Length-consistency method. We compare the Two-face method, the Length-consistency method, and the Network method in terms of the uncertainties in the model parameters, and demonstrate the validity of our techniques using a calibrated scale bar and front-face back-face target measurements. The clear advantage of these self-calibration methods is that a reference instrument or calibrated artifacts are not required, thus significantly lowering the cost involved in the calibration process. PMID:28890607

  3. Development of an automated procedure for estimation of the spatial variation of runoff in large river basins

    USDA-ARS?s Scientific Manuscript database

    The use of distributed parameter models to address water resource management problems has increased in recent years. Calibration is necessary to reduce the uncertainties associated with model input parameters. Manual calibration of a distributed parameter model is a very time consuming effort. There...

  4. Exact Scheffé-type confidence intervals for output from groundwater flow models: 2. Combined use of hydrogeologic information and calibration data

    USGS Publications Warehouse

    Cooley, Richard L.

    1993-01-01

    Calibration data (observed values corresponding to model-computed values of dependent variables) are incorporated into a general method of computing exact Scheffé-type confidence intervals analogous to the confidence intervals developed in part 1 (Cooley, this issue) for a function of parameters derived from a groundwater flow model. Parameter uncertainty is specified by a distribution of parameters conditioned on the calibration data. This distribution was obtained as a posterior distribution by applying Bayes' theorem to the hydrogeologically derived prior distribution of parameters from part 1 and a distribution of differences between the calibration data and corresponding model-computed dependent variables. Tests show that the new confidence intervals can be much smaller than the intervals of part 1 because the prior parameter variance-covariance structure is altered so that combinations of parameters that give poor model fit to the data are unlikely. The confidence intervals of part 1 and the new confidence intervals can be effectively employed in a sequential method of model construction whereby new information is used to reduce confidence interval widths at each stage.

  5. Calibration of a Distributed Hydrological Model using Remote Sensing Evapotranspiration data in the Semi-Arid Punjab Region of Pakista

    NASA Astrophysics Data System (ADS)

    Becker, R.; Usman, M.

    2017-12-01

    A SWAT (Soil Water Assessment Tool) model is applied in the semi-arid Punjab region in Pakistan. The physically based hydrological model is set up to simulate hydrological processes and water resources demands under future land use, climate change and irrigation management scenarios. In order to successfully run the model, detailed focus is laid on the calibration procedure of the model. The study deals with the following calibration issues:i. lack of reliable calibration/validation data, ii. difficulty to accurately model a highly managed system with a physically based hydrological model and iii. use of alternative and spatially distributed data sets for model calibration. In our study area field observations are rare and the entirely human controlled irrigation system renders central calibration parameters (e.g. runoff/curve number) unsuitable, as it can't be assumed that they represent the natural behavior of the hydrological system. From evapotranspiration (ET) however principal hydrological processes can still be inferred. Usman et al. (2015) derived satellite based monthly ET data for our study area based on SEBAL (Surface Energy Balance Algorithm) and created a reliable ET data set which we use in this study to calibrate our SWAT model. The initial SWAT model performance is evaluated with respect to the SEBAL results using correlation coefficients, RMSE, Nash-Sutcliffe efficiencies and mean differences. Particular focus is laid on the spatial patters, investigating the potential of a spatially differentiated parameterization instead of just using spatially uniform calibration data. A sensitivity analysis reveals the most sensitive parameters with respect to changes in ET, which are then selected for the calibration process.Using the SEBAL-ET product we calibrate the SWAT model for the time period 2005-2006 using a dynamically dimensioned global search algorithm to minimize RMSE. The model improvement after the calibration procedure is finally evaluated based on the previously chosen evaluation criteria for the time period 2007-2008. The study reveals the sensitivity of SWAT model parameters to changes in ET in a semi-arid and human controlled system and the potential of calibrating those parameters using satellite derived ET data.

  6. Calibration of two complex ecosystem models with different likelihood functions

    NASA Astrophysics Data System (ADS)

    Hidy, Dóra; Haszpra, László; Pintér, Krisztina; Nagy, Zoltán; Barcza, Zoltán

    2014-05-01

    The biosphere is a sensitive carbon reservoir. Terrestrial ecosystems were approximately carbon neutral during the past centuries, but they became net carbon sinks due to climate change induced environmental change and associated CO2 fertilization effect of the atmosphere. Model studies and measurements indicate that the biospheric carbon sink can saturate in the future due to ongoing climate change which can act as a positive feedback. Robustness of carbon cycle models is a key issue when trying to choose the appropriate model for decision support. The input parameters of the process-based models are decisive regarding the model output. At the same time there are several input parameters for which accurate values are hard to obtain directly from experiments or no local measurements are available. Due to the uncertainty associated with the unknown model parameters significant bias can be experienced if the model is used to simulate the carbon and nitrogen cycle components of different ecosystems. In order to improve model performance the unknown model parameters has to be estimated. We developed a multi-objective, two-step calibration method based on Bayesian approach in order to estimate the unknown parameters of PaSim and Biome-BGC models. Biome-BGC and PaSim are a widely used biogeochemical models that simulate the storage and flux of water, carbon, and nitrogen between the ecosystem and the atmosphere, and within the components of the terrestrial ecosystems (in this research the developed version of Biome-BGC is used which is referred as BBGC MuSo). Both models were calibrated regardless the simulated processes and type of model parameters. The calibration procedure is based on the comparison of measured data with simulated results via calculating a likelihood function (degree of goodness-of-fit between simulated and measured data). In our research different likelihood function formulations were used in order to examine the effect of the different model goodness metric on calibration. The different likelihoods are different functions of RMSE (root mean squared error) weighted by measurement uncertainty: exponential / linear / quadratic / linear normalized by correlation. As a first calibration step sensitivity analysis was performed in order to select the influential parameters which have strong effect on the output data. In the second calibration step only the sensitive parameters were calibrated (optimal values and confidence intervals were calculated). In case of PaSim more parameters were found responsible for the 95% of the output data variance than is case of BBGC MuSo. Analysis of the results of the optimized models revealed that the exponential likelihood estimation proved to be the most robust (best model simulation with optimized parameter, highest confidence interval increase). The cross-validation of the model simulations can help in constraining the highly uncertain greenhouse gas budget of grasslands.

  7. Impact of influent data frequency and model structure on the quality of WWTP model calibration and uncertainty.

    PubMed

    Cierkens, Katrijn; Plano, Salvatore; Benedetti, Lorenzo; Weijers, Stefan; de Jonge, Jarno; Nopens, Ingmar

    2012-01-01

    Application of activated sludge models (ASMs) to full-scale wastewater treatment plants (WWTPs) is still hampered by the problem of model calibration of these over-parameterised models. This either requires expert knowledge or global methods that explore a large parameter space. However, a better balance in structure between the submodels (ASM, hydraulic, aeration, etc.) and improved quality of influent data result in much smaller calibration efforts. In this contribution, a methodology is proposed that links data frequency and model structure to calibration quality and output uncertainty. It is composed of defining the model structure, the input data, an automated calibration, confidence interval computation and uncertainty propagation to the model output. Apart from the last step, the methodology is applied to an existing WWTP using three models differing only in the aeration submodel. A sensitivity analysis was performed on all models, allowing the ranking of the most important parameters to select in the subsequent calibration step. The aeration submodel proved very important to get good NH(4) predictions. Finally, the impact of data frequency was explored. Lowering the frequency resulted in larger deviations of parameter estimates from their default values and larger confidence intervals. Autocorrelation due to high frequency calibration data has an opposite effect on the confidence intervals. The proposed methodology opens doors to facilitate and improve calibration efforts and to design measurement campaigns.

  8. Pattern-Based Inverse Modeling for Characterization of Subsurface Flow Models with Complex Geologic Heterogeneity

    NASA Astrophysics Data System (ADS)

    Golmohammadi, A.; Jafarpour, B.; M Khaninezhad, M. R.

    2017-12-01

    Calibration of heterogeneous subsurface flow models leads to ill-posed nonlinear inverse problems, where too many unknown parameters are estimated from limited response measurements. When the underlying parameters form complex (non-Gaussian) structured spatial connectivity patterns, classical variogram-based geostatistical techniques cannot describe the underlying connectivity patterns. Modern pattern-based geostatistical methods that incorporate higher-order spatial statistics are more suitable for describing such complex spatial patterns. Moreover, when the underlying unknown parameters are discrete (geologic facies distribution), conventional model calibration techniques that are designed for continuous parameters cannot be applied directly. In this paper, we introduce a novel pattern-based model calibration method to reconstruct discrete and spatially complex facies distributions from dynamic flow response data. To reproduce complex connectivity patterns during model calibration, we impose a feasibility constraint to ensure that the solution follows the expected higher-order spatial statistics. For model calibration, we adopt a regularized least-squares formulation, involving data mismatch, pattern connectivity, and feasibility constraint terms. Using an alternating directions optimization algorithm, the regularized objective function is divided into a continuous model calibration problem, followed by mapping the solution onto the feasible set. The feasibility constraint to honor the expected spatial statistics is implemented using a supervised machine learning algorithm. The two steps of the model calibration formulation are repeated until the convergence criterion is met. Several numerical examples are used to evaluate the performance of the developed method.

  9. A parallel calibration utility for WRF-Hydro on high performance computers

    NASA Astrophysics Data System (ADS)

    Wang, J.; Wang, C.; Kotamarthi, V. R.

    2017-12-01

    A successful modeling of complex hydrological processes comprises establishing an integrated hydrological model which simulates the hydrological processes in each water regime, calibrates and validates the model performance based on observation data, and estimates the uncertainties from different sources especially those associated with parameters. Such a model system requires large computing resources and often have to be run on High Performance Computers (HPC). The recently developed WRF-Hydro modeling system provides a significant advancement in the capability to simulate regional water cycles more completely. The WRF-Hydro model has a large range of parameters such as those in the input table files — GENPARM.TBL, SOILPARM.TBL and CHANPARM.TBL — and several distributed scaling factors such as OVROUGHRTFAC. These parameters affect the behavior and outputs of the model and thus may need to be calibrated against the observations in order to obtain a good modeling performance. Having a parameter calibration tool specifically for automate calibration and uncertainty estimates of WRF-Hydro model can provide significant convenience for the modeling community. In this study, we developed a customized tool using the parallel version of the model-independent parameter estimation and uncertainty analysis tool, PEST, to enabled it to run on HPC with PBS and SLURM workload manager and job scheduler. We also developed a series of PEST input file templates that are specifically for WRF-Hydro model calibration and uncertainty analysis. Here we will present a flood case study occurred in April 2013 over Midwest. The sensitivity and uncertainties are analyzed using the customized PEST tool we developed.

  10. Quantifying the predictive consequences of model error with linear subspace analysis

    USGS Publications Warehouse

    White, Jeremy T.; Doherty, John E.; Hughes, Joseph D.

    2014-01-01

    All computer models are simplified and imperfect simulators of complex natural systems. The discrepancy arising from simplification induces bias in model predictions, which may be amplified by the process of model calibration. This paper presents a new method to identify and quantify the predictive consequences of calibrating a simplified computer model. The method is based on linear theory, and it scales efficiently to the large numbers of parameters and observations characteristic of groundwater and petroleum reservoir models. The method is applied to a range of predictions made with a synthetic integrated surface-water/groundwater model with thousands of parameters. Several different observation processing strategies and parameterization/regularization approaches are examined in detail, including use of the Karhunen-Loève parameter transformation. Predictive bias arising from model error is shown to be prediction specific and often invisible to the modeler. The amount of calibration-induced bias is influenced by several factors, including how expert knowledge is applied in the design of parameterization schemes, the number of parameters adjusted during calibration, how observations and model-generated counterparts are processed, and the level of fit with observations achieved through calibration. Failure to properly implement any of these factors in a prediction-specific manner may increase the potential for predictive bias in ways that are not visible to the calibration and uncertainty analysis process.

  11. Calibration of CORSIM models under saturated traffic flow conditions.

    DOT National Transportation Integrated Search

    2013-09-01

    This study proposes a methodology to calibrate microscopic traffic flow simulation models. : The proposed methodology has the capability to calibrate simultaneously all the calibration : parameters as well as demand patterns for any network topology....

  12. The importance of diverse data types to calibrate a watershed model of the Trout Lake Basin, Northern Wisconsin, USA

    USGS Publications Warehouse

    Hunt, R.J.; Feinstein, D.T.; Pint, C.D.; Anderson, M.P.

    2006-01-01

    As part of the USGS Water, Energy, and Biogeochemical Budgets project and the NSF Long-Term Ecological Research work, a parameter estimation code was used to calibrate a deterministic groundwater flow model of the Trout Lake Basin in northern Wisconsin. Observations included traditional calibration targets (head, lake stage, and baseflow observations) as well as unconventional targets such as groundwater flows to and from lakes, depth of a lake water plume, and time of travel. The unconventional data types were important for parameter estimation convergence and allowed the development of a more detailed parameterization capable of resolving model objectives with well-constrained parameter values. Independent estimates of groundwater inflow to lakes were most important for constraining lakebed leakance and the depth of the lake water plume was important for determining hydraulic conductivity and conceptual aquifer layering. The most important target overall, however, was a conventional regional baseflow target that led to correct distribution of flow between sub-basins and the regional system during model calibration. The use of an automated parameter estimation code: (1) facilitated the calibration process by providing a quantitative assessment of the model's ability to match disparate observed data types; and (2) allowed assessment of the influence of observed targets on the calibration process. The model calibration required the use of a 'universal' parameter estimation code in order to include all types of observations in the objective function. The methods described in this paper help address issues of watershed complexity and non-uniqueness common to deterministic watershed models. ?? 2005 Elsevier B.V. All rights reserved.

  13. Parameter regionalization of a monthly water balance model for the conterminous United States

    USGS Publications Warehouse

    Bock, Andrew R.; Hay, Lauren E.; McCabe, Gregory J.; Markstrom, Steven L.; Atkinson, R. Dwight

    2016-01-01

    A parameter regionalization scheme to transfer parameter values from gaged to ungaged areas for a monthly water balance model (MWBM) was developed and tested for the conterminous United States (CONUS). The Fourier Amplitude Sensitivity Test, a global-sensitivity algorithm, was implemented on a MWBM to generate parameter sensitivities on a set of 109 951 hydrologic response units (HRUs) across the CONUS. The HRUs were grouped into 110 calibration regions based on similar parameter sensitivities. Subsequently, measured runoff from 1575 streamgages within the calibration regions were used to calibrate the MWBM parameters to produce parameter sets for each calibration region. Measured and simulated runoff at the 1575 streamgages showed good correspondence for the majority of the CONUS, with a median computed Nash–Sutcliffe efficiency coefficient of 0.76 over all streamgages. These methods maximize the use of available runoff information, resulting in a calibrated CONUS-wide application of the MWBM suitable for providing estimates of water availability at the HRU resolution for both gaged and ungaged areas of the CONUS.

  14. Parameter regionalization of a monthly water balance model for the conterminous United States

    NASA Astrophysics Data System (ADS)

    Bock, Andrew R.; Hay, Lauren E.; McCabe, Gregory J.; Markstrom, Steven L.; Atkinson, R. Dwight

    2016-07-01

    A parameter regionalization scheme to transfer parameter values from gaged to ungaged areas for a monthly water balance model (MWBM) was developed and tested for the conterminous United States (CONUS). The Fourier Amplitude Sensitivity Test, a global-sensitivity algorithm, was implemented on a MWBM to generate parameter sensitivities on a set of 109 951 hydrologic response units (HRUs) across the CONUS. The HRUs were grouped into 110 calibration regions based on similar parameter sensitivities. Subsequently, measured runoff from 1575 streamgages within the calibration regions were used to calibrate the MWBM parameters to produce parameter sets for each calibration region. Measured and simulated runoff at the 1575 streamgages showed good correspondence for the majority of the CONUS, with a median computed Nash-Sutcliffe efficiency coefficient of 0.76 over all streamgages. These methods maximize the use of available runoff information, resulting in a calibrated CONUS-wide application of the MWBM suitable for providing estimates of water availability at the HRU resolution for both gaged and ungaged areas of the CONUS.

  15. Development of a calibration protocol and identification of the most sensitive parameters for the particulate biofilm models used in biological wastewater treatment.

    PubMed

    Eldyasti, Ahmed; Nakhla, George; Zhu, Jesse

    2012-05-01

    Biofilm models are valuable tools for process engineers to simulate biological wastewater treatment. In order to enhance the use of biofilm models implemented in contemporary simulation software, model calibration is both necessary and helpful. The aim of this work was to develop a calibration protocol of the particulate biofilm model with a help of the sensitivity analysis of the most important parameters in the biofilm model implemented in BioWin® and verify the predictability of the calibration protocol. A case study of a circulating fluidized bed bioreactor (CFBBR) system used for biological nutrient removal (BNR) with a fluidized bed respirometric study of the biofilm stoichiometry and kinetics was used to verify and validate the proposed calibration protocol. Applying the five stages of the biofilm calibration procedures enhanced the applicability of BioWin®, which was capable of predicting most of the performance parameters with an average percentage error (APE) of 0-20%. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. A framework for streamflow prediction in the world's most severely data-limited regions: Test of applicability and performance in a poorly-gauged region of China

    NASA Astrophysics Data System (ADS)

    Alipour, M. H.; Kibler, Kelly M.

    2018-02-01

    A framework methodology is proposed for streamflow prediction in poorly-gauged rivers located within large-scale regions of sparse hydrometeorologic observation. A multi-criteria model evaluation is developed to select models that balance runoff efficiency with selection of accurate parameter values. Sparse observed data are supplemented by uncertain or low-resolution information, incorporated as 'soft' data, to estimate parameter values a priori. Model performance is tested in two catchments within a data-poor region of southwestern China, and results are compared to models selected using alternative calibration methods. While all models perform consistently with respect to runoff efficiency (NSE range of 0.67-0.78), models selected using the proposed multi-objective method may incorporate more representative parameter values than those selected by traditional calibration. Notably, parameter values estimated by the proposed method resonate with direct estimates of catchment subsurface storage capacity (parameter residuals of 20 and 61 mm for maximum soil moisture capacity (Cmax), and 0.91 and 0.48 for soil moisture distribution shape factor (B); where a parameter residual is equal to the centroid of a soft parameter value minus the calibrated parameter value). A model more traditionally calibrated to observed data only (single-objective model) estimates a much lower soil moisture capacity (residuals of Cmax = 475 and 518 mm and B = 1.24 and 0.7). A constrained single-objective model also underestimates maximum soil moisture capacity relative to a priori estimates (residuals of Cmax = 246 and 289 mm). The proposed method may allow managers to more confidently transfer calibrated models to ungauged catchments for streamflow predictions, even in the world's most data-limited regions.

  17. Calibrated Hydrothermal Parameters, Barrow, Alaska, 2013

    DOE Data Explorer

    Atchley, Adam; Painter, Scott; Harp, Dylan; Coon, Ethan; Wilson, Cathy; Liljedahl, Anna; Romanovsky, Vladimir

    2015-01-29

    A model-observation-experiment process (ModEx) is used to generate three 1D models of characteristic micro-topographical land-formations, which are capable of simulating present active thaw layer (ALT) from current climate conditions. Each column was used in a coupled calibration to identify moss, peat and mineral soil hydrothermal properties to be used in up-scaled simulations. Observational soil temperature data from a tundra site located near Barrow, AK (Area C) is used to calibrate thermal properties of moss, peat, and sandy loam soil to be used in the multiphysics Advanced Terrestrial Simulator (ATS) models. Simulation results are a list of calibrated hydrothermal parameters for moss, peat, and mineral soil hydrothermal parameters.

  18. Least-Squares Self-Calibration of Imaging Array Data

    NASA Technical Reports Server (NTRS)

    Arendt, R. G.; Moseley, S. H.; Fixsen, D. J.

    2004-01-01

    When arrays are used to collect multiple appropriately-dithered images of the same region of sky, the resulting data set can be calibrated using a least-squares minimization procedure that determines the optimal fit between the data and a model of that data. The model parameters include the desired sky intensities as well as instrument parameters such as pixel-to-pixel gains and offsets. The least-squares solution simultaneously provides the formal error estimates for the model parameters. With a suitable observing strategy, the need for separate calibration observations is reduced or eliminated. We show examples of this calibration technique applied to HST NICMOS observations of the Hubble Deep Fields and simulated SIRTF IRAC observations.

  19. Polarization effects on hard target calibration of lidar systems

    NASA Technical Reports Server (NTRS)

    Kavaya, Michael J.

    1987-01-01

    The theory of hard target calibration of lidar backscatter data, including laboratory measurements of the pertinent target reflectance parameters, is extended to include the effects of polarization of the transmitted and received laser radiation. The bidirectional reflectance-distribution function model of reflectance is expanded to a 4 x 4 matrix allowing Mueller matrix and Stokes vector calculus to be employed. Target reflectance parameters for calibration of lidar backscatter data are derived for various lidar system polarization configurations from integrating sphere and monostatic reflectometer measurements. It is found that correct modeling of polarization effects is mandatory for accurate calibration of hard target reflectance parameters and, therefore, for accurate calibration of lidar backscatter data.

  20. Sensitivity analysis, calibration, and testing of a distributed hydrological model using error‐based weighting and one objective function

    USGS Publications Warehouse

    Foglia, L.; Hill, Mary C.; Mehl, Steffen W.; Burlando, P.

    2009-01-01

    We evaluate the utility of three interrelated means of using data to calibrate the fully distributed rainfall‐runoff model TOPKAPI as applied to the Maggia Valley drainage area in Switzerland. The use of error‐based weighting of observation and prior information data, local sensitivity analysis, and single‐objective function nonlinear regression provides quantitative evaluation of sensitivity of the 35 model parameters to the data, identification of data types most important to the calibration, and identification of correlations among parameters that contribute to nonuniqueness. Sensitivity analysis required only 71 model runs, and regression required about 50 model runs. The approach presented appears to be ideal for evaluation of models with long run times or as a preliminary step to more computationally demanding methods. The statistics used include composite scaled sensitivities, parameter correlation coefficients, leverage, Cook's D, and DFBETAS. Tests suggest predictive ability of the calibrated model typical of hydrologic models.

  1. Predicting in ungauged basins using a parsimonious rainfall-runoff model

    NASA Astrophysics Data System (ADS)

    Skaugen, Thomas; Olav Peerebom, Ivar; Nilsson, Anna

    2015-04-01

    Prediction in ungauged basins is a demanding, but necessary test for hydrological model structures. Ideally, the relationship between model parameters and catchment characteristics (CC) should be hydrologically justifiable. Many studies, however, report on failure to obtain significant correlations between model parameters and CCs. Under the hypothesis that the lack of correlations stems from non-identifiability of model parameters caused by overparameterization, the relatively new parameter parsimonious DDD (Distance Distribution Dynamics) model was tested for predictions in ungauged basins in Norway. In DDD, the capacity of the subsurface water reservoir M is the only parameter to be calibrated whereas the runoff dynamics is completely parameterised from observed characteristics derived from GIS and runoff recession analysis. Water is conveyed through the soils to the river network by waves with celerities determined by the level of saturation in the catchment. The distributions of distances between points in the catchment to the nearest river reach and of the river network give, together with the celerities, distributions of travel times, and, consequently unit hydrographs. DDD has 6 parameters less to calibrate in the runoff module than, for example, the well-known Swedish HBV model. In this study, multiple regression equations relating CCs and model parameters were trained from 84 calibrated catchments located all over Norway and all model parameters showed significant correlations with catchment characteristics. The significant correlation coefficients (with p- value < 0.05) ranged from 0.22-0.55. The suitability of DDD for predictions in ungauged basins was tested for 17 catchments not used to estimate the multiple regression equations. For 10 of the 17 catchments, deviations in Nash-Suthcliffe Efficiency (NSE) criteria between the calibrated and regionalised model were less than 0.1. The median NSE for the regionalised DDD for the 17 catchments, for two different time series was 0.66 and 0.72. Deviations in NSE between calibrated and regionalised models are well explained by the deviations between calibrated and regressed parameters describing spatial snow distribution and snowmelt, respectively. This latter result indicates the topic for further improvements in the model structure of DDD.

  2. Computer simulation of storm runoff for three watersheds in Albuquerque, New Mexico

    USGS Publications Warehouse

    Knutilla, R.L.; Veenhuis, J.E.

    1994-01-01

    Rainfall-runoff data from three watersheds were selected for calibration and verification of the U.S. Geological Survey's Distributed Routing Rainfall-Runoff Model. The watersheds chosen are residentially developed. The conceptually based model uses an optimization process that adjusts selected parameters to achieve the best fit between measured and simulated runoff volumes and peak discharges. Three of these optimization parameters represent soil-moisture conditions, three represent infiltration, and one accounts for effective impervious area. Each watershed modeled was divided into overland-flow segments and channel segments. The overland-flow segments were further subdivided to reflect pervious and impervious areas. Each overland-flow and channel segment was assigned representative values of area, slope, percentage of imperviousness, and roughness coefficients. Rainfall-runoff data for each watershed were separated into two sets for use in calibration and verification. For model calibration, seven input parameters were optimized to attain a best fit of the data. For model verification, parameter values were set using values from model calibration. The standard error of estimate for calibration of runoff volumes ranged from 19 to 34 percent, and for peak discharge calibration ranged from 27 to 44 percent. The standard error of estimate for verification of runoff volumes ranged from 26 to 31 percent, and for peak discharge verification ranged from 31 to 43 percent.

  3. Bayesian calibration of terrestrial ecosystem models: a study of advanced Markov chain Monte Carlo methods

    NASA Astrophysics Data System (ADS)

    Lu, Dan; Ricciuto, Daniel; Walker, Anthony; Safta, Cosmin; Munger, William

    2017-09-01

    Calibration of terrestrial ecosystem models is important but challenging. Bayesian inference implemented by Markov chain Monte Carlo (MCMC) sampling provides a comprehensive framework to estimate model parameters and associated uncertainties using their posterior distributions. The effectiveness and efficiency of the method strongly depend on the MCMC algorithm used. In this work, a differential evolution adaptive Metropolis (DREAM) algorithm is used to estimate posterior distributions of 21 parameters for the data assimilation linked ecosystem carbon (DALEC) model using 14 years of daily net ecosystem exchange data collected at the Harvard Forest Environmental Measurement Site eddy-flux tower. The calibration of DREAM results in a better model fit and predictive performance compared to the popular adaptive Metropolis (AM) scheme. Moreover, DREAM indicates that two parameters controlling autumn phenology have multiple modes in their posterior distributions while AM only identifies one mode. The application suggests that DREAM is very suitable to calibrate complex terrestrial ecosystem models, where the uncertain parameter size is usually large and existence of local optima is always a concern. In addition, this effort justifies the assumptions of the error model used in Bayesian calibration according to the residual analysis. The result indicates that a heteroscedastic, correlated, Gaussian error model is appropriate for the problem, and the consequent constructed likelihood function can alleviate the underestimation of parameter uncertainty that is usually caused by using uncorrelated error models.

  4. Uncertainty quantification and propagation in dynamic models using ambient vibration measurements, application to a 10-story building

    NASA Astrophysics Data System (ADS)

    Behmanesh, Iman; Yousefianmoghadam, Seyedsina; Nozari, Amin; Moaveni, Babak; Stavridis, Andreas

    2018-07-01

    This paper investigates the application of Hierarchical Bayesian model updating for uncertainty quantification and response prediction of civil structures. In this updating framework, structural parameters of an initial finite element (FE) model (e.g., stiffness or mass) are calibrated by minimizing error functions between the identified modal parameters and the corresponding parameters of the model. These error functions are assumed to have Gaussian probability distributions with unknown parameters to be determined. The estimated parameters of error functions represent the uncertainty of the calibrated model in predicting building's response (modal parameters here). The focus of this paper is to answer whether the quantified model uncertainties using dynamic measurement at building's reference/calibration state can be used to improve the model prediction accuracies at a different structural state, e.g., damaged structure. Also, the effects of prediction error bias on the uncertainty of the predicted values is studied. The test structure considered here is a ten-story concrete building located in Utica, NY. The modal parameters of the building at its reference state are identified from ambient vibration data and used to calibrate parameters of the initial FE model as well as the error functions. Before demolishing the building, six of its exterior walls were removed and ambient vibration measurements were also collected from the structure after the wall removal. These data are not used to calibrate the model; they are only used to assess the predicted results. The model updating framework proposed in this paper is applied to estimate the modal parameters of the building at its reference state as well as two damaged states: moderate damage (removal of four walls) and severe damage (removal of six walls). Good agreement is observed between the model-predicted modal parameters and those identified from vibration tests. Moreover, it is shown that including prediction error bias in the updating process instead of commonly-used zero-mean error function can significantly reduce the prediction uncertainties.

  5. Finite Element Model Calibration Approach for Area I-X

    NASA Technical Reports Server (NTRS)

    Horta, Lucas G.; Reaves, Mercedes C.; Buehrle, Ralph D.; Templeton, Justin D.; Gaspar, James L.; Lazor, Daniel R.; Parks, Russell A.; Bartolotta, Paul A.

    2010-01-01

    Ares I-X is a pathfinder vehicle concept under development by NASA to demonstrate a new class of launch vehicles. Although this vehicle is essentially a shell of what the Ares I vehicle will be, efforts are underway to model and calibrate the analytical models before its maiden flight. Work reported in this document will summarize the model calibration approach used including uncertainty quantification of vehicle responses and the use of non-conventional boundary conditions during component testing. Since finite element modeling is the primary modeling tool, the calibration process uses these models, often developed by different groups, to assess model deficiencies and to update parameters to reconcile test with predictions. Data for two major component tests and the flight vehicle are presented along with the calibration results. For calibration, sensitivity analysis is conducted using Analysis of Variance (ANOVA). To reduce the computational burden associated with ANOVA calculations, response surface models are used in lieu of computationally intensive finite element solutions. From the sensitivity studies, parameter importance is assessed as a function of frequency. In addition, the work presents an approach to evaluate the probability that a parameter set exists to reconcile test with analysis. Comparisons of pretest predictions of frequency response uncertainty bounds with measured data, results from the variance-based sensitivity analysis, and results from component test models with calibrated boundary stiffness models are all presented.

  6. Finite Element Model Calibration Approach for Ares I-X

    NASA Technical Reports Server (NTRS)

    Horta, Lucas G.; Reaves, Mercedes C.; Buehrle, Ralph D.; Templeton, Justin D.; Lazor, Daniel R.; Gaspar, James L.; Parks, Russel A.; Bartolotta, Paul A.

    2010-01-01

    Ares I-X is a pathfinder vehicle concept under development by NASA to demonstrate a new class of launch vehicles. Although this vehicle is essentially a shell of what the Ares I vehicle will be, efforts are underway to model and calibrate the analytical models before its maiden flight. Work reported in this document will summarize the model calibration approach used including uncertainty quantification of vehicle responses and the use of nonconventional boundary conditions during component testing. Since finite element modeling is the primary modeling tool, the calibration process uses these models, often developed by different groups, to assess model deficiencies and to update parameters to reconcile test with predictions. Data for two major component tests and the flight vehicle are presented along with the calibration results. For calibration, sensitivity analysis is conducted using Analysis of Variance (ANOVA). To reduce the computational burden associated with ANOVA calculations, response surface models are used in lieu of computationally intensive finite element solutions. From the sensitivity studies, parameter importance is assessed as a function of frequency. In addition, the work presents an approach to evaluate the probability that a parameter set exists to reconcile test with analysis. Comparisons of pre-test predictions of frequency response uncertainty bounds with measured data, results from the variance-based sensitivity analysis, and results from component test models with calibrated boundary stiffness models are all presented.

  7. A New Calibration Method for Commercial RGB-D Sensors.

    PubMed

    Darwish, Walid; Tang, Shenjun; Li, Wenbin; Chen, Wu

    2017-05-24

    Commercial RGB-D sensors such as Kinect and Structure Sensors have been widely used in the game industry, where geometric fidelity is not of utmost importance. For applications in which high quality 3D is required, i.e., 3D building models of centimeter‑level accuracy, accurate and reliable calibrations of these sensors are required. This paper presents a new model for calibrating the depth measurements of RGB-D sensors based on the structured light concept. Additionally, a new automatic method is proposed for the calibration of all RGB-D parameters, including internal calibration parameters for all cameras, the baseline between the infrared and RGB cameras, and the depth error model. When compared with traditional calibration methods, this new model shows a significant improvement in depth precision for both near and far ranges.

  8. A simplified gross primary production and evapotranspiration model for boreal coniferous forests - is a generic calibration sufficient?

    NASA Astrophysics Data System (ADS)

    Minunno, F.; Peltoniemi, M.; Launiainen, S.; Aurela, M.; Lindroth, A.; Lohila, A.; Mammarella, I.; Minkkinen, K.; Mäkelä, A.

    2015-07-01

    The problem of model complexity has been lively debated in environmental sciences as well as in the forest modelling community. Simple models are less input demanding and their calibration involves a lower number of parameters, but they might be suitable only at local scale. In this work we calibrated a simplified ecosystem process model (PRELES) to data from multiple sites and we tested if PRELES can be used at regional scale to estimate the carbon and water fluxes of Boreal conifer forests. We compared a multi-site (M-S) with site-specific (S-S) calibrations. Model calibrations and evaluations were carried out by the means of the Bayesian method; Bayesian calibration (BC) and Bayesian model comparison (BMC) were used to quantify the uncertainty in model parameters and model structure. To evaluate model performances BMC results were combined with more classical analysis of model-data mismatch (M-DM). Evapotranspiration (ET) and gross primary production (GPP) measurements collected in 10 sites of Finland and Sweden were used in the study. Calibration results showed that similar estimates were obtained for the parameters at which model outputs are most sensitive. No significant differences were encountered in the predictions of the multi-site and site-specific versions of PRELES with exception of a site with agricultural history (Alkkia). Although PRELES predicted GPP better than evapotranspiration, we concluded that the model can be reliably used at regional scale to simulate carbon and water fluxes of Boreal forests. Our analyses underlined also the importance of using long and carefully collected flux datasets in model calibration. In fact, even a single site can provide model calibrations that can be applied at a wider spatial scale, since it covers a wide range of variability in climatic conditions.

  9. Global-scale regionalization of hydrological model parameters using streamflow data from many small catchments

    NASA Astrophysics Data System (ADS)

    Beck, Hylke; de Roo, Ad; van Dijk, Albert; McVicar, Tim; Miralles, Diego; Schellekens, Jaap; Bruijnzeel, Sampurno; de Jeu, Richard

    2015-04-01

    Motivated by the lack of large-scale model parameter regionalization studies, a large set of 3328 small catchments (< 10000 km2) around the globe was used to set up and evaluate five model parameterization schemes at global scale. The HBV-light model was chosen because of its parsimony and flexibility to test the schemes. The catchments were calibrated against observed streamflow (Q) using an objective function incorporating both behavioral and goodness-of-fit measures, after which the catchment set was split into subsets of 1215 donor and 2113 evaluation catchments based on the calibration performance. The donor catchments were subsequently used to derive parameter sets that were transferred to similar grid cells based on a similarity measure incorporating climatic and physiographic characteristics, thereby producing parameter maps with global coverage. Overall, there was a lack of suitable donor catchments for mountainous and tropical environments. The schemes with spatially-uniform parameter sets (EXP2 and EXP3) achieved the worst Q estimation performance in the evaluation catchments, emphasizing the importance of parameter regionalization. The direct transfer of calibrated parameter sets from donor catchments to similar grid cells (scheme EXP1) performed best, although there was still a large performance gap between EXP1 and HBV-light calibrated against observed Q. The schemes with parameter sets obtained by simultaneously calibrating clusters of similar donor catchments (NC10 and NC58) performed worse than EXP1. The relatively poor Q estimation performance achieved by two (uncalibrated) macro-scale hydrological models suggests there is considerable merit in regionalizing the parameters of such models. The global HBV-light parameter maps and ancillary data are freely available via http://water.jrc.ec.europa.eu.

  10. Multi-response calibration of a conceptual hydrological model in the semiarid catchment of Wadi al Arab, Jordan

    NASA Astrophysics Data System (ADS)

    Rödiger, T.; Geyer, S.; Mallast, U.; Merz, R.; Krause, P.; Fischer, C.; Siebert, C.

    2014-02-01

    A key factor for sustainable management of groundwater systems is the accurate estimation of groundwater recharge. Hydrological models are common tools for such estimations and widely used. As such models need to be calibrated against measured values, the absence of adequate data can be problematic. We present a nested multi-response calibration approach for a semi-distributed hydrological model in the semi-arid catchment of Wadi al Arab in Jordan, with sparsely available runoff data. The basic idea of the calibration approach is to use diverse observations in a nested strategy, in which sub-parts of the model are calibrated to various observation data types in a consecutive manner. First, the available different data sources have to be screened for information content of processes, e.g. if data sources contain information on mean values, spatial or temporal variability etc. for the entire catchment or only sub-catchments. In a second step, the information content has to be mapped to relevant model components, which represent these processes. Then the data source is used to calibrate the respective subset of model parameters, while the remaining model parameters remain unchanged. This mapping is repeated for other available data sources. In that study the gauged spring discharge (GSD) method, flash flood observations and data from the chloride mass balance (CMB) are used to derive plausible parameter ranges for the conceptual hydrological model J2000g. The water table fluctuation (WTF) method is used to validate the model. Results from modelling using a priori parameter values from literature as a benchmark are compared. The estimated recharge rates of the calibrated model deviate less than ±10% from the estimates derived from WTF method. Larger differences are visible in the years with high uncertainties in rainfall input data. The performance of the calibrated model during validation produces better results than applying the model with only a priori parameter values. The model with a priori parameter values from literature tends to overestimate recharge rates with up to 30%, particular in the wet winter of 1991/1992. An overestimation of groundwater recharge and hence available water resources clearly endangers reliable water resource managing in water scarce region. The proposed nested multi-response approach may help to better predict water resources despite data scarcity.

  11. Probabilistic calibration of the distributed hydrological model RIBS applied to real-time flood forecasting: the Harod river basin case study (Israel)

    NASA Astrophysics Data System (ADS)

    Nesti, Alice; Mediero, Luis; Garrote, Luis; Caporali, Enrica

    2010-05-01

    An automatic probabilistic calibration method for distributed rainfall-runoff models is presented. The high number of parameters in hydrologic distributed models makes special demands on the optimization procedure to estimate model parameters. With the proposed technique it is possible to reduce the complexity of calibration while maintaining adequate model predictions. The first step of the calibration procedure of the main model parameters is done manually with the aim to identify their variation range. Afterwards a Monte-Carlo technique is applied, which consists on repetitive model simulations with randomly generated parameters. The Monte Carlo Analysis Toolbox (MCAT) includes a number of analysis methods to evaluate the results of these Monte Carlo parameter sampling experiments. The study investigates the use of a global sensitivity analysis as a screening tool to reduce the parametric dimensionality of multi-objective hydrological model calibration problems, while maximizing the information extracted from hydrological response data. The method is applied to the calibration of the RIBS flood forecasting model in the Harod river basin, placed on Israel. The Harod basin has an extension of 180 km2. The catchment has a Mediterranean climate and it is mainly characterized by a desert landscape, with a soil that is able to absorb large quantities of rainfall and at the same time is capable to generate high peaks of discharge. Radar rainfall data with 6 minute temporal resolution are available as input to the model. The aim of the study is the validation of the model for real-time flood forecasting, in order to evaluate the benefits of improved precipitation forecasting within the FLASH European project.

  12. Calibration of a distributed hydrologic model using observed spatial patterns from MODIS data

    NASA Astrophysics Data System (ADS)

    Demirel, Mehmet C.; González, Gorka M.; Mai, Juliane; Stisen, Simon

    2016-04-01

    Distributed hydrologic models are typically calibrated against streamflow observations at the outlet of the basin. Along with these observations from gauging stations, satellite based estimates offer independent evaluation data such as remotely sensed actual evapotranspiration (aET) and land surface temperature. The primary objective of the study is to compare model calibrations against traditional downstream discharge measurements with calibrations against simulated spatial patterns and combinations of both types of observations. While the discharge based model calibration typically improves the temporal dynamics of the model, it seems to give rise to minimum improvement of the simulated spatial patterns. In contrast, objective functions specifically targeting the spatial pattern performance could potentially increase the spatial model performance. However, most modeling studies, including the model formulations and parameterization, are not designed to actually change the simulated spatial pattern during calibration. This study investigates the potential benefits of incorporating spatial patterns from MODIS data to calibrate the mesoscale hydrologic model (mHM). This model is selected as it allows for a change in the spatial distribution of key soil parameters through the optimization of pedo-transfer function parameters and includes options for using fully distributed daily Leaf Area Index (LAI) values directly as input. In addition the simulated aET can be estimated at a spatial resolution suitable for comparison to the spatial patterns observed with MODIS data. To increase our control on spatial calibration we introduced three additional parameters to the model. These new parameters are part of an empirical equation to the calculate crop coefficient (Kc) from daily LAI maps and used to update potential evapotranspiration (PET) as model inputs. This is done instead of correcting/updating PET with just a uniform (or aspect driven) factor used in the mHM model (version 5.3). We selected the 20 most important parameters out of 53 mHM parameters based on a comprehensive sensitivity analysis (Cuntz et al., 2015). We calibrated 1km-daily mHM for the Skjern basin in Denmark using the Shuffled Complex Evolution (SCE) algorithm and inputs at different spatial scales i.e. meteorological data at 10km and morphological data at 250 meters. We used correlation coefficients between observed monthly (summer months only) MODIS data calculated from cloud free days over the calibration period from 2001 to 2008 and simulated aET from mHM over the same period. Similarly other metrics, e.g mapcurves and fraction skill-score, are also included in our objective function to assess the co-location of the grid-cells. The preliminary results show that multi-objective calibration of mHM against observed streamflow and spatial patterns together does not significantly reduce the spatial errors in aET while it improves the streamflow simulations. This is a strong signal for further investigation of the multi parameter regionalization affecting spatial aET patterns and weighting the spatial metrics in the objective function relative to the streamflow metrics.

  13. Calibration of a complex activated sludge model for the full-scale wastewater treatment plant.

    PubMed

    Liwarska-Bizukojc, Ewa; Olejnik, Dorota; Biernacki, Rafal; Ledakowicz, Stanislaw

    2011-08-01

    In this study, the results of the calibration of the complex activated sludge model implemented in BioWin software for the full-scale wastewater treatment plant are presented. Within the calibration of the model, sensitivity analysis of its parameters and the fractions of carbonaceous substrate were performed. In the steady-state and dynamic calibrations, a successful agreement between the measured and simulated values of the output variables was achieved. Sensitivity analysis revealed that upon the calculations of normalized sensitivity coefficient (S(i,j)) 17 (steady-state) or 19 (dynamic conditions) kinetic and stoichiometric parameters are sensitive. Most of them are associated with growth and decay of ordinary heterotrophic organisms and phosphorus accumulating organisms. The rankings of ten most sensitive parameters established on the basis of the calculations of the mean square sensitivity measure (δ(msqr)j) indicate that irrespective of the fact, whether the steady-state or dynamic calibration was performed, there is an agreement in the sensitivity of parameters.

  14. Bayesian calibration for electrochemical thermal model of lithium-ion cells

    NASA Astrophysics Data System (ADS)

    Tagade, Piyush; Hariharan, Krishnan S.; Basu, Suman; Verma, Mohan Kumar Singh; Kolake, Subramanya Mayya; Song, Taewon; Oh, Dukjin; Yeo, Taejung; Doo, Seokgwang

    2016-07-01

    Pseudo-two dimensional electrochemical thermal (P2D-ECT) model contains many parameters that are difficult to evaluate experimentally. Estimation of these model parameters is challenging due to computational cost and the transient model. Due to lack of complete physical understanding, this issue gets aggravated at extreme conditions like low temperature (LT) operations. This paper presents a Bayesian calibration framework for estimation of the P2D-ECT model parameters. The framework uses a matrix variate Gaussian process representation to obtain a computationally tractable formulation for calibration of the transient model. Performance of the framework is investigated for calibration of the P2D-ECT model across a range of temperatures (333 Ksbnd 263 K) and operating protocols. In the absence of complete physical understanding, the framework also quantifies structural uncertainty in the calibrated model. This information is used by the framework to test validity of the new physical phenomena before incorporation in the model. This capability is demonstrated by introducing temperature dependence on Bruggeman's coefficient and lithium plating formation at LT. With the incorporation of new physics, the calibrated P2D-ECT model accurately predicts the cell voltage with high confidence. The accurate predictions are used to obtain new insights into the low temperature lithium ion cell behavior.

  15. Evaluation, Calibration and Comparison of the Precipitation-Runoff Modeling System (PRMS) National Hydrologic Model (NHM) Using Moderate Resolution Imaging Spectroradiometer (MODIS) and Snow Data Assimilation System (SNODAS) Gridded Datasets

    NASA Astrophysics Data System (ADS)

    Norton, P. A., II; Haj, A. E., Jr.

    2014-12-01

    The United States Geological Survey is currently developing a National Hydrologic Model (NHM) to support and facilitate coordinated and consistent hydrologic modeling efforts at the scale of the continental United States. As part of this effort, the Geospatial Fabric (GF) for the NHM was created. The GF is a database that contains parameters derived from datasets that characterize the physical features of watersheds. The GF was used to aggregate catchments and flowlines defined in the National Hydrography Dataset Plus dataset for more than 100,000 hydrologic response units (HRUs), and to establish initial parameter values for input to the Precipitation-Runoff Modeling System (PRMS). Many parameter values are adjusted in PRMS using an automated calibration process. Using these adjusted parameter values, the PRMS model estimated variables such as evapotranspiration (ET), potential evapotranspiration (PET), snow-covered area (SCA), and snow water equivalent (SWE). In order to evaluate the effectiveness of parameter calibration, and model performance in general, several satellite-based Moderate Resolution Imaging Spectroradiometer (MODIS) and Snow Data Assimilation System (SNODAS) gridded datasets including ET, PET, SCA, and SWE were compared to PRMS-simulated values. The MODIS and SNODAS data were spatially averaged for each HRU, and compared to PRMS-simulated ET, PET, SCA, and SWE values for each HRU in the Upper Missouri River watershed. Default initial GF parameter values and PRMS calibration ranges were evaluated. Evaluation results, and the use of MODIS and SNODAS datasets to update GF parameter values and PRMS calibration ranges, are presented and discussed.

  16. Calibration-induced uncertainty of the EPIC model to estimate climate change impact on global maize yield

    NASA Astrophysics Data System (ADS)

    Xiong, Wei; Skalský, Rastislav; Porter, Cheryl H.; Balkovič, Juraj; Jones, James W.; Yang, Di

    2016-09-01

    Understanding the interactions between agricultural production and climate is necessary for sound decision-making in climate policy. Gridded and high-resolution crop simulation has emerged as a useful tool for building this understanding. Large uncertainty exists in this utilization, obstructing its capacity as a tool to devise adaptation strategies. Increasing focus has been given to sources of uncertainties for climate scenarios, input-data, and model, but uncertainties due to model parameter or calibration are still unknown. Here, we use publicly available geographical data sets as input to the Environmental Policy Integrated Climate model (EPIC) for simulating global-gridded maize yield. Impacts of climate change are assessed up to the year 2099 under a climate scenario generated by HadEM2-ES under RCP 8.5. We apply five strategies by shifting one specific parameter in each simulation to calibrate the model and understand the effects of calibration. Regionalizing crop phenology or harvest index appears effective to calibrate the model for the globe, but using various values of phenology generates pronounced difference in estimated climate impact. However, projected impacts of climate change on global maize production are consistently negative regardless of the parameter being adjusted. Different values of model parameter result in a modest uncertainty at global level, with difference of the global yield change less than 30% by the 2080s. The uncertainty subjects to decrease if applying model calibration or input data quality control. Calibration has a larger effect at local scales, implying the possible types and locations for adaptation.

  17. A Full-Envelope Air Data Calibration and Three-Dimensional Wind Estimation Method Using Global Output-Error Optimization and Flight-Test Techniques

    NASA Technical Reports Server (NTRS)

    Taylor, Brian R.

    2012-01-01

    A novel, efficient air data calibration method is proposed for aircraft with limited envelopes. This method uses output-error optimization on three-dimensional inertial velocities to estimate calibration and wind parameters. Calibration parameters are based on assumed calibration models for static pressure, angle of attack, and flank angle. Estimated wind parameters are the north, east, and down components. The only assumptions needed for this method are that the inertial velocities and Euler angles are accurate, the calibration models are correct, and that the steady-state component of wind is constant throughout the maneuver. A two-minute maneuver was designed to excite the aircraft over the range of air data calibration parameters and de-correlate the angle-of-attack bias from the vertical component of wind. Simulation of the X-48B (The Boeing Company, Chicago, Illinois) aircraft was used to validate the method, ultimately using data derived from wind-tunnel testing to simulate the un-calibrated air data measurements. Results from the simulation were accurate and robust to turbulence levels comparable to those observed in flight. Future experiments are planned to evaluate the proposed air data calibration in a flight environment.

  18. Limits of Predictability in Commuting Flows in the Absence of Data for Calibration

    PubMed Central

    Yang, Yingxiang; Herrera, Carlos; Eagle, Nathan; González, Marta C.

    2014-01-01

    The estimation of commuting flows at different spatial scales is a fundamental problem for different areas of study. Many current methods rely on parameters requiring calibration from empirical trip volumes. Their values are often not generalizable to cases without calibration data. To solve this problem we develop a statistical expression to calculate commuting trips with a quantitative functional form to estimate the model parameter when empirical trip data is not available. We calculate commuting trip volumes at scales from within a city to an entire country, introducing a scaling parameter α to the recently proposed parameter free radiation model. The model requires only widely available population and facility density distributions. The parameter can be interpreted as the influence of the region scale and the degree of heterogeneity in the facility distribution. We explore in detail the scaling limitations of this problem, namely under which conditions the proposed model can be applied without trip data for calibration. On the other hand, when empirical trip data is available, we show that the proposed model's estimation accuracy is as good as other existing models. We validated the model in different regions in the U.S., then successfully applied it in three different countries. PMID:25012599

  19. K-ε Turbulence Model Parameter Estimates Using an Approximate Self-similar Jet-in-Crossflow Solution

    DOE PAGES

    DeChant, Lawrence; Ray, Jaideep; Lefantzi, Sophia; ...

    2017-06-09

    The k-ε turbulence model has been described as perhaps “the most widely used complete turbulence model.” This family of heuristic Reynolds Averaged Navier-Stokes (RANS) turbulence closures is supported by a suite of model parameters that have been estimated by demanding the satisfaction of well-established canonical flows such as homogeneous shear flow, log-law behavior, etc. While this procedure does yield a set of so-called nominal parameters, it is abundantly clear that they do not provide a universally satisfactory turbulence model that is capable of simulating complex flows. Recent work on the Bayesian calibration of the k-ε model using jet-in-crossflow wind tunnelmore » data has yielded parameter estimates that are far more predictive than nominal parameter values. In this paper, we develop a self-similar asymptotic solution for axisymmetric jet-in-crossflow interactions and derive analytical estimates of the parameters that were inferred using Bayesian calibration. The self-similar method utilizes a near field approach to estimate the turbulence model parameters while retaining the classical far-field scaling to model flow field quantities. Our parameter values are seen to be far more predictive than the nominal values, as checked using RANS simulations and experimental measurements. They are also closer to the Bayesian estimates than the nominal parameters. A traditional simplified jet trajectory model is explicitly related to the turbulence model parameters and is shown to yield good agreement with measurement when utilizing the analytical derived turbulence model coefficients. Finally, the close agreement between the turbulence model coefficients obtained via Bayesian calibration and the analytically estimated coefficients derived in this paper is consistent with the contention that the Bayesian calibration approach is firmly rooted in the underlying physical description.« less

  20. Sensitivity analysis and calibration of a dynamic physically based slope stability model

    NASA Astrophysics Data System (ADS)

    Zieher, Thomas; Rutzinger, Martin; Schneider-Muntau, Barbara; Perzl, Frank; Leidinger, David; Formayer, Herbert; Geitner, Clemens

    2017-06-01

    Physically based modelling of slope stability on a catchment scale is still a challenging task. When applying a physically based model on such a scale (1 : 10 000 to 1 : 50 000), parameters with a high impact on the model result should be calibrated to account for (i) the spatial variability of parameter values, (ii) shortcomings of the selected model, (iii) uncertainties of laboratory tests and field measurements or (iv) parameters that cannot be derived experimentally or measured in the field (e.g. calibration constants). While systematic parameter calibration is a common task in hydrological modelling, this is rarely done using physically based slope stability models. In the present study a dynamic, physically based, coupled hydrological-geomechanical slope stability model is calibrated based on a limited number of laboratory tests and a detailed multitemporal shallow landslide inventory covering two landslide-triggering rainfall events in the Laternser valley, Vorarlberg (Austria). Sensitive parameters are identified based on a local one-at-a-time sensitivity analysis. These parameters (hydraulic conductivity, specific storage, angle of internal friction for effective stress, cohesion for effective stress) are systematically sampled and calibrated for a landslide-triggering rainfall event in August 2005. The identified model ensemble, including 25 behavioural model runs with the highest portion of correctly predicted landslides and non-landslides, is then validated with another landslide-triggering rainfall event in May 1999. The identified model ensemble correctly predicts the location and the supposed triggering timing of 73.0 % of the observed landslides triggered in August 2005 and 91.5 % of the observed landslides triggered in May 1999. Results of the model ensemble driven with raised precipitation input reveal a slight increase in areas potentially affected by slope failure. At the same time, the peak run-off increases more markedly, suggesting that precipitation intensities during the investigated landslide-triggering rainfall events were already close to or above the soil's infiltration capacity.

  1. Uncertainty analyses of the calibrated parameter values of a water quality model

    NASA Astrophysics Data System (ADS)

    Rode, M.; Suhr, U.; Lindenschmidt, K.-E.

    2003-04-01

    For river basin management water quality models are increasingly used for the analysis and evaluation of different management measures. However substantial uncertainties exist in parameter values depending on the available calibration data. In this paper an uncertainty analysis for a water quality model is presented, which considers the impact of available model calibration data and the variance of input variables. The investigation was conducted based on four extensive flowtime related longitudinal surveys in the River Elbe in the years 1996 to 1999 with varying discharges and seasonal conditions. For the model calculations the deterministic model QSIM of the BfG (Germany) was used. QSIM is a one dimensional water quality model and uses standard algorithms for hydrodynamics and phytoplankton dynamics in running waters, e.g. Michaelis Menten/Monod kinetics, which are used in a wide range of models. The multi-objective calibration of the model was carried out with the nonlinear parameter estimator PEST. The results show that for individual flow time related measuring surveys very good agreements between model calculation and measured values can be obtained. If these parameters are applied to deviating boundary conditions, substantial errors in model calculation can occur. These uncertainties can be decreased with an increased calibration database. More reliable model parameters can be identified, which supply reasonable results for broader boundary conditions. The extension of the application of the parameter set on a wider range of water quality conditions leads to a slight reduction of the model precision for the specific water quality situation. Moreover the investigations show that highly variable water quality variables like the algal biomass always allow a smaller forecast accuracy than variables with lower coefficients of variation like e.g. nitrate.

  2. Gradient-based model calibration with proxy-model assistance

    NASA Astrophysics Data System (ADS)

    Burrows, Wesley; Doherty, John

    2016-02-01

    Use of a proxy model in gradient-based calibration and uncertainty analysis of a complex groundwater model with large run times and problematic numerical behaviour is described. The methodology is general, and can be used with models of all types. The proxy model is based on a series of analytical functions that link all model outputs used in the calibration process to all parameters requiring estimation. In enforcing history-matching constraints during the calibration and post-calibration uncertainty analysis processes, the proxy model is run for the purposes of populating the Jacobian matrix, while the original model is run when testing parameter upgrades; the latter process is readily parallelized. Use of a proxy model in this fashion dramatically reduces the computational burden of complex model calibration and uncertainty analysis. At the same time, the effect of model numerical misbehaviour on calculation of local gradients is mitigated, this allowing access to the benefits of gradient-based analysis where lack of integrity in finite-difference derivatives calculation would otherwise have impeded such access. Construction of a proxy model, and its subsequent use in calibration of a complex model, and in analysing the uncertainties of predictions made by that model, is implemented in the PEST suite.

  3. Bayesian calibration of terrestrial ecosystem models: a study of advanced Markov chain Monte Carlo methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Dan; Ricciuto, Daniel M.; Walker, Anthony P.

    Calibration of terrestrial ecosystem models is important but challenging. Bayesian inference implemented by Markov chain Monte Carlo (MCMC) sampling provides a comprehensive framework to estimate model parameters and associated uncertainties using their posterior distributions. The effectiveness and efficiency of the method strongly depend on the MCMC algorithm used. In this work, a differential evolution adaptive Metropolis (DREAM) algorithm is used to estimate posterior distributions of 21 parameters for the data assimilation linked ecosystem carbon (DALEC) model using 14 years of daily net ecosystem exchange data collected at the Harvard Forest Environmental Measurement Site eddy-flux tower. The calibration of DREAM results inmore » a better model fit and predictive performance compared to the popular adaptive Metropolis (AM) scheme. Moreover, DREAM indicates that two parameters controlling autumn phenology have multiple modes in their posterior distributions while AM only identifies one mode. The application suggests that DREAM is very suitable to calibrate complex terrestrial ecosystem models, where the uncertain parameter size is usually large and existence of local optima is always a concern. In addition, this effort justifies the assumptions of the error model used in Bayesian calibration according to the residual analysis. Here, the result indicates that a heteroscedastic, correlated, Gaussian error model is appropriate for the problem, and the consequent constructed likelihood function can alleviate the underestimation of parameter uncertainty that is usually caused by using uncorrelated error models.« less

  4. Bayesian calibration of terrestrial ecosystem models: a study of advanced Markov chain Monte Carlo methods

    DOE PAGES

    Lu, Dan; Ricciuto, Daniel M.; Walker, Anthony P.; ...

    2017-09-27

    Calibration of terrestrial ecosystem models is important but challenging. Bayesian inference implemented by Markov chain Monte Carlo (MCMC) sampling provides a comprehensive framework to estimate model parameters and associated uncertainties using their posterior distributions. The effectiveness and efficiency of the method strongly depend on the MCMC algorithm used. In this work, a differential evolution adaptive Metropolis (DREAM) algorithm is used to estimate posterior distributions of 21 parameters for the data assimilation linked ecosystem carbon (DALEC) model using 14 years of daily net ecosystem exchange data collected at the Harvard Forest Environmental Measurement Site eddy-flux tower. The calibration of DREAM results inmore » a better model fit and predictive performance compared to the popular adaptive Metropolis (AM) scheme. Moreover, DREAM indicates that two parameters controlling autumn phenology have multiple modes in their posterior distributions while AM only identifies one mode. The application suggests that DREAM is very suitable to calibrate complex terrestrial ecosystem models, where the uncertain parameter size is usually large and existence of local optima is always a concern. In addition, this effort justifies the assumptions of the error model used in Bayesian calibration according to the residual analysis. Here, the result indicates that a heteroscedastic, correlated, Gaussian error model is appropriate for the problem, and the consequent constructed likelihood function can alleviate the underestimation of parameter uncertainty that is usually caused by using uncorrelated error models.« less

  5. A New Calibration Method for Commercial RGB-D Sensors

    PubMed Central

    Darwish, Walid; Tang, Shenjun; Li, Wenbin; Chen, Wu

    2017-01-01

    Commercial RGB-D sensors such as Kinect and Structure Sensors have been widely used in the game industry, where geometric fidelity is not of utmost importance. For applications in which high quality 3D is required, i.e., 3D building models of centimeter-level accuracy, accurate and reliable calibrations of these sensors are required. This paper presents a new model for calibrating the depth measurements of RGB-D sensors based on the structured light concept. Additionally, a new automatic method is proposed for the calibration of all RGB-D parameters, including internal calibration parameters for all cameras, the baseline between the infrared and RGB cameras, and the depth error model. When compared with traditional calibration methods, this new model shows a significant improvement in depth precision for both near and far ranges. PMID:28538695

  6. Automatic Calibration of a Distributed Rainfall-Runoff Model, Using the Degree-Day Formulation for Snow Melting, Within DMIP2 Project

    NASA Astrophysics Data System (ADS)

    Frances, F.; Orozco, I.

    2010-12-01

    This work presents the assessment of the TETIS distributed hydrological model in mountain basins of the American and Carson rivers in Sierra Nevada (USA) at hourly time discretization, as part of the DMIP2 Project. In TETIS each cell of the spatial grid conceptualizes the water cycle using six tanks connected among them. The relationship between tanks depends on the case, although at the end in most situations, simple linear reservoirs and flow thresholds schemes are used with exceptional results (Vélez et al., 1999; Francés et al., 2002). In particular, within the snow tank, snow melting is based in this work on the simple degree-day method with spatial constant parameters. The TETIS model includes an automatic calibration module, based on the SCE-UA algorithm (Duan et al., 1992; Duan et al., 1994) and the model effective parameters are organized following a split structure, as presented by Francés and Benito (1995) and Francés et al. (2007). In this way, the calibration involves in TETIS up to 9 correction factors (CFs), which correct globally the different parameter maps instead of each parameter cell value, thus reducing drastically the number of variables to be calibrated. This strategy allows for a fast and agile modification in different hydrological processes preserving the spatial structure of each parameter map. With the snowmelt submodel, automatic model calibration was carried out in three steps, separating the calibration of rainfall-runoff and snowmelt parameters. In the first step, the automatic calibration of the CFs during the period 05/20/1990 to 07/31/1990 in the American River (without snow influence), gave a Nash-Sutcliffe Efficiency (NSE) index of 0.92. The calibration of the three degree-day parameters was done using all the SNOTEL stations in the American and Carson rivers. Finally, using previous calibrations as initial values, the complete calibration done in the Carson River for the period 10/01/1992 to 07/31/1993 gave a NSE index of 0.86. The temporal and spatial validation using five periods must be considered in both rivers excellent for discharges (NSEs higher than 0.76) and good for snow distribution (daily spatial coverage errors ranging from -10 to 27%). In conclusion, this work demonstrates: 1.- The viability of automatic calibration of distributed models, with the corresponding personal time saving and maximum exploitation of the available information. 2.- The good performance of the degree-day snowmelt formulation even at hourly time discretization, in spite of its simplicity.

  7. A Practical Guide to Calibration of a GSSHA Hydrologic Model Using ERDC Automated Model Calibration Software - Effective and Efficient Stochastic Global Optimization

    DTIC Science & Technology

    2012-02-01

    parameter estimation method, but rather to carefully describe how to use the ERDC software implementation of MLSL that accommodates the PEST model...model independent LM method based parameter estimation software PEST (Doherty, 2004, 2007a, 2007b), which quantifies model to measure- ment misfit...et al. (2011) focused on one drawback associated with LM-based model independent parameter estimation as implemented in PEST ; viz., that it requires

  8. Uncertainty Analysis of Inertial Model Attitude Sensor Calibration and Application with a Recommended New Calibration Method

    NASA Technical Reports Server (NTRS)

    Tripp, John S.; Tcheng, Ping

    1999-01-01

    Statistical tools, previously developed for nonlinear least-squares estimation of multivariate sensor calibration parameters and the associated calibration uncertainty analysis, have been applied to single- and multiple-axis inertial model attitude sensors used in wind tunnel testing to measure angle of attack and roll angle. The analysis provides confidence and prediction intervals of calibrated sensor measurement uncertainty as functions of applied input pitch and roll angles. A comparative performance study of various experimental designs for inertial sensor calibration is presented along with corroborating experimental data. The importance of replicated calibrations over extended time periods has been emphasized; replication provides independent estimates of calibration precision and bias uncertainties, statistical tests for calibration or modeling bias uncertainty, and statistical tests for sensor parameter drift over time. A set of recommendations for a new standardized model attitude sensor calibration method and usage procedures is included. The statistical information provided by these procedures is necessary for the uncertainty analysis of aerospace test results now required by users of industrial wind tunnel test facilities.

  9. A Novel Protocol for Model Calibration in Biological Wastewater Treatment

    PubMed Central

    Zhu, Ao; Guo, Jianhua; Ni, Bing-Jie; Wang, Shuying; Yang, Qing; Peng, Yongzhen

    2015-01-01

    Activated sludge models (ASMs) have been widely used for process design, operation and optimization in wastewater treatment plants. However, it is still a challenge to achieve an efficient calibration for reliable application by using the conventional approaches. Hereby, we propose a novel calibration protocol, i.e. Numerical Optimal Approaching Procedure (NOAP), for the systematic calibration of ASMs. The NOAP consists of three key steps in an iterative scheme flow: i) global factors sensitivity analysis for factors fixing; ii) pseudo-global parameter correlation analysis for non-identifiable factors detection; and iii) formation of a parameter subset through an estimation by using genetic algorithm. The validity and applicability are confirmed using experimental data obtained from two independent wastewater treatment systems, including a sequencing batch reactor and a continuous stirred-tank reactor. The results indicate that the NOAP can effectively determine the optimal parameter subset and successfully perform model calibration and validation for these two different systems. The proposed NOAP is expected to use for automatic calibration of ASMs and be applied potentially to other ordinary differential equations models. PMID:25682959

  10. Parameter Set Cloning Based on Catchment Similarity for Large-scale Hydrologic Modeling

    NASA Astrophysics Data System (ADS)

    Liu, Z.; Kaheil, Y.; McCollum, J.

    2016-12-01

    Parameter calibration is a crucial step to ensure the accuracy of hydrological models. However, streamflow gauges are not available everywhere for calibrating a large-scale hydrologic model globally. Thus, assigning parameters appropriately for regions where the calibration cannot be performed directly has been a challenge for large-scale hydrologic modeling. Here we propose a method to estimate the model parameters in ungauged regions based on the values obtained through calibration in areas where gauge observations are available. This parameter set cloning is performed according to a catchment similarity index, a weighted sum index based on four catchment characteristic attributes. These attributes are IPCC Climate Zone, Soil Texture, Land Cover, and Topographic Index. The catchments with calibrated parameter values are donors, while the uncalibrated catchments are candidates. Catchment characteristic analyses are first conducted for both donors and candidates. For each attribute, we compute a characteristic distance between donors and candidates. Next, for each candidate, weights are assigned to the four attributes such that higher weights are given to properties that are more directly linked to the hydrologic dominant processes. This will ensure that the parameter set cloning emphasizes the dominant hydrologic process in the region where the candidate is located. The catchment similarity index for each donor - candidate couple is then created as the sum of the weighted distance of the four properties. Finally, parameters are assigned to each candidate from the donor that is "most similar" (i.e. with the shortest weighted distance sum). For validation, we applied the proposed method to catchments where gauge observations are available, and compared simulated streamflows using the parameters cloned by other catchments to the results obtained by calibrating the hydrologic model directly using gauge data. The comparison shows good agreement between the two models for different river basins as we show here. This method has been applied globally to the Hillslope River Routing (HRR) model using gauge observations obtained from the Global Runoff Data Center (GRDC). As next step, more catchment properties can be taken into account to further improve the representation of catchment similarity.

  11. An Innovative Software Tool Suite for Power Plant Model Validation and Parameter Calibration using PMU Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yuanyuan; Diao, Ruisheng; Huang, Renke

    Maintaining good quality of power plant stability models is of critical importance to ensure the secure and economic operation and planning of today’s power grid with its increasing stochastic and dynamic behavior. According to North American Electric Reliability (NERC) standards, all generators in North America with capacities larger than 10 MVA are required to validate their models every five years. Validation is quite costly and can significantly affect the revenue of generator owners, because the traditional staged testing requires generators to be taken offline. Over the past few years, validating and calibrating parameters using online measurements including phasor measurement unitsmore » (PMUs) and digital fault recorders (DFRs) has been proven to be a cost-effective approach. In this paper, an innovative open-source tool suite is presented for validating power plant models using PPMV tool, identifying bad parameters with trajectory sensitivity analysis, and finally calibrating parameters using an ensemble Kalman filter (EnKF) based algorithm. The architectural design and the detailed procedures to run the tool suite are presented, with results of test on a realistic hydro power plant using PMU measurements for 12 different events. The calibrated parameters of machine, exciter, governor and PSS models demonstrate much better performance than the original models for all the events and show the robustness of the proposed calibration algorithm.« less

  12. Parameter optimization of a hydrologic model in a snow-dominated basin using a modular Python framework

    NASA Astrophysics Data System (ADS)

    Volk, J. M.; Turner, M. A.; Huntington, J. L.; Gardner, M.; Tyler, S.; Sheneman, L.

    2016-12-01

    Many distributed models that simulate watershed hydrologic processes require a collection of multi-dimensional parameters as input, some of which need to be calibrated before the model can be applied. The Precipitation Runoff Modeling System (PRMS) is a physically-based and spatially distributed hydrologic model that contains a considerable number of parameters that often need to be calibrated. Modelers can also benefit from uncertainty analysis of these parameters. To meet these needs, we developed a modular framework in Python to conduct PRMS parameter optimization, uncertainty analysis, interactive visual inspection of parameters and outputs, and other common modeling tasks. Here we present results for multi-step calibration of sensitive parameters controlling solar radiation, potential evapo-transpiration, and streamflow in a PRMS model that we applied to the snow-dominated Dry Creek watershed in Idaho. We also demonstrate how our modular approach enables the user to use a variety of parameter optimization and uncertainty methods or easily define their own, such as Monte Carlo random sampling, uniform sampling, or even optimization methods such as the downhill simplex method or its commonly used, more robust counterpart, shuffled complex evolution.

  13. Inverse modeling of hydrologic parameters using surface flux and runoff observations in the Community Land Model

    NASA Astrophysics Data System (ADS)

    Sun, Y.; Hou, Z.; Huang, M.; Tian, F.; Leung, L. Ruby

    2013-12-01

    This study demonstrates the possibility of inverting hydrologic parameters using surface flux and runoff observations in version 4 of the Community Land Model (CLM4). Previous studies showed that surface flux and runoff calculations are sensitive to major hydrologic parameters in CLM4 over different watersheds, and illustrated the necessity and possibility of parameter calibration. Both deterministic least-square fitting and stochastic Markov-chain Monte Carlo (MCMC)-Bayesian inversion approaches are evaluated by applying them to CLM4 at selected sites with different climate and soil conditions. The unknowns to be estimated include surface and subsurface runoff generation parameters and vadose zone soil water parameters. We find that using model parameters calibrated by the sampling-based stochastic inversion approaches provides significant improvements in the model simulations compared to using default CLM4 parameter values, and that as more information comes in, the predictive intervals (ranges of posterior distributions) of the calibrated parameters become narrower. In general, parameters that are identified to be significant through sensitivity analyses and statistical tests are better calibrated than those with weak or nonlinear impacts on flux or runoff observations. Temporal resolution of observations has larger impacts on the results of inverse modeling using heat flux data than runoff data. Soil and vegetation cover have important impacts on parameter sensitivities, leading to different patterns of posterior distributions of parameters at different sites. Overall, the MCMC-Bayesian inversion approach effectively and reliably improves the simulation of CLM under different climates and environmental conditions. Bayesian model averaging of the posterior estimates with different reference acceptance probabilities can smooth the posterior distribution and provide more reliable parameter estimates, but at the expense of wider uncertainty bounds.

  14. Groundwater flow and transport modeling

    USGS Publications Warehouse

    Konikow, Leonard F.; Mercer, J.W.

    1988-01-01

    Deterministic, distributed-parameter, numerical simulation models for analyzing groundwater flow and transport problems have come to be used almost routinely during the past decade. A review of the theoretical basis and practical use of groundwater flow and solute transport models is used to illustrate the state-of-the-art. Because of errors and uncertainty in defining model parameters, models must be calibrated to obtain a best estimate of the parameters. For flow modeling, data generally are sufficient to allow calibration. For solute-transport modeling, lack of data not only limits calibration, but also causes uncertainty in process description. Where data are available, model reliability should be assessed on the basis of sensitivity tests and measures of goodness-of-fit. Some of these concepts are demonstrated by using two case histories. ?? 1988.

  15. A critical comparison of systematic calibration protocols for activated sludge models: a SWOT analysis.

    PubMed

    Sin, Gürkan; Van Hulle, Stijn W H; De Pauw, Dirk J W; van Griensven, Ann; Vanrolleghem, Peter A

    2005-07-01

    Modelling activated sludge systems has gained an increasing momentum after the introduction of activated sludge models (ASMs) in 1987. Application of dynamic models for full-scale systems requires essentially a calibration of the chosen ASM to the case under study. Numerous full-scale model applications have been performed so far which were mostly based on ad hoc approaches and expert knowledge. Further, each modelling study has followed a different calibration approach: e.g. different influent wastewater characterization methods, different kinetic parameter estimation methods, different selection of parameters to be calibrated, different priorities within the calibration steps, etc. In short, there was no standard approach in performing the calibration study, which makes it difficult, if not impossible, to (1) compare different calibrations of ASMs with each other and (2) perform internal quality checks for each calibration study. To address these concerns, systematic calibration protocols have recently been proposed to bring guidance to the modeling of activated sludge systems and in particular to the calibration of full-scale models. In this contribution four existing calibration approaches (BIOMATH, HSG, STOWA and WERF) will be critically discussed using a SWOT (Strengths, Weaknesses, Opportunities, Threats) analysis. It will also be assessed in what way these approaches can be further developed in view of further improving the quality of ASM calibration. In this respect, the potential of automating some steps of the calibration procedure by use of mathematical algorithms is highlighted.

  16. Comparison of global optimization approaches for robust calibration of hydrologic model parameters

    NASA Astrophysics Data System (ADS)

    Jung, I. W.

    2015-12-01

    Robustness of the calibrated parameters of hydrologic models is necessary to provide a reliable prediction of future performance of watershed behavior under varying climate conditions. This study investigated calibration performances according to the length of calibration period, objective functions, hydrologic model structures and optimization methods. To do this, the combination of three global optimization methods (i.e. SCE-UA, Micro-GA, and DREAM) and four hydrologic models (i.e. SAC-SMA, GR4J, HBV, and PRMS) was tested with different calibration periods and objective functions. Our results showed that three global optimization methods provided close calibration performances under different calibration periods, objective functions, and hydrologic models. However, using the agreement of index, normalized root mean square error, Nash-Sutcliffe efficiency as the objective function showed better performance than using correlation coefficient and percent bias. Calibration performances according to different calibration periods from one year to seven years were hard to generalize because four hydrologic models have different levels of complexity and different years have different information content of hydrological observation. Acknowledgements This research was supported by a grant (14AWMP-B082564-01) from Advanced Water Management Research Program funded by Ministry of Land, Infrastructure and Transport of Korean government.

  17. Construction of robust dynamic genome-scale metabolic model structures of Saccharomyces cerevisiae through iterative re-parameterization.

    PubMed

    Sánchez, Benjamín J; Pérez-Correa, José R; Agosin, Eduardo

    2014-09-01

    Dynamic flux balance analysis (dFBA) has been widely employed in metabolic engineering to predict the effect of genetic modifications and environmental conditions in the cell׳s metabolism during dynamic cultures. However, the importance of the model parameters used in these methodologies has not been properly addressed. Here, we present a novel and simple procedure to identify dFBA parameters that are relevant for model calibration. The procedure uses metaheuristic optimization and pre/post-regression diagnostics, fixing iteratively the model parameters that do not have a significant role. We evaluated this protocol in a Saccharomyces cerevisiae dFBA framework calibrated for aerobic fed-batch and anaerobic batch cultivations. The model structures achieved have only significant, sensitive and uncorrelated parameters and are able to calibrate different experimental data. We show that consumption, suboptimal growth and production rates are more useful for calibrating dynamic S. cerevisiae metabolic models than Boolean gene expression rules, biomass requirements and ATP maintenance. Copyright © 2014 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  18. Learning an Eddy Viscosity Model Using Shrinkage and Bayesian Calibration: A Jet-in-Crossflow Case Study

    DOE PAGES

    Ray, Jaideep; Lefantzi, Sophia; Arunajatesan, Srinivasan; ...

    2017-09-07

    In this paper, we demonstrate a statistical procedure for learning a high-order eddy viscosity model (EVM) from experimental data and using it to improve the predictive skill of a Reynolds-averaged Navier–Stokes (RANS) simulator. The method is tested in a three-dimensional (3D), transonic jet-in-crossflow (JIC) configuration. The process starts with a cubic eddy viscosity model (CEVM) developed for incompressible flows. It is fitted to limited experimental JIC data using shrinkage regression. The shrinkage process removes all the terms from the model, except an intercept, a linear term, and a quadratic one involving the square of the vorticity. The shrunk eddy viscositymore » model is implemented in an RANS simulator and calibrated, using vorticity measurements, to infer three parameters. The calibration is Bayesian and is solved using a Markov chain Monte Carlo (MCMC) method. A 3D probability density distribution for the inferred parameters is constructed, thus quantifying the uncertainty in the estimate. The phenomenal cost of using a 3D flow simulator inside an MCMC loop is mitigated by using surrogate models (“curve-fits”). A support vector machine classifier (SVMC) is used to impose our prior belief regarding parameter values, specifically to exclude nonphysical parameter combinations. The calibrated model is compared, in terms of its predictive skill, to simulations using uncalibrated linear and CEVMs. Finally, we find that the calibrated model, with one quadratic term, is more accurate than the uncalibrated simulator. The model is also checked at a flow condition at which the model was not calibrated.« less

  19. Calibration of HEC-Ras hydrodynamic model using gauged discharge data and flood inundation maps

    NASA Astrophysics Data System (ADS)

    Tong, Rui; Komma, Jürgen

    2017-04-01

    The estimation of flood is essential for disaster alleviation. Hydrodynamic models are implemented to predict the occurrence and variance of flood in different scales. In practice, the calibration of hydrodynamic models aims to search the best possible parameters for the representation the natural flow resistance. Recent years have seen the calibration of hydrodynamic models being more actual and faster following the advance of earth observation products and computer based optimization techniques. In this study, the Hydrologic Engineering River Analysis System (HEC-Ras) model was set up with high-resolution digital elevation model from Laser scanner for the river Inn in Tyrol, Austria. 10 largest flood events from 19 hourly discharge gauges and flood inundation maps were selected to calibrate the HEC-Ras model. Manning roughness values and lateral inflow factors as parameters were automatically optimized with the Shuffled complex with Principal component analysis (SP-UCI) algorithm developed from the Shuffled Complex Evolution (SCE-UA). Different objective functions (Nash-Sutcliffe model efficiency coefficient, the timing of peak, peak value and Root-mean-square deviation) were used in single or multiple way. It was found that the lateral inflow factor was the most sensitive parameter. SP-UCI algorithm could avoid the local optimal and achieve efficient and effective parameters in the calibration of HEC-Ras model using flood extension images. As results showed, calibration by means of gauged discharge data and flood inundation maps, together with objective function of Nash-Sutcliffe model efficiency coefficient, was very robust to obtain more reliable flood simulation, and also to catch up with the peak value and the timing of peak.

  20. Learning an Eddy Viscosity Model Using Shrinkage and Bayesian Calibration: A Jet-in-Crossflow Case Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ray, Jaideep; Lefantzi, Sophia; Arunajatesan, Srinivasan

    In this paper, we demonstrate a statistical procedure for learning a high-order eddy viscosity model (EVM) from experimental data and using it to improve the predictive skill of a Reynolds-averaged Navier–Stokes (RANS) simulator. The method is tested in a three-dimensional (3D), transonic jet-in-crossflow (JIC) configuration. The process starts with a cubic eddy viscosity model (CEVM) developed for incompressible flows. It is fitted to limited experimental JIC data using shrinkage regression. The shrinkage process removes all the terms from the model, except an intercept, a linear term, and a quadratic one involving the square of the vorticity. The shrunk eddy viscositymore » model is implemented in an RANS simulator and calibrated, using vorticity measurements, to infer three parameters. The calibration is Bayesian and is solved using a Markov chain Monte Carlo (MCMC) method. A 3D probability density distribution for the inferred parameters is constructed, thus quantifying the uncertainty in the estimate. The phenomenal cost of using a 3D flow simulator inside an MCMC loop is mitigated by using surrogate models (“curve-fits”). A support vector machine classifier (SVMC) is used to impose our prior belief regarding parameter values, specifically to exclude nonphysical parameter combinations. The calibrated model is compared, in terms of its predictive skill, to simulations using uncalibrated linear and CEVMs. Finally, we find that the calibrated model, with one quadratic term, is more accurate than the uncalibrated simulator. The model is also checked at a flow condition at which the model was not calibrated.« less

  1. Augmenting epidemiological models with point-of-care diagnostics data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pullum, Laura L.; Ramanathan, Arvind; Nutaro, James J.

    Although adoption of newer Point-of-Care (POC) diagnostics is increasing, there is a significant challenge using POC diagnostics data to improve epidemiological models. In this work, we propose a method to process zip-code level POC datasets and apply these processed data to calibrate an epidemiological model. We specifically develop a calibration algorithm using simulated annealing and calibrate a parsimonious equation-based model of modified Susceptible-Infected-Recovered (SIR) dynamics. The results show that parsimonious models are remarkably effective in predicting the dynamics observed in the number of infected patients and our calibration algorithm is sufficiently capable of predicting peak loads observed in POC diagnosticsmore » data while staying within reasonable and empirical parameter ranges reported in the literature. Additionally, we explore the future use of the calibrated values by testing the correlation between peak load and population density from Census data. Our results show that linearity assumptions for the relationships among various factors can be misleading, therefore further data sources and analysis are needed to identify relationships between additional parameters and existing calibrated ones. As a result, calibration approaches such as ours can determine the values of newly added parameters along with existing ones and enable policy-makers to make better multi-scale decisions.« less

  2. Augmenting epidemiological models with point-of-care diagnostics data

    DOE PAGES

    Pullum, Laura L.; Ramanathan, Arvind; Nutaro, James J.; ...

    2016-04-20

    Although adoption of newer Point-of-Care (POC) diagnostics is increasing, there is a significant challenge using POC diagnostics data to improve epidemiological models. In this work, we propose a method to process zip-code level POC datasets and apply these processed data to calibrate an epidemiological model. We specifically develop a calibration algorithm using simulated annealing and calibrate a parsimonious equation-based model of modified Susceptible-Infected-Recovered (SIR) dynamics. The results show that parsimonious models are remarkably effective in predicting the dynamics observed in the number of infected patients and our calibration algorithm is sufficiently capable of predicting peak loads observed in POC diagnosticsmore » data while staying within reasonable and empirical parameter ranges reported in the literature. Additionally, we explore the future use of the calibrated values by testing the correlation between peak load and population density from Census data. Our results show that linearity assumptions for the relationships among various factors can be misleading, therefore further data sources and analysis are needed to identify relationships between additional parameters and existing calibrated ones. As a result, calibration approaches such as ours can determine the values of newly added parameters along with existing ones and enable policy-makers to make better multi-scale decisions.« less

  3. Can we calibrate simultaneously groundwater recharge and aquifer hydrodynamic parameters ?

    NASA Astrophysics Data System (ADS)

    Hassane Maina, Fadji; Ackerer, Philippe; Bildstein, Olivier

    2017-04-01

    By groundwater model calibration, we consider here fitting the measured piezometric heads by estimating the hydrodynamic parameters (storage term and hydraulic conductivity) and the recharge. It is traditionally recommended to avoid simultaneous calibration of groundwater recharge and flow parameters because of correlation between recharge and the flow parameters. From a physical point of view, little recharge associated with low hydraulic conductivity can provide very similar piezometric changes than higher recharge and higher hydraulic conductivity. If this correlation is true under steady state conditions, we assume that this correlation is much weaker under transient conditions because recharge varies in time and the parameters do not. Moreover, the recharge is negligible during summer time for many climatic conditions due to reduced precipitation, increased evaporation and transpiration by vegetation cover. We analyze our hypothesis through global sensitivity analysis (GSA) in conjunction with the polynomial chaos expansion (PCE) methodology. We perform GSA by calculating the Sobol indices, which provide a variance-based 'measure' of the effects of uncertain parameters (storage and hydraulic conductivity) and recharge on the piezometric heads computed by the flow model. The choice of PCE has the following two benefits: (i) it provides the global sensitivity indices in a straightforward manner, and (ii) PCE can serve as a surrogate model for the calibration of parameters. The coefficients of the PCE are computed by probabilistic collocation. We perform the GSA on simplified real conditions coming from an already built groundwater model dedicated to a subdomain of the Upper-Rhine aquifer (geometry, boundary conditions, climatic data). GSA shows that the simultaneous calibration of recharge and flow parameters is possible if the calibration is performed over at least one year. It provides also the valuable information of the sensitivity versus time, depending on the aquifer inertia and climatic conditions. The groundwater levels variations during recharge (increase) are sensitive to the storage coefficient whereas the groundwater levels variations after recharge (decrease) are sensitive to the hydraulic conductivity. The performed model calibration on synthetic data sets shows that the parameters and recharge are estimated quite accurately.

  4. Calibration of a rotating accelerometer gravity gradiometer using centrifugal gradients

    NASA Astrophysics Data System (ADS)

    Yu, Mingbiao; Cai, Tijing

    2018-05-01

    The purpose of this study is to calibrate scale factors and equivalent zero biases of a rotating accelerometer gravity gradiometer (RAGG). We calibrate scale factors by determining the relationship between the centrifugal gradient excitation and RAGG response. Compared with calibration by changing the gravitational gradient excitation, this method does not need test masses and is easier to implement. The equivalent zero biases are superpositions of self-gradients and the intrinsic zero biases of the RAGG. A self-gradient is the gravitational gradient produced by surrounding masses, and it correlates well with the RAGG attitude angle. We propose a self-gradient model that includes self-gradients and the intrinsic zero biases of the RAGG. The self-gradient model is a function of the RAGG attitude, and it includes parameters related to surrounding masses. The calibration of equivalent zero biases determines the parameters of the self-gradient model. We provide detailed procedures and mathematical formulations for calibrating scale factors and parameters in the self-gradient model. A RAGG physical simulation system substitutes for the actual RAGG in the calibration and validation experiments. Four point masses simulate four types of surrounding masses producing self-gradients. Validation experiments show that the self-gradients predicted by the self-gradient model are consistent with those from the outputs of the RAGG physical simulation system, suggesting that the presented calibration method is valid.

  5. Parallel computing for automated model calibration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burke, John S.; Danielson, Gary R.; Schulz, Douglas A.

    2002-07-29

    Natural resources model calibration is a significant burden on computing and staff resources in modeling efforts. Most assessments must consider multiple calibration objectives (for example magnitude and timing of stream flow peak). An automated calibration process that allows real time updating of data/models, allowing scientists to focus effort on improving models is needed. We are in the process of building a fully featured multi objective calibration tool capable of processing multiple models cheaply and efficiently using null cycle computing. Our parallel processing and calibration software routines have been generically, but our focus has been on natural resources model calibration. Somore » far, the natural resources models have been friendly to parallel calibration efforts in that they require no inter-process communication, only need a small amount of input data and only output a small amount of statistical information for each calibration run. A typical auto calibration run might involve running a model 10,000 times with a variety of input parameters and summary statistical output. In the past model calibration has been done against individual models for each data set. The individual model runs are relatively fast, ranging from seconds to minutes. The process was run on a single computer using a simple iterative process. We have completed two Auto Calibration prototypes and are currently designing a more feature rich tool. Our prototypes have focused on running the calibration in a distributed computing cross platform environment. They allow incorporation of?smart? calibration parameter generation (using artificial intelligence processing techniques). Null cycle computing similar to SETI@Home has also been a focus of our efforts. This paper details the design of the latest prototype and discusses our plans for the next revision of the software.« less

  6. Calibrating the sqHIMMELI v1.0 wetland methane emission model with hierarchical modeling and adaptive MCMC

    NASA Astrophysics Data System (ADS)

    Susiluoto, Jouni; Raivonen, Maarit; Backman, Leif; Laine, Marko; Makela, Jarmo; Peltola, Olli; Vesala, Timo; Aalto, Tuula

    2018-03-01

    Estimating methane (CH4) emissions from natural wetlands is complex, and the estimates contain large uncertainties. The models used for the task are typically heavily parameterized and the parameter values are not well known. In this study, we perform a Bayesian model calibration for a new wetland CH4 emission model to improve the quality of the predictions and to understand the limitations of such models.The detailed process model that we analyze contains descriptions for CH4 production from anaerobic respiration, CH4 oxidation, and gas transportation by diffusion, ebullition, and the aerenchyma cells of vascular plants. The processes are controlled by several tunable parameters. We use a hierarchical statistical model to describe the parameters and obtain the posterior distributions of the parameters and uncertainties in the processes with adaptive Markov chain Monte Carlo (MCMC), importance resampling, and time series analysis techniques. For the estimation, the analysis utilizes measurement data from the Siikaneva flux measurement site in southern Finland. The uncertainties related to the parameters and the modeled processes are described quantitatively. At the process level, the flux measurement data are able to constrain the CH4 production processes, methane oxidation, and the different gas transport processes. The posterior covariance structures explain how the parameters and the processes are related. Additionally, the flux and flux component uncertainties are analyzed both at the annual and daily levels. The parameter posterior densities obtained provide information regarding importance of the different processes, which is also useful for development of wetland methane emission models other than the square root HelsinkI Model of MEthane buiLd-up and emIssion for peatlands (sqHIMMELI). The hierarchical modeling allows us to assess the effects of some of the parameters on an annual basis. The results of the calibration and the cross validation suggest that the early spring net primary production could be used to predict parameters affecting the annual methane production. Even though the calibration is specific to the Siikaneva site, the hierarchical modeling approach is well suited for larger-scale studies and the results of the estimation pave way for a regional or global-scale Bayesian calibration of wetland emission models.

  7. Multielevation calibration of frequency-domain electromagnetic data

    USGS Publications Warehouse

    Minsley, Burke J.; Kass, M. Andy; Hodges, Greg; Smith, Bruce D.

    2014-01-01

    Systematic calibration errors must be taken into account because they can substantially impact the accuracy of inverted subsurface resistivity models derived from frequency-domain electromagnetic data, resulting in potentially misleading interpretations. We have developed an approach that uses data acquired at multiple elevations over the same location to assess calibration errors. A significant advantage is that this method does not require prior knowledge of subsurface properties from borehole or ground geophysical data (though these can be readily incorporated if available), and is, therefore, well suited to remote areas. The multielevation data were used to solve for calibration parameters and a single subsurface resistivity model that are self consistent over all elevations. The deterministic and Bayesian formulations of the multielevation approach illustrate parameter sensitivity and uncertainty using synthetic- and field-data examples. Multiplicative calibration errors (gain and phase) were found to be better resolved at high frequencies and when data were acquired over a relatively conductive area, whereas additive errors (bias) were reasonably resolved over conductive and resistive areas at all frequencies. The Bayesian approach outperformed the deterministic approach when estimating calibration parameters using multielevation data at a single location; however, joint analysis of multielevation data at multiple locations using the deterministic algorithm yielded the most accurate estimates of calibration parameters. Inversion results using calibration-corrected data revealed marked improvement in misfit, lending added confidence to the interpretation of these models.

  8. A Regionalization Approach to select the final watershed parameter set among the Pareto solutions

    NASA Astrophysics Data System (ADS)

    Park, G. H.; Micheletty, P. D.; Carney, S.; Quebbeman, J.; Day, G. N.

    2017-12-01

    The calibration of hydrological models often results in model parameters that are inconsistent with those from neighboring basins. Considering that physical similarity exists within neighboring basins some of the physically related parameters should be consistent among them. Traditional manual calibration techniques require an iterative process to make the parameters consistent, which takes additional effort in model calibration. We developed a multi-objective optimization procedure to calibrate the National Weather Service (NWS) Research Distributed Hydrological Model (RDHM), using the Nondominant Sorting Genetic Algorithm (NSGA-II) with expert knowledge of the model parameter interrelationships one objective function. The multi-objective algorithm enables us to obtain diverse parameter sets that are equally acceptable with respect to the objective functions and to choose one from the pool of the parameter sets during a subsequent regionalization step. Although all Pareto solutions are non-inferior, we exclude some of the parameter sets that show extremely values for any of the objective functions to expedite the selection process. We use an apriori model parameter set derived from the physical properties of the watershed (Koren et al., 2000) to assess the similarity for a given parameter across basins. Each parameter is assigned a weight based on its assumed similarity, such that parameters that are similar across basins are given higher weights. The parameter weights are useful to compute a closeness measure between Pareto sets of nearby basins. The regionalization approach chooses the Pareto parameter sets that minimize the closeness measure of the basin being regionalized. The presentation will describe the results of applying the regionalization approach to a set of pilot basins in the Upper Colorado basin as part of a NASA-funded project.

  9. Inverse Modeling of Hydrologic Parameters Using Surface Flux and Runoff Observations in the Community Land Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Yu; Hou, Zhangshuan; Huang, Maoyi

    2013-12-10

    This study demonstrates the possibility of inverting hydrologic parameters using surface flux and runoff observations in version 4 of the Community Land Model (CLM4). Previous studies showed that surface flux and runoff calculations are sensitive to major hydrologic parameters in CLM4 over different watersheds, and illustrated the necessity and possibility of parameter calibration. Two inversion strategies, the deterministic least-square fitting and stochastic Markov-Chain Monte-Carlo (MCMC) - Bayesian inversion approaches, are evaluated by applying them to CLM4 at selected sites. The unknowns to be estimated include surface and subsurface runoff generation parameters and vadose zone soil water parameters. We find thatmore » using model parameters calibrated by the least-square fitting provides little improvements in the model simulations but the sampling-based stochastic inversion approaches are consistent - as more information comes in, the predictive intervals of the calibrated parameters become narrower and the misfits between the calculated and observed responses decrease. In general, parameters that are identified to be significant through sensitivity analyses and statistical tests are better calibrated than those with weak or nonlinear impacts on flux or runoff observations. Temporal resolution of observations has larger impacts on the results of inverse modeling using heat flux data than runoff data. Soil and vegetation cover have important impacts on parameter sensitivities, leading to the different patterns of posterior distributions of parameters at different sites. Overall, the MCMC-Bayesian inversion approach effectively and reliably improves the simulation of CLM under different climates and environmental conditions. Bayesian model averaging of the posterior estimates with different reference acceptance probabilities can smooth the posterior distribution and provide more reliable parameter estimates, but at the expense of wider uncertainty bounds.« less

  10. The worth of data to reduce predictive uncertainty of an integrated catchment model by multi-constraint calibration

    NASA Astrophysics Data System (ADS)

    Koch, J.; Jensen, K. H.; Stisen, S.

    2017-12-01

    Hydrological models that integrate numerical process descriptions across compartments of the water cycle are typically required to undergo thorough model calibration in order to estimate suitable effective model parameters. In this study, we apply a spatially distributed hydrological model code which couples the saturated zone with the unsaturated zone and the energy portioning at the land surface. We conduct a comprehensive multi-constraint model calibration against nine independent observational datasets which reflect both the temporal and the spatial behavior of hydrological response of a 1000km2 large catchment in Denmark. The datasets are obtained from satellite remote sensing and in-situ measurements and cover five keystone hydrological variables: discharge, evapotranspiration, groundwater head, soil moisture and land surface temperature. Results indicate that a balanced optimization can be achieved where errors on objective functions for all nine observational datasets can be reduced simultaneously. The applied calibration framework was tailored with focus on improving the spatial pattern performance; however results suggest that the optimization is still more prone to improve the temporal dimension of model performance. This study features a post-calibration linear uncertainty analysis. This allows quantifying parameter identifiability which is the worth of a specific observational dataset to infer values to model parameters through calibration. Furthermore the ability of an observation to reduce predictive uncertainty is assessed as well. Such findings determine concrete implications on the design of model calibration frameworks and, in more general terms, the acquisition of data in hydrological observatories.

  11. Evaluation of the AnnAGNPS Model for Predicting Runoff and Nutrient Export in a Typical Small Watershed in the Hilly Region of Taihu Lake.

    PubMed

    Luo, Chuan; Li, Zhaofu; Li, Hengpeng; Chen, Xiaomin

    2015-09-02

    The application of hydrological and water quality models is an efficient approach to better understand the processes of environmental deterioration. This study evaluated the ability of the Annualized Agricultural Non-Point Source (AnnAGNPS) model to predict runoff, total nitrogen (TN) and total phosphorus (TP) loading in a typical small watershed of a hilly region near Taihu Lake, China. Runoff was calibrated and validated at both an annual and monthly scale, and parameter sensitivity analysis was performed for TN and TP before the two water quality components were calibrated. The results showed that the model satisfactorily simulated runoff at annual and monthly scales, both during calibration and validation processes. Additionally, results of parameter sensitivity analysis showed that the parameters Fertilizer rate, Fertilizer organic, Canopy cover and Fertilizer inorganic were more sensitive to TN output. In terms of TP, the parameters Residue mass ratio, Fertilizer rate, Fertilizer inorganic and Canopy cover were the most sensitive. Based on these sensitive parameters, calibration was performed. TN loading produced satisfactory results for both the calibration and validation processes, whereas the performance of TP loading was slightly poor. The simulation results showed that AnnAGNPS has the potential to be used as a valuable tool for the planning and management of watersheds.

  12. Genetic Algorithm Calibration of Probabilistic Cellular Automata for Modeling Mining Permit Activity

    USGS Publications Warehouse

    Louis, S.J.; Raines, G.L.

    2003-01-01

    We use a genetic algorithm to calibrate a spatially and temporally resolved cellular automata to model mining activity on public land in Idaho and western Montana. The genetic algorithm searches through a space of transition rule parameters of a two dimensional cellular automata model to find rule parameters that fit observed mining activity data. Previous work by one of the authors in calibrating the cellular automaton took weeks - the genetic algorithm takes a day and produces rules leading to about the same (or better) fit to observed data. These preliminary results indicate that genetic algorithms are a viable tool in calibrating cellular automata for this application. Experience gained during the calibration of this cellular automata suggests that mineral resource information is a critical factor in the quality of the results. With automated calibration, further refinements of how the mineral-resource information is provided to the cellular automaton will probably improve our model.

  13. Accounting for temporal variation in soil hydrological properties when simulating surface runoff on tilled plots

    NASA Astrophysics Data System (ADS)

    Chahinian, Nanée; Moussa, Roger; Andrieux, Patrick; Voltz, Marc

    2006-07-01

    Tillage operations are known to greatly influence local overland flow, infiltration and depressional storage by altering soil hydraulic properties and soil surface roughness. The calibration of runoff models for tilled fields is not identical to that of untilled fields, as it has to take into consideration the temporal variability of parameters due to the transient nature of surface crusts. In this paper, we seek the application of a rainfall-runoff model and the development of a calibration methodology to take into account the impact of tillage on overland flow simulation at the scale of a tilled plot (3240 m 2) located in southern France. The selected model couples the (Morel-Seytoux, H.J., 1978. Derivation of equations for variable rainfall infiltration. Water Resources Research. 14(4), 561-568). Infiltration equation to a transfer function based on the diffusive wave equation. The parameters to be calibrated are the hydraulic conductivity at natural saturation Ks, the surface detention Sd and the lag time ω. A two-step calibration procedure is presented. First, eleven rainfall-runoff events are calibrated individually and the variability of the calibrated parameters are analysed. The individually calibrated Ks values decrease monotonously according to the total amount of rainfall since tillage. No clear relationship is observed between the two parameters Sd and ω, and the date of tillage. However, the lag time ω increases inversely with the peakflow of the events. Fairly good agreement is observed between the simulated and measured hydrographs of the calibration set. Simple mathematical laws describing the evolution of Ks and ω are selected, while Sd is considered constant. The second step involves the collective calibration of the law of evolution of each parameter on the whole calibration set. This procedure is calibrated on 11 events and validated on ten runoff inducing and four non-runoff inducing rainfall events. The suggested calibration methodology seems robust and can be transposed to other gauged sites.

  14. A calibration protocol of a one-dimensional moving bed bioreactor (MBBR) dynamic model for nitrogen removal.

    PubMed

    Barry, U; Choubert, J-M; Canler, J-P; Héduit, A; Robin, L; Lessard, P

    2012-01-01

    This work suggests a procedure to correctly calibrate the parameters of a one-dimensional MBBR dynamic model in nitrification treatment. The study deals with the MBBR configuration with two reactors in series, one for carbon treatment and the other for nitrogen treatment. Because of the influence of the first reactor on the second one, the approach needs a specific calibration strategy. Firstly, a comparison between measured values and simulated ones obtained with default parameters has been carried out. Simulated values of filtered COD, NH(4)-N and dissolved oxygen are underestimated and nitrates are overestimated compared with observed data. Thus, nitrifying rate and oxygen transfer into the biofilm are overvalued. Secondly, a sensitivity analysis was carried out for parameters and for COD fractionation. It revealed three classes of sensitive parameters: physical, diffusional and kinetic. Then a calibration protocol of the MBBR dynamic model was proposed. It was successfully tested on data recorded at a pilot-scale plant and a calibrated set of values was obtained for four parameters: the maximum biofilm thickness, the detachment rate, the maximum autotrophic growth rate and the oxygen transfer rate.

  15. Bayesian analysis of physiologically based toxicokinetic and toxicodynamic models.

    PubMed

    Hack, C Eric

    2006-04-17

    Physiologically based toxicokinetic (PBTK) and toxicodynamic (TD) models of bromate in animals and humans would improve our ability to accurately estimate the toxic doses in humans based on available animal studies. These mathematical models are often highly parameterized and must be calibrated in order for the model predictions of internal dose to adequately fit the experimentally measured doses. Highly parameterized models are difficult to calibrate and it is difficult to obtain accurate estimates of uncertainty or variability in model parameters with commonly used frequentist calibration methods, such as maximum likelihood estimation (MLE) or least squared error approaches. The Bayesian approach called Markov chain Monte Carlo (MCMC) analysis can be used to successfully calibrate these complex models. Prior knowledge about the biological system and associated model parameters is easily incorporated in this approach in the form of prior parameter distributions, and the distributions are refined or updated using experimental data to generate posterior distributions of parameter estimates. The goal of this paper is to give the non-mathematician a brief description of the Bayesian approach and Markov chain Monte Carlo analysis, how this technique is used in risk assessment, and the issues associated with this approach.

  16. The impact of standard and hard-coded parameters on the hydrologic fluxes in the Noah-MP land surface model

    NASA Astrophysics Data System (ADS)

    Thober, S.; Cuntz, M.; Mai, J.; Samaniego, L. E.; Clark, M. P.; Branch, O.; Wulfmeyer, V.; Attinger, S.

    2016-12-01

    Land surface models incorporate a large number of processes, described by physical, chemical and empirical equations. The agility of the models to react to different meteorological conditions is artificially constrained by having hard-coded parameters in their equations. Here we searched for hard-coded parameters in the computer code of the land surface model Noah with multiple process options (Noah-MP) to assess the model's agility during parameter estimation. We found 139 hard-coded values in all Noah-MP process options in addition to the 71 standard parameters. We performed a Sobol' global sensitivity analysis to variations of the standard and hard-coded parameters. The sensitivities of the hydrologic output fluxes latent heat and total runoff, their component fluxes, as well as photosynthesis and sensible heat were evaluated at twelve catchments of the Eastern United States with very different hydro-meteorological regimes. Noah-MP's output fluxes are sensitive to two thirds of its standard parameters. The most sensitive parameter is, however, a hard-coded value in the formulation of soil surface resistance for evaporation, which proved to be oversensitive in other land surface models as well. Latent heat and total runoff show very similar sensitivities towards standard and hard-coded parameters. They are sensitive to both soil and plant parameters, which means that model calibrations of hydrologic or land surface models should take both soil and plant parameters into account. Sensible and latent heat exhibit almost the same sensitivities so that calibration or sensitivity analysis can be performed with either of the two. Photosynthesis has almost the same sensitivities as transpiration, which are different from the sensitivities of latent heat. Including photosynthesis and latent heat in model calibration might therefore be beneficial. Surface runoff is sensitive to almost all hard-coded snow parameters. These sensitivities get, however, diminished in total runoff. It is thus recommended to include the most sensitive hard-coded model parameters that were exposed in this study when calibrating Noah-MP.

  17. A Novel Error Model of Optical Systems and an On-Orbit Calibration Method for Star Sensors.

    PubMed

    Wang, Shuang; Geng, Yunhai; Jin, Rongyu

    2015-12-12

    In order to improve the on-orbit measurement accuracy of star sensors, the effects of image-plane rotary error, image-plane tilt error and distortions of optical systems resulting from the on-orbit thermal environment were studied in this paper. Since these issues will affect the precision of star image point positions, in this paper, a novel measurement error model based on the traditional error model is explored. Due to the orthonormal characteristics of image-plane rotary-tilt errors and the strong nonlinearity among these error parameters, it is difficult to calibrate all the parameters simultaneously. To solve this difficulty, for the new error model, a modified two-step calibration method based on the Extended Kalman Filter (EKF) and Least Square Methods (LSM) is presented. The former one is used to calibrate the main point drift, focal length error and distortions of optical systems while the latter estimates the image-plane rotary-tilt errors. With this calibration method, the precision of star image point position influenced by the above errors is greatly improved from 15.42% to 1.389%. Finally, the simulation results demonstrate that the presented measurement error model for star sensors has higher precision. Moreover, the proposed two-step method can effectively calibrate model error parameters, and the calibration precision of on-orbit star sensors is also improved obviously.

  18. The efficacy of calibrating hydrologic model using remotely sensed evapotranspiration and soil moisture for streamflow prediction

    NASA Astrophysics Data System (ADS)

    Kunnath-Poovakka, A.; Ryu, D.; Renzullo, L. J.; George, B.

    2016-04-01

    Calibration of spatially distributed hydrologic models is frequently limited by the availability of ground observations. Remotely sensed (RS) hydrologic information provides an alternative source of observations to inform models and extend modelling capability beyond the limits of ground observations. This study examines the capability of RS evapotranspiration (ET) and soil moisture (SM) in calibrating a hydrologic model and its efficacy to improve streamflow predictions. SM retrievals from the Advanced Microwave Scanning Radiometer-EOS (AMSR-E) and daily ET estimates from the CSIRO MODIS ReScaled potential ET (CMRSET) are used to calibrate a simplified Australian Water Resource Assessment - Landscape model (AWRA-L) for a selection of parameters. The Shuffled Complex Evolution Uncertainty Algorithm (SCE-UA) is employed for parameter estimation at eleven catchments in eastern Australia. A subset of parameters for calibration is selected based on the variance-based Sobol' sensitivity analysis. The efficacy of 15 objective functions for calibration is assessed based on streamflow predictions relative to control cases, and relative merits of each are discussed. Synthetic experiments were conducted to examine the effect of bias in RS ET observations on calibration. The objective function containing the root mean square deviation (RMSD) of ET result in best streamflow predictions and the efficacy is superior for catchments with medium to high average runoff. Synthetic experiments revealed that accurate ET product can improve the streamflow predictions in catchments with low average runoff.

  19. Optimization of Equation of State and Burn Model Parameters for Explosives

    NASA Astrophysics Data System (ADS)

    Bergh, Magnus; Wedberg, Rasmus; Lundgren, Jonas

    2017-06-01

    A reactive burn model implemented in a multi-dimensional hydrocode can be a powerful tool for predicting non-ideal effects as well as initiation phenomena in explosives. Calibration against experiment is, however, critical and non-trivial. Here, a procedure is presented for calibrating the Ignition and Growth Model utilizing hydrocode simulation in conjunction with the optimization program LS-OPT. The model is applied to the explosive PBXN-109. First, a cylinder expansion test is presented together with a new automatic routine for product equation of state calibration. Secondly, rate stick tests and instrumented gap tests are presented. Data from these experiments are used to calibrate burn model parameters. Finally, we discuss the applicability and development of this optimization routine.

  20. Financial model calibration using consistency hints.

    PubMed

    Abu-Mostafa, Y S

    2001-01-01

    We introduce a technique for forcing the calibration of a financial model to produce valid parameters. The technique is based on learning from hints. It converts simple curve fitting into genuine calibration, where broad conclusions can be inferred from parameter values. The technique augments the error function of curve fitting with consistency hint error functions based on the Kullback-Leibler distance. We introduce an efficient EM-type optimization algorithm tailored to this technique. We also introduce other consistency hints, and balance their weights using canonical errors. We calibrate the correlated multifactor Vasicek model of interest rates, and apply it successfully to Japanese Yen swaps market and US dollar yield market.

  1. Global Parameter Optimization of CLM4.5 Using Sparse-Grid Based Surrogates

    NASA Astrophysics Data System (ADS)

    Lu, D.; Ricciuto, D. M.; Gu, L.

    2016-12-01

    Calibration of the Community Land Model (CLM) is challenging because of its model complexity, large parameter sets, and significant computational requirements. Therefore, only a limited number of simulations can be allowed in any attempt to find a near-optimal solution within an affordable time. The goal of this study is to calibrate some of the CLM parameters in order to improve model projection of carbon fluxes. To this end, we propose a computationally efficient global optimization procedure using sparse-grid based surrogates. We first use advanced sparse grid (SG) interpolation to construct a surrogate system of the actual CLM model, and then we calibrate the surrogate model in the optimization process. As the surrogate model is a polynomial whose evaluation is fast, it can be efficiently evaluated with sufficiently large number of times in the optimization, which facilitates the global search. We calibrate five parameters against 12 months of GPP, NEP, and TLAI data from the U.S. Missouri Ozark (US-MOz) tower. The results indicate that an accurate surrogate model can be created for the CLM4.5 with a relatively small number of SG points (i.e., CLM4.5 simulations), and the application of the optimized parameters leads to a higher predictive capacity than the default parameter values in the CLM4.5 for the US-MOz site.

  2. A back-fitting algorithm to improve real-time flood forecasting

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaojing; Liu, Pan; Cheng, Lei; Liu, Zhangjun; Zhao, Yan

    2018-07-01

    Real-time flood forecasting is important for decision-making with regards to flood control and disaster reduction. The conventional approach involves a postprocessor calibration strategy that first calibrates the hydrological model and then estimates errors. This procedure can simulate streamflow consistent with observations, but obtained parameters are not optimal. Joint calibration strategies address this issue by refining hydrological model parameters jointly with the autoregressive (AR) model. In this study, five alternative schemes are used to forecast floods. Scheme I uses only the hydrological model, while scheme II includes an AR model for error correction. In scheme III, differencing is used to remove non-stationarity in the error series. A joint inference strategy employed in scheme IV calibrates the hydrological and AR models simultaneously. The back-fitting algorithm, a basic approach for training an additive model, is adopted in scheme V to alternately recalibrate hydrological and AR model parameters. The performance of the five schemes is compared with a case study of 15 recorded flood events from China's Baiyunshan reservoir basin. Our results show that (1) schemes IV and V outperform scheme III during the calibration and validation periods and (2) scheme V is inferior to scheme IV in the calibration period, but provides better results in the validation period. Joint calibration strategies can therefore improve the accuracy of flood forecasting. Additionally, the back-fitting recalibration strategy produces weaker overcorrection and a more robust performance compared with the joint inference strategy.

  3. Novel Calibration Algorithm for a Three-Axis Strapdown Magnetometer

    PubMed Central

    Liu, Yan Xia; Li, Xi Sheng; Zhang, Xiao Juan; Feng, Yi Bo

    2014-01-01

    A complete error calibration model with 12 independent parameters is established by analyzing the three-axis magnetometer error mechanism. The said model conforms to an ellipsoid restriction, the parameters of the ellipsoid equation are estimated, and the ellipsoid coefficient matrix is derived. However, the calibration matrix cannot be determined completely, as there are fewer ellipsoid parameters than calibration model parameters. Mathematically, the calibration matrix derived from the ellipsoid coefficient matrix by a different matrix decomposition method is not unique, and there exists an unknown rotation matrix R between them. This paper puts forward a constant intersection angle method (angles between the geomagnetic field and gravitational field are fixed) to estimate R. The Tikhonov method is adopted to solve the problem that rounding errors or other errors may seriously affect the calculation results of R when the condition number of the matrix is very large. The geomagnetic field vector and heading error are further corrected by R. The constant intersection angle method is convenient and practical, as it is free from any additional calibration procedure or coordinate transformation. In addition, the simulation experiment indicates that the heading error declines from ±1° calibrated by classical ellipsoid fitting to ±0.2° calibrated by a constant intersection angle method, and the signal-to-noise ratio is 50 dB. The actual experiment exhibits that the heading error is further corrected from ±0.8° calibrated by the classical ellipsoid fitting to ±0.3° calibrated by a constant intersection angle method. PMID:24831110

  4. Parameter estimation procedure for complex non-linear systems: calibration of ASM No. 1 for N-removal in a full-scale oxidation ditch.

    PubMed

    Abusam, A; Keesman, K J; van Straten, G; Spanjers, H; Meinema, K

    2001-01-01

    When applied to large simulation models, the process of parameter estimation is also called calibration. Calibration of complex non-linear systems, such as activated sludge plants, is often not an easy task. On the one hand, manual calibration of such complex systems is usually time-consuming, and its results are often not reproducible. On the other hand, conventional automatic calibration methods are not always straightforward and often hampered by local minima problems. In this paper a new straightforward and automatic procedure, which is based on the response surface method (RSM) for selecting the best identifiable parameters, is proposed. In RSM, the process response (output) is related to the levels of the input variables in terms of a first- or second-order regression model. Usually, RSM is used to relate measured process output quantities to process conditions. However, in this paper RSM is used for selecting the dominant parameters, by evaluating parameters sensitivity in a predefined region. Good results obtained in calibration of ASM No. 1 for N-removal in a full-scale oxidation ditch proved that the proposed procedure is successful and reliable.

  5. Sediment transport in forested head water catchments - Calibration and validation of a soil erosion and landscape evolution model

    NASA Astrophysics Data System (ADS)

    Hancock, G. R.; Webb, A. A.; Turner, L.

    2017-11-01

    Sediment transport and soil erosion can be determined by a variety of field and modelling approaches. Computer based soil erosion and landscape evolution models (LEMs) offer the potential to be reliable assessment and prediction tools. An advantage of such models is that they provide both erosion and deposition patterns as well as total catchment sediment output. However, before use, like all models they require calibration and validation. In recent years LEMs have been used for a variety of both natural and disturbed landscape assessment. However, these models have not been evaluated for their reliability in steep forested catchments. Here, the SIBERIA LEM is calibrated and evaluated for its reliability for two steep forested catchments in south-eastern Australia. The model is independently calibrated using two methods. Firstly, hydrology and sediment transport parameters are inferred from catchment geomorphology and soil properties and secondly from catchment sediment transport and discharge data. The results demonstrate that both calibration methods provide similar parameters and reliable modelled sediment transport output. A sensitivity study of the input parameters demonstrates the model's sensitivity to correct parameterisation and also how the model could be used to assess potential timber harvesting as well as the removal of vegetation by fire.

  6. Calibration of Reduced Dynamic Models of Power Systems using Phasor Measurement Unit (PMU) Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Ning; Lu, Shuai; Singh, Ruchi

    2011-09-23

    Accuracy of a power system dynamic model is essential to the secure and efficient operation of the system. Lower confidence on model accuracy usually leads to conservative operation and lowers asset usage. To improve model accuracy, identification algorithms have been developed to calibrate parameters of individual components using measurement data from staged tests. To facilitate online dynamic studies for large power system interconnections, this paper proposes a model reduction and calibration approach using phasor measurement unit (PMU) data. First, a model reduction method is used to reduce the number of dynamic components. Then, a calibration algorithm is developed to estimatemore » parameters of the reduced model. This approach will help to maintain an accurate dynamic model suitable for online dynamic studies. The performance of the proposed method is verified through simulation studies.« less

  7. Global sensitivity analysis, probabilistic calibration, and predictive assessment for the data assimilation linked ecosystem carbon model

    DOE PAGES

    Safta, C.; Ricciuto, Daniel M.; Sargsyan, Khachik; ...

    2015-07-01

    In this paper we propose a probabilistic framework for an uncertainty quantification (UQ) study of a carbon cycle model and focus on the comparison between steady-state and transient simulation setups. A global sensitivity analysis (GSA) study indicates the parameters and parameter couplings that are important at different times of the year for quantities of interest (QoIs) obtained with the data assimilation linked ecosystem carbon (DALEC) model. We then employ a Bayesian approach and a statistical model error term to calibrate the parameters of DALEC using net ecosystem exchange (NEE) observations at the Harvard Forest site. The calibration results are employedmore » in the second part of the paper to assess the predictive skill of the model via posterior predictive checks.« less

  8. Metric Calibration of a Focused Plenoptic Camera Based on a 3d Calibration Target

    NASA Astrophysics Data System (ADS)

    Zeller, N.; Noury, C. A.; Quint, F.; Teulière, C.; Stilla, U.; Dhome, M.

    2016-06-01

    In this paper we present a new calibration approach for focused plenoptic cameras. We derive a new mathematical projection model of a focused plenoptic camera which considers lateral as well as depth distortion. Therefore, we derive a new depth distortion model directly from the theory of depth estimation in a focused plenoptic camera. In total the model consists of five intrinsic parameters, the parameters for radial and tangential distortion in the image plane and two new depth distortion parameters. In the proposed calibration we perform a complete bundle adjustment based on a 3D calibration target. The residual of our optimization approach is three dimensional, where the depth residual is defined by a scaled version of the inverse virtual depth difference and thus conforms well to the measured data. Our method is evaluated based on different camera setups and shows good accuracy. For a better characterization of our approach we evaluate the accuracy of virtual image points projected back to 3D space.

  9. Hydrologic Modeling in the Kenai River Watershed using Event Based Calibration

    NASA Astrophysics Data System (ADS)

    Wells, B.; Toniolo, H. A.; Stuefer, S. L.

    2015-12-01

    Understanding hydrologic changes is key for preparing for possible future scenarios. On the Kenai Peninsula in Alaska the yearly salmon runs provide a valuable stimulus to the economy. It is the focus of a large commercial fishing fleet, but also a prime tourist attraction. Modeling of anadromous waters provides a tool that assists in the prediction of future salmon run size. Beaver Creek, in Kenai, Alaska, is a lowlands stream that has been modeled using the Army Corps of Engineers event based modeling package HEC-HMS. With the use of historic precipitation and discharge data, the model was calibrated to observed discharge values. The hydrologic parameters were measured in the field or calculated, while soil parameters were estimated and adjusted during the calibration. With the calibrated parameter for HEC-HMS, discharge estimates can be used by other researches studying the area and help guide communities and officials to make better-educated decisions regarding the changing hydrology in the area and the tied economic drivers.

  10. Simulation of runoff and nutrient export from a typical small watershed in China using the Hydrological Simulation Program-Fortran.

    PubMed

    Li, Zhaofu; Liu, Hongyu; Luo, Chuan; Li, Yan; Li, Hengpeng; Pan, Jianjun; Jiang, Xiaosan; Zhou, Quansuo; Xiong, Zhengqin

    2015-05-01

    The Hydrological Simulation Program-Fortran (HSPF), which is a hydrological and water-quality computer model that was developed by the United States Environmental Protection Agency, was employed to simulate runoff and nutrient export from a typical small watershed in a hilly eastern monsoon region of China. First, a parameter sensitivity analysis was performed to assess how changes in the model parameters affect runoff and nutrient export. Next, the model was calibrated and validated using measured runoff and nutrient concentration data. The Nash-Sutcliffe efficiency (E NS ) values of the yearly runoff were 0.87 and 0.69 for the calibration and validation periods, respectively. For storms runoff events, the E NS values were 0.93 for the calibration period and 0.47 for the validation period. Antecedent precipitation and soil moisture conditions can affect the simulation accuracy of storm event flow. The E NS values for the total nitrogen (TN) export were 0.58 for the calibration period and 0.51 for the validation period. In addition, the correlation coefficients between the observed and simulated TN concentrations were 0.84 for the calibration period and 0.74 for the validation period. For phosphorus export, the E NS values were 0.89 for the calibration period and 0.88 for the validation period. In addition, the correlation coefficients between the observed and simulated orthophosphate concentrations were 0.96 and 0.94 for the calibration and validation periods, respectively. The nutrient simulation results are generally satisfactory even though the parameter-lumped HSPF model cannot represent the effects of the spatial pattern of land cover on nutrient export. The model parameters obtained in this study could serve as reference values for applying the model to similar regions. In addition, HSPF can properly describe the characteristics of water quantity and quality processes in this area. After adjustment, calibration, and validation of the parameters, the HSPF model is suitable for hydrological and water-quality simulations in watershed planning and management and for designing best management practices.

  11. The cost of uniqueness in groundwater model calibration

    NASA Astrophysics Data System (ADS)

    Moore, Catherine; Doherty, John

    2006-04-01

    Calibration of a groundwater model requires that hydraulic properties be estimated throughout a model domain. This generally constitutes an underdetermined inverse problem, for which a solution can only be found when some kind of regularization device is included in the inversion process. Inclusion of regularization in the calibration process can be implicit, for example through the use of zones of constant parameter value, or explicit, for example through solution of a constrained minimization problem in which parameters are made to respect preferred values, or preferred relationships, to the degree necessary for a unique solution to be obtained. The "cost of uniqueness" is this: no matter which regularization methodology is employed, the inevitable consequence of its use is a loss of detail in the calibrated field. This, in turn, can lead to erroneous predictions made by a model that is ostensibly "well calibrated". Information made available as a by-product of the regularized inversion process allows the reasons for this loss of detail to be better understood. In particular, it is easily demonstrated that the estimated value for an hydraulic property at any point within a model domain is, in fact, a weighted average of the true hydraulic property over a much larger area. This averaging process causes loss of resolution in the estimated field. Where hydraulic conductivity is the hydraulic property being estimated, high averaging weights exist in areas that are strategically disposed with respect to measurement wells, while other areas may contribute very little to the estimated hydraulic conductivity at any point within the model domain, this possibly making the detection of hydraulic conductivity anomalies in these latter areas almost impossible. A study of the post-calibration parameter field covariance matrix allows further insights into the loss of system detail incurred through the calibration process to be gained. A comparison of pre- and post-calibration parameter covariance matrices shows that the latter often possess a much smaller spectral bandwidth than the former. It is also demonstrated that, as an inevitable consequence of the fact that a calibrated model cannot replicate every detail of the true system, model-to-measurement residuals can show a high degree of spatial correlation, a fact which must be taken into account when assessing these residuals either qualitatively, or quantitatively in the exploration of model predictive uncertainty. These principles are demonstrated using a synthetic case in which spatial parameter definition is based on pilot points, and calibration is implemented using both zones of piecewise constancy and constrained minimization regularization.

  12. Neuromusculoskeletal model self-calibration for on-line sequential bayesian moment estimation

    NASA Astrophysics Data System (ADS)

    Bueno, Diana R.; Montano, L.

    2017-04-01

    Objective. Neuromusculoskeletal models involve many subject-specific physiological parameters that need to be adjusted to adequately represent muscle properties. Traditionally, neuromusculoskeletal models have been calibrated with a forward-inverse dynamic optimization which is time-consuming and unfeasible for rehabilitation therapy. Non self-calibration algorithms have been applied to these models. To the best of our knowledge, the algorithm proposed in this work is the first on-line calibration algorithm for muscle models that allows a generic model to be adjusted to different subjects in a few steps. Approach. In this paper we propose a reformulation of the traditional muscle models that is able to sequentially estimate the kinetics (net joint moments), and also its full self-calibration (subject-specific internal parameters of the muscle from a set of arbitrary uncalibrated data), based on the unscented Kalman filter. The nonlinearity of the model as well as its calibration problem have obliged us to adopt the sum of Gaussians filter suitable for nonlinear systems. Main results. This sequential Bayesian self-calibration algorithm achieves a complete muscle model calibration using as input only a dataset of uncalibrated sEMG and kinematics data. The approach is validated experimentally using data from the upper limbs of 21 subjects. Significance. The results show the feasibility of neuromusculoskeletal model self-calibration. This study will contribute to a better understanding of the generalization of muscle models for subject-specific rehabilitation therapies. Moreover, this work is very promising for rehabilitation devices such as electromyography-driven exoskeletons or prostheses.

  13. Evaluation of the AnnAGNPS Model for Predicting Runoff and Nutrient Export in a Typical Small Watershed in the Hilly Region of Taihu Lake

    PubMed Central

    Luo, Chuan; Li, Zhaofu; Li, Hengpeng; Chen, Xiaomin

    2015-01-01

    The application of hydrological and water quality models is an efficient approach to better understand the processes of environmental deterioration. This study evaluated the ability of the Annualized Agricultural Non-Point Source (AnnAGNPS) model to predict runoff, total nitrogen (TN) and total phosphorus (TP) loading in a typical small watershed of a hilly region near Taihu Lake, China. Runoff was calibrated and validated at both an annual and monthly scale, and parameter sensitivity analysis was performed for TN and TP before the two water quality components were calibrated. The results showed that the model satisfactorily simulated runoff at annual and monthly scales, both during calibration and validation processes. Additionally, results of parameter sensitivity analysis showed that the parameters Fertilizer rate, Fertilizer organic, Canopy cover and Fertilizer inorganic were more sensitive to TN output. In terms of TP, the parameters Residue mass ratio, Fertilizer rate, Fertilizer inorganic and Canopy cover were the most sensitive. Based on these sensitive parameters, calibration was performed. TN loading produced satisfactory results for both the calibration and validation processes, whereas the performance of TP loading was slightly poor. The simulation results showed that AnnAGNPS has the potential to be used as a valuable tool for the planning and management of watersheds. PMID:26364642

  14. Classical vs. evolved quenching parameters and procedures in scintillation measurements: The importance of ionization quenching

    NASA Astrophysics Data System (ADS)

    Bagán, H.; Tarancón, A.; Rauret, G.; García, J. F.

    2008-07-01

    The quenching parameters used to model detection efficiency variations in scintillation measurements have not evolved since the decade of 1970s. Meanwhile, computer capabilities have increased enormously and ionization quenching has appeared in practical measurements using plastic scintillation. This study compares the results obtained in activity quantification by plastic scintillation of 14C samples that contain colour and ionization quenchers, using classical (SIS, SCR-limited, SCR-non-limited, SIS(ext), SQP(E)) and evolved (MWA-SCR and WDW) parameters and following three calibration approaches: single step, which does not take into account the quenching mechanism; two steps, which takes into account the quenching phenomena; and multivariate calibration. Two-step calibration (ionization followed by colour) yielded the lowest relative errors, which means that each quenching phenomenon must be specifically modelled. In addition, the sample activity was quantified more accurately when the evolved parameters were used. Multivariate calibration-PLS also yielded better results than those obtained using classical parameters, which confirms that the quenching phenomena must be taken into account. The detection limits for each calibration method and each parameter were close to those obtained theoretically using the Currie approach.

  15. Bayesian model calibration of computational models in velocimetry diagnosed dynamic compression experiments.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Justin; Hund, Lauren

    2017-02-01

    Dynamic compression experiments are being performed on complicated materials using increasingly complex drivers. The data produced in these experiments are beginning to reach a regime where traditional analysis techniques break down; requiring the solution of an inverse problem. A common measurement in dynamic experiments is an interface velocity as a function of time, and often this functional output can be simulated using a hydrodynamics code. Bayesian model calibration is a statistical framework to estimate inputs into a computational model in the presence of multiple uncertainties, making it well suited to measurements of this type. In this article, we apply Bayesianmore » model calibration to high pressure (250 GPa) ramp compression measurements in tantalum. We address several issues speci c to this calibration including the functional nature of the output as well as parameter and model discrepancy identi ability. Speci cally, we propose scaling the likelihood function by an e ective sample size rather than modeling the autocorrelation function to accommodate the functional output and propose sensitivity analyses using the notion of `modularization' to assess the impact of experiment-speci c nuisance input parameters on estimates of material properties. We conclude that the proposed Bayesian model calibration procedure results in simple, fast, and valid inferences on the equation of state parameters for tantalum.« less

  16. MODOPTIM: A general optimization program for ground-water flow model calibration and ground-water management with MODFLOW

    USGS Publications Warehouse

    Halford, Keith J.

    2006-01-01

    MODOPTIM is a non-linear ground-water model calibration and management tool that simulates flow with MODFLOW-96 as a subroutine. A weighted sum-of-squares objective function defines optimal solutions for calibration and management problems. Water levels, discharges, water quality, subsidence, and pumping-lift costs are the five direct observation types that can be compared in MODOPTIM. Differences between direct observations of the same type can be compared to fit temporal changes and spatial gradients. Water levels in pumping wells, wellbore storage in the observation wells, and rotational translation of observation wells also can be compared. Negative and positive residuals can be weighted unequally so inequality constraints such as maximum chloride concentrations or minimum water levels can be incorporated in the objective function. Optimization parameters are defined with zones and parameter-weight matrices. Parameter change is estimated iteratively with a quasi-Newton algorithm and is constrained to a user-defined maximum parameter change per iteration. Parameters that are less sensitive than a user-defined threshold are not estimated. MODOPTIM facilitates testing more conceptual models by expediting calibration of each conceptual model. Examples of applying MODOPTIM to aquifer-test analysis, ground-water management, and parameter estimation problems are presented.

  17. Integrated surface-subsurface model to investigate the role of groundwater in headwater catchment runoff generation: A minimalist approach to parameterisation

    NASA Astrophysics Data System (ADS)

    Ala-aho, Pertti; Soulsby, Chris; Wang, Hailong; Tetzlaff, Doerthe

    2017-04-01

    Understanding the role of groundwater for runoff generation in headwater catchments is a challenge in hydrology, particularly so in data-scarce areas. Fully-integrated surface-subsurface modelling has shown potential in increasing process understanding for runoff generation, but high data requirements and difficulties in model calibration are typically assumed to preclude their use in catchment-scale studies. We used a fully integrated surface-subsurface hydrological simulator to enhance groundwater-related process understanding in a headwater catchment with a rich background in empirical data. To set up the model we used minimal data that could be reasonably expected to exist for any experimental catchment. A novel aspect of our approach was in using simplified model parameterisation and including parameters from all model domains (surface, subsurface, evapotranspiration) in automated model calibration. Calibration aimed not only to improve model fit, but also to test the information content of the observations (streamflow, remotely sensed evapotranspiration, median groundwater level) used in calibration objective functions. We identified sensitive parameters in all model domains (subsurface, surface, evapotranspiration), demonstrating that model calibration should be inclusive of parameters from these different model domains. Incorporating groundwater data in calibration objectives improved the model fit for groundwater levels, but simulations did not reproduce well the remotely sensed evapotranspiration time series even after calibration. Spatially explicit model output improved our understanding of how groundwater functions in maintaining streamflow generation primarily via saturation excess overland flow. Steady groundwater inputs created saturated conditions in the valley bottom riparian peatlands, leading to overland flow even during dry periods. Groundwater on the hillslopes was more dynamic in its response to rainfall, acting to expand the saturated area extent and thereby promoting saturation excess overland flow during rainstorms. Our work shows the potential of using integrated surface-subsurface modelling alongside with rigorous model calibration to better understand and visualise the role of groundwater in runoff generation even with limited datasets.

  18. Calibration process of highly parameterized semi-distributed hydrological model

    NASA Astrophysics Data System (ADS)

    Vidmar, Andrej; Brilly, Mitja

    2017-04-01

    Hydrological phenomena take place in the hydrological system, which is governed by nature, and are essentially stochastic. These phenomena are unique, non-recurring, and changeable across space and time. Since any river basin with its own natural characteristics and any hydrological event therein, are unique, this is a complex process that is not researched enough. Calibration is a procedure of determining the parameters of a model that are not known well enough. Input and output variables and mathematical model expressions are known, while only some parameters are unknown, which are determined by calibrating the model. The software used for hydrological modelling nowadays is equipped with sophisticated algorithms for calibration purposes without possibility to manage process by modeler. The results are not the best. We develop procedure for expert driven process of calibration. We use HBV-light-CLI hydrological model which has command line interface and coupling it with PEST. PEST is parameter estimation tool which is used widely in ground water modeling and can be used also on surface waters. Process of calibration managed by expert directly, and proportionally to the expert knowledge, affects the outcome of the inversion procedure and achieves better results than if the procedure had been left to the selected optimization algorithm. First step is to properly define spatial characteristic and structural design of semi-distributed model including all morphological and hydrological phenomena, like karstic area, alluvial area and forest area. This step includes and requires geological, meteorological, hydraulic and hydrological knowledge of modeler. Second step is to set initial parameter values at their preferred values based on expert knowledge. In this step we also define all parameter and observation groups. Peak data are essential in process of calibration if we are mainly interested in flood events. Each Sub Catchment in the model has own observations group. Third step is to set appropriate bounds to parameters in their range of realistic values. Fourth step is to use of singular value decomposition (SVD) ensures that PEST maintains numerical stability, regardless of how ill-posed is the inverse problem Fifth step is to run PWTADJ1. This creates a new PEST control file in which weights are adjusted such that the contribution made to the total objective function by each observation group is the same. This prevents the information content of any group from being invisible to the inversion process. Sixth step is to add Tikhonov regularization to the PEST control file by running the ADDREG1 utility (Doherty, J, 2013). In adding regularization to the PEST control file ADDREG1 automatically provides a prior information equation for each parameter in which the preferred value of that parameter is equated to its initial value. Last step is to run PEST. We run BeoPEST which a parallel version of PEST and can be run on multiple computers in parallel in same time on TCP communications and this speedup process of calibrations. The case study with results of calibration and validation of the model will be presented.

  19. Multi-objective calibration and uncertainty analysis of hydrologic models; A comparative study between formal and informal methods

    NASA Astrophysics Data System (ADS)

    Shafii, M.; Tolson, B.; Matott, L. S.

    2012-04-01

    Hydrologic modeling has benefited from significant developments over the past two decades. This has resulted in building of higher levels of complexity into hydrologic models, which eventually makes the model evaluation process (parameter estimation via calibration and uncertainty analysis) more challenging. In order to avoid unreasonable parameter estimates, many researchers have suggested implementation of multi-criteria calibration schemes. Furthermore, for predictive hydrologic models to be useful, proper consideration of uncertainty is essential. Consequently, recent research has emphasized comprehensive model assessment procedures in which multi-criteria parameter estimation is combined with statistically-based uncertainty analysis routines such as Bayesian inference using Markov Chain Monte Carlo (MCMC) sampling. Such a procedure relies on the use of formal likelihood functions based on statistical assumptions, and moreover, the Bayesian inference structured on MCMC samplers requires a considerably large number of simulations. Due to these issues, especially in complex non-linear hydrological models, a variety of alternative informal approaches have been proposed for uncertainty analysis in the multi-criteria context. This study aims at exploring a number of such informal uncertainty analysis techniques in multi-criteria calibration of hydrological models. The informal methods addressed in this study are (i) Pareto optimality which quantifies the parameter uncertainty using the Pareto solutions, (ii) DDS-AU which uses the weighted sum of objective functions to derive the prediction limits, and (iii) GLUE which describes the total uncertainty through identification of behavioral solutions. The main objective is to compare such methods with MCMC-based Bayesian inference with respect to factors such as computational burden, and predictive capacity, which are evaluated based on multiple comparative measures. The measures for comparison are calculated both for calibration and evaluation periods. The uncertainty analysis methodologies are applied to a simple 5-parameter rainfall-runoff model, called HYMOD.

  20. Modeling Soot Oxidation and Gasification with Bayesian Statistics

    DOE PAGES

    Josephson, Alexander J.; Gaffin, Neal D.; Smith, Sean T.; ...

    2017-08-22

    This paper presents a statistical method for model calibration using data collected from literature. The method is used to calibrate parameters for global models of soot consumption in combustion systems. This consumption is broken into two different submodels: first for oxidation where soot particles are attacked by certain oxidizing agents; second for gasification where soot particles are attacked by H 2O or CO 2 molecules. Rate data were collected from 19 studies in the literature and evaluated using Bayesian statistics to calibrate the model parameters. Bayesian statistics are valued in their ability to quantify uncertainty in modeling. The calibrated consumptionmore » model with quantified uncertainty is presented here along with a discussion of associated implications. The oxidation results are found to be consistent with previous studies. Significant variation is found in the CO 2 gasification rates.« less

  1. Modeling Soot Oxidation and Gasification with Bayesian Statistics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Josephson, Alexander J.; Gaffin, Neal D.; Smith, Sean T.

    This paper presents a statistical method for model calibration using data collected from literature. The method is used to calibrate parameters for global models of soot consumption in combustion systems. This consumption is broken into two different submodels: first for oxidation where soot particles are attacked by certain oxidizing agents; second for gasification where soot particles are attacked by H 2O or CO 2 molecules. Rate data were collected from 19 studies in the literature and evaluated using Bayesian statistics to calibrate the model parameters. Bayesian statistics are valued in their ability to quantify uncertainty in modeling. The calibrated consumptionmore » model with quantified uncertainty is presented here along with a discussion of associated implications. The oxidation results are found to be consistent with previous studies. Significant variation is found in the CO 2 gasification rates.« less

  2. A Large-Scale, High-Resolution Hydrological Model Parameter Data Set for Climate Change Impact Assessment for the Conterminous US

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oubeidillah, Abdoul A; Kao, Shih-Chieh; Ashfaq, Moetasim

    2014-01-01

    To extend geographical coverage, refine spatial resolution, and improve modeling efficiency, a computation- and data-intensive effort was conducted to organize a comprehensive hydrologic dataset with post-calibrated model parameters for hydro-climate impact assessment. Several key inputs for hydrologic simulation including meteorologic forcings, soil, land class, vegetation, and elevation were collected from multiple best-available data sources and organized for 2107 hydrologic subbasins (8-digit hydrologic units, HUC8s) in the conterminous United States at refined 1/24 (~4 km) spatial resolution. Using high-performance computing for intensive model calibration, a high-resolution parameter dataset was prepared for the macro-scale Variable Infiltration Capacity (VIC) hydrologic model. The VICmore » simulation was driven by DAYMET daily meteorological forcing and was calibrated against USGS WaterWatch monthly runoff observations for each HUC8. The results showed that this new parameter dataset may help reasonably simulate runoff at most US HUC8 subbasins. Based on this exhaustive calibration effort, it is now possible to accurately estimate the resources required for further model improvement across the entire conterminous United States. We anticipate that through this hydrologic parameter dataset, the repeated effort of fundamental data processing can be lessened, so that research efforts can emphasize the more challenging task of assessing climate change impacts. The pre-organized model parameter dataset will be provided to interested parties to support further hydro-climate impact assessment.« less

  3. Response simulation and theoretical calibration of a dual-induction resistivity LWD tool

    NASA Astrophysics Data System (ADS)

    Xu, Wei; Ke, Shi-Zhen; Li, An-Zong; Chen, Peng; Zhu, Jun; Zhang, Wei

    2014-03-01

    In this paper, responses of a new dual-induction resistivity logging-while-drilling (LWD) tool in 3D inhomogeneous formation models are simulated by the vector finite element method (VFEM), the influences of the borehole, invaded zone, surrounding strata, and tool eccentricity are analyzed, and calibration loop parameters and calibration coefficients of the LWD tool are discussed. The results show that the tool has a greater depth of investigation than that of the existing electromagnetic propagation LWD tools and is more sensitive to azimuthal conductivity. Both deep and medium induction responses have linear relationships with the formation conductivity, considering optimal calibration loop parameters and calibration coefficients. Due to the different depths of investigation and resolution, deep induction and medium induction are affected differently by the formation model parameters, thereby having different correction factors. The simulation results can provide theoretical references for the research and interpretation of the dual-induction resistivity LWD tools.

  4. Impact of length of dataset on streamflow calibration parameters and performance of APEX model

    USDA-ARS?s Scientific Manuscript database

    Due to resource constraints, long-term monitoring data for calibration and validation of hydrologic and water quality models are rare. As a result, most models are calibrated and, if possible, validated using limited measured data. However, little research has been done to determine the impact of le...

  5. Using Multiple Outcomes of Sexual Behavior to Provide Insights Into Chlamydia Transmission and the Effectiveness of Prevention Interventions in Adolescents.

    PubMed

    Enns, Eva Andrea; Kao, Szu-Yu; Kozhimannil, Katy Backes; Kahn, Judith; Farris, Jill; Kulasingam, Shalini L

    2017-10-01

    Mathematical models are important tools for assessing prevention and management strategies for sexually transmitted infections. These models are usually developed for a single infection and require calibration to observed epidemiological trends in the infection of interest. Incorporating other outcomes of sexual behavior into the model, such as pregnancy, may better inform the calibration process. We developed a mathematical model of chlamydia transmission and pregnancy in Minnesota adolescents aged 15 to 19 years. We calibrated the model to statewide rates of reported chlamydia cases alone (chlamydia calibration) and in combination with pregnancy rates (dual calibration). We evaluated the impact of calibrating to different outcomes of sexual behavior on estimated input parameter values, predicted epidemiological outcomes, and predicted impact of chlamydia prevention interventions. The two calibration scenarios produced different estimates of the probability of condom use, the probability of chlamydia transmission per sex act, the proportion of asymptomatic infections, and the screening rate among men. These differences resulted in the dual calibration scenario predicting lower prevalence and incidence of chlamydia compared with calibrating to chlamydia cases alone. When evaluating the impact of a 10% increase in condom use, the dual calibration scenario predicted fewer infections averted over 5 years compared with chlamydia calibration alone [111 (6.8%) vs 158 (8.5%)]. While pregnancy and chlamydia in adolescents are often considered separately, both are outcomes of unprotected sexual activity. Incorporating both as calibration targets in a model of chlamydia transmission resulted in different parameter estimates, potentially impacting the intervention effectiveness predicted by the model.

  6. Crop physiology calibration in the CLM

    DOE PAGES

    Bilionis, I.; Drewniak, B. A.; Constantinescu, E. M.

    2015-04-15

    Farming is using more of the land surface, as population increases and agriculture is increasingly applied for non-nutritional purposes such as biofuel production. This agricultural expansion exerts an increasing impact on the terrestrial carbon cycle. In order to understand the impact of such processes, the Community Land Model (CLM) has been augmented with a CLM-Crop extension that simulates the development of three crop types: maize, soybean, and spring wheat. The CLM-Crop model is a complex system that relies on a suite of parametric inputs that govern plant growth under a given atmospheric forcing and available resources. CLM-Crop development used measurementsmore » of gross primary productivity (GPP) and net ecosystem exchange (NEE) from AmeriFlux sites to choose parameter values that optimize crop productivity in the model. In this paper, we calibrate these parameters for one crop type, soybean, in order to provide a faithful projection in terms of both plant development and net carbon exchange. Calibration is performed in a Bayesian framework by developing a scalable and adaptive scheme based on sequential Monte Carlo (SMC). The model showed significant improvement of crop productivity with the new calibrated parameters. We demonstrate that the calibrated parameters are applicable across alternative years and different sites.« less

  7. Crop physiology calibration in the CLM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bilionis, I.; Drewniak, B. A.; Constantinescu, E. M.

    Farming is using more of the land surface, as population increases and agriculture is increasingly applied for non-nutritional purposes such as biofuel production. This agricultural expansion exerts an increasing impact on the terrestrial carbon cycle. In order to understand the impact of such processes, the Community Land Model (CLM) has been augmented with a CLM-Crop extension that simulates the development of three crop types: maize, soybean, and spring wheat. The CLM-Crop model is a complex system that relies on a suite of parametric inputs that govern plant growth under a given atmospheric forcing and available resources. CLM-Crop development used measurementsmore » of gross primary productivity (GPP) and net ecosystem exchange (NEE) from AmeriFlux sites to choose parameter values that optimize crop productivity in the model. In this paper, we calibrate these parameters for one crop type, soybean, in order to provide a faithful projection in terms of both plant development and net carbon exchange. Calibration is performed in a Bayesian framework by developing a scalable and adaptive scheme based on sequential Monte Carlo (SMC). The model showed significant improvement of crop productivity with the new calibrated parameters. We demonstrate that the calibrated parameters are applicable across alternative years and different sites.« less

  8. Stepwise calibration procedure for regional coupled hydrological-hydrogeological models

    NASA Astrophysics Data System (ADS)

    Labarthe, Baptiste; Abasq, Lena; de Fouquet, Chantal; Flipo, Nicolas

    2014-05-01

    Stream-aquifer interaction is a complex process depending on regional and local processes. Indeed, the groundwater component of hydrosystem and large scale heterogeneities control the regional flows towards the alluvial plains and the rivers. In second instance, the local distribution of the stream bed permeabilities controls the dynamics of stream-aquifer water fluxes within the alluvial plain, and therefore the near-river piezometric head distribution. In order to better understand the water circulation and pollutant transport in watersheds, the integration of these multi-dimensional processes in modelling platform has to be performed. Thus, the nested interfaces concept in continental hydrosystem modelling (where regional fluxes, simulated by large scale models, are imposed at local stream-aquifer interfaces) has been presented in Flipo et al (2014). This concept has been implemented in EauDyssée modelling platform for a large alluvial plain model (900km2) part of a 11000km2 multi-layer aquifer system, located in the Seine basin (France). The hydrosystem modelling platform is composed of four spatially distributed modules (Surface, Sub-surface, River and Groundwater), corresponding to four components of the terrestrial water cycle. Considering the large number of parameters to be inferred simultaneously, the calibration process of coupled models is highly computationally demanding and therefore hardly applicable to a real case study of 10000km2. In order to improve the efficiency of the calibration process, a stepwise calibration procedure is proposed. The stepwise methodology involves determining optimal parameters of all components of the coupled model, to provide a near optimum prior information for the global calibration. It starts with the surface component parameters calibration. The surface parameters are optimised based on the comparison between simulated and observed discharges (or filtered discharges) at various locations. Once the surface parameters have been determined, the groundwater component is calibrated. The calibration procedure is performed under steady state hypothesis (to minimize the procedure time length) using recharge rates given by the surface component calibration and imposed fluxes boundary conditions given by the regional model. The calibration is performed using pilot point where the prior variogram is calculated from observed transmissivities values. This procedure uses PEST (http//:www.pesthomepage.org/Home.php) as the inverse modelling tool and EauDyssée as the direct model. During the stepwise calibration process, each modules, even if they are actually dependant from each other, are run and calibrated independently, therefore contributions between each module have to be determined. For the surface module, groundwater and runoff contributions have been determined by hydrograph separation. Among the automated base-flow separation methods, the one-parameter Chapman filter (Chapman et al 1999) has been chosen. This filter is a decomposition of the actual base-flow between the previous base-flow and the discharge gradient weighted by functions of the recession coefficient. For the groundwater module, the recharge has been determined from surface and sub-surface module. References : Flipo, N., A. Mourhi, B. Labarthe, and S. Biancamaria (2014). Continental hydrosystem modelling : the concept of nested stream-aquifer interfaces. Hydrol. Earth Syst. Sci. Discuss. 11, 451-500. Chapman,TG. (1999). A comparison of algorithms for stream flow recession and base-flow separation. hydrological Processes 13, 701-714.

  9. Effect of soil property uncertainties on permafrost thaw projections: a calibration-constrained analysis: Modeling Archive

    DOE Data Explorer

    J.C. Rowland; D.R. Harp; C.J. Wilson; A.L. Atchley; V.E. Romanovsky; E.T. Coon; S.L. Painter

    2016-02-02

    This Modeling Archive is in support of an NGEE Arctic publication available at doi:10.5194/tc-10-341-2016. This dataset contains an ensemble of thermal-hydro soil parameters including porosity, thermal conductivity, thermal conductivity shape parameters, and residual saturation of peat and mineral soil. The ensemble was generated using a Null-Space Monte Carlo analysis of parameter uncertainty based on a calibration to soil temperatures collected at the Barrow Environmental Observatory site by the NGEE team. The micro-topography of ice wedge polygons present at the site is included in the analysis using three 1D column models to represent polygon center, rim and trough features. The Arctic Terrestrial Simulator (ATS) was used in the calibration to model multiphase thermal and hydrological processes in the subsurface.

  10. Linked Sensitivity Analysis, Calibration, and Uncertainty Analysis Using a System Dynamics Model for Stroke Comparative Effectiveness Research.

    PubMed

    Tian, Yuan; Hassmiller Lich, Kristen; Osgood, Nathaniel D; Eom, Kirsten; Matchar, David B

    2016-11-01

    As health services researchers and decision makers tackle more difficult problems using simulation models, the number of parameters and the corresponding degree of uncertainty have increased. This often results in reduced confidence in such complex models to guide decision making. To demonstrate a systematic approach of linked sensitivity analysis, calibration, and uncertainty analysis to improve confidence in complex models. Four techniques were integrated and applied to a System Dynamics stroke model of US veterans, which was developed to inform systemwide intervention and research planning: Morris method (sensitivity analysis), multistart Powell hill-climbing algorithm and generalized likelihood uncertainty estimation (calibration), and Monte Carlo simulation (uncertainty analysis). Of 60 uncertain parameters, sensitivity analysis identified 29 needing calibration, 7 that did not need calibration but significantly influenced key stroke outcomes, and 24 not influential to calibration or stroke outcomes that were fixed at their best guess values. One thousand alternative well-calibrated baselines were obtained to reflect calibration uncertainty and brought into uncertainty analysis. The initial stroke incidence rate among veterans was identified as the most influential uncertain parameter, for which further data should be collected. That said, accounting for current uncertainty, the analysis of 15 distinct prevention and treatment interventions provided a robust conclusion that hypertension control for all veterans would yield the largest gain in quality-adjusted life years. For complex health care models, a mixed approach was applied to examine the uncertainty surrounding key stroke outcomes and the robustness of conclusions. We demonstrate that this rigorous approach can be practical and advocate for such analysis to promote understanding of the limits of certainty in applying models to current decisions and to guide future data collection. © The Author(s) 2016.

  11. Calibration of a biome-biogeochemical cycles model for modeling the net primary production of teak forests through inverse modeling of remotely sensed data

    NASA Astrophysics Data System (ADS)

    Imvitthaya, Chomchid; Honda, Kiyoshi; Lertlum, Surat; Tangtham, Nipon

    2011-01-01

    In this paper, we present the results of a net primary production (NPP) modeling of teak (Tectona grandis Lin F.), an important species in tropical deciduous forests. The biome-biogeochemical cycles or Biome-BGC model was calibrated to estimate net NPP through the inverse modeling approach. A genetic algorithm (GA) was linked with Biome-BGC to determine the optimal ecophysiological model parameters. The Biome-BGC was calibrated by adjusting the ecophysiological model parameters to fit the simulated LAI to the satellite LAI (SPOT-Vegetation), and the best fitness confirmed the high accuracy of generated ecophysioligical parameter from GA. The modeled NPP, using optimized parameters from GA as input data, was evaluated using daily NPP derived by the MODIS satellite and the annual field data in northern Thailand. The results showed that NPP obtained using the optimized ecophysiological parameters were more accurate than those obtained using default literature parameterization. This improvement occurred mainly because the model's optimized parameters reduced the bias by reducing systematic underestimation in the model. These Biome-BGC results can be effectively applied in teak forests in tropical areas. The study proposes a more effective method of using GA to determine ecophysiological parameters at the site level and represents a first step toward the analysis of the carbon budget of teak plantations at the regional scale.

  12. Synthetic calibration of a Rainfall-Runoff Model

    USGS Publications Warehouse

    Thompson, David B.; Westphal, Jerome A.; ,

    1990-01-01

    A method for synthetically calibrating storm-mode parameters for the U.S. Geological Survey's Precipitation-Runoff Modeling System is described. Synthetic calibration is accomplished by adjusting storm-mode parameters to minimize deviations between the pseudo-probability disributions represented by regional regression equations and actual frequency distributions fitted to model-generated peak discharge and runoff volume. Results of modeling storm hydrographs using synthetic and analytic storm-mode parameters are presented. Comparisons are made between model results from both parameter sets and between model results and observed hydrographs. Although mean storm runoff is reproducible to within about 26 percent of the observed mean storm runoff for five or six parameter sets, runoff from individual storms is subject to large disparities. Predicted storm runoff volume ranged from 2 percent to 217 percent of commensurate observed values. Furthermore, simulation of peak discharges was poor. Predicted peak discharges from individual storm events ranged from 2 percent to 229 percent of commensurate observed values. The model was incapable of satisfactorily executing storm-mode simulations for the study watersheds. This result is not considered a particular fault of the model, but instead is indicative of deficiencies in similar conceptual models.

  13. An information theoretic approach to use high-fidelity codes to calibrate low-fidelity codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, Allison, E-mail: lewis.allison10@gmail.com; Smith, Ralph; Williams, Brian

    For many simulation models, it can be prohibitively expensive or physically infeasible to obtain a complete set of experimental data to calibrate model parameters. In such cases, one can alternatively employ validated higher-fidelity codes to generate simulated data, which can be used to calibrate the lower-fidelity code. In this paper, we employ an information-theoretic framework to determine the reduction in parameter uncertainty that is obtained by evaluating the high-fidelity code at a specific set of design conditions. These conditions are chosen sequentially, based on the amount of information that they contribute to the low-fidelity model parameters. The goal is tomore » employ Bayesian experimental design techniques to minimize the number of high-fidelity code evaluations required to accurately calibrate the low-fidelity model. We illustrate the performance of this framework using heat and diffusion examples, a 1-D kinetic neutron diffusion equation, and a particle transport model, and include initial results from the integration of the high-fidelity thermal-hydraulics code Hydra-TH with a low-fidelity exponential model for the friction correlation factor.« less

  14. Simulation of streamflow in the Pleasant, Narraguagus, Sheepscot, and Royal Rivers, Maine, using watershed models

    USGS Publications Warehouse

    Dudley, Robert W.; Nielsen, Martha G.

    2011-01-01

    The U.S. Geological Survey (USGS) began a study in 2008 to investigate anticipated changes in summer streamflows and stream temperatures in four coastal Maine river basins and the potential effects of those changes on populations of endangered Atlantic salmon. To achieve this purpose, it was necessary to characterize the quantity and timing of streamflow in these rivers by developing and evaluating a distributed-parameter watershed model for a part of each river basin by using the USGS Precipitation-Runoff Modeling System (PRMS). The GIS (geographic information system) Weasel, a USGS software application, was used to delineate the four study basins and their many subbasins, and to derive parameters for their geographic features. The models were calibrated using a four-step optimization procedure in which model output was evaluated against four datasets for calibrating solar radiation, potential evapotranspiration, annual and seasonal water balances, and daily streamflows. The calibration procedure involved thousands of model runs that used the USGS software application Luca (Let us calibrate). Luca uses the Shuffled Complex Evolution (SCE) global search algorithm to calibrate the model parameters. The calibrated watershed models performed satisfactorily, in that Nash-Sutcliffe efficiency (NSE) statistic values for the calibration periods ranged from 0.59 to 0.75 (on a scale of negative infinity to 1) and NSE statistic values for the evaluation periods ranged from 0.55 to 0.73. The calibrated watershed models simulate daily streamflow at many locations in each study basin. These models enable natural resources managers to characterize the timing and amount of streamflow in order to support a variety of water-resources efforts including water-quality calculations, assessments of water use, modeling of population dynamics and migration of Atlantic salmon, modeling and assessment of habitat, and simulation of anticipated changes to streamflow and water temperature resulting from changes forecast for air temperature and precipitation.

  15. Computationally inexpensive identification of noninformative model parameters by sequential screening

    NASA Astrophysics Data System (ADS)

    Cuntz, Matthias; Mai, Juliane; Zink, Matthias; Thober, Stephan; Kumar, Rohini; Schäfer, David; Schrön, Martin; Craven, John; Rakovec, Oldrich; Spieler, Diana; Prykhodko, Vladyslav; Dalmasso, Giovanni; Musuuza, Jude; Langenberg, Ben; Attinger, Sabine; Samaniego, Luis

    2015-08-01

    Environmental models tend to require increasing computational time and resources as physical process descriptions are improved or new descriptions are incorporated. Many-query applications such as sensitivity analysis or model calibration usually require a large number of model evaluations leading to high computational demand. This often limits the feasibility of rigorous analyses. Here we present a fully automated sequential screening method that selects only informative parameters for a given model output. The method requires a number of model evaluations that is approximately 10 times the number of model parameters. It was tested using the mesoscale hydrologic model mHM in three hydrologically unique European river catchments. It identified around 20 informative parameters out of 52, with different informative parameters in each catchment. The screening method was evaluated with subsequent analyses using all 52 as well as only the informative parameters. Subsequent Sobol's global sensitivity analysis led to almost identical results yet required 40% fewer model evaluations after screening. mHM was calibrated with all and with only informative parameters in the three catchments. Model performances for daily discharge were equally high in both cases with Nash-Sutcliffe efficiencies above 0.82. Calibration using only the informative parameters needed just one third of the number of model evaluations. The universality of the sequential screening method was demonstrated using several general test functions from the literature. We therefore recommend the use of the computationally inexpensive sequential screening method prior to rigorous analyses on complex environmental models.

  16. Computationally inexpensive identification of noninformative model parameters by sequential screening

    NASA Astrophysics Data System (ADS)

    Mai, Juliane; Cuntz, Matthias; Zink, Matthias; Thober, Stephan; Kumar, Rohini; Schäfer, David; Schrön, Martin; Craven, John; Rakovec, Oldrich; Spieler, Diana; Prykhodko, Vladyslav; Dalmasso, Giovanni; Musuuza, Jude; Langenberg, Ben; Attinger, Sabine; Samaniego, Luis

    2016-04-01

    Environmental models tend to require increasing computational time and resources as physical process descriptions are improved or new descriptions are incorporated. Many-query applications such as sensitivity analysis or model calibration usually require a large number of model evaluations leading to high computational demand. This often limits the feasibility of rigorous analyses. Here we present a fully automated sequential screening method that selects only informative parameters for a given model output. The method requires a number of model evaluations that is approximately 10 times the number of model parameters. It was tested using the mesoscale hydrologic model mHM in three hydrologically unique European river catchments. It identified around 20 informative parameters out of 52, with different informative parameters in each catchment. The screening method was evaluated with subsequent analyses using all 52 as well as only the informative parameters. Subsequent Sobol's global sensitivity analysis led to almost identical results yet required 40% fewer model evaluations after screening. mHM was calibrated with all and with only informative parameters in the three catchments. Model performances for daily discharge were equally high in both cases with Nash-Sutcliffe efficiencies above 0.82. Calibration using only the informative parameters needed just one third of the number of model evaluations. The universality of the sequential screening method was demonstrated using several general test functions from the literature. We therefore recommend the use of the computationally inexpensive sequential screening method prior to rigorous analyses on complex environmental models.

  17. Calibration and LOD/LOQ estimation of a chemiluminescent hybridization assay for residual DNA in recombinant protein drugs expressed in E. coli using a four-parameter logistic model.

    PubMed

    Lee, K R; Dipaolo, B; Ji, X

    2000-06-01

    Calibration is the process of fitting a model based on reference data points (x, y), then using the model to estimate an unknown x based on a new measured response, y. In DNA assay, x is the concentration, and y is the measured signal volume. A four-parameter logistic model was used frequently for calibration of immunoassay when the response is optical density for enzyme-linked immunosorbent assay (ELISA) or adjusted radioactivity count for radioimmunoassay (RIA). Here, it is shown that the same model or a linearized version of the curve are equally useful for the calibration of a chemiluminescent hybridization assay for residual DNA in recombinant protein drugs and calculation of performance measures of the assay.

  18. A holistic calibration method with iterative distortion compensation for stereo deflectometry

    NASA Astrophysics Data System (ADS)

    Xu, Yongjia; Gao, Feng; Zhang, Zonghua; Jiang, Xiangqian

    2018-07-01

    This paper presents a novel holistic calibration method for stereo deflectometry system to improve the system measurement accuracy. The reconstruction result of stereo deflectometry is integrated with the calculated normal data of the measured surface. The calculation accuracy of the normal data is seriously influenced by the calibration accuracy of the geometrical relationship of the stereo deflectometry system. Conventional calibration approaches introduce form error to the system due to inaccurate imaging model and distortion elimination. The proposed calibration method compensates system distortion based on an iterative algorithm instead of the conventional distortion mathematical model. The initial value of the system parameters are calculated from the fringe patterns displayed on the systemic LCD screen through a reflection of a markless flat mirror. An iterative algorithm is proposed to compensate system distortion and optimize camera imaging parameters and system geometrical relation parameters based on a cost function. Both simulation work and experimental results show the proposed calibration method can significantly improve the calibration and measurement accuracy of a stereo deflectometry. The PV (peak value) of measurement error of a flat mirror can be reduced to 69.7 nm by applying the proposed method from 282 nm obtained with the conventional calibration approach.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiong, Wei; Balkovic, Juraj; van der Velde, M.

    Crop models are increasingly used to assess impacts of climate change/variability and management practices on productivity and environmental performance of alternative cropping systems. Calibration is an important procedure to improve reliability of model simulations, especially for large area applications. However, global-scale crop model calibration has rarely been exercised due to limited data availability and expensive computing cost. Here we present a simple approach to calibrate Environmental Policy Integrated Climate (EPIC) model for a global implementation of rice. We identify four parameters (potential heat unit – PHU, planting density – PD, harvest index – HI, and biomass energy ratio – BER)more » and calibrate them regionally to capture the spatial pattern of reported rice yield in 2000. Model performance is assessed by comparing simulated outputs with independent FAO national data. The comparison demonstrates that the global calibration scheme performs satisfactorily in reproducing the spatial pattern of rice yield, particularly in main rice production areas. Spatial agreement increases substantially when more parameters are selected and calibrated, but with varying efficiencies. Among the parameters, PHU and HI exhibit the highest efficiencies in increasing the spatial agreement. Simulations with different calibration strategies generate a pronounced discrepancy of 5–35% in mean yields across latitude bands, and a small to moderate difference in estimated yield variability and yield changing trend for the period of 1981–2000. Present calibration has little effects in improving simulated yield variability and trends at both regional and global levels, suggesting further works are needed to reproduce temporal variability of reported yields. This study highlights the importance of crop models’ calibration, and presents the possibility of a transparent and consistent up scaling approach for global crop simulations given current availability of global databases of weather, soil, crop calendar, fertilizer and irrigation management information, and reported yield.« less

  20. Geometric Characterization of Multi-Axis Multi-Pinhole SPECT

    PubMed Central

    DiFilippo, Frank P.

    2008-01-01

    A geometric model and calibration process are developed for SPECT imaging with multiple pinholes and multiple mechanical axes. Unlike the typical situation where pinhole collimators are mounted directly to rotating gamma ray detectors, this geometric model allows for independent rotation of the detectors and pinholes, for the case where the pinhole collimator is physically detached from the detectors. This geometric model is applied to a prototype small animal SPECT device with a total of 22 pinholes and which uses dual clinical SPECT detectors. All free parameters in the model are estimated from a calibration scan of point sources and without the need for a precision point source phantom. For a full calibration of this device, a scan of four point sources with 360° rotation is suitable for estimating all 95 free parameters of the geometric model. After a full calibration, a rapid calibration scan of two point sources with 180° rotation is suitable for estimating the subset of 22 parameters associated with repositioning the collimation device relative to the detectors. The high accuracy of the calibration process is validated experimentally. Residual differences between predicted and measured coordinates are normally distributed with 0.8 mm full width at half maximum and are estimated to contribute 0.12 mm root mean square to the reconstructed spatial resolution. Since this error is small compared to other contributions arising from the pinhole diameter and the detector, the accuracy of the calibration is sufficient for high resolution small animal SPECT imaging. PMID:18293574

  1. Researches on hazard avoidance cameras calibration of Lunar Rover

    NASA Astrophysics Data System (ADS)

    Li, Chunyan; Wang, Li; Lu, Xin; Chen, Jihua; Fan, Shenghong

    2017-11-01

    Lunar Lander and Rover of China will be launched in 2013. It will finish the mission targets of lunar soft landing and patrol exploration. Lunar Rover has forward facing stereo camera pair (Hazcams) for hazard avoidance. Hazcams calibration is essential for stereo vision. The Hazcam optics are f-theta fish-eye lenses with a 120°×120° horizontal/vertical field of view (FOV) and a 170° diagonal FOV. They introduce significant distortion in images and the acquired images are quite warped, which makes conventional camera calibration algorithms no longer work well. A photogrammetric calibration method of geometric model for the type of optical fish-eye constructions is investigated in this paper. In the method, Hazcams model is represented by collinearity equations with interior orientation and exterior orientation parameters [1] [2]. For high-precision applications, the accurate calibration model is formulated with the radial symmetric distortion and the decentering distortion as well as parameters to model affinity and shear based on the fisheye deformation model [3] [4]. The proposed method has been applied to the stereo camera calibration system for Lunar Rover.

  2. Sensitivity Analysis of Fatigue Crack Growth Model for API Steels in Gaseous Hydrogen.

    PubMed

    Amaro, Robert L; Rustagi, Neha; Drexler, Elizabeth S; Slifka, Andrew J

    2014-01-01

    A model to predict fatigue crack growth of API pipeline steels in high pressure gaseous hydrogen has been developed and is presented elsewhere. The model currently has several parameters that must be calibrated for each pipeline steel of interest. This work provides a sensitivity analysis of the model parameters in order to provide (a) insight to the underlying mathematical and mechanistic aspects of the model, and (b) guidance for model calibration of other API steels.

  3. Basin-scale geothermal model calibration: experience from the Perth Basin, Australia

    NASA Astrophysics Data System (ADS)

    Wellmann, Florian; Reid, Lynn

    2014-05-01

    The calibration of large-scale geothermal models for entire sedimentary basins is challenging as direct measurements of rock properties and subsurface temperatures are commonly scarce and the basal boundary conditions poorly constrained. Instead of the often applied "trial-and-error" manual model calibration, we examine here if we can gain additional insight into parameter sensitivities and model uncertainty with a model analysis and calibration study. Our geothermal model is based on a high-resolution full 3-D geological model, covering an area of more than 100,000 square kilometers and extending to a depth of 55 kilometers. The model contains all major faults (>80 ) and geological units (13) for the entire basin. This geological model is discretised into a rectilinear mesh with a lateral resolution of 500 x 500 m, and a variable resolution at depth. The highest resolution of 25 m is applied to a depth range of 1000-3000 m where most temperature measurements are available. The entire discretised model consists of approximately 50 million cells. The top thermal boundary condition is derived from surface temperature measurements on land and ocean floor. The base of the model extents below the Moho, and we apply the heat flux over the Moho as a basal heat flux boundary condition. Rock properties (thermal conductivity, porosity, and heat production) have been compiled from several existing data sets. The conductive geothermal forward simulation is performed with SHEMAT, and we then use the stand-alone capabilities of iTOUGH2 for sensitivity analysis and model calibration. Simulated temperatures are compared to 130 quality weighted bottom hole temperature measurements. The sensitivity analysis provided a clear insight into the most sensitive parameters and parameter correlations. This proved to be of value as strong correlations, for example between basal heat flux and heat production in deep geological units, can significantly influence the model calibration procedure. The calibration resulted in a better determination of subsurface temperatures, and, in addition, provided an insight into model quality. Furthermore, a detailed analysis of the measurements used for calibration highlighted potential outliers, and limitations with the model assumptions. Extending the previously existing large-scale geothermal simulation with iTOUGH2 provided us with a valuable insight into the sensitive parameters and data in the model, which would clearly not be possible with a simple trial-and-error calibration method. Using the gained knowledge, future work will include more detailed studies on the influence of advection and convection.

  4. Calibration of the ``Simplified Simple Biosphere Model—SSiB'' for the Brazilian Northeast Caatinga

    NASA Astrophysics Data System (ADS)

    do Amaral Cunha, Ana Paula Martins; dos Santos Alvalá, Regina Célia; Correia, Francis Wagner Silva; Kubota, Paulo Yoshio

    2009-03-01

    The Brazilian Northeast region is covered largely by vegetation adapted to the arid conditions and with varied physiognomy, called caatinga. It occupies an extension of about 800.000 km2 that corresponds to 70% of the region. In recent decades, considerable progress in understanding the micrometeorological processes has been reached, with results that were incorporated into soil-vegetation-atmosphere transfer schemes (SVATS) to study the momentum, energy, water vapor, carbon cycle and vegetation dynamics changes of different ecosystems. Notwithstanding, the knowledge of the parameters and physical or physiological characteristics of the vegetation and soil of the caatinga region is very scarce. So, the objective of this work was performing a calibration of the parameters of the SSiB model for the Brazilian Northeast Caatinga. Micrometeorological and hydrological data collected from July 2004 to June 2005, obtained in the Agricultural Research Center of the Semi-Arid Tropic (CPATSA), were used. Preceding the calibration process, a sensibility study of the SSiB model was performed in order to find the parameters that are sensible to the exchange processes between the surface and atmosphere. The results showed that the B parameter, soil moisture potential at saturation (ψs), hydraulic conductivity of saturated soil (ks) and the volumetric moisture at saturation (θs) present high variations on turbulent fluxes. With the initial parameters, the SSiB model showed best results for net radiation, and the latent heat (sensible heat) flux was over-estimated (under-estimated) for all simulation periods. Considering the calibrated parameters, better values of latent flux and sensible flux were obtained. The calibrated parameters were also used for a validation of the surface fluxes considering data from July 2005 to September 2005. The results showed that the model generated better estimations of latent heat and sensible heat fluxes, with low root mean square error. With better estimations of the turbulent fluxes, it was possible to obtain a more representative energy partitioning for the caatinga. Therefore, it is expected that from this calibrated SSiB model, coupled to the meteorological models, it will be possible to obtain more realistic climate and weather forecasts for the Brazilian Northeast region.

  5. Modelling exploration of non-stationary hydrological system

    NASA Astrophysics Data System (ADS)

    Kim, Kue Bum; Kwon, Hyun-Han; Han, Dawei

    2015-04-01

    Traditional hydrological modelling assumes that the catchment does not change with time (i.e., stationary conditions) which means the model calibrated for the historical period is valid for the future period. However, in reality, due to change of climate and catchment conditions this stationarity assumption may not be valid in the future. It is a challenge to make the hydrological model adaptive to the future climate and catchment conditions that are not observable at the present time. In this study a lumped conceptual rainfall-runoff model called IHACRES was applied to a catchment in southwest England. Long observation data from 1961 to 2008 were used and seasonal calibration (in this study only summer period is further explored because it is more sensitive to climate and land cover change than the other three seasons) has been done since there are significant seasonal rainfall patterns. We expect that the model performance can be improved by calibrating the model based on individual seasons. The data is split into calibration and validation periods with the intention of using the validation period to represent the future unobserved situations. The success of the non-stationary model will depend not only on good performance during the calibration period but also the validation period. Initially, the calibration is based on changing the model parameters with time. Methodology is proposed to adapt the parameters using the step forward and backward selection schemes. However, in the validation both the forward and backward multiple parameter changing models failed. One problem is that the regression with time is not reliable since the trend may not be in a monotonic linear relationship with time. The second issue is that changing multiple parameters makes the selection process very complex which is time consuming and not effective in the validation period. As a result, two new concepts are explored. First, only one parameter is selected for adjustment while the other parameters are set as constant. Secondly, regression is made against climate condition instead of against time. It has been found that such a new approach is very effective and this non-stationary model worked very well both in the calibration and validation period. Although the catchment is specific in southwest England and the data are for only the summer period, the methodology proposed in this study is general and applicable to other catchments. We hope this study will stimulate the hydrological community to explore a variety of sites so that valuable experiences and knowledge could be gained to improve our understanding of such a complex modelling issue in climate change impact assessment.

  6. Modelling carbon oxidation in pulp mill activated sludge systems: calibration of Activated Sludge Model No 3.

    PubMed

    Barañao, P A; Hall, E R

    2004-01-01

    Activated Sludge Model No 3 (ASM3) was chosen to model an activated sludge system treating effluents from a mechanical pulp and paper mill. The high COD concentration and the high content of readily biodegradable substrates of the wastewater make this model appropriate for this system. ASM3 was calibrated based on batch respirometric tests using fresh wastewater and sludge from the treatment plant, and on analytical measurements of COD, TSS and VSS. The model, developed for municipal wastewater, was found suitable for fitting a variety of respirometric batch tests, performed at different temperatures and food to microorganism ratios (F/M). Therefore, a set of calibrated parameters, as well as the wastewater COD fractions, was estimated for this industrial wastewater. The majority of the calibrated parameters were in the range of those found in the literature.

  7. Multi-Dimensional Calibration of Impact Dynamic Models

    NASA Technical Reports Server (NTRS)

    Horta, Lucas G.; Reaves, Mercedes C.; Annett, Martin S.; Jackson, Karen E.

    2011-01-01

    NASA Langley, under the Subsonic Rotary Wing Program, recently completed two helicopter tests in support of an in-house effort to study crashworthiness. As part of this effort, work is on-going to investigate model calibration approaches and calibration metrics for impact dynamics models. Model calibration of impact dynamics problems has traditionally assessed model adequacy by comparing time histories from analytical predictions to test at only a few critical locations. Although this approach provides for a direct measure of the model predictive capability, overall system behavior is only qualitatively assessed using full vehicle animations. In order to understand the spatial and temporal relationships of impact loads as they migrate throughout the structure, a more quantitative approach is needed. In this work impact shapes derived from simulated time history data are used to recommend sensor placement and to assess model adequacy using time based metrics and orthogonality multi-dimensional metrics. An approach for model calibration is presented that includes metric definitions, uncertainty bounds, parameter sensitivity, and numerical optimization to estimate parameters to reconcile test with analysis. The process is illustrated using simulated experiment data.

  8. Microbial models with data-driven parameters predict stronger soil carbon responses to climate change.

    PubMed

    Hararuk, Oleksandra; Smith, Matthew J; Luo, Yiqi

    2015-06-01

    Long-term carbon (C) cycle feedbacks to climate depend on the future dynamics of soil organic carbon (SOC). Current models show low predictive accuracy at simulating contemporary SOC pools, which can be improved through parameter estimation. However, major uncertainty remains in global soil responses to climate change, particularly uncertainty in how the activity of soil microbial communities will respond. To date, the role of microbes in SOC dynamics has been implicitly described by decay rate constants in most conventional global carbon cycle models. Explicitly including microbial biomass dynamics into C cycle model formulations has shown potential to improve model predictive performance when assessed against global SOC databases. This study aimed to data-constrained parameters of two soil microbial models, evaluate the improvements in performance of those calibrated models in predicting contemporary carbon stocks, and compare the SOC responses to climate change and their uncertainties between microbial and conventional models. Microbial models with calibrated parameters explained 51% of variability in the observed total SOC, whereas a calibrated conventional model explained 41%. The microbial models, when forced with climate and soil carbon input predictions from the 5th Coupled Model Intercomparison Project (CMIP5), produced stronger soil C responses to 95 years of climate change than any of the 11 CMIP5 models. The calibrated microbial models predicted between 8% (2-pool model) and 11% (4-pool model) soil C losses compared with CMIP5 model projections which ranged from a 7% loss to a 22.6% gain. Lastly, we observed unrealistic oscillatory SOC dynamics in the 2-pool microbial model. The 4-pool model also produced oscillations, but they were less prominent and could be avoided, depending on the parameter values. © 2014 John Wiley & Sons Ltd.

  9. Using sensitivity analysis in model calibration efforts

    USGS Publications Warehouse

    Tiedeman, Claire; Hill, Mary C.

    2003-01-01

    In models of natural and engineered systems, sensitivity analysis can be used to assess relations among system state observations, model parameters, and model predictions. The model itself links these three entities, and model sensitivities can be used to quantify the links. Sensitivities are defined as the derivatives of simulated quantities (such as simulated equivalents of observations, or model predictions) with respect to model parameters. We present four measures calculated from model sensitivities that quantify the observation-parameter-prediction links and that are especially useful during the calibration and prediction phases of modeling. These four measures are composite scaled sensitivities (CSS), prediction scaled sensitivities (PSS), the value of improved information (VOII) statistic, and the observation prediction (OPR) statistic. These measures can be used to help guide initial calibration of models, collection of field data beneficial to model predictions, and recalibration of models updated with new field information. Once model sensitivities have been calculated, each of the four measures requires minimal computational effort. We apply the four measures to a three-layer MODFLOW-2000 (Harbaugh et al., 2000; Hill et al., 2000) model of the Death Valley regional ground-water flow system (DVRFS), located in southern Nevada and California. D’Agnese et al. (1997, 1999) developed and calibrated the model using nonlinear regression methods. Figure 1 shows some of the observations, parameters, and predictions for the DVRFS model. Observed quantities include hydraulic heads and spring flows. The 23 defined model parameters include hydraulic conductivities, vertical anisotropies, recharge rates, evapotranspiration rates, and pumpage. Predictions of interest for this regional-scale model are advective transport paths from potential contamination sites underlying the Nevada Test Site and Yucca Mountain.

  10. Inverse models: A necessary next step in ground-water modeling

    USGS Publications Warehouse

    Poeter, E.P.; Hill, M.C.

    1997-01-01

    Inverse models using, for example, nonlinear least-squares regression, provide capabilities that help modelers take full advantage of the insight available from ground-water models. However, lack of information about the requirements and benefits of inverse models is an obstacle to their widespread use. This paper presents a simple ground-water flow problem to illustrate the requirements and benefits of the nonlinear least-squares repression method of inverse modeling and discusses how these attributes apply to field problems. The benefits of inverse modeling include: (1) expedited determination of best fit parameter values; (2) quantification of the (a) quality of calibration, (b) data shortcomings and needs, and (c) confidence limits on parameter estimates and predictions; and (3) identification of issues that are easily overlooked during nonautomated calibration.Inverse models using, for example, nonlinear least-squares regression, provide capabilities that help modelers take full advantage of the insight available from ground-water models. However, lack of information about the requirements and benefits of inverse models is an obstacle to their widespread use. This paper presents a simple ground-water flow problem to illustrate the requirements and benefits of the nonlinear least-squares regression method of inverse modeling and discusses how these attributes apply to field problems. The benefits of inverse modeling include: (1) expedited determination of best fit parameter values; (2) quantification of the (a) quality of calibration, (b) data shortcomings and needs, and (c) confidence limits on parameter estimates and predictions; and (3) identification of issues that are easily overlooked during nonautomated calibration.

  11. A new spatial snow distribution in hydrological models parameterized from observed spatial variability of precipitation.

    NASA Astrophysics Data System (ADS)

    Skaugen, Thomas; Weltzien, Ingunn

    2016-04-01

    The traditional catchment hydrological model with its many free calibration parameters is not a well suited tool for prediction under conditions for which is has not been calibrated. Important tasks for hydrological modelling such as prediction in ungauged basins and assessing hydrological effects of climate change are hence not solved satisfactory. In order to reduce the number of calibration parameters in hydrological models we have introduced a new model which uses a dynamic gamma distribution as the spatial frequency distribution of snow water equivalent (SWE). The parameters are estimated from observed spatial variability of precipitation and the magnitude of accumulation and melting events and are hence not subject to calibration. The relationship between spatial mean and variance of precipitation is found to follow a pattern where decreasing temporal correlation with increasing accumulation or duration of the event leads to a levelling off or even a decrease of the spatial variance. The new model for snow distribution is implemented in the, already parameter parsimonious, DDD (Distance Distribution Dynamics) hydrological model and was tested for 71 Norwegian catchments. We compared the new snow distribution model with the current operational snow distribution model where a fixed, calibrated coefficient of variation parameterizes a log-normal model for snow distribution. Results show that the precision of runoff simulations is equal, but that the new snow distribution model better simulates snow covered area (SCA) when compared with MODIS satellite derived snow cover. In addition, SWE is simulated more realistically in that seasonal snow is melted out and the building up of "snow towers" is prevented and hence spurious trends in SWE.

  12. On the importance of appropriate precipitation gauge catch correction for hydrological modelling at mid to high latitudes

    NASA Astrophysics Data System (ADS)

    Stisen, S.; Højberg, A. L.; Troldborg, L.; Refsgaard, J. C.; Christensen, B. S. B.; Olsen, M.; Henriksen, H. J.

    2012-11-01

    Precipitation gauge catch correction is often given very little attention in hydrological modelling compared to model parameter calibration. This is critical because significant precipitation biases often make the calibration exercise pointless, especially when supposedly physically-based models are in play. This study addresses the general importance of appropriate precipitation catch correction through a detailed modelling exercise. An existing precipitation gauge catch correction method addressing solid and liquid precipitation is applied, both as national mean monthly correction factors based on a historic 30 yr record and as gridded daily correction factors based on local daily observations of wind speed and temperature. The two methods, named the historic mean monthly (HMM) and the time-space variable (TSV) correction, resulted in different winter precipitation rates for the period 1990-2010. The resulting precipitation datasets were evaluated through the comprehensive Danish National Water Resources model (DK-Model), revealing major differences in both model performance and optimised model parameter sets. Simulated stream discharge is improved significantly when introducing the TSV correction, whereas the simulated hydraulic heads and multi-annual water balances performed similarly due to recalibration adjusting model parameters to compensate for input biases. The resulting optimised model parameters are much more physically plausible for the model based on the TSV correction of precipitation. A proxy-basin test where calibrated DK-Model parameters were transferred to another region without site specific calibration showed better performance for parameter values based on the TSV correction. Similarly, the performances of the TSV correction method were superior when considering two single years with a much dryer and a much wetter winter, respectively, as compared to the winters in the calibration period (differential split-sample tests). We conclude that TSV precipitation correction should be carried out for studies requiring a sound dynamic description of hydrological processes, and it is of particular importance when using hydrological models to make predictions for future climates when the snow/rain composition will differ from the past climate. This conclusion is expected to be applicable for mid to high latitudes, especially in coastal climates where winter precipitation types (solid/liquid) fluctuate significantly, causing climatological mean correction factors to be inadequate.

  13. Simulation of the Quantity, Variability, and Timing of Streamflow in the Dennys River Basin, Maine, by Use of a Precipitation-Runoff Watershed Model

    USGS Publications Warehouse

    Dudley, Robert W.

    2008-01-01

    The U.S. Geological Survey (USGS), in cooperation with the Maine Department of Marine Resources Bureau of Sea Run Fisheries and Habitat, began a study in 2004 to characterize the quantity, variability, and timing of streamflow in the Dennys River. The study included a synoptic summary of historical streamflow data at a long-term streamflow gage, collecting data from an additional four short-term streamflow gages, and the development and evaluation of a distributed-parameter watershed model for the Dennys River Basin. The watershed model used in this investigation was the USGS Precipitation-Runoff Modeling System (PRMS). The Geographic Information System (GIS) Weasel was used to delineate the Dennys River Basin and subbasins and derive parameters for their physical geographic features. Calibration of the models used in this investigation involved a four-step procedure in which model output was evaluated against four calibration data sets using computed objective functions for solar radiation, potential evapotranspiration, annual and seasonal water budgets, and daily streamflows. The calibration procedure involved thousands of model runs and was carried out using the USGS software application Luca (Let us calibrate). Luca uses the Shuffled Complex Evolution (SCE) global search algorithm to calibrate the model parameters. The SCE method reliably produces satisfactory solutions for large, complex optimization problems. The primary calibration effort went into the Dennys main stem watershed model. Calibrated parameter values obtained for the Dennys main stem model were transferred to the Cathance Stream model, and a similar four-step SCE calibration procedure was performed; this effort was undertaken to determine the potential to transfer modeling information to a nearby basin in the same region. The calibrated Dennys main stem watershed model performed with Nash-Sutcliffe efficiency (NSE) statistic values for the calibration period and evaluation period of 0.79 and 0.76, respectively. The Cathance Stream model had an NSE value of 0.68. The Dennys River Basin models make use of limited streamflow-gaging station data and provide information to characterize subbasin hydrology. The calibrated PRMS watershed models of the Dennys River Basin provide simulated daily streamflow time series from October 1, 1985, through September 30, 2006, for nearly any location within the basin. These models enable natural-resources managers to characterize the timing and quantity of water moving through the basin to support many endeavors including geochemical calculations, water-use assessment, Atlantic salmon population dynamics and migration modeling, habitat modeling and assessment, and other resource-management scenario evaluations. Characterizing streamflow contributions from subbasins in the basin and the relative amounts of surface- and ground-water contributions to streamflow throughout the basin will lead to a better understanding of water quantity and quality in the basin. Improved water-resources information will support Atlantic salmon protection efforts.

  14. Simulating soil moisture change in a semiarid rangeland watershed with a process-based water-balance model

    Treesearch

    Howard Evan Canfield; Vicente L. Lopes

    2000-01-01

    A process-based, simulation model for evaporation, soil water and streamflow (BROOK903) was used to estimate soil moisture change on a semiarid rangeland watershed in southeastern Arizona. A sensitivity analysis was performed to select parameters affecting ET and soil moisture for calibration. Automatic parameter calibration was performed using a procedure based on a...

  15. The Value of Hydrograph Partitioning Curves for Calibrating Hydrological Models in Glacierized Basins

    NASA Astrophysics Data System (ADS)

    He, Zhihua; Vorogushyn, Sergiy; Unger-Shayesteh, Katy; Gafurov, Abror; Kalashnikova, Olga; Omorova, Elvira; Merz, Bruno

    2018-03-01

    This study refines the method for calibrating a glacio-hydrological model based on Hydrograph Partitioning Curves (HPCs), and evaluates its value in comparison to multidata set optimization approaches which use glacier mass balance, satellite snow cover images, and discharge. The HPCs are extracted from the observed flow hydrograph using catchment precipitation and temperature gradients. They indicate the periods when the various runoff processes, such as glacier melt or snow melt, dominate the basin hydrograph. The annual cumulative curve of the difference between average daily temperature and melt threshold temperature over the basin, as well as the annual cumulative curve of average daily snowfall on the glacierized areas are used to identify the starting and end dates of snow and glacier ablation periods. Model parameters characterizing different runoff processes are calibrated on different HPCs in a stepwise and iterative way. Results show that the HPC-based method (1) delivers model-internal consistency comparably to the tri-data set calibration method; (2) improves the stability of calibrated parameter values across various calibration periods; and (3) estimates the contributions of runoff components similarly to the tri-data set calibration method. Our findings indicate the potential of the HPC-based approach as an alternative for hydrological model calibration in glacierized basins where other calibration data sets than discharge are often not available or very costly to obtain.

  16. Verification Techniques for Parameter Selection and Bayesian Model Calibration Presented for an HIV Model

    NASA Astrophysics Data System (ADS)

    Wentworth, Mami Tonoe

    Uncertainty quantification plays an important role when making predictive estimates of model responses. In this context, uncertainty quantification is defined as quantifying and reducing uncertainties, and the objective is to quantify uncertainties in parameter, model and measurements, and propagate the uncertainties through the model, so that one can make a predictive estimate with quantified uncertainties. Two of the aspects of uncertainty quantification that must be performed prior to propagating uncertainties are model calibration and parameter selection. There are several efficient techniques for these processes; however, the accuracy of these methods are often not verified. This is the motivation for our work, and in this dissertation, we present and illustrate verification frameworks for model calibration and parameter selection in the context of biological and physical models. First, HIV models, developed and improved by [2, 3, 8], describe the viral infection dynamics of an HIV disease. These are also used to make predictive estimates of viral loads and T-cell counts and to construct an optimal control for drug therapy. Estimating input parameters is an essential step prior to uncertainty quantification. However, not all the parameters are identifiable, implying that they cannot be uniquely determined by the observations. These unidentifiable parameters can be partially removed by performing parameter selection, a process in which parameters that have minimal impacts on the model response are determined. We provide verification techniques for Bayesian model calibration and parameter selection for an HIV model. As an example of a physical model, we employ a heat model with experimental measurements presented in [10]. A steady-state heat model represents a prototypical behavior for heat conduction and diffusion process involved in a thermal-hydraulic model, which is a part of nuclear reactor models. We employ this simple heat model to illustrate verification techniques for model calibration. For Bayesian model calibration, we employ adaptive Metropolis algorithms to construct densities for input parameters in the heat model and the HIV model. To quantify the uncertainty in the parameters, we employ two MCMC algorithms: Delayed Rejection Adaptive Metropolis (DRAM) [33] and Differential Evolution Adaptive Metropolis (DREAM) [66, 68]. The densities obtained using these methods are compared to those obtained through the direct numerical evaluation of the Bayes' formula. We also combine uncertainties in input parameters and measurement errors to construct predictive estimates for a model response. A significant emphasis is on the development and illustration of techniques to verify the accuracy of sampling-based Metropolis algorithms. We verify the accuracy of DRAM and DREAM by comparing chains, densities and correlations obtained using DRAM, DREAM and the direct evaluation of Bayes formula. We also perform similar analysis for credible and prediction intervals for responses. Once the parameters are estimated, we employ energy statistics test [63, 64] to compare the densities obtained by different methods for the HIV model. The energy statistics are used to test the equality of distributions. We also consider parameter selection and verification techniques for models having one or more parameters that are noninfluential in the sense that they minimally impact model outputs. We illustrate these techniques for a dynamic HIV model but note that the parameter selection and verification framework is applicable to a wide range of biological and physical models. To accommodate the nonlinear input to output relations, which are typical for such models, we focus on global sensitivity analysis techniques, including those based on partial correlations, Sobol indices based on second-order model representations, and Morris indices, as well as a parameter selection technique based on standard errors. A significant objective is to provide verification strategies to assess the accuracy of those techniques, which we illustrate in the context of the HIV model. Finally, we examine active subspace methods as an alternative to parameter subset selection techniques. The objective of active subspace methods is to determine the subspace of inputs that most strongly affect the model response, and to reduce the dimension of the input space. The major difference between active subspace methods and parameter selection techniques is that parameter selection identifies influential parameters whereas subspace selection identifies a linear combination of parameters that impacts the model responses significantly. We employ active subspace methods discussed in [22] for the HIV model and present a verification that the active subspace successfully reduces the input dimensions.

  17. Likelihood parameter estimation for calibrating a soil moisture using radar backscatter

    USDA-ARS?s Scientific Manuscript database

    Assimilating soil moisture information contained in synthetic aperture radar imagery into land surface model predictions can be done using a calibration, or parameter estimation, approach. The presence of speckle, however, necessitates aggregating backscatter measurements over large land areas in or...

  18. Validation and calibration of structural models that combine information from multiple sources.

    PubMed

    Dahabreh, Issa J; Wong, John B; Trikalinos, Thomas A

    2017-02-01

    Mathematical models that attempt to capture structural relationships between their components and combine information from multiple sources are increasingly used in medicine. Areas covered: We provide an overview of methods for model validation and calibration and survey studies comparing alternative approaches. Expert commentary: Model validation entails a confrontation of models with data, background knowledge, and other models, and can inform judgments about model credibility. Calibration involves selecting parameter values to improve the agreement of model outputs with data. When the goal of modeling is quantitative inference on the effects of interventions or forecasting, calibration can be viewed as estimation. This view clarifies issues related to parameter identifiability and facilitates formal model validation and the examination of consistency among different sources of information. In contrast, when the goal of modeling is the generation of qualitative insights about the modeled phenomenon, calibration is a rather informal process for selecting inputs that result in model behavior that roughly reproduces select aspects of the modeled phenomenon and cannot be equated to an estimation procedure. Current empirical research on validation and calibration methods consists primarily of methodological appraisals or case-studies of alternative techniques and cannot address the numerous complex and multifaceted methodological decisions that modelers must make. Further research is needed on different approaches for developing and validating complex models that combine evidence from multiple sources.

  19. High-precision method of binocular camera calibration with a distortion model.

    PubMed

    Li, Weimin; Shan, Siyu; Liu, Hui

    2017-03-10

    A high-precision camera calibration method for binocular stereo vision system based on a multi-view template and alternative bundle adjustment is presented in this paper. The proposed method could be achieved by taking several photos on a specially designed calibration template that has diverse encoded points in different orientations. In this paper, the method utilized the existing algorithm used for monocular camera calibration to obtain the initialization, which involves a camera model, including radial lens distortion and tangential distortion. We created a reference coordinate system based on the left camera coordinate to optimize the intrinsic parameters of left camera through alternative bundle adjustment to obtain optimal values. Then, optimal intrinsic parameters of the right camera can be obtained through alternative bundle adjustment when we create a reference coordinate system based on the right camera coordinate. We also used all intrinsic parameters that were acquired to optimize extrinsic parameters. Thus, the optimal lens distortion parameters and intrinsic and extrinsic parameters were obtained. Synthetic and real data were used to test the method. The simulation results demonstrate that the maximum mean absolute relative calibration errors are about 3.5e-6 and 1.2e-6 for the focal length and the principal point, respectively, under zero-mean Gaussian noise with 0.05 pixels standard deviation. The real result shows that the reprojection error of our model is about 0.045 pixels with the relative standard deviation of 1.0e-6 over the intrinsic parameters. The proposed method is convenient, cost-efficient, highly precise, and simple to carry out.

  20. The new camera calibration system at the US Geological Survey

    USGS Publications Warehouse

    Light, D.L.

    1992-01-01

    Modern computerized photogrammetric instruments are capable of utilizing both radial and decentering camera calibration parameters which can increase plotting accuracy over that of older analog instrumentation technology from previous decades. Also, recent design improvements in aerial cameras have minimized distortions and increased the resolving power of camera systems, which should improve the performance of the overall photogrammetric process. In concert with these improvements, the Geological Survey has adopted the rigorous mathematical model for camera calibration developed by Duane Brown. An explanation of the Geological Survey's calibration facility and the additional calibration parameters now being provided in the USGS calibration certificate are reviewed. -Author

  1. Land-surface parameter optimisation using data assimilation techniques: the adJULES system V1.0

    NASA Astrophysics Data System (ADS)

    Raoult, Nina M.; Jupp, Tim E.; Cox, Peter M.; Luke, Catherine M.

    2016-08-01

    Land-surface models (LSMs) are crucial components of the Earth system models (ESMs) that are used to make coupled climate-carbon cycle projections for the 21st century. The Joint UK Land Environment Simulator (JULES) is the land-surface model used in the climate and weather forecast models of the UK Met Office. JULES is also extensively used offline as a land-surface impacts tool, forced with climatologies into the future. In this study, JULES is automatically differentiated with respect to JULES parameters using commercial software from FastOpt, resulting in an analytical gradient, or adjoint, of the model. Using this adjoint, the adJULES parameter estimation system has been developed to search for locally optimum parameters by calibrating against observations. This paper describes adJULES in a data assimilation framework and demonstrates its ability to improve the model-data fit using eddy-covariance measurements of gross primary production (GPP) and latent heat (LE) fluxes. adJULES also has the ability to calibrate over multiple sites simultaneously. This feature is used to define new optimised parameter values for the five plant functional types (PFTs) in JULES. The optimised PFT-specific parameters improve the performance of JULES at over 85 % of the sites used in the study, at both the calibration and evaluation stages. The new improved parameters for JULES are presented along with the associated uncertainties for each parameter.

  2. Assessing groundwater vulnerability in the Kinshasa region, DR Congo, using a calibrated DRASTIC model

    NASA Astrophysics Data System (ADS)

    Mfumu Kihumba, Antoine; Vanclooster, Marnik; Ndembo Longo, Jean

    2017-02-01

    This study assessed the vulnerability of groundwater against pollution in the Kinshasa region, DR Congo, as a support of a groundwater protection program. The parametric vulnerability model (DRASTIC) was modified and calibrated to predict the intrinsic vulnerability as well as the groundwater pollution risk. The method uses groundwater body specific parameters for the calibration of the factor ratings and weightings of the original DRASTIC model. These groundwater specific parameters are inferred from the statistical relation between the original DRASTIC model and observed nitrate pollution for a specific period. In addition, site-specific land use parameters are integrated into the method. The method is fully embedded in a Geographic Information System (GIS). Following these modifications, the correlation coefficient between groundwater pollution risk and observed nitrate concentrations for the 2013-2014 survey improved from r = 0.42, for the original DRASTIC model, to r = 0.61 for the calibrated model. As a way to validate this pollution risk map, observed nitrate concentrations from another survey (2008) are compared to pollution risk indices showing a good degree of coincidence with r = 0.51. The study shows that a calibration of a vulnerability model is recommended when vulnerability maps are used for groundwater resource management and land use planning at the regional scale and that it is adapted to a specific area.

  3. Simulation model calibration and validation : phase II : development of implementation handbook and short course.

    DOT National Transportation Integrated Search

    2006-01-01

    A previous study developed a procedure for microscopic simulation model calibration and validation and evaluated the procedure via two relatively simple case studies using three microscopic simulation models. Results showed that default parameters we...

  4. Optical System Error Analysis and Calibration Method of High-Accuracy Star Trackers

    PubMed Central

    Sun, Ting; Xing, Fei; You, Zheng

    2013-01-01

    The star tracker is a high-accuracy attitude measurement device widely used in spacecraft. Its performance depends largely on the precision of the optical system parameters. Therefore, the analysis of the optical system parameter errors and a precise calibration model are crucial to the accuracy of the star tracker. Research in this field is relatively lacking a systematic and universal analysis up to now. This paper proposes in detail an approach for the synthetic error analysis of the star tracker, without the complicated theoretical derivation. This approach can determine the error propagation relationship of the star tracker, and can build intuitively and systematically an error model. The analysis results can be used as a foundation and a guide for the optical design, calibration, and compensation of the star tracker. A calibration experiment is designed and conducted. Excellent calibration results are achieved based on the calibration model. To summarize, the error analysis approach and the calibration method are proved to be adequate and precise, and could provide an important guarantee for the design, manufacture, and measurement of high-accuracy star trackers. PMID:23567527

  5. Bayesian calibration of terrestrial ecosystem models: A study of advanced Markov chain Monte Carlo methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Dan; Ricciuto, Daniel; Walker, Anthony

    Calibration of terrestrial ecosystem models is important but challenging. Bayesian inference implemented by Markov chain Monte Carlo (MCMC) sampling provides a comprehensive framework to estimate model parameters and associated uncertainties using their posterior distributions. The effectiveness and efficiency of the method strongly depend on the MCMC algorithm used. In this study, a Differential Evolution Adaptive Metropolis (DREAM) algorithm was used to estimate posterior distributions of 21 parameters for the data assimilation linked ecosystem carbon (DALEC) model using 14 years of daily net ecosystem exchange data collected at the Harvard Forest Environmental Measurement Site eddy-flux tower. The DREAM is a multi-chainmore » method and uses differential evolution technique for chain movement, allowing it to be efficiently applied to high-dimensional problems, and can reliably estimate heavy-tailed and multimodal distributions that are difficult for single-chain schemes using a Gaussian proposal distribution. The results were evaluated against the popular Adaptive Metropolis (AM) scheme. DREAM indicated that two parameters controlling autumn phenology have multiple modes in their posterior distributions while AM only identified one mode. The calibration of DREAM resulted in a better model fit and predictive performance compared to the AM. DREAM provides means for a good exploration of the posterior distributions of model parameters. Lastly, it reduces the risk of false convergence to a local optimum and potentially improves the predictive performance of the calibrated model.« less

  6. Bayesian calibration of terrestrial ecosystem models: A study of advanced Markov chain Monte Carlo methods

    DOE PAGES

    Lu, Dan; Ricciuto, Daniel; Walker, Anthony; ...

    2017-02-22

    Calibration of terrestrial ecosystem models is important but challenging. Bayesian inference implemented by Markov chain Monte Carlo (MCMC) sampling provides a comprehensive framework to estimate model parameters and associated uncertainties using their posterior distributions. The effectiveness and efficiency of the method strongly depend on the MCMC algorithm used. In this study, a Differential Evolution Adaptive Metropolis (DREAM) algorithm was used to estimate posterior distributions of 21 parameters for the data assimilation linked ecosystem carbon (DALEC) model using 14 years of daily net ecosystem exchange data collected at the Harvard Forest Environmental Measurement Site eddy-flux tower. The DREAM is a multi-chainmore » method and uses differential evolution technique for chain movement, allowing it to be efficiently applied to high-dimensional problems, and can reliably estimate heavy-tailed and multimodal distributions that are difficult for single-chain schemes using a Gaussian proposal distribution. The results were evaluated against the popular Adaptive Metropolis (AM) scheme. DREAM indicated that two parameters controlling autumn phenology have multiple modes in their posterior distributions while AM only identified one mode. The calibration of DREAM resulted in a better model fit and predictive performance compared to the AM. DREAM provides means for a good exploration of the posterior distributions of model parameters. Lastly, it reduces the risk of false convergence to a local optimum and potentially improves the predictive performance of the calibrated model.« less

  7. Data filtering with support vector machines in geometric camera calibration.

    PubMed

    Ergun, B; Kavzoglu, T; Colkesen, I; Sahin, C

    2010-02-01

    The use of non-metric digital cameras in close-range photogrammetric applications and machine vision has become a popular research agenda. Being an essential component of photogrammetric evaluation, camera calibration is a crucial stage for non-metric cameras. Therefore, accurate camera calibration and orientation procedures have become prerequisites for the extraction of precise and reliable 3D metric information from images. The lack of accurate inner orientation parameters can lead to unreliable results in the photogrammetric process. A camera can be well defined with its principal distance, principal point offset and lens distortion parameters. Different camera models have been formulated and used in close-range photogrammetry, but generally sensor orientation and calibration is performed with a perspective geometrical model by means of the bundle adjustment. In this study, support vector machines (SVMs) using radial basis function kernel is employed to model the distortions measured for Olympus Aspherical Zoom lens Olympus E10 camera system that are later used in the geometric calibration process. It is intended to introduce an alternative approach for the on-the-job photogrammetric calibration stage. Experimental results for DSLR camera with three focal length settings (9, 18 and 36 mm) were estimated using bundle adjustment with additional parameters, and analyses were conducted based on object point discrepancies and standard errors. Results show the robustness of the SVMs approach on the correction of image coordinates by modelling total distortions on-the-job calibration process using limited number of images.

  8. SURF Model Calibration Strategy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menikoff, Ralph

    2017-03-10

    SURF and SURFplus are high explosive reactive burn models for shock initiation and propagation of detonation waves. They are engineering models motivated by the ignition & growth concept of high spots and for SURFplus a second slow reaction for the energy release from carbon clustering. A key feature of the SURF model is that there is a partial decoupling between model parameters and detonation properties. This enables reduced sets of independent parameters to be calibrated sequentially for the initiation and propagation regimes. Here we focus on a methodology for tting the initiation parameters to Pop plot data based on 1-Dmore » simulations to compute a numerical Pop plot. In addition, the strategy for tting the remaining parameters for the propagation regime and failure diameter is discussed.« less

  9. Probabilistic methods for sensitivity analysis and calibration in the NASA challenge problem

    DOE PAGES

    Safta, Cosmin; Sargsyan, Khachik; Najm, Habib N.; ...

    2015-01-01

    In this study, a series of algorithms are proposed to address the problems in the NASA Langley Research Center Multidisciplinary Uncertainty Quantification Challenge. A Bayesian approach is employed to characterize and calibrate the epistemic parameters based on the available data, whereas a variance-based global sensitivity analysis is used to rank the epistemic and aleatory model parameters. A nested sampling of the aleatory–epistemic space is proposed to propagate uncertainties from model parameters to output quantities of interest.

  10. Probabilistic methods for sensitivity analysis and calibration in the NASA challenge problem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Safta, Cosmin; Sargsyan, Khachik; Najm, Habib N.

    In this study, a series of algorithms are proposed to address the problems in the NASA Langley Research Center Multidisciplinary Uncertainty Quantification Challenge. A Bayesian approach is employed to characterize and calibrate the epistemic parameters based on the available data, whereas a variance-based global sensitivity analysis is used to rank the epistemic and aleatory model parameters. A nested sampling of the aleatory–epistemic space is proposed to propagate uncertainties from model parameters to output quantities of interest.

  11. Predictive process simulation of cryogenic implants for leading edge transistor design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gossmann, Hans-Joachim; Zographos, Nikolas; Park, Hugh

    2012-11-06

    Two cryogenic implant TCAD-modules have been developed: (i) A continuum-based compact model targeted towards a TCAD production environment calibrated against an extensive data-set for all common dopants. Ion-specific calibration parameters related to damage generation and dynamic annealing were used and resulted in excellent fits to the calibration data-set. (ii) A Kinetic Monte Carlo (kMC) model including the full time dependence of ion-exposure that a particular spot on the wafer experiences, as well as the resulting temperature vs. time profile of this spot. It was calibrated by adjusting damage generation and dynamic annealing parameters. The kMC simulations clearly demonstrate the importancemore » of the time-structure of the beam for the amorphization process: Assuming an average dose-rate does not capture all of the physics and may lead to incorrect conclusions. The model enables optimization of the amorphization process through tool parameters such as scan speed or beam height.« less

  12. Revision and proposed modification for a total maximum daily load model for Upper Klamath Lake, Oregon

    USGS Publications Warehouse

    Wherry, Susan A.; Wood, Tamara M.; Anderson, Chauncey W.

    2015-01-01

    Using the extended 1991–2010 external phosphorus loading dataset, the lake TMDL model was recalibrated following the same procedures outlined in the Phase 1 review. The version of the model selected for further development incorporated an updated sediment initial condition, a numerical solution method for the chlorophyll a model, changes to light and phosphorus factors limiting algal growth, and a new pH-model regression, which removed Julian day dependence in order to avoid discontinuities in pH at year boundaries. This updated lake TMDL model was recalibrated using the extended dataset in order to compare calibration parameters to those obtained from a calibration with the original 7.5-year dataset. The resulting algal settling velocity calibrated from the extended dataset was more than twice the value calibrated with the original dataset, and, because the calibrated values of algal settling velocity and recycle rate are related (more rapid settling required more rapid recycling), the recycling rate also was larger than that determined with the original dataset. These changes in calibration parameters highlight the uncertainty in critical rates in the Upper Klamath Lake TMDL model and argue for their direct measurement in future data collection to increase confidence in the model predictions.

  13. Sorption testing and generalized composite surface complexation models for determining uranium sorption parameters at a proposed in-situ recovery site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Raymond H.; Truax, Ryan A.; Lankford, David A.

    Solid-phase iron concentrations and generalized composite surface complexation models were used to evaluate procedures in determining uranium sorption on oxidized aquifer material at a proposed U in situ recovery (ISR) site. At the proposed Dewey Burdock ISR site in South Dakota, USA, oxidized aquifer material occurs downgradient of the U ore zones. Solid-phase Fe concentrations did not explain our batch sorption test results,though total extracted Fe appeared to be positively correlated with overall measured U sorption. Batch sorption test results were used to develop generalized composite surface complexation models that incorporated the full genericsorption potential of each sample, without detailedmore » mineralogiccharacterization. The resultant models provide U sorption parameters (site densities and equilibrium constants) for reactive transport modeling. The generalized composite surface complexation sorption models were calibrated to batch sorption data from three oxidized core samples using inverse modeling, and gave larger sorption parameters than just U sorption on the measured solidphase Fe. These larger sorption parameters can significantly influence reactive transport modeling, potentially increasing U attenuation. Because of the limited number of calibration points, inverse modeling required the reduction of estimated parameters by fixing two parameters. The best-fit models used fixed values for equilibrium constants, with the sorption site densities being estimated by the inversion process. While these inverse routines did provide best-fit sorption parameters, local minima and correlated parameters might require further evaluation. Despite our limited number of proxy samples, the procedures presented provide a valuable methodology to consider for sites where metal sorption parameters are required. Furthermore, these sorption parameters can be used in reactive transport modeling to assess downgradient metal attenuation, especially when no other calibration data are available, such as at proposed U ISR sites.« less

  14. Sorption testing and generalized composite surface complexation models for determining uranium sorption parameters at a proposed in-situ recovery site

    DOE PAGES

    Johnson, Raymond H.; Truax, Ryan A.; Lankford, David A.; ...

    2016-02-03

    Solid-phase iron concentrations and generalized composite surface complexation models were used to evaluate procedures in determining uranium sorption on oxidized aquifer material at a proposed U in situ recovery (ISR) site. At the proposed Dewey Burdock ISR site in South Dakota, USA, oxidized aquifer material occurs downgradient of the U ore zones. Solid-phase Fe concentrations did not explain our batch sorption test results,though total extracted Fe appeared to be positively correlated with overall measured U sorption. Batch sorption test results were used to develop generalized composite surface complexation models that incorporated the full genericsorption potential of each sample, without detailedmore » mineralogiccharacterization. The resultant models provide U sorption parameters (site densities and equilibrium constants) for reactive transport modeling. The generalized composite surface complexation sorption models were calibrated to batch sorption data from three oxidized core samples using inverse modeling, and gave larger sorption parameters than just U sorption on the measured solidphase Fe. These larger sorption parameters can significantly influence reactive transport modeling, potentially increasing U attenuation. Because of the limited number of calibration points, inverse modeling required the reduction of estimated parameters by fixing two parameters. The best-fit models used fixed values for equilibrium constants, with the sorption site densities being estimated by the inversion process. While these inverse routines did provide best-fit sorption parameters, local minima and correlated parameters might require further evaluation. Despite our limited number of proxy samples, the procedures presented provide a valuable methodology to consider for sites where metal sorption parameters are required. Furthermore, these sorption parameters can be used in reactive transport modeling to assess downgradient metal attenuation, especially when no other calibration data are available, such as at proposed U ISR sites.« less

  15. Neuromusculoskeletal Model Calibration Significantly Affects Predicted Knee Contact Forces for Walking

    PubMed Central

    Serrancolí, Gil; Kinney, Allison L.; Fregly, Benjamin J.; Font-Llagunes, Josep M.

    2016-01-01

    Though walking impairments are prevalent in society, clinical treatments are often ineffective at restoring lost function. For this reason, researchers have begun to explore the use of patient-specific computational walking models to develop more effective treatments. However, the accuracy with which models can predict internal body forces in muscles and across joints depends on how well relevant model parameter values can be calibrated for the patient. This study investigated how knowledge of internal knee contact forces affects calibration of neuromusculoskeletal model parameter values and subsequent prediction of internal knee contact and leg muscle forces during walking. Model calibration was performed using a novel two-level optimization procedure applied to six normal walking trials from the Fourth Grand Challenge Competition to Predict In Vivo Knee Loads. The outer-level optimization adjusted time-invariant model parameter values to minimize passive muscle forces, reserve actuator moments, and model parameter value changes with (Approach A) and without (Approach B) tracking of experimental knee contact forces. Using the current guess for model parameter values but no knee contact force information, the inner-level optimization predicted time-varying muscle activations that were close to experimental muscle synergy patterns and consistent with the experimental inverse dynamic loads (both approaches). For all the six gait trials, Approach A predicted knee contact forces with high accuracy for both compartments (average correlation coefficient r = 0.99 and root mean square error (RMSE) = 52.6 N medial; average r = 0.95 and RMSE = 56.6 N lateral). In contrast, Approach B overpredicted contact force magnitude for both compartments (average RMSE = 323 N medial and 348 N lateral) and poorly matched contact force shape for the lateral compartment (average r = 0.90 medial and −0.10 lateral). Approach B had statistically higher lateral muscle forces and lateral optimal muscle fiber lengths but lower medial, central, and lateral normalized muscle fiber lengths compared to Approach A. These findings suggest that poorly calibrated model parameter values may be a major factor limiting the ability of neuromusculoskeletal models to predict knee contact and leg muscle forces accurately for walking. PMID:27210105

  16. Calibration of a COTS Integration Cost Model Using Local Project Data

    NASA Technical Reports Server (NTRS)

    Boland, Dillard; Coon, Richard; Byers, Kathryn; Levitt, David

    1997-01-01

    The software measures and estimation techniques appropriate to a Commercial Off the Shelf (COTS) integration project differ from those commonly used for custom software development. Labor and schedule estimation tools that model COTS integration are available. Like all estimation tools, they must be calibrated with the organization's local project data. This paper describes the calibration of a commercial model using data collected by the Flight Dynamics Division (FDD) of the NASA Goddard Spaceflight Center (GSFC). The model calibrated is SLIM Release 4.0 from Quantitative Software Management (QSM). By adopting the SLIM reuse model and by treating configuration parameters as lines of code, we were able to establish a consistent calibration for COTS integration projects. The paper summarizes the metrics, the calibration process and results, and the validation of the calibration.

  17. Identifying dominant controls on hydrologic parameter transfer from gauged to ungauged catchments: a comparative hydrology approach

    USGS Publications Warehouse

    Singh, R.; Archfield, S.A.; Wagener, T.

    2014-01-01

    Daily streamflow information is critical for solving various hydrologic problems, though observations of continuous streamflow for model calibration are available at only a small fraction of the world’s rivers. One approach to estimate daily streamflow at an ungauged location is to transfer rainfall–runoff model parameters calibrated at a gauged (donor) catchment to an ungauged (receiver) catchment of interest. Central to this approach is the selection of a hydrologically similar donor. No single metric or set of metrics of hydrologic similarity have been demonstrated to consistently select a suitable donor catchment. We design an experiment to diagnose the dominant controls on successful hydrologic model parameter transfer. We calibrate a lumped rainfall–runoff model to 83 stream gauges across the United States. All locations are USGS reference gauges with minimal human influence. Parameter sets from the calibrated models are then transferred to each of the other catchments and the performance of the transferred parameters is assessed. This transfer experiment is carried out both at the scale of the entire US and then for six geographic regions. We use classification and regression tree (CART) analysis to determine the relationship between catchment similarity and performance of transferred parameters. Similarity is defined using physical/climatic catchment characteristics, as well as streamflow response characteristics (signatures such as baseflow index and runoff ratio). Across the entire US, successful parameter transfer is governed by similarity in elevation and climate, and high similarity in streamflow signatures. Controls vary for different geographic regions though. Geology followed by drainage, topography and climate constitute the dominant similarity metrics in forested eastern mountains and plateaus, whereas agricultural land use relates most strongly with successful parameter transfer in the humid plains.

  18. Analysis of Brown camera distortion model

    NASA Astrophysics Data System (ADS)

    Nowakowski, Artur; Skarbek, Władysław

    2013-10-01

    Contemporary image acquisition devices introduce optical distortion into image. It results in pixel displacement and therefore needs to be compensated for many computer vision applications. The distortion is usually modeled by the Brown distortion model, which parameters can be included in camera calibration task. In this paper we describe original model, its dependencies and analyze orthogonality with regard to radius for its decentering distortion component. We also report experiments with camera calibration algorithm included in OpenCV library, especially a stability of distortion parameters estimation is evaluated.

  19. Impact of the hard-coded parameters on the hydrologic fluxes of the land surface model Noah-MP

    NASA Astrophysics Data System (ADS)

    Cuntz, Matthias; Mai, Juliane; Samaniego, Luis; Clark, Martyn; Wulfmeyer, Volker; Attinger, Sabine; Thober, Stephan

    2016-04-01

    Land surface models incorporate a large number of processes, described by physical, chemical and empirical equations. The process descriptions contain a number of parameters that can be soil or plant type dependent and are typically read from tabulated input files. Land surface models may have, however, process descriptions that contain fixed, hard-coded numbers in the computer code, which are not identified as model parameters. Here we searched for hard-coded parameters in the computer code of the land surface model Noah with multiple process options (Noah-MP) to assess the importance of the fixed values on restricting the model's agility during parameter estimation. We found 139 hard-coded values in all Noah-MP process options, which are mostly spatially constant values. This is in addition to the 71 standard parameters of Noah-MP, which mostly get distributed spatially by given vegetation and soil input maps. We performed a Sobol' global sensitivity analysis of Noah-MP to variations of the standard and hard-coded parameters for a specific set of process options. 42 standard parameters and 75 hard-coded parameters were active with the chosen process options. The sensitivities of the hydrologic output fluxes latent heat and total runoff as well as their component fluxes were evaluated. These sensitivities were evaluated at twelve catchments of the Eastern United States with very different hydro-meteorological regimes. Noah-MP's hydrologic output fluxes are sensitive to two thirds of its standard parameters. The most sensitive parameter is, however, a hard-coded value in the formulation of soil surface resistance for evaporation, which proved to be oversensitive in other land surface models as well. Surface runoff is sensitive to almost all hard-coded parameters of the snow processes and the meteorological inputs. These parameter sensitivities diminish in total runoff. Assessing these parameters in model calibration would require detailed snow observations or the calculation of hydrologic signatures of the runoff data. Latent heat and total runoff exhibit very similar sensitivities towards standard and hard-coded parameters in Noah-MP because of their tight coupling via the water balance. It should therefore be comparable to calibrate Noah-MP either against latent heat observations or against river runoff data. Latent heat and total runoff are sensitive to both, plant and soil parameters. Calibrating only a parameter sub-set of only soil parameters, for example, thus limits the ability to derive realistic model parameters. It is thus recommended to include the most sensitive hard-coded model parameters that were exposed in this study when calibrating Noah-MP.

  20. Hydrologic Model Development and Calibration: Contrasting a Single- and Multi-Objective Approach for Comparing Model Performance

    NASA Astrophysics Data System (ADS)

    Asadzadeh, M.; Maclean, A.; Tolson, B. A.; Burn, D. H.

    2009-05-01

    Hydrologic model calibration aims to find a set of parameters that adequately simulates observations of watershed behavior, such as streamflow, or a state variable, such as snow water equivalent (SWE). There are different metrics for evaluating calibration effectiveness that involve quantifying prediction errors, such as the Nash-Sutcliffe (NS) coefficient and bias evaluated for the entire calibration period, on a seasonal basis, for low flows, or for high flows. Many of these metrics are conflicting such that the set of parameters that maximizes the high flow NS differs from the set of parameters that maximizes the low flow NS. Conflicting objectives are very likely when different calibration objectives are based on different fluxes and/or state variables (e.g., NS based on streamflow versus SWE). One of the most popular ways to balance different metrics is to aggregate them based on their importance and find the set of parameters that optimizes a weighted sum of the efficiency metrics. Comparing alternative hydrologic models (e.g., assessing model improvement when a process or more detail is added to the model) based on the aggregated objective might be misleading since it represents one point on the tradeoff of desired error metrics. To derive a more comprehensive model comparison, we solved a bi-objective calibration problem to estimate the tradeoff between two error metrics for each model. Although this approach is computationally more expensive than the aggregation approach, it results in a better understanding of the effectiveness of selected models at each level of every error metric and therefore provides a better rationale for judging relative model quality. The two alternative models used in this study are two MESH hydrologic models (version 1.2) of the Wolf Creek Research basin that differ in their watershed spatial discretization (a single Grouped Response Unit, GRU, versus multiple GRUs). The MESH model, currently under development by Environment Canada, is a coupled land-surface and hydrologic model. Results will demonstrate the conclusions a modeller might make regarding the value of additional watershed spatial discretization under both an aggregated (single-objective) and multi-objective model comparison framework.

  1. The influence of the in situ camera calibration for direct georeferencing of aerial imagery

    NASA Astrophysics Data System (ADS)

    Mitishita, E.; Barrios, R.; Centeno, J.

    2014-11-01

    The direct determination of exterior orientation parameters (EOPs) of aerial images via GNSS/INS technologies is an essential prerequisite in photogrammetric mapping nowadays. Although direct sensor orientation technologies provide a high degree of automation in the process due to the GNSS/INS technologies, the accuracies of the obtained results depend on the quality of a group of parameters that models accurately the conditions of the system at the moment the job is performed. One sub-group of parameters (lever arm offsets and boresight misalignments) models the position and orientation of the sensors with respect to the IMU body frame due to the impossibility of having all sensors on the same position and orientation in the airborne platform. Another sub-group of parameters models the internal characteristics of the sensor (IOP). A system calibration procedure has been recommended by worldwide studies to obtain accurate parameters (mounting and sensor characteristics) for applications of the direct sensor orientation. Commonly, mounting and sensor characteristics are not stable; they can vary in different flight conditions. The system calibration requires a geometric arrangement of the flight and/or control points to decouple correlated parameters, which are not available in the conventional photogrammetric flight. Considering this difficulty, this study investigates the feasibility of the in situ camera calibration to improve the accuracy of the direct georeferencing of aerial images. The camera calibration uses a minimum image block, extracted from the conventional photogrammetric flight, and control point arrangement. A digital Vexcel UltraCam XP camera connected to POS AV TM system was used to get two photogrammetric image blocks. The blocks have different flight directions and opposite flight line. In situ calibration procedures to compute different sets of IOPs are performed and their results are analyzed and used in photogrammetric experiments. The IOPs from the in situ camera calibration improve significantly the accuracies of the direct georeferencing. The obtained results from the experiments are shown and discussed.

  2. Model Calibration Efforts for the International Space Station's Solar Array Mast

    NASA Technical Reports Server (NTRS)

    Elliott, Kenny B.; Horta, Lucas G.; Templeton, Justin D.; Knight, Norman F., Jr.

    2012-01-01

    The International Space Station (ISS) relies on sixteen solar-voltaic blankets to provide electrical power to the station. Each pair of blankets is supported by a deployable boom called the Folding Articulated Square Truss Mast (FAST Mast). At certain ISS attitudes, the solar arrays can be positioned in such a way that shadowing of either one or three longerons causes an unexpected asymmetric thermal loading that if unchecked can exceed the operational stability limits of the mast. Work in this paper documents part of an independent NASA Engineering and Safety Center effort to assess the existing operational limits. Because of the complexity of the system, the problem is being worked using a building-block progression from components (longerons), to units (single or multiple bays), to assembly (full mast). The paper presents results from efforts to calibrate the longeron components. The work includes experimental testing of two types of longerons (straight and tapered), development of Finite Element (FE) models, development of parameter uncertainty models, and the establishment of a calibration and validation process to demonstrate adequacy of the models. Models in the context of this paper refer to both FE model and probabilistic parameter models. Results from model calibration of the straight longerons show that the model is capable of predicting the mean load, axial strain, and bending strain. For validation, parameter values obtained from calibration of straight longerons are used to validate experimental results for the tapered longerons.

  3. Inverse modeling with RZWQM2 to predict water quality

    USDA-ARS?s Scientific Manuscript database

    Agricultural systems models such as RZWQM2 are complex and have numerous parameters that are unknown and difficult to estimate. Inverse modeling provides an objective statistical basis for calibration that involves simultaneous adjustment of model parameters and yields parameter confidence intervals...

  4. Use of In-Situ and Remotely Sensed Snow Observations for the National Water Model in Both an Analysis and Calibration Framework.

    NASA Astrophysics Data System (ADS)

    Karsten, L. R.; Gochis, D.; Dugger, A. L.; McCreight, J. L.; Barlage, M. J.; Fall, G. M.; Olheiser, C.

    2017-12-01

    Since version 1.0 of the National Water Model (NWM) has gone operational in Summer 2016, several upgrades to the model have occurred to improve hydrologic prediction for the continental United States. Version 1.1 of the NWM (Spring 2017) includes upgrades to parameter datasets impacting land surface hydrologic processes. These parameter datasets were upgraded using an automated calibration workflow that utilizes the Dynamic Data Search (DDS) algorithm to adjust parameter values using observed streamflow. As such, these upgrades to parameter values took advantage of various observations collected for snow analysis. In particular, in-situ SNOTEL observations in the Western US, volunteer in-situ observations across the entire US, gamma-derived snow water equivalent (SWE) observations courtesy of the NWS NOAA Corps program, gridded snow depth and SWE products from the Jet Propulsion Laboratory (JPL) Airborne Snow Observatory (ASO), gridded remotely sensed satellite-based snow products (MODIS,AMSR2,VIIRS,ATMS), and gridded SWE from the NWS Snow Data Assimilation System (SNODAS). This study explores the use of these observations to quantify NWM error and improvements from version 1.0 to version 1.1, along with subsequent work since then. In addition, this study explores the use of snow observations for use within the automated calibration workflow. Gridded parameter fields impacting the accumulation and ablation of snow states in the NWM were adjusted and calibrated using gridded remotely sensed snow states, SNODAS products, and in-situ snow observations. This calibration adjustment took place over various ecological regions in snow-dominated parts of the US for a retrospective period of time to capture a variety of climatological conditions. Specifically, the latest calibrated parameters impacting streamflow were held constant and only parameters impacting snow physics were tuned using snow observations and analysis. The adjusted parameter datasets were then used to force the model over an independent period for analysis against both snow and streamflow observations to see if improvements took place. The goal of this work is to further improve snow physics in the NWM, along with identifying areas where further work will take place in the future, such as data assimilation or further forcing improvements.

  5. Calibration of micromechanical parameters for DEM simulations by using the particle filter

    NASA Astrophysics Data System (ADS)

    Cheng, Hongyang; Shuku, Takayuki; Thoeni, Klaus; Yamamoto, Haruyuki

    2017-06-01

    The calibration of DEM models is typically accomplished by trail and error. However, the procedure lacks of objectivity and has several uncertainties. To deal with these issues, the particle filter is employed as a novel approach to calibrate DEM models of granular soils. The posterior probability distribution of the microparameters that give numerical results in good agreement with the experimental response of a Toyoura sand specimen is approximated by independent model trajectories, referred as `particles', based on Monte Carlo sampling. The soil specimen is modeled by polydisperse packings with different numbers of spherical grains. Prepared in `stress-free' states, the packings are subjected to triaxial quasistatic loading. Given the experimental data, the posterior probability distribution is incrementally updated, until convergence is reached. The resulting `particles' with higher weights are identified as the calibration results. The evolutions of the weighted averages and posterior probability distribution of the micro-parameters are plotted to show the advantage of using a particle filter, i.e., multiple solutions are identified for each parameter with known probabilities of reproducing the experimental response.

  6. Multiphase, multicomponent parameter estimation for liquid and vapor fluxes in deep arid systems using hydrologic data and natural environmental tracers

    USGS Publications Warehouse

    Kwicklis, Edward M.; Wolfsberg, Andrew V.; Stauffer, Philip H.; Walvoord, Michelle Ann; Sully, Michael J.

    2006-01-01

    Multiphase, multicomponent numerical models of long-term unsaturated-zone liquid and vapor movement were created for a thick alluvial basin at the Nevada Test Site to predict present-day liquid and vapor fluxes. The numerical models are based on recently developed conceptual models of unsaturated-zone moisture movement in thick alluvium that explain present-day water potential and tracer profiles in terms of major climate and vegetation transitions that have occurred during the past 10 000 yr or more. The numerical models were calibrated using borehole hydrologic and environmental tracer data available from a low-level radioactive waste management site located in a former nuclear weapons testing area. The environmental tracer data used in the model calibration includes tracers that migrate in both the liquid and vapor phases (??D, ??18O) and tracers that migrate solely as dissolved solutes (Cl), thus enabling the estimation of some gas-phase as well as liquid-phase transport parameters. Parameter uncertainties and correlations identified during model calibration were used to generate parameter combinations for a set of Monte Carlo simulations to more fully characterize the uncertainty in liquid and vapor fluxes. The calculated background liquid and vapor fluxes decrease as the estimated time since the transition to the present-day arid climate increases. However, on the whole, the estimated fluxes display relatively little variability because correlations among parameters tend to create parameter sets for which changes in some parameters offset the effects of others in the set. Independent estimates on the timing since the climate transition established from packrat midden data were essential for constraining the model calibration results. The study demonstrates the utility of environmental tracer data in developing numerical models of liquid- and gas-phase moisture movement and the importance of considering parameter correlations when using Monte Carlo analysis to characterize the uncertainty in moisture fluxes. ?? Soil Science Society of America.

  7. FISHERY-ORIENTED MODEL OF MARYLAND OYSTER POPULATIONS

    EPA Science Inventory

    We used time series data to calibrate a model of oyster population dynamics for Maryland's Chesapeake Bay. Model parameters were fishing mortality, natural mortality, recruitment, and carrying capacity. We calibrated for the Maryland bay as a whole and separately for 3 salinity z...

  8. Calibration to improve forward model simulation of microwave emissivity at GPM frequencies over the U.S. Southern Great Plains

    PubMed Central

    Harrison, Kenneth W.; Tian, Yudong; Peters-Lidard, Christa D.; Ringerud, Sarah; Kumar, Sujay V.

    2018-01-01

    Better estimation of land surface microwave emissivity promises to improve over-land precipitation retrievals in the GPM era. Forward models of land microwave emissivity are available but have suffered from poor parameter specification and limited testing. Here, forward models are calibrated and the accompanying change in predictive power is evaluated. With inputs (e.g., soil moisture) from the Noah land surface model and applying MODIS LAI data, two microwave emissivity models are tested, the Community Radiative Transfer Model (CRTM) and Community Microwave Emission Model (CMEM). The calibration is conducted with the NASA Land Information System (LIS) parameter estimation subsystem using AMSR-E based emissivity retrievals for the calibration dataset. The extent of agreement between the modeled and retrieved estimates is evaluated using the AMSR-E retrievals for a separate 7-year validation period. Results indicate that calibration can significantly improve the agreement, simulating emissivity with an across-channel average root-mean-square-difference (RMSD) of about 0.013, or about 20% lower than if relying on daily estimates based on climatology. The results also indicate that calibration of the microwave emissivity model alone, as was done in prior studies, results in as much as 12% higher across-channel average RMSD, as compared to joint calibration of the land surface and microwave emissivity models. It remains as future work to assess the extent to which the improvements in emissivity estimation translate into improvements in precipitation retrieval accuracy. PMID:29795962

  9. Assessment and Reduction of Model Parametric Uncertainties: A Case Study with A Distributed Hydrological Model

    NASA Astrophysics Data System (ADS)

    Gan, Y.; Liang, X. Z.; Duan, Q.; Xu, J.; Zhao, P.; Hong, Y.

    2017-12-01

    The uncertainties associated with the parameters of a hydrological model need to be quantified and reduced for it to be useful for operational hydrological forecasting and decision support. An uncertainty quantification framework is presented to facilitate practical assessment and reduction of model parametric uncertainties. A case study, using the distributed hydrological model CREST for daily streamflow simulation during the period 2008-2010 over ten watershed, was used to demonstrate the performance of this new framework. Model behaviors across watersheds were analyzed by a two-stage stepwise sensitivity analysis procedure, using LH-OAT method for screening out insensitive parameters, followed by MARS-based Sobol' sensitivity indices for quantifying each parameter's contribution to the response variance due to its first-order and higher-order effects. Pareto optimal sets of the influential parameters were then found by the adaptive surrogate-based multi-objective optimization procedure, using MARS model for approximating the parameter-response relationship and SCE-UA algorithm for searching the optimal parameter sets of the adaptively updated surrogate model. The final optimal parameter sets were validated against the daily streamflow simulation of the same watersheds during the period 2011-2012. The stepwise sensitivity analysis procedure efficiently reduced the number of parameters that need to be calibrated from twelve to seven, which helps to limit the dimensionality of calibration problem and serves to enhance the efficiency of parameter calibration. The adaptive MARS-based multi-objective calibration exercise provided satisfactory solutions to the reproduction of the observed streamflow for all watersheds. The final optimal solutions showed significant improvement when compared to the default solutions, with about 65-90% reduction in 1-NSE and 60-95% reduction in |RB|. The validation exercise indicated a large improvement in model performance with about 40-85% reduction in 1-NSE, and 35-90% reduction in |RB|. Overall, this uncertainty quantification framework is robust, effective and efficient for parametric uncertainty analysis, the results of which provide useful information that helps to understand the model behaviors and improve the model simulations.

  10. Using HEC-HMS: Application to Karkheh river basin

    USDA-ARS?s Scientific Manuscript database

    This paper aims to facilitate the use of HEC-HMS model using a systematic event-based technique for manual calibration of soil moisture accounting and snowmelt degree-day parameters. Manual calibration, which helps ensure the HEC-HMS parameter values are physically-relevant, is often a time-consumin...

  11. Efficient calibration for imperfect computer models

    DOE PAGES

    Tuo, Rui; Wu, C. F. Jeff

    2015-12-01

    Many computer models contain unknown parameters which need to be estimated using physical observations. Furthermore, the calibration method based on Gaussian process models may lead to unreasonable estimate for imperfect computer models. In this work, we extend their study to calibration problems with stochastic physical data. We propose a novel method, called the L 2 calibration, and show its semiparametric efficiency. The conventional method of the ordinary least squares is also studied. Theoretical analysis shows that it is consistent but not efficient. Here, numerical examples show that the proposed method outperforms the existing ones.

  12. Analysis of variation in calibration curves for Kodak XV radiographic film using model-based parameters.

    PubMed

    Hsu, Shu-Hui; Kulasekere, Ravi; Roberson, Peter L

    2010-08-05

    Film calibration is time-consuming work when dose accuracy is essential while working in a range of photon scatter environments. This study uses the single-target single-hit model of film response to fit the calibration curves as a function of calibration method, processor condition, field size and depth. Kodak XV film was irradiated perpendicular to the beam axis in a solid water phantom. Standard calibration films (one dose point per film) were irradiated at 90 cm source-to-surface distance (SSD) for various doses (16-128 cGy), depths (0.2, 0.5, 1.5, 5, 10 cm) and field sizes (5 × 5, 10 × 10 and 20 × 20 cm²). The 8-field calibration method (eight dose points per film) was used as a reference for each experiment, taken at 95 cm SSD and 5 cm depth. The delivered doses were measured using an Attix parallel plate chamber for improved accuracy of dose estimation in the buildup region. Three fitting methods with one to three dose points per calibration curve were investigated for the field sizes of 5 × 5, 10 × 10 and 20 × 20 cm². The inter-day variation of model parameters (background, saturation and slope) were 1.8%, 5.7%, and 7.7% (1 σ) using the 8-field method. The saturation parameter ratio of standard to 8-field curves was 1.083 ± 0.005. The slope parameter ratio of standard to 8-field curves ranged from 0.99 to 1.05, depending on field size and depth. The slope parameter ratio decreases with increasing depth below 0.5 cm for the three field sizes. It increases with increasing depths above 0.5 cm. A calibration curve with one to three dose points fitted with the model is possible with 2% accuracy in film dosimetry for various irradiation conditions. The proposed fitting methods may reduce workload while providing energy dependence correction in radiographic film dosimetry. This study is limited to radiographic XV film with a Lumisys scanner.

  13. Using groundwater temperature data to constrain parameter estimation in a groundwater flow model of a wetland system

    USGS Publications Warehouse

    Bravo, Hector R.; Jiang, Feng; Hunt, Randall J.

    2002-01-01

    Parameter estimation is a powerful way to calibrate models. While head data alone are often insufficient to estimate unique parameters due to model nonuniqueness, flow‐and‐heat‐transport modeling can constrain estimation and allow simultaneous estimation of boundary fluxes and hydraulic conductivity. In this work, synthetic and field models that did not converge when head data were used did converge when head and temperature were used. Furthermore, frequency domain analyses of head and temperature data allowed selection of appropriate modeling timescales. Inflows in the Wilton, Wisconsin, wetlands could be estimated over periods such as a growing season and over periods of a few days when heads were nearly steady and groundwater temperature varied during the day. While this methodology is computationally more demanding than traditional head calibration, the results gained are unobtainable using the traditional approach. These results suggest that temperature can efficiently supplement head data in systems where accurate flux calibration targets are unavailable.

  14. Soybean Physiology Calibration in the Community Land Model

    NASA Astrophysics Data System (ADS)

    Drewniak, B. A.; Bilionis, I.; Constantinescu, E. M.

    2014-12-01

    With the large influence of agricultural land use on biophysical and biogeochemical cycles, integrating cultivation into Earth System Models (ESMs) is increasingly important. The Community Land Model (CLM) was augmented with a CLM-Crop extension that simulates the development of three crop types: maize, soybean, and spring wheat. The CLM-Crop model is a complex system that relies on a suite of parametric inputs that govern plant growth under a given atmospheric forcing and available resources. However, the strong nonlinearity of ESMs makes parameter fitting a difficult task. In this study, our goal is to calibrate ten of the CLM-Crop parameters for one crop type, soybean, in order to improve model projection of plant development and carbon fluxes. We used measurements of gross primary productivity, net ecosystem exchange, and plant biomass from AmeriFlux sites to choose parameter values that optimize crop productivity in the model. Calibration is performed in a Bayesian framework by developing a scalable and adaptive scheme based on sequential Monte Carlo (SMC). Our scheme can perform model calibration using very few evaluations and, by exploiting parallelism, at a fraction of the time required by plain vanilla Markov Chain Monte Carlo (MCMC). We present the results from a twin experiment (self-validation) and calibration results and validation using real observations from an AmeriFlux tower site in the Midwestern United States, for the soybean crop type. The improved model will help researchers understand how climate affects crop production and resulting carbon fluxes, and additionally, how cultivation impacts climate.

  15. Model Calibration with Censored Data

    DOE PAGES

    Cao, Fang; Ba, Shan; Brenneman, William A.; ...

    2017-06-28

    Here, the purpose of model calibration is to make the model predictions closer to reality. The classical Kennedy-O'Hagan approach is widely used for model calibration, which can account for the inadequacy of the computer model while simultaneously estimating the unknown calibration parameters. In many applications, the phenomenon of censoring occurs when the exact outcome of the physical experiment is not observed, but is only known to fall within a certain region. In such cases, the Kennedy-O'Hagan approach cannot be used directly, and we propose a method to incorporate the censoring information when performing model calibration. The method is applied tomore » study the compression phenomenon of liquid inside a bottle. The results show significant improvement over the traditional calibration methods, especially when the number of censored observations is large.« less

  16. Calculating the sensitivity of wind turbine loads to wind inputs using response surfaces

    NASA Astrophysics Data System (ADS)

    Rinker, Jennifer M.

    2016-09-01

    This paper presents a methodology to calculate wind turbine load sensitivities to turbulence parameters through the use of response surfaces. A response surface is a highdimensional polynomial surface that can be calibrated to any set of input/output data and then used to generate synthetic data at a low computational cost. Sobol sensitivity indices (SIs) can then be calculated with relative ease using the calibrated response surface. The proposed methodology is demonstrated by calculating the total sensitivity of the maximum blade root bending moment of the WindPACT 5 MW reference model to four turbulence input parameters: a reference mean wind speed, a reference turbulence intensity, the Kaimal length scale, and a novel parameter reflecting the nonstationarity present in the inflow turbulence. The input/output data used to calibrate the response surface were generated for a previous project. The fit of the calibrated response surface is evaluated in terms of error between the model and the training data and in terms of the convergence. The Sobol SIs are calculated using the calibrated response surface, and the convergence is examined. The Sobol SIs reveal that, of the four turbulence parameters examined in this paper, the variance caused by the Kaimal length scale and nonstationarity parameter are negligible. Thus, the findings in this paper represent the first systematic evidence that stochastic wind turbine load response statistics can be modeled purely by mean wind wind speed and turbulence intensity.

  17. An Approach to Remove the Systematic Bias from the Storm Surge forecasts in the Venice Lagoon

    NASA Astrophysics Data System (ADS)

    Canestrelli, A.

    2017-12-01

    In this work a novel approach is proposed for removing the systematic bias from the storm surge forecast computed by a two-dimensional shallow-water model. The model covers both the Adriatic and Mediterranean seas and provides the forecast at the entrance of the Venice Lagoon. The wind drag coefficient at the water-air interface is treated as a calibration parameter, with a different value for each range of wind velocities and wind directions. This sums up to a total of 16-64 parameters to be calibrated, depending on the chosen resolution. The best set of parameters is determined by means of an optimization procedure, which minimizes the RMS error between measured and modeled water level in Venice for the period 2011-2015. It is shown that a bias is present, for which the peaks of wind velocities provided by the weather forecast are largely underestimated, and that the calibration procedure removes this bias. When the calibrated model is used to reproduce events not included in the calibration dataset, the forecast error is strongly reduced, thus confirming the quality of our procedure. The proposed approach it is not site-specific and could be applied to different situations, such as storm surges caused by intense hurricanes.

  18. Object-oriented simulation model of a parabolic trough solar collector: Static and dynamic validation

    NASA Astrophysics Data System (ADS)

    Ubieta, Eduardo; Hoyo, Itzal del; Valenzuela, Loreto; Lopez-Martín, Rafael; Peña, Víctor de la; López, Susana

    2017-06-01

    A simulation model of a parabolic-trough solar collector developed in Modelica® language is calibrated and validated. The calibration is performed in order to approximate the behavior of the solar collector model to a real one due to the uncertainty in some of the system parameters, i.e. measured data is used during the calibration process. Afterwards, the validation of this calibrated model is done. During the validation, the results obtained from the model are compared to the ones obtained during real operation in a collector from the Plataforma Solar de Almeria (PSA).

  19. Objective calibration of numerical weather prediction models

    NASA Astrophysics Data System (ADS)

    Voudouri, A.; Khain, P.; Carmona, I.; Bellprat, O.; Grazzini, F.; Avgoustoglou, E.; Bettems, J. M.; Kaufmann, P.

    2017-07-01

    Numerical weather prediction (NWP) and climate models use parameterization schemes for physical processes, which often include free or poorly confined parameters. Model developers normally calibrate the values of these parameters subjectively to improve the agreement of forecasts with available observations, a procedure referred as expert tuning. A practicable objective multi-variate calibration method build on a quadratic meta-model (MM), that has been applied for a regional climate model (RCM) has shown to be at least as good as expert tuning. Based on these results, an approach to implement the methodology to an NWP model is presented in this study. Challenges in transferring the methodology from RCM to NWP are not only restricted to the use of higher resolution and different time scales. The sensitivity of the NWP model quality with respect to the model parameter space has to be clarified, as well as optimize the overall procedure, in terms of required amount of computing resources for the calibration of an NWP model. Three free model parameters affecting mainly turbulence parameterization schemes were originally selected with respect to their influence on the variables associated to daily forecasts such as daily minimum and maximum 2 m temperature as well as 24 h accumulated precipitation. Preliminary results indicate that it is both affordable in terms of computer resources and meaningful in terms of improved forecast quality. In addition, the proposed methodology has the advantage of being a replicable procedure that can be applied when an updated model version is launched and/or customize the same model implementation over different climatological areas.

  20. A monolithic 3D-0D coupled closed-loop model of the heart and the vascular system: Experiment-based parameter estimation for patient-specific cardiac mechanics.

    PubMed

    Hirschvogel, Marc; Bassilious, Marina; Jagschies, Lasse; Wildhirt, Stephen M; Gee, Michael W

    2016-10-15

    A model for patient-specific cardiac mechanics simulation is introduced, incorporating a 3-dimensional finite element model of the ventricular part of the heart, which is coupled to a reduced-order 0-dimensional closed-loop vascular system, heart valve, and atrial chamber model. The ventricles are modeled by a nonlinear orthotropic passive material law. The electrical activation is mimicked by a prescribed parameterized active stress acting along a generic muscle fiber orientation. Our activation function is constructed such that the start of ventricular contraction and relaxation as well as the active stress curve's slope are parameterized. The imaging-based patient-specific ventricular model is prestressed to low end-diastolic pressure to account for the imaged, stressed configuration. Visco-elastic Robin boundary conditions are applied to the heart base and the epicardium to account for the embedding surrounding. We treat the 3D solid-0D fluid interaction as a strongly coupled monolithic problem, which is consistently linearized with respect to 3D solid and 0D fluid model variables to allow for a Newton-type solution procedure. The resulting coupled linear system of equations is solved iteratively in every Newton step using 2  ×  2 physics-based block preconditioning. Furthermore, we present novel efficient strategies for calibrating active contractile and vascular resistance parameters to experimental left ventricular pressure and stroke volume data gained in porcine experiments. Two exemplary states of cardiovascular condition are considered, namely, after application of vasodilatory beta blockers (BETA) and after injection of vasoconstrictive phenylephrine (PHEN). The parameter calibration to the specific individual and cardiovascular state at hand is performed using a 2-stage nonlinear multilevel method that uses a low-fidelity heart model to compute a parameter correction for the high-fidelity model optimization problem. We discuss 2 different low-fidelity model choices with respect to their ability to augment the parameter optimization. Because the periodic state conditions on the model (active stress, vascular pressures, and fluxes) are a priori unknown and also dependent on the parameters to be calibrated (and vice versa), we perform parameter calibration and periodic state condition estimation simultaneously. After a couple of heart beats, the calibration algorithm converges to a settled, periodic state because of conservation of blood volume within the closed-loop circulatory system. The proposed model and multilevel calibration method are cost-efficient and allow for an efficient determination of a patient-specific in silico heart model that reproduces physiological observations very well. Such an individual and state accurate model is an important predictive tool in intervention planning, assist device engineering and other medical applications. Copyright © 2016 John Wiley & Sons, Ltd.

  1. Optimum data weighting and error calibration for estimation of gravitational parameters

    NASA Technical Reports Server (NTRS)

    Lerch, Francis J.

    1989-01-01

    A new technique was developed for the weighting of data from satellite tracking systems in order to obtain an optimum least-squares solution and an error calibration for the solution parameters. Data sets from optical, electronic, and laser systems on 17 satellites in GEM-T1 Goddard Earth Model-T1 (GEM-T1) were employed toward application of this technique for gravity field parameters. Also GEM-T2 (31 satellites) was recently computed as a direct application of the method and is summarized. The method employs subset solutions of the data associated with the complete solution to agree with their error estimates. With the adjusted weights the process provides for an automatic calibration of the error estimates for the solution parameters. The data weights derived are generally much smaller than corresponding weights obtained from nominal values of observation accuracy or residuals. Independent tests show significant improvement for solutions with optimal weighting. The technique is general and may be applied to orbit parameters, station coordinates, or other parameters than the gravity model.

  2. White-light Interferometry using a Channeled Spectrum: II. Calibration Methods, Numerical and Experimental Results

    NASA Technical Reports Server (NTRS)

    Zhai, Chengxing; Milman, Mark H.; Regehr, Martin W.; Best, Paul K.

    2007-01-01

    In the companion paper, [Appl. Opt. 46, 5853 (2007)] a highly accurate white light interference model was developed from just a few key parameters characterized in terms of various moments of the source and instrument transmission function. We develop and implement the end-to-end process of calibrating these moment parameters together with the differential dispersion of the instrument and applying them to the algorithms developed in the companion paper. The calibration procedure developed herein is based on first obtaining the standard monochromatic parameters at the pixel level: wavenumber, phase, intensity, and visibility parameters via a nonlinear least-squares procedure that exploits the structure of the model. The pixel level parameters are then combined to obtain the required 'global' moment and dispersion parameters. The process is applied to both simulated scenarios of astrometric observations and to data from the microarcsecond metrology testbed (MAM), an interferometer testbed that has played a prominent role in the development of this technology.

  3. Improvement of Gaofen-3 Absolute Positioning Accuracy Based on Cross-Calibration

    PubMed Central

    Deng, Mingjun; Li, Jiansong

    2017-01-01

    The Chinese Gaofen-3 (GF-3) mission was launched in August 2016, equipped with a full polarimetric synthetic aperture radar (SAR) sensor in the C-band, with a resolution of up to 1 m. The absolute positioning accuracy of GF-3 is of great importance, and in-orbit geometric calibration is a key technology for improving absolute positioning accuracy. Conventional geometric calibration is used to accurately calibrate the geometric calibration parameters of the image (internal delay and azimuth shifts) using high-precision ground control data, which are highly dependent on the control data of the calibration field, but it remains costly and labor-intensive to monitor changes in GF-3’s geometric calibration parameters. Based on the positioning consistency constraint of the conjugate points, this study presents a geometric cross-calibration method for the rapid and accurate calibration of GF-3. The proposed method can accurately calibrate geometric calibration parameters without using corner reflectors and high-precision digital elevation models, thus improving absolute positioning accuracy of the GF-3 image. GF-3 images from multiple regions were collected to verify the absolute positioning accuracy after cross-calibration. The results show that this method can achieve a calibration accuracy as high as that achieved by the conventional field calibration method. PMID:29240675

  4. Tradeoffs among watershed model calibration targets for parameter estimation

    EPA Science Inventory

    Hydrologic models are commonly calibrated by optimizing a single objective function target to compare simulated and observed flows, although individual targets are influenced by specific flow modes. Nash-Sutcliffe efficiency (NSE) emphasizes flood peaks in evaluating simulation f...

  5. Calibration of a distributed hydrologic model for six European catchments using remote sensing data

    NASA Astrophysics Data System (ADS)

    Stisen, S.; Demirel, M. C.; Mendiguren González, G.; Kumar, R.; Rakovec, O.; Samaniego, L. E.

    2017-12-01

    While observed streamflow has been the single reference for most conventional hydrologic model calibration exercises, the availability of spatially distributed remote sensing observations provide new possibilities for multi-variable calibration assessing both spatial and temporal variability of different hydrologic processes. In this study, we first identify the key transfer parameters of the mesoscale Hydrologic Model (mHM) controlling both the discharge and the spatial distribution of actual evapotranspiration (AET) across six central European catchments (Elbe, Main, Meuse, Moselle, Neckar and Vienne). These catchments are selected based on their limited topographical and climatic variability which enables to evaluate the effect of spatial parameterization on the simulated evapotranspiration patterns. We develop a European scale remote sensing based actual evapotranspiration dataset at a 1 km grid scale driven primarily by land surface temperature observations from MODIS using the TSEB approach. Using the observed AET maps we analyze the potential benefits of incorporating spatial patterns from MODIS data to calibrate the mHM model. This model allows calibrating one-basin-at-a-time or all-basins-together using its unique structure and multi-parameter regionalization approach. Results will indicate any tradeoffs between spatial pattern and discharge simulation during model calibration and through validation against independent internal discharge locations. Moreover, added value on internal water balances will be analyzed.

  6. A surface hydrology model for regional vector borne disease models

    NASA Astrophysics Data System (ADS)

    Tompkins, Adrian; Asare, Ernest; Bomblies, Arne; Amekudzi, Leonard

    2016-04-01

    Small, sun-lit temporary pools that form during the rainy season are important breeding sites for many key mosquito vectors responsible for the transmission of malaria and other diseases. The representation of this surface hydrology in mathematical disease models is challenging, due to their small-scale, dependence on the terrain and the difficulty of setting soil parameters. Here we introduce a model that represents the temporal evolution of the aggregate statistics of breeding sites in a single pond fractional coverage parameter. The model is based on a simple, geometrical assumption concerning the terrain, and accounts for the processes of surface runoff, pond overflow, infiltration and evaporation. Soil moisture, soil properties and large-scale terrain slope are accounted for using a calibration parameter that sets the equivalent catchment fraction. The model is calibrated and then evaluated using in situ pond measurements in Ghana and ultra-high (10m) resolution explicit simulations for a village in Niger. Despite the model's simplicity, it is shown to reproduce the variability and mean of the pond aggregate water coverage well for both locations and validation techniques. Example malaria simulations for Uganda will be shown using this new scheme with a generic calibration setting, evaluated using district malaria case data. Possible methods for implementing regional calibration will be briefly discussed.

  7. Integrating ecosystems measurements from multiple eddy-covariance sites to a simple model of ecosystem process - Are there possibilities for a uniform model calibration?

    NASA Astrophysics Data System (ADS)

    Minunno, Francesco; Peltoniemi, Mikko; Launiainen, Samuli; Mäkelä, Annikki

    2014-05-01

    Biogeochemical models quantify the material and energy flux exchanges between biosphere, atmosphere and soil, however there is still considerable uncertainty underpinning model structure and parametrization. The increasing availability of data from of multiple sources provides useful information for model calibration and validation at different space and time scales. We calibrated a simplified ecosystem process model PRELES to data from multiple sites. In this work we had the following objective: to compare a multi-site calibration and site-specific calibrations, in order to test if PRELES is a model of general applicability, and to test how well one parameterization can predict ecosystem fluxes. Model calibration and evaluation were carried out by the means of the Bayesian method; Bayesian calibration (BC) and Bayesian model comparison (BMC) were used to quantify the uncertainty in model parameters and model structure. Evapotranspiration (ET) and gross primary production (GPP) measurements collected in 9 sites of Finland and Sweden were used in the study; half dataset was used for model calibrations and half for the comparative analyses. 10 BCs were performed; the model was independently calibrated for each of the nine sites (site-specific calibrations) and a multi-site calibration was achieved using the data from all the sites in one BC. Then 9 BMCs were carried out, one for each site, using output from the multi-site and the site-specific versions of PRELES. Similar estimates were obtained for the parameters at which model outputs are most sensitive. Not surprisingly, the joint posterior distribution achieved through the multi-site calibration was characterized by lower uncertainty, because more data were involved in the calibration process. No significant differences were encountered in the prediction of the multi-site and site-specific versions of PRELES, and after BMC, we concluded that the model can be reliably used at regional scale to simulate carbon and water fluxes of Boreal forests. Despite being a simple model, PRELES provided good estimates of GPP and ET; only for one site PRELES multi-site version underestimated water fluxes. Our study implies convergence of GPP and water processes in boreal zone to the extent that their plausible prediction is possible with a simple model using global parameterization.

  8. Robust camera calibration for sport videos using court models

    NASA Astrophysics Data System (ADS)

    Farin, Dirk; Krabbe, Susanne; de With, Peter H. N.; Effelsberg, Wolfgang

    2003-12-01

    We propose an automatic camera calibration algorithm for court sports. The obtained camera calibration parameters are required for applications that need to convert positions in the video frame to real-world coordinates or vice versa. Our algorithm uses a model of the arrangement of court lines for calibration. Since the court model can be specified by the user, the algorithm can be applied to a variety of different sports. The algorithm starts with a model initialization step which locates the court in the image without any user assistance or a-priori knowledge about the most probable position. Image pixels are classified as court line pixels if they pass several tests including color and local texture constraints. A Hough transform is applied to extract line elements, forming a set of court line candidates. The subsequent combinatorial search establishes correspondences between lines in the input image and lines from the court model. For the succeeding input frames, an abbreviated calibration algorithm is used, which predicts the camera parameters for the new image and optimizes the parameters using a gradient-descent algorithm. We have conducted experiments on a variety of sport videos (tennis, volleyball, and goal area sequences of soccer games). Video scenes with considerable difficulties were selected to test the robustness of the algorithm. Results show that the algorithm is very robust to occlusions, partial court views, bad lighting conditions, or shadows.

  9. Simultaneous calibration of end-member thermodynamic data and solution properties with correlated uncertainties

    NASA Astrophysics Data System (ADS)

    Antoshechkina, P. M.; Wolf, A. S.; Hamecher, E. A.; Asimow, P. D.; Ghiorso, M. S.

    2013-12-01

    Community databases such as EarthChem, LEPR, and AMCSD both increase demand for quantitative petrological tools, including thermodynamic models like the MELTS family of algorithms, and are invaluable in development of such tools. The need to extend existing solid solution models to include minor components such as Cr and Na has been evident for years but as the number of components increases it becomes impossible to completely separate derivation of end-member thermodynamic data from calibration of solution properties. In Hamecher et al. (2012; 2013) we developed a calibration scheme that directly interfaces with a MySQL database based on LEPR, with volume data from AMCSD and elsewhere. Here we combine that scheme with a Bayesian approach, where independent constraints on parameter values (e.g. existence of miscibility gaps) are combined with uncertainty propagation to give a more reliable best-fit along with associated model uncertainties. We illustrate the scheme with a new model of molar volume for (Ca,Fe,Mg,Mn,Na)3(Al,Cr,Fe3+,Fe2+,Mg,Mn,Si,Ti)2Si3O12 cubic garnets. For a garnet in this chemical system, the model molar volume is obtained by adding excess volume terms to a linear combination of nine independent end-member volumes. The model calibration is broken into three main stages: (1) estimation of individual end-member thermodynamic properties; (2) calibration of standard state volumes for all available independent and dependent end members; (3) fitting of binary and mixed composition data. For each calibration step, the goodness-of-fit includes weighted residuals as well as χ2-like penalty terms representing the (not necessarily Gaussian) prior constraints on parameter values. Using the Bayesian approach, uncertainties are correctly propagated forward to subsequent steps, allowing determination of final parameter values and correlated uncertainties that account for the entire calibration process. For the aluminosilicate garnets, optimal values of the bulk modulus and its pressure derivative are obtained by fitting published compression data using the Vinet equation of state, with the Mie-Grüneisen-Debye thermal pressure formalism to model thermal expansion. End-member thermal parameters are obtained by fitting volume data while ensuring that the heat capacity is consistent with the thermodynamic database of Berman and co-workers. For other end members, data for related compositions are used where such data exist; otherwise ultrasonic data or density functional theory results are taken or, for thermal parameters, systematics in cation radii are used. In stages (2) and (3) the remaining data at ambient conditions are fit. Using this step-wise calibration scheme, most parameters are modified little by subsequent calibration steps but some, such as the standard state volume of the Ti-bearing end member, can vary within calculated uncertainties. The final model satisfies desired criteria and fits almost all the data (more than 1000 points); only excess parameters that are justified by the data are activated. The scheme can be easily extended to calibration of end-member and solution properties from experimental phase equilibria. As a first step we obtain the internally consistent standard state entropy and enthalpy of formation for knorringite and discuss differences between our results and those of Klemme and co-workers.

  10. Reducing equifinality of hydrological models by integrating Functional Streamflow Disaggregation

    NASA Astrophysics Data System (ADS)

    Lüdtke, Stefan; Apel, Heiko; Nied, Manuela; Carl, Peter; Merz, Bruno

    2014-05-01

    A universal problem of the calibration of hydrological models is the equifinality of different parameter sets derived from the calibration of models against total runoff values. This is an intrinsic problem stemming from the quality of the calibration data and the simplified process representation by the model. However, discharge data contains additional information which can be extracted by signal processing methods. An analysis specifically developed for the disaggregation of runoff time series into flow components is the Functional Streamflow Disaggregation (FSD; Carl & Behrendt, 2008). This method is used in the calibration of an implementation of the hydrological model SWIM in a medium sized watershed in Thailand. FSD is applied to disaggregate the discharge time series into three flow components which are interpreted as base flow, inter-flow and surface runoff. In addition to total runoff, the model is calibrated against these three components in a modified GLUE analysis, with the aim to identify structural model deficiencies, assess the internal process representation and to tackle equifinality. We developed a model dependent (MDA) approach calibrating the model runoff components against the FSD components, and a model independent (MIA) approach comparing the FSD of the model results and the FSD of calibration data. The results indicate, that the decomposition provides valuable information for the calibration. Particularly MDA highlights and discards a number of standard GLUE behavioural models underestimating the contribution of soil water to river discharge. Both, MDA and MIA yield to a reduction of the parameter ranges by a factor up to 3 in comparison to standard GLUE. Based on these results, we conclude that the developed calibration approach is able to reduce the equifinality of hydrological model parameterizations. The effect on the uncertainty of the model predictions is strongest by applying MDA and shows only minor reductions for MIA. Besides further validation of FSD, the next steps include an extension of the study to different catchments and other hydrological models with a similar structure.

  11. TH-E-BRF-06: Kinetic Modeling of Tumor Response to Fractionated Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong, H; Gordon, J; Chetty, I

    2014-06-15

    Purpose: Accurate calibration of radiobiological parameters is crucial to predicting radiation treatment response. Modeling differences may have a significant impact on calibrated parameters. In this study, we have integrated two existing models with kinetic differential equations to formulate a new tumor regression model for calibrating radiobiological parameters for individual patients. Methods: A system of differential equations that characterizes the birth-and-death process of tumor cells in radiation treatment was analytically solved. The solution of this system was used to construct an iterative model (Z-model). The model consists of three parameters: tumor doubling time Td, half-life of dying cells Tr and cellmore » survival fraction SFD under dose D. The Jacobian determinant of this model was proposed as a constraint to optimize the three parameters for six head and neck cancer patients. The derived parameters were compared with those generated from the two existing models, Chvetsov model (C-model) and Lim model (L-model). The C-model and L-model were optimized with the parameter Td fixed. Results: With the Jacobian-constrained Z-model, the mean of the optimized cell survival fractions is 0.43±0.08, and the half-life of dying cells averaged over the six patients is 17.5±3.2 days. The parameters Tr and SFD optimized with the Z-model differ by 1.2% and 20.3% from those optimized with the Td-fixed C-model, and by 32.1% and 112.3% from those optimized with the Td-fixed L-model, respectively. Conclusion: The Z-model was analytically constructed from the cellpopulation differential equations to describe changes in the number of different tumor cells during the course of fractionated radiation treatment. The Jacobian constraints were proposed to optimize the three radiobiological parameters. The developed modeling and optimization methods may help develop high-quality treatment regimens for individual patients.« less

  12. Derivation and calibration of a gas metal arc welding (GMAW) dynamic droplet model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reutzel, E.W.; Einerson, C.J.; Johnson, J.A.

    1996-12-31

    A rudimentary, existing dynamic model for droplet growth and detachment in gas metal arc welding (GMAW) was improved and calibrated to match experimental data. The model simulates droplets growing at the end of an imaginary spring. Mass is added to the drop as the electrode melts, the droplet grows, and the spring is displaced. Detachment occurs when one of two criteria is met, and the amount of mass that is detached is a function of the droplet velocity at the time of detachment. Improvements to the model include the addition of a second criterion for drop detachment, a more sophisticatedmore » model of the power supply and secondary electric circuit, and the incorporation of a variable electrode resistance. Relevant physical parameters in the model were adjusted during model calibration. The average current, droplet frequency, and parameter-space location of globular-to-streaming mode transition were used as criteria for tuning the model. The average current predicted by the calibrated model matched the experimental average current to within 5% over a wide range of operating conditions.« less

  13. Calibration of infiltration parameters on hydrological tank model using runoff coefficient of rational method

    NASA Astrophysics Data System (ADS)

    Suryoputro, Nugroho; Suhardjono, Soetopo, Widandi; Suhartanto, Ery

    2017-09-01

    In calibrating hydrological models, there are generally two stages of activity: 1) determining realistic model initial parameters in representing natural component physical processes, 2) entering initial parameter values which are then processed by trial error or automatically to obtain optimal values. To determine a realistic initial value, it takes experience and user knowledge of the model. This is a problem for beginner model users. This paper will present another approach to estimate the infiltration parameters in the tank model. The parameters will be approximated by the runoff coefficient of rational method. The value approach of infiltration parameter is simply described as the result of the difference in the percentage of total rainfall minus the percentage of runoff. It is expected that the results of this research will accelerate the calibration process of tank model parameters. The research was conducted on the sub-watershed Kali Bango in Malang Regency with an area of 239,71 km2. Infiltration measurements were carried out in January 2017 to March 2017. Analysis of soil samples at Soil Physics Laboratory, Department of Soil Science, Faculty of Agriculture, Universitas Brawijaya. Rainfall and discharge data were obtained from UPT PSAWS Bango Gedangan in Malang. Temperature, evaporation, relative humidity, wind speed data was obtained from BMKG station of Karang Ploso, Malang. The results showed that the infiltration coefficient at the top tank outlet can be determined its initial value by using the approach of the coefficient of runoff rational method with good result.

  14. Muscle Synergies May Improve Optimization Prediction of Knee Contact Forces During Walking

    PubMed Central

    Walter, Jonathan P.; Kinney, Allison L.; Banks, Scott A.; D'Lima, Darryl D.; Besier, Thor F.; Lloyd, David G.; Fregly, Benjamin J.

    2014-01-01

    The ability to predict patient-specific joint contact and muscle forces accurately could improve the treatment of walking-related disorders. Muscle synergy analysis, which decomposes a large number of muscle electromyographic (EMG) signals into a small number of synergy control signals, could reduce the dimensionality and thus redundancy of the muscle and contact force prediction process. This study investigated whether use of subject-specific synergy controls can improve optimization prediction of knee contact forces during walking. To generate the predictions, we performed mixed dynamic muscle force optimizations (i.e., inverse skeletal dynamics with forward muscle activation and contraction dynamics) using data collected from a subject implanted with a force-measuring knee replacement. Twelve optimization problems (three cases with four subcases each) that minimized the sum of squares of muscle excitations were formulated to investigate how synergy controls affect knee contact force predictions. The three cases were: (1) Calibrate+Match where muscle model parameter values were calibrated and experimental knee contact forces were simultaneously matched, (2) Precalibrate+Predict where experimental knee contact forces were predicted using precalibrated muscle model parameters values from the first case, and (3) Calibrate+Predict where muscle model parameter values were calibrated and experimental knee contact forces were simultaneously predicted, all while matching inverse dynamic loads at the hip, knee, and ankle. The four subcases used either 44 independent controls or five synergy controls with and without EMG shape tracking. For the Calibrate+Match case, all four subcases closely reproduced the measured medial and lateral knee contact forces (R2 ≥ 0.94, root-mean-square (RMS) error < 66 N), indicating sufficient model fidelity for contact force prediction. For the Precalibrate+Predict and Calibrate+Predict cases, synergy controls yielded better contact force predictions (0.61 < R2 < 0.90, 83 N < RMS error < 161 N) than did independent controls (-0.15 < R2 < 0.79, 124 N < RMS error < 343 N) for corresponding subcases. For independent controls, contact force predictions improved when precalibrated model parameter values or EMG shape tracking was used. For synergy controls, contact force predictions were relatively insensitive to how model parameter values were calibrated, while EMG shape tracking made lateral (but not medial) contact force predictions worse. For the subject and optimization cost function analyzed in this study, use of subject-specific synergy controls improved the accuracy of knee contact force predictions, especially for lateral contact force when EMG shape tracking was omitted, and reduced prediction sensitivity to uncertainties in muscle model parameter values. PMID:24402438

  15. Muscle synergies may improve optimization prediction of knee contact forces during walking.

    PubMed

    Walter, Jonathan P; Kinney, Allison L; Banks, Scott A; D'Lima, Darryl D; Besier, Thor F; Lloyd, David G; Fregly, Benjamin J

    2014-02-01

    The ability to predict patient-specific joint contact and muscle forces accurately could improve the treatment of walking-related disorders. Muscle synergy analysis, which decomposes a large number of muscle electromyographic (EMG) signals into a small number of synergy control signals, could reduce the dimensionality and thus redundancy of the muscle and contact force prediction process. This study investigated whether use of subject-specific synergy controls can improve optimization prediction of knee contact forces during walking. To generate the predictions, we performed mixed dynamic muscle force optimizations (i.e., inverse skeletal dynamics with forward muscle activation and contraction dynamics) using data collected from a subject implanted with a force-measuring knee replacement. Twelve optimization problems (three cases with four subcases each) that minimized the sum of squares of muscle excitations were formulated to investigate how synergy controls affect knee contact force predictions. The three cases were: (1) Calibrate+Match where muscle model parameter values were calibrated and experimental knee contact forces were simultaneously matched, (2) Precalibrate+Predict where experimental knee contact forces were predicted using precalibrated muscle model parameters values from the first case, and (3) Calibrate+Predict where muscle model parameter values were calibrated and experimental knee contact forces were simultaneously predicted, all while matching inverse dynamic loads at the hip, knee, and ankle. The four subcases used either 44 independent controls or five synergy controls with and without EMG shape tracking. For the Calibrate+Match case, all four subcases closely reproduced the measured medial and lateral knee contact forces (R2 ≥ 0.94, root-mean-square (RMS) error < 66 N), indicating sufficient model fidelity for contact force prediction. For the Precalibrate+Predict and Calibrate+Predict cases, synergy controls yielded better contact force predictions (0.61 < R2 < 0.90, 83 N < RMS error < 161 N) than did independent controls (-0.15 < R2 < 0.79, 124 N < RMS error < 343 N) for corresponding subcases. For independent controls, contact force predictions improved when precalibrated model parameter values or EMG shape tracking was used. For synergy controls, contact force predictions were relatively insensitive to how model parameter values were calibrated, while EMG shape tracking made lateral (but not medial) contact force predictions worse. For the subject and optimization cost function analyzed in this study, use of subject-specific synergy controls improved the accuracy of knee contact force predictions, especially for lateral contact force when EMG shape tracking was omitted, and reduced prediction sensitivity to uncertainties in muscle model parameter values.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raoult, Nina M.; Jupp, Tim E.; Cox, Peter M.

    Land-surface models (LSMs) are crucial components of the Earth system models (ESMs) that are used to make coupled climate–carbon cycle projections for the 21st century. The Joint UK Land Environment Simulator (JULES) is the land-surface model used in the climate and weather forecast models of the UK Met Office. JULES is also extensively used offline as a land-surface impacts tool, forced with climatologies into the future. In this study, JULES is automatically differentiated with respect to JULES parameters using commercial software from FastOpt, resulting in an analytical gradient, or adjoint, of the model. Using this adjoint, the adJULES parameter estimationmore » system has been developed to search for locally optimum parameters by calibrating against observations. This paper describes adJULES in a data assimilation framework and demonstrates its ability to improve the model–data fit using eddy-covariance measurements of gross primary production (GPP) and latent heat (LE) fluxes. adJULES also has the ability to calibrate over multiple sites simultaneously. This feature is used to define new optimised parameter values for the five plant functional types (PFTs) in JULES. The optimised PFT-specific parameters improve the performance of JULES at over 85 % of the sites used in the study, at both the calibration and evaluation stages. Furthermore, the new improved parameters for JULES are presented along with the associated uncertainties for each parameter.« less

  17. Modelling Kepler red giants in eclipsing binaries: calibrating the mixing-length parameter with asteroseismology

    NASA Astrophysics Data System (ADS)

    Li, Tanda; Bedding, Timothy R.; Huber, Daniel; Ball, Warrick H.; Stello, Dennis; Murphy, Simon J.; Bland-Hawthorn, Joss

    2018-03-01

    Stellar models rely on a number of free parameters. High-quality observations of eclipsing binary stars observed by Kepler offer a great opportunity to calibrate model parameters for evolved stars. Our study focuses on six Kepler red giants with the goal of calibrating the mixing-length parameter of convection as well as the asteroseismic surface term in models. We introduce a new method to improve the identification of oscillation modes that exploits theoretical frequencies to guide the mode identification (`peak-bagging') stage of the data analysis. Our results indicate that the convective mixing-length parameter (α) is ≈14 per cent larger for red giants than for the Sun, in agreement with recent results from modelling the APOGEE stars. We found that the asteroseismic surface term (i.e. the frequency offset between the observed and predicted modes) correlates with stellar parameters (Teff, log g) and the mixing-length parameter. This frequency offset generally decreases as giants evolve. The two coefficients a-1 and a3 for the inverse and cubic terms that have been used to describe the surface term correction are found to correlate linearly. The effect of the surface term is also seen in the p-g mixed modes; however, established methods for correcting the effect are not able to properly correct the g-dominated modes in late evolved stars.

  18. Calibration of groundwater vulnerability mapping using the generalized reduced gradient method.

    PubMed

    Elçi, Alper

    2017-12-01

    Groundwater vulnerability assessment studies are essential in water resources management. Overlay-and-index methods such as DRASTIC are widely used for mapping of groundwater vulnerability, however, these methods mainly suffer from a subjective selection of model parameters. The objective of this study is to introduce a calibration procedure that results in a more accurate assessment of groundwater vulnerability. The improvement of the assessment is formulated as a parameter optimization problem using an objective function that is based on the correlation between actual groundwater contamination and vulnerability index values. The non-linear optimization problem is solved with the generalized-reduced-gradient (GRG) method, which is numerical algorithm based optimization method. To demonstrate the applicability of the procedure, a vulnerability map for the Tahtali stream basin is calibrated using nitrate concentration data. The calibration procedure is easy to implement and aims the maximization of correlation between observed pollutant concentrations and groundwater vulnerability index values. The influence of each vulnerability parameter in the calculation of the vulnerability index is assessed by performing a single-parameter sensitivity analysis. Results of the sensitivity analysis show that all factors are effective on the final vulnerability index. Calibration of the vulnerability map improves the correlation between index values and measured nitrate concentrations by 19%. The regression coefficient increases from 0.280 to 0.485. It is evident that the spatial distribution and the proportions of vulnerability class areas are significantly altered with the calibration process. Although the applicability of the calibration method is demonstrated on the DRASTIC model, the applicability of the approach is not specific to a certain model and can also be easily applied to other overlay-and-index methods. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Calibration of groundwater vulnerability mapping using the generalized reduced gradient method

    NASA Astrophysics Data System (ADS)

    Elçi, Alper

    2017-12-01

    Groundwater vulnerability assessment studies are essential in water resources management. Overlay-and-index methods such as DRASTIC are widely used for mapping of groundwater vulnerability, however, these methods mainly suffer from a subjective selection of model parameters. The objective of this study is to introduce a calibration procedure that results in a more accurate assessment of groundwater vulnerability. The improvement of the assessment is formulated as a parameter optimization problem using an objective function that is based on the correlation between actual groundwater contamination and vulnerability index values. The non-linear optimization problem is solved with the generalized-reduced-gradient (GRG) method, which is numerical algorithm based optimization method. To demonstrate the applicability of the procedure, a vulnerability map for the Tahtali stream basin is calibrated using nitrate concentration data. The calibration procedure is easy to implement and aims the maximization of correlation between observed pollutant concentrations and groundwater vulnerability index values. The influence of each vulnerability parameter in the calculation of the vulnerability index is assessed by performing a single-parameter sensitivity analysis. Results of the sensitivity analysis show that all factors are effective on the final vulnerability index. Calibration of the vulnerability map improves the correlation between index values and measured nitrate concentrations by 19%. The regression coefficient increases from 0.280 to 0.485. It is evident that the spatial distribution and the proportions of vulnerability class areas are significantly altered with the calibration process. Although the applicability of the calibration method is demonstrated on the DRASTIC model, the applicability of the approach is not specific to a certain model and can also be easily applied to other overlay-and-index methods.

  20. Parameter estimation and sensitivity analysis in an agent-based model of Leishmania major infection

    PubMed Central

    Jones, Douglas E.; Dorman, Karin S.

    2009-01-01

    Computer models of disease take a systems biology approach toward understanding host-pathogen interactions. In particular, data driven computer model calibration is the basis for inference of immunological and pathogen parameters, assessment of model validity, and comparison between alternative models of immune or pathogen behavior. In this paper we describe the calibration and analysis of an agent-based model of Leishmania major infection. A model of macrophage loss following uptake of necrotic tissue is proposed to explain macrophage depletion following peak infection. Using Gaussian processes to approximate the computer code, we perform a sensitivity analysis to identify important parameters and to characterize their influence on the simulated infection. The analysis indicates that increasing growth rate can favor or suppress pathogen loads, depending on the infection stage and the pathogen’s ability to avoid detection. Subsequent calibration of the model against previously published biological observations suggests that L. major has a relatively slow growth rate and can replicate for an extended period of time before damaging the host cell. PMID:19837088

  1. Distribution system model calibration with big data from AMI and PV inverters

    DOE PAGES

    Peppanen, Jouni; Reno, Matthew J.; Broderick, Robert J.; ...

    2016-03-03

    Efficient management and coordination of distributed energy resources with advanced automation schemes requires accurate distribution system modeling and monitoring. Big data from smart meters and photovoltaic (PV) micro-inverters can be leveraged to calibrate existing utility models. This paper presents computationally efficient distribution system parameter estimation algorithms to improve the accuracy of existing utility feeder radial secondary circuit model parameters. The method is demonstrated using a real utility feeder model with advanced metering infrastructure (AMI) and PV micro-inverters, along with alternative parameter estimation approaches that can be used to improve secondary circuit models when limited measurement data is available. Lastly, themore » parameter estimation accuracy is demonstrated for both a three-phase test circuit with typical secondary circuit topologies and single-phase secondary circuits in a real mixed-phase test system.« less

  2. Distribution system model calibration with big data from AMI and PV inverters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peppanen, Jouni; Reno, Matthew J.; Broderick, Robert J.

    Efficient management and coordination of distributed energy resources with advanced automation schemes requires accurate distribution system modeling and monitoring. Big data from smart meters and photovoltaic (PV) micro-inverters can be leveraged to calibrate existing utility models. This paper presents computationally efficient distribution system parameter estimation algorithms to improve the accuracy of existing utility feeder radial secondary circuit model parameters. The method is demonstrated using a real utility feeder model with advanced metering infrastructure (AMI) and PV micro-inverters, along with alternative parameter estimation approaches that can be used to improve secondary circuit models when limited measurement data is available. Lastly, themore » parameter estimation accuracy is demonstrated for both a three-phase test circuit with typical secondary circuit topologies and single-phase secondary circuits in a real mixed-phase test system.« less

  3. Dependency of EBT2 film calibration curve on postirradiation time

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Liyun, E-mail: liyunc@isu.edu.tw; Ding, Hueisch-Jy; Ho, Sheng-Yow

    2014-02-15

    Purpose: The Ashland Inc. product EBT2 film model is a widely used quality assurance tool, especially for verification of 2-dimensional dose distributions. In general, the calibration film and the dose measurement film are irradiated, scanned, and calibrated at the same postirradiation time (PIT), 1-2 days after the films are irradiated. However, for a busy clinic or in some special situations, the PIT for the dose measurement film may be different from that of the calibration film. In this case, the measured dose will be incorrect. This paper proposed a film calibration method that includes the effect of PIT. Methods: Themore » dose versus film optical density was fitted to a power function with three parameters. One of these parameters was PIT dependent, while the other two were found to be almost constant with a standard deviation of the mean less than 4%. The PIT-dependent parameter was fitted to another power function of PIT. The EBT2 film model was calibrated using the PDD method with 14 different PITs ranging from 1 h to 2 months. Ten of the fourteen PITs were used for finding the fitting parameters, and the other four were used for testing the model. Results: The verification test shows that the differences between the delivered doses and the film doses calculated with this modeling were mainly within 2% for delivered doses above 60 cGy, and the total uncertainties were generally under 5%. The errors and total uncertainties of film dose calculation were independent of the PIT using the proposed calibration procedure. However, the fitting uncertainty increased with decreasing dose or PIT, but stayed below 1.3% for this study. Conclusions: The EBT2 film dose can be modeled as a function of PIT. For the ease of routine calibration, five PITs were suggested to be used. It is recommended that two PITs be located in the fast developing period (1∼6 h), one in 1 ∼ 2 days, one around a week, and one around a month.« less

  4. Auto-calibration of a one-dimensional hydrodynamic-ecological model using a Monte Carlo approach: simulation of hypoxic events in a polymictic lake

    NASA Astrophysics Data System (ADS)

    Luo, L.

    2011-12-01

    Automated calibration of complex deterministic water quality models with a large number of biogeochemical parameters can reduce time-consuming iterative simulations involving empirical judgements of model fit. We undertook auto-calibration of the one-dimensional hydrodynamic-ecological lake model DYRESM-CAEDYM, using a Monte Carlo sampling (MCS) method, in order to test the applicability of this procedure for shallow, polymictic Lake Rotorua (New Zealand). The calibration procedure involved independently minimising the root-mean-square-error (RMSE), maximizing the Pearson correlation coefficient (r) and Nash-Sutcliffe efficient coefficient (Nr) for comparisons of model state variables against measured data. An assigned number of parameter permutations was used for 10,000 simulation iterations. The 'optimal' temperature calibration produced a RMSE of 0.54 °C, Nr-value of 0.99 and r-value of 0.98 through the whole water column based on comparisons with 540 observed water temperatures collected between 13 July 2007 - 13 January 2009. The modeled bottom dissolved oxygen concentration (20.5 m below surface) was compared with 467 available observations. The calculated RMSE of the simulations compared with the measurements was 1.78 mg L-1, the Nr-value was 0.75 and the r-value was 0.87. The autocalibrated model was further tested for an independent data set by simulating bottom-water hypoxia events for the period 15 January 2009 to 8 June 2011 (875 days). This verification produced an accurate simulation of five hypoxic events corresponding to DO < 2 mg L-1 during summer of 2009-2011. The RMSE was 2.07 mg L-1, Nr-value 0.62 and r-value of 0.81, based on the available data set of 738 days. The auto-calibration software of DYRESM-CAEDYM developed here is substantially less time-consuming and more efficient in parameter optimisation than traditional manual calibration which has been the standard tool practiced for similar complex water quality models.

  5. Application of the US Geological Survey's precipitation-runoff modeling system to Williams Draw and Bush Draw basins, Jackson County, Colorado

    USGS Publications Warehouse

    Kuhn, Gerhard

    1988-01-01

    The U.S. Geological Survey 's precipitation-runoff modeling system was calibrated for this study by using daily streamflow data for April through September, 1980 and 1981, from the Williams Draw basin in Jackson County, Colorado. The calibrated model then was verified by using daily streamflow data for April through September, 1982 and 1983. Transferability of the model was tested by application to adjoining Bush Draw basin by using daily streamflow data for April through September, 1981 through 1983. Four model parameters were optimized in the calibration: (1) BST, base air temperature used to determine the form of precipitation (rain, snow, or a mixture); (2) SMAX, maximum available water-holding capacity of the soil zone; (3) TRNCF, transmission coefficient for the vegetation canopy over the snowpack; and (4) DSCOR, daily precipitation correction factor for snow. For calibration and verification, volume and timing of simulated streamflow were reasonably close to recorded streamflow; differences were least during years that had considerable snowpack accumulation and were most during years that had minimal or no snowpack accumulation. Calibration and optimization of parameters were facilitated by snowpack water-equivalent data. Application of the model to Bush Draw basin to test for transferability indicated inaccurate results in simulation of streamflow volume. Weighted values of SMAX, TRNCF, and DSCOR from the calibration basin were used for Bush Draw. The inadequate results obtained by use of weighted parameters indicate that snowpack water-equivalent data are needed for successful application of the precipitation-runoff modeling system in this area, because frequent windy conditions cause variations in snowpack accumulation. (USGS)

  6. A Fast Surrogate-facilitated Data-driven Bayesian Approach to Uncertainty Quantification of a Regional Groundwater Flow Model with Structural Error

    NASA Astrophysics Data System (ADS)

    Xu, T.; Valocchi, A. J.; Ye, M.; Liang, F.

    2016-12-01

    Due to simplification and/or misrepresentation of the real aquifer system, numerical groundwater flow and solute transport models are usually subject to model structural error. During model calibration, the hydrogeological parameters may be overly adjusted to compensate for unknown structural error. This may result in biased predictions when models are used to forecast aquifer response to new forcing. In this study, we extend a fully Bayesian method [Xu and Valocchi, 2015] to calibrate a real-world, regional groundwater flow model. The method uses a data-driven error model to describe model structural error and jointly infers model parameters and structural error. In this study, Bayesian inference is facilitated using high performance computing and fast surrogate models. The surrogate models are constructed using machine learning techniques to emulate the response simulated by the computationally expensive groundwater model. We demonstrate in the real-world case study that explicitly accounting for model structural error yields parameter posterior distributions that are substantially different from those derived by the classical Bayesian calibration that does not account for model structural error. In addition, the Bayesian with error model method gives significantly more accurate prediction along with reasonable credible intervals.

  7. Hydrochemical tracers in the middle Rio Grande Basin, USA: 2. Calibration of a groundwater-flow model

    USGS Publications Warehouse

    Sanford, W.E.; Plummer, Niel; McAda, D.P.; Bexfield, L.M.; Anderholm, S.K.

    2004-01-01

    The calibration of a groundwater model with the aid of hydrochemical data has demonstrated that low recharge rates in the Middle Rio Grande Basin may be responsible for a groundwater trough in the center of the basin and for a substantial amount of Rio Grande water in the regional flow system. Earlier models of the basin had difficulty reproducing these features without any hydrochemical data to constrain the rates and distribution of recharge. The objective of this study was to use the large quantity of available hydrochemical data to help calibrate the model parameters, including the recharge rates. The model was constructed using the US Geological Survey's software MODFLOW, MODPATH, and UCODE, and calibrated using 14C activities and the positions of certain flow zones defined by the hydrochemical data. Parameter estimation was performed using a combination of nonlinear regression techniques and a manual search for the minimum difference between field and simulated observations. The calibrated recharge values were substantially smaller than those used in previous models. Results from a 30,000-year transient simulation suggest that recharge was at a maximum about 20,000 years ago and at a minimum about 10,000 years ago. ?? Springer-Verlag 2004.

  8. Users manual for an expert system (HSPEXP) for calibration of the hydrological simulation program; Fortran

    USGS Publications Warehouse

    Lumb, A.M.; McCammon, R.B.; Kittle, J.L.

    1994-01-01

    Expert system software was developed to assist less experienced modelers with calibration of a watershed model and to facilitate the interaction between the modeler and the modeling process not provided by mathematical optimization. A prototype was developed with artificial intelligence software tools, a knowledge engineer, and two domain experts. The manual procedures used by the domain experts were identified and the prototype was then coded by the knowledge engineer. The expert system consists of a set of hierarchical rules designed to guide the calibration of the model through a systematic evaluation of model parameters. When the prototype was completed and tested, it was rewritten for portability and operational use and was named HSPEXP. The watershed model Hydrological Simulation Program--Fortran (HSPF) is used in the expert system. This report is the users manual for HSPEXP and contains a discussion of the concepts and detailed steps and examples for using the software. The system has been tested on watersheds in the States of Washington and Maryland, and the system correctly identified the model parameters to be adjusted and the adjustments led to improved calibration.

  9. Bayesian inversions of a dynamic vegetation model at four European grassland sites

    NASA Astrophysics Data System (ADS)

    Minet, J.; Laloy, E.; Tychon, B.; Francois, L.

    2015-05-01

    Eddy covariance data from four European grassland sites are used to probabilistically invert the CARAIB (CARbon Assimilation In the Biosphere) dynamic vegetation model (DVM) with 10 unknown parameters, using the DREAM(ZS) (DiffeRential Evolution Adaptive Metropolis) Markov chain Monte Carlo (MCMC) sampler. We focus on comparing model inversions, considering both homoscedastic and heteroscedastic eddy covariance residual errors, with variances either fixed a priori or jointly inferred together with the model parameters. Agreements between measured and simulated data during calibration are comparable with previous studies, with root mean square errors (RMSEs) of simulated daily gross primary productivity (GPP), ecosystem respiration (RECO) and evapotranspiration (ET) ranging from 1.73 to 2.19, 1.04 to 1.56 g C m-2 day-1 and 0.50 to 1.28 mm day-1, respectively. For the calibration period, using a homoscedastic eddy covariance residual error model resulted in a better agreement between measured and modelled data than using a heteroscedastic residual error model. However, a model validation experiment showed that CARAIB models calibrated considering heteroscedastic residual errors perform better. Posterior parameter distributions derived from using a heteroscedastic model of the residuals thus appear to be more robust. This is the case even though the classical linear heteroscedastic error model assumed herein did not fully remove heteroscedasticity of the GPP residuals. Despite the fact that the calibrated model is generally capable of fitting the data within measurement errors, systematic bias in the model simulations are observed. These are likely due to model inadequacies such as shortcomings in the photosynthesis modelling. Besides the residual error treatment, differences between model parameter posterior distributions among the four grassland sites are also investigated. It is shown that the marginal distributions of the specific leaf area and characteristic mortality time parameters can be explained by site-specific ecophysiological characteristics.

  10. Hierarchical calibration and validation of computational fluid dynamics models for solid sorbent-based carbon capture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lai, Canhai; Xu, Zhijie; Pan, Wenxiao

    2016-01-01

    To quantify the predictive confidence of a solid sorbent-based carbon capture design, a hierarchical validation methodology—consisting of basic unit problems with increasing physical complexity coupled with filtered model-based geometric upscaling has been developed and implemented. This paper describes the computational fluid dynamics (CFD) multi-phase reactive flow simulations and the associated data flows among different unit problems performed within the said hierarchical validation approach. The bench-top experiments used in this calibration and validation effort were carefully designed to follow the desired simple-to-complex unit problem hierarchy, with corresponding data acquisition to support model parameters calibrations at each unit problem level. A Bayesianmore » calibration procedure is employed and the posterior model parameter distributions obtained at one unit-problem level are used as prior distributions for the same parameters in the next-tier simulations. Overall, the results have demonstrated that the multiphase reactive flow models within MFIX can be used to capture the bed pressure, temperature, CO2 capture capacity, and kinetics with quantitative accuracy. The CFD modeling methodology and associated uncertainty quantification techniques presented herein offer a solid framework for estimating the predictive confidence in the virtual scale up of a larger carbon capture device.« less

  11. Calibration and compensation method of three-axis geomagnetic sensor based on pre-processing total least square iteration

    NASA Astrophysics Data System (ADS)

    Zhou, Y.; Zhang, X.; Xiao, W.

    2018-04-01

    As the geomagnetic sensor is susceptible to interference, a pre-processing total least square iteration method is proposed for calibration compensation. Firstly, the error model of the geomagnetic sensor is analyzed and the correction model is proposed, then the characteristics of the model are analyzed and converted into nine parameters. The geomagnetic data is processed by Hilbert transform (HHT) to improve the signal-to-noise ratio, and the nine parameters are calculated by using the combination of Newton iteration method and the least squares estimation method. The sifter algorithm is used to filter the initial value of the iteration to ensure that the initial error is as small as possible. The experimental results show that this method does not need additional equipment and devices, can continuously update the calibration parameters, and better than the two-step estimation method, it can compensate geomagnetic sensor error well.

  12. Analysis of regional rainfall-runoff parameters for the Lake Michigan Diversion hydrological modeling

    USGS Publications Warehouse

    Soong, David T.; Over, Thomas M.

    2015-01-01

    Recalibration of the HSPF parameters to the updated inputs and land covers was completed on two representative watershed models selected from the nine by using a manual method (HSPEXP) and an automatic method (PEST). The objective of the recalibration was to develop a regional parameter set that improves the accuracy in runoff volume prediction for the nine study watersheds. Knowledge about flow and watershed characteristics plays a vital role for validating the calibration in both manual and automatic methods. The best performing parameter set was determined by the automatic calibration method on a two-watershed model. Applying this newly determined parameter set to the nine watersheds for runoff volume simulation resulted in “very good” ratings in five watersheds, an improvement as compared to “very good” ratings achieved for three watersheds by the North Branch parameter set.

  13. On the applicability of surrogate-based Markov chain Monte Carlo-Bayesian inversion to the Community Land Model: Case studies at flux tower sites: SURROGATE-BASED MCMC FOR CLM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Maoyi; Ray, Jaideep; Hou, Zhangshuan

    2016-07-04

    The Community Land Model (CLM) has been widely used in climate and Earth system modeling. Accurate estimation of model parameters is needed for reliable model simulations and predictions under current and future conditions, respectively. In our previous work, a subset of hydrological parameters has been identified to have significant impact on surface energy fluxes at selected flux tower sites based on parameter screening and sensitivity analysis, which indicate that the parameters could potentially be estimated from surface flux observations at the towers. To date, such estimates do not exist. In this paper, we assess the feasibility of applying a Bayesianmore » model calibration technique to estimate CLM parameters at selected flux tower sites under various site conditions. The parameters are estimated as a joint probability density function (PDF) that provides estimates of uncertainty of the parameters being inverted, conditional on climatologically-average latent heat fluxes derived from observations. We find that the simulated mean latent heat fluxes from CLM using the calibrated parameters are generally improved at all sites when compared to those obtained with CLM simulations using default parameter sets. Further, our calibration method also results in credibility bounds around the simulated mean fluxes which bracket the measured data. The modes (or maximum a posteriori values) and 95% credibility intervals of the site-specific posterior PDFs are tabulated as suggested parameter values for each site. Analysis of relationships between the posterior PDFs and site conditions suggests that the parameter values are likely correlated with the plant functional type, which needs to be confirmed in future studies by extending the approach to more sites.« less

  14. On the applicability of surrogate-based MCMC-Bayesian inversion to the Community Land Model: Case studies at Flux tower sites

    DOE PAGES

    Huang, Maoyi; Ray, Jaideep; Hou, Zhangshuan; ...

    2016-06-01

    The Community Land Model (CLM) has been widely used in climate and Earth system modeling. Accurate estimation of model parameters is needed for reliable model simulations and predictions under current and future conditions, respectively. In our previous work, a subset of hydrological parameters has been identified to have significant impact on surface energy fluxes at selected flux tower sites based on parameter screening and sensitivity analysis, which indicate that the parameters could potentially be estimated from surface flux observations at the towers. To date, such estimates do not exist. In this paper, we assess the feasibility of applying a Bayesianmore » model calibration technique to estimate CLM parameters at selected flux tower sites under various site conditions. The parameters are estimated as a joint probability density function (PDF) that provides estimates of uncertainty of the parameters being inverted, conditional on climatologically average latent heat fluxes derived from observations. We find that the simulated mean latent heat fluxes from CLM using the calibrated parameters are generally improved at all sites when compared to those obtained with CLM simulations using default parameter sets. Further, our calibration method also results in credibility bounds around the simulated mean fluxes which bracket the measured data. The modes (or maximum a posteriori values) and 95% credibility intervals of the site-specific posterior PDFs are tabulated as suggested parameter values for each site. As a result, analysis of relationships between the posterior PDFs and site conditions suggests that the parameter values are likely correlated with the plant functional type, which needs to be confirmed in future studies by extending the approach to more sites.« less

  15. On the applicability of surrogate-based MCMC-Bayesian inversion to the Community Land Model: Case studies at Flux tower sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Maoyi; Ray, Jaideep; Hou, Zhangshuan

    The Community Land Model (CLM) has been widely used in climate and Earth system modeling. Accurate estimation of model parameters is needed for reliable model simulations and predictions under current and future conditions, respectively. In our previous work, a subset of hydrological parameters has been identified to have significant impact on surface energy fluxes at selected flux tower sites based on parameter screening and sensitivity analysis, which indicate that the parameters could potentially be estimated from surface flux observations at the towers. To date, such estimates do not exist. In this paper, we assess the feasibility of applying a Bayesianmore » model calibration technique to estimate CLM parameters at selected flux tower sites under various site conditions. The parameters are estimated as a joint probability density function (PDF) that provides estimates of uncertainty of the parameters being inverted, conditional on climatologically average latent heat fluxes derived from observations. We find that the simulated mean latent heat fluxes from CLM using the calibrated parameters are generally improved at all sites when compared to those obtained with CLM simulations using default parameter sets. Further, our calibration method also results in credibility bounds around the simulated mean fluxes which bracket the measured data. The modes (or maximum a posteriori values) and 95% credibility intervals of the site-specific posterior PDFs are tabulated as suggested parameter values for each site. As a result, analysis of relationships between the posterior PDFs and site conditions suggests that the parameter values are likely correlated with the plant functional type, which needs to be confirmed in future studies by extending the approach to more sites.« less

  16. On the applicability of surrogate-based Markov chain Monte Carlo-Bayesian inversion to the Community Land Model: Case studies at flux tower sites

    NASA Astrophysics Data System (ADS)

    Huang, Maoyi; Ray, Jaideep; Hou, Zhangshuan; Ren, Huiying; Liu, Ying; Swiler, Laura

    2016-07-01

    The Community Land Model (CLM) has been widely used in climate and Earth system modeling. Accurate estimation of model parameters is needed for reliable model simulations and predictions under current and future conditions, respectively. In our previous work, a subset of hydrological parameters has been identified to have significant impact on surface energy fluxes at selected flux tower sites based on parameter screening and sensitivity analysis, which indicate that the parameters could potentially be estimated from surface flux observations at the towers. To date, such estimates do not exist. In this paper, we assess the feasibility of applying a Bayesian model calibration technique to estimate CLM parameters at selected flux tower sites under various site conditions. The parameters are estimated as a joint probability density function (PDF) that provides estimates of uncertainty of the parameters being inverted, conditional on climatologically average latent heat fluxes derived from observations. We find that the simulated mean latent heat fluxes from CLM using the calibrated parameters are generally improved at all sites when compared to those obtained with CLM simulations using default parameter sets. Further, our calibration method also results in credibility bounds around the simulated mean fluxes which bracket the measured data. The modes (or maximum a posteriori values) and 95% credibility intervals of the site-specific posterior PDFs are tabulated as suggested parameter values for each site. Analysis of relationships between the posterior PDFs and site conditions suggests that the parameter values are likely correlated with the plant functional type, which needs to be confirmed in future studies by extending the approach to more sites.

  17. Development of a generic auto-calibration package for regional ecological modeling and application in the Central Plains of the United States

    USGS Publications Warehouse

    Wu, Yiping; Liu, Shuguang; Li, Zhengpeng; Dahal, Devendra; Young, Claudia J.; Schmidt, Gail L.; Liu, Jinxun; Davis, Brian; Sohl, Terry L.; Werner, Jeremy M.; Oeding, Jennifer

    2014-01-01

    Process-oriented ecological models are frequently used for predicting potential impacts of global changes such as climate and land-cover changes, which can be useful for policy making. It is critical but challenging to automatically derive optimal parameter values at different scales, especially at regional scale, and validate the model performance. In this study, we developed an automatic calibration (auto-calibration) function for a well-established biogeochemical model—the General Ensemble Biogeochemical Modeling System (GEMS)-Erosion Deposition Carbon Model (EDCM)—using data assimilation technique: the Shuffled Complex Evolution algorithm and a model-inversion R package—Flexible Modeling Environment (FME). The new functionality can support multi-parameter and multi-objective auto-calibration of EDCM at the both pixel and regional levels. We also developed a post-processing procedure for GEMS to provide options to save the pixel-based or aggregated county-land cover specific parameter values for subsequent simulations. In our case study, we successfully applied the updated model (EDCM-Auto) for a single crop pixel with a corn–wheat rotation and a large ecological region (Level II)—Central USA Plains. The evaluation results indicate that EDCM-Auto is applicable at multiple scales and is capable to handle land cover changes (e.g., crop rotations). The model also performs well in capturing the spatial pattern of grain yield production for crops and net primary production (NPP) for other ecosystems across the region, which is a good example for implementing calibration and validation of ecological models with readily available survey data (grain yield) and remote sensing data (NPP) at regional and national levels. The developed platform for auto-calibration can be readily expanded to incorporate other model inversion algorithms and potential R packages, and also be applied to other ecological models.

  18. Method calibration of the model 13145 infrared target projectors

    NASA Astrophysics Data System (ADS)

    Huang, Jianxia; Gao, Yuan; Han, Ying

    2014-11-01

    The SBIR Model 13145 Infrared Target Projectors ( The following abbreviation Evaluation Unit ) used for characterizing the performances of infrared imaging system. Test items: SiTF, MTF, NETD, MRTD, MDTD, NPS. Infrared target projectors includes two area blackbodies, a 12 position target wheel, all reflective collimator. It provide high spatial frequency differential targets, Precision differential targets imaged by infrared imaging system. And by photoelectricity convert on simulate signal or digital signal. Applications software (IR Windows TM 2001) evaluate characterizing the performances of infrared imaging system. With regards to as a whole calibration, first differently calibration for distributed component , According to calibration specification for area blackbody to calibration area blackbody, by means of to amend error factor to calibration of all reflective collimator, radiance calibration of an infrared target projectors using the SR5000 spectral radiometer, and to analyze systematic error. With regards to as parameter of infrared imaging system, need to integrate evaluation method. According to regulation with -GJB2340-1995 General specification for military thermal imaging sets -testing parameters of infrared imaging system, the results compare with results from Optical Calibration Testing Laboratory . As a goal to real calibration performances of the Evaluation Unit.

  19. Evaluation of Potential Evapotranspiration from a Hydrologic Model on a National Scale

    NASA Astrophysics Data System (ADS)

    Hakala, K. A.; Hay, L.; Markstrom, S. L.

    2014-12-01

    The US Geological Survey has developed a National Hydrologic Model (NHM) to support coordinated, comprehensive and consistent hydrologic model development and facilitate the application of simulations on the scale of the continental US. The NHM has a consistent geospatial fabric for modeling, consisting of over 100,000 hydrologic response units (HRUs). Each HRU requires accurate parameter estimates, some of which are attained from automated calibration. However, improved calibration can be achieved by initially utilizing as many parameters as possible from national data sets. This presentation investigates the effectiveness of calculating potential evapotranspiration (PET) parameters based on mean monthly values from the NOAA PET Atlas. Additional PET products are then used to evaluate the PET parameters. Effectively utilizing existing national-scale data sets can simplify the effort in establishing a robust NHM.

  20. Land-surface parameter optimisation using data assimilation techniques: the adJULES system V1.0

    DOE PAGES

    Raoult, Nina M.; Jupp, Tim E.; Cox, Peter M.; ...

    2016-08-25

    Land-surface models (LSMs) are crucial components of the Earth system models (ESMs) that are used to make coupled climate–carbon cycle projections for the 21st century. The Joint UK Land Environment Simulator (JULES) is the land-surface model used in the climate and weather forecast models of the UK Met Office. JULES is also extensively used offline as a land-surface impacts tool, forced with climatologies into the future. In this study, JULES is automatically differentiated with respect to JULES parameters using commercial software from FastOpt, resulting in an analytical gradient, or adjoint, of the model. Using this adjoint, the adJULES parameter estimationmore » system has been developed to search for locally optimum parameters by calibrating against observations. This paper describes adJULES in a data assimilation framework and demonstrates its ability to improve the model–data fit using eddy-covariance measurements of gross primary production (GPP) and latent heat (LE) fluxes. adJULES also has the ability to calibrate over multiple sites simultaneously. This feature is used to define new optimised parameter values for the five plant functional types (PFTs) in JULES. The optimised PFT-specific parameters improve the performance of JULES at over 85 % of the sites used in the study, at both the calibration and evaluation stages. Furthermore, the new improved parameters for JULES are presented along with the associated uncertainties for each parameter.« less

  1. Calibration of discrete element model parameters: soybeans

    NASA Astrophysics Data System (ADS)

    Ghodki, Bhupendra M.; Patel, Manish; Namdeo, Rohit; Carpenter, Gopal

    2018-05-01

    Discrete element method (DEM) simulations are broadly used to get an insight of flow characteristics of granular materials in complex particulate systems. DEM input parameters for a model are the critical prerequisite for an efficient simulation. Thus, the present investigation aims to determine DEM input parameters for Hertz-Mindlin model using soybeans as a granular material. To achieve this aim, widely acceptable calibration approach was used having standard box-type apparatus. Further, qualitative and quantitative findings such as particle profile, height of kernels retaining the acrylic wall, and angle of repose of experiments and numerical simulations were compared to get the parameters. The calibrated set of DEM input parameters includes the following (a) material properties: particle geometric mean diameter (6.24 mm); spherical shape; particle density (1220 kg m^{-3} ), and (b) interaction parameters such as particle-particle: coefficient of restitution (0.17); coefficient of static friction (0.26); coefficient of rolling friction (0.08), and particle-wall: coefficient of restitution (0.35); coefficient of static friction (0.30); coefficient of rolling friction (0.08). The results may adequately be used to simulate particle scale mechanics (grain commingling, flow/motion, forces, etc) of soybeans in post-harvest machinery and devices.

  2. Efficient Reduction and Analysis of Model Predictive Error

    NASA Astrophysics Data System (ADS)

    Doherty, J.

    2006-12-01

    Most groundwater models are calibrated against historical measurements of head and other system states before being used to make predictions in a real-world context. Through the calibration process, parameter values are estimated or refined such that the model is able to reproduce historical behaviour of the system at pertinent observation points reasonably well. Predictions made by the model are deemed to have greater integrity because of this. Unfortunately, predictive integrity is not as easy to achieve as many groundwater practitioners would like to think. The level of parameterisation detail estimable through the calibration process (especially where estimation takes place on the basis of heads alone) is strictly limited, even where full use is made of modern mathematical regularisation techniques such as those encapsulated in the PEST calibration package. (Use of these mechanisms allows more information to be extracted from a calibration dataset than is possible using simpler regularisation devices such as zones of piecewise constancy.) Where a prediction depends on aspects of parameterisation detail that are simply not inferable through the calibration process (which is often the case for predictions related to contaminant movement, and/or many aspects of groundwater/surface water interaction), then that prediction may be just as much in error as it would have been if the model had not been calibrated at all. Model predictive error arises from two sources. These are (a) the presence of measurement noise within the calibration dataset through which linear combinations of parameters spanning the "calibration solution space" are inferred, and (b) the sensitivity of the prediction to members of the "calibration null space" spanned by linear combinations of parameters which are not inferable through the calibration process. The magnitude of the former contribution depends on the level of measurement noise. The magnitude of the latter contribution (which often dominates the former) depends on the "innate variability" of hydraulic properties within the model domain. Knowledge of both of these is a prerequisite for characterisation of the magnitude of possible model predictive error. Unfortunately, in most cases, such knowledge is incomplete and subjective. Nevertheless, useful analysis of model predictive error can still take place. The present paper briefly discusses the means by which mathematical regularisation can be employed in the model calibration process in order to extract as much information as possible on hydraulic property heterogeneity prevailing within the model domain, thereby reducing predictive error to the lowest that can be achieved on the basis of that dataset. It then demonstrates the means by which predictive error variance can be quantified based on information supplied by the regularised inversion process. Both linear and nonlinear predictive error variance analysis is demonstrated using a number of real-world and synthetic examples.

  3. Reducing calibration parameters to increase insight in catchment organization and similarity

    NASA Astrophysics Data System (ADS)

    Skaugen, Thomas; Onof, Christian

    2013-04-01

    Ideally, hydrological models should be built from equations parameterised from observed catchment characteristics and data. This state of affairs may never be reached, but a governing principle in hydrological modelling should be to keep the number of calibration parameters to a minimum. A reduced number of parameters to be calibrated, while maintaining the accuracy and detail required by modern hydrological models, will reduce parameter and model structure uncertainty and improve model diagnostics. The dynamics of runoff for small catchments are derived from the distribution of distances from points in the catchments to the nearest stream in a catchment. This distribution is unique for each catchment and can be determined from a geographical information system (GIS). The distribution of distances, will, when a celerity of (subsurface) flow is introduced, provide a distribution of travel times, or a unit hydrograph (UH). For spatially varying levels of saturation deficit we have different celerities and, hence, different UHs. Runoff is derived from the super-positioning of the different UHs. This study shows how celerities can be estimated if we assume that recession events represent the superpositioned UH for different levels of saturation deficit. The performance of the DDD (Distance Distribution Dynamics) model is compared to that of the Swedish HBV model and is found to perform equally well for eight Norwegian catchments although the number of parameters to be calibrated in the module concerning soil moisture and runoff dynamics is reduced from 7 in the HBV model to 1 in the DDD model. It is also shown that the DDD model has a more realistic representation of the subsurface hydrology. The transparency of the DDD model makes model diagnostics more easy and experience with DDD shows that differences in model performance may be related to differences in catchment characteristics. More specifically, it appears that the hydrological dynamics of bogs have to be taken especially into account when modelling Norwegian catchments.

  4. Approaches in highly parameterized inversion: TSPROC, a general time-series processor to assist in model calibration and result summarization

    USGS Publications Warehouse

    Westenbroek, Stephen M.; Doherty, John; Walker, John F.; Kelson, Victor A.; Hunt, Randall J.; Cera, Timothy B.

    2012-01-01

    The TSPROC (Time Series PROCessor) computer software uses a simple scripting language to process and analyze time series. It was developed primarily to assist in the calibration of environmental models. The software is designed to perform calculations on time-series data commonly associated with surface-water models, including calculation of flow volumes, transformation by means of basic arithmetic operations, and generation of seasonal and annual statistics and hydrologic indices. TSPROC can also be used to generate some of the key input files required to perform parameter optimization by means of the PEST (Parameter ESTimation) computer software. Through the use of TSPROC, the objective function for use in the model-calibration process can be focused on specific components of a hydrograph.

  5. Sewer deterioration modeling with condition data lacking historical records.

    PubMed

    Egger, C; Scheidegger, A; Reichert, P; Maurer, M

    2013-11-01

    Accurate predictions of future conditions of sewer systems are needed for efficient rehabilitation planning. For this purpose, a range of sewer deterioration models has been proposed which can be improved by calibration with observed sewer condition data. However, if datasets lack historical records, calibration requires a combination of deterioration and sewer rehabilitation models, as the current state of the sewer network reflects the combined effect of both processes. Otherwise, physical sewer lifespans are overestimated as pipes in poor condition that were rehabilitated are no longer represented in the dataset. We therefore propose the combination of a sewer deterioration model with a simple rehabilitation model which can be calibrated with datasets lacking historical information. We use Bayesian inference for parameter estimation due to the limited information content of the data and limited identifiability of the model parameters. A sensitivity analysis gives an insight into the model's robustness against the uncertainty of the prior. The analysis reveals that the model results are principally sensitive to the means of the priors of specific model parameters, which should therefore be elicited with care. The importance sampling technique applied for the sensitivity analysis permitted efficient implementation for regional sensitivity analysis with reasonable computational outlay. Application of the combined model with both simulated and real data shows that it effectively compensates for the bias induced by a lack of historical data. Thus, the novel approach makes it possible to calibrate sewer pipe deterioration models even when historical condition records are lacking. Since at least some prior knowledge of the model parameters is available, the strength of Bayesian inference is particularly evident in the case of small datasets. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Simulation of daily streamflow for 12 river basins in western Iowa using the Precipitation-Runoff Modeling System

    USGS Publications Warehouse

    Christiansen, Daniel E.; Haj, Adel E.; Risley, John C.

    2017-10-24

    The U.S. Geological Survey, in cooperation with the Iowa Department of Natural Resources, constructed Precipitation-Runoff Modeling System models to estimate daily streamflow for 12 river basins in western Iowa that drain into the Missouri River. The Precipitation-Runoff Modeling System is a deterministic, distributed-parameter, physical-process-based modeling system developed to evaluate the response of streamflow and general drainage basin hydrology to various combinations of climate and land use. Calibration periods for each basin varied depending on the period of record available for daily mean streamflow measurements at U.S. Geological Survey streamflow-gaging stations.A geographic information system tool was used to delineate each basin and estimate initial values for model parameters based on basin physical and geographical features. A U.S. Geological Survey automatic calibration tool that uses a shuffled complex evolution algorithm was used for initial calibration, and then manual modifications were made to parameter values to complete the calibration of each basin model. The main objective of the calibration was to match daily discharge values of simulated streamflow to measured daily discharge values. The Precipitation-Runoff Modeling System model was calibrated at 42 sites located in the 12 river basins in western Iowa.The accuracy of the simulated daily streamflow values at the 42 calibration sites varied by river and by site. The models were satisfactory at 36 of the sites based on statistical results. Unsatisfactory performance at the six other sites can be attributed to several factors: (1) low flow, no flow, and flashy flow conditions in headwater subbasins having a small drainage area; (2) poor representation of the groundwater and storage components of flow within a basin; (3) lack of accounting for basin withdrawals and water use; and (4) limited availability and accuracy of meteorological input data. The Precipitation-Runoff Modeling System models of 12 river basins in western Iowa will provide water-resource managers with a consistent and documented method for estimating streamflow at ungaged sites and aid in environmental studies, hydraulic design, water management, and water-quality projects.

  7. Point Cloud Refinement with a Target-Free Intrinsic Calibration of a Mobile Multi-Beam LIDAR System

    NASA Astrophysics Data System (ADS)

    Nouiraa, H.; Deschaud, J. E.; Goulettea, F.

    2016-06-01

    LIDAR sensors are widely used in mobile mapping systems. The mobile mapping platforms allow to have fast acquisition in cities for example, which would take much longer with static mapping systems. The LIDAR sensors provide reliable and precise 3D information, which can be used in various applications: mapping of the environment; localization of objects; detection of changes. Also, with the recent developments, multi-beam LIDAR sensors have appeared, and are able to provide a high amount of data with a high level of detail. A mono-beam LIDAR sensor mounted on a mobile platform will have an extrinsic calibration to be done, so the data acquired and registered in the sensor reference frame can be represented in the body reference frame, modeling the mobile system. For a multibeam LIDAR sensor, we can separate its calibration into two distinct parts: on one hand, we have an extrinsic calibration, in common with mono-beam LIDAR sensors, which gives the transformation between the sensor cartesian reference frame and the body reference frame. On the other hand, there is an intrinsic calibration, which gives the relations between the beams of the multi-beam sensor. This calibration depends on a model given by the constructor, but the model can be non optimal, which would bring errors and noise into the acquired point clouds. In the litterature, some optimizations of the calibration parameters are proposed, but need a specific routine or environment, which can be constraining and time-consuming. In this article, we present an automatic method for improving the intrinsic calibration of a multi-beam LIDAR sensor, the Velodyne HDL-32E. The proposed approach does not need any calibration target, and only uses information from the acquired point clouds, which makes it simple and fast to use. Also, a corrected model for the Velodyne sensor is proposed. An energy function which penalizes points far from local planar surfaces is used to optimize the different proposed parameters for the corrected model, and we are able to give a confidence value for the calibration parameters found. Optimization results on both synthetic and real data are presented.

  8. Genetic algorithms for the application of Activated Sludge Model No. 1.

    PubMed

    Kim, S; Lee, H; Kim, J; Kim, C; Ko, J; Woo, H; Kim, S

    2002-01-01

    The genetic algorithm (GA) has been integrated into the IWA ASM No. 1 to calibrate important stoichiometric and kinetic parameters. The evolutionary feature of GA was used to configure the multiple local optima as well as the global optimum. The objective function of optimization was designed to minimize the difference between estimated and measured effluent concentrations at the activated sludge system. Both steady state and dynamic data of the simulation benchmark were used for calibration using denitrification layout. Depending upon the confidence intervals and objective functions, the proposed method provided distributions of parameter space. Field data have been collected and applied to validate calibration capacity of GA. Dynamic calibration was suggested to capture periodic variations of inflow concentrations. Also, in order to verify this proposed method in real wastewater treatment plant, measured data sets for substrate concentrations were obtained from Haeundae wastewater treatment plant and used to estimate parameters in the dynamic system. The simulation results with calibrated parameters matched well with the observed concentrations of effluent COD.

  9. Unifying distance-based goodness-of-fit indicators for hydrologic model assessment

    NASA Astrophysics Data System (ADS)

    Cheng, Qinbo; Reinhardt-Imjela, Christian; Chen, Xi; Schulte, Achim

    2014-05-01

    The goodness-of-fit indicator, i.e. efficiency criterion, is very important for model calibration. However, recently the knowledge about the goodness-of-fit indicators is all empirical and lacks a theoretical support. Based on the likelihood theory, a unified distance-based goodness-of-fit indicator termed BC-GED model is proposed, which uses the Box-Cox (BC) transformation to remove the heteroscedasticity of model errors and the generalized error distribution (GED) with zero-mean to fit the distribution of model errors after BC. The BC-GED model can unify all recent distance-based goodness-of-fit indicators, and reveals the mean square error (MSE) and the mean absolute error (MAE) that are widely used goodness-of-fit indicators imply statistic assumptions that the model errors follow the Gaussian distribution and the Laplace distribution with zero-mean, respectively. The empirical knowledge about goodness-of-fit indicators can be also easily interpreted by BC-GED model, e.g. the sensitivity to high flow of the goodness-of-fit indicators with large power of model errors results from the low probability of large model error in the assumed distribution of these indicators. In order to assess the effect of the parameters (i.e. the BC transformation parameter λ and the GED kurtosis coefficient β also termed the power of model errors) of BC-GED model on hydrologic model calibration, six cases of BC-GED model were applied in Baocun watershed (East China) with SWAT-WB-VSA model. Comparison of the inferred model parameters and model simulation results among the six indicators demonstrates these indicators can be clearly separated two classes by the GED kurtosis β: β >1 and β ≤ 1. SWAT-WB-VSA calibrated by the class β >1 of distance-based goodness-of-fit indicators captures high flow very well and mimics the baseflow very badly, but it calibrated by the class β ≤ 1 mimics the baseflow very well, because first the larger value of β, the greater emphasis is put on high flow and second the derivative of GED probability density function at zero is zero as β >1, but discontinuous as β ≤ 1, and even infinity as β < 1 with which the maximum likelihood estimation can guarantee the model errors approach zero as well as possible. The BC-GED that estimates the parameters (i.e. λ and β) of BC-GED model as well as hydrologic model parameters is the best distance-based goodness-of-fit indicator because not only the model validation using groundwater levels is very good, but also the model errors fulfill the statistic assumption best. However, in some cases of model calibration with a few observations e.g. calibration of single-event model, for avoiding estimation of the parameters of BC-GED model the MAE i.e. the boundary indicator (β = 1) of the two classes, can replace the BC-GED, because the model validation of MAE is best.

  10. Evaluation of chiller modeling approaches and their usability for fault detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sreedharan, Priya

    Selecting the model is an important and essential step in model based fault detection and diagnosis (FDD). Several factors must be considered in model evaluation, including accuracy, training data requirements, calibration effort, generality, and computational requirements. All modeling approaches fall somewhere between pure first-principles models, and empirical models. The objective of this study was to evaluate different modeling approaches for their applicability to model based FDD of vapor compression air conditioning units, which are commonly known as chillers. Three different models were studied: two are based on first-principles and the third is empirical in nature. The first-principles models are themore » Gordon and Ng Universal Chiller model (2nd generation), and a modified version of the ASHRAE Primary Toolkit model, which are both based on first principles. The DOE-2 chiller model as implemented in CoolTools{trademark} was selected for the empirical category. The models were compared in terms of their ability to reproduce the observed performance of an older chiller operating in a commercial building, and a newer chiller in a laboratory. The DOE-2 and Gordon-Ng models were calibrated by linear regression, while a direct-search method was used to calibrate the Toolkit model. The ''CoolTools'' package contains a library of calibrated DOE-2 curves for a variety of different chillers, and was used to calibrate the building chiller to the DOE-2 model. All three models displayed similar levels of accuracy. Of the first principles models, the Gordon-Ng model has the advantage of being linear in the parameters, which allows more robust parameter estimation methods to be used and facilitates estimation of the uncertainty in the parameter values. The ASHRAE Toolkit Model may have advantages when refrigerant temperature measurements are also available. The DOE-2 model can be expected to have advantages when very limited data are available to calibrate the model, as long as one of the previously identified models in the CoolTools library matches the performance of the chiller in question.« less

  11. Multi-gauge Calibration for modeling the Semi-Arid Santa Cruz Watershed in Arizona-Mexico Border Area Using SWAT

    USGS Publications Warehouse

    Niraula, Rewati; Norman, Laura A.; Meixner, Thomas; Callegary, James B.

    2012-01-01

    In most watershed-modeling studies, flow is calibrated at one monitoring site, usually at the watershed outlet. Like many arid and semi-arid watersheds, the main reach of the Santa Cruz watershed, located on the Arizona-Mexico border, is discontinuous for most of the year except during large flood events, and therefore the flow characteristics at the outlet do not represent the entire watershed. Calibration is required at multiple locations along the Santa Cruz River to improve model reliability. The objective of this study was to best portray surface water flow in this semiarid watershed and evaluate the effect of multi-gage calibration on flow predictions. In this study, the Soil and Water Assessment Tool (SWAT) was calibrated at seven monitoring stations, which improved model performance and increased the reliability of flow, in the Santa Cruz watershed. The most sensitive parameters to affect flow were found to be curve number (CN2), soil evaporation and compensation coefficient (ESCO), threshold water depth in shallow aquifer for return flow to occur (GWQMN), base flow alpha factor (Alpha_Bf), and effective hydraulic conductivity of the soil layer (Ch_K2). In comparison, when the model was established with a single calibration at the watershed outlet, flow predictions at other monitoring gages were inaccurate. This study emphasizes the importance of multi-gage calibration to develop a reliable watershed model in arid and semiarid environments. The developed model, with further calibration of water quality parameters will be an integral part of the Santa Cruz Watershed Ecosystem Portfolio Model (SCWEPM), an online decision support tool, to assess the impacts of climate change and urban growth in the Santa Cruz watershed.

  12. Understanding the Day Cent model: Calibration, sensitivity, and identifiability through inverse modeling

    USGS Publications Warehouse

    Necpálová, Magdalena; Anex, Robert P.; Fienen, Michael N.; Del Grosso, Stephen J.; Castellano, Michael J.; Sawyer, John E.; Iqbal, Javed; Pantoja, Jose L.; Barker, Daniel W.

    2015-01-01

    The ability of biogeochemical ecosystem models to represent agro-ecosystems depends on their correct integration with field observations. We report simultaneous calibration of 67 DayCent model parameters using multiple observation types through inverse modeling using the PEST parameter estimation software. Parameter estimation reduced the total sum of weighted squared residuals by 56% and improved model fit to crop productivity, soil carbon, volumetric soil water content, soil temperature, N2O, and soil3NO− compared to the default simulation. Inverse modeling substantially reduced predictive model error relative to the default model for all model predictions, except for soil 3NO− and 4NH+. Post-processing analyses provided insights into parameter–observation relationships based on parameter correlations, sensitivity and identifiability. Inverse modeling tools are shown to be a powerful way to systematize and accelerate the process of biogeochemical model interrogation, improving our understanding of model function and the underlying ecosystem biogeochemical processes that they represent.

  13. Automating calibration, sensitivity and uncertainty analysis of complex models using the R package Flexible Modeling Environment (FME): SWAT as an example

    USGS Publications Warehouse

    Wu, Y.; Liu, S.

    2012-01-01

    Parameter optimization and uncertainty issues are a great challenge for the application of large environmental models like the Soil and Water Assessment Tool (SWAT), which is a physically-based hydrological model for simulating water and nutrient cycles at the watershed scale. In this study, we present a comprehensive modeling environment for SWAT, including automated calibration, and sensitivity and uncertainty analysis capabilities through integration with the R package Flexible Modeling Environment (FME). To address challenges (e.g., calling the model in R and transferring variables between Fortran and R) in developing such a two-language coupling framework, 1) we converted the Fortran-based SWAT model to an R function (R-SWAT) using the RFortran platform, and alternatively 2) we compiled SWAT as a Dynamic Link Library (DLL). We then wrapped SWAT (via R-SWAT) with FME to perform complex applications including parameter identifiability, inverse modeling, and sensitivity and uncertainty analysis in the R environment. The final R-SWAT-FME framework has the following key functionalities: automatic initialization of R, running Fortran-based SWAT and R commands in parallel, transferring parameters and model output between SWAT and R, and inverse modeling with visualization. To examine this framework and demonstrate how it works, a case study simulating streamflow in the Cedar River Basin in Iowa in the United Sates was used, and we compared it with the built-in auto-calibration tool of SWAT in parameter optimization. Results indicate that both methods performed well and similarly in searching a set of optimal parameters. Nonetheless, the R-SWAT-FME is more attractive due to its instant visualization, and potential to take advantage of other R packages (e.g., inverse modeling and statistical graphics). The methods presented in the paper are readily adaptable to other model applications that require capability for automated calibration, and sensitivity and uncertainty analysis.

  14. A novel Bayesian approach to accounting for uncertainty in fMRI-derived estimates of cerebral oxygen metabolism fluctuations

    PubMed Central

    Simon, Aaron B.; Dubowitz, David J.; Blockley, Nicholas P.; Buxton, Richard B.

    2016-01-01

    Calibrated blood oxygenation level dependent (BOLD) imaging is a multimodal functional MRI technique designed to estimate changes in cerebral oxygen metabolism from measured changes in cerebral blood flow and the BOLD signal. This technique addresses fundamental ambiguities associated with quantitative BOLD signal analysis; however, its dependence on biophysical modeling creates uncertainty in the resulting oxygen metabolism estimates. In this work, we developed a Bayesian approach to estimating the oxygen metabolism response to a neural stimulus and used it to examine the uncertainty that arises in calibrated BOLD estimation due to the presence of unmeasured model parameters. We applied our approach to estimate the CMRO2 response to a visual task using the traditional hypercapnia calibration experiment as well as to estimate the metabolic response to both a visual task and hypercapnia using the measurement of baseline apparent R2′ as a calibration technique. Further, in order to examine the effects of cerebral spinal fluid (CSF) signal contamination on the measurement of apparent R2′, we examined the effects of measuring this parameter with and without CSF-nulling. We found that the two calibration techniques provided consistent estimates of the metabolic response on average, with a median R2′-based estimate of the metabolic response to CO2 of 1.4%, and R2′- and hypercapnia-calibrated estimates of the visual response of 27% and 24%, respectively. However, these estimates were sensitive to different sources of estimation uncertainty. The R2′-calibrated estimate was highly sensitive to CSF contamination and to uncertainty in unmeasured model parameters describing flow-volume coupling, capillary bed characteristics, and the iso-susceptibility saturation of blood. The hypercapnia-calibrated estimate was relatively insensitive to these parameters but highly sensitive to the assumed metabolic response to CO2. PMID:26790354

  15. A novel Bayesian approach to accounting for uncertainty in fMRI-derived estimates of cerebral oxygen metabolism fluctuations.

    PubMed

    Simon, Aaron B; Dubowitz, David J; Blockley, Nicholas P; Buxton, Richard B

    2016-04-01

    Calibrated blood oxygenation level dependent (BOLD) imaging is a multimodal functional MRI technique designed to estimate changes in cerebral oxygen metabolism from measured changes in cerebral blood flow and the BOLD signal. This technique addresses fundamental ambiguities associated with quantitative BOLD signal analysis; however, its dependence on biophysical modeling creates uncertainty in the resulting oxygen metabolism estimates. In this work, we developed a Bayesian approach to estimating the oxygen metabolism response to a neural stimulus and used it to examine the uncertainty that arises in calibrated BOLD estimation due to the presence of unmeasured model parameters. We applied our approach to estimate the CMRO2 response to a visual task using the traditional hypercapnia calibration experiment as well as to estimate the metabolic response to both a visual task and hypercapnia using the measurement of baseline apparent R2' as a calibration technique. Further, in order to examine the effects of cerebral spinal fluid (CSF) signal contamination on the measurement of apparent R2', we examined the effects of measuring this parameter with and without CSF-nulling. We found that the two calibration techniques provided consistent estimates of the metabolic response on average, with a median R2'-based estimate of the metabolic response to CO2 of 1.4%, and R2'- and hypercapnia-calibrated estimates of the visual response of 27% and 24%, respectively. However, these estimates were sensitive to different sources of estimation uncertainty. The R2'-calibrated estimate was highly sensitive to CSF contamination and to uncertainty in unmeasured model parameters describing flow-volume coupling, capillary bed characteristics, and the iso-susceptibility saturation of blood. The hypercapnia-calibrated estimate was relatively insensitive to these parameters but highly sensitive to the assumed metabolic response to CO2. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Transient Inverse Calibration of Site-Wide Groundwater Model to Hanford Operational Impacts from 1943 to 1996--Alternative Conceptual Model Considering Interaction with Uppermost Basalt Confined Aquifer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vermeul, Vincent R.; Cole, Charles R.; Bergeron, Marcel P.

    2001-08-29

    The baseline three-dimensional transient inverse model for the estimation of site-wide scale flow parameters, including their uncertainties, using data on the transient behavior of the unconfined aquifer system over the entire historical period of Hanford operations, has been modified to account for the effects of basalt intercommunication between the Hanford unconfined aquifer and the underlying upper basalt confined aquifer. Both the baseline and alternative conceptual models (ACM-1) considered only the groundwater flow component and corresponding observational data in the 3-Dl transient inverse calibration efforts. Subsequent efforts will examine both groundwater flow and transport. Comparisons of goodness of fit measures andmore » parameter estimation results for the ACM-1 transient inverse calibrated model with those from previous site-wide groundwater modeling efforts illustrate that the new 3-D transient inverse model approach will strengthen the technical defensibility of the final model(s) and provide the ability to incorporate uncertainty in predictions related to both conceptual model and parameter uncertainty. These results, however, indicate that additional improvements are required to the conceptual model framework. An investigation was initiated at the end of this basalt inverse modeling effort to determine whether facies-based zonation would improve specific yield parameter estimation results (ACM-2). A description of the justification and methodology to develop this zonation is discussed.« less

  17. Enhancing model prediction reliability through improved soil representation and constrained model auto calibration - A paired waterhsed study

    USDA-ARS?s Scientific Manuscript database

    Process based and distributed watershed models possess a large number of parameters that are not directly measured in field and need to be calibrated through matching modeled in-stream fluxes with monitored data. Recently, there have been waves of concern about the reliability of this common practic...

  18. Hydrograph structure informed calibration in the frequency domain with time localization

    NASA Astrophysics Data System (ADS)

    Kumarasamy, K.; Belmont, P.

    2015-12-01

    Complex models with large number of parameters are commonly used to estimate sediment yields and predict changes in sediment loads as a result of changes in management or conservation practice at large watershed (>2000 km2) scales. As sediment yield is a strongly non-linear function that responds to channel (peak or mean) velocity or flow depth, it is critical to accurately represent flows. The process of calibration in such models (e.g., SWAT) generally involves the adjustment of several parameters to obtain better estimates of goodness of fit metrics such as Nash Sutcliff Efficiency (NSE). However, such indicators only provide a global view of model performance, potentially obscuring accuracy of the timing or magnitude of specific flows of interest. We describe an approach for streamflow calibration that will greatly reduce the black-box nature of calibration, when response from a parameter adjustment is not clearly known. Fourier Transform or the Short Term Fourier Transform could be used to characterize model performance in the frequency domain as well, however, the ambiguity of a Fourier transform with regards to time localization renders its implementation in a model calibration setting rather useless. Brief and sudden changes (e.g. stream flow peaks) in signals carry the most interesting information from parameter adjustments, which are completely lost in the transform without time localization. Wavelet transform captures the frequency component in the signal without compromising time and is applied to contrast changes in signal response to parameter adjustments. Here we employ the mother wavelet called the Mexican hat wavelet and apply a Continuous Wavelet Transform to understand the signal in the frequency domain. Further, with the use of the cross-wavelet spectrum we examine the relationship between the two signals (prior or post parameter adjustment) in the time-scale plane (e.g., lower scales correspond to higher frequencies). The non-stationarity of the streamflow signal does not hinder this assessment and regions of change called boundaries of influence (seasons or time when such change occurs in the hydrograph) for each parameter are delineated. In addition, we can discover the structural component of the signal (e.g., shifts or amplitude change) that has changed.

  19. Analysis of the Best-Fit Sky Model Produced Through Redundant Calibration of Interferometers

    NASA Astrophysics Data System (ADS)

    Storer, Dara; Pober, Jonathan

    2018-01-01

    21 cm cosmology provides unique insights into the formation of stars and galaxies in the early universe, and particularly the Epoch of Reionization. Detection of the 21 cm line is challenging because it is generally 4-5 magnitudes weaker than the emission from foreground sources, and therefore the instruments used for detection must be carefully designed and calibrated. 21 cm cosmology is primarily conducted using interferometers, which are difficult to calibrate because of their complex structure. Here I explore the relationship between sky-based calibration, which relies on an accurate and comprehensive sky model, and redundancy-based calibration, which makes use of redundancies in the orientation of the interferometer's dishes. In addition to producing calibration parameters, redundant calibration also produces a best fit model of the sky. In this work I examine that sky model and explore the possibility of using that best fit model as an additional input to improve on sky-based calibration.

  20. Evaluation of “Autotune” calibration against manual calibration of building energy models

    DOE PAGES

    Chaudhary, Gaurav; New, Joshua; Sanyal, Jibonananda; ...

    2016-08-26

    Our paper demonstrates the application of Autotune, a methodology aimed at automatically producing calibrated building energy models using measured data, in two case studies. In the first case, a building model is de-tuned by deliberately injecting faults into more than 60 parameters. This model was then calibrated using Autotune and its accuracy with respect to the original model was evaluated in terms of the industry-standard normalized mean bias error and coefficient of variation of root mean squared error metrics set forth in ASHRAE Guideline 14. In addition to whole-building energy consumption, outputs including lighting, plug load profiles, HVAC energy consumption,more » zone temperatures, and other variables were analyzed. In the second case, Autotune calibration is compared directly to experts’ manual calibration of an emulated-occupancy, full-size residential building with comparable calibration results in much less time. Lastly, our paper concludes with a discussion of the key strengths and weaknesses of auto-calibration approaches.« less

  1. Predicting the performance uncertainty of a 1-MW pilot-scale carbon capture system after hierarchical laboratory-scale calibration and validation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Zhijie; Lai, Canhai; Marcy, Peter William

    2017-05-01

    A challenging problem in designing pilot-scale carbon capture systems is to predict, with uncertainty, the adsorber performance and capture efficiency under various operating conditions where no direct experimental data exist. Motivated by this challenge, we previously proposed a hierarchical framework in which relevant parameters of physical models were sequentially calibrated from different laboratory-scale carbon capture unit (C2U) experiments. Specifically, three models of increasing complexity were identified based on the fundamental physical and chemical processes of the sorbent-based carbon capture technology. Results from the corresponding laboratory experiments were used to statistically calibrate the physical model parameters while quantifying some of theirmore » inherent uncertainty. The parameter distributions obtained from laboratory-scale C2U calibration runs are used in this study to facilitate prediction at a larger scale where no corresponding experimental results are available. In this paper, we first describe the multiphase reactive flow model for a sorbent-based 1-MW carbon capture system then analyze results from an ensemble of simulations with the upscaled model. The simulation results are used to quantify uncertainty regarding the design’s predicted efficiency in carbon capture. In particular, we determine the minimum gas flow rate necessary to achieve 90% capture efficiency with 95% confidence.« less

  2. Generic Raman-based calibration models enabling real-time monitoring of cell culture bioreactors.

    PubMed

    Mehdizadeh, Hamidreza; Lauri, David; Karry, Krizia M; Moshgbar, Mojgan; Procopio-Melino, Renee; Drapeau, Denis

    2015-01-01

    Raman-based multivariate calibration models have been developed for real-time in situ monitoring of multiple process parameters within cell culture bioreactors. Developed models are generic, in the sense that they are applicable to various products, media, and cell lines based on Chinese Hamster Ovarian (CHO) host cells, and are scalable to large pilot and manufacturing scales. Several batches using different CHO-based cell lines and corresponding proprietary media and process conditions have been used to generate calibration datasets, and models have been validated using independent datasets from separate batch runs. All models have been validated to be generic and capable of predicting process parameters with acceptable accuracy. The developed models allow monitoring multiple key bioprocess metabolic variables, and hence can be utilized as an important enabling tool for Quality by Design approaches which are strongly supported by the U.S. Food and Drug Administration. © 2015 American Institute of Chemical Engineers.

  3. Application of iterative robust model-based optimal experimental design for the calibration of biocatalytic models.

    PubMed

    Van Daele, Timothy; Gernaey, Krist V; Ringborg, Rolf H; Börner, Tim; Heintz, Søren; Van Hauwermeiren, Daan; Grey, Carl; Krühne, Ulrich; Adlercreutz, Patrick; Nopens, Ingmar

    2017-09-01

    The aim of model calibration is to estimate unique parameter values from available experimental data, here applied to a biocatalytic process. The traditional approach of first gathering data followed by performing a model calibration is inefficient, since the information gathered during experimentation is not actively used to optimize the experimental design. By applying an iterative robust model-based optimal experimental design, the limited amount of data collected is used to design additional informative experiments. The algorithm is used here to calibrate the initial reaction rate of an ω-transaminase catalyzed reaction in a more accurate way. The parameter confidence region estimated from the Fisher Information Matrix is compared with the likelihood confidence region, which is not only more accurate but also a computationally more expensive method. As a result, an important deviation between both approaches is found, confirming that linearization methods should be applied with care for nonlinear models. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1278-1293, 2017. © 2017 American Institute of Chemical Engineers.

  4. The Effect of Including or Excluding Students with Testing Accommodations on IRT Calibrations.

    ERIC Educational Resources Information Center

    Karkee, Thakur; Lewis, Dan M.; Barton, Karen; Haug, Carolyn

    This study aimed to determine the degree to which the inclusion of accommodated students with disabilities in the calibration sample affects the characteristics of item parameters and the test results. Investigated were effects on test reliability, item fit to the applicable item response theory (IRT) model, item parameter estimates, and students'…

  5. Inverse estimation of parameters for an estuarine eutrophication model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, J.; Kuo, A.Y.

    1996-11-01

    An inverse model of an estuarine eutrophication model with eight state variables is developed. It provides a framework to estimate parameter values of the eutrophication model by assimilation of concentration data of these state variables. The inverse model using the variational technique in conjunction with a vertical two-dimensional eutrophication model is general enough to be applicable to aid model calibration. The formulation is illustrated by conducting a series of numerical experiments for the tidal Rappahannock River, a western shore tributary of the Chesapeake Bay. The numerical experiments of short-period model simulations with different hypothetical data sets and long-period model simulationsmore » with limited hypothetical data sets demonstrated that the inverse model can be satisfactorily used to estimate parameter values of the eutrophication model. The experiments also showed that the inverse model is useful to address some important questions, such as uniqueness of the parameter estimation and data requirements for model calibration. Because of the complexity of the eutrophication system, degrading of speed of convergence may occur. Two major factors which cause degradation of speed of convergence are cross effects among parameters and the multiple scales involved in the parameter system.« less

  6. Coupling HYDRUS-1D Code with PA-DDS Algorithms for Inverse Calibration

    NASA Astrophysics Data System (ADS)

    Wang, Xiang; Asadzadeh, Masoud; Holländer, Hartmut

    2017-04-01

    Numerical modelling requires calibration to predict future stages. A standard method for calibration is inverse calibration where generally multi-objective optimization algorithms are used to find a solution, e.g. to find an optimal solution of the van Genuchten Mualem (VGM) parameters to predict water fluxes in the vadose zone. We coupled HYDRUS-1D with PA-DDS to add a new, robust function for inverse calibration to the model. The PA-DDS method is a recently developed multi-objective optimization algorithm, which combines Dynamically Dimensioned Search (DDS) and Pareto Archived Evolution Strategy (PAES). The results were compared to a standard method (Marquardt-Levenberg method) implemented in HYDRUS-1D. Calibration performance is evaluated using observed and simulated soil moisture at two soil layers in the Southern Abbotsford, British Columbia, Canada in the terms of the root mean squared error (RMSE) and the Nash-Sutcliffe Efficiency (NSE). Results showed low RMSE values of 0.014 and 0.017 and strong NSE values of 0.961 and 0.939. Compared to the results by the Marquardt-Levenberg method, we received better calibration results for deeper located soil sensors. However, VGM parameters were similar comparing with previous studies. Both methods are equally computational efficient. We claim that a direct implementation of PA-DDS into HYDRUS-1D should reduce the computation effort further. This, the PA-DDS method is efficient for calibrating recharge for complex vadose zone modelling with multiple soil layer and can be a potential tool for calibration of heat and solute transport. Future work should focus on the effectiveness of PA-DDS for calibrating more complex versions of the model with complex vadose zone settings, with more soil layers, and against measured heat and solute transport. Keywords: Recharge, Calibration, HYDRUS-1D, Multi-objective Optimization

  7. An Improved Fast Self-Calibration Method for Hybrid Inertial Navigation System under Stationary Condition

    PubMed Central

    Liu, Bingqi; Wei, Shihui; Su, Guohua; Wang, Jiping; Lu, Jiazhen

    2018-01-01

    The navigation accuracy of the inertial navigation system (INS) can be greatly improved when the inertial measurement unit (IMU) is effectively calibrated and compensated, such as gyro drifts and accelerometer biases. To reduce the requirement for turntable precision in the classical calibration method, a continuous dynamic self-calibration method based on a three-axis rotating frame for the hybrid inertial navigation system is presented. First, by selecting a suitable IMU frame, the error models of accelerometers and gyros are established. Then, by taking the navigation errors during rolling as the observations, the overall twenty-one error parameters of hybrid inertial navigation system (HINS) are identified based on the calculation of the intermediate parameter. The actual experiment verifies that the method can identify all error parameters of HINS and this method has equivalent accuracy to the classical calibration on a high-precision turntable. In addition, this method is rapid, simple and feasible. PMID:29695041

  8. An Improved Fast Self-Calibration Method for Hybrid Inertial Navigation System under Stationary Condition.

    PubMed

    Liu, Bingqi; Wei, Shihui; Su, Guohua; Wang, Jiping; Lu, Jiazhen

    2018-04-24

    The navigation accuracy of the inertial navigation system (INS) can be greatly improved when the inertial measurement unit (IMU) is effectively calibrated and compensated, such as gyro drifts and accelerometer biases. To reduce the requirement for turntable precision in the classical calibration method, a continuous dynamic self-calibration method based on a three-axis rotating frame for the hybrid inertial navigation system is presented. First, by selecting a suitable IMU frame, the error models of accelerometers and gyros are established. Then, by taking the navigation errors during rolling as the observations, the overall twenty-one error parameters of hybrid inertial navigation system (HINS) are identified based on the calculation of the intermediate parameter. The actual experiment verifies that the method can identify all error parameters of HINS and this method has equivalent accuracy to the classical calibration on a high-precision turntable. In addition, this method is rapid, simple and feasible.

  9. Camera calibration based on the back projection process

    NASA Astrophysics Data System (ADS)

    Gu, Feifei; Zhao, Hong; Ma, Yueyang; Bu, Penghui

    2015-12-01

    Camera calibration plays a crucial role in 3D measurement tasks of machine vision. In typical calibration processes, camera parameters are iteratively optimized in the forward imaging process (FIP). However, the results can only guarantee the minimum of 2D projection errors on the image plane, but not the minimum of 3D reconstruction errors. In this paper, we propose a universal method for camera calibration, which uses the back projection process (BPP). In our method, a forward projection model is used to obtain initial intrinsic and extrinsic parameters with a popular planar checkerboard pattern. Then, the extracted image points are projected back into 3D space and compared with the ideal point coordinates. Finally, the estimation of the camera parameters is refined by a non-linear function minimization process. The proposed method can obtain a more accurate calibration result, which is more physically useful. Simulation and practical data are given to demonstrate the accuracy of the proposed method.

  10. Approaches to highly parameterized inversion-A guide to using PEST for groundwater-model calibration

    USGS Publications Warehouse

    Doherty, John E.; Hunt, Randall J.

    2010-01-01

    Highly parameterized groundwater models can create calibration difficulties. Regularized inversion-the combined use of large numbers of parameters with mathematical approaches for stable parameter estimation-is becoming a common approach to address these difficulties and enhance the transfer of information contained in field measurements to parameters used to model that system. Though commonly used in other industries, regularized inversion is somewhat imperfectly understood in the groundwater field. There is concern that this unfamiliarity can lead to underuse, and misuse, of the methodology. This document is constructed to facilitate the appropriate use of regularized inversion for calibrating highly parameterized groundwater models. The presentation is directed at an intermediate- to advanced-level modeler, and it focuses on the PEST software suite-a frequently used tool for highly parameterized model calibration and one that is widely supported by commercial graphical user interfaces. A brief overview of the regularized inversion approach is provided, and techniques for mathematical regularization offered by PEST are outlined, including Tikhonov, subspace, and hybrid schemes. Guidelines for applying regularized inversion techniques are presented after a logical progression of steps for building suitable PEST input. The discussion starts with use of pilot points as a parameterization device and processing/grouping observations to form multicomponent objective functions. A description of potential parameter solution methodologies and resources available through the PEST software and its supporting utility programs follows. Directing the parameter-estimation process through PEST control variables is then discussed, including guidance for monitoring and optimizing the performance of PEST. Comprehensive listings of PEST control variables, and of the roles performed by PEST utility support programs, are presented in the appendixes.

  11. Parameter identification of the SWAT model on the BANI catchment (West Africa) under limited data condition

    NASA Astrophysics Data System (ADS)

    Chaibou Begou, Jamilatou; Jomaa, Seifeddine; Benabdallah, Sihem; Rode, Michael

    2015-04-01

    Due to the climate change, drier conditions have prevailed in West Africa, since the seventies, and the consequences are important on water resources. In order to identify and implement management strategies of adaptation to climate change in the sector of water, it is crucial to improve our physical understanding of water resources evolution in the region. To this end, hydrologic modelling is an appropriate tool for flow predictions under changing climate and land use conditions. In this study, the applicability and performance of the recent version of Soil and Water Assessment Tool (SWAT2012) model were tested on the Bani catchment in West Africa under limited data condition. Model parameters identification was also tested using one site and multisite calibration approaches. The Bani is located in the upper part of the Niger River and drains an area of about 101, 000 km2 at the outlet of Douna. The climate is tropical, humid to semi-arid from the South to the North with an average annual rainfall of 1050 mm (period 1981-2000). Global datasets were used for the model setup such as: USGS hydrosheds DEM, USGS LCI GlobCov2009 and the FAO Digital Soil Map of the World. Daily measured rainfall from nine rain gauges and maximum and minimum temperature from five weather stations covering the period 1981-1997 were used for model setup. Sensitivity analysis, calibration and validation are performed within SWATCUP using GLUE procedure at Douna station first (one site calibration), then at three additional internal stations, Bougouni, Pankourou and Kouoro1 (multi-site calibration). Model parameters were calibrated at daily time step for the period 1983-1992, then validated for the period 1993-1997. A period of two years (1981-1982) was used for model warming up. Results of one-site calibration showed that the model performance is evaluated by 0.76 and 0.79 for Nash-Sutcliffe (NS) and correlation coefficient (R2), respectively. While for the validation period the performance improved considerably with NS and R2 equal to 0.84 and 0.87, respectively. The degree of total uncertainties is quantified by a minimum P-factor of 0.61 and a maximum R-factor of 0.59. These statistics suggest that the model performance can be judged as very good, especially considering limited data condition and high climate, land use and soil variability in the studied basin. The most sensitive parameters (CN2, OVN and SLSUBBSN) are related to surface runoff reflecting the dominance of this process on the streamflow generation. In the next step, multisite calibration approach will be performed on the BANI basin to assess how much additional observations improve the model parameter identification.

  12. Optimizing the learning rate for adaptive estimation of neural encoding models

    PubMed Central

    2018-01-01

    Closed-loop neurotechnologies often need to adaptively learn an encoding model that relates the neural activity to the brain state, and is used for brain state decoding. The speed and accuracy of adaptive learning algorithms are critically affected by the learning rate, which dictates how fast model parameters are updated based on new observations. Despite the importance of the learning rate, currently an analytical approach for its selection is largely lacking and existing signal processing methods vastly tune it empirically or heuristically. Here, we develop a novel analytical calibration algorithm for optimal selection of the learning rate in adaptive Bayesian filters. We formulate the problem through a fundamental trade-off that learning rate introduces between the steady-state error and the convergence time of the estimated model parameters. We derive explicit functions that predict the effect of learning rate on error and convergence time. Using these functions, our calibration algorithm can keep the steady-state parameter error covariance smaller than a desired upper-bound while minimizing the convergence time, or keep the convergence time faster than a desired value while minimizing the error. We derive the algorithm both for discrete-valued spikes modeled as point processes nonlinearly dependent on the brain state, and for continuous-valued neural recordings modeled as Gaussian processes linearly dependent on the brain state. Using extensive closed-loop simulations, we show that the analytical solution of the calibration algorithm accurately predicts the effect of learning rate on parameter error and convergence time. Moreover, the calibration algorithm allows for fast and accurate learning of the encoding model and for fast convergence of decoding to accurate performance. Finally, larger learning rates result in inaccurate encoding models and decoders, and smaller learning rates delay their convergence. The calibration algorithm provides a novel analytical approach to predictably achieve a desired level of error and convergence time in adaptive learning, with application to closed-loop neurotechnologies and other signal processing domains. PMID:29813069

  13. Optimizing the learning rate for adaptive estimation of neural encoding models.

    PubMed

    Hsieh, Han-Lin; Shanechi, Maryam M

    2018-05-01

    Closed-loop neurotechnologies often need to adaptively learn an encoding model that relates the neural activity to the brain state, and is used for brain state decoding. The speed and accuracy of adaptive learning algorithms are critically affected by the learning rate, which dictates how fast model parameters are updated based on new observations. Despite the importance of the learning rate, currently an analytical approach for its selection is largely lacking and existing signal processing methods vastly tune it empirically or heuristically. Here, we develop a novel analytical calibration algorithm for optimal selection of the learning rate in adaptive Bayesian filters. We formulate the problem through a fundamental trade-off that learning rate introduces between the steady-state error and the convergence time of the estimated model parameters. We derive explicit functions that predict the effect of learning rate on error and convergence time. Using these functions, our calibration algorithm can keep the steady-state parameter error covariance smaller than a desired upper-bound while minimizing the convergence time, or keep the convergence time faster than a desired value while minimizing the error. We derive the algorithm both for discrete-valued spikes modeled as point processes nonlinearly dependent on the brain state, and for continuous-valued neural recordings modeled as Gaussian processes linearly dependent on the brain state. Using extensive closed-loop simulations, we show that the analytical solution of the calibration algorithm accurately predicts the effect of learning rate on parameter error and convergence time. Moreover, the calibration algorithm allows for fast and accurate learning of the encoding model and for fast convergence of decoding to accurate performance. Finally, larger learning rates result in inaccurate encoding models and decoders, and smaller learning rates delay their convergence. The calibration algorithm provides a novel analytical approach to predictably achieve a desired level of error and convergence time in adaptive learning, with application to closed-loop neurotechnologies and other signal processing domains.

  14. Automated model optimisation using the Cylc workflow engine (Cyclops v1.0)

    NASA Astrophysics Data System (ADS)

    Gorman, Richard M.; Oliver, Hilary J.

    2018-06-01

    Most geophysical models include many parameters that are not fully determined by theory, and can be tuned to improve the model's agreement with available data. We might attempt to automate this tuning process in an objective way by employing an optimisation algorithm to find the set of parameters that minimises a cost function derived from comparing model outputs with measurements. A number of algorithms are available for solving optimisation problems, in various programming languages, but interfacing such software to a complex geophysical model simulation presents certain challenges. To tackle this problem, we have developed an optimisation suite (Cyclops) based on the Cylc workflow engine that implements a wide selection of optimisation algorithms from the NLopt Python toolbox (Johnson, 2014). The Cyclops optimisation suite can be used to calibrate any modelling system that has itself been implemented as a (separate) Cylc model suite, provided it includes computation and output of the desired scalar cost function. A growing number of institutions are using Cylc to orchestrate complex distributed suites of interdependent cycling tasks within their operational forecast systems, and in such cases application of the optimisation suite is particularly straightforward. As a test case, we applied the Cyclops to calibrate a global implementation of the WAVEWATCH III (v4.18) third-generation spectral wave model, forced by ERA-Interim input fields. This was calibrated over a 1-year period (1997), before applying the calibrated model to a full (1979-2016) wave hindcast. The chosen error metric was the spatial average of the root mean square error of hindcast significant wave height compared with collocated altimeter records. We describe the results of a calibration in which up to 19 parameters were optimised.

  15. Parameter de-correlation and model-identification in hybrid-style terrestrial laser scanner self-calibration

    NASA Astrophysics Data System (ADS)

    Lichti, Derek D.; Chow, Jacky; Lahamy, Hervé

    One of the important systematic error parameters identified in terrestrial laser scanners is the collimation axis error, which models the non-orthogonality between two instrumental axes. The quality of this parameter determined by self-calibration, as measured by its estimated precision and its correlation with the tertiary rotation angle κ of the scanner exterior orientation, is strongly dependent on instrument architecture. While the quality is generally very high for panoramic-type scanners, it is comparably poor for hybrid-style instruments. Two methods for improving the quality of the collimation axis error in hybrid instrument self-calibration are proposed herein: (1) the inclusion of independent observations of the tertiary rotation angle κ; and (2) the use of a new collimation axis error model. Five real datasets were captured with two different hybrid-style scanners to test each method's efficacy. While the first method achieves the desired outcome of complete decoupling of the collimation axis error from κ, it is shown that the high correlation is simply transferred to other model variables. The second method achieves partial parameter de-correlation to acceptable levels. Importantly, it does so without any adverse, secondary correlations and is therefore the method recommended for future use. Finally, systematic error model identification has been greatly aided in previous studies by graphical analyses of self-calibration residuals. This paper presents results showing the architecture dependence of this technique, revealing its limitations for hybrid scanners.

  16. Effects of Calibration Sample Size and Item Bank Size on Ability Estimation in Computerized Adaptive Testing

    ERIC Educational Resources Information Center

    Sahin, Alper; Weiss, David J.

    2015-01-01

    This study aimed to investigate the effects of calibration sample size and item bank size on examinee ability estimation in computerized adaptive testing (CAT). For this purpose, a 500-item bank pre-calibrated using the three-parameter logistic model with 10,000 examinees was simulated. Calibration samples of varying sizes (150, 250, 350, 500,…

  17. Thermodynamically consistent model calibration in chemical kinetics

    PubMed Central

    2011-01-01

    Background The dynamics of biochemical reaction systems are constrained by the fundamental laws of thermodynamics, which impose well-defined relationships among the reaction rate constants characterizing these systems. Constructing biochemical reaction systems from experimental observations often leads to parameter values that do not satisfy the necessary thermodynamic constraints. This can result in models that are not physically realizable and may lead to inaccurate, or even erroneous, descriptions of cellular function. Results We introduce a thermodynamically consistent model calibration (TCMC) method that can be effectively used to provide thermodynamically feasible values for the parameters of an open biochemical reaction system. The proposed method formulates the model calibration problem as a constrained optimization problem that takes thermodynamic constraints (and, if desired, additional non-thermodynamic constraints) into account. By calculating thermodynamically feasible values for the kinetic parameters of a well-known model of the EGF/ERK signaling cascade, we demonstrate the qualitative and quantitative significance of imposing thermodynamic constraints on these parameters and the effectiveness of our method for accomplishing this important task. MATLAB software, using the Systems Biology Toolbox 2.1, can be accessed from http://www.cis.jhu.edu/~goutsias/CSS lab/software.html. An SBML file containing the thermodynamically feasible EGF/ERK signaling cascade model can be found in the BioModels database. Conclusions TCMC is a simple and flexible method for obtaining physically plausible values for the kinetic parameters of open biochemical reaction systems. It can be effectively used to recalculate a thermodynamically consistent set of parameter values for existing thermodynamically infeasible biochemical reaction models of cellular function as well as to estimate thermodynamically feasible values for the parameters of new models. Furthermore, TCMC can provide dimensionality reduction, better estimation performance, and lower computational complexity, and can help to alleviate the problem of data overfitting. PMID:21548948

  18. Evaluation of Potential Evapotranspiration from a Hydrologic Model on a National Scale

    NASA Astrophysics Data System (ADS)

    Hakala, Kirsti; Markstrom, Steven; Hay, Lauren

    2015-04-01

    The U.S. Geological Survey has developed a National Hydrologic Model (NHM) to support coordinated, comprehensive and consistent hydrologic model development and facilitate the application of simulations on the scale of the continental U.S. The NHM has a consistent geospatial fabric for modeling, consisting of over 100,000 hydrologic response units HRUs). Each HRU requires accurate parameter estimates, some of which are attained from automated calibration. However, improved calibration can be achieved by initially utilizing as many parameters as possible from national data sets. This presentation investigates the effectiveness of calculating potential evapotranspiration (PET) parameters based on mean monthly values from the NOAA PET Atlas. Additional PET products are then used to evaluate the PET parameters. Effectively utilizing existing national-scale data sets can simplify the effort in establishing a robust NHM.

  19. Identifying influential data points in hydrological model calibration and their impact on streamflow predictions

    NASA Astrophysics Data System (ADS)

    Wright, David; Thyer, Mark; Westra, Seth

    2015-04-01

    Highly influential data points are those that have a disproportionately large impact on model performance, parameters and predictions. However, in current hydrological modelling practice the relative influence of individual data points on hydrological model calibration is not commonly evaluated. This presentation illustrates and evaluates several influence diagnostics tools that hydrological modellers can use to assess the relative influence of data. The feasibility and importance of including influence detection diagnostics as a standard tool in hydrological model calibration is discussed. Two classes of influence diagnostics are evaluated: (1) computationally demanding numerical "case deletion" diagnostics; and (2) computationally efficient analytical diagnostics, based on Cook's distance. These diagnostics are compared against hydrologically orientated diagnostics that describe changes in the model parameters (measured through the Mahalanobis distance), performance (objective function displacement) and predictions (mean and maximum streamflow). These influence diagnostics are applied to two case studies: a stage/discharge rating curve model, and a conceptual rainfall-runoff model (GR4J). Removing a single data point from the calibration resulted in differences to mean flow predictions of up to 6% for the rating curve model, and differences to mean and maximum flow predictions of up to 10% and 17%, respectively, for the hydrological model. When using the Nash-Sutcliffe efficiency in calibration, the computationally cheaper Cook's distance metrics produce similar results to the case-deletion metrics at a fraction of the computational cost. However, Cooks distance is adapted from linear regression with inherit assumptions on the data and is therefore less flexible than case deletion. Influential point detection diagnostics show great potential to improve current hydrological modelling practices by identifying highly influential data points. The findings of this study establish the feasibility and importance of including influential point detection diagnostics as a standard tool in hydrological model calibration. They provide the hydrologist with important information on whether model calibration is susceptible to a small number of highly influent data points. This enables the hydrologist to make a more informed decision of whether to (1) remove/retain the calibration data; (2) adjust the calibration strategy and/or hydrological model to reduce the susceptibility of model predictions to a small number of influential observations.

  20. Calibrating Physical Parameters in House Models Using Aggregate AC Power Demand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Yannan; Stevens, Andrew J.; Lian, Jianming

    For residential houses, the air conditioning (AC) units are one of the major resources that can provide significant flexibility in energy use for the purpose of demand response. To quantify the flexibility, the characteristics of all the houses need to be accurately estimated, so that certain house models can be used to predict the dynamics of the house temperatures in order to adjust the setpoints accordingly to provide demand response while maintaining the same comfort levels. In this paper, we propose an approach using the Reverse Monte Carlo modeling method and aggregate house models to calibrate the distribution parameters ofmore » the house models for a population of residential houses. Given the aggregate AC power demand for the population, the approach can successfully estimate the distribution parameters for the sensitive physical parameters based on our previous uncertainty quantification study, such as the mean of the floor areas of the houses.« less

  1. An Overview of Kinematic and Calibration Models Using Internal/External Sensors or Constraints to Improve the Behavior of Spatial Parallel Mechanisms

    PubMed Central

    Majarena, Ana C.; Santolaria, Jorge; Samper, David; Aguilar, Juan J.

    2010-01-01

    This paper presents an overview of the literature on kinematic and calibration models of parallel mechanisms, the influence of sensors in the mechanism accuracy and parallel mechanisms used as sensors. The most relevant classifications to obtain and solve kinematic models and to identify geometric and non-geometric parameters in the calibration of parallel robots are discussed, examining the advantages and disadvantages of each method, presenting new trends and identifying unsolved problems. This overview tries to answer and show the solutions developed by the most up-to-date research to some of the most frequent questions that appear in the modelling of a parallel mechanism, such as how to measure, the number of sensors and necessary configurations, the type and influence of errors or the number of necessary parameters. PMID:22163469

  2. Mixture EMOS model for calibrating ensemble forecasts of wind speed.

    PubMed

    Baran, S; Lerch, S

    2016-03-01

    Ensemble model output statistics (EMOS) is a statistical tool for post-processing forecast ensembles of weather variables obtained from multiple runs of numerical weather prediction models in order to produce calibrated predictive probability density functions. The EMOS predictive probability density function is given by a parametric distribution with parameters depending on the ensemble forecasts. We propose an EMOS model for calibrating wind speed forecasts based on weighted mixtures of truncated normal (TN) and log-normal (LN) distributions where model parameters and component weights are estimated by optimizing the values of proper scoring rules over a rolling training period. The new model is tested on wind speed forecasts of the 50 member European Centre for Medium-range Weather Forecasts ensemble, the 11 member Aire Limitée Adaptation dynamique Développement International-Hungary Ensemble Prediction System ensemble of the Hungarian Meteorological Service, and the eight-member University of Washington mesoscale ensemble, and its predictive performance is compared with that of various benchmark EMOS models based on single parametric families and combinations thereof. The results indicate improved calibration of probabilistic and accuracy of point forecasts in comparison with the raw ensemble and climatological forecasts. The mixture EMOS model significantly outperforms the TN and LN EMOS methods; moreover, it provides better calibrated forecasts than the TN-LN combination model and offers an increased flexibility while avoiding covariate selection problems. © 2016 The Authors Environmetrics Published by JohnWiley & Sons Ltd.

  3. Use of Numerical Groundwater Model and Analytical Empirical Orthogonal Function for Calibrating Spatiotemporal pattern of Pumpage, Recharge and Parameter

    NASA Astrophysics Data System (ADS)

    Huang, C. L.; Hsu, N. S.; Hsu, F. C.; Liu, H. J.

    2016-12-01

    This study develops a novel methodology for the spatiotemporal groundwater calibration of mega-quantitative recharge and parameters by coupling a specialized numerical model and analytical empirical orthogonal function (EOF). The actual spatiotemporal patterns of groundwater pumpage are estimated by an originally developed back propagation neural network-based response matrix with the electrical consumption analysis. The spatiotemporal patterns of the recharge from surface water and hydrogeological parameters (i.e. horizontal hydraulic conductivity and vertical leakance) are calibrated by EOF with the simulated error hydrograph of groundwater storage, in order to qualify the multiple error sources and quantify the revised volume. The objective function of the optimization model is minimizing the root mean square error of the simulated storage error percentage across multiple aquifers, meanwhile subject to mass balance of groundwater budget and the governing equation in transient state. The established method was applied on the groundwater system of Chou-Shui River Alluvial Fan. The simulated period is from January 2012 to December 2014. The total numbers of hydraulic conductivity, vertical leakance and recharge from surface water among four aquifers are 126, 96 and 1080, respectively. Results showed that the RMSE during the calibration process was decreased dramatically and can quickly converse within 6th iteration, because of efficient filtration of the transmission induced by the estimated error and recharge across the boundary. Moreover, the average simulated error percentage according to groundwater level corresponding to the calibrated budget variables and parameters of aquifer one is as small as 0.11%. It represent that the developed methodology not only can effectively detect the flow tendency and error source in all aquifers to achieve accurately spatiotemporal calibration, but also can capture the peak and fluctuation of groundwater level in shallow aquifer.

  4. Application of an automatic approach to calibrate the NEMURO nutrient-phytoplankton-zooplankton food web model in the Oyashio region

    NASA Astrophysics Data System (ADS)

    Ito, Shin-ichi; Yoshie, Naoki; Okunishi, Takeshi; Ono, Tsuneo; Okazaki, Yuji; Kuwata, Akira; Hashioka, Taketo; Rose, Kenneth A.; Megrey, Bernard A.; Kishi, Michio J.; Nakamachi, Miwa; Shimizu, Yugo; Kakehi, Shigeho; Saito, Hiroaki; Takahashi, Kazutaka; Tadokoro, Kazuaki; Kusaka, Akira; Kasai, Hiromi

    2010-10-01

    The Oyashio region in the western North Pacific supports high biological productivity and has been well monitored. We applied the NEMURO (North Pacific Ecosystem Model for Understanding Regional Oceanography) model to simulate the nutrients, phytoplankton, and zooplankton dynamics. Determination of parameters values is very important, yet ad hoc calibration methods are often used. We used the automatic calibration software PEST (model-independent Parameter ESTimation), which has been used previously with NEMURO but in a system without ontogenetic vertical migration of the large zooplankton functional group. Determining the performance of PEST with vertical migration, and obtaining a set of realistic parameter values for the Oyashio, will likely be useful in future applications of NEMURO. Five identical twin simulation experiments were performed with the one-box version of NEMURO. The experiments differed in whether monthly snapshot or averaged state variables were used, in whether state variables were model functional groups or were aggregated (total phytoplankton, small plus large zooplankton), and in whether vertical migration of large zooplankton was included or not. We then applied NEMURO to monthly climatological field data covering 1 year for the Oyashio, and compared model fits and parameter values between PEST-determined estimates and values used in previous applications to the Oyashio region that relied on ad hoc calibration. We substituted the PEST and ad hoc calibrated parameter values into a 3-D version of NEMURO for the western North Pacific, and compared the two sets of spatial maps of chlorophyll- a with satellite-derived data. The identical twin experiments demonstrated that PEST could recover the known model parameter values when vertical migration was included, and that over-fitting can occur as a result of slight differences in the values of the state variables. PEST recovered known parameter values when using monthly snapshots of aggregated state variables, but estimated a different set of parameters with monthly averaged values. Both sets of parameters resulted in good fits of the model to the simulated data. Disaggregating the variables provided to PEST into functional groups did not solve the over-fitting problem, and including vertical migration seemed to amplify the problem. When we used the climatological field data, simulated values with PEST-estimated parameters were closer to these field data than with the previously determined ad hoc set of parameter values. When these same PEST and ad hoc sets of parameter values were substituted into 3-D-NEMURO (without vertical migration), the PEST-estimated parameter values generated spatial maps that were similar to the satellite data for the Kuroshio Extension during January and March and for the subarctic ocean from May to November. With non-linear problems, such as vertical migration, PEST should be used with caution because parameter estimates can be sensitive to how the data are prepared and to the values used for the searching parameters of PEST. We recommend the usage of PEST, or other parameter optimization methods, to generate first-order parameter estimates for simulating specific systems and for insertion into 2-D and 3-D models. The parameter estimates that are generated are useful, and the inconsistencies between simulated values and the available field data provide valuable information on model behavior and the dynamics of the ecosystem.

  5. Modelling suspended-sediment propagation and related heavy metal contamination in floodplains: a parameter sensitivity analysis

    NASA Astrophysics Data System (ADS)

    Hostache, R.; Hissler, C.; Matgen, P.; Guignard, C.; Bates, P.

    2014-09-01

    Fine sediments represent an important vector of pollutant diffusion in rivers. When deposited in floodplains and riverbeds, they can be responsible for soil pollution. In this context, this paper proposes a modelling exercise aimed at predicting transport and diffusion of fine sediments and dissolved pollutants. The model is based upon the Telemac hydro-informatic system (dynamical coupling Telemac-2D-Sysiphe). As empirical and semiempirical parameters need to be calibrated for such a modelling exercise, a sensitivity analysis is proposed. An innovative point in this study is the assessment of the usefulness of dissolved trace metal contamination information for model calibration. Moreover, for supporting the modelling exercise, an extensive database was set up during two flood events. It includes water surface elevation records, discharge measurements and geochemistry data such as time series of dissolved/particulate contaminants and suspended-sediment concentrations. The most sensitive parameters were found to be the hydraulic friction coefficients and the sediment particle settling velocity in water. It was also found that model calibration did not benefit from dissolved trace metal contamination information. Using the two monitored hydrological events as calibration and validation, it was found that the model is able to satisfyingly predict suspended sediment and dissolve pollutant transport in the river channel. In addition, a qualitative comparison between simulated sediment deposition in the floodplain and a soil contamination map shows that the preferential zones for deposition identified by the model are realistic.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tuo, Rui; Wu, C. F. Jeff

    Many computer models contain unknown parameters which need to be estimated using physical observations. Furthermore, the calibration method based on Gaussian process models may lead to unreasonable estimate for imperfect computer models. In this work, we extend their study to calibration problems with stochastic physical data. We propose a novel method, called the L 2 calibration, and show its semiparametric efficiency. The conventional method of the ordinary least squares is also studied. Theoretical analysis shows that it is consistent but not efficient. Here, numerical examples show that the proposed method outperforms the existing ones.

  7. Uncertainty quantification in LES of channel flow

    DOE PAGES

    Safta, Cosmin; Blaylock, Myra; Templeton, Jeremy; ...

    2016-07-12

    Here, in this paper, we present a Bayesian framework for estimating joint densities for large eddy simulation (LES) sub-grid scale model parameters based on canonical forced isotropic turbulence direct numerical simulation (DNS) data. The framework accounts for noise in the independent variables, and we present alternative formulations for accounting for discrepancies between model and data. To generate probability densities for flow characteristics, posterior densities for sub-grid scale model parameters are propagated forward through LES of channel flow and compared with DNS data. Synthesis of the calibration and prediction results demonstrates that model parameters have an explicit filter width dependence andmore » are highly correlated. Discrepancies between DNS and calibrated LES results point to additional model form inadequacies that need to be accounted for.« less

  8. The Impact of Three Factors on the Recovery of Item Parameters for the Three-Parameter Logistic Model

    ERIC Educational Resources Information Center

    Kim, Kyung Yong; Lee, Won-Chan

    2017-01-01

    This article provides a detailed description of three factors (specification of the ability distribution, numerical integration, and frame of reference for the item parameter estimates) that might affect the item parameter estimation of the three-parameter logistic model, and compares five item calibration methods, which are combinations of the…

  9. Calibrating damping rates with LEGACY linewidths

    NASA Astrophysics Data System (ADS)

    Houdek, Günter

    2017-10-01

    Linear damping rates of radial oscillation modes in selected Kepler stars are estimated with the help of a nonadiabatic stability analysis. The convective fluxes are obtained from a nonlocal, time-dependent convection model. The mixing-length parameter is calibrated to the surface-convection-zone depth of a stellar model obtained from fitting adiabatic frequencies to the LEGACY* observations, and two of the three nonlocal convection parameters are calibrated to the corresponding LEGACY* linewidth measurements. The atmospheric structure in the 1D stability analysis adopts a temperature-optical-depth relation derived from 3D hydrodynamical simulations. Results from 3D simulations are also used to calibrate the turbulent pressure and to guide the functional form of the depth-dependence of the anisotropy of the turbulent velocity field in the 1D stability computations.

  10. A new method to calibrate Lagrangian model with ASAR images for oil slick trajectory.

    PubMed

    Tian, Siyu; Huang, Xiaoxia; Li, Hongga

    2017-03-15

    Since Lagrangian model coefficients vary with different conditions, it is necessary to calibrate the model to obtain optimal coefficient combination for special oil spill accident. This paper focuses on proposing a new method to calibrate Lagrangian model with time series of Envisat ASAR images. Oil slicks extracted from time series images form a detected trajectory of special oil slick. Lagrangian model is calibrated by minimizing the difference between simulated trajectory and detected trajectory. mean center position distance difference (MCPD) and rotation difference (RD) of Oil slicks' or particles' standard deviational ellipses (SDEs) are calculated as two evaluations. The two parameters are taken to evaluate the performance of Lagrangian transport model with different coefficient combinations. This method is applied to Penglai 19-3 oil spill accident. The simulation result with calibrated model agrees well with related satellite observations. It is suggested the new method is effective to calibrate Lagrangian model. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Microthrix parvicella abundance associates with activated sludge settling velocity and rheology - Quantifying and modelling filamentous bulking.

    PubMed

    Wágner, Dorottya S; Ramin, Elham; Szabo, Peter; Dechesne, Arnaud; Plósz, Benedek Gy

    2015-07-01

    The objective of this work is to identify relevant settling velocity and rheology model parameters and to assess the underlying filamentous microbial community characteristics that can influence the solids mixing and transport in secondary settling tanks. Parameter values for hindered, transient and compression settling velocity functions were estimated by carrying out biweekly batch settling tests using a novel column setup through a four-month long measurement campaign. To estimate viscosity model parameters, rheological experiments were carried out on the same sludge sample using a rotational viscometer. Quantitative fluorescence in-situ hybridisation (qFISH) analysis, targeting Microthrix parvicella and phylum Chloroflexi, was used. This study finds that M. parvicella - predominantly residing inside the microbial flocs in our samples - can significantly influence secondary settling through altering the hindered settling velocity and yield stress parameter. Strikingly, this is not the case for Chloroflexi, occurring in more than double the abundance of M. parvicella, and forming filaments primarily protruding from the flocs. The transient and compression settling parameters show a comparably high variability, and no significant association with filamentous abundance. A two-dimensional, axi-symmetrical computational fluid dynamics (CFD) model was used to assess calibration scenarios to model filamentous bulking. Our results suggest that model predictions can significantly benefit from explicitly accounting for filamentous bulking by calibrating the hindered settling velocity function. Furthermore, accounting for the transient and compression settling velocity in the computational domain is crucial to improve model accuracy when modelling filamentous bulking. However, the case-specific calibration of transient and compression settling parameters as well as yield stress is not necessary, and an average parameter set - obtained under bulking and good settling conditions - can be used. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. A Bayesian alternative for multi-objective ecohydrological model specification

    NASA Astrophysics Data System (ADS)

    Tang, Yating; Marshall, Lucy; Sharma, Ashish; Ajami, Hoori

    2018-01-01

    Recent studies have identified the importance of vegetation processes in terrestrial hydrologic systems. Process-based ecohydrological models combine hydrological, physical, biochemical and ecological processes of the catchments, and as such are generally more complex and parametric than conceptual hydrological models. Thus, appropriate calibration objectives and model uncertainty analysis are essential for ecohydrological modeling. In recent years, Bayesian inference has become one of the most popular tools for quantifying the uncertainties in hydrological modeling with the development of Markov chain Monte Carlo (MCMC) techniques. The Bayesian approach offers an appealing alternative to traditional multi-objective hydrologic model calibrations by defining proper prior distributions that can be considered analogous to the ad-hoc weighting often prescribed in multi-objective calibration. Our study aims to develop appropriate prior distributions and likelihood functions that minimize the model uncertainties and bias within a Bayesian ecohydrological modeling framework based on a traditional Pareto-based model calibration technique. In our study, a Pareto-based multi-objective optimization and a formal Bayesian framework are implemented in a conceptual ecohydrological model that combines a hydrological model (HYMOD) and a modified Bucket Grassland Model (BGM). Simulations focused on one objective (streamflow/LAI) and multiple objectives (streamflow and LAI) with different emphasis defined via the prior distribution of the model error parameters. Results show more reliable outputs for both predicted streamflow and LAI using Bayesian multi-objective calibration with specified prior distributions for error parameters based on results from the Pareto front in the ecohydrological modeling. The methodology implemented here provides insight into the usefulness of multiobjective Bayesian calibration for ecohydrologic systems and the importance of appropriate prior distributions in such approaches.

  13. An efficient multistage algorithm for full calibration of the hemodynamic model from BOLD signal responses.

    PubMed

    Zambri, Brian; Djellouli, Rabia; Laleg-Kirati, Taous-Meriem

    2017-11-01

    We propose a computational strategy that falls into the category of prediction/correction iterative-type approaches, for calibrating the hemodynamic model. The proposed method is used to estimate consecutively the values of the two sets of model parameters. Numerical results corresponding to both synthetic and real functional magnetic resonance imaging measurements for a single stimulus as well as for multiple stimuli are reported to highlight the capability of this computational methodology to fully calibrate the considered hemodynamic model. Copyright © 2017 John Wiley & Sons, Ltd.

  14. Highly parameterized model calibration with cloud computing: an example of regional flow model calibration in northeast Alberta, Canada

    NASA Astrophysics Data System (ADS)

    Hayley, Kevin; Schumacher, J.; MacMillan, G. J.; Boutin, L. C.

    2014-05-01

    Expanding groundwater datasets collected by automated sensors, and improved groundwater databases, have caused a rapid increase in calibration data available for groundwater modeling projects. Improved methods of subsurface characterization have increased the need for model complexity to represent geological and hydrogeological interpretations. The larger calibration datasets and the need for meaningful predictive uncertainty analysis have both increased the degree of parameterization necessary during model calibration. Due to these competing demands, modern groundwater modeling efforts require a massive degree of parallelization in order to remain computationally tractable. A methodology for the calibration of highly parameterized, computationally expensive models using the Amazon EC2 cloud computing service is presented. The calibration of a regional-scale model of groundwater flow in Alberta, Canada, is provided as an example. The model covers a 30,865-km2 domain and includes 28 hydrostratigraphic units. Aquifer properties were calibrated to more than 1,500 static hydraulic head measurements and 10 years of measurements during industrial groundwater use. Three regionally extensive aquifers were parameterized (with spatially variable hydraulic conductivity fields), as was the aerial recharge boundary condition, leading to 450 adjustable parameters in total. The PEST-based model calibration was parallelized on up to 250 computing nodes located on Amazon's EC2 servers.

  15. CALCULATION OF NONLINEAR CONFIDENCE AND PREDICTION INTERVALS FOR GROUND-WATER FLOW MODELS.

    USGS Publications Warehouse

    Cooley, Richard L.; Vecchia, Aldo V.

    1987-01-01

    A method is derived to efficiently compute nonlinear confidence and prediction intervals on any function of parameters derived as output from a mathematical model of a physical system. The method is applied to the problem of obtaining confidence and prediction intervals for manually-calibrated ground-water flow models. To obtain confidence and prediction intervals resulting from uncertainties in parameters, the calibrated model and information on extreme ranges and ordering of the model parameters within one or more independent groups are required. If random errors in the dependent variable are present in addition to uncertainties in parameters, then calculation of prediction intervals also requires information on the extreme range of error expected. A simple Monte Carlo method is used to compute the quantiles necessary to establish probability levels for the confidence and prediction intervals. Application of the method to a hypothetical example showed that inclusion of random errors in the dependent variable in addition to uncertainties in parameters can considerably widen the prediction intervals.

  16. Effects of ring-porous and diffuse-porous stem wood anatomy on the hydraulic parameters used in a water flow and storage model.

    PubMed

    Steppe, Kathy; Lemeur, Raoul

    2007-01-01

    Calibration of a recently developed water flow and storage model based on experimental data for a young diffuse-porous beech tree (Fagus sylvatica L.) and a young ring-porous oak tree (Quercus robur L.) revealed that differences in stem wood anatomy between species strongly affect the calibrated values of the hydraulic model parameters. The hydraulic capacitance (C) of the stem storage tissue was higher in oak than in beech (939.8 versus 212.3 mg MPa(-1)). Model simulation of the elastic modulus (epsilon) revealed that this difference was linked to the higher elasticity of the stem storage tissue of oak compared with beech. Furthermore, the hydraulic resistance (R (x)) of beech was about twice that of oak (0.1829 versus 0.1072 MPa s mg(-1)). To determine the physiological meaning of the R (x) parameter identified by model calibration, we analyzed the stem wood anatomy of the beech and oak trees. Calculation of stem specific hydraulic conductivity (k (s)) of beech and oak with the Hagen-Poiseuille equation confirmed the differences in R (x) predicted by the model. The contributions of different vessel diameter classes to the total hydraulic conductivity of the xylem were calculated. As expected, the few big vessels contributed much more to total conductivity than the many small vessels. Compared with beech, the larger vessels of oak resulted in a higher k (s) (10.66 versus 4.90 kg m(-1) s(-1) MPa(-1)). The calculated ratio of k (s) of oak to beech was 2, confirming the R (x) ratio obtained by model calibration. Thus, validation of the R (x) parameter of the model led to identification of its physiological meaning.

  17. A mixture theory model of fluid and solute transport in the microvasculature of normal and malignant tissues. II: Factor sensitivity analysis, calibration, and validation.

    PubMed

    Schuff, M M; Gore, J P; Nauman, E A

    2013-12-01

    The treatment of cancerous tumors is dependent upon the delivery of therapeutics through the blood by means of the microcirculation. Differences in the vasculature of normal and malignant tissues have been recognized, but it is not fully understood how these differences affect transport and the applicability of existing mathematical models has been questioned at the microscale due to the complex rheology of blood and fluid exchange with the tissue. In addition to determining an appropriate set of governing equations it is necessary to specify appropriate model parameters based on physiological data. To this end, a two stage sensitivity analysis is described which makes it possible to determine the set of parameters most important to the model's calibration. In the first stage, the fluid flow equations are examined and a sensitivity analysis is used to evaluate the importance of 11 different model parameters. Of these, only four substantially influence the intravascular axial flow providing a tractable set that could be calibrated using red blood cell velocity data from the literature. The second stage also utilizes a sensitivity analysis to evaluate the importance of 14 model parameters on extravascular flux. Of these, six exhibit high sensitivity and are integrated into the model calibration using a response surface methodology and experimental intra- and extravascular accumulation data from the literature (Dreher et al. in J Natl Cancer Inst 98(5):335-344, 2006). The model exhibits good agreement with the experimental results for both the mean extravascular concentration and the penetration depth as a function of time for inert dextran over a wide range of molecular weights.

  18. Optimum data weighting and error calibration for estimation of gravitational parameters

    NASA Technical Reports Server (NTRS)

    Lerch, F. J.

    1989-01-01

    A new technique was developed for the weighting of data from satellite tracking systems in order to obtain an optimum least squares solution and an error calibration for the solution parameters. Data sets from optical, electronic, and laser systems on 17 satellites in GEM-T1 (Goddard Earth Model, 36x36 spherical harmonic field) were employed toward application of this technique for gravity field parameters. Also, GEM-T2 (31 satellites) was recently computed as a direct application of the method and is summarized here. The method employs subset solutions of the data associated with the complete solution and uses an algorithm to adjust the data weights by requiring the differences of parameters between solutions to agree with their error estimates. With the adjusted weights the process provides for an automatic calibration of the error estimates for the solution parameters. The data weights derived are generally much smaller than corresponding weights obtained from nominal values of observation accuracy or residuals. Independent tests show significant improvement for solutions with optimal weighting as compared to the nominal weighting. The technique is general and may be applied to orbit parameters, station coordinates, or other parameters than the gravity model.

  19. A Theoretical Framework for Calibration in Computer Models: Parametrization, Estimation and Convergence Properties

    DOE PAGES

    Tuo, Rui; Jeff Wu, C. F.

    2016-07-19

    Calibration parameters in deterministic computer experiments are those attributes that cannot be measured or available in physical experiments. Here, an approach to estimate them by using data from physical experiments and computer simulations. A theoretical framework is given which allows us to study the issues of parameter identifiability and estimation. We define the L 2-consistency for calibration as a justification for calibration methods. It is shown that a simplified version of the original KO method leads to asymptotically L 2-inconsistent calibration. This L 2-inconsistency can be remedied by modifying the original estimation procedure. A novel calibration method, called the Lmore » 2 calibration, is proposed and proven to be L 2-consistent and enjoys optimal convergence rate. Furthermore a numerical example and some mathematical analysis are used to illustrate the source of the L 2-inconsistency problem.« less

  20. Attaining insight into interactions between hydrologic model parameters and geophysical attributes for national-scale model parameter estimation

    NASA Astrophysics Data System (ADS)

    Mizukami, N.; Clark, M. P.; Newman, A. J.; Wood, A.; Gutmann, E. D.

    2017-12-01

    Estimating spatially distributed model parameters is a grand challenge for large domain hydrologic modeling, especially in the context of hydrologic model applications such as streamflow forecasting. Multi-scale Parameter Regionalization (MPR) is a promising technique that accounts for the effects of fine-scale geophysical attributes (e.g., soil texture, land cover, topography, climate) on model parameters and nonlinear scaling effects on model parameters. MPR computes model parameters with transfer functions (TFs) that relate geophysical attributes to model parameters at the native input data resolution and then scales them using scaling functions to the spatial resolution of the model implementation. One of the biggest challenges in the use of MPR is identification of TFs for each model parameter: both functional forms and geophysical predictors. TFs used to estimate the parameters of hydrologic models typically rely on previous studies or were derived in an ad-hoc, heuristic manner, potentially not utilizing maximum information content contained in the geophysical attributes for optimal parameter identification. Thus, it is necessary to first uncover relationships among geophysical attributes, model parameters, and hydrologic processes (i.e., hydrologic signatures) to obtain insight into which and to what extent geophysical attributes are related to model parameters. We perform multivariate statistical analysis on a large-sample catchment data set including various geophysical attributes as well as constrained VIC model parameters at 671 unimpaired basins over the CONUS. We first calibrate VIC model at each catchment to obtain constrained parameter sets. Additionally, parameter sets sampled during the calibration process are used for sensitivity analysis using various hydrologic signatures as objectives to understand the relationships among geophysical attributes, parameters, and hydrologic processes.

  1. Parameterization and Uncertainty Analysis of SWAT model in Hydrological Simulation of Chaohe River Basin

    NASA Astrophysics Data System (ADS)

    Jie, M.; Zhang, J.; Guo, B. B.

    2017-12-01

    As a typical distributed hydrological model, the SWAT model also has a challenge in calibrating parameters and analysis their uncertainty. This paper chooses the Chaohe River Basin China as the study area, through the establishment of the SWAT model, loading the DEM data of the Chaohe river basin, the watershed is automatically divided into several sub-basins. Analyzing the land use, soil and slope which are on the basis of the sub-basins and calculating the hydrological response unit (HRU) of the study area, after running SWAT model, the runoff simulation values in the watershed are obtained. On this basis, using weather data, known daily runoff of three hydrological stations, combined with the SWAT-CUP automatic program and the manual adjustment method are used to analyze the multi-site calibration of the model parameters. Furthermore, the GLUE algorithm is used to analyze the parameters uncertainty of the SWAT model. Through the sensitivity analysis, calibration and uncertainty study of SWAT, the results indicate that the parameterization of the hydrological characteristics of the Chaohe river is successful and feasible which can be used to simulate the Chaohe river basin.

  2. Estimating parameter values of a socio-hydrological flood model

    NASA Astrophysics Data System (ADS)

    Holkje Barendrecht, Marlies; Viglione, Alberto; Kreibich, Heidi; Vorogushyn, Sergiy; Merz, Bruno; Blöschl, Günter

    2018-06-01

    Socio-hydrological modelling studies that have been published so far show that dynamic coupled human-flood models are a promising tool to represent the phenomena and the feedbacks in human-flood systems. So far these models are mostly generic and have not been developed and calibrated to represent specific case studies. We believe that applying and calibrating these type of models to real world case studies can help us to further develop our understanding about the phenomena that occur in these systems. In this paper we propose a method to estimate the parameter values of a socio-hydrological model and we test it by applying it to an artificial case study. We postulate a model that describes the feedbacks between floods, awareness and preparedness. After simulating hypothetical time series with a given combination of parameters, we sample few data points for our variables and try to estimate the parameters given these data points using Bayesian Inference. The results show that, if we are able to collect data for our case study, we would, in theory, be able to estimate the parameter values for our socio-hydrological flood model.

  3. Technical note: Bayesian calibration of dynamic ruminant nutrition models.

    PubMed

    Reed, K F; Arhonditsis, G B; France, J; Kebreab, E

    2016-08-01

    Mechanistic models of ruminant digestion and metabolism have advanced our understanding of the processes underlying ruminant animal physiology. Deterministic modeling practices ignore the inherent variation within and among individual animals and thus have no way to assess how sources of error influence model outputs. We introduce Bayesian calibration of mathematical models to address the need for robust mechanistic modeling tools that can accommodate error analysis by remaining within the bounds of data-based parameter estimation. For the purpose of prediction, the Bayesian approach generates a posterior predictive distribution that represents the current estimate of the value of the response variable, taking into account both the uncertainty about the parameters and model residual variability. Predictions are expressed as probability distributions, thereby conveying significantly more information than point estimates in regard to uncertainty. Our study illustrates some of the technical advantages of Bayesian calibration and discusses the future perspectives in the context of animal nutrition modeling. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  4. A one dimensional moving bed biofilm reactor model for nitrification of municipal wastewaters.

    PubMed

    Barry, Ugo; Choubert, Jean-Marc; Canler, Jean-Pierre; Pétrimaux, Olivier; Héduit, Alain; Lessard, Paul

    2017-08-01

    This work presents a one-dimensional model of a moving bed bioreactor (MBBR) process designed for the removal of nitrogen from raw wastewaters. A comprehensive experimental strategy was deployed at a semi-industrial pilot-scale plant fed with a municipal wastewater operated at 10-12 °C, and surface loading rates of 1-2 g filtered COD/m 2 d and 0.4-0.55 g NH 4 -N/m 2 d. Data were collected on influent/effluent composition, and on measurement of key variables or parameters (biofilm mass and maximal thickness, thickness of the limit liquid layer, maximal nitrification rate, oxygen mass transfer coefficient). Based on time-course variations in these variables, the MBBR model was calibrated at two time-scales and magnitudes of dynamic conditions, i.e., short-term (4 days) calibration under dynamic conditions and long-term (33 days) calibration, and for three types of carriers. A set of parameters suitable for the conditions was proposed, and the calibrated parameter set is able to simulate the time-course change of nitrogen forms in the effluent of the MBBR tanks, under the tested operated conditions. Parameters linked to diffusion had a strong influence on how robustly the model is able to accurately reproduce time-course changes in effluent quality. Then the model was used to optimize the operations of MBBR layout. It was shown that the main optimization track consists of the limitation of the aeration supply without changing the overall performance of the process. Further work would investigate the influence of the hydrodynamic conditions onto the thickness of the limit liquid layer and the "apparent" diffusion coefficient in the biofilm parameters.

  5. Combining satellite data and appropriate objective functions for improved spatial pattern performance of a distributed hydrologic model

    NASA Astrophysics Data System (ADS)

    Demirel, Mehmet C.; Mai, Juliane; Mendiguren, Gorka; Koch, Julian; Samaniego, Luis; Stisen, Simon

    2018-02-01

    Satellite-based earth observations offer great opportunities to improve spatial model predictions by means of spatial-pattern-oriented model evaluations. In this study, observed spatial patterns of actual evapotranspiration (AET) are utilised for spatial model calibration tailored to target the pattern performance of the model. The proposed calibration framework combines temporally aggregated observed spatial patterns with a new spatial performance metric and a flexible spatial parameterisation scheme. The mesoscale hydrologic model (mHM) is used to simulate streamflow and AET and has been selected due to its soil parameter distribution approach based on pedo-transfer functions and the build in multi-scale parameter regionalisation. In addition two new spatial parameter distribution options have been incorporated in the model in order to increase the flexibility of root fraction coefficient and potential evapotranspiration correction parameterisations, based on soil type and vegetation density. These parameterisations are utilised as they are most relevant for simulated AET patterns from the hydrologic model. Due to the fundamental challenges encountered when evaluating spatial pattern performance using standard metrics, we developed a simple but highly discriminative spatial metric, i.e. one comprised of three easily interpretable components measuring co-location, variation and distribution of the spatial data. The study shows that with flexible spatial model parameterisation used in combination with the appropriate objective functions, the simulated spatial patterns of actual evapotranspiration become substantially more similar to the satellite-based estimates. Overall 26 parameters are identified for calibration through a sequential screening approach based on a combination of streamflow and spatial pattern metrics. The robustness of the calibrations is tested using an ensemble of nine calibrations based on different seed numbers using the shuffled complex evolution optimiser. The calibration results reveal a limited trade-off between streamflow dynamics and spatial patterns illustrating the benefit of combining separate observation types and objective functions. At the same time, the simulated spatial patterns of AET significantly improved when an objective function based on observed AET patterns and a novel spatial performance metric compared to traditional streamflow-only calibration were included. Since the overall water balance is usually a crucial goal in hydrologic modelling, spatial-pattern-oriented optimisation should always be accompanied by traditional discharge measurements. In such a multi-objective framework, the current study promotes the use of a novel bias-insensitive spatial pattern metric, which exploits the key information contained in the observed patterns while allowing the water balance to be informed by discharge observations.

  6. Anomalous solute transport in saturated porous media: Relating transport model parameters to electrical and nuclear magnetic resonance properties

    USGS Publications Warehouse

    Swanson, Ryan D; Binley, Andrew; Keating, Kristina; France, Samantha; Osterman, Gordon; Day-Lewis, Frederick D.; Singha, Kamini

    2015-01-01

    The advection-dispersion equation (ADE) fails to describe commonly observed non-Fickian solute transport in saturated porous media, necessitating the use of other models such as the dual-domain mass-transfer (DDMT) model. DDMT model parameters are commonly calibrated via curve fitting, providing little insight into the relation between effective parameters and physical properties of the medium. There is a clear need for material characterization techniques that can provide insight into the geometry and connectedness of pore spaces related to transport model parameters. Here, we consider proton nuclear magnetic resonance (NMR), direct-current (DC) resistivity, and complex conductivity (CC) measurements for this purpose, and assess these methods using glass beads as a control and two different samples of the zeolite clinoptilolite, a material that demonstrates non-Fickian transport due to intragranular porosity. We estimate DDMT parameters via calibration of a transport model to column-scale solute tracer tests, and compare NMR, DC resistivity, CC results, which reveal that grain size alone does not control transport properties and measured geophysical parameters; rather, volume and arrangement of the pore space play important roles. NMR cannot provide estimates of more-mobile and less-mobile pore volumes in the absence of tracer tests because these estimates depend critically on the selection of a material-dependent and flow-dependent cutoff time. Increased electrical connectedness from DC resistivity measurements are associated with greater mobile pore space determined from transport model calibration. CC was hypothesized to be related to length scales of mass transfer, but the CC response is unrelated to DDMT.

  7. Potential application of item-response theory to interpretation of medical codes in electronic patient records

    PubMed Central

    2011-01-01

    Background Electronic patient records are generally coded using extensive sets of codes but the significance of the utilisation of individual codes may be unclear. Item response theory (IRT) models are used to characterise the psychometric properties of items included in tests and questionnaires. This study asked whether the properties of medical codes in electronic patient records may be characterised through the application of item response theory models. Methods Data were provided by a cohort of 47,845 participants from 414 family practices in the UK General Practice Research Database (GPRD) with a first stroke between 1997 and 2006. Each eligible stroke code, out of a set of 202 OXMIS and Read codes, was coded as either recorded or not recorded for each participant. A two parameter IRT model was fitted using marginal maximum likelihood estimation. Estimated parameters from the model were considered to characterise each code with respect to the latent trait of stroke diagnosis. The location parameter is referred to as a calibration parameter, while the slope parameter is referred to as a discrimination parameter. Results There were 79,874 stroke code occurrences available for analysis. Utilisation of codes varied between family practices with intraclass correlation coefficients of up to 0.25 for the most frequently used codes. IRT analyses were restricted to 110 Read codes. Calibration and discrimination parameters were estimated for 77 (70%) codes that were endorsed for 1,942 stroke patients. Parameters were not estimated for the remaining more frequently used codes. Discrimination parameter values ranged from 0.67 to 2.78, while calibration parameters values ranged from 4.47 to 11.58. The two parameter model gave a better fit to the data than either the one- or three-parameter models. However, high chi-square values for about a fifth of the stroke codes were suggestive of poor item fit. Conclusion The application of item response theory models to coded electronic patient records might potentially contribute to identifying medical codes that offer poor discrimination or low calibration. This might indicate the need for improved coding sets or a requirement for improved clinical coding practice. However, in this study estimates were only obtained for a small proportion of participants and there was some evidence of poor model fit. There was also evidence of variation in the utilisation of codes between family practices raising the possibility that, in practice, properties of codes may vary for different coders. PMID:22176509

  8. In-flight calibration/validation of the ENVISAT/MWR

    NASA Astrophysics Data System (ADS)

    Tran, N.; Obligis, E.; Eymard, L.

    2003-04-01

    Retrieval algorithms for wet tropospheric correction, integrated vapor and liquid water contents, atmospheric attenuations of backscattering coefficients in Ku and S band, have been developed using a database of geophysical parameters from global analyses from a meteorological model and corresponding simulated brightness temperatures and backscattering cross-sections by a radiative transfer model. Meteorological data correspond to 12 hours predictions from the European Center for Medium range Weather Forecasts (ECMWF) model. Relationships between satellite measurements and geophysical parameters are determined using a statistical method. The quality of the retrieval algorithms depends therefore on the representativity of the database, the accuracy of the radiative transfer model used for the simulations and finally on the quality of the inversion model. The database has been built using the latest version of the ECMWF forecast model, which has been operationally run since November 2000. The 60 levels in the model allow a complete description of the troposphere/stratosphere profiles and the horizontal resolution is now half of a degree. The radiative transfer model is the emissivity model developed at the Université Catholique de Louvain [Lemaire, 1998], coupled to an atmospheric model [Liebe et al, 1993] for gaseous absorption. For the inversion, we have replaced the classical log-linear regression with a neural networks inversion. For Envisat, the backscattering coefficient in Ku band is used in the different algorithms to take into account the surface roughness as it is done with the 18 GHz channel for the TOPEX algorithms or an additional term in wind speed for ERS2 algorithms. The in-flight calibration/validation of the Envisat radiometer has been performed with the tuning of 3 internal parameters (the transmission coefficient of the reflector, the sky horn feed transmission coefficient and the main antenna transmission coefficient). First an adjustment of the ERS2 brightness temperatures to the simulations for the 2000/2001 version of the ECMWF model has been applied. Then, Envisat brightness temperatures have been calibrated on these adjusted ERS2 values. The advantages of this calibration approach are that : i) such a method provides the relative discrepancy with respect to the simulation chain. The results, obtained simultaneously for several radiometers (we repeat the same analyze with TOPEX and JASON radiometers), can be used to detect significant calibration problems, more than 2 3 K). ii) the retrieval algorithms have been developed using the same meteorological model (2000/2001 version of the ECMWF model), and the same radiative transfer model than the calibration process, insuring the consistency between calibration and retrieval processing. Retrieval parameters are then optimized. iii) the calibration of the Envisat brightness temperatures over the 2000/2001 version of the ECMWF model, as well as the recommendation to use the same model as a reference to correct ERS2 brightness temperatures, allow the use of the same retrieval algorithms for the two missions, providing the continuity between the two. iv) by comparison with other calibration methods (such as systematic calibration of an instrument or products by using respectively the ones from previous mission), this method is more satisfactory since improvements in terms of technology, modelisation, retrieval processing are taken into account. For the validation of the brightness temperatures, we use either a direct comparison with measurements provided by other instruments in similar channel, or the monitoring over stable areas (coldest ocean points, stable continental areas). The validation of the wet tropospheric correction can be also provided by comparison with other radiometer products, but the only real validation rely on the comparison between in-situ measurements (performed by radiosonding) and retrieved products in coincidence.

  9. Improved calibration-based non-uniformity correction method for uncooled infrared camera

    NASA Astrophysics Data System (ADS)

    Liu, Chengwei; Sui, Xiubao

    2017-08-01

    With the latest improvements of microbolometer focal plane arrays (FPA), uncooled infrared (IR) cameras are becoming the most widely used devices in thermography, especially in handheld devices. However the influences derived from changing ambient condition and the non-uniform response of the sensors make it more difficult to correct the nonuniformity of uncooled infrared camera. In this paper, based on the infrared radiation characteristic in the TEC-less uncooled infrared camera, a novel model was proposed for calibration-based non-uniformity correction (NUC). In this model, we introduce the FPA temperature, together with the responses of microbolometer under different ambient temperature to calculate the correction parameters. Based on the proposed model, we can work out the correction parameters with the calibration measurements under controlled ambient condition and uniform blackbody. All correction parameters can be determined after the calibration process and then be used to correct the non-uniformity of the infrared camera in real time. This paper presents the detail of the compensation procedure and the performance of the proposed calibration-based non-uniformity correction method. And our method was evaluated on realistic IR images obtained by a 384x288 pixels uncooled long wave infrared (LWIR) camera operated under changed ambient condition. The results show that our method can exclude the influence caused by the changed ambient condition, and ensure that the infrared camera has a stable performance.

  10. Stochastic calibration and learning in nonstationary hydroeconomic models

    NASA Astrophysics Data System (ADS)

    Maneta, M. P.; Howitt, R.

    2014-05-01

    Concern about water scarcity and adverse climate events over agricultural regions has motivated a number of efforts to develop operational integrated hydroeconomic models to guide adaptation and optimal use of water. Once calibrated, these models are used for water management and analysis assuming they remain valid under future conditions. In this paper, we present and demonstrate a methodology that permits the recursive calibration of economic models of agricultural production from noisy but frequently available data. We use a standard economic calibration approach, namely positive mathematical programming, integrated in a data assimilation algorithm based on the ensemble Kalman filter equations to identify the economic model parameters. A moving average kernel ensures that new and past information on agricultural activity are blended during the calibration process, avoiding loss of information and overcalibration for the conditions of a single year. A regularization constraint akin to the standard Tikhonov regularization is included in the filter to ensure its stability even in the presence of parameters with low sensitivity to observations. The results show that the implementation of the PMP methodology within a data assimilation framework based on the enKF equations is an effective method to calibrate models of agricultural production even with noisy information. The recursive nature of the method incorporates new information as an added value to the known previous observations of agricultural activity without the need to store historical information. The robustness of the method opens the door to the use of new remote sensing algorithms for operational water management.

  11. A comparison of single- and multi-site calibration and validation: a case study of SWAT in the Miyun Reservoir watershed, China

    NASA Astrophysics Data System (ADS)

    Bai, Jianwen; Shen, Zhenyao; Yan, Tiezhu

    2017-09-01

    An essential task in evaluating global water resource and pollution problems is to obtain the optimum set of parameters in hydrological models through calibration and validation. For a large-scale watershed, single-site calibration and validation may ignore spatial heterogeneity and may not meet the needs of the entire watershed. The goal of this study is to apply a multi-site calibration and validation of the Soil andWater Assessment Tool (SWAT), using the observed flow data at three monitoring sites within the Baihe watershed of the Miyun Reservoir watershed, China. Our results indicate that the multi-site calibration parameter values are more reasonable than those obtained from single-site calibrations. These results are mainly due to significant differences in the topographic factors over the large-scale area, human activities and climate variability. The multi-site method involves the division of the large watershed into smaller watersheds, and applying the calibrated parameters of the multi-site calibration to the entire watershed. It was anticipated that this case study could provide experience of multi-site calibration in a large-scale basin, and provide a good foundation for the simulation of other pollutants in followup work in the Miyun Reservoir watershed and other similar large areas.

  12. Assessment of the Spatial and Temporal Variations of Water Quality for Agricultural Lands with Crop Rotation in China by Using a HYPE Model

    PubMed Central

    Yin, Yunxing; Jiang, Sanyuan; Pers, Charlotta; Yang, Xiaoying; Liu, Qun; Yuan, Jin; Yao, Mingxing; He, Yi; Luo, Xingzhang; Zheng, Zheng

    2016-01-01

    Many water quality models have been successfully used worldwide to predict nutrient losses from anthropogenically impacted catchments, but hydrological and nutrient simulations with limited data are difficult considering the transfer of model parameters and complication of model calibration and validation. This study aims: (i) to assess the performance capabilities of a new and relatively more advantageous model, namely, Hydrological Predictions for the Environment (HYPE), that simulates stream flow and nutrient load in agricultural areas by using a multi-site and multi-objective parameter calibration method and (ii) to investigate the temporal and spatial variations of total nitrogen (TN) and total phosphorous (TP) concentrations and loads with crop rotation by using the model for the first time. A parameter estimation tool (PEST) was used to calibrate parameters. Results show that the parameters related to the effective soil porosity were highly sensitive to hydrological modeling. N balance was largely controlled by soil denitrification processes. P balance was influenced by the sedimentation rate and production/decay of P in rivers and lakes. The model reproduced the temporal and spatial variations of discharge and TN/TP relatively well in both calibration (2006–2008) and validation (2009–2010) periods. Among the obtained data, the lowest Nash-Suttclife efficiency of discharge, daily TN load, and daily TP load were 0.74, 0.51, and 0.54, respectively. The seasonal variations of daily TN concentrations in the entire simulation period were insufficient, indicated that crop rotation changed the timing and amount of N output. Monthly TN and TP simulation yields revealed that nutrient outputs were abundant in summer in terms of the corresponding discharge. The area-weighted TN and TP load annual yields in five years showed that nutrient loads were extremely high along Hong and Ru rivers, especially in agricultural lands. PMID:26999184

  13. Development of a precipitation-runoff model to simulate unregulated streamflow in the South Fork Flathead River Basin, Montana

    USGS Publications Warehouse

    Chase, K.J.

    2011-01-01

    This report documents the development of a precipitation-runoff model for the South Fork Flathead River Basin, Mont. The Precipitation-Runoff Modeling System model, developed in cooperation with the Bureau of Reclamation, can be used to simulate daily mean unregulated streamflow upstream and downstream from Hungry Horse Reservoir for water-resources planning. Two input files are required to run the model. The time-series data file contains daily precipitation data and daily minimum and maximum air-temperature data from climate stations in and near the South Fork Flathead River Basin. The parameter file contains values of parameters that describe the basin topography, the flow network, the distribution of the precipitation and temperature data, and the hydrologic characteristics of the basin soils and vegetation. A primary-parameter file was created for simulating streamflow during the study period (water years 1967-2005). The model was calibrated for water years 1991-2005 using the primary-parameter file. This calibration was further refined using snow-covered area data for water years 2001-05. The model then was tested for water years 1967-90. Calibration targets included mean monthly and daily mean unregulated streamflow upstream from Hungry Horse Reservoir, mean monthly unregulated streamflow downstream from Hungry Horse Reservoir, basin mean monthly solar radiation and potential evapotranspiration, and daily snapshots of basin snow-covered area. Simulated streamflow generally was in better agreement with observed streamflow at the upstream gage than at the downstream gage. Upstream from the reservoir, simulated mean annual streamflow was within 0.0 percent of observed mean annual streamflow for the calibration period and was about 2 percent higher than observed mean annual streamflow for the test period. Simulated mean April-July streamflow upstream from the reservoir was about 1 percent lower than observed streamflow for the calibration period and about 4 percent higher than observed for the test period. Downstream from the reservoir, simulated mean annual streamflow was 17 percent lower than observed streamflow for the calibration period and 12 percent lower than observed streamflow for the test period. Simulated mean April-July streamflow downstream from the reservoir was 13 percent lower than observed streamflow for the calibration period and 6 percent lower than observed streamflow for the test period. Calibrating to solar radiation, potential evapotranspiration, and snow-covered area improved the model representation of evapotranspiration, snow accumulation, and snowmelt processes. Simulated basin mean monthly solar radiation values for both the calibration and test periods were within 9 percent of observed values except during the month of December (28 percent different). Simulated basin potential evapotranspiration values for both the calibration and test periods were within 10 percent of observed values except during the months of January (100 percent different) and February (13 percent different). The larger percent errors in simulated potential evaporation occurred in the winter months when observed potential evapotranspiration values were very small; in January the observed value was 0.000 inches and in February the observed value was 0.009 inches. Simulated start of melting of the snowpack occurred at about the same time as observed start of melting. The simulated snowpack accumulated to 90-100 percent snow-covered area 1 to 3 months earlier than observed snowpack. This overestimated snowpack during the winter corresponded to underestimated streamflow during the same period. In addition to the primary-parameter file, four other parameter files were created: for a "recent" period (1991-2005), a historical period (1967-90), a "wet" period (1989-97), and a "dry" period (1998-2005). For each data file of projected precipitation and air temperature, a single parameter file can be used to simulate a s

  14. Selecting Summary Statistics in Approximate Bayesian Computation for Calibrating Stochastic Models

    PubMed Central

    Burr, Tom

    2013-01-01

    Approximate Bayesian computation (ABC) is an approach for using measurement data to calibrate stochastic computer models, which are common in biology applications. ABC is becoming the “go-to” option when the data and/or parameter dimension is large because it relies on user-chosen summary statistics rather than the full data and is therefore computationally feasible. One technical challenge with ABC is that the quality of the approximation to the posterior distribution of model parameters depends on the user-chosen summary statistics. In this paper, the user requirement to choose effective summary statistics in order to accurately estimate the posterior distribution of model parameters is investigated and illustrated by example, using a model and corresponding real data of mitochondrial DNA population dynamics. We show that for some choices of summary statistics, the posterior distribution of model parameters is closely approximated and for other choices of summary statistics, the posterior distribution is not closely approximated. A strategy to choose effective summary statistics is suggested in cases where the stochastic computer model can be run at many trial parameter settings, as in the example. PMID:24288668

  15. Selecting summary statistics in approximate Bayesian computation for calibrating stochastic models.

    PubMed

    Burr, Tom; Skurikhin, Alexei

    2013-01-01

    Approximate Bayesian computation (ABC) is an approach for using measurement data to calibrate stochastic computer models, which are common in biology applications. ABC is becoming the "go-to" option when the data and/or parameter dimension is large because it relies on user-chosen summary statistics rather than the full data and is therefore computationally feasible. One technical challenge with ABC is that the quality of the approximation to the posterior distribution of model parameters depends on the user-chosen summary statistics. In this paper, the user requirement to choose effective summary statistics in order to accurately estimate the posterior distribution of model parameters is investigated and illustrated by example, using a model and corresponding real data of mitochondrial DNA population dynamics. We show that for some choices of summary statistics, the posterior distribution of model parameters is closely approximated and for other choices of summary statistics, the posterior distribution is not closely approximated. A strategy to choose effective summary statistics is suggested in cases where the stochastic computer model can be run at many trial parameter settings, as in the example.

  16. Automatic Calibration of Global Flow Routing Model Parameters in the Amazon Basin Using Virtual SWOT Data

    NASA Astrophysics Data System (ADS)

    Mouffe, Melodie; Getirana, Augusto; Ricci, Sophie; Lion, Christine; Biancamaria, Sylvian; Boone, Aaron; Mognard, Nelly; Rogel, Philippe

    2013-09-01

    The Surface Water and Ocean Topography (SWOT) wide swath altimetry mission will provide measurements of water surface elevations (WSE) at a global scale. The aim of this study is to investigate the potential of these satellite data for the calibration of the hydrological model HyMAP, over the Amazon river basin. Since SWOT has not yet been launched, synthetical observations are used to calibrate the river bed depth and width, the Manning coefficient and the baseflow concentration time. The calibration process stands in the minimization of a cost function using an evolutionnary, global and multi-objective algorithm that describes the difference between the simulated and the observed WSE. We found that the calibration procedure is able to retrieve an optimal set of parameters such that it brings the simulated WSE closer to the observation. Still with a global calibration procedure where a uniform correction is applied, the improvement is limited to a mean correction over the catchment and the simulation period. We conclude that in order to benefit from the high resolution and complete coverage of the SWOT mission, the calibration process should be achieved sequentially in time over sub-domains as observations become available.

  17. SPOTting Model Parameters Using a Ready-Made Python Package

    NASA Astrophysics Data System (ADS)

    Houska, Tobias; Kraft, Philipp; Chamorro-Chavez, Alejandro; Breuer, Lutz

    2017-04-01

    The choice for specific parameter estimation methods is often more dependent on its availability than its performance. We developed SPOTPY (Statistical Parameter Optimization Tool), an open source python package containing a comprehensive set of methods typically used to calibrate, analyze and optimize parameters for a wide range of ecological models. SPOTPY currently contains eight widely used algorithms, 11 objective functions, and can sample from eight parameter distributions. SPOTPY has a model-independent structure and can be run in parallel from the workstation to large computation clusters using the Message Passing Interface (MPI). We tested SPOTPY in five different case studies to parameterize the Rosenbrock, Griewank and Ackley functions, a one-dimensional physically based soil moisture routine, where we searched for parameters of the van Genuchten-Mualem function and a calibration of a biogeochemistry model with different objective functions. The case studies reveal that the implemented SPOTPY methods can be used for any model with just a minimal amount of code for maximal power of parameter optimization. They further show the benefit of having one package at hand that includes number of well performing parameter search methods, since not every case study can be solved sufficiently with every algorithm or every objective function.

  18. SPOTting Model Parameters Using a Ready-Made Python Package.

    PubMed

    Houska, Tobias; Kraft, Philipp; Chamorro-Chavez, Alejandro; Breuer, Lutz

    2015-01-01

    The choice for specific parameter estimation methods is often more dependent on its availability than its performance. We developed SPOTPY (Statistical Parameter Optimization Tool), an open source python package containing a comprehensive set of methods typically used to calibrate, analyze and optimize parameters for a wide range of ecological models. SPOTPY currently contains eight widely used algorithms, 11 objective functions, and can sample from eight parameter distributions. SPOTPY has a model-independent structure and can be run in parallel from the workstation to large computation clusters using the Message Passing Interface (MPI). We tested SPOTPY in five different case studies to parameterize the Rosenbrock, Griewank and Ackley functions, a one-dimensional physically based soil moisture routine, where we searched for parameters of the van Genuchten-Mualem function and a calibration of a biogeochemistry model with different objective functions. The case studies reveal that the implemented SPOTPY methods can be used for any model with just a minimal amount of code for maximal power of parameter optimization. They further show the benefit of having one package at hand that includes number of well performing parameter search methods, since not every case study can be solved sufficiently with every algorithm or every objective function.

  19. SPOTting Model Parameters Using a Ready-Made Python Package

    PubMed Central

    Houska, Tobias; Kraft, Philipp; Chamorro-Chavez, Alejandro; Breuer, Lutz

    2015-01-01

    The choice for specific parameter estimation methods is often more dependent on its availability than its performance. We developed SPOTPY (Statistical Parameter Optimization Tool), an open source python package containing a comprehensive set of methods typically used to calibrate, analyze and optimize parameters for a wide range of ecological models. SPOTPY currently contains eight widely used algorithms, 11 objective functions, and can sample from eight parameter distributions. SPOTPY has a model-independent structure and can be run in parallel from the workstation to large computation clusters using the Message Passing Interface (MPI). We tested SPOTPY in five different case studies to parameterize the Rosenbrock, Griewank and Ackley functions, a one-dimensional physically based soil moisture routine, where we searched for parameters of the van Genuchten-Mualem function and a calibration of a biogeochemistry model with different objective functions. The case studies reveal that the implemented SPOTPY methods can be used for any model with just a minimal amount of code for maximal power of parameter optimization. They further show the benefit of having one package at hand that includes number of well performing parameter search methods, since not every case study can be solved sufficiently with every algorithm or every objective function. PMID:26680783

  20. Evaluation of Linking Methods for Placing Three-Parameter Logistic Item Parameter Estimates onto a One-Parameter Scale

    ERIC Educational Resources Information Center

    Karkee, Thakur B.; Wright, Karen R.

    2004-01-01

    Different item response theory (IRT) models may be employed for item calibration. Change of testing vendors, for example, may result in the adoption of a different model than that previously used with a testing program. To provide scale continuity and preserve cut score integrity, item parameter estimates from the new model must be linked to the…

  1. Validation of geometric models for fisheye lenses

    NASA Astrophysics Data System (ADS)

    Schneider, D.; Schwalbe, E.; Maas, H.-G.

    The paper focuses on the photogrammetric investigation of geometric models for different types of optical fisheye constructions (equidistant, equisolid-angle, sterographic and orthographic projection). These models were implemented and thoroughly tested in a spatial resection and a self-calibrating bundle adjustment. For this purpose, fisheye images were taken with a Nikkor 8 mm fisheye lens on a Kodak DSC 14n Pro digital camera in a hemispherical calibration room. Both, the spatial resection and the bundle adjustment resulted in a standard deviation of unit weight of 1/10 pixel with a suitable set of simultaneous calibration parameters introduced into the camera model. The camera-lens combination was treated with all of the four basic models mentioned above. Using the same set of additional lens distortion parameters, the differences between the models can largely be compensated, delivering almost the same precision parameters. The relative object space precision obtained from the bundle adjustment was ca. 1:10 000 of the object dimensions. This value can be considered as a very satisfying result, as fisheye images generally have a lower geometric resolution as a consequence of their large field of view and also have a inferior imaging quality in comparison to most central perspective lenses.

  2. Validation of Storm Water Management Model Storm Control Measures Modules

    NASA Astrophysics Data System (ADS)

    Simon, M. A.; Platz, M. C.

    2017-12-01

    EPA's Storm Water Management Model (SWMM) is a computational code heavily relied upon by industry for the simulation of wastewater and stormwater infrastructure performance. Many municipalities are relying on SWMM results to design multi-billion-dollar, multi-decade infrastructure upgrades. Since the 1970's, EPA and others have developed five major releases, the most recent ones containing storm control measures modules for green infrastructure. The main objective of this study was to quantify the accuracy with which SWMM v5.1.10 simulates the hydrologic activity of previously monitored low impact developments. Model performance was evaluated with a mathematical comparison of outflow hydrographs and total outflow volumes, using empirical data and a multi-event, multi-objective calibration method. The calibration methodology utilized PEST++ Version 3, a parameter estimation tool, which aided in the selection of unmeasured hydrologic parameters. From the validation study and sensitivity analysis, several model improvements were identified to advance SWMM LID Module performance for permeable pavements, infiltration units and green roofs, and these were performed and reported herein. Overall, it was determined that SWMM can successfully simulate low impact development controls given accurate model confirmation, parameter measurement, and model calibration.

  3. Quantifying uncertainties in streamflow predictions through signature based inference of hydrological model parameters

    NASA Astrophysics Data System (ADS)

    Fenicia, Fabrizio; Reichert, Peter; Kavetski, Dmitri; Albert, Calro

    2016-04-01

    The calibration of hydrological models based on signatures (e.g. Flow Duration Curves - FDCs) is often advocated as an alternative to model calibration based on the full time series of system responses (e.g. hydrographs). Signature based calibration is motivated by various arguments. From a conceptual perspective, calibration on signatures is a way to filter out errors that are difficult to represent when calibrating on the full time series. Such errors may for example occur when observed and simulated hydrographs are shifted, either on the "time" axis (i.e. left or right), or on the "streamflow" axis (i.e. above or below). These shifts may be due to errors in the precipitation input (time or amount), and if not properly accounted in the likelihood function, may cause biased parameter estimates (e.g. estimated model parameters that do not reproduce the recession characteristics of a hydrograph). From a practical perspective, signature based calibration is seen as a possible solution for making predictions in ungauged basins. Where streamflow data are not available, it may in fact be possible to reliably estimate streamflow signatures. Previous research has for example shown how FDCs can be reliably estimated at ungauged locations based on climatic and physiographic influence factors. Typically, the goal of signature based calibration is not the prediction of the signatures themselves, but the prediction of the system responses. Ideally, the prediction of system responses should be accompanied by a reliable quantification of the associated uncertainties. Previous approaches for signature based calibration, however, do not allow reliable estimates of streamflow predictive distributions. Here, we illustrate how the Bayesian approach can be employed to obtain reliable streamflow predictive distributions based on signatures. A case study is presented, where a hydrological model is calibrated on FDCs and additional signatures. We propose an approach where the likelihood function for the signatures is derived from the likelihood for streamflow (rather than using an "ad-hoc" likelihood for the signatures as done in previous approaches). This likelihood is not easily tractable analytically and we therefore cannot apply "simple" MCMC methods. This numerical problem is solved using Approximate Bayesian Computation (ABC). Our result indicate that the proposed approach is suitable for producing reliable streamflow predictive distributions based on calibration to signature data. Moreover, our results provide indications on which signatures are more appropriate to represent the information content of the hydrograph.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kao, Kuo-Hsing; Meyer, Kristin De; Department of Electrical Engineering, KU Leuven, Leuven

    Band-to-band tunneling parameters of strained indirect bandgap materials are not well-known, hampering the reliability of performance predictions of tunneling devices based on these materials. The nonlocal band-to-band tunneling model for compressively strained SiGe is calibrated based on a comparison of strained SiGe p-i-n tunneling diode measurements and doping-profile-based diode simulations. Dopant and Ge profiles of the diodes are determined by secondary ion mass spectrometry and capacitance-voltage measurements. Theoretical parameters of the band-to-band tunneling model are calculated based on strain-dependent properties such as bandgap, phonon energy, deformation-potential-based electron-phonon coupling, and hole effective masses of strained SiGe. The latter is determined withmore » a 6-band k·p model. The calibration indicates an underestimation of the theoretical electron-phonon coupling with nearly an order of magnitude. Prospects of compressively strained SiGe tunneling transistors are made by simulations with the calibrated model.« less

  5. Crop parameters for modeling sugarcane under rainfed conditions in Mexico

    USDA-ARS?s Scientific Manuscript database

    Crop models with well-tested parameters can improve sugarcane productivity for food and biofuel generation. This study aimed to (i) calibrate the light extinction coefficient (k) and other crop parameters for the sugarcane cultivar CP 72-2086, an early-maturing cultivar grown in Mexico and many oth...

  6. Improvement and comparison of likelihood functions for model calibration and parameter uncertainty analysis within a Markov chain Monte Carlo scheme

    NASA Astrophysics Data System (ADS)

    Cheng, Qin-Bo; Chen, Xi; Xu, Chong-Yu; Reinhardt-Imjela, Christian; Schulte, Achim

    2014-11-01

    In this study, the likelihood functions for uncertainty analysis of hydrological models are compared and improved through the following steps: (1) the equivalent relationship between the Nash-Sutcliffe Efficiency coefficient (NSE) and the likelihood function with Gaussian independent and identically distributed residuals is proved; (2) a new estimation method of the Box-Cox transformation (BC) parameter is developed to improve the effective elimination of the heteroscedasticity of model residuals; and (3) three likelihood functions-NSE, Generalized Error Distribution with BC (BC-GED) and Skew Generalized Error Distribution with BC (BC-SGED)-are applied for SWAT-WB-VSA (Soil and Water Assessment Tool - Water Balance - Variable Source Area) model calibration in the Baocun watershed, Eastern China. Performances of calibrated models are compared using the observed river discharges and groundwater levels. The result shows that the minimum variance constraint can effectively estimate the BC parameter. The form of the likelihood function significantly impacts on the calibrated parameters and the simulated results of high and low flow components. SWAT-WB-VSA with the NSE approach simulates flood well, but baseflow badly owing to the assumption of Gaussian error distribution, where the probability of the large error is low, but the small error around zero approximates equiprobability. By contrast, SWAT-WB-VSA with the BC-GED or BC-SGED approach mimics baseflow well, which is proved in the groundwater level simulation. The assumption of skewness of the error distribution may be unnecessary, because all the results of the BC-SGED approach are nearly the same as those of the BC-GED approach.

  7. Parameter interdependence and uncertainty induced by lumping in a hydrologic model

    NASA Astrophysics Data System (ADS)

    Gallagher, Mark R.; Doherty, John

    2007-05-01

    Throughout the world, watershed modeling is undertaken using lumped parameter hydrologic models that represent real-world processes in a manner that is at once abstract, but nevertheless relies on algorithms that reflect real-world processes and parameters that reflect real-world hydraulic properties. In most cases, values are assigned to the parameters of such models through calibration against flows at watershed outlets. One criterion by which the utility of the model and the success of the calibration process are judged is that realistic values are assigned to parameters through this process. This study employs regularization theory to examine the relationship between lumped parameters and corresponding real-world hydraulic properties. It demonstrates that any kind of parameter lumping or averaging can induce a substantial amount of "structural noise," which devices such as Box-Cox transformation of flows and autoregressive moving average (ARMA) modeling of residuals are unlikely to render homoscedastic and uncorrelated. Furthermore, values estimated for lumped parameters are unlikely to represent average values of the hydraulic properties after which they are named and are often contaminated to a greater or lesser degree by the values of hydraulic properties which they do not purport to represent at all. As a result, the question of how rigidly they should be bounded during the parameter estimation process is still an open one.

  8. Calibration of an agricultural-hydrological model (RZWQM2) using surrogate global optimization

    DOE PAGES

    Xi, Maolong; Lu, Dan; Gui, Dongwei; ...

    2016-11-27

    Robust calibration of an agricultural-hydrological model is critical for simulating crop yield and water quality and making reasonable agricultural management. However, calibration of the agricultural-hydrological system models is challenging because of model complexity, the existence of strong parameter correlation, and significant computational requirements. Therefore, only a limited number of simulations can be allowed in any attempt to find a near-optimal solution within an affordable time, which greatly restricts the successful application of the model. The goal of this study is to locate the optimal solution of the Root Zone Water Quality Model (RZWQM2) given a limited simulation time, so asmore » to improve the model simulation and help make rational and effective agricultural-hydrological decisions. To this end, we propose a computationally efficient global optimization procedure using sparse-grid based surrogates. We first used advanced sparse grid (SG) interpolation to construct a surrogate system of the actual RZWQM2, and then we calibrate the surrogate model using the global optimization algorithm, Quantum-behaved Particle Swarm Optimization (QPSO). As the surrogate model is a polynomial with fast evaluation, it can be efficiently evaluated with a sufficiently large number of times during the optimization, which facilitates the global search. We calibrate seven model parameters against five years of yield, drain flow, and NO 3-N loss data from a subsurface-drained corn-soybean field in Iowa. Results indicate that an accurate surrogate model can be created for the RZWQM2 with a relatively small number of SG points (i.e., RZWQM2 runs). Compared to the conventional QPSO algorithm, our surrogate-based optimization method can achieve a smaller objective function value and better calibration performance using a fewer number of expensive RZWQM2 executions, which greatly improves computational efficiency.« less

  9. Calibration of an agricultural-hydrological model (RZWQM2) using surrogate global optimization

    NASA Astrophysics Data System (ADS)

    Xi, Maolong; Lu, Dan; Gui, Dongwei; Qi, Zhiming; Zhang, Guannan

    2017-01-01

    Robust calibration of an agricultural-hydrological model is critical for simulating crop yield and water quality and making reasonable agricultural management. However, calibration of the agricultural-hydrological system models is challenging because of model complexity, the existence of strong parameter correlation, and significant computational requirements. Therefore, only a limited number of simulations can be allowed in any attempt to find a near-optimal solution within an affordable time, which greatly restricts the successful application of the model. The goal of this study is to locate the optimal solution of the Root Zone Water Quality Model (RZWQM2) given a limited simulation time, so as to improve the model simulation and help make rational and effective agricultural-hydrological decisions. To this end, we propose a computationally efficient global optimization procedure using sparse-grid based surrogates. We first used advanced sparse grid (SG) interpolation to construct a surrogate system of the actual RZWQM2, and then we calibrate the surrogate model using the global optimization algorithm, Quantum-behaved Particle Swarm Optimization (QPSO). As the surrogate model is a polynomial with fast evaluation, it can be efficiently evaluated with a sufficiently large number of times during the optimization, which facilitates the global search. We calibrate seven model parameters against five years of yield, drain flow, and NO3-N loss data from a subsurface-drained corn-soybean field in Iowa. Results indicate that an accurate surrogate model can be created for the RZWQM2 with a relatively small number of SG points (i.e., RZWQM2 runs). Compared to the conventional QPSO algorithm, our surrogate-based optimization method can achieve a smaller objective function value and better calibration performance using a fewer number of expensive RZWQM2 executions, which greatly improves computational efficiency.

  10. Calibration of an agricultural-hydrological model (RZWQM2) using surrogate global optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xi, Maolong; Lu, Dan; Gui, Dongwei

    Robust calibration of an agricultural-hydrological model is critical for simulating crop yield and water quality and making reasonable agricultural management. However, calibration of the agricultural-hydrological system models is challenging because of model complexity, the existence of strong parameter correlation, and significant computational requirements. Therefore, only a limited number of simulations can be allowed in any attempt to find a near-optimal solution within an affordable time, which greatly restricts the successful application of the model. The goal of this study is to locate the optimal solution of the Root Zone Water Quality Model (RZWQM2) given a limited simulation time, so asmore » to improve the model simulation and help make rational and effective agricultural-hydrological decisions. To this end, we propose a computationally efficient global optimization procedure using sparse-grid based surrogates. We first used advanced sparse grid (SG) interpolation to construct a surrogate system of the actual RZWQM2, and then we calibrate the surrogate model using the global optimization algorithm, Quantum-behaved Particle Swarm Optimization (QPSO). As the surrogate model is a polynomial with fast evaluation, it can be efficiently evaluated with a sufficiently large number of times during the optimization, which facilitates the global search. We calibrate seven model parameters against five years of yield, drain flow, and NO 3-N loss data from a subsurface-drained corn-soybean field in Iowa. Results indicate that an accurate surrogate model can be created for the RZWQM2 with a relatively small number of SG points (i.e., RZWQM2 runs). Compared to the conventional QPSO algorithm, our surrogate-based optimization method can achieve a smaller objective function value and better calibration performance using a fewer number of expensive RZWQM2 executions, which greatly improves computational efficiency.« less

  11. Evaluation of Hydrologic Simulations Developed Using Multi-Model Synthesis and Remotely-Sensed Data within a Portfolio of Calibration Strategies

    NASA Astrophysics Data System (ADS)

    Lafontaine, J.; Hay, L.; Markstrom, S. L.

    2016-12-01

    The United States Geological Survey (USGS) has developed a National Hydrologic Model (NHM) to support coordinated, comprehensive and consistent hydrologic model development, and facilitate the application of hydrologic simulations within the conterminous United States (CONUS). As many stream reaches in the CONUS are either not gaged, or are substantially impacted by water use or flow regulation, ancillary information must be used to determine reasonable parameter estimations for streamflow simulations. Hydrologic models for 1,576 gaged watersheds across the CONUS were developed to test the feasibility of improving streamflow simulations linking physically-based hydrologic models with remotely-sensed data products (i.e. snow water equivalent). Initially, the physically-based models were calibrated to measured streamflow data to provide a baseline for comparison across multiple calibration strategy tests. In addition, not all ancillary datasets are appropriate for application to all parts of the CONUS (e.g. snow water equivalent in the southeastern U.S., where snow is a rarity). As it is not expected that any one data product or model simulation will be sufficient for representing hydrologic behavior across the entire CONUS, a systematic evaluation of which data products improve hydrologic simulations for various regions across the CONUS was performed. The resulting portfolio of calibration strategies can be used to guide selection of an appropriate combination of modeled and measured information for hydrologic model development and calibration. In addition, these calibration strategies have been developed to be flexible so that new data products can be assimilated. This analysis provides a foundation to understand how well models work when sufficient streamflow data are not available and could be used to further inform hydrologic model parameter development for ungaged areas.

  12. Calibration and validation of a general infiltration model

    NASA Astrophysics Data System (ADS)

    Mishra, Surendra Kumar; Ranjan Kumar, Shashi; Singh, Vijay P.

    1999-08-01

    A general infiltration model proposed by Singh and Yu (1990) was calibrated and validated using a split sampling approach for 191 sets of infiltration data observed in the states of Minnesota and Georgia in the USA. Of the five model parameters, fc (the final infiltration rate), So (the available storage space) and exponent n were found to be more predictable than the other two parameters: m (exponent) and a (proportionality factor). A critical examination of the general model revealed that it is related to the Soil Conservation Service (1956) curve number (SCS-CN) method and its parameter So is equivalent to the potential maximum retention of the SCS-CN method and is, in turn, found to be a function of soil sorptivity and hydraulic conductivity. The general model was found to describe infiltration rate with time varying curve number.

  13. Optimization of Modeled Land-Atmosphere Exchanges of Water and Energy in an Isotopically-Enabled Land Surface Model by Bayesian Parameter Calibration

    NASA Astrophysics Data System (ADS)

    Wong, T. E.; Noone, D. C.; Kleiber, W.

    2014-12-01

    The single largest uncertainty in climate model energy balance is the surface latent heating over tropical land. Furthermore, the partitioning of the total latent heat flux into contributions from surface evaporation and plant transpiration is of great importance, but notoriously poorly constrained. Resolving these issues will require better exploiting information which lies at the interface between observations and advanced modeling tools, both of which are imperfect. There are remarkably few observations which can constrain these fluxes, placing strict requirements on developing statistical methods to maximize the use of limited information to best improve models. Previous work has demonstrated the power of incorporating stable water isotopes into land surface models for further constraining ecosystem processes. We present results from a stable water isotopically-enabled land surface model (iCLM4), including model experiments partitioning the latent heat flux into contributions from plant transpiration and surface evaporation. It is shown that the partitioning results are sensitive to the parameterization of kinetic fractionation used. We discuss and demonstrate an approach to calibrating select model parameters to observational data in a Bayesian estimation framework, requiring Markov Chain Monte Carlo sampling of the posterior distribution, which is shown to constrain uncertain parameters as well as inform relevant values for operational use. Finally, we discuss the application of the estimation scheme to iCLM4, including entropy as a measure of information content and specific challenges which arise in calibration models with a large number of parameters.

  14. Development of Standard Fuel Models in Boreal Forests of Northeast China through Calibration and Validation

    PubMed Central

    Cai, Longyan; He, Hong S.; Wu, Zhiwei; Lewis, Benard L.; Liang, Yu

    2014-01-01

    Understanding the fire prediction capabilities of fuel models is vital to forest fire management. Various fuel models have been developed in the Great Xing'an Mountains in Northeast China. However, the performances of these fuel models have not been tested for historical occurrences of wildfires. Consequently, the applicability of these models requires further investigation. Thus, this paper aims to develop standard fuel models. Seven vegetation types were combined into three fuel models according to potential fire behaviors which were clustered using Euclidean distance algorithms. Fuel model parameter sensitivity was analyzed by the Morris screening method. Results showed that the fuel model parameters 1-hour time-lag loading, dead heat content, live heat content, 1-hour time-lag SAV(Surface Area-to-Volume), live shrub SAV, and fuel bed depth have high sensitivity. Two main sensitive fuel parameters: 1-hour time-lag loading and fuel bed depth, were determined as adjustment parameters because of their high spatio-temporal variability. The FARSITE model was then used to test the fire prediction capabilities of the combined fuel models (uncalibrated fuel models). FARSITE was shown to yield an unrealistic prediction of the historical fire. However, the calibrated fuel models significantly improved the capabilities of the fuel models to predict the actual fire with an accuracy of 89%. Validation results also showed that the model can estimate the actual fires with an accuracy exceeding 56% by using the calibrated fuel models. Therefore, these fuel models can be efficiently used to calculate fire behaviors, which can be helpful in forest fire management. PMID:24714164

  15. Millstone Angle Calibration 1989

    DTIC Science & Technology

    1990-09-14

    tiltmeter calibration models are examined, ("A A 1 GAccession For NTIS GP\\A&I o DTIC TAB 0] Unannounced 01 Justificatlo By Distribution/ Avnilitb lty...parameters. T. A. Cott kindly added the ability to retrieve tiltmeter data from SATCIT raw data tapes to his program SATSNR and provided the program for my...AZLCAL and Current Method 17 3. THE ELEVATION JUMP PHENOMENON 27 3.1 AZLCAL Modeling 27 3.2 Elevation Rate Dependence 27 4. TILTMETER CALIBRATION 29 5

  16. Mathematical Model and Calibration Procedure of a PSD Sensor Used in Local Positioning Systems.

    PubMed

    Rodríguez-Navarro, David; Lázaro-Galilea, José Luis; Bravo-Muñoz, Ignacio; Gardel-Vicente, Alfredo; Domingo-Perez, Francisco; Tsirigotis, Georgios

    2016-09-15

    Here, we propose a mathematical model and a calibration procedure for a PSD (position sensitive device) sensor equipped with an optical system, to enable accurate measurement of the angle of arrival of one or more beams of light emitted by infrared (IR) transmitters located at distances of between 4 and 6 m. To achieve this objective, it was necessary to characterize the intrinsic parameters that model the system and obtain their values. This first approach was based on a pin-hole model, to which system nonlinearities were added, and this was used to model the points obtained with the nA currents provided by the PSD. In addition, we analyzed the main sources of error, including PSD sensor signal noise, gain factor imbalances and PSD sensor distortion. The results indicated that the proposed model and method provided satisfactory calibration and yielded precise parameter values, enabling accurate measurement of the angle of arrival with a low degree of error, as evidenced by the experimental results.

  17. Regionalisation of a distributed method for flood quantiles estimation: Revaluation of local calibration hypothesis to enhance the spatial structure of the optimised parameter

    NASA Astrophysics Data System (ADS)

    Odry, Jean; Arnaud, Patrick

    2016-04-01

    The SHYREG method (Aubert et al., 2014) associates a stochastic rainfall generator and a rainfall-runoff model to produce rainfall and flood quantiles on a 1 km2 mesh covering the whole French territory. The rainfall generator is based on the description of rainy events by descriptive variables following probability distributions and is characterised by a high stability. This stochastic generator is fully regionalised, and the rainfall-runoff transformation is calibrated with a single parameter. Thanks to the stability of the approach, calibration can be performed against only flood quantiles associated with observated frequencies which can be extracted from relatively short time series. The aggregation of SHYREG flood quantiles to the catchment scale is performed using an areal reduction factor technique unique on the whole territory. Past studies demonstrated the accuracy of SHYREG flood quantiles estimation for catchments where flow data are available (Arnaud et al., 2015). Nevertheless, the parameter of the rainfall-runoff model is independently calibrated for each target catchment. As a consequence, this parameter plays a corrective role and compensates approximations and modelling errors which makes difficult to identify its proper spatial pattern. It is an inherent objective of the SHYREG approach to be completely regionalised in order to provide a complete and accurate flood quantiles database throughout France. Consequently, it appears necessary to identify the model configuration in which the calibrated parameter could be regionalised with acceptable performances. The revaluation of some of the method hypothesis is a necessary step before the regionalisation. Especially the inclusion or the modification of the spatial variability of imposed parameters (like production and transfer reservoir size, base flow addition and quantiles aggregation function) should lead to more realistic values of the only calibrated parameter. The objective of the work presented here is to develop a SHYREG evaluation scheme focusing on both local and regional performances. Indeed, it is necessary to maintain the accuracy of at site flood quantiles estimation while identifying a configuration leading to a satisfactory spatial pattern of the calibrated parameter. This ability to be regionalised can be appraised by the association of common regionalisation techniques and split sample validation tests on a set of around 1,500 catchments representing the whole diversity of France physiography. Also, the presence of many nested catchments and a size-based split sample validation make possible to assess the relevance of the calibrated parameter spatial structure inside the largest catchments. The application of this multi-objective evaluation leads to the selection of a version of SHYREG more suitable for regionalisation. References: Arnaud, P., Cantet, P., Aubert, Y., 2015. Relevance of an at-site flood frequency analysis method for extreme events based on stochastic simulation of hourly rainfall. Hydrological Sciences Journal: on press. DOI:10.1080/02626667.2014.965174 Aubert, Y., Arnaud, P., Ribstein, P., Fine, J.A., 2014. The SHYREG flow method-application to 1605 basins in metropolitan France. Hydrological Sciences Journal, 59(5): 993-1005. DOI:10.1080/02626667.2014.902061

  18. New Multi-objective Uncertainty-based Algorithm for Water Resource Models' Calibration

    NASA Astrophysics Data System (ADS)

    Keshavarz, Kasra; Alizadeh, Hossein

    2017-04-01

    Water resource models are powerful tools to support water management decision making process and are developed to deal with a broad range of issues including land use and climate change impacts analysis, water allocation, systems design and operation, waste load control and allocation, etc. These models are divided into two categories of simulation and optimization models whose calibration has been addressed in the literature where great relevant efforts in recent decades have led to two main categories of auto-calibration methods of uncertainty-based algorithms such as GLUE, MCMC and PEST and optimization-based algorithms including single-objective optimization such as SCE-UA and multi-objective optimization such as MOCOM-UA and MOSCEM-UA. Although algorithms which benefit from capabilities of both types, such as SUFI-2, were rather developed, this paper proposes a new auto-calibration algorithm which is capable of both finding optimal parameters values regarding multiple objectives like optimization-based algorithms and providing interval estimations of parameters like uncertainty-based algorithms. The algorithm is actually developed to improve quality of SUFI-2 results. Based on a single-objective, e.g. NSE and RMSE, SUFI-2 proposes a routine to find the best point and interval estimation of parameters and corresponding prediction intervals (95 PPU) of time series of interest. To assess the goodness of calibration, final results are presented using two uncertainty measures of p-factor quantifying percentage of observations covered by 95PPU and r-factor quantifying degree of uncertainty, and the analyst has to select the point and interval estimation of parameters which are actually non-dominated regarding both of the uncertainty measures. Based on the described properties of SUFI-2, two important questions are raised, answering of which are our research motivation: Given that in SUFI-2, final selection is based on the two measures or objectives and on the other hand, knowing that there is no multi-objective optimization mechanism in SUFI-2, are the final estimations Pareto-optimal? Can systematic methods be applied to select the final estimations? Dealing with these questions, a new auto-calibration algorithm was proposed where the uncertainty measures were considered as two objectives to find non-dominated interval estimations of parameters by means of coupling Monte Carlo simulation and Multi-Objective Particle Swarm Optimization. Both the proposed algorithm and SUFI-2 were applied to calibrate parameters of water resources planning model of Helleh river basin, Iran. The model is a comprehensive water quantity-quality model developed in the previous researches using WEAP software in order to analyze the impacts of different water resources management strategies including dam construction, increasing cultivation area, utilization of more efficient irrigation technologies, changing crop pattern, etc. Comparing the Pareto frontier resulted from the proposed auto-calibration algorithm with SUFI-2 results, it was revealed that the new algorithm leads to a better and also continuous Pareto frontier, even though it is more computationally expensive. Finally, Nash and Kalai-Smorodinsky bargaining methods were used to choose compromised interval estimation regarding Pareto frontier.

  19. Monte-Carlo-based uncertainty propagation with hierarchical models—a case study in dynamic torque

    NASA Astrophysics Data System (ADS)

    Klaus, Leonard; Eichstädt, Sascha

    2018-04-01

    For a dynamic calibration, a torque transducer is described by a mechanical model, and the corresponding model parameters are to be identified from measurement data. A measuring device for the primary calibration of dynamic torque, and a corresponding model-based calibration approach, have recently been developed at PTB. The complete mechanical model of the calibration set-up is very complex, and involves several calibration steps—making a straightforward implementation of a Monte Carlo uncertainty evaluation tedious. With this in mind, we here propose to separate the complete model into sub-models, with each sub-model being treated with individual experiments and analysis. The uncertainty evaluation for the overall model then has to combine the information from the sub-models in line with Supplement 2 of the Guide to the Expression of Uncertainty in Measurement. In this contribution, we demonstrate how to carry this out using the Monte Carlo method. The uncertainty evaluation involves various input quantities of different origin and the solution of a numerical optimisation problem.

  20. A Kinematic Calibration Process for Flight Robotic Arms

    NASA Technical Reports Server (NTRS)

    Collins, Curtis L.; Robinson, Matthew L.

    2013-01-01

    The Mars Science Laboratory (MSL) robotic arm is ten times more massive than any Mars robotic arm before it, yet with similar accuracy and repeatability positioning requirements. In order to assess and validate these requirements, a higher-fidelity model and calibration processes were needed. Kinematic calibration of robotic arms is a common and necessary process to ensure good positioning performance. Most methodologies assume a rigid arm, high-accuracy data collection, and some kind of optimization of kinematic parameters. A new detailed kinematic and deflection model of the MSL robotic arm was formulated in the design phase and used to update the initial positioning and orientation accuracy and repeatability requirements. This model included a higher-fidelity link stiffness matrix representation, as well as a link level thermal expansion model. In addition, it included an actuator backlash model. Analytical results highlighted the sensitivity of the arm accuracy to its joint initialization methodology. Because of this, a new technique for initializing the arm joint encoders through hardstop calibration was developed. This involved selecting arm configurations to use in Earth-based hardstop calibration that had corresponding configurations on Mars with the same joint torque to ensure repeatability in the different gravity environment. The process used to collect calibration data for the arm included the use of multiple weight stand-in turrets with enough metrology targets to reconstruct the full six-degree-of-freedom location of the rover and tool frames. The follow-on data processing of the metrology data utilized a standard differential formulation and linear parameter optimization technique.

  1. Postlaunch calibration of spacecraft attitude instruments

    NASA Technical Reports Server (NTRS)

    Davis, W.; Hashmall, J.; Garrick, J.; Harman, R.

    1993-01-01

    The accuracy of both onboard and ground attitude determination can be significantly enhanced by calibrating spacecraft attitude instruments (sensors) after launch. Although attitude sensors are accurately calibrated before launch, the stresses of launch and the space environment inevitably cause changes in sensor parameters. During the mission, these parameters may continue to drift requiring repeated on-orbit calibrations. The goal of attitude sensor calibration is to reduce the systematic errors in the measurement models. There are two stages at which systematic errors may enter. The first occurs in the conversion of sensor output into an observation vector in the sensor frame. The second occurs in the transformation of the vector from the sensor frame to the spacecraft attitude reference frame. This paper presents postlaunch alignment and transfer function calibration of the attitude sensors for the Compton Gamma Ray Observatory (GRO), the Upper Atmosphere Research Satellite (UARS), and the Extreme Ultraviolet Explorer (EUVE).

  2. Dynamic State Estimation and Parameter Calibration of DFIG based on Ensemble Kalman Filter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fan, Rui; Huang, Zhenyu; Wang, Shaobu

    2015-07-30

    With the growing interest in the application of wind energy, doubly fed induction generator (DFIG) plays an essential role in the industry nowadays. To deal with the increasing stochastic variations introduced by intermittent wind resource and responsive loads, dynamic state estimation (DSE) are introduced in any power system associated with DFIGs. However, sometimes this dynamic analysis canould not work because the parameters of DFIGs are not accurate enough. To solve the problem, an ensemble Kalman filter (EnKF) method is proposed for the state estimation and parameter calibration tasks. In this paper, a DFIG is modeled and implemented with the EnKFmore » method. Sensitivity analysis is demonstrated regarding the measurement noise, initial state errors and parameter errors. The results indicate this EnKF method has a robust performance on the state estimation and parameter calibration of DFIGs.« less

  3. Advanced fast 3D DSA model development and calibration for design technology co-optimization

    NASA Astrophysics Data System (ADS)

    Lai, Kafai; Meliorisz, Balint; Muelders, Thomas; Welling, Ulrich; Stock, Hans-Jürgen; Marokkey, Sajan; Demmerle, Wolfgang; Liu, Chi-Chun; Chi, Cheng; Guo, Jing

    2017-04-01

    Direct Optimization (DO) of a 3D DSA model is a more optimal approach to a DTCO study in terms of accuracy and speed compared to a Cahn Hilliard Equation solver. DO's shorter run time (10X to 100X faster) and linear scaling makes it scalable to the area required for a DTCO study. However, the lack of temporal data output, as opposed to prior art, requires a new calibration method. The new method involves a specific set of calibration patterns. The calibration pattern's design is extremely important when temporal data is absent to obtain robust model parameters. A model calibrated to a Hybrid DSA system with a set of device-relevant constructs indicates the effectiveness of using nontemporal data. Preliminary model prediction using programmed defects on chemo-epitaxy shows encouraging results and agree qualitatively well with theoretical predictions from a strong segregation theory.

  4. Data Assimilation - Advances and Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Brian J.

    2014-07-30

    This presentation provides an overview of data assimilation (model calibration) for complex computer experiments. Calibration refers to the process of probabilistically constraining uncertain physics/engineering model inputs to be consistent with observed experimental data. An initial probability distribution for these parameters is updated using the experimental information. Utilization of surrogate models and empirical adjustment for model form error in code calibration form the basis for the statistical methodology considered. The role of probabilistic code calibration in supporting code validation is discussed. Incorporation of model form uncertainty in rigorous uncertainty quantification (UQ) analyses is also addressed. Design criteria used within a batchmore » sequential design algorithm are introduced for efficiently achieving predictive maturity and improved code calibration. Predictive maturity refers to obtaining stable predictive inference with calibrated computer codes. These approaches allow for augmentation of initial experiment designs for collecting new physical data. A standard framework for data assimilation is presented and techniques for updating the posterior distribution of the state variables based on particle filtering and the ensemble Kalman filter are introduced.« less

  5. Near infrared spectroscopy (NIRS) for on-line determination of quality parameters in intact olives.

    PubMed

    Salguero-Chaparro, Lourdes; Baeten, Vincent; Fernández-Pierna, Juan A; Peña-Rodríguez, Francisco

    2013-08-15

    The acidity, moisture and fat content in intact olive fruits were determined on-line using a NIR diode array instrument, operating on a conveyor belt. Four sets of calibrations models were obtained by means of different combinations from samples collected during 2009-2010 and 2010-2011, using full-cross and external validation. Several preprocessing treatments such as derivatives and scatter correction were investigated by using the root mean square error of cross-validation (RMSECV) and prediction (RMSEP), as control parameters. The results obtained showed RMSECV values of 2.54-3.26 for moisture, 2.35-2.71 for fat content and 2.50-3.26 for acidity parameters, depending on the calibration model developed. Calibrations for moisture, fat content and acidity gave residual predictive deviation (RPD) values of 2.76, 2.37 and 1.60, respectively. Although, it is concluded that the on-line NIRS prediction results were acceptable for the three parameters measured in intact olive samples in movement, the models developed must be improved in order to increase their accuracy before final NIRS implementation at mills. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Estimation of future flow regime for a spatially varied Himalayan watershed using improved multi-site calibration method of SWAT model.

    NASA Astrophysics Data System (ADS)

    Pradhanang, S. M.; Hasan, M. A.; Booth, P.; Fallatah, O.

    2016-12-01

    The monsoon and snow driven regime in the Himalayan region has received increasing attention in the recent decade regarding the effects of climate change on hydrologic regimes. Modeling streamflow in such spatially varied catchment requires proper calibration and validation in hydrologic modeling. While calibration and validation are time consuming and computationally intensive, an effective regionalized approach with multi-site information is crucial for flow estimation, especially in daily scale. In this study, we adopted a multi-site approach to calibration and validation of the Soil Water Assessment Tool (SWAT) model for the Karnali river catchment, which is characterized as being the most vulnerable catchment to climate change in the Himalayan region. APHRODITE's (Asian Precipitation - Highly-Resolved Observational Data Integration Towards Evaluation) daily gridded precipitation data, one of the accurate and reliable weather date over this region were utilized in this study. The model evaluation of the entire catchment divided into four sub-catchments, utilizing discharge records from 1963 to 2010. In previous studies, multi-site calibration used only a single set of calibration parameters for all sub-catchment of a large watershed. In this study, we introduced a technique that can incorporate different sets of calibration parameters for each sub-basin, which eventually ameliorate the flow of the whole watershed. Results show that the calibrated model with new method can capture almost identical pattern of flow over the region. The predicted daily streamflow matched the observed values, with a Nash-Sutcliffe coefficient of 0.73 during calibration and 0.71 during validation period. The method perfumed better than existing multi-site calibration methods. To assess the influence of continued climate change on hydrologic processes, we modified the weather inputs for the model using precipitation and temperature changes for two Representative Concentration Pathways (RCPs) scenarios, RCP 4.5 and 8.5. Climate simulation for RCP scenarios were conducted from 1981-2100, where 1981-2005 was considered as baseline and 2006-2100 was considered as the future projection. The result shows that probability of flooding will eventually increase in future years due to increased flow in both scenarios.

  7. Calibrating Parameters of Power System Stability Models using Advanced Ensemble Kalman Filter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Renke; Diao, Ruisheng; Li, Yuanyuan

    With the ever increasing penetration of renewable energy, smart loads, energy storage, and new market behavior, today’s power grid becomes more dynamic and stochastic, which may invalidate traditional study assumptions and pose great operational challenges. Thus, it is of critical importance to maintain good-quality models for secure and economic planning and real-time operation. Following the 1996 Western Systems Coordinating Council (WSCC) system blackout, North American Electric Reliability Corporation (NERC) and Western Electricity Coordinating Council (WECC) in North America enforced a number of policies and standards to guide the power industry to periodically validate power grid models and calibrate poor parametersmore » with the goal of building sufficient confidence in model quality. The PMU-based approach using online measurements without interfering with the operation of generators provides a low-cost alternative to meet NERC standards. This paper presents an innovative procedure and tool suites to validate and calibrate models based on a trajectory sensitivity analysis method and an advanced ensemble Kalman filter algorithm. The developed prototype demonstrates excellent performance in identifying and calibrating bad parameters of a realistic hydro power plant against multiple system events.« less

  8. A fast and efficient method for device level layout analysis

    NASA Astrophysics Data System (ADS)

    Dong, YaoQi; Zou, Elaine; Pang, Jenny; Huang, Lucas; Yang, Legender; Zhang, Chunlei; Du, Chunshan; Hu, Xinyi; Wan, Qijian

    2017-03-01

    There is an increasing demand for device level layout analysis, especially as technology advances. The analysis is to study standard cells by extracting and classifying critical dimension parameters. There are couples of parameters to extract, like channel width, length, gate to active distance, and active to adjacent active distance, etc. for 14nm technology, there are some other parameters that are cared about. On the one hand, these parameters are very important for studying standard cell structures and spice model development with the goal of improving standard cell manufacturing yield and optimizing circuit performance; on the other hand, a full chip device statistics analysis can provide useful information to diagnose the yield issue. Device analysis is essential for standard cell customization and enhancements and manufacturability failure diagnosis. Traditional parasitic parameters extraction tool like Calibre xRC is powerful but it is not sufficient for this device level layout analysis application as engineers would like to review, classify and filter out the data more easily. This paper presents a fast and efficient method based on Calibre equation-based DRC (eqDRC). Equation-based DRC extends the traditional DRC technology to provide a flexible programmable modeling engine which allows the end user to define grouped multi-dimensional feature measurements using flexible mathematical expressions. This paper demonstrates how such an engine and its programming language can be used to implement critical device parameter extraction. The device parameters are extracted and stored in a DFM database which can be processed by Calibre YieldServer. YieldServer is data processing software that lets engineers query, manipulate, modify, and create data in a DFM database. These parameters, known as properties in eqDRC language, can be annotated back to the layout for easily review. Calibre DesignRev can create a HTML formatted report of the results displayed in Calibre RVE which makes it easy to share results among groups. This method has been proven and used in SMIC PDE team and SPICE team.

  9. New error calibration tests for gravity models using subset solutions and independent data - Applied to GEM-T3

    NASA Technical Reports Server (NTRS)

    Lerch, F. J.; Nerem, R. S.; Chinn, D. S.; Chan, J. C.; Patel, G. B.; Klosko, S. M.

    1993-01-01

    A new method has been developed to provide a direct test of the error calibrations of gravity models based on actual satellite observations. The basic approach projects the error estimates of the gravity model parameters onto satellite observations, and the results of these projections are then compared with data residual computed from the orbital fits. To allow specific testing of the gravity error calibrations, subset solutions are computed based on the data set and data weighting of the gravity model. The approach is demonstrated using GEM-T3 to show that the gravity error estimates are well calibrated and that reliable predictions of orbit accuracies can be achieved for independent orbits.

  10. Uncertainty Analysis of Instrument Calibration and Application

    NASA Technical Reports Server (NTRS)

    Tripp, John S.; Tcheng, Ping

    1999-01-01

    Experimental aerodynamic researchers require estimated precision and bias uncertainties of measured physical quantities, typically at 95 percent confidence levels. Uncertainties of final computed aerodynamic parameters are obtained by propagation of individual measurement uncertainties through the defining functional expressions. In this paper, rigorous mathematical techniques are extended to determine precision and bias uncertainties of any instrument-sensor system. Through this analysis, instrument uncertainties determined through calibration are now expressed as functions of the corresponding measurement for linear and nonlinear univariate and multivariate processes. Treatment of correlated measurement precision error is developed. During laboratory calibration, calibration standard uncertainties are assumed to be an order of magnitude less than those of the instrument being calibrated. Often calibration standards do not satisfy this assumption. This paper applies rigorous statistical methods for inclusion of calibration standard uncertainty and covariance due to the order of their application. The effects of mathematical modeling error on calibration bias uncertainty are quantified. The effects of experimental design on uncertainty are analyzed. The importance of replication is emphasized, techniques for estimation of both bias and precision uncertainties using replication are developed. Statistical tests for stationarity of calibration parameters over time are obtained.

  11. FAST Model Calibration and Validation of the OC5-DeepCwind Floating Offshore Wind System Against Wave Tank Test Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wendt, Fabian F; Robertson, Amy N; Jonkman, Jason

    During the course of the Offshore Code Comparison Collaboration, Continued, with Correlation (OC5) project, which focused on the validation of numerical methods through comparison against tank test data, the authors created a numerical FAST model of the 1:50-scale DeepCwind semisubmersible system that was tested at the Maritime Research Institute Netherlands ocean basin in 2013. This paper discusses several model calibration studies that were conducted to identify model adjustments that improve the agreement between the numerical simulations and the experimental test data. These calibration studies cover wind-field-specific parameters (coherence, turbulence), hydrodynamic and aerodynamic modeling approaches, as well as rotor model (blade-pitchmore » and blade-mass imbalances) and tower model (structural tower damping coefficient) adjustments. These calibration studies were conducted based on relatively simple calibration load cases (wave only/wind only). The agreement between the final FAST model and experimental measurements is then assessed based on more-complex combined wind and wave validation cases.« less

  12. A curve fitting method for extrinsic camera calibration from a single image of a cylindrical object

    NASA Astrophysics Data System (ADS)

    Winkler, A. W.; Zagar, B. G.

    2013-08-01

    An important step in the process of optical steel coil quality assurance is to measure the proportions of width and radius of steel coils as well as the relative position and orientation of the camera. This work attempts to estimate these extrinsic parameters from single images by using the cylindrical coil itself as the calibration target. Therefore, an adaptive least-squares algorithm is applied to fit parametrized curves to the detected true coil outline in the acquisition. The employed model allows for strictly separating the intrinsic and the extrinsic parameters. Thus, the intrinsic camera parameters can be calibrated beforehand using available calibration software. Furthermore, a way to segment the true coil outline in the acquired images is motivated. The proposed optimization method yields highly accurate results and can be generalized even to measure other solids which cannot be characterized by the identification of simple geometric primitives.

  13. Linking Parameter Estimates Derived from an Item Response Model through Separate Calibrations. Research Report. ETS RR-09-40

    ERIC Educational Resources Information Center

    Haberman, Shelby J.

    2009-01-01

    A regression procedure is developed to link simultaneously a very large number of item response theory (IRT) parameter estimates obtained from a large number of test forms, where each form has been separately calibrated and where forms can be linked on a pairwise basis by means of common items. An application is made to forms in which a…

  14. An Analytical Calibration Approach for the Polarimetric Airborne C Band Radiometer

    NASA Technical Reports Server (NTRS)

    Pham, Hanh; Kim, Edward J.

    2004-01-01

    Passive microwave remote sensing is sensitive to the quantity and distribution of water in soil and vegetation. During summer 2000, the Microwave Geophysics Group a t the University of Michigan conducted the seventh Radiobrighness Energy Balance Experiment (REBEX-7) over a corn canopy in Michigan. Long time series of brightness temperatures, soil moisture and micrometeorology on the plot were taken. This paper addresses the calibration of the NASA GSFC polarimetric airborne C band microwave radiometer (ACMR) that participated in REBEX-7. These passive polarimeters are typically calibrated using an end-to-end approach based upon a standard artificial target or a well-known geophysical target. Analyzing the major internal functional subsystems offers a different perspective. The primary goal of this approach is to provide a transfer function that not only describes the system in its entire5 but also accounts for the contributions of each subsystem toward the final modified Stokes parameters. This approach does not assume that the radiometric system is linear as it does not take polarization isolation for granted, and it also serves as a realistic instrument simulator, a useful tool for future designs. The ACMR architecture can be partitioned into functional subsystems. The characteristics of each subsystem was extensively measured and the estimated parameters were imported into the overall dosed form system model. Inversion of the model yields a calibration for the modeled Stokes parameters with uncertainties of 0.2 K for the V and H polarizations and 2.4 K for the 3rd and 4th parameters. Application to the full Stokes parameters over a senescent cornfield is presented.

  15. The site-scale saturated zone flow model for Yucca Mountain: Calibration of different conceptual models and their impact on flow paths

    USGS Publications Warehouse

    Zyvoloski, G.; Kwicklis, E.; Eddebbarh, A.-A.; Arnold, B.; Faunt, C.; Robinson, B.A.

    2003-01-01

    This paper presents several different conceptual models of the Large Hydraulic Gradient (LHG) region north of Yucca Mountain and describes the impact of those models on groundwater flow near the potential high-level repository site. The results are based on a numerical model of site-scale saturated zone beneath Yucca Mountain. This model is used for performance assessment predictions of radionuclide transport and to guide future data collection and modeling activities. The numerical model is calibrated by matching available water level measurements using parameter estimation techniques, along with more informal comparisons of the model to hydrologic and geochemical information. The model software (hydrologic simulation code FEHM and parameter estimation software PEST) and model setup allows for efficient calibration of multiple conceptual models. Until now, the Large Hydraulic Gradient has been simulated using a low-permeability, east-west oriented feature, even though direct evidence for this feature is lacking. In addition to this model, we investigate and calibrate three additional conceptual models of the Large Hydraulic Gradient, all of which are based on a presumed zone of hydrothermal chemical alteration north of Yucca Mountain. After examining the heads and permeabilities obtained from the calibrated models, we present particle pathways from the potential repository that record differences in the predicted groundwater flow regime. The results show that Large Hydraulic Gradient can be represented with the alternate conceptual models that include the hydrothermally altered zone. The predicted pathways are mildly sensitive to the choice of the conceptual model and more sensitive to the quality of calibration in the vicinity on the repository. These differences are most likely due to different degrees of fit of model to data, and do not represent important differences in hydrologic conditions for the different conceptual models. ?? 2002 Elsevier Science B.V. All rights reserved.

  16. A fully Bayesian method for jointly fitting instrumental calibration and X-ray spectral models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Jin; Yu, Yaming; Van Dyk, David A.

    2014-10-20

    Owing to a lack of robust principled methods, systematic instrumental uncertainties have generally been ignored in astrophysical data analysis despite wide recognition of the importance of including them. Ignoring calibration uncertainty can cause bias in the estimation of source model parameters and can lead to underestimation of the variance of these estimates. We previously introduced a pragmatic Bayesian method to address this problem. The method is 'pragmatic' in that it introduced an ad hoc technique that simplified computation by neglecting the potential information in the data for narrowing the uncertainty for the calibration product. Following that work, we use amore » principal component analysis to efficiently represent the uncertainty of the effective area of an X-ray (or γ-ray) telescope. Here, however, we leverage this representation to enable a principled, fully Bayesian method that coherently accounts for the calibration uncertainty in high-energy spectral analysis. In this setting, the method is compared with standard analysis techniques and the pragmatic Bayesian method. The advantage of the fully Bayesian method is that it allows the data to provide information not only for estimation of the source parameters but also for the calibration product—here the effective area, conditional on the adopted spectral model. In this way, it can yield more accurate and efficient estimates of the source parameters along with valid estimates of their uncertainty. Provided that the source spectrum can be accurately described by a parameterized model, this method allows rigorous inference about the effective area by quantifying which possible curves are most consistent with the data.« less

  17. Sensitivity Analysis of the Land Surface Model NOAH-MP for Different Model Fluxes

    NASA Astrophysics Data System (ADS)

    Mai, Juliane; Thober, Stephan; Samaniego, Luis; Branch, Oliver; Wulfmeyer, Volker; Clark, Martyn; Attinger, Sabine; Kumar, Rohini; Cuntz, Matthias

    2015-04-01

    Land Surface Models (LSMs) use a plenitude of process descriptions to represent the carbon, energy and water cycles. They are highly complex and computationally expensive. Practitioners, however, are often only interested in specific outputs of the model such as latent heat or surface runoff. In model applications like parameter estimation, the most important parameters are then chosen by experience or expert knowledge. Hydrologists interested in surface runoff therefore chose mostly soil parameters while biogeochemists interested in carbon fluxes focus on vegetation parameters. However, this might lead to the omission of parameters that are important, for example, through strong interactions with the parameters chosen. It also happens during model development that some process descriptions contain fixed values, which are supposedly unimportant parameters. However, these hidden parameters remain normally undetected although they might be highly relevant during model calibration. Sensitivity analyses are used to identify informative model parameters for a specific model output. Standard methods for sensitivity analysis such as Sobol indexes require large amounts of model evaluations, specifically in case of many model parameters. We hence propose to first use a recently developed inexpensive sequential screening method based on Elementary Effects that has proven to identify the relevant informative parameters. This reduces the number parameters and therefore model evaluations for subsequent analyses such as sensitivity analysis or model calibration. In this study, we quantify parametric sensitivities of the land surface model NOAH-MP that is a state-of-the-art LSM and used at regional scale as the land surface scheme of the atmospheric Weather Research and Forecasting Model (WRF). NOAH-MP contains multiple process parameterizations yielding a considerable amount of parameters (˜ 100). Sensitivities for the three model outputs (a) surface runoff, (b) soil drainage and (c) latent heat are calculated on twelve Model Parameter Estimation Experiment (MOPEX) catchments ranging in size from 1020 to 4421 km2. This allows investigation of parametric sensitivities for distinct hydro-climatic characteristics, emphasizing different land-surface processes. The sequential screening identifies the most informative parameters of NOAH-MP for different model output variables. The number of parameters is reduced substantially for all of the three model outputs to approximately 25. The subsequent Sobol method quantifies the sensitivities of these informative parameters. The study demonstrates the existence of sensitive, important parameters in almost all parts of the model irrespective of the considered output. Soil parameters, e.g., are informative for all three output variables whereas plant parameters are not only informative for latent heat but also for soil drainage because soil drainage is strongly coupled to transpiration through the soil water balance. These results contrast to the choice of only soil parameters in hydrological studies and only plant parameters in biogeochemical ones. The sequential screening identified several important hidden parameters that carry large sensitivities and have hence to be included during model calibration.

  18. Calibrating a forest landscape model to simulate frequent fire in Mediterranean-type shrublands

    USGS Publications Warehouse

    Syphard, A.D.; Yang, J.; Franklin, J.; He, H.S.; Keeley, J.E.

    2007-01-01

    In Mediterranean-type ecosystems (MTEs), fire disturbance influences the distribution of most plant communities, and altered fire regimes may be more important than climate factors in shaping future MTE vegetation dynamics. Models that simulate the high-frequency fire and post-fire response strategies characteristic of these regions will be important tools for evaluating potential landscape change scenarios. However, few existing models have been designed to simulate these properties over long time frames and broad spatial scales. We refined a landscape disturbance and succession (LANDIS) model to operate on an annual time step and to simulate altered fire regimes in a southern California Mediterranean landscape. After developing a comprehensive set of spatial and non-spatial variables and parameters, we calibrated the model to simulate very high fire frequencies and evaluated the simulations under several parameter scenarios representing hypotheses about system dynamics. The goal was to ensure that observed model behavior would simulate the specified fire regime parameters, and that the predictions were reasonable based on current understanding of community dynamics in the region. After calibration, the two dominant plant functional types responded realistically to different fire regime scenarios. Therefore, this model offers a new alternative for simulating altered fire regimes in MTE landscapes. ?? 2007 Elsevier Ltd. All rights reserved.

  19. Workcell calibration for effective offline programming

    NASA Technical Reports Server (NTRS)

    Stiles, Roger D.; Jones, Clyde S.

    1989-01-01

    In the application of graphics systems for off-line programming (OLP) of robotic systems, the inevitability of errors in the model representation of real-world situations requires that a method to map these differences is incorporated as an integral part of the overall system progamming procedures. This paper discusses several proven robot-to-positioner calibration techniques necessary to reflect real-world parameters in a work-cell model. Particular attention is given to the procedures used to adjust a graphics model to an acceptable degree of accuracy for integration of OLP for the Space Shuttle Main Engine welding automation. Consideration is given to the levels of calibration, requirements, special considerations for coordinated motion, and calibration procedures.

  20. Differential Evolution algorithm applied to FSW model calibration

    NASA Astrophysics Data System (ADS)

    Idagawa, H. S.; Santos, T. F. A.; Ramirez, A. J.

    2014-03-01

    Friction Stir Welding (FSW) is a solid state welding process that can be modelled using a Computational Fluid Dynamics (CFD) approach. These models use adjustable parameters to control the heat transfer and the heat input to the weld. These parameters are used to calibrate the model and they are generally determined using the conventional trial and error approach. Since this method is not very efficient, we used the Differential Evolution (DE) algorithm to successfully determine these parameters. In order to improve the success rate and to reduce the computational cost of the method, this work studied different characteristics of the DE algorithm, such as the evolution strategy, the objective function, the mutation scaling factor and the crossover rate. The DE algorithm was tested using a friction stir weld performed on a UNS S32205 Duplex Stainless Steel.

  1. Model simulations of flood and debris flow timing in steep catchments after wildfire

    NASA Astrophysics Data System (ADS)

    Rengers, F. K.; McGuire, L. A.; Kean, J. W.; Staley, D. M.; Hobley, D. E. J.

    2016-08-01

    Debris flows are a typical hazard on steep slopes after wildfire, but unlike debris flows that mobilize from landslides, most postwildfire debris flows are generated from water runoff. The majority of existing debris flow modeling has focused on landslide-triggered debris flows. In this study we explore the potential for using process-based rainfall-runoff models to simulate the timing of water flow and runoff-generated debris flows in recently burned areas. Two different spatially distributed hydrologic models with differing levels of complexity were used: the full shallow water equations and the kinematic wave approximation. Model parameter values were calibrated in two different watersheds, spanning two orders of magnitude in drainage area. These watersheds were affected by the 2009 Station Fire in the San Gabriel Mountains, CA, USA. Input data for the numerical models were constrained by time series of soil moisture, flow stage, and rainfall collected at field sites, as well as high-resolution lidar-derived digital elevation models. The calibrated parameters were used to model a third watershed in the burn area, and the results show a good match with observed timing of flow peaks. The calibrated roughness parameter (Manning's n) was generally higher when using the kinematic wave approximation relative to the shallow water equations, and decreased with increasing spatial scale. The calibrated effective watershed hydraulic conductivity was low for both models, even for storms occurring several months after the fire, suggesting that wildfire-induced changes to soil-water infiltration were retained throughout that time. Overall, the two model simulations were quite similar suggesting that a kinematic wave model, which is simpler and more computationally efficient, is a suitable approach for predicting flood and debris flow timing in steep, burned watersheds.

  2. Model simulations of flood and debris flow timing in steep catchments after wildfire

    USGS Publications Warehouse

    Rengers, Francis K.; McGuire, Luke; Kean, Jason W.; Staley, Dennis M.; Hobley, D.E.J

    2016-01-01

    Debris flows are a typical hazard on steep slopes after wildfire, but unlike debris flows that mobilize from landslides, most post-wildfire debris flows are generated from water runoff. The majority of existing debris-flow modeling has focused on landslide-triggered debris flows. In this study we explore the potential for using process-based rainfall-runoff models to simulate the timing of water flow and runoff-generated debris flows in recently burned areas. Two different spatially distributed hydrologic models with differing levels of complexity were used: the full shallow water equations and the kinematic wave approximation. Model parameter values were calibrated in two different watersheds, spanning two orders of magnitude in drainage area. These watersheds were affected by the 2009 Station Fire in the San Gabriel Mountains, CA, USA. Input data for the numerical models were constrained by time series of soil moisture, flow stage, and rainfall collected at field sites, as well as high-resolution lidar-derived digital elevation models. The calibrated parameters were used to model a third watershed in the burn area, and the results show a good match with observed timing of flow peaks. The calibrated roughness parameter (Manning's $n$) was generally higher when using the kinematic wave approximation relative to the shallow water equations, and decreased with increasing spatial scale. The calibrated effective watershed hydraulic conductivity was low for both models, even for storms occurring several months after the fire, suggesting that wildfire-induced changes to soil-water infiltration were retained throughout that time. Overall the two model simulations were quite similar suggesting that a kinematic wave model, which is simpler and more computationally efficient, is a suitable approach for predicting flood and debris flow timing in steep, burned watersheds.

  3. [Numerical simulation and operation optimization of biological filter].

    PubMed

    Zou, Zong-Sen; Shi, Han-Chang; Chen, Xiang-Qiang; Xie, Xiao-Qing

    2014-12-01

    BioWin software and two sensitivity analysis methods were used to simulate the Denitrification Biological Filter (DNBF) + Biological Aerated Filter (BAF) process in Yuandang Wastewater Treatment Plant. Based on the BioWin model of DNBF + BAF process, the operation data of September 2013 were used for sensitivity analysis and model calibration, and the operation data of October 2013 were used for model validation. The results indicated that the calibrated model could accurately simulate practical DNBF + BAF processes, and the most sensitive parameters were the parameters related to biofilm, OHOs and aeration. After the validation and calibration of model, it was used for process optimization with simulating operation results under different conditions. The results showed that, the best operation condition for discharge standard B was: reflux ratio = 50%, ceasing methanol addition, influent C/N = 4.43; while the best operation condition for discharge standard A was: reflux ratio = 50%, influent COD = 155 mg x L(-1) after methanol addition, influent C/N = 5.10.

  4. Generic precise augmented reality guiding system and its calibration method based on 3D virtual model.

    PubMed

    Liu, Miao; Yang, Shourui; Wang, Zhangying; Huang, Shujun; Liu, Yue; Niu, Zhenqi; Zhang, Xiaoxuan; Zhu, Jigui; Zhang, Zonghua

    2016-05-30

    Augmented reality system can be applied to provide precise guidance for various kinds of manual works. The adaptability and guiding accuracy of such systems are decided by the computational model and the corresponding calibration method. In this paper, a novel type of augmented reality guiding system and the corresponding designing scheme are proposed. Guided by external positioning equipment, the proposed system can achieve high relative indication accuracy in a large working space. Meanwhile, the proposed system is realized with a digital projector and the general back projection model is derived with geometry relationship between digitized 3D model and the projector in free space. The corresponding calibration method is also designed for the proposed system to obtain the parameters of projector. To validate the proposed back projection model, the coordinate data collected by a 3D positioning equipment is used to calculate and optimize the extrinsic parameters. The final projecting indication accuracy of the system is verified with subpixel pattern projecting technique.

  5. Total probabilities of ensemble runoff forecasts

    NASA Astrophysics Data System (ADS)

    Olav Skøien, Jon; Bogner, Konrad; Salamon, Peter; Smith, Paul; Pappenberger, Florian

    2017-04-01

    Ensemble forecasting has a long history from meteorological modelling, as an indication of the uncertainty of the forecasts. However, it is necessary to calibrate and post-process the ensembles as the they often exhibit both bias and dispersion errors. Two of the most common methods for this are Bayesian Model Averaging (Raftery et al., 2005) and Ensemble Model Output Statistics (EMOS) (Gneiting et al., 2005). There are also methods for regionalizing these methods (Berrocal et al., 2007) and for incorporating the correlation between lead times (Hemri et al., 2013). Engeland and Steinsland Engeland and Steinsland (2014) developed a framework which can estimate post-processing parameters varying in space and time, while giving a spatially and temporally consistent output. However, their method is computationally complex for our larger number of stations, which makes it unsuitable for our purpose. Our post-processing method of the ensembles is developed in the framework of the European Flood Awareness System (EFAS - http://www.efas.eu), where we are making forecasts for whole Europe, and based on observations from around 700 catchments. As the target is flood forecasting, we are also more interested in improving the forecast skill for high-flows rather than in a good prediction of the entire flow regime. EFAS uses a combination of ensemble forecasts and deterministic forecasts from different meteorological forecasters to force a distributed hydrologic model and to compute runoff ensembles for each river pixel within the model domain. Instead of showing the mean and the variability of each forecast ensemble individually, we will now post-process all model outputs to estimate the total probability, the post-processed mean and uncertainty of all ensembles. The post-processing parameters are first calibrated for each calibration location, but we are adding a spatial penalty in the calibration process to force a spatial correlation of the parameters. The penalty takes distance, stream-connectivity and size of the catchment areas into account. This can in some cases have a slight negative impact on the calibration error, but avoids large differences between parameters of nearby locations, whether stream connected or not. The spatial calibration also makes it easier to interpolate the post-processing parameters to uncalibrated locations. We also look into different methods for handling the non-normal distributions of runoff data and the effect of different data transformations on forecasts skills in general and for floods in particular. Berrocal, V. J., Raftery, A. E. and Gneiting, T.: Combining Spatial Statistical and Ensemble Information in Probabilistic Weather Forecasts, Mon. Weather Rev., 135(4), 1386-1402, doi:10.1175/MWR3341.1, 2007. Engeland, K. and Steinsland, I.: Probabilistic postprocessing models for flow forecasts for a system of catchments and several lead times, Water Resour. Res., 50(1), 182-197, doi:10.1002/2012WR012757, 2014. Gneiting, T., Raftery, A. E., Westveld, A. H. and Goldman, T.: Calibrated Probabilistic Forecasting Using Ensemble Model Output Statistics and Minimum CRPS Estimation, Mon. Weather Rev., 133(5), 1098-1118, doi:10.1175/MWR2904.1, 2005. Hemri, S., Fundel, F. and Zappa, M.: Simultaneous calibration of ensemble river flow predictions over an entire range of lead times, Water Resour. Res., 49(10), 6744-6755, doi:10.1002/wrcr.20542, 2013. Raftery, A. E., Gneiting, T., Balabdaoui, F. and Polakowski, M.: Using Bayesian Model Averaging to Calibrate Forecast Ensembles, Mon. Weather Rev., 133(5), 1155-1174, doi:10.1175/MWR2906.1, 2005.

  6. Towards SWOT data assimilation for hydrology : automatic calibration of global flow routing model parameters in the Amazon basin

    NASA Astrophysics Data System (ADS)

    Mouffe, M.; Getirana, A.; Ricci, S. M.; Lion, C.; Biancamaria, S.; Boone, A.; Mognard, N. M.; Rogel, P.

    2011-12-01

    The Surface Water and Ocean Topography (SWOT) mission is a swath mapping radar interferometer that will provide global measurements of water surface elevation (WSE). The revisit time depends upon latitude and varies from two (low latitudes) to ten (high latitudes) per 22-day orbit repeat period. The high resolution and the global coverage of the SWOT data open the way for new hydrology studies. Here, the aim is to investigate the use of virtually generated SWOT data to improve discharge simulation using data assimilation techniques. In the framework of the SWOT virtual mission (VM), this study presents the first results of the automatic calibration of a global flow routing (GFR) scheme using SWOT VM measurements for the Amazon basin. The Hydrological Modeling and Analysis Platform (HyMAP) is used along with the MOCOM-UA multi-criteria global optimization algorithm. HyMAP has a 0.25-degree spatial resolution and runs at the daily time step to simulate discharge, water levels and floodplains. The surface runoff and baseflow drainage derived from the Interactions Sol-Biosphère-Atmosphère (ISBA) model are used as inputs for HyMAP. Previous works showed that the use of ENVISAT data enables the reduction of the uncertainty on some of the hydrological model parameters, such as river width and depth, Manning roughness coefficient and groundwater time delay. In the framework of the SWOT preparation work, the automatic calibration procedure was applied using SWOT VM measurements. For this Observing System Experiment (OSE), the synthetical data were obtained applying an instrument simulator (representing realistic SWOT errors) for one hydrological year to HYMAP simulated WSE using a "true" set of parameters. Only pixels representing rivers larger than 100 meters within the Amazon basin are considered to produce SWOT VM measurements. The automatic calibration procedure leads to the estimation of optimal parametersminimizing objective functions that formulate the difference between SWOT observations and modeled WSE using a perturbed set of parameters. Different formulations of the objective function were used, especially to account for SWOT observation errors, as well as various sets of calibration parameters.

  7. Uncertainty for calculating transport on Titan: A probabilistic description of bimolecular diffusion parameters

    NASA Astrophysics Data System (ADS)

    Plessis, S.; McDougall, D.; Mandt, K.; Greathouse, T.; Luspay-Kuti, A.

    2015-11-01

    Bimolecular diffusion coefficients are important parameters used by atmospheric models to calculate altitude profiles of minor constituents in an atmosphere. Unfortunately, laboratory measurements of these coefficients were never conducted at temperature conditions relevant to the atmosphere of Titan. Here we conduct a detailed uncertainty analysis of the bimolecular diffusion coefficient parameters as applied to Titan's upper atmosphere to provide a better understanding of the impact of uncertainty for this parameter on models. Because temperature and pressure conditions are much lower than the laboratory conditions in which bimolecular diffusion parameters were measured, we apply a Bayesian framework, a problem-agnostic framework, to determine parameter estimates and associated uncertainties. We solve the Bayesian calibration problem using the open-source QUESO library which also performs a propagation of uncertainties in the calibrated parameters to temperature and pressure conditions observed in Titan's upper atmosphere. Our results show that, after propagating uncertainty through the Massman model, the uncertainty in molecular diffusion is highly correlated to temperature and we observe no noticeable correlation with pressure. We propagate the calibrated molecular diffusion estimate and associated uncertainty to obtain an estimate with uncertainty due to bimolecular diffusion for the methane molar fraction as a function of altitude. Results show that the uncertainty in methane abundance due to molecular diffusion is in general small compared to eddy diffusion and the chemical kinetics description. However, methane abundance is most sensitive to uncertainty in molecular diffusion above 1200 km where the errors are nontrivial and could have important implications for scientific research based on diffusion models in this altitude range.

  8. Calibration of an Unsteady Groundwater Flow Model for a Complex, Strongly Heterogeneous Aquifer

    NASA Astrophysics Data System (ADS)

    Curtis, Z. K.; Liao, H.; Li, S. G.; Phanikumar, M. S.; Lusch, D.

    2016-12-01

    Modeling of groundwater systems characterized by complex three-dimensional structure and heterogeneity remains a significant challenge. Most of today's groundwater models are developed based on relatively simple conceptual representations in favor of model calibratibility. As more complexities are modeled, e.g., by adding more layers and/or zones, or introducing transient processes, more parameters have to be estimated and issues related to ill-posed groundwater problems and non-unique calibration arise. Here, we explore the use of an alternative conceptual representation for groundwater modeling that is fully three-dimensional and can capture complex 3D heterogeneity (both systematic and "random") without over-parameterizing the aquifer system. In particular, we apply Transition Probability (TP) geostatistics on high resolution borehole data from a water well database to characterize the complex 3D geology. Different aquifer material classes, e.g., `AQ' (aquifer material), `MAQ' (marginal aquifer material'), `PCM' (partially confining material), and `CM' (confining material), are simulated, with the hydraulic properties of each material type as tuning parameters during calibration. The TP-based approach is applied to simulate unsteady groundwater flow in a large, complex, and strongly heterogeneous glacial aquifer system in Michigan across multiple spatial and temporal scales. The resulting model is calibrated to observed static water level data over a time span of 50 years. The results show that the TP-based conceptualization enables much more accurate and robust calibration/simulation than that based on conventional deterministic layer/zone based conceptual representations.

  9. Parameter Estimation with Small Sample Size: A Higher-Order IRT Model Approach

    ERIC Educational Resources Information Center

    de la Torre, Jimmy; Hong, Yuan

    2010-01-01

    Sample size ranks as one of the most important factors that affect the item calibration task. However, due to practical concerns (e.g., item exposure) items are typically calibrated with much smaller samples than what is desired. To address the need for a more flexible framework that can be used in small sample item calibration, this article…

  10. Calibration of an Item Bank for the Assessment of Basque Language Knowledge

    ERIC Educational Resources Information Center

    Lopez-Cuadrado, Javier; Perez, Tomas A.; Vadillo, Jose A.; Gutierrez, Julian

    2010-01-01

    The main requisite for a functional computerized adaptive testing system is the need of a calibrated item bank. This text presents the tasks carried out during the calibration of an item bank for assessing knowledge of Basque language. It has been done in terms of the 3-parameter logistic model provided by the item response theory. Besides, this…

  11. Stability analysis for a multi-camera photogrammetric system.

    PubMed

    Habib, Ayman; Detchev, Ivan; Kwak, Eunju

    2014-08-18

    Consumer-grade digital cameras suffer from geometrical instability that may cause problems when used in photogrammetric applications. This paper provides a comprehensive review of this issue of interior orientation parameter variation over time, it explains the common ways used for coping with the issue, and describes the existing methods for performing stability analysis for a single camera. The paper then points out the lack of coverage of stability analysis for multi-camera systems, suggests a modification of the collinearity model to be used for the calibration of an entire photogrammetric system, and proposes three methods for system stability analysis. The proposed methods explore the impact of the changes in interior orientation and relative orientation/mounting parameters on the reconstruction process. Rather than relying on ground truth in real datasets to check the system calibration stability, the proposed methods are simulation-based. Experiment results are shown, where a multi-camera photogrammetric system was calibrated three times, and stability analysis was performed on the system calibration parameters from the three sessions. The proposed simulation-based methods provided results that were compatible with a real-data based approach for evaluating the impact of changes in the system calibration parameters on the three-dimensional reconstruction.

  12. Stability Analysis for a Multi-Camera Photogrammetric System

    PubMed Central

    Habib, Ayman; Detchev, Ivan; Kwak, Eunju

    2014-01-01

    Consumer-grade digital cameras suffer from geometrical instability that may cause problems when used in photogrammetric applications. This paper provides a comprehensive review of this issue of interior orientation parameter variation over time, it explains the common ways used for coping with the issue, and describes the existing methods for performing stability analysis for a single camera. The paper then points out the lack of coverage of stability analysis for multi-camera systems, suggests a modification of the collinearity model to be used for the calibration of an entire photogrammetric system, and proposes three methods for system stability analysis. The proposed methods explore the impact of the changes in interior orientation and relative orientation/mounting parameters on the reconstruction process. Rather than relying on ground truth in real datasets to check the system calibration stability, the proposed methods are simulation-based. Experiment results are shown, where a multi-camera photogrammetric system was calibrated three times, and stability analysis was performed on the system calibration parameters from the three sessions. The proposed simulation-based methods provided results that were compatible with a real-data based approach for evaluating the impact of changes in the system calibration parameters on the three-dimensional reconstruction. PMID:25196012

  13. Optimal test selection for prediction uncertainty reduction

    DOE PAGES

    Mullins, Joshua; Mahadevan, Sankaran; Urbina, Angel

    2016-12-02

    Economic factors and experimental limitations often lead to sparse and/or imprecise data used for the calibration and validation of computational models. This paper addresses resource allocation for calibration and validation experiments, in order to maximize their effectiveness within given resource constraints. When observation data are used for model calibration, the quality of the inferred parameter descriptions is directly affected by the quality and quantity of the data. This paper characterizes parameter uncertainty within a probabilistic framework, which enables the uncertainty to be systematically reduced with additional data. The validation assessment is also uncertain in the presence of sparse and imprecisemore » data; therefore, this paper proposes an approach for quantifying the resulting validation uncertainty. Since calibration and validation uncertainty affect the prediction of interest, the proposed framework explores the decision of cost versus importance of data in terms of the impact on the prediction uncertainty. Often, calibration and validation tests may be performed for different input scenarios, and this paper shows how the calibration and validation results from different conditions may be integrated into the prediction. Then, a constrained discrete optimization formulation that selects the number of tests of each type (calibration or validation at given input conditions) is proposed. Furthermore, the proposed test selection methodology is demonstrated on a microelectromechanical system (MEMS) example.« less

  14. Recommended direct simulation Monte Carlo collision model parameters for modeling ionized air transport processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swaminathan-Gopalan, Krishnan; Stephani, Kelly A., E-mail: ksteph@illinois.edu

    2016-02-15

    A systematic approach for calibrating the direct simulation Monte Carlo (DSMC) collision model parameters to achieve consistency in the transport processes is presented. The DSMC collision cross section model parameters are calibrated for high temperature atmospheric conditions by matching the collision integrals from DSMC against ab initio based collision integrals that are currently employed in the Langley Aerothermodynamic Upwind Relaxation Algorithm (LAURA) and Data Parallel Line Relaxation (DPLR) high temperature computational fluid dynamics solvers. The DSMC parameter values are computed for the widely used Variable Hard Sphere (VHS) and the Variable Soft Sphere (VSS) models using the collision-specific pairing approach.more » The recommended best-fit VHS/VSS parameter values are provided over a temperature range of 1000-20 000 K for a thirteen-species ionized air mixture. Use of the VSS model is necessary to achieve consistency in transport processes of ionized gases. The agreement of the VSS model transport properties with the transport properties as determined by the ab initio collision integral fits was found to be within 6% in the entire temperature range, regardless of the composition of the mixture. The recommended model parameter values can be readily applied to any gas mixture involving binary collisional interactions between the chemical species presented for the specified temperature range.« less

  15. Use of Cloud Computing to Calibrate a Highly Parameterized Model

    NASA Astrophysics Data System (ADS)

    Hayley, K. H.; Schumacher, J.; MacMillan, G.; Boutin, L.

    2012-12-01

    We present a case study using cloud computing to facilitate the calibration of a complex and highly parameterized model of regional groundwater flow. The calibration dataset consisted of many (~1500) measurements or estimates of static hydraulic head, a high resolution time series of groundwater extraction and disposal rates at 42 locations and pressure monitoring at 147 locations with a total of more than one million raw measurements collected over a ten year pumping history, and base flow estimates at 5 surface water monitoring locations. This modeling project was undertaken to assess the sustainability of groundwater withdrawal and disposal plans for insitu heavy oil extraction in Northeast Alberta, Canada. The geological interpretations used for model construction were based on more than 5,000 wireline logs collected throughout the 30,865 km2 regional study area (RSA), and resulted in a model with 28 slices, and 28 hydro stratigraphic units (average model thickness of 700 m, with aquifers ranging from a depth of 50 to 500 m below ground surface). The finite element FEFLOW model constructed on this geological interpretation had 331,408 nodes and required 265 time steps to simulate the ten year transient calibration period. This numerical model of groundwater flow required 3 hours to run on a on a server with two, 2.8 GHz processers and 16 Gb. RAM. Calibration was completed using PEST. Horizontal and vertical hydraulic conductivity as well as specific storage for each unit were independent parameters. For the recharge and the horizontal hydraulic conductivity in the three aquifers with the most transient groundwater use, a pilot point parameterization was adopted. A 7*7 grid of pilot points was defined over the RSA that defined a spatially variable horizontal hydraulic conductivity or recharge field. A 7*7 grid of multiplier pilot points that perturbed the more regional field was then superimposed over the 3,600 km2 local study area (LSA). The pilot point multipliers were implemented so a higher resolution of spatial variability could be obtained where there was a higher density of observation data. Five geologic boundaries were modeled with a specified flux boundary condition and the transfer rate was used as an adjustable parameter for each of these boundaries. This parameterization resulted in 448 parameters for calibration. In the project planning stage it was estimated that the calibration might require as much 15,000 hours (1.7 years) of computing. In an effort to complete the calibration in a timely manner, the inversion was parallelized and implemented on as many as 250 computing nodes located on Amazon's EC2 servers. The results of the calibration provided a better fit to the data than previous efforts with homogenous parameters, and the highly parameterized approach facilitated subspace Monte Carlo analysis for predictive uncertainty. This scale of cloud computing is relatively new for the hydrogeology community and at the time of implementation it was believed to be the first implementation of FEFLOW model at this scale. While the experience provided several challenges, the implementation was successful and provides some valuable learning for future efforts.

  16. Establishment and correction of an Echelle cross-prism spectrogram reduction model

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Bayanheshig; Li, Xiaotian; Cui, Jicheng

    2017-11-01

    The accuracy of an echelle cross-prism spectrometer depends on the matching degree between the spectrum reduction model and the actual state of the spectrometer. However, the error of adjustment can change the actual state of the spectrometer and result in a reduction model that does not match. This produces an inaccurate wavelength calibration. Therefore, the calibration of a spectrogram reduction model is important for the analysis of any echelle cross-prism spectrometer. In this study, the spectrogram reduction model of an echelle cross-prism spectrometer was established. The image position laws of a spectrometer that varies with the system parameters were simulated to the influence of the changes in prism refractive index, focal length and so on, on the calculation results. The model was divided into different wavebands. The iterative method, least squares principle and element lamps with known characteristic wavelength were used to calibrate the spectral model in different wavebands to obtain the actual values of the system parameters. After correction, the deviation of actual x- and y-coordinates and the coordinates calculated by the model are less than one pixel. The model corrected by this method thus reflects the system parameters in the current spectrometer state and can assist in accurate wavelength extraction. The instrument installation and adjustment would be guided in model-repeated correction, reducing difficulty of equipment, respectively.

  17. How to obtain accurate resist simulations in very low-k1 era?

    NASA Astrophysics Data System (ADS)

    Chiou, Tsann-Bim; Park, Chan-Ha; Choi, Jae-Seung; Min, Young-Hong; Hansen, Steve; Tseng, Shih-En; Chen, Alek C.; Yim, Donggyu

    2006-03-01

    A procedure for calibrating a resist model iteratively adjusts appropriate parameters until the simulations of the model match the experimental data. The tunable parameters may include the shape of the illuminator, the geometry and transmittance/phase of the mask, light source and scanner-related parameters that affect imaging quality, resist process control and most importantly the physical/chemical factors in the resist model. The resist model can be accurately calibrated by measuring critical dimensions (CD) of a focus-exposure matrix (FEM) and the technique has been demonstrated to be very successful in predicting lithographic performance. However, resist model calibration is more challenging in the low k1 (<0.3) regime because numerous uncertainties, such as mask and resist CD metrology errors, are becoming too large to be ignored. This study demonstrates a resist model calibration procedure for a 0.29 k1 process using a 6% halftone mask containing 2D brickwall patterns. The influence of different scanning electron microscopes (SEM) and their wafer metrology signal analysis algorithms on the accuracy of the resist model is evaluated. As an example of the metrology issue of the resist pattern, the treatment of a sidewall angle is demonstrated for the resist line ends where the contrast is relatively low. Additionally, the mask optical proximity correction (OPC) and corner rounding are considered in the calibration procedure that is based on captured SEM images. Accordingly, the average root-mean-square (RMS) error, which is the difference between simulated and experimental CDs, can be improved by considering the metrological issues. Moreover, a weighting method and a measured CD tolerance are proposed to handle the different CD variations of the various edge points of the wafer resist pattern. After the weighting method is implemented and the CD selection criteria applied, the RMS error can be further suppressed. Therefore, the resist CD and process window can be confidently evaluated using the accurately calibrated resist model. One of the examples simulates the sensitivity of the mask pattern error, which is helpful to specify the mask CD control.

  18. Comment on ;Evaluation of a physically based quasi-linear and a conceptually based nonlinear Muskingum methods; [J. Hydrol., 546, 437-449, 10.1016/j.jhydrol.2017.01.025

    NASA Astrophysics Data System (ADS)

    Barati, Reza

    2017-07-01

    Perumal et al. (2017) compared the performances of the variable parameter McCarthy-Muskingum (VPMM) model of Perumal and Price (2013) and the nonlinear Muskingum (NLM) model of Gill (1978) using hypothetical inflow hydrographs in an artificial channel. As input parameters, first model needs the initial condition, upstream boundary condition, Manning's roughness coefficient, length of the routing reach, cross-sections of the river reach and the bed slope, while the latter one requires the initial condition, upstream boundary condition and the hydrologic parameters (three parameters which can be calibrated using flood hydrographs of the upstream and downstream sections). The VPMM model was examined by available Manning's roughness values, whereas the NLM model was tested in both calibration and validation steps. As final conclusion, Perumal et al. (2017) claimed that the NLM model should be retired from the literature of the Muskingum model. While the author's intention is laudable, this comment examines some important issues in the subject matter of the original study.

  19. Regionalization of response routine parameters

    NASA Astrophysics Data System (ADS)

    Tøfte, Lena S.; Sultan, Yisak A.

    2013-04-01

    When area distributed hydrological models are to be calibrated or updated, fewer calibration parameters is of a considerable advantage. Based on, among others, Kirchner, we have developed a simple non-threshold response model for drainage in natural catchments, to be used in the gridded hydrological model ENKI. The new response model takes only the hydrogram into account, it has one state and two parameters, and is adapted to catchments that are dominated by terrain drainage. The method is based on the assumption that in catchments where precipitation, evaporation and snowmelt is neglect able, the discharge is entirely determined by the amount of stored water. It can then be characterized as a simple first-order nonlinear dynamical system, where the governing equations can be found directly from measured stream flow fluctuations. This means that the response in the catchment can be modelled by using hydrogram data where all data from periods with rain, snowmelt or evaporation is left out, and adjust these series to a two or three parameter equation. A large number of discharge series from catchments in different regions in Norway are analyzed, and parameters found for all the series. By combining the computed parameters and known catchments characteristics, we try to regionalize the parameters. Then the parameters in the response routine can easily be found also for ungauged catchments, from maps or data bases.

  20. Identification of drought in Dhalai river watershed using MCDM and ANN models

    NASA Astrophysics Data System (ADS)

    Aher, Sainath; Shinde, Sambhaji; Guha, Shantamoy; Majumder, Mrinmoy

    2017-03-01

    An innovative approach for drought identification is developed using Multi-Criteria Decision Making (MCDM) and Artificial Neural Network (ANN) models from surveyed drought parameter data around the Dhalai river watershed in Tripura hinterlands, India. Total eight drought parameters, i.e., precipitation, soil moisture, evapotranspiration, vegetation canopy, cropping pattern, temperature, cultivated land, and groundwater level were obtained from expert, literature and cultivator survey. Then, the Analytic Hierarchy Process (AHP) and Analytic Network Process (ANP) were used for weighting of parameters and Drought Index Identification (DII). Field data of weighted parameters in the meso scale Dhalai River watershed were collected and used to train the ANN model. The developed ANN model was used in the same watershed for identification of drought. Results indicate that the Limited-Memory Quasi-Newton algorithm was better than the commonly used training method. Results obtained from the ANN model shows the drought index developed from the study area ranges from 0.32 to 0.72. Overall analysis revealed that, with appropriate training, the ANN model can be used in the areas where the model is calibrated, or other areas where the range of input parameters is similar to the calibrated region for drought identification.

  1. Prediction models for clustered data: comparison of a random intercept and standard regression model

    PubMed Central

    2013-01-01

    Background When study data are clustered, standard regression analysis is considered inappropriate and analytical techniques for clustered data need to be used. For prediction research in which the interest of predictor effects is on the patient level, random effect regression models are probably preferred over standard regression analysis. It is well known that the random effect parameter estimates and the standard logistic regression parameter estimates are different. Here, we compared random effect and standard logistic regression models for their ability to provide accurate predictions. Methods Using an empirical study on 1642 surgical patients at risk of postoperative nausea and vomiting, who were treated by one of 19 anesthesiologists (clusters), we developed prognostic models either with standard or random intercept logistic regression. External validity of these models was assessed in new patients from other anesthesiologists. We supported our results with simulation studies using intra-class correlation coefficients (ICC) of 5%, 15%, or 30%. Standard performance measures and measures adapted for the clustered data structure were estimated. Results The model developed with random effect analysis showed better discrimination than the standard approach, if the cluster effects were used for risk prediction (standard c-index of 0.69 versus 0.66). In the external validation set, both models showed similar discrimination (standard c-index 0.68 versus 0.67). The simulation study confirmed these results. For datasets with a high ICC (≥15%), model calibration was only adequate in external subjects, if the used performance measure assumed the same data structure as the model development method: standard calibration measures showed good calibration for the standard developed model, calibration measures adapting the clustered data structure showed good calibration for the prediction model with random intercept. Conclusion The models with random intercept discriminate better than the standard model only if the cluster effect is used for predictions. The prediction model with random intercept had good calibration within clusters. PMID:23414436

  2. Prediction models for clustered data: comparison of a random intercept and standard regression model.

    PubMed

    Bouwmeester, Walter; Twisk, Jos W R; Kappen, Teus H; van Klei, Wilton A; Moons, Karel G M; Vergouwe, Yvonne

    2013-02-15

    When study data are clustered, standard regression analysis is considered inappropriate and analytical techniques for clustered data need to be used. For prediction research in which the interest of predictor effects is on the patient level, random effect regression models are probably preferred over standard regression analysis. It is well known that the random effect parameter estimates and the standard logistic regression parameter estimates are different. Here, we compared random effect and standard logistic regression models for their ability to provide accurate predictions. Using an empirical study on 1642 surgical patients at risk of postoperative nausea and vomiting, who were treated by one of 19 anesthesiologists (clusters), we developed prognostic models either with standard or random intercept logistic regression. External validity of these models was assessed in new patients from other anesthesiologists. We supported our results with simulation studies using intra-class correlation coefficients (ICC) of 5%, 15%, or 30%. Standard performance measures and measures adapted for the clustered data structure were estimated. The model developed with random effect analysis showed better discrimination than the standard approach, if the cluster effects were used for risk prediction (standard c-index of 0.69 versus 0.66). In the external validation set, both models showed similar discrimination (standard c-index 0.68 versus 0.67). The simulation study confirmed these results. For datasets with a high ICC (≥15%), model calibration was only adequate in external subjects, if the used performance measure assumed the same data structure as the model development method: standard calibration measures showed good calibration for the standard developed model, calibration measures adapting the clustered data structure showed good calibration for the prediction model with random intercept. The models with random intercept discriminate better than the standard model only if the cluster effect is used for predictions. The prediction model with random intercept had good calibration within clusters.

  3. Understanding controls of hydrologic processes across two headwater monolithological catchments using model-data synthesis

    NASA Astrophysics Data System (ADS)

    Xiao, D.; Shi, Y.; Hoagland, B.; Del Vecchio, J.; Russo, T. A.; DiBiase, R. A.; Li, L.

    2017-12-01

    How do watershed hydrologic processes differ in catchments derived from different lithology? This study compares two first order, deciduous forest watersheds in Pennsylvania, a sandstone watershed, Garner Run (GR, 1.34 km2), and a shale-derived watershed, Shale Hills (SH, 0.08 km2). Both watersheds are simulated using a combination of national datasets and field measurements, and a physics-based land surface hydrologic model, Flux-PIHM. We aim to evaluate the effects of lithology on watershed hydrology and assess if we can simulate a new watershed without intensive measurements, i.e., directly use calibration information from one watershed (SH) to reproduce hydrologic dynamics of another watershed (GR). Without any calibration, the model at GR based on national datasets and calibration inforamtion from SH cannot capture some discharge peaks or the baseflow during dry periods. The model prediction agrees well with the GR field discharge and soil moisture after calibrating the soil hydraulic parameters using the uncertainty based Hornberger-Spear-Young algorithm and the Latin Hypercube Sampling method. Agreeing with the field observation and national datasets, the difference in parameter values shows that the sandstone watershed has a larger averaged soil pore diameter, greater water storage created by porosity, lower water retention ability, and greater preferential flow. The water budget calculation shows that the riparian zone and the colluvial valley serves as buffer zones that stores water at GR. Using the same procedure, we compared Flux-PIHM simulations with and without a field measured surface boulder map at GR. When the boulder map is used, the prediction of areal averaged soil moisture is improved, without performing extra calibration. When calibrated separately, the cases with or without boulder map yield different calibration values, but their hydrologic predictions are similar, showing equifinality. The calibrated soil hydraulic parameter values in the with boulder map case is more physically plausible than the without boulder map case. We switched the topography and soil properties between GR and SH, and results indicate that the hydrologic processes are more sensitive to changes in domain topography than to changes in the soil properties.

  4. Sensitivity analysis of a multilayer, finite-difference model of the Southeastern Coastal Plain regional aquifer system; Mississippi, Alabama, Georgia, and South Carolina

    USGS Publications Warehouse

    Pernik, Meribeth

    1987-01-01

    The sensitivity of a multilayer finite-difference regional flow model was tested by changing the calibrated values for five parameters in the steady-state model and one in the transient-state model. The parameters that changed under the steady-state condition were those that had been routinely adjusted during the calibration process as part of the effort to match pre-development potentiometric surfaces, and elements of the water budget. The tested steady-state parameters include: recharge, riverbed conductance, transmissivity, confining unit leakance, and boundary location. In the transient-state model, the storage coefficient was adjusted. The sensitivity of the model to changes in the calibrated values of these parameters was evaluated with respect to the simulated response of net base flow to the rivers, and the mean value of the absolute head residual. To provide a standard measurement of sensitivity from one parameter to another, the standard deviation of the absolute head residual was calculated. The steady-state model was shown to be most sensitive to changes in rates of recharge. When the recharge rate was held constant, the model was more sensitive to variations in transmissivity. Near the rivers, the riverbed conductance becomes the dominant parameter in controlling the heads. Changes in confining unit leakance had little effect on simulated base flow, but greatly affected head residuals. The model was relatively insensitive to changes in the location of no-flow boundaries and to moderate changes in the altitude of constant head boundaries. The storage coefficient was adjusted under transient conditions to illustrate the model 's sensitivity to changes in storativity. The model is less sensitive to an increase in storage coefficient than it is to a decrease in storage coefficient. As the storage coefficient decreased, the aquifer drawdown increases, the base flow decreased. The opposite response occurred when the storage coefficient was increased. (Author 's abstract)

  5. Constraining Distributed Catchment Models by Incorporating Perceptual Understanding of Spatial Hydrologic Behaviour

    NASA Astrophysics Data System (ADS)

    Hutton, Christopher; Wagener, Thorsten; Freer, Jim; Han, Dawei

    2016-04-01

    Distributed models offer the potential to resolve catchment systems in more detail, and therefore simulate the hydrological impacts of spatial changes in catchment forcing (e.g. landscape change). Such models tend to contain a large number of poorly defined and spatially varying model parameters which are therefore computationally expensive to calibrate. Insufficient data can result in model parameter and structural equifinality, particularly when calibration is reliant on catchment outlet discharge behaviour alone. Evaluating spatial patterns of internal hydrological behaviour has the potential to reveal simulations that, whilst consistent with measured outlet discharge, are qualitatively dissimilar to our perceptual understanding of how the system should behave. We argue that such understanding, which may be derived from stakeholder knowledge across different catchments for certain process dynamics, is a valuable source of information to help reject non-behavioural models, and therefore identify feasible model structures and parameters. The challenge, however, is to convert different sources of often qualitative and/or semi-qualitative information into robust quantitative constraints of model states and fluxes, and combine these sources of information together to reject models within an efficient calibration framework. Here we present the development of a framework to incorporate different sources of data to efficiently calibrate distributed catchment models. For each source of information, an interval or inequality is used to define the behaviour of the catchment system. These intervals are then combined to produce a hyper-volume in state space, which is used to identify behavioural models. We apply the methodology to calibrate the Penn State Integrated Hydrological Model (PIHM) at the Wye catchment, Plynlimon, UK. Outlet discharge behaviour is successfully simulated when perceptual understanding of relative groundwater levels between lowland peat, upland peat and valley slopes within the catchment are used to identify behavioural models. The process of converting qualitative information into quantitative constraints forces us to evaluate the assumptions behind our perceptual understanding in order to derive robust constraints, and therefore fairly reject models and avoid type II errors. Likewise, consideration needs to be given to the commensurability problem when mapping perceptual understanding to constrain model states.

  6. Calibration of 3D ALE finite element model from experiments on friction stir welding of lap joints

    NASA Astrophysics Data System (ADS)

    Fourment, Lionel; Gastebois, Sabrina; Dubourg, Laurent

    2016-10-01

    In order to support the design of such a complex process like Friction Stir Welding (FSW) for the aeronautic industry, numerical simulation software requires (1) developing an efficient and accurate Finite Element (F.E.) formulation that allows predicting welding defects, (2) properly modeling the thermo-mechanical complexity of the FSW process and (3) calibrating the F.E. model from accurate measurements from FSW experiments. This work uses a parallel ALE formulation developed in the Forge® F.E. code to model the different possible defects (flashes and worm holes), while pin and shoulder threads are modeled by a new friction law at the tool / material interface. FSW experiments require using a complex tool with scroll on shoulder, which is instrumented for providing sensitive thermal data close to the joint. Calibration of unknown material thermal coefficients, constitutive equations parameters and friction model from measured forces, torques and temperatures is carried out using two F.E. models, Eulerian and ALE, to reach a satisfactory agreement assessed by the proper sensitivity of the simulation to process parameters.

  7. Model calibration criteria for estimating ecological flow characteristics

    USGS Publications Warehouse

    Vis, Marc; Knight, Rodney; Poole, Sandra; Wolfe, William J.; Seibert, Jan; Breuer, Lutz; Kraft, Philipp

    2016-01-01

    Quantification of streamflow characteristics in ungauged catchments remains a challenge. Hydrological modeling is often used to derive flow time series and to calculate streamflow characteristics for subsequent applications that may differ from those envisioned by the modelers. While the estimation of model parameters for ungauged catchments is a challenging research task in itself, it is important to evaluate whether simulated time series preserve critical aspects of the streamflow hydrograph. To address this question, seven calibration objective functions were evaluated for their ability to preserve ecologically relevant streamflow characteristics of the average annual hydrograph using a runoff model, HBV-light, at 27 catchments in the southeastern United States. Calibration trials were repeated 100 times to reduce parameter uncertainty effects on the results, and 12 ecological flow characteristics were computed for comparison. Our results showed that the most suitable calibration strategy varied according to streamflow characteristic. Combined objective functions generally gave the best results, though a clear underprediction bias was observed. The occurrence of low prediction errors for certain combinations of objective function and flow characteristic suggests that (1) incorporating multiple ecological flow characteristics into a single objective function would increase model accuracy, potentially benefitting decision-making processes; and (2) there may be a need to have different objective functions available to address specific applications of the predicted time series.

  8. A comparison of scope for growth (SFG) and dynamic energy budget (DEB) models applied to the blue mussel ( Mytilus edulis)

    NASA Astrophysics Data System (ADS)

    Filgueira, Ramón; Rosland, Rune; Grant, Jon

    2011-11-01

    Growth of Mytilus edulis was simulated using individual based models following both Scope For Growth (SFG) and Dynamic Energy Budget (DEB) approaches. These models were parameterized using independent studies and calibrated for each dataset by adjusting the half-saturation coefficient of the food ingestion function term, XK, a common parameter in both approaches related to feeding behavior. Auto-calibration was carried out using an optimization tool, which provides an objective way of tuning the model. Both approaches yielded similar performance, suggesting that although the basis for constructing the models is different, both can successfully reproduce M. edulis growth. The good performance of both models in different environments achieved by adjusting a single parameter, XK, highlights the potential of these models for (1) producing prospective analysis of mussel growth and (2) investigating mussel feeding response in different ecosystems. Finally, we emphasize that the convergence of two different modeling approaches via calibration of XK, indicates the importance of the feeding behavior and local trophic conditions for bivalve growth performance. Consequently, further investigations should be conducted to explore the relationship of XK to environmental variables and/or to the sophistication of the functional response to food availability with the final objective of creating a general model that can be applied to different ecosystems without the need for calibration.

  9. The Rangeland Hydrology and Erosion Model: A Dynamic Approach for Predicting Soil Loss on Rangelands

    NASA Astrophysics Data System (ADS)

    Hernandez, Mariano; Nearing, Mark A.; Al-Hamdan, Osama Z.; Pierson, Frederick B.; Armendariz, Gerardo; Weltz, Mark A.; Spaeth, Kenneth E.; Williams, C. Jason; Nouwakpo, Sayjro K.; Goodrich, David C.; Unkrich, Carl L.; Nichols, Mary H.; Holifield Collins, Chandra D.

    2017-11-01

    In this study, we present the improved Rangeland Hydrology and Erosion Model (RHEM V2.3), a process-based erosion prediction tool specific for rangeland application. The article provides the mathematical formulation of the model and parameter estimation equations. Model performance is assessed against data collected from 23 runoff and sediment events in a shrub-dominated semiarid watershed in Arizona, USA. To evaluate the model, two sets of primary model parameters were determined using the RHEM V2.3 and RHEM V1.0 parameter estimation equations. Testing of the parameters indicated that RHEM V2.3 parameter estimation equations provided a 76% improvement over RHEM V1.0 parameter estimation equations. Second, the RHEM V2.3 model was calibrated to measurements from the watershed. The parameters estimated by the new equations were within the lowest and highest values of the calibrated parameter set. These results suggest that the new parameter estimation equations can be applied for this environment to predict sediment yield at the hillslope scale. Furthermore, we also applied the RHEM V2.3 to demonstrate the response of the model as a function of foliar cover and ground cover for 124 data points across Arizona and New Mexico. The dependence of average sediment yield on surface ground cover was moderately stronger than that on foliar cover. These results demonstrate that RHEM V2.3 predicts runoff volume, peak runoff, and sediment yield with sufficient accuracy for broad application to assess and manage rangeland systems.

  10. A Vision-Based Self-Calibration Method for Robotic Visual Inspection Systems

    PubMed Central

    Yin, Shibin; Ren, Yongjie; Zhu, Jigui; Yang, Shourui; Ye, Shenghua

    2013-01-01

    A vision-based robot self-calibration method is proposed in this paper to evaluate the kinematic parameter errors of a robot using a visual sensor mounted on its end-effector. This approach could be performed in the industrial field without external, expensive apparatus or an elaborate setup. A robot Tool Center Point (TCP) is defined in the structural model of a line-structured laser sensor, and aligned to a reference point fixed in the robot workspace. A mathematical model is established to formulate the misalignment errors with kinematic parameter errors and TCP position errors. Based on the fixed point constraints, the kinematic parameter errors and TCP position errors are identified with an iterative algorithm. Compared to the conventional methods, this proposed method eliminates the need for a robot-based-frame and hand-to-eye calibrations, shortens the error propagation chain, and makes the calibration process more accurate and convenient. A validation experiment is performed on an ABB IRB2400 robot. An optimal configuration on the number and distribution of fixed points in the robot workspace is obtained based on the experimental results. Comparative experiments reveal that there is a significant improvement of the measuring accuracy of the robotic visual inspection system. PMID:24300597

  11. Calibration of the Nikon 200 for Close Range Photogrammetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheriff, Lassana; /City Coll., N.Y. /SLAC

    2010-08-25

    The overall objective of this project is to study the stability and reproducibility of the calibration parameters of the Nikon D200 camera with a Nikkor 20 mm lens for close-range photogrammetric surveys. The well known 'central perspective projection' model is used to determine the camera parameters for interior orientation. The Brown model extends it with the introduction of radial distortion and other less critical variables. The calibration process requires a dense network of targets to be photographed at different angles. For faster processing, reflective coded targets are chosen. Two scenarios have been used to check the reproducibility of the parameters.more » The first one is using a flat 2D wall with 141 coded targets and 12 custom targets that were previously measured with a laser tracker. The second one is a 3D Unistrut structure with a combination of coded targets and 3D reflective spheres. The study has shown that this setup is only stable during a short period of time. In conclusion, this camera is acceptable when calibrated before each use. Future work should include actual field tests and possible mechanical improvements, such as securing the lens to the camera body.« less

  12. Transferability of species distribution models for the detection of an invasive alien bryophyte using imaging spectroscopy data

    NASA Astrophysics Data System (ADS)

    Skowronek, Sandra; Van De Kerchove, Ruben; Rombouts, Bjorn; Aerts, Raf; Ewald, Michael; Warrie, Jens; Schiefer, Felix; Garzon-Lopez, Carol; Hattab, Tarek; Honnay, Olivier; Lenoir, Jonathan; Rocchini, Duccio; Schmidtlein, Sebastian; Somers, Ben; Feilhauer, Hannes

    2018-06-01

    Remote sensing is a promising tool for detecting invasive alien plant species. Mapping and monitoring those species requires accurate detection. So far, most studies relied on models that are locally calibrated and validated against available field data. Consequently, detecting invasive alien species at new study areas requires the acquisition of additional field data which can be expensive and time-consuming. Model transfer might thus provide a viable alternative. Here, we mapped the distribution of the invasive alien bryophyte Campylopus introflexus to i) assess the feasibility of spatially transferring locally calibrated models for species detection between four different heathland areas in Germany and Belgium and ii) test the potential of combining calibration data from different sites in one species distribution model (SDM). In a first step, four different SDMs were locally calibrated and validated by combining field data and airborne imaging spectroscopy data with a spatial resolution ranging from 1.8 m to 4 m and a spectral resolution of about 10 nm (244 bands). A one-class classifier, Maxent, which is based on the comparison of probability densities, was used to generate all SDMs. In a second step, each model was transferred to the three other study areas and the performance of the models for predicting C. introflexus occurrences was assessed. Finally, models combining calibration data from three study areas were built and tested on the remaining fourth site. In this step, different combinations of Maxent modelling parameters were tested. For the local models, the area under the curve for a test dataset (test AUC) was between 0.57-0.78, while the test AUC for the single transfer models ranged between 0.45-0.89. For the combined models the test AUC was between 0.54-0.9. The success of transferring models calibrated in one site to another site highly depended on the respective study site; the combined models provided higher test AUC values than the locally calibrated models for three out of four study sites. Furthermore, we also demonstrated the importance of optimizing the Maxent modelling parameters. Overall, our results indicate the potential of a combined model to map C. introflexus without the need for new calibration data.

  13. Quantitative Rheological Model Selection

    NASA Astrophysics Data System (ADS)

    Freund, Jonathan; Ewoldt, Randy

    2014-11-01

    The more parameters in a rheological the better it will reproduce available data, though this does not mean that it is necessarily a better justified model. Good fits are only part of model selection. We employ a Bayesian inference approach that quantifies model suitability by balancing closeness to data against both the number of model parameters and their a priori uncertainty. The penalty depends upon prior-to-calibration expectation of the viable range of values that model parameters might take, which we discuss as an essential aspect of the selection criterion. Models that are physically grounded are usually accompanied by tighter physical constraints on their respective parameters. The analysis reflects a basic principle: models grounded in physics can be expected to enjoy greater generality and perform better away from where they are calibrated. In contrast, purely empirical models can provide comparable fits, but the model selection framework penalizes their a priori uncertainty. We demonstrate the approach by selecting the best-justified number of modes in a Multi-mode Maxwell description of PVA-Borax. We also quantify relative merits of the Maxwell model relative to powerlaw fits and purely empirical fits for PVA-Borax, a viscoelastic liquid, and gluten.

  14. Reactive Burn Model Calibration for PETN Using Ultra-High-Speed Phase Contrast Imaging

    NASA Astrophysics Data System (ADS)

    Johnson, Carl; Ramos, Kyle; Bolme, Cindy; Sanchez, Nathaniel; Barber, John; Montgomery, David

    2017-06-01

    A 1D reactive burn model (RBM) calibration for a plastic bonded high explosive (HE) requires run-to-detonation data. In PETN (pentaerythritol tetranitrate, 1.65 g/cc) the shock to detonation transition (SDT) is on the order of a few millimeters. This rapid SDT imposes experimental length scales that preclude application of traditional calibration methods such as embedded electromagnetic gauge methods (EEGM) which are very effective when used to study 10 - 20 mm thick HE specimens. In recent work at Argonne National Laboratory's Advanced Photon Source we have obtained run-to-detonation data in PETN using ultra-high-speed dynamic phase contrast imaging (PCI). A reactive burn model calibration valid for 1D shock waves is obtained using density profiles spanning the transition to detonation as opposed to particle velocity profiles from EEGM. Particle swarm optimization (PSO) methods were used to operate the LANL hydrocode FLAG iteratively to refine SURF RBM parameters until a suitable parameter set attained. These methods will be presented along with model validation simulations. The novel method described is generally applicable to `sensitive' energetic materials particularly those with areal densities amenable to radiography.

  15. Fragmentation modeling of a resin bonded sand

    NASA Astrophysics Data System (ADS)

    Hilth, William; Ryckelynck, David

    2017-06-01

    Cemented sands exhibit a complex mechanical behavior that can lead to sophisticated models, with numerous parameters without real physical meaning. However, using a rather simple generalized critical state bonded soil model has proven to be a relevant compromise between an easy calibration and good results. The constitutive model formulation considers a non-associated elasto-plastic formulation within the critical state framework. The calibration procedure, using standard laboratory tests, is complemented by the study of an uniaxial compression test observed by tomography. Using finite elements simulations, this test is simulated considering a non-homogeneous 3D media. The tomography of compression sample gives access to 3D displacement fields by using image correlation techniques. Unfortunately these fields have missing experimental data because of the low resolution of correlations for low displacement magnitudes. We propose a recovery method that reconstructs 3D full displacement fields and 2D boundary displacement fields. These fields are mandatory for the calibration of the constitutive parameters by using 3D finite element simulations. The proposed recovery technique is based on a singular value decomposition of available experimental data. This calibration protocol enables an accurate prediction of the fragmentation of the specimen.

  16. Prediction of La0.6Sr0.4Co0.2Fe0.8O3 cathode microstructures during sintering: Kinetic Monte Carlo (KMC) simulations calibrated by artificial neural networks

    NASA Astrophysics Data System (ADS)

    Yan, Zilin; Kim, Yongtae; Hara, Shotaro; Shikazono, Naoki

    2017-04-01

    The Potts Kinetic Monte Carlo (KMC) model, proven to be a robust tool to study all stages of sintering process, is an ideal tool to analyze the microstructure evolution of electrodes in solid oxide fuel cells (SOFCs). Due to the nature of this model, the input parameters of KMC simulations such as simulation temperatures and attempt frequencies are difficult to identify. We propose a rigorous and efficient approach to facilitate the input parameter calibration process using artificial neural networks (ANNs). The trained ANN reduces drastically the number of trial-and-error of KMC simulations. The KMC simulation using the calibrated input parameters predicts the microstructures of a La0.6Sr0.4Co0.2Fe0.8O3 cathode material during sintering, showing both qualitative and quantitative congruence with real 3D microstructures obtained by focused ion beam scanning electron microscopy (FIB-SEM) reconstruction.

  17. Calibration and simulation of two large wastewater treatment plants operated for nutrient removal.

    PubMed

    Ferrer, J; Morenilla, J J; Bouzas, A; García-Usach, F

    2004-01-01

    Control and optimisation of plant processes has become a priority for WWTP managers. The calibration and verification of a mathematical model provides an important tool for the investigation of advanced control strategies that may assist in the design or optimization of WWTPs. This paper describes the calibration of the ASM2d model for two full scale biological nitrogen and phosphorus removal plants in order to characterize the biological process and to upgrade the plants' performance. Results from simulation showed a good correspondence with experimental data demonstrating that the model and the calibrated parameters were able to predict the behaviour of both WWTPs. Once the calibration and simulation process was finished, a study for each WWTP was done with the aim of improving its performance. Modifications focused on reactor configuration and operation strategies were proposed.

  18. On how to avoid input and structural uncertainties corrupt the inference of hydrological parameters using a Bayesian framework

    NASA Astrophysics Data System (ADS)

    Hernández, Mario R.; Francés, Félix

    2015-04-01

    One phase of the hydrological models implementation process, significantly contributing to the hydrological predictions uncertainty, is the calibration phase in which values of the unknown model parameters are tuned by optimizing an objective function. An unsuitable error model (e.g. Standard Least Squares or SLS) introduces noise into the estimation of the parameters. The main sources of this noise are the input errors and the hydrological model structural deficiencies. Thus, the biased calibrated parameters cause the divergence model phenomenon, where the errors variance of the (spatially and temporally) forecasted flows far exceeds the errors variance in the fitting period, and provoke the loss of part or all of the physical meaning of the modeled processes. In other words, yielding a calibrated hydrological model which works well, but not for the right reasons. Besides, an unsuitable error model yields a non-reliable predictive uncertainty assessment. Hence, with the aim of prevent all these undesirable effects, this research focuses on the Bayesian joint inference (BJI) of both the hydrological and error model parameters, considering a general additive (GA) error model that allows for correlation, non-stationarity (in variance and bias) and non-normality of model residuals. As hydrological model, it has been used a conceptual distributed model called TETIS, with a particular split structure of the effective model parameters. Bayesian inference has been performed with the aid of a Markov Chain Monte Carlo (MCMC) algorithm called Dream-ZS. MCMC algorithm quantifies the uncertainty of the hydrological and error model parameters by getting the joint posterior probability distribution, conditioned on the observed flows. The BJI methodology is a very powerful and reliable tool, but it must be used correctly this is, if non-stationarity in errors variance and bias is modeled, the Total Laws must be taken into account. The results of this research show that the application of BJI with a GA error model outperforms the hydrological parameters robustness (diminishing the divergence model phenomenon) and improves the reliability of the streamflow predictive distribution, in respect of the results of a bad error model as SLS. Finally, the most likely prediction in a validation period, for both BJI+GA and SLS error models shows a similar performance.

  19. Low Frequency Error Analysis and Calibration for High-Resolution Optical Satellite's Uncontrolled Geometric Positioning

    NASA Astrophysics Data System (ADS)

    Wang, Mi; Fang, Chengcheng; Yang, Bo; Cheng, Yufeng

    2016-06-01

    The low frequency error is a key factor which has affected uncontrolled geometry processing accuracy of the high-resolution optical image. To guarantee the geometric quality of imagery, this paper presents an on-orbit calibration method for the low frequency error based on geometric calibration field. Firstly, we introduce the overall flow of low frequency error on-orbit analysis and calibration, which includes optical axis angle variation detection of star sensor, relative calibration among star sensors, multi-star sensor information fusion, low frequency error model construction and verification. Secondly, we use optical axis angle change detection method to analyze the law of low frequency error variation. Thirdly, we respectively use the method of relative calibration and information fusion among star sensors to realize the datum unity and high precision attitude output. Finally, we realize the low frequency error model construction and optimal estimation of model parameters based on DEM/DOM of geometric calibration field. To evaluate the performance of the proposed calibration method, a certain type satellite's real data is used. Test results demonstrate that the calibration model in this paper can well describe the law of the low frequency error variation. The uncontrolled geometric positioning accuracy of the high-resolution optical image in the WGS-84 Coordinate Systems is obviously improved after the step-wise calibration.

  20. A two-dimensional hydrodynamic model of the St. Clair-Detroit River waterway in the Great Lakes basin

    USGS Publications Warehouse

    Holtschlag, David J.; Koschik, John A.

    2002-01-01

    The St. Clair–Detroit River Waterway connects Lake Huron with Lake Erie in the Great Lakes basin to form part of the international boundary between the United States and Canada. A two-dimensional hydrodynamic model is developed to compute flow velocities and water levels as part of a source-water assessment of public water intakes. The model, which uses the generalized finite-element code RMA2, discretizes the waterway into a mesh formed by 13,783 quadratic elements defined by 42,936 nodes. Seven steadystate scenarios are used to calibrate the model by adjusting parameters associated with channel roughness in 25 material zones in sub-areas of the waterway. An inverse modeling code is used to systematically adjust model parameters and to determine their associated uncertainty by use of nonlinear regression. Calibration results show close agreement between simulated and expected flows in major channels and water levels at gaging stations. Sensitivity analyses describe the amount of information available to estimate individual model parameters, and quantify the utility of flow measurements at selected cross sections and water-level measurements at gaging stations. Further data collection, model calibration analysis, and grid refinements are planned to assess and enhance two-dimensional flow simulation capabilities describing the horizontal flow distributions in St. Clair and Detroit Rivers and circulation patterns in Lake St. Clair.

  1. A portable foot-parameter-extracting system

    NASA Astrophysics Data System (ADS)

    Zhang, MingKai; Liang, Jin; Li, Wenpan; Liu, Shifan

    2016-03-01

    In order to solve the problem of automatic foot measurement in garment customization, a new automatic footparameter- extracting system based on stereo vision, photogrammetry and heterodyne multiple frequency phase shift technology is proposed and implemented. The key technologies applied in the system are studied, including calibration of projector, alignment of point clouds, and foot measurement. Firstly, a new projector calibration algorithm based on plane model has been put forward to get the initial calibration parameters and a feature point detection scheme of calibration board image is developed. Then, an almost perfect match of two clouds is achieved by performing a first alignment using the Sampled Consensus - Initial Alignment algorithm (SAC-IA) and refining the alignment using the Iterative Closest Point algorithm (ICP). Finally, the approaches used for foot-parameterextracting and the system scheme are presented in detail. Experimental results show that the RMS error of the calibration result is 0.03 pixel and the foot parameter extracting experiment shows the feasibility of the extracting algorithm. Compared with the traditional measurement method, the system can be more portable, accurate and robust.

  2. A simple topography-driven, calibration-free runoff generation model

    NASA Astrophysics Data System (ADS)

    Gao, H.; Birkel, C.; Hrachowitz, M.; Tetzlaff, D.; Soulsby, C.; Savenije, H. H. G.

    2017-12-01

    Determining the amount of runoff generation from rainfall occupies a central place in rainfall-runoff modelling. Moreover, reading landscapes and developing calibration-free runoff generation models that adequately reflect land surface heterogeneities remains the focus of much hydrological research. In this study, we created a new method to estimate runoff generation - HAND-based Storage Capacity curve (HSC) which uses a topographic index (HAND, Height Above the Nearest Drainage) to identify hydrological similarity and partially the saturated areas of catchments. We then coupled the HSC model with the Mass Curve Technique (MCT) method to estimate root zone storage capacity (SuMax), and obtained the calibration-free runoff generation model HSC-MCT. Both the two models (HSC and HSC-MCT) allow us to estimate runoff generation and simultaneously visualize the spatial dynamic of saturated area. We tested the two models in the data-rich Bruntland Burn (BB) experimental catchment in Scotland with an unusual time series of the field-mapped saturation area extent. The models were subsequently tested in 323 MOPEX (Model Parameter Estimation Experiment) catchments in the United States. HBV and TOPMODEL were used as benchmarks. We found that the HSC performed better in reproducing the spatio-temporal pattern of the observed saturated areas in the BB catchment compared with TOPMODEL which is based on the topographic wetness index (TWI). The HSC also outperformed HBV and TOPMODEL in the MOPEX catchments for both calibration and validation. Despite having no calibrated parameters, the HSC-MCT model also performed comparably well with the calibrated HBV and TOPMODEL, highlighting the robustness of the HSC model to both describe the spatial distribution of the root zone storage capacity and the efficiency of the MCT method to estimate the SuMax. Moreover, the HSC-MCT model facilitated effective visualization of the saturated area, which has the potential to be used for broader geoscience studies beyond hydrology.

  3. Application of Bayesian Maximum Entropy Filter in parameter calibration of groundwater flow model in PingTung Plain

    NASA Astrophysics Data System (ADS)

    Cheung, Shao-Yong; Lee, Chieh-Han; Yu, Hwa-Lung

    2017-04-01

    Due to the limited hydrogeological observation data and high levels of uncertainty within, parameter estimation of the groundwater model has been an important issue. There are many methods of parameter estimation, for example, Kalman filter provides a real-time calibration of parameters through measurement of groundwater monitoring wells, related methods such as Extended Kalman Filter and Ensemble Kalman Filter are widely applied in groundwater research. However, Kalman Filter method is limited to linearity. This study propose a novel method, Bayesian Maximum Entropy Filtering, which provides a method that can considers the uncertainty of data in parameter estimation. With this two methods, we can estimate parameter by given hard data (certain) and soft data (uncertain) in the same time. In this study, we use Python and QGIS in groundwater model (MODFLOW) and development of Extended Kalman Filter and Bayesian Maximum Entropy Filtering in Python in parameter estimation. This method may provide a conventional filtering method and also consider the uncertainty of data. This study was conducted through numerical model experiment to explore, combine Bayesian maximum entropy filter and a hypothesis for the architecture of MODFLOW groundwater model numerical estimation. Through the virtual observation wells to simulate and observe the groundwater model periodically. The result showed that considering the uncertainty of data, the Bayesian maximum entropy filter will provide an ideal result of real-time parameters estimation.

  4. Respiratory flow-sound relationship during both wakefulness and sleep and its variation in relation to sleep apnea.

    PubMed

    Yadollahi, Azadeh; Montazeri, Aman; Azarbarzin, Ali; Moussavi, Zahra

    2013-03-01

    Tracheal respiratory sound analysis is a simple and non-invasive way to study the pathophysiology of the upper airway and has recently been used for acoustic estimation of respiratory flow and sleep apnea diagnosis. However in none of the previous studies was the respiratory flow-sound relationship studied in people with obstructive sleep apnea (OSA), nor during sleep. In this study, we recorded tracheal sound, respiratory flow, and head position from eight non-OSA and 10 OSA individuals during sleep and wakefulness. We compared the flow-sound relationship and variations in model parameters from wakefulness to sleep within and between the two groups. The results show that during both wakefulness and sleep, flow-sound relationship follows a power law but with different parameters. Furthermore, the variations in model parameters may be representative of the OSA pathology. The other objective of this study was to examine the accuracy of respiratory flow estimation algorithms during sleep: we investigated two approaches for calibrating the model parameters using the known data recorded during either wakefulness or sleep. The results show that the acoustical respiratory flow estimation parameters change from wakefulness to sleep. Therefore, if the model is calibrated using wakefulness data, although the estimated respiratory flow follows the relative variations of the real flow, the quantitative flow estimation error would be high during sleep. On the other hand, when the calibration parameters are extracted from tracheal sound and respiratory flow recordings during sleep, the respiratory flow estimation error is less than 10%.

  5. Assessing the applicability of WRF optimal parameters under the different precipitation simulations in the Greater Beijing Area

    NASA Astrophysics Data System (ADS)

    Di, Zhenhua; Duan, Qingyun; Wang, Chen; Ye, Aizhong; Miao, Chiyuan; Gong, Wei

    2018-03-01

    Forecasting skills of the complex weather and climate models have been improved by tuning the sensitive parameters that exert the greatest impact on simulated results based on more effective optimization methods. However, whether the optimal parameter values are still work when the model simulation conditions vary, which is a scientific problem deserving of study. In this study, a highly-effective optimization method, adaptive surrogate model-based optimization (ASMO), was firstly used to tune nine sensitive parameters from four physical parameterization schemes of the Weather Research and Forecasting (WRF) model to obtain better summer precipitation forecasting over the Greater Beijing Area in China. Then, to assess the applicability of the optimal parameter values, simulation results from the WRF model with default and optimal parameter values were compared across precipitation events, boundary conditions, spatial scales, and physical processes in the Greater Beijing Area. The summer precipitation events from 6 years were used to calibrate and evaluate the optimal parameter values of WRF model. Three boundary data and two spatial resolutions were adopted to evaluate the superiority of the calibrated optimal parameters to default parameters under the WRF simulations with different boundary conditions and spatial resolutions, respectively. Physical interpretations of the optimal parameters indicating how to improve precipitation simulation results were also examined. All the results showed that the optimal parameters obtained by ASMO are superior to the default parameters for WRF simulations for predicting summer precipitation in the Greater Beijing Area because the optimal parameters are not constrained by specific precipitation events, boundary conditions, and spatial resolutions. The optimal values of the nine parameters were determined from 127 parameter samples using the ASMO method, which showed that the ASMO method is very highly-efficient for optimizing WRF model parameters.

  6. Classification of hydrological parameter sensitivity and evaluation of parameter transferability across 431 US MOPEX basins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Huiying; Hou, Zhangshuan; Huang, Maoyi

    The Community Land Model (CLM) represents physical, chemical, and biological processes of the terrestrial ecosystems that interact with climate across a range of spatial and temporal scales. As CLM includes numerous sub-models and associated parameters, the high-dimensional parameter space presents a formidable challenge for quantifying uncertainty and improving Earth system predictions needed to assess environmental changes and risks. This study aims to evaluate the potential of transferring hydrologic model parameters in CLM through sensitivity analyses and classification across watersheds from the Model Parameter Estimation Experiment (MOPEX) in the United States. The sensitivity of CLM-simulated water and energy fluxes to hydrologicalmore » parameters across 431 MOPEX basins are first examined using an efficient stochastic sampling-based sensitivity analysis approach. Linear, interaction, and high-order nonlinear impacts are all identified via statistical tests and stepwise backward removal parameter screening. The basins are then classified accordingly to their parameter sensitivity patterns (internal attributes), as well as their hydrologic indices/attributes (external hydrologic factors) separately, using a Principal component analyses (PCA) and expectation-maximization (EM) –based clustering approach. Similarities and differences among the parameter sensitivity-based classification system (S-Class), the hydrologic indices-based classification (H-Class), and the Koppen climate classification systems (K-Class) are discussed. Within each S-class with similar parameter sensitivity characteristics, similar inversion modeling setups can be used for parameter calibration, and the parameters and their contribution or significance to water and energy cycling may also be more transferrable. This classification study provides guidance on identifiable parameters, and on parameterization and inverse model design for CLM but the methodology is applicable to other models. Inverting parameters at representative sites belonging to the same class can significantly reduce parameter calibration efforts.« less

  7. Novel quantitative calibration approach for multi-configuration electromagnetic induction (EMI) systems using data acquired at multiple elevations

    NASA Astrophysics Data System (ADS)

    Tan, Xihe; Mester, Achim; von Hebel, Christian; van der Kruk, Jan; Zimmermann, Egon; Vereecken, Harry; van Waasen, Stefan

    2017-04-01

    Electromagnetic induction (EMI) systems offer a great potential to obtain highly resolved layered electrical conductivity models of the shallow subsurface. State-of-the-art inversion procedures require quantitative calibration of EMI data, especially for short-offset EMI systems where significant data shifts are often observed. These shifts are caused by external influences such as the presence of the operator, zero-leveling procedures, the field setup used to move the EMI system and/or cables close by. Calibrations can be performed by using collocated electrical resistivity measurements or taking soil samples, however, these two methods take a lot of time in the field. To improve the calibration in a fast and concise way, we introduce a novel on-site calibration method using a series of apparent electrical conductivity (ECa) values acquired at multiple elevations for a multi-configuration EMI system. No additional instrument or pre-knowledge of the subsurface is needed to acquire quantitative ECa data. By using this calibration method, we correct each coil configuration, i.e., transmitter and receiver coil separation and the horizontal or vertical coplanar (HCP or VCP) coil orientation with a unique set of calibration parameters. A multi-layer soil structure at the corresponding measurement location is inverted together with the calibration parameters using full-solution Maxwell equations for the forward modelling within the shuffled complex evolution (SCE) algorithm to find the optimum solution under a user-defined parameter space. Synthetic data verified the feasibility for calibrating HCP and VCP measurements of a custom made six-coil EMI system with coil offsets between 0.35 m and 1.8 m for quantitative data inversions. As a next step, we applied the calibration approach on acquired experimental data from a bare soil test field (Selhausen, Germany) for the considered EMI system. The obtained calibration parameters were applied to measurements over a 30 m transect line that covers a range of conductivities between 5 and 40 mS/m. Inverted calibrated EMI data of the transect line showed very similar electrical conductivity distributions and layer interfaces of the subsurface compared to reference data obtained from vertical electrical sounding (VES) measurements. These results show that a combined calibration and inversion of multi-configuration EMI data is possible when including measurements at different elevations, which will speed up the measurement process to obtain quantitative EMI data since the labor intensive electrical resistivity measurement or soil coring is not necessary anymore.

  8. Multi-model analysis of terrestrial carbon cycles in Japan: limitations and implications of model calibration using eddy flux observations

    NASA Astrophysics Data System (ADS)

    Ichii, K.; Suzuki, T.; Kato, T.; Ito, A.; Hajima, T.; Ueyama, M.; Sasai, T.; Hirata, R.; Saigusa, N.; Ohtani, Y.; Takagi, K.

    2010-07-01

    Terrestrial biosphere models show large differences when simulating carbon and water cycles, and reducing these differences is a priority for developing more accurate estimates of the condition of terrestrial ecosystems and future climate change. To reduce uncertainties and improve the understanding of their carbon budgets, we investigated the utility of the eddy flux datasets to improve model simulations and reduce variabilities among multi-model outputs of terrestrial biosphere models in Japan. Using 9 terrestrial biosphere models (Support Vector Machine - based regressions, TOPS, CASA, VISIT, Biome-BGC, DAYCENT, SEIB, LPJ, and TRIFFID), we conducted two simulations: (1) point simulations at four eddy flux sites in Japan and (2) spatial simulations for Japan with a default model (based on original settings) and a modified model (based on model parameter tuning using eddy flux data). Generally, models using default model settings showed large deviations in model outputs from observation with large model-by-model variability. However, after we calibrated the model parameters using eddy flux data (GPP, RE and NEP), most models successfully simulated seasonal variations in the carbon cycle, with less variability among models. We also found that interannual variations in the carbon cycle are mostly consistent among models and observations. Spatial analysis also showed a large reduction in the variability among model outputs. This study demonstrated that careful validation and calibration of models with available eddy flux data reduced model-by-model differences. Yet, site history, analysis of model structure changes, and more objective procedure of model calibration should be included in the further analysis.

  9. Statistical emulation of landslide-induced tsunamis at the Rockall Bank, NE Atlantic

    PubMed Central

    Guillas, S.; Georgiopoulou, A.; Dias, F.

    2017-01-01

    Statistical methods constitute a useful approach to understand and quantify the uncertainty that governs complex tsunami mechanisms. Numerical experiments may often have a high computational cost. This forms a limiting factor for performing uncertainty and sensitivity analyses, where numerous simulations are required. Statistical emulators, as surrogates of these simulators, can provide predictions of the physical process in a much faster and computationally inexpensive way. They can form a prominent solution to explore thousands of scenarios that would be otherwise numerically expensive and difficult to achieve. In this work, we build a statistical emulator of the deterministic codes used to simulate submarine sliding and tsunami generation at the Rockall Bank, NE Atlantic Ocean, in two stages. First we calibrate, against observations of the landslide deposits, the parameters used in the landslide simulations. This calibration is performed under a Bayesian framework using Gaussian Process (GP) emulators to approximate the landslide model, and the discrepancy function between model and observations. Distributions of the calibrated input parameters are obtained as a result of the calibration. In a second step, a GP emulator is built to mimic the coupled landslide-tsunami numerical process. The emulator propagates the uncertainties in the distributions of the calibrated input parameters inferred from the first step to the outputs. As a result, a quantification of the uncertainty of the maximum free surface elevation at specified locations is obtained. PMID:28484339

  10. Statistical emulation of landslide-induced tsunamis at the Rockall Bank, NE Atlantic.

    PubMed

    Salmanidou, D M; Guillas, S; Georgiopoulou, A; Dias, F

    2017-04-01

    Statistical methods constitute a useful approach to understand and quantify the uncertainty that governs complex tsunami mechanisms. Numerical experiments may often have a high computational cost. This forms a limiting factor for performing uncertainty and sensitivity analyses, where numerous simulations are required. Statistical emulators, as surrogates of these simulators, can provide predictions of the physical process in a much faster and computationally inexpensive way. They can form a prominent solution to explore thousands of scenarios that would be otherwise numerically expensive and difficult to achieve. In this work, we build a statistical emulator of the deterministic codes used to simulate submarine sliding and tsunami generation at the Rockall Bank, NE Atlantic Ocean, in two stages. First we calibrate, against observations of the landslide deposits, the parameters used in the landslide simulations. This calibration is performed under a Bayesian framework using Gaussian Process (GP) emulators to approximate the landslide model, and the discrepancy function between model and observations. Distributions of the calibrated input parameters are obtained as a result of the calibration. In a second step, a GP emulator is built to mimic the coupled landslide-tsunami numerical process. The emulator propagates the uncertainties in the distributions of the calibrated input parameters inferred from the first step to the outputs. As a result, a quantification of the uncertainty of the maximum free surface elevation at specified locations is obtained.

  11. Nutrient modeling for a semi-intensive IMC pond: an MS-Excel approach.

    PubMed

    Ray, Lala I P; Mal, B C; Moulick, S

    2017-11-01

    Semi-intensive Indian Major Carp (IMC) culture was practised in polythene lined dugout ponds at the Aquacultural Farm of Indian Institute of Technology, Kharagpur, West Bengal for 3 consecutive years at three different stocking densities (S.D), viz., 20,000, 35,000 and 50,000 numbers of fingerlings per hectare of water spread area. Fingerlings of Catla, Rohu and Mrigal were raised at a stocking ratio of 4:3:3. Total ammonia nitrogen (TAN) value along with other fishpond water quality parameters was monitored at 1 day intervals to ensure a good water ecosystem for a better fish growth. Water exchange was carried out before the TAN reached the critical limit. Field data on TAN obtained from the cultured fishponds stocked with three different stocking densities were used to study the dynamics of TAN. A developed model used to study the nutrient dynamics in shrimp pond was used to validate the observed data in the IMC pond ecosystem. Two years of observed TAN data were used to calibrate the spreadsheet model and the same model was validated using the third year observed data. The manual calibration based on the trial and error process of parameters adjustments was used and several simulations were performed by changing the model parameters. After adjustment of each parameter, the simulated and measured values of the water quality parameters were compared to judge the improvement in the model prediction. Forward finite difference discretization method was used in a MS-Excel spreadsheet to calibrate and validate the model for obtaining the TAN levels during the culture period. Observed data from the cultured fishponds of three different S.D were used to standardize 13 model parameters. The efficiency of the developed spreadsheet model was found to be more than 90% for the TAN estimation in the IMC cultured fishponds.

  12. Using internal discharge data in a distributed conceptual model to reduce uncertainty in streamflow simulations

    NASA Astrophysics Data System (ADS)

    Guerrero, J.; Halldin, S.; Xu, C.; Lundin, L.

    2011-12-01

    Distributed hydrological models are important tools in water management as they account for the spatial variability of the hydrological data, as well as being able to produce spatially distributed outputs. They can directly incorporate and assess potential changes in the characteristics of our basins. A recognized problem for models in general is equifinality, which is only exacerbated for distributed models who tend to have a large number of parameters. We need to deal with the fundamentally ill-posed nature of the problem that such models force us to face, i.e. a large number of parameters and very few variables that can be used to constrain them, often only the catchment discharge. There is a growing but yet limited literature showing how the internal states of a distributed model can be used to calibrate/validate its predictions. In this paper, a distributed version of WASMOD, a conceptual rainfall runoff model with only three parameters, combined with a routing algorithm based on the high-resolution HydroSHEDS data was used to simulate the discharge in the Paso La Ceiba basin in Honduras. The parameter space was explored using Monte-Carlo simulations and the region of space containing the parameter-sets that were considered behavioral according to two different criteria was delimited using the geometric concept of alpha-shapes. The discharge data from five internal sub-basins was used to aid in the calibration of the model and to answer the following questions: Can this information improve the simulations at the outlet of the catchment, or decrease their uncertainty? Also, after reducing the number of model parameters needing calibration through sensitivity analysis: Is it possible to relate them to basin characteristics? The analysis revealed that in most cases the internal discharge data can be used to reduce the uncertainty in the discharge at the outlet, albeit with little improvement in the overall simulation results.

  13. Application of a parameter-estimation technique to modeling the regional aquifer underlying the eastern Snake River plain, Idaho

    USGS Publications Warehouse

    Garabedian, Stephen P.

    1986-01-01

    A nonlinear, least-squares regression technique for the estimation of ground-water flow model parameters was applied to the regional aquifer underlying the eastern Snake River Plain, Idaho. The technique uses a computer program to simulate two-dimensional, steady-state ground-water flow. Hydrologic data for the 1980 water year were used to calculate recharge rates, boundary fluxes, and spring discharges. Ground-water use was estimated from irrigated land maps and crop consumptive-use figures. These estimates of ground-water withdrawal, recharge rates, and boundary flux, along with leakance, were used as known values in the model calibration of transmissivity. Leakance values were adjusted between regression solutions by comparing model-calculated to measured spring discharges. In other simulations, recharge and leakance also were calibrated as prior-information regression parameters, which limits the variation of these parameters using a normalized standard error of estimate. Results from a best-fit model indicate a wide areal range in transmissivity from about 0.05 to 44 feet squared per second and in leakance from about 2.2x10 -9 to 6.0 x 10 -8 feet per second per foot. Along with parameter values, model statistics also were calculated, including the coefficient of correlation between calculated and observed head (0.996), the standard error of the estimates for head (40 feet), and the parameter coefficients of variation (about 10-40 percent). Additional boundary flux was added in some areas during calibration to achieve proper fit to ground-water flow directions. Model fit improved significantly when areas that violated model assumptions were removed. It also improved slightly when y-direction (northwest-southeast) transmissivity values were larger than x-direction (northeast-southwest) transmissivity values. The model was most sensitive to changes in recharge, and in some areas, to changes in transmissivity, particularly near the spring discharge area from Milner Dam to King Hill.

  14. Alternative ways of using field-based estimates to calibrate ecosystem models and their implications for carbon cycle studies

    USGS Publications Warehouse

    He, Yujie; Zhuang, Qianlai; McGuire, David; Liu, Yaling; Chen, Min

    2013-01-01

    Model-data fusion is a process in which field observations are used to constrain model parameters. How observations are used to constrain parameters has a direct impact on the carbon cycle dynamics simulated by ecosystem models. In this study, we present an evaluation of several options for the use of observations in modeling regional carbon dynamics and explore the implications of those options. We calibrated the Terrestrial Ecosystem Model on a hierarchy of three vegetation classification levels for the Alaskan boreal forest: species level, plant-functional-type level (PFT level), and biome level, and we examined the differences in simulated carbon dynamics. Species-specific field-based estimates were directly used to parameterize the model for species-level simulations, while weighted averages based on species percent cover were used to generate estimates for PFT- and biome-level model parameterization. We found that calibrated key ecosystem process parameters differed substantially among species and overlapped for species that are categorized into different PFTs. Our analysis of parameter sets suggests that the PFT-level parameterizations primarily reflected the dominant species and that functional information of some species were lost from the PFT-level parameterizations. The biome-level parameterization was primarily representative of the needleleaf PFT and lost information on broadleaf species or PFT function. Our results indicate that PFT-level simulations may be potentially representative of the performance of species-level simulations while biome-level simulations may result in biased estimates. Improved theoretical and empirical justifications for grouping species into PFTs or biomes are needed to adequately represent the dynamics of ecosystem functioning and structure.

  15. Evaluating Uncertainty of Runoff Simulation using SWAT model of the Feilaixia Watershed in China Based on the GLUE Method

    NASA Astrophysics Data System (ADS)

    Chen, X.; Huang, G.

    2017-12-01

    In recent years, distributed hydrological models have been widely used in storm water management, water resources protection and so on. Therefore, how to evaluate the uncertainty of the model reasonably and efficiently becomes a hot topic today. In this paper, the soil and water assessment tool (SWAT) model is constructed for the study area of China's Feilaixia watershed, and the uncertainty of the runoff simulation is analyzed by GLUE method deeply. Taking the initial parameter range of GLUE method as the research core, the influence of different initial parameter ranges on model uncertainty is studied. In this paper, two sets of parameter ranges are chosen as the object of study, the first one (range 1) is recommended by SWAT-CUP and the second one (range 2) is calibrated by SUFI-2. The results showed that under the same number of simulations (10,000 times), the overall uncertainty obtained by the range 2 is less than the range 1. Specifically, the "behavioral" parameter sets for the range 2 is 10000 and for the range 1 is 4448. In the calibration and the validation, the ratio of P-factor to R-factor for range 1 is 1.387 and 1.391, and for range 2 is 1.405 and 1.462 respectively. In addition, the simulation result of range 2 is better with the NS and R2 slightly higher than range 1. Therefore, it can be concluded that using the parameter range calibrated by SUFI-2 as the initial parameter range for the GLUE is a way to effectively capture and evaluate the simulation uncertainty.

  16. Simulation of streamflow in small drainage basins in the southern Yampa River basin, Colorado

    USGS Publications Warehouse

    Parker, R.S.; Norris, J.M.

    1989-01-01

    Coal mining operations in northwestern Colorado commonly are located in areas that have minimal available water-resource information. Drainage-basin models can be a method for extending water-resource information to include periods for which there are no records or to transfer the information to areas that have no streamflow-gaging stations. To evaluate the magnitude and variability of the components of the water balance in the small drainage basins monitored, and to provide some method for transfer of hydrologic data, the U.S. Geological Survey 's Precipitation-Runoff Modeling System was used for small drainage basins in the southern Yampa River basin to simulate daily mean streamflow using daily precipitation and air-temperature data. The study area was divided into three hydrologic regions, and in each of these regions, three drainage basins were monitored. Two of the drainage basins in each region were used to calibrate the Precipitation-Runoff Modeling System. The model was not calibrated for the third drainage basin in each region; instead, parameter values were transferred from the model that was calibrated for the two drainage basins. For all of the drainage basins except one, period of record used for calibration and verification included water years 1976-81. Simulated annual volumes of streamflow for drainage basins used in calibration compared well with observed values; individual hydrographs indicated timing differences between the observed and simulated daily mean streamflow. Observed and simulated annual average streamflows compared well for the periods of record, but values of simulated high and low streamflows were different than observed values. Similar results were obtained when calibrated model parameter values were transferred to drainage basins that were uncalibrated. (USGS)

  17. A Method to Test Model Calibration Techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Judkoff, Ron; Polly, Ben; Neymark, Joel

    This paper describes a method for testing model calibration techniques. Calibration is commonly used in conjunction with energy retrofit audit models. An audit is conducted to gather information about the building needed to assemble an input file for a building energy modeling tool. A calibration technique is used to reconcile model predictions with utility data, and then the 'calibrated model' is used to predict energy savings from a variety of retrofit measures and combinations thereof. Current standards and guidelines such as BPI-2400 and ASHRAE-14 set criteria for 'goodness of fit' and assume that if the criteria are met, then themore » calibration technique is acceptable. While it is logical to use the actual performance data of the building to tune the model, it is not certain that a good fit will result in a model that better predicts post-retrofit energy savings. Therefore, the basic idea here is that the simulation program (intended for use with the calibration technique) is used to generate surrogate utility bill data and retrofit energy savings data against which the calibration technique can be tested. This provides three figures of merit for testing a calibration technique, 1) accuracy of the post-retrofit energy savings prediction, 2) closure on the 'true' input parameter values, and 3) goodness of fit to the utility bill data. The paper will also discuss the pros and cons of using this synthetic surrogate data approach versus trying to use real data sets of actual buildings.« less

  18. A Method to Test Model Calibration Techniques: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Judkoff, Ron; Polly, Ben; Neymark, Joel

    This paper describes a method for testing model calibration techniques. Calibration is commonly used in conjunction with energy retrofit audit models. An audit is conducted to gather information about the building needed to assemble an input file for a building energy modeling tool. A calibration technique is used to reconcile model predictions with utility data, and then the 'calibrated model' is used to predict energy savings from a variety of retrofit measures and combinations thereof. Current standards and guidelines such as BPI-2400 and ASHRAE-14 set criteria for 'goodness of fit' and assume that if the criteria are met, then themore » calibration technique is acceptable. While it is logical to use the actual performance data of the building to tune the model, it is not certain that a good fit will result in a model that better predicts post-retrofit energy savings. Therefore, the basic idea here is that the simulation program (intended for use with the calibration technique) is used to generate surrogate utility bill data and retrofit energy savings data against which the calibration technique can be tested. This provides three figures of merit for testing a calibration technique, 1) accuracy of the post-retrofit energy savings prediction, 2) closure on the 'true' input parameter values, and 3) goodness of fit to the utility bill data. The paper will also discuss the pros and cons of using this synthetic surrogate data approach versus trying to use real data sets of actual buildings.« less

  19. An efficient surrogate-based simulation-optimization method for calibrating a regional MODFLOW model

    NASA Astrophysics Data System (ADS)

    Chen, Mingjie; Izady, Azizallah; Abdalla, Osman A.

    2017-01-01

    Simulation-optimization method entails a large number of model simulations, which is computationally intensive or even prohibitive if the model simulation is extremely time-consuming. Statistical models have been examined as a surrogate of the high-fidelity physical model during simulation-optimization process to tackle this problem. Among them, Multivariate Adaptive Regression Splines (MARS), a non-parametric adaptive regression method, is superior in overcoming problems of high-dimensions and discontinuities of the data. Furthermore, the stability and accuracy of MARS model can be improved by bootstrap aggregating methods, namely, bagging. In this paper, Bagging MARS (BMARS) method is integrated to a surrogate-based simulation-optimization framework to calibrate a three-dimensional MODFLOW model, which is developed to simulate the groundwater flow in an arid hardrock-alluvium region in northwestern Oman. The physical MODFLOW model is surrogated by the statistical model developed using BMARS algorithm. The surrogate model, which is fitted and validated using training dataset generated by the physical model, can approximate solutions rapidly. An efficient Sobol' method is employed to calculate global sensitivities of head outputs to input parameters, which are used to analyze their importance for the model outputs spatiotemporally. Only sensitive parameters are included in the calibration process to further improve the computational efficiency. Normalized root mean square error (NRMSE) between measured and simulated heads at observation wells is used as the objective function to be minimized during optimization. The reasonable history match between the simulated and observed heads demonstrated feasibility of this high-efficient calibration framework.

  20. [Parameters modification and evaluation of two evapotranspiration models based on Penman-Monteith model for summer maize].

    PubMed

    Wang, Juan; Wang, Jian Lin; Liu, Jia Bin; Jiang, Wen; Zhao, Chang Xing

    2017-06-18

    The dynamic variations of evapotranspiration (ET) and weather data during summer maize growing season in 2013-2015 were monitored with eddy covariance system, and the applicability of two operational models (FAO-PM model and KP-PM model) based on the Penman-Monteith model were analyzed. Firstly, the key parameters in the two models were calibrated with the measured data in 2013 and 2014; secondly, the daily ET in 2015 calculated by the FAO-PM model and KP-PM model was compared to the observed ET, respectively. Finally, the coefficients in the KP-PM model were further revised with the coefficients calculated according to the different growth stages, and the performance of the revised KP-PM model was also evaluated. These statistical parameters indicated that the calculated daily ET for 2015 by the FAO-PM model was closer to the observed ET than that by the KP-PM model. The daily ET calculated from the revised KP-PM model for daily ET was more accurate than that from the FAO-PM model. It was also found that the key parameters in the two models were correlated with weather conditions, so the calibration was necessary before using the models to predict the ET. The above results could provide some guidelines on predicting ET with the two models.

  1. The Parameterization of Top-Hat Particle Sensors with Microchannel-Plate-Based Detection Systems and its Application to the Fast Plasma Investigation on NASA's Magnetospheric MultiScale Mission

    NASA Technical Reports Server (NTRS)

    Gershman, Daniel J.; Gliese, Ulrik; Dorelli, John C.; Avanov, Levon A.; Barrie, Alexander C.; Chornay, Dennis J.; MacDonald, Elizabeth A.; Holland, Matthew P.; Pollock, Craig J.

    2015-01-01

    The most common instrument for low energy plasmas consists of a top-hat electrostatic analyzer geometry coupled with a microchannel-plate (MCP)-based detection system. While the electrostatic optics for such sensors are readily simulated and parameterized during the laboratory calibration process, the detection system is often less well characterized. Furthermore, due to finite resources, for large sensor suites such as the Fast Plasma Investigation (FPI) on NASA's Magnetospheric Multiscale (MMS) mission, calibration data are increasingly sparse. Measurements must be interpolated and extrapolated to understand instrument behavior for untestable operating modes and yet sensor inter-calibration is critical to mission success. To characterize instruments from a minimal set of parameters we have developed the first comprehensive mathematical description of both sensor electrostatic optics and particle detection systems. We include effects of MCP efficiency, gain, scattering, capacitive crosstalk, and charge cloud spreading at the detector output. Our parameterization enables the interpolation and extrapolation of instrument response to all relevant particle energies, detector high voltage settings, and polar angles from a small set of calibration data. We apply this model to the 32 sensor heads in the Dual Electron Sensor (DES) and 32 sensor heads in the Dual Ion Sensor (DIS) instruments on the 4 MMS observatories and use least squares fitting of calibration data to extract all key instrument parameters. Parameters that will evolve in flight, namely MCP gain, will be determined daily through application of this model to specifically tailored in-flight calibration activities, providing a robust characterization of sensor suite performance throughout mission lifetime. Beyond FPI, our model provides a valuable framework for the simulation and evaluation of future detection system designs and can be used to maximize instrument understanding with minimal calibration resources.

  2. Identification and synthetic modeling of factors affecting American black duck populations

    USGS Publications Warehouse

    Conroy, Michael J.; Miller, Mark W.; Hines, James E.

    2002-01-01

    We reviewed the literature on factors potentially affecting the population status of American black ducks (Anas rupribes). Our review suggests that there is some support for the influence of 4 major, continental-scope factors in limiting or regulating black duck populations: 1) loss in the quantity or quality of breeding habitats; 2) loss in the quantity or quality of wintering habitats; 3) harvest, and 4) interactions (competition, hybridization) with mallards (Anas platyrhychos) during the breeding and/or wintering periods. These factors were used as the basis of an annual life cycle model in which reproduction rates and survival rates were modeled as functions of the above factors, with parameters of the model describing the strength of these relationships. Variation in the model parameter values allows for consideration of scientific uncertainty as to the degree each of these factors may be contributing to declines in black duck populations, and thus allows for the investigation of the possible effects of management (e.g., habitat improvement, harvest reductions) under different assumptions. We then used available, historical data on black duck populations (abundance, annual reproduction rates, and survival rates) and possible driving factors (trends in breeding and wintering habitats, harvest rates, and abundance of mallards) to estimate model parameters. Our estimated reproduction submodel included parameters describing negative density feedback of black ducks, positive influence of breeding habitat, and negative influence of mallard densities; our survival submodel included terms for positive influence of winter habitat on reproduction rates, and negative influences of black duck density (i.e., compensation to harvest mortality). Individual models within each group (reproduction, survival) involved various combinations of these factors, and each was given an information theoretic weight for use in subsequent prediction. The reproduction model with highest AIC weight (0.70) predicted black duck age ratios increasing as a function of decreasing mallard abundance and increasing acreage of breeding habitat; all models considered involved negative density dependence for black ducks. The survival model with highest AIC weight (0.51) predicted nonharvest survival increasing as a function of increasing acreage of wintering habitat and decreasing harvest rates (additive mortality); models involving compensatory mortality effects received ≈0.12 total weight, vs. 0.88 for additive models. We used the combined model, together with our historical data set, to perform a series of 1-year population forecasts, similar to those that might be performed under adaptive management. Initial model forecasts over-predicted observed breeding populations by ≈25%. Least-squares calibration reduced the bias to ≈0.5% under prediction. After calibration, model-averaged predictions over the 16 alternative models (4 reproduction × 4 survival, weighted by AIC model weights) explained 67% of the variation in annual breeding population abundance for black ducks, suggesting that it might have utility as a predictive tool in adaptive management. We investigated the effects of statistical uncertainty in parameter values on predicted population growth rates for the combined annual model, via sensitivity analyses. Parameter sensitivity varied in relation to the parameter values over the estimated confidence intervals, and in relation to harvest rates and mallard abundance. Forecasts of black duck abundance were extremely sensitive to variation in parameter values for the coefficients for breeding and wintering habitat effects. Model-averaged forecasts of black duck abundance were also sensitive to changes in harvest rate and mallard abundance, with rapid declines in black duck abundance predicted for a range of harvest rates and mallard abundance higher than current levels of either factor, but easily envisaged, particularly given current rates of growth for mallard populations. Because of concerns about sensitivity to habitat coefficients, and particularly in light of deficiencies in the historical data used to estimate these parameters, we developed a simplified model that excludes habitat effects. We also developed alternative models involving a calibration adjustment for reproduction rates, survival rates, or neither. Calibration of survival rates performed best (AIC weight 0.59, % BIAS = -0.280, R2=0.679), with reproduction calibration somewhat inferior (AIC weight 0.41, % BIAS = -0.267, R2=0.672); models without calibration received virtually no AIC weight and were discarded. We recommend that the simplified model set (4 biological models × 2 alternative calibration factors) be retained as the best working set of alternative models for research and management. Finally, we provide some preliminary guidance for the development of adaptive harvest management for black ducks, using our working set of models.

  3. FAST Model Calibration and Validation of the OC5- DeepCwind Floating Offshore Wind System Against Wave Tank Test Data: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wendt, Fabian F; Robertson, Amy N; Jonkman, Jason

    During the course of the Offshore Code Comparison Collaboration, Continued, with Correlation (OC5) project, which focused on the validation of numerical methods through comparison against tank test data, the authors created a numerical FAST model of the 1:50-scale DeepCwind semisubmersible system that was tested at the Maritime Research Institute Netherlands ocean basin in 2013. This paper discusses several model calibration studies that were conducted to identify model adjustments that improve the agreement between the numerical simulations and the experimental test data. These calibration studies cover wind-field-specific parameters (coherence, turbulence), hydrodynamic and aerodynamic modeling approaches, as well as rotor model (blade-pitchmore » and blade-mass imbalances) and tower model (structural tower damping coefficient) adjustments. These calibration studies were conducted based on relatively simple calibration load cases (wave only/wind only). The agreement between the final FAST model and experimental measurements is then assessed based on more-complex combined wind and wave validation cases.« less

  4. Moving Beyond Streamflow Observations: Lessons From A Multi-Objective Calibration Experiment in the Mississippi Basin

    NASA Astrophysics Data System (ADS)

    Koppa, A.; Gebremichael, M.; Yeh, W. W. G.

    2017-12-01

    Calibrating hydrologic models in large catchments using a sparse network of streamflow gauges adversely affects the spatial and temporal accuracy of other water balance components which are important for climate-change, land-use and drought studies. This study combines remote sensing data and the concept of Pareto-Optimality to address the following questions: 1) What is the impact of streamflow (SF) calibration on the spatio-temporal accuracy of Evapotranspiration (ET), near-surface Soil Moisture (SM) and Total Water Storage (TWS)? 2) What is the best combination of fluxes that can be used to calibrate complex hydrological models such that both the accuracy of streamflow and the spatio-temporal accuracy of ET, SM and TWS is preserved? The study area is the Mississippi Basin in the United States (encompassing HUC-2 regions 5,6,7,9,10 and 11). 2003 and 2004, two climatologically average years are chosen for calibration and validation of the Noah-MP hydrologic model. Remotely sensed ET data is sourced from GLEAM, SM from ESA-CCI and TWS from GRACE. Single objective calibration is carried out using DDS Algorithm. For Multi objective calibration PA-DDS is used. First, the Noah-MP model is calibrated using a single objective function (Minimize Mean Square Error) for the outflow from the 6 HUC-2 sub-basins for 2003. Spatial correlograms are used to compare the spatial structure of ET, SM and TWS between the model and the remote sensing data. Spatial maps of RMSE and Mean Error are used to quantify the impact of calibrating streamflow on the accuracy of ET, SM and TWS estimates. Next, a multi-objective calibration experiment is setup to determine the pareto optimal parameter sets (pareto front) for the following cases - 1) SF and ET, 2) SF and SM, 3) SF and TWS, 4) SF, ET and SM, 5) SF, ET and TWS, 6) SF, SM and TWS, 7) SF, ET, SM and TWS. The best combination of fluxes that provides the optimal trade-off between accurate streamflow and preserving the spatio-temporal structure of ET, SM and TWS is then determined by validating the model outputs for the pareto-optimal parameter sets. Results from single-objective calibration experiment with streamflow shows that it does indeed negatively impact the accuracy of ET, SM and TWS estimates.

  5. Bayesian Treed Calibration: An Application to Carbon Capture With AX Sorbent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konomi, Bledar A.; Karagiannis, Georgios; Lai, Kevin

    2017-01-02

    In cases where field or experimental measurements are not available, computer models can model real physical or engineering systems to reproduce their outcomes. They are usually calibrated in light of experimental data to create a better representation of the real system. Statistical methods, based on Gaussian processes, for calibration and prediction have been especially important when the computer models are expensive and experimental data limited. In this paper, we develop the Bayesian treed calibration (BTC) as an extension of standard Gaussian process calibration methods to deal with non-stationarity computer models and/or their discrepancy from the field (or experimental) data. Ourmore » proposed method partitions both the calibration and observable input space, based on a binary tree partitioning, into sub-regions where existing model calibration methods can be applied to connect a computer model with the real system. The estimation of the parameters in the proposed model is carried out using Markov chain Monte Carlo (MCMC) computational techniques. Different strategies have been applied to improve mixing. We illustrate our method in two artificial examples and a real application that concerns the capture of carbon dioxide with AX amine based sorbents. The source code and the examples analyzed in this paper are available as part of the supplementary materials.« less

  6. Vegetation root zone storage and rooting depth, derived from local calibration of a global hydrological model

    NASA Astrophysics Data System (ADS)

    van der Ent, R.; Van Beek, R.; Sutanudjaja, E.; Wang-Erlandsson, L.; Hessels, T.; Bastiaanssen, W.; Bierkens, M. F.

    2017-12-01

    The storage and dynamics of water in the root zone control many important hydrological processes such as saturation excess overland flow, interflow, recharge, capillary rise, soil evaporation and transpiration. These processes are parameterized in hydrological models or land-surface schemes and the effect on runoff prediction can be large. Root zone parameters in global hydrological models are very uncertain as they cannot be measured directly at the scale on which these models operate. In this paper we calibrate the global hydrological model PCR-GLOBWB using a state-of-the-art ensemble of evaporation fields derived by solving the energy balance for satellite observations. We focus our calibration on the root zone parameters of PCR-GLOBWB and derive spatial patterns of maximum root zone storage. We find these patterns to correspond well with previous research. The parameterization of our model allows for the conversion of maximum root zone storage to root zone depth and we find that these correspond quite well to the point observations where available. We conclude that climate and soil type should be taken into account when regionalizing measured root depth for a certain vegetation type. We equally find that using evaporation rather than discharge better allows for local adjustment of root zone parameters within a basin and thus provides orthogonal data to diagnose and optimize hydrological models and land surface schemes.

  7. Vegetation root zone storage and rooting depth, derived from local calibration of a global hydrological model

    NASA Astrophysics Data System (ADS)

    van der Ent, Ruud; van Beek, Rens; Sutanudjaja, Edwin; Wang-Erlandsson, Lan; Hessels, Tim; Bastiaanssen, Wim; Bierkens, Marc

    2017-04-01

    The storage and dynamics of water in the root zone control many important hydrological processes such as saturation excess overland flow, interflow, recharge, capillary rise, soil evaporation and transpiration. These processes are parameterized in hydrological models or land-surface schemes and the effect on runoff prediction can be large. For root zone parameters in global hydrological models are very uncertain as they cannot be measured directly at the scale on which these models operate. In this paper we calibrate the global hydrological model PCR-GLOBWB using a state-of-the-art ensemble of evaporation fields derived by solving the energy balance for satellite observations. We focus our calibration on the root zone parameters of PCR-GLOBWB and derive spatial patterns of maximum root zone storage. We find these patterns to correspond well with previous research. The parameterization of our model allows for the conversion of maximum root zone storage to root zone depth and we find that these correspond quite well to the point observations where available. We conclude that climate and soil type should be taken into account when regionalizing measured root depth for a certain vegetation type. We equally find that using evaporation rather than discharge better allows for local adjustment of root zone parameters within a basin and thus provides orthogonal data to diagnose and optimize hydrological models and land surface schemes.

  8. A Regional Model for Malaria Vector Developmental Habitats Evaluated Using Explicit, Pond-Resolving Surface Hydrology Simulations.

    PubMed

    Asare, Ernest Ohene; Tompkins, Adrian Mark; Bomblies, Arne

    2016-01-01

    Dynamical malaria models can relate precipitation to the availability of vector breeding sites using simple models of surface hydrology. Here, a revised scheme is developed for the VECTRI malaria model, which is evaluated alongside the default scheme using a two year simulation by HYDREMATS, a 10 metre resolution, village-scale model that explicitly simulates individual ponds. Despite the simplicity of the two VECTRI surface hydrology parametrization schemes, they can reproduce the sub-seasonal evolution of fractional water coverage. Calibration of the model parameters is required to simulate the mean pond fraction correctly. The default VECTRI model tended to overestimate water fraction in periods subject to light rainfall events and underestimate it during periods of intense rainfall. This systematic error was improved in the revised scheme by including the a parametrization for surface run-off, such that light rainfall below the initial abstraction threshold does not contribute to ponds. After calibration of the pond model, the VECTRI model was able to simulate vector densities that compared well to the detailed agent based model contained in HYDREMATS without further parameter adjustment. Substituting local rain-gauge data with satellite-retrieved precipitation gave a reasonable approximation, raising the prospects for regional malaria simulations even in data sparse regions. However, further improvements could be made if a method can be derived to calibrate the key hydrology parameters of the pond model in each grid cell location, possibly also incorporating slope and soil texture.

  9. A Regional Model for Malaria Vector Developmental Habitats Evaluated Using Explicit, Pond-Resolving Surface Hydrology Simulations

    PubMed Central

    Asare, Ernest Ohene; Tompkins, Adrian Mark; Bomblies, Arne

    2016-01-01

    Dynamical malaria models can relate precipitation to the availability of vector breeding sites using simple models of surface hydrology. Here, a revised scheme is developed for the VECTRI malaria model, which is evaluated alongside the default scheme using a two year simulation by HYDREMATS, a 10 metre resolution, village-scale model that explicitly simulates individual ponds. Despite the simplicity of the two VECTRI surface hydrology parametrization schemes, they can reproduce the sub-seasonal evolution of fractional water coverage. Calibration of the model parameters is required to simulate the mean pond fraction correctly. The default VECTRI model tended to overestimate water fraction in periods subject to light rainfall events and underestimate it during periods of intense rainfall. This systematic error was improved in the revised scheme by including the a parametrization for surface run-off, such that light rainfall below the initial abstraction threshold does not contribute to ponds. After calibration of the pond model, the VECTRI model was able to simulate vector densities that compared well to the detailed agent based model contained in HYDREMATS without further parameter adjustment. Substituting local rain-gauge data with satellite-retrieved precipitation gave a reasonable approximation, raising the prospects for regional malaria simulations even in data sparse regions. However, further improvements could be made if a method can be derived to calibrate the key hydrology parameters of the pond model in each grid cell location, possibly also incorporating slope and soil texture. PMID:27003834

  10. Numerical Differentiation Methods for Computing Error Covariance Matrices in Item Response Theory Modeling: An Evaluation and a New Proposal

    ERIC Educational Resources Information Center

    Tian, Wei; Cai, Li; Thissen, David; Xin, Tao

    2013-01-01

    In item response theory (IRT) modeling, the item parameter error covariance matrix plays a critical role in statistical inference procedures. When item parameters are estimated using the EM algorithm, the parameter error covariance matrix is not an automatic by-product of item calibration. Cai proposed the use of Supplemented EM algorithm for…

  11. Biotrickling filter modeling for styrene abatement. Part 2: Simulating a two-phase partitioning bioreactor.

    PubMed

    San-Valero, Pau; Dorado, Antonio D; Quijano, Guillermo; Álvarez-Hornos, F Javier; Gabaldón, Carmen

    2018-01-01

    A dynamic model describing styrene abatement was developed for a two-phase partitioning bioreactor operated as a biotrickling filter (TPPB-BTF). The model was built as a coupled set of two different systems of partial differential equations depending on whether an irrigation or a non-irrigation period was simulated. The maximum growth rate was previously calibrated from a conventional BTF treating styrene (Part 1). The model was extended to simulate the TPPB-BTF based on the hypothesis that the main change associated with the non-aqueous phase is the modification of the pollutant properties in the liquid phase. The three phases considered were gas, a water-silicone liquid mixture, and biofilm. The selected calibration parameters were related to the physical properties of styrene: Henry's law constant, diffusivity, and the gas-liquid mass transfer coefficient. A sensitivity analysis revealed that Henry's law constant was the most sensitive parameter. The model was successfully calibrated with a goodness of fit of 0.94. It satisfactorily simulated the performance of the TPPB-BTF at styrene loads ranging from 13 to 77 g C m -3 h -1 and empty bed residence times of 30-15 s with the mass transfer enhanced by a factor of 1.6. The model was validated with data obtained in a TPPB-BTF removing styrene continuously. The experimental outlet emissions associated to oscillating inlet concentrations were satisfactorily predicted by using the calibrated parameters. Model simulations demonstrated the potential improvement of the mass-transfer performance of a conventional BTF degrading styrene by adding silicone oil. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Addressing subjective decision-making inherent in GLUE-based multi-criteria rainfall-runoff model calibration

    NASA Astrophysics Data System (ADS)

    Shafii, Mahyar; Tolson, Bryan; Shawn Matott, L.

    2015-04-01

    GLUE is one of the most commonly used informal methodologies for uncertainty estimation in hydrological modelling. Despite the ease-of-use of GLUE, it involves a number of subjective decisions such as the strategy for identifying the behavioural solutions. This study evaluates the impact of behavioural solution identification strategies in GLUE on the quality of model output uncertainty. Moreover, two new strategies are developed to objectively identify behavioural solutions. The first strategy considers Pareto-based ranking of parameter sets, while the second one is based on ranking the parameter sets based on an aggregated criterion. The proposed strategies, as well as the traditional strategies in the literature, are evaluated with respect to reliability (coverage of observations by the envelope of model outcomes) and sharpness (width of the envelope of model outcomes) in different numerical experiments. These experiments include multi-criteria calibration and uncertainty estimation of three rainfall-runoff models with different number of parameters. To demonstrate the importance of behavioural solution identification strategy more appropriately, GLUE is also compared with two other informal multi-criteria calibration and uncertainty estimation methods (Pareto optimization and DDS-AU). The results show that the model output uncertainty varies with the behavioural solution identification strategy, and furthermore, a robust GLUE implementation would require considering multiple behavioural solution identification strategies and choosing the one that generates the desired balance between sharpness and reliability. The proposed objective strategies prove to be the best options in most of the case studies investigated in this research. Implementing such an approach for a high-dimensional calibration problem enables GLUE to generate robust results in comparison with Pareto optimization and DDS-AU.

  13. Towards Improved High-Resolution Land Surface Hydrologic Reanalysis Using a Physically-Based Hydrologic Model and Data Assimilation

    NASA Astrophysics Data System (ADS)

    Shi, Y.; Davis, K. J.; Zhang, F.; Duffy, C.; Yu, X.

    2014-12-01

    A coupled physically based land surface hydrologic model, Flux-PIHM, has been developed by incorporating a land surface scheme into the Penn State Integrated Hydrologic Model (PIHM). The land surface scheme is adapted from the Noah land surface model. Flux-PIHM has been implemented and manually calibrated at the Shale Hills watershed (0.08 km2) in central Pennsylvania. Model predictions of discharge, point soil moisture, point water table depth, sensible and latent heat fluxes, and soil temperature show good agreement with observations. When calibrated only using discharge, and soil moisture and water table depth at one point, Flux-PIHM is able to resolve the observed 101 m scale soil moisture pattern at the Shale Hills watershed when an appropriate map of soil hydraulic properties is provided. A Flux-PIHM data assimilation system has been developed by incorporating EnKF for model parameter and state estimation. Both synthetic and real data assimilation experiments have been performed at the Shale Hills watershed. Synthetic experiment results show that the data assimilation system is able to simultaneously provide accurate estimates of multiple parameters. In the real data experiment, the EnKF estimated parameters and manually calibrated parameters yield similar model performances, but the EnKF method significantly decreases the time and labor required for calibration. The data requirements for accurate Flux-PIHM parameter estimation via data assimilation using synthetic observations have been tested. Results show that by assimilating only in situ outlet discharge, soil water content at one point, and the land surface temperature averaged over the whole watershed, the data assimilation system can provide an accurate representation of watershed hydrology. Observations of these key variables are available with national and even global spatial coverage (e.g., MODIS surface temperature, SMAP soil moisture, and the USGS gauging stations). National atmospheric reanalysis products, soil databases and land cover databases (e.g., NLDAS-2, SSURGO, NLCD) can provide high resolution forcing and input data. Therefore the Flux-PIHM data assimilation system could be readily expanded to other watersheds to provide regional scale land surface and hydrologic reanalysis with high spatial temporal resolution.

  14. Green roof rainfall-runoff modelling: is the comparison between conceptual and physically based approaches relevant?

    NASA Astrophysics Data System (ADS)

    Versini, Pierre-Antoine; Tchiguirinskaia, Ioulia; Schertzer, Daniel

    2017-04-01

    Green roofs are commonly considered as efficient tools to mitigate urban runoff as they can store precipitation, and consequently provide retention and detention performances. Designed as a compromise between water holding capacity, weight and hydraulic conductivity, their substrate is usually an artificial media differentiating significantly from a traditional soil. In order to assess green roofs hydrological performances, many models have been developed. Classified into two categories (conceptual and physically based), they are usually applied to reproduce the discharge of a particular monitored green roof considered as homogeneous. Although the resulted simulations could be satisfactory, the question of robustness and consistency of the calibrated parameters is often not addressed. Here, a modeling framework has been developed to assess the efficiency and the robustness of both modelling approaches (conceptual and physically based) in reproducing green roof hydrological behaviour. SWMM and VS2DT models have been used for this purpose. This work also benefits from an experimental setup where several green roofs differentiated by their substrate thickness and vegetation cover are monitored. Based on the data collected for several rainfall events, it has been studied how the calibrated parameters are effectively linked to their physical properties and how they can vary from one green roof configuration to another. Although both models reproduce correctly the observed discharges in most of the cases, their calibrated parameters exhibit a high inconsistency. For a same green roof configuration, these parameters can vary significantly from one rainfall event to another, even if they are supposed to be linked to the green roof characteristics (roughness, residual moisture content for instance). They can also be different from one green roof configuration to another although the implemented substrate is the same. Finally, it appears very difficult to find any relationship between the calibrated parameters supposed to represent similar characteristics in both models (porosity, hydraulic conductivity). These results illustrate the difficulty to reproduce the hydrological behaviour of such an artificial media constituting green roof substrate. They justify the development of new methods able to take to into account the spatial heterogeneity of the substrate for instance.

  15. Calibration of imaging parameters for space-borne airglow photography using city light positions

    NASA Astrophysics Data System (ADS)

    Hozumi, Yuta; Saito, Akinori; Ejiri, Mitsumu K.

    2016-09-01

    A new method for calibrating imaging parameters of photographs taken from the International Space Station (ISS) is presented in this report. Airglow in the mesosphere and the F-region ionosphere was captured on the limb of the Earth with a digital single-lens reflex camera from the ISS by astronauts. To utilize the photographs as scientific data, imaging parameters, such as the angle of view, exact position, and orientation of the camera, should be determined because they are not measured at the time of imaging. A new calibration method using city light positions shown in the photographs was developed to determine these imaging parameters with high accuracy suitable for airglow study. Applying the pinhole camera model, the apparent city light positions on the photograph are matched with the actual city light locations on Earth, which are derived from the global nighttime stable light map data obtained by the Defense Meteorological Satellite Program satellite. The correct imaging parameters are determined in an iterative process by matching the apparent positions on the image with the actual city light locations. We applied this calibration method to photographs taken on August 26, 2014, and confirmed that the result is correct. The precision of the calibration was evaluated by comparing the results from six different photographs with the same imaging parameters. The precisions in determining the camera position and orientation are estimated to be ±2.2 km and ±0.08°, respectively. The 0.08° difference in the orientation yields a 2.9-km difference at a tangential point of 90 km in altitude. The airglow structures in the photographs were mapped to geographical points using the calibrated imaging parameters and compared with a simultaneous observation by the Visible and near-Infrared Spectral Imager of the Ionosphere, Mesosphere, Upper Atmosphere, and Plasmasphere mapping mission installed on the ISS. The comparison shows good agreements and supports the validity of the calibration. This calibration technique makes it possible to utilize photographs taken on low-Earth-orbit satellites in the nighttime as a reference for the airglow and aurora structures.[Figure not available: see fulltext.

  16. Calibrating a surface mass-balance model for Austfonna ice cap, Svalbard

    NASA Astrophysics Data System (ADS)

    Schuler, Thomas Vikhamar; Loe, Even; Taurisano, Andrea; Eiken, Trond; Hagen, Jon Ove; Kohler, Jack

    2007-10-01

    Austfonna (8120 km2) is by far the largest ice mass in the Svalbard archipelago. There is considerable uncertainty about its current state of balance and its possible response to climate change. Over the 2004/05 period, we collected continuous meteorological data series from the ice cap, performed mass-balance measurements using a network of stakes distributed across the ice cap and mapped the distribution of snow accumulation using ground-penetrating radar along several profile lines. These data are used to drive and test a model of the surface mass balance. The spatial accumulation pattern was derived from the snow depth profiles using regression techniques, and ablation was calculated using a temperature-index approach. Model parameters were calibrated using the available field data. Parameter calibration was complicated by the fact that different parameter combinations yield equally acceptable matches to the stake data while the resulting calculated net mass balance differs considerably. Testing model results against multiple criteria is an efficient method to cope with non-uniqueness. In doing so, a range of different data and observations was compared to several different aspects of the model results. We find a systematic underestimation of net balance for parameter combinations that predict observed ice ablation, which suggests that refreezing processes play an important role. To represent these effects in the model, a simple PMAX approach was included in its formulation. Used as a diagnostic tool, the model suggests that the surface mass balance for the period 29 April 2004 to 23 April 2005 was negative (-318 mm w.e.).

  17. Calibration of Complex Subsurface Reaction Models Using a Surrogate-Model Approach

    EPA Science Inventory

    Application of model assessment techniques to complex subsurface reaction models involves numerous difficulties, including non-trivial model selection, parameter non-uniqueness, and excessive computational burden. To overcome these difficulties, this study introduces SAMM (Simult...

  18. OCO-2 Column Carbon Dioxide and Biometric Data Jointly Constrain Parameterization and Projection of a Global Land Model

    NASA Astrophysics Data System (ADS)

    Shi, Z.; Crowell, S.; Luo, Y.; Rayner, P. J.; Moore, B., III

    2015-12-01

    Uncertainty in predicted carbon-climate feedback largely stems from poor parameterization of global land models. However, calibration of global land models with observations has been extremely challenging at least for two reasons. First we lack global data products from systematical measurements of land surface processes. Second, computational demand is insurmountable for estimation of model parameter due to complexity of global land models. In this project, we will use OCO-2 retrievals of dry air mole fraction XCO2 and solar induced fluorescence (SIF) to independently constrain estimation of net ecosystem exchange (NEE) and gross primary production (GPP). The constrained NEE and GPP will be combined with data products of global standing biomass, soil organic carbon and soil respiration to improve the community land model version 4.5 (CLM4.5). Specifically, we will first develop a high fidelity emulator of CLM4.5 according to the matrix representation of the terrestrial carbon cycle. It has been shown that the emulator fully represents the original model and can be effectively used for data assimilation to constrain parameter estimation. We will focus on calibrating those key model parameters (e.g., maximum carboxylation rate, turnover time and transfer coefficients of soil carbon pools, and temperature sensitivity of respiration) for carbon cycle. The Bayesian Markov chain Monte Carlo method (MCMC) will be used to assimilate the global databases into the high fidelity emulator to constrain the model parameters, which will be incorporated back to the original CLM4.5. The calibrated CLM4.5 will be used to make scenario-based projections. In addition, we will conduct observing system simulation experiments (OSSEs) to evaluate how the sampling frequency and length could affect the model constraining and prediction.

  19. Simulation of nutrient and sediment concentrations and loads in the Delaware inland bays watershed: Extension of the hydrologic and water-quality model to ungaged segments

    USGS Publications Warehouse

    Gutierrez-Magness, Angelica L.

    2006-01-01

    Rapid population increases, agriculture, and industrial practices have been identified as important sources of excessive nutrients and sediments in the Delaware Inland Bays watershed. The amount and effect of excessive nutrients and sediments in the Inland Bays watershed have been well documented by the Delaware Geological Survey, the Delaware Department of Natural Resources and Environmental Control, the U.S. Environmental Protection Agency's National Estuary Program, the Delaware Center for Inland Bays, the University of Delaware, and other agencies. This documentation and data previously were used to develop a hydrologic and water-quality model of the Delaware Inland Bays watershed to simulate nutrients and sediment concentrations and loads, and to calibrate the model by comparing concentrations and streamflow data at six stations in the watershed over a limited period of time (October 1998 through April 2000). Although the model predictions of nutrient and sediment concentrations for the calibrated segments were fairly accurate, the predictions for the 28 ungaged segments located near tidal areas, where stream data were not available, were above the range of values measured in the area. The cooperative study established in 2000 by the Delaware Department of Natural Resources and Environmental Control, the Delaware Geological Survey, and the U.S. Geological Survey was extended to evaluate the model predictions in ungaged segments and to ensure that the model, developed as a planning and management tool, could accurately predict nutrient and sediment concentrations within the measured range of values in the area. The evaluation of the predictions was limited to the period of calibration (1999) of the 2003 model. To develop estimates on ungaged watersheds, parameter values from calibrated segments are transferred to the ungaged segments; however, accurate predictions are unlikely where parameter transference is subject to error. The unexpected nutrient and sediment concentrations simulated with the 2003 model were likely the result of inappropriate criteria for the transference of parameter values. From a model-simulation perspective, it is a common practice to transfer parameter values based on the similarity of soils or the similarity of land-use proportions between segments. For the Inland Bays model, the similarity of soils between segments was used as the basis to transfer parameter values. An alternative approach, which is documented in this report, is based on the similarity of the spatial distribution of the land use between segments and the similarity of land-use proportions, as these can be important factors for the transference of parameter values in lumped models. Previous work determined that the difference in the variation of runoff due to various spatial distributions of land use within a watershed can cause substantialloss of accuracy in the model predictions. The incorporation of the spatial distribution of land use to transfer parameter values from calibrated to uncalibrated segments provided more consistent and rational predictions of flow, especially during the summer, and consequently, predictions of lower nutrient concentrations during the same period. For the segments where the similarity of spatial distribution of land use was not clearly established with a calibrated segment, the similarity of the location of the most impervious areas was also used as a criterion for the transference of parameter values. The model predictions from the 28 ungaged segments were verified through comparison with measured in-stream concentrations from local and nearby streams provided by the Delaware Department of Natural Resources and Environmental Control. Model results indicated that the predicted edge-of-stream total suspended solids loads in the Inland Bays watershed were low in comparison to loads reported for the Eastern Shore of Maryland from the Chesapeake Bay watershed model. The flatness of the ter

  20. InGaAs tunnel diodes for the calibration of semi-classical and quantum mechanical band-to-band tunneling models

    NASA Astrophysics Data System (ADS)

    Smets, Quentin; Verreck, Devin; Verhulst, Anne S.; Rooyackers, Rita; Merckling, Clément; Van De Put, Maarten; Simoen, Eddy; Vandervorst, Wilfried; Collaert, Nadine; Thean, Voon Y.; Sorée, Bart; Groeseneken, Guido; Heyns, Marc M.

    2014-05-01

    Promising predictions are made for III-V tunnel-field-effect transistor (FET), but there is still uncertainty on the parameters used in the band-to-band tunneling models. Therefore, two simulators are calibrated in this paper; the first one uses a semi-classical tunneling model based on Kane's formalism, and the second one is a quantum mechanical simulator implemented with an envelope function formalism. The calibration is done for In0.53Ga0.47As using several p+/intrinsic/n+ diodes with different intrinsic region thicknesses. The dopant profile is determined by SIMS and capacitance-voltage measurements. Error bars are used based on statistical and systematic uncertainties in the measurement techniques. The obtained parameters are in close agreement with theoretically predicted values and validate the semi-classical and quantum mechanical models. Finally, the models are applied to predict the input characteristics of In0.53Ga0.47As n- and p-lineTFET, with the n-lineTFET showing competitive performance compared to MOSFET.

  1. DSD-Consistent JWL Equations of State for EDC35

    NASA Astrophysics Data System (ADS)

    Hodgson, Alexander

    2011-06-01

    The Detonation Shock Dynamics model (DSD) allows the calculation of curvature-dependent detonation propagation. It is of particular use when applied to insensitive high explosives, such as EDC35, since they have a greater non-ideal behaviour. The DSD model has been used in conjunction with an experimental cylinder test to obtain the JWL Equation of State (EoS) for EDC35. Adjustment of parameters in the JWL equation changes the expansion profile of the simulated wall expansion. The parameters are iterated until the best match can be made between simulation and experiment. Previous DSD models used at AWE have no energy release mechanism to adjust the release of chemical energy to match the detonation conditions. Two JWL calibrations are performed using the DSD model, with and without Hetherington's energy release model (these proceedings). Also in use is a newly-calibrated detonation speed-curvature relation that is much closer, compared to previous calibrations, to Bdzil's equivalent for PBX9502. This paper discusses the possible improvements that this approach makes to the EDC35 JWL EoS.

  2. Understanding controls of hydrologic processes across two monolithological catchments using model-data integration

    NASA Astrophysics Data System (ADS)

    Xiao, D.; Shi, Y.; Li, L.

    2016-12-01

    Field measurements are important to understand the fluxes of water, energy, sediment, and solute in the Critical Zone however are expensive in time, money, and labor. This study aims to assess the model predictability of hydrological processes in a watershed using information from another intensively-measured watershed. We compare two watersheds of different lithology using national datasets, field measurements, and physics-based model, Flux-PIHM. We focus on two monolithological, forested watersheds under the same climate in the Shale Hills Susquehanna CZO in central Pennsylvania: the Shale-based Shale Hills (SSH, 0.08 km2) and the sandstone-based Garner Run (GR, 1.34 km2). We firstly tested the transferability of calibration coefficients from SSH to GR. We found that without any calibration the model can successfully predict seasonal average soil moisture and discharge which shows the advantage of a physics-based model, however, cannot precisely capture some peaks or the runoff in summer. The model reproduces the GR field data better after calibrating the soil hydrology parameters. In particular, the percentage of sand turns out to be a critical parameter in reproducing data. With sandstone being the dominant lithology, GR has much higher sand percentage than SSH (48.02% vs. 29.01%), leading to higher hydraulic conductivity, lower overall water storage capacity, and in general lower soil moisture. This is consistent with area averaged soil moisture observations using the cosmic-ray soil moisture observing system (COSMOS) at the two sites. This work indicates that some parameters, including evapotranspiration parameters, are transferrable due to similar climatic and land cover conditions. However, the key parameters that control soil moisture, including the sand percentage, need to be recalibrated, reflecting the key role of soil hydrological properties.

  3. Variance-based Sensitivity Analysis of Large-scale Hydrological Model to Prepare an Ensemble-based SWOT-like Data Assimilation Experiments

    NASA Astrophysics Data System (ADS)

    Emery, C. M.; Biancamaria, S.; Boone, A. A.; Ricci, S. M.; Garambois, P. A.; Decharme, B.; Rochoux, M. C.

    2015-12-01

    Land Surface Models (LSM) coupled with River Routing schemes (RRM), are used in Global Climate Models (GCM) to simulate the continental part of the water cycle. They are key component of GCM as they provide boundary conditions to atmospheric and oceanic models. However, at global scale, errors arise mainly from simplified physics, atmospheric forcing, and input parameters. More particularly, those used in RRM, such as river width, depth and friction coefficients, are difficult to calibrate and are mostly derived from geomorphologic relationships, which may not always be realistic. In situ measurements are then used to calibrate these relationships and validate the model, but global in situ data are very sparse. Additionally, due to the lack of existing global river geomorphology database and accurate forcing, models are run at coarse resolution. This is typically the case of the ISBA-TRIP model used in this study.A complementary alternative to in-situ data are satellite observations. In this regard, the Surface Water and Ocean Topography (SWOT) satellite mission, jointly developed by NASA/CNES/CSA/UKSA and scheduled for launch around 2020, should be very valuable to calibrate RRM parameters. It will provide maps of water surface elevation for rivers wider than 100 meters over continental surfaces in between 78°S and 78°N and also direct observation of river geomorphological parameters such as width ans slope.Yet, before assimilating such kind of data, it is needed to analyze RRM temporal sensitivity to time-constant parameters. This study presents such analysis over large river basins for the TRIP RRM. Model output uncertainty, represented by unconditional variance, is decomposed into ordered contribution from each parameter. Doing a time-dependent analysis allows then to identify to which parameters modeled water level and discharge are the most sensitive along a hydrological year. The results show that local parameters directly impact water levels, while discharge is more affected by parameters from the whole upstream drainage area. Understanding model output variance behavior will have a direct impact on the design and performance of the ensemble-based data assimilation platform, for which uncertainties are also modeled by variances. It will help to select more objectively RRM parameters to correct.

  4. A Comparison of Methods for a Priori Bias Correction in Soil Moisture Data Assimilation

    NASA Technical Reports Server (NTRS)

    Kumar, Sujay V.; Reichle, Rolf H.; Harrison, Kenneth W.; Peters-Lidard, Christa D.; Yatheendradas, Soni; Santanello, Joseph A.

    2011-01-01

    Data assimilation is being increasingly used to merge remotely sensed land surface variables such as soil moisture, snow and skin temperature with estimates from land models. Its success, however, depends on unbiased model predictions and unbiased observations. Here, a suite of continental-scale, synthetic soil moisture assimilation experiments is used to compare two approaches that address typical biases in soil moisture prior to data assimilation: (i) parameter estimation to calibrate the land model to the climatology of the soil moisture observations, and (ii) scaling of the observations to the model s soil moisture climatology. To enable this research, an optimization infrastructure was added to the NASA Land Information System (LIS) that includes gradient-based optimization methods and global, heuristic search algorithms. The land model calibration eliminates the bias but does not necessarily result in more realistic model parameters. Nevertheless, the experiments confirm that model calibration yields assimilation estimates of surface and root zone soil moisture that are as skillful as those obtained through scaling of the observations to the model s climatology. Analysis of innovation diagnostics underlines the importance of addressing bias in soil moisture assimilation and confirms that both approaches adequately address the issue.

  5. Linking big models to big data: efficient ecosystem model calibration through Bayesian model emulation

    NASA Astrophysics Data System (ADS)

    Fer, I.; Kelly, R.; Andrews, T.; Dietze, M.; Richardson, A. D.

    2016-12-01

    Our ability to forecast ecosystems is limited by how well we parameterize ecosystem models. Direct measurements for all model parameters are not always possible and inverse estimation of these parameters through Bayesian methods is computationally costly. A solution to computational challenges of Bayesian calibration is to approximate the posterior probability surface using a Gaussian Process that emulates the complex process-based model. Here we report the integration of this method within an ecoinformatics toolbox, Predictive Ecosystem Analyzer (PEcAn), and its application with two ecosystem models: SIPNET and ED2.1. SIPNET is a simple model, allowing application of MCMC methods both to the model itself and to its emulator. We used both approaches to assimilate flux (CO2 and latent heat), soil respiration, and soil carbon data from Bartlett Experimental Forest. This comparison showed that emulator is reliable in terms of convergence to the posterior distribution. A 10000-iteration MCMC analysis with SIPNET itself required more than two orders of magnitude greater computation time than an MCMC run of same length with its emulator. This difference would be greater for a more computationally demanding model. Validation of the emulator-calibrated SIPNET against both the assimilated data and out-of-sample data showed improved fit and reduced uncertainty around model predictions. We next applied the validated emulator method to the ED2, whose complexity precludes standard Bayesian data assimilation. We used the ED2 emulator to assimilate demographic data from a network of inventory plots. For validation of the calibrated ED2, we compared the model to results from Empirical Succession Mapping (ESM), a novel synthesis of successional patterns in Forest Inventory and Analysis data. Our results revealed that while the pre-assimilation ED2 formulation cannot capture the emergent demographic patterns from ESM analysis, constrained model parameters controlling demographic processes increased their agreement considerably.

  6. Attitude Sensor and Gyro Calibration for Messenger

    NASA Technical Reports Server (NTRS)

    O'Shaughnessy, Daniel; Pittelkau, Mark E.

    2007-01-01

    The Redundant Inertial Measurement Unit Attitude Determination/Calibration (RADICAL(TM)) filter was used to estimate star tracker and gyro calibration parameters using MESSENGER telemetry data from three calibration events. We present an overview of the MESSENGER attitude sensors and their configuration is given, the calibration maneuvers are described, the results are compared with previous calibrations, and variations and trends in the estimated calibration parameters are examined. The warm restart and covariance bump features of the RADICAL(TM) filter were used to estimate calibration parameters from two disjoint telemetry streams. Results show that the calibration parameters converge faster with much less transient variation during convergence than when the filter is cold-started at the start of each telemetry stream.

  7. Calibration and analysis of genome-based models for microbial ecology.

    PubMed

    Louca, Stilianos; Doebeli, Michael

    2015-10-16

    Microbial ecosystem modeling is complicated by the large number of unknown parameters and the lack of appropriate calibration tools. Here we present a novel computational framework for modeling microbial ecosystems, which combines genome-based model construction with statistical analysis and calibration to experimental data. Using this framework, we examined the dynamics of a community of Escherichia coli strains that emerged in laboratory evolution experiments, during which an ancestral strain diversified into two coexisting ecotypes. We constructed a microbial community model comprising the ancestral and the evolved strains, which we calibrated using separate monoculture experiments. Simulations reproduced the successional dynamics in the evolution experiments, and pathway activation patterns observed in microarray transcript profiles. Our approach yielded detailed insights into the metabolic processes that drove bacterial diversification, involving acetate cross-feeding and competition for organic carbon and oxygen. Our framework provides a missing link towards a data-driven mechanistic microbial ecology.

  8. Hydrological modelling of the Mara River Basin, Kenya: Dealing with uncertain data quality and calibrating using river stage

    NASA Astrophysics Data System (ADS)

    Hulsman, P.; Bogaard, T.; Savenije, H. H. G.

    2016-12-01

    In hydrology and water resources management, discharge is the main time series for model calibration. Rating curves are needed to derive discharge from continuously measured water levels. However, assuring their quality is demanding due to dynamic changes and problems in accurately deriving discharge at high flows. This is valid everywhere, but even more in African socio-economic context. To cope with these uncertainties, this study proposes to use water levels instead of discharge data for calibration. Also uncertainties in rainfall measurements, especially the spatial heterogeneity needs to be considered. In this study, the semi-distributed rainfall runoff model FLEX-Topo was applied to the Mara River Basin. In this model seven sub-basins were distinguished and four hydrological response units with each a unique model structure based on the expected dominant flow processes. Parameter and process constrains were applied to exclude unrealistic results. To calibrate the model, the water levels were back-calculated from modelled discharges, using cross-section data and the Strickler formula calibrating parameter `k•s1/2', and compared to measured water levels. The model simulated the water depths well for the entire basin and the Nyangores sub-basin in the north. However, the calibrated and observed rating curves differed significantly at the basin outlet, probably due to uncertainties in the measured discharge, but at Nyangores they were almost identical. To assess the effect of rainfall uncertainties on the hydrological model, the representative rainfall in each sub-basin was estimated with three different methods: 1) single station, 2) average precipitation, 3) areal sub-division using Thiessen polygons. All three methods gave on average similar results, but method 1 resulted in more flashy responses, method 2 dampened the water levels due to averaging the rainfall and method 3 was a combination of both. In conclusion, in the case of unreliable rating curves, water level data can be used instead and a new rating curve can be calibrated. The effect of rainfall uncertainties on the hydrological model was insignificant.

  9. Linking Item Parameters to a Base Scale

    ERIC Educational Resources Information Center

    Kang, Taehoon; Petersen, Nancy S.

    2012-01-01

    This paper compares three methods of item calibration--concurrent calibration, separate calibration with linking, and fixed item parameter calibration--that are frequently used for linking item parameters to a base scale. Concurrent and separate calibrations were implemented using BILOG-MG. The Stocking and Lord in "Appl Psychol Measure"…

  10. Conceptualization and calibration of anisotropic, dynamic alluvial systems: Pitfalls and biases in current modelling practices

    NASA Astrophysics Data System (ADS)

    Gianni, Guillaume; Doherty, John; Perrochet, Pierre; Brunner, Philip

    2017-04-01

    Physical properties of alluvial environments are typically featuring a high degree of anisotropy and are characterized by dynamic interactions between the surface and the subsurface. A literature review on current modelling practice shows that hydrogeological models are often calibrated using isotropic hydraulic conductivity fields and steady state conditions. We aim at understanding how these simplifications affect the predictions of hydraulic heads and exchange fluxes using fully coupled, physically based synthetic models and advanced calibration approaches. Specifically, we present an analysis of the information content provided by averaged, steady state hydraulic data compared to transient data with respect to the determination of aquifer hydraulic properties. We show that the information content in average hydraulic heads is insufficient to inform anisotropic properties of alluvial aquifers and can lead to important biases on the calibrated parameters. We further explore the consequences of these biases on predictions of fluxes and water table dynamics. The results of this synthetic analysis are considered in the calibration of a highly dynamic and anisotropic alluvial aquifer system in Switzerland (the Rhône River). The results of the synthetic and real-world modelling and calibration exercises provide insight on future data acquisition, modelling and calibration strategies for these environments.

  11. Improved quantification of important beer quality parameters based on nonlinear calibration methods applied to FT-MIR spectra.

    PubMed

    Cernuda, Carlos; Lughofer, Edwin; Klein, Helmut; Forster, Clemens; Pawliczek, Marcin; Brandstetter, Markus

    2017-01-01

    During the production process of beer, it is of utmost importance to guarantee a high consistency of the beer quality. For instance, the bitterness is an essential quality parameter which has to be controlled within the specifications at the beginning of the production process in the unfermented beer (wort) as well as in final products such as beer and beer mix beverages. Nowadays, analytical techniques for quality control in beer production are mainly based on manual supervision, i.e., samples are taken from the process and analyzed in the laboratory. This typically requires significant lab technicians efforts for only a small fraction of samples to be analyzed, which leads to significant costs for beer breweries and companies. Fourier transform mid-infrared (FT-MIR) spectroscopy was used in combination with nonlinear multivariate calibration techniques to overcome (i) the time consuming off-line analyses in beer production and (ii) already known limitations of standard linear chemometric methods, like partial least squares (PLS), for important quality parameters Speers et al. (J I Brewing. 2003;109(3):229-235), Zhang et al. (J I Brewing. 2012;118(4):361-367) such as bitterness, citric acid, total acids, free amino nitrogen, final attenuation, or foam stability. The calibration models are established with enhanced nonlinear techniques based (i) on a new piece-wise linear version of PLS by employing fuzzy rules for local partitioning the latent variable space and (ii) on extensions of support vector regression variants (-PLSSVR and ν-PLSSVR), for overcoming high computation times in high-dimensional problems and time-intensive and inappropriate settings of the kernel parameters. Furthermore, we introduce a new model selection scheme based on bagged ensembles in order to improve robustness and thus predictive quality of the final models. The approaches are tested on real-world calibration data sets for wort and beer mix beverages, and successfully compared to linear methods, showing a clear out-performance in most cases and being able to meet the model quality requirements defined by the experts at the beer company. Figure Workflow for calibration of non-Linear model ensembles from FT-MIR spectra in beer production .

  12. Exploring Several Methods of Groundwater Model Selection

    NASA Astrophysics Data System (ADS)

    Samani, Saeideh; Ye, Ming; Asghari Moghaddam, Asghar

    2017-04-01

    Selecting reliable models for simulating groundwater flow and solute transport is essential to groundwater resources management and protection. This work is to explore several model selection methods for avoiding over-complex and/or over-parameterized groundwater models. We consider six groundwater flow models with different numbers (6, 10, 10, 13, 13 and 15) of model parameters. These models represent alternative geological interpretations, recharge estimates, and boundary conditions at a study site in Iran. The models were developed with Model Muse, and calibrated against observations of hydraulic head using UCODE. Model selection was conducted by using the following four approaches: (1) Rank the models using their root mean square error (RMSE) obtained after UCODE-based model calibration, (2) Calculate model probability using GLUE method, (3) Evaluate model probability using model selection criteria (AIC, AICc, BIC, and KIC), and (4) Evaluate model weights using the Fuzzy Multi-Criteria-Decision-Making (MCDM) approach. MCDM is based on the fuzzy analytical hierarchy process (AHP) and fuzzy technique for order performance, which is to identify the ideal solution by a gradual expansion from the local to the global scale of model parameters. The KIC and MCDM methods are superior to other methods, as they consider not only the fit between observed and simulated data and the number of parameter, but also uncertainty in model parameters. Considering these factors can prevent from occurring over-complexity and over-parameterization, when selecting the appropriate groundwater flow models. These methods selected, as the best model, one with average complexity (10 parameters) and the best parameter estimation (model 3).

  13. Bayesian integration of flux tower data into a process-based simulator for quantifying uncertainty in simulated output

    NASA Astrophysics Data System (ADS)

    Raj, Rahul; van der Tol, Christiaan; Hamm, Nicholas Alexander Samuel; Stein, Alfred

    2018-01-01

    Parameters of a process-based forest growth simulator are difficult or impossible to obtain from field observations. Reliable estimates can be obtained using calibration against observations of output and state variables. In this study, we present a Bayesian framework to calibrate the widely used process-based simulator Biome-BGC against estimates of gross primary production (GPP) data. We used GPP partitioned from flux tower measurements of a net ecosystem exchange over a 55-year-old Douglas fir stand as an example. The uncertainties of both the Biome-BGC parameters and the simulated GPP values were estimated. The calibrated parameters leaf and fine root turnover (LFRT), ratio of fine root carbon to leaf carbon (FRC : LC), ratio of carbon to nitrogen in leaf (C : Nleaf), canopy water interception coefficient (Wint), fraction of leaf nitrogen in RuBisCO (FLNR), and effective soil rooting depth (SD) characterize the photosynthesis and carbon and nitrogen allocation in the forest. The calibration improved the root mean square error and enhanced Nash-Sutcliffe efficiency between simulated and flux tower daily GPP compared to the uncalibrated Biome-BGC. Nevertheless, the seasonal cycle for flux tower GPP was not reproduced exactly and some overestimation in spring and underestimation in summer remained after calibration. We hypothesized that the phenology exhibited a seasonal cycle that was not accurately reproduced by the simulator. We investigated this by calibrating the Biome-BGC to each month's flux tower GPP separately. As expected, the simulated GPP improved, but the calibrated parameter values suggested that the seasonal cycle of state variables in the simulator could be improved. It was concluded that the Bayesian framework for calibration can reveal features of the modelled physical processes and identify aspects of the process simulator that are too rigid.

  14. Parameter Calibration of GTN Damage Model and Formability Analysis of 22MnB5 in Hot Forming Process

    NASA Astrophysics Data System (ADS)

    Ying, Liang; Liu, Wenquan; Wang, Dantong; Hu, Ping

    2017-11-01

    Hot forming of high strength steel at elevated temperatures is an attractive technology to achieve the lightweight of vehicle body. The mechanical behavior of boron steel 22MnB5 strongly depends on the variation of temperature which makes the process design more difficult. In this paper, the Gurson-Tvergaard-Needleman (GTN) model is used to study the formability of 22MnB5 sheet at different temperatures. Firstly, the rheological behavior of 22MnB5 is analyzed through a series of hot tensile tests at a temperature range of 600-800 °C. Then, a detailed process to calibrate the damage parameters is given based on the response surface methodology and genetic algorithm method. The GTN model together with the damage parameters calibrated is then implemented to simulate the deformation and damage evolution of 22MnB5 in the process of high-temperature Nakazima test. The capability of the GTN model as a suitable tool to evaluate the sheet formability is confirmed by comparing experimental and calculated results. Finally, as a practical application, the forming limit diagram of 22MnB5 at 700 °C is constructed using the Nakazima simulation and Marciniak-Kuczynski (M-K) model, respectively. And the simulation integrated GTN model shows a higher reliability by comparing the predicted results of these two approaches with the experimental ones.

  15. Calibration of X-Ray diffractometer by the experimental comparison method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dudka, A. P., E-mail: dudka@ns.crys.ras.ru

    2015-07-15

    A software for calibrating an X-ray diffractometer with area detector has been developed. It is proposed to search for detector and goniometer calibration models whose parameters are reproduced in a series of measurements on a reference crystal. Reference (standard) crystals are prepared during the investigation; they should provide the agreement of structural models in repeated analyses. The technique developed has been used to calibrate Xcalibur Sapphire and Eos, Gemini Ruby (Agilent) and Apex x8 and Apex Duo (Bruker) diffractometers. The main conclusions are as follows: the calibration maps are stable for several years and can be used to improve structuralmore » results, verified CCD detectors exhibit significant inhomogeneity of the efficiency (response) function, and a Bruker goniometer introduces smaller distortions than an Agilent goniometer.« less

  16. A suggestion for computing objective function in model calibration

    USGS Publications Warehouse

    Wu, Yiping; Liu, Shuguang

    2014-01-01

    A parameter-optimization process (model calibration) is usually required for numerical model applications, which involves the use of an objective function to determine the model cost (model-data errors). The sum of square errors (SSR) has been widely adopted as the objective function in various optimization procedures. However, ‘square error’ calculation was found to be more sensitive to extreme or high values. Thus, we proposed that the sum of absolute errors (SAR) may be a better option than SSR for model calibration. To test this hypothesis, we used two case studies—a hydrological model calibration and a biogeochemical model calibration—to investigate the behavior of a group of potential objective functions: SSR, SAR, sum of squared relative deviation (SSRD), and sum of absolute relative deviation (SARD). Mathematical evaluation of model performance demonstrates that ‘absolute error’ (SAR and SARD) are superior to ‘square error’ (SSR and SSRD) in calculating objective function for model calibration, and SAR behaved the best (with the least error and highest efficiency). This study suggests that SSR might be overly used in real applications, and SAR may be a reasonable choice in common optimization implementations without emphasizing either high or low values (e.g., modeling for supporting resources management).

  17. Kinetic modelling of anaerobic hydrolysis of solid wastes, including disintegration processes.

    PubMed

    García-Gen, Santiago; Sousbie, Philippe; Rangaraj, Ganesh; Lema, Juan M; Rodríguez, Jorge; Steyer, Jean-Philippe; Torrijos, Michel

    2015-01-01

    A methodology to estimate disintegration and hydrolysis kinetic parameters of solid wastes and validate an ADM1-based anaerobic co-digestion model is presented. Kinetic parameters of the model were calibrated from batch reactor experiments treating individually fruit and vegetable wastes (among other residues) following a new protocol for batch tests. In addition, decoupled disintegration kinetics for readily and slowly biodegradable fractions of solid wastes was considered. Calibrated parameters from batch assays of individual substrates were used to validate the model for a semi-continuous co-digestion operation treating simultaneously 5 fruit and vegetable wastes. The semi-continuous experiment was carried out in a lab-scale CSTR reactor for 15 weeks at organic loading rate ranging between 2.0 and 4.7 gVS/Ld. The model (built in Matlab/Simulink) fit to a large extent the experimental results in both batch and semi-continuous mode and served as a powerful tool to simulate the digestion or co-digestion of solid wastes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Landsat-5 bumper-mode geometric correction

    USGS Publications Warehouse

    Storey, James C.; Choate, Michael J.

    2004-01-01

    The Landsat-5 Thematic Mapper (TM) scan mirror was switched from its primary operating mode to a backup mode in early 2002 in order to overcome internal synchronization problems arising from long-term wear of the scan mirror mechanism. The backup bumper mode of operation removes the constraints on scan start and stop angles enforced in the primary scan angle monitor operating mode, requiring additional geometric calibration effort to monitor the active scan angles. It also eliminates scan timing telemetry used to correct the TM scan geometry. These differences require changes to the geometric correction algorithms used to process TM data. A mathematical model of the scan mirror's behavior when operating in bumper mode was developed. This model includes a set of key timing parameters that characterize the time-varying behavior of the scan mirror bumpers. To simplify the implementation of the bumper-mode model, the bumper timing parameters were recast in terms of the calibration and telemetry data items used to process normal TM imagery. The resulting geometric performance, evaluated over 18 months of bumper-mode operations, though slightly reduced from that achievable in the primary operating mode, is still within the Landsat specifications when the data are processed with the most up-to-date calibration parameters.

  19. Parameter Identification and Uncertainty Analysis for Visual MODFLOW based Groundwater Flow Model in a Small River Basin, Eastern India

    NASA Astrophysics Data System (ADS)

    Jena, S.

    2015-12-01

    The overexploitation of groundwater resulted in abandoning many shallow tube wells in the river Basin in Eastern India. For the sustainability of groundwater resources, basin-scale modelling of groundwater flow is essential for the efficient planning and management of the water resources. The main intent of this study is to develope a 3-D groundwater flow model of the study basin using the Visual MODFLOW package and successfully calibrate and validate it using 17 years of observed data. The sensitivity analysis was carried out to quantify the susceptibility of aquifer system to the river bank seepage, recharge from rainfall and agriculture practices, horizontal and vertical hydraulic conductivities, and specific yield. To quantify the impact of parameter uncertainties, Sequential Uncertainty Fitting Algorithm (SUFI-2) and Markov chain Monte Carlo (MCMC) techniques were implemented. Results from the two techniques were compared and the advantages and disadvantages were analysed. Nash-Sutcliffe coefficient (NSE) and coefficient of determination (R2) were adopted as two criteria during calibration and validation of the developed model. NSE and R2 values of groundwater flow model for calibration and validation periods were in acceptable range. Also, the MCMC technique was able to provide more reasonable results than SUFI-2. The calibrated and validated model will be useful to identify the aquifer properties, analyse the groundwater flow dynamics and the change in groundwater levels in future forecasts.

  20. A Semi-Automatic Image-Based Close Range 3D Modeling Pipeline Using a Multi-Camera Configuration

    PubMed Central

    Rau, Jiann-Yeou; Yeh, Po-Chia

    2012-01-01

    The generation of photo-realistic 3D models is an important task for digital recording of cultural heritage objects. This study proposes an image-based 3D modeling pipeline which takes advantage of a multi-camera configuration and multi-image matching technique that does not require any markers on or around the object. Multiple digital single lens reflex (DSLR) cameras are adopted and fixed with invariant relative orientations. Instead of photo-triangulation after image acquisition, calibration is performed to estimate the exterior orientation parameters of the multi-camera configuration which can be processed fully automatically using coded targets. The calibrated orientation parameters of all cameras are applied to images taken using the same camera configuration. This means that when performing multi-image matching for surface point cloud generation, the orientation parameters will remain the same as the calibrated results, even when the target has changed. Base on this invariant character, the whole 3D modeling pipeline can be performed completely automatically, once the whole system has been calibrated and the software was seamlessly integrated. Several experiments were conducted to prove the feasibility of the proposed system. Images observed include that of a human being, eight Buddhist statues, and a stone sculpture. The results for the stone sculpture, obtained with several multi-camera configurations were compared with a reference model acquired by an ATOS-I 2M active scanner. The best result has an absolute accuracy of 0.26 mm and a relative accuracy of 1:17,333. It demonstrates the feasibility of the proposed low-cost image-based 3D modeling pipeline and its applicability to a large quantity of antiques stored in a museum. PMID:23112656

Top