Longhi, Daniel Angelo; Martins, Wiaslan Figueiredo; da Silva, Nathália Buss; Carciofi, Bruno Augusto Mattar; de Aragão, Gláucia Maria Falcão; Laurindo, João Borges
2017-01-02
In predictive microbiology, the model parameters have been estimated using the sequential two-step modeling (TSM) approach, in which primary models are fitted to the microbial growth data, and then secondary models are fitted to the primary model parameters to represent their dependence with the environmental variables (e.g., temperature). The Optimal Experimental Design (OED) approach allows reducing the experimental workload and costs, and the improvement of model identifiability because primary and secondary models are fitted simultaneously from non-isothermal data. Lactobacillus viridescens was selected to this study because it is a lactic acid bacterium of great interest to meat products preservation. The objectives of this study were to estimate the growth parameters of L. viridescens in culture medium from TSM and OED approaches and to evaluate both the number of experimental data and the time needed in each approach and the confidence intervals of the model parameters. Experimental data for estimating the model parameters with TSM approach were obtained at six temperatures (total experimental time of 3540h and 196 experimental data of microbial growth). Data for OED approach were obtained from four optimal non-isothermal profiles (total experimental time of 588h and 60 experimental data of microbial growth), two profiles with increasing temperatures (IT) and two with decreasing temperatures (DT). The Baranyi and Roberts primary model and the square root secondary model were used to describe the microbial growth, in which the parameters b and T min (±95% confidence interval) were estimated from the experimental data. The parameters obtained from TSM approach were b=0.0290 (±0.0020) [1/(h 0.5 °C)] and T min =-1.33 (±1.26) [°C], with R 2 =0.986 and RMSE=0.581, and the parameters obtained with the OED approach were b=0.0316 (±0.0013) [1/(h 0.5 °C)] and T min =-0.24 (±0.55) [°C], with R 2 =0.990 and RMSE=0.436. The parameters obtained from OED approach presented smaller confidence intervals and best statistical indexes than those from TSM approach. Besides, less experimental data and time were needed to estimate the model parameters with OED than TSM. Furthermore, the OED model parameters were validated with non-isothermal experimental data with great accuracy. In this way, OED approach is feasible and is a very useful tool to improve the prediction of microbial growth under non-isothermal condition. Copyright © 2016 Elsevier B.V. All rights reserved.
An improved swarm optimization for parameter estimation and biological model selection.
Abdullah, Afnizanfaizal; Deris, Safaai; Mohamad, Mohd Saberi; Anwar, Sohail
2013-01-01
One of the key aspects of computational systems biology is the investigation on the dynamic biological processes within cells. Computational models are often required to elucidate the mechanisms and principles driving the processes because of the nonlinearity and complexity. The models usually incorporate a set of parameters that signify the physical properties of the actual biological systems. In most cases, these parameters are estimated by fitting the model outputs with the corresponding experimental data. However, this is a challenging task because the available experimental data are frequently noisy and incomplete. In this paper, a new hybrid optimization method is proposed to estimate these parameters from the noisy and incomplete experimental data. The proposed method, called Swarm-based Chemical Reaction Optimization, integrates the evolutionary searching strategy employed by the Chemical Reaction Optimization, into the neighbouring searching strategy of the Firefly Algorithm method. The effectiveness of the method was evaluated using a simulated nonlinear model and two biological models: synthetic transcriptional oscillators, and extracellular protease production models. The results showed that the accuracy and computational speed of the proposed method were better than the existing Differential Evolution, Firefly Algorithm and Chemical Reaction Optimization methods. The reliability of the estimated parameters was statistically validated, which suggests that the model outputs produced by these parameters were valid even when noisy and incomplete experimental data were used. Additionally, Akaike Information Criterion was employed to evaluate the model selection, which highlighted the capability of the proposed method in choosing a plausible model based on the experimental data. In conclusion, this paper presents the effectiveness of the proposed method for parameter estimation and model selection problems using noisy and incomplete experimental data. This study is hoped to provide a new insight in developing more accurate and reliable biological models based on limited and low quality experimental data.
NASA Astrophysics Data System (ADS)
Langer, P.; Sepahvand, K.; Guist, C.; Bär, J.; Peplow, A.; Marburg, S.
2018-03-01
The simulation model which examines the dynamic behavior of real structures needs to address the impact of uncertainty in both geometry and material parameters. This article investigates three-dimensional finite element models for structural dynamics problems with respect to both model and parameter uncertainties. The parameter uncertainties are determined via laboratory measurements on several beam-like samples. The parameters are then considered as random variables to the finite element model for exploring the uncertainty effects on the quality of the model outputs, i.e. natural frequencies. The accuracy of the output predictions from the model is compared with the experimental results. To this end, the non-contact experimental modal analysis is conducted to identify the natural frequency of the samples. The results show a good agreement compared with experimental data. Furthermore, it is demonstrated that geometrical uncertainties have more influence on the natural frequencies compared to material parameters and material uncertainties are about two times higher than geometrical uncertainties. This gives valuable insights for improving the finite element model due to various parameter ranges required in a modeling process involving uncertainty.
DeSmitt, Holly J; Domire, Zachary J
2016-12-01
Biomechanical models are sensitive to the choice of model parameters. Therefore, determination of accurate subject specific model parameters is important. One approach to generate these parameters is to optimize the values such that the model output will match experimentally measured strength curves. This approach is attractive as it is inexpensive and should provide an excellent match to experimentally measured strength. However, given the problem of muscle redundancy, it is not clear that this approach generates accurate individual muscle forces. The purpose of this investigation is to evaluate this approach using simulated data to enable a direct comparison. It is hypothesized that the optimization approach will be able to recreate accurate muscle model parameters when information from measurable parameters is given. A model of isometric knee extension was developed to simulate a strength curve across a range of knee angles. In order to realistically recreate experimentally measured strength, random noise was added to the modeled strength. Parameters were solved for using a genetic search algorithm. When noise was added to the measurements the strength curve was reasonably recreated. However, the individual muscle model parameters and force curves were far less accurate. Based upon this examination, it is clear that very different sets of model parameters can recreate similar strength curves. Therefore, experimental variation in strength measurements has a significant influence on the results. Given the difficulty in accurately recreating individual muscle parameters, it may be more appropriate to perform simulations with lumped actuators representing similar muscles.
Vinnakota, Kalyan C; Beard, Daniel A; Dash, Ranjan K
2009-01-01
Identification of a complex biochemical system model requires appropriate experimental data. Models constructed on the basis of data from the literature often contain parameters that are not identifiable with high sensitivity and therefore require additional experimental data to identify those parameters. Here we report the application of a local sensitivity analysis to design experiments that will improve the identifiability of previously unidentifiable model parameters in a model of mitochondrial oxidative phosphorylation and tricaboxylic acid cycle. Experiments were designed based on measurable biochemical reactants in a dilute suspension of purified cardiac mitochondria with experimentally feasible perturbations to this system. Experimental perturbations and variables yielding the most number of parameters above a 5% sensitivity level are presented and discussed.
An Improved Swarm Optimization for Parameter Estimation and Biological Model Selection
Abdullah, Afnizanfaizal; Deris, Safaai; Mohamad, Mohd Saberi; Anwar, Sohail
2013-01-01
One of the key aspects of computational systems biology is the investigation on the dynamic biological processes within cells. Computational models are often required to elucidate the mechanisms and principles driving the processes because of the nonlinearity and complexity. The models usually incorporate a set of parameters that signify the physical properties of the actual biological systems. In most cases, these parameters are estimated by fitting the model outputs with the corresponding experimental data. However, this is a challenging task because the available experimental data are frequently noisy and incomplete. In this paper, a new hybrid optimization method is proposed to estimate these parameters from the noisy and incomplete experimental data. The proposed method, called Swarm-based Chemical Reaction Optimization, integrates the evolutionary searching strategy employed by the Chemical Reaction Optimization, into the neighbouring searching strategy of the Firefly Algorithm method. The effectiveness of the method was evaluated using a simulated nonlinear model and two biological models: synthetic transcriptional oscillators, and extracellular protease production models. The results showed that the accuracy and computational speed of the proposed method were better than the existing Differential Evolution, Firefly Algorithm and Chemical Reaction Optimization methods. The reliability of the estimated parameters was statistically validated, which suggests that the model outputs produced by these parameters were valid even when noisy and incomplete experimental data were used. Additionally, Akaike Information Criterion was employed to evaluate the model selection, which highlighted the capability of the proposed method in choosing a plausible model based on the experimental data. In conclusion, this paper presents the effectiveness of the proposed method for parameter estimation and model selection problems using noisy and incomplete experimental data. This study is hoped to provide a new insight in developing more accurate and reliable biological models based on limited and low quality experimental data. PMID:23593445
Effect of processing parameters on FDM process
NASA Astrophysics Data System (ADS)
Chari, V. Srinivasa; Venkatesh, P. R.; Krupashankar, Dinesh, Veena
2018-04-01
This paper focused on the process parameters on fused deposition modeling (FDM). Infill, resolution, temperature are the process variables considered for experimental studies. Compression strength, Hardness test microstructure are the outcome parameters, this experimental study done based on the taguchi's L9 orthogonal array is used. Taguchi array used to build the 9 different models and also to get the effective output results on the under taken parameters. The material used for this experimental study is Polylactic Acid (PLA).
Convergence in parameters and predictions using computational experimental design.
Hagen, David R; White, Jacob K; Tidor, Bruce
2013-08-06
Typically, biological models fitted to experimental data suffer from significant parameter uncertainty, which can lead to inaccurate or uncertain predictions. One school of thought holds that accurate estimation of the true parameters of a biological system is inherently problematic. Recent work, however, suggests that optimal experimental design techniques can select sets of experiments whose members probe complementary aspects of a biochemical network that together can account for its full behaviour. Here, we implemented an experimental design approach for selecting sets of experiments that constrain parameter uncertainty. We demonstrated with a model of the epidermal growth factor-nerve growth factor pathway that, after synthetically performing a handful of optimal experiments, the uncertainty in all 48 parameters converged below 10 per cent. Furthermore, the fitted parameters converged to their true values with a small error consistent with the residual uncertainty. When untested experimental conditions were simulated with the fitted models, the predicted species concentrations converged to their true values with errors that were consistent with the residual uncertainty. This paper suggests that accurate parameter estimation is achievable with complementary experiments specifically designed for the task, and that the resulting parametrized models are capable of accurate predictions.
SBML-PET: a Systems Biology Markup Language-based parameter estimation tool.
Zi, Zhike; Klipp, Edda
2006-11-01
The estimation of model parameters from experimental data remains a bottleneck for a major breakthrough in systems biology. We present a Systems Biology Markup Language (SBML) based Parameter Estimation Tool (SBML-PET). The tool is designed to enable parameter estimation for biological models including signaling pathways, gene regulation networks and metabolic pathways. SBML-PET supports import and export of the models in the SBML format. It can estimate the parameters by fitting a variety of experimental data from different experimental conditions. SBML-PET has a unique feature of supporting event definition in the SMBL model. SBML models can also be simulated in SBML-PET. Stochastic Ranking Evolution Strategy (SRES) is incorporated in SBML-PET for parameter estimation jobs. A classic ODE Solver called ODEPACK is used to solve the Ordinary Differential Equation (ODE) system. http://sysbio.molgen.mpg.de/SBML-PET/. The website also contains detailed documentation for SBML-PET.
The Limitations of Model-Based Experimental Design and Parameter Estimation in Sloppy Systems.
White, Andrew; Tolman, Malachi; Thames, Howard D; Withers, Hubert Rodney; Mason, Kathy A; Transtrum, Mark K
2016-12-01
We explore the relationship among experimental design, parameter estimation, and systematic error in sloppy models. We show that the approximate nature of mathematical models poses challenges for experimental design in sloppy models. In many models of complex biological processes it is unknown what are the relevant physical mechanisms that must be included to explain system behaviors. As a consequence, models are often overly complex, with many practically unidentifiable parameters. Furthermore, which mechanisms are relevant/irrelevant vary among experiments. By selecting complementary experiments, experimental design may inadvertently make details that were ommitted from the model become relevant. When this occurs, the model will have a large systematic error and fail to give a good fit to the data. We use a simple hyper-model of model error to quantify a model's discrepancy and apply it to two models of complex biological processes (EGFR signaling and DNA repair) with optimally selected experiments. We find that although parameters may be accurately estimated, the discrepancy in the model renders it less predictive than it was in the sloppy regime where systematic error is small. We introduce the concept of a sloppy system-a sequence of models of increasing complexity that become sloppy in the limit of microscopic accuracy. We explore the limits of accurate parameter estimation in sloppy systems and argue that identifying underlying mechanisms controlling system behavior is better approached by considering a hierarchy of models of varying detail rather than focusing on parameter estimation in a single model.
The Limitations of Model-Based Experimental Design and Parameter Estimation in Sloppy Systems
Tolman, Malachi; Thames, Howard D.; Mason, Kathy A.
2016-01-01
We explore the relationship among experimental design, parameter estimation, and systematic error in sloppy models. We show that the approximate nature of mathematical models poses challenges for experimental design in sloppy models. In many models of complex biological processes it is unknown what are the relevant physical mechanisms that must be included to explain system behaviors. As a consequence, models are often overly complex, with many practically unidentifiable parameters. Furthermore, which mechanisms are relevant/irrelevant vary among experiments. By selecting complementary experiments, experimental design may inadvertently make details that were ommitted from the model become relevant. When this occurs, the model will have a large systematic error and fail to give a good fit to the data. We use a simple hyper-model of model error to quantify a model’s discrepancy and apply it to two models of complex biological processes (EGFR signaling and DNA repair) with optimally selected experiments. We find that although parameters may be accurately estimated, the discrepancy in the model renders it less predictive than it was in the sloppy regime where systematic error is small. We introduce the concept of a sloppy system–a sequence of models of increasing complexity that become sloppy in the limit of microscopic accuracy. We explore the limits of accurate parameter estimation in sloppy systems and argue that identifying underlying mechanisms controlling system behavior is better approached by considering a hierarchy of models of varying detail rather than focusing on parameter estimation in a single model. PMID:27923060
Optimal experimental design for parameter estimation of a cell signaling model.
Bandara, Samuel; Schlöder, Johannes P; Eils, Roland; Bock, Hans Georg; Meyer, Tobias
2009-11-01
Differential equation models that describe the dynamic changes of biochemical signaling states are important tools to understand cellular behavior. An essential task in building such representations is to infer the affinities, rate constants, and other parameters of a model from actual measurement data. However, intuitive measurement protocols often fail to generate data that restrict the range of possible parameter values. Here we utilized a numerical method to iteratively design optimal live-cell fluorescence microscopy experiments in order to reveal pharmacological and kinetic parameters of a phosphatidylinositol 3,4,5-trisphosphate (PIP(3)) second messenger signaling process that is deregulated in many tumors. The experimental approach included the activation of endogenous phosphoinositide 3-kinase (PI3K) by chemically induced recruitment of a regulatory peptide, reversible inhibition of PI3K using a kinase inhibitor, and monitoring of the PI3K-mediated production of PIP(3) lipids using the pleckstrin homology (PH) domain of Akt. We found that an intuitively planned and established experimental protocol did not yield data from which relevant parameters could be inferred. Starting from a set of poorly defined model parameters derived from the intuitively planned experiment, we calculated concentration-time profiles for both the inducing and the inhibitory compound that would minimize the predicted uncertainty of parameter estimates. Two cycles of optimization and experimentation were sufficient to narrowly confine the model parameters, with the mean variance of estimates dropping more than sixty-fold. Thus, optimal experimental design proved to be a powerful strategy to minimize the number of experiments needed to infer biological parameters from a cell signaling assay.
NASA Astrophysics Data System (ADS)
Domanskyi, Sergii; Schilling, Joshua E.; Gorshkov, Vyacheslav; Libert, Sergiy; Privman, Vladimir
2016-09-01
We develop a theoretical approach that uses physiochemical kinetics modelling to describe cell population dynamics upon progression of viral infection in cell culture, which results in cell apoptosis (programmed cell death) and necrosis (direct cell death). Several model parameters necessary for computer simulation were determined by reviewing and analyzing available published experimental data. By comparing experimental data to computer modelling results, we identify the parameters that are the most sensitive to the measured system properties and allow for the best data fitting. Our model allows extraction of parameters from experimental data and also has predictive power. Using the model we describe interesting time-dependent quantities that were not directly measured in the experiment and identify correlations among the fitted parameter values. Numerical simulation of viral infection progression is done by a rate-equation approach resulting in a system of "stiff" equations, which are solved by using a novel variant of the stochastic ensemble modelling approach. The latter was originally developed for coupled chemical reactions.
NASA Astrophysics Data System (ADS)
Domanskyi, Sergii; Schilling, Joshua; Gorshkov, Vyacheslav; Libert, Sergiy; Privman, Vladimir
We develop a theoretical approach that uses physiochemical kinetics modelling to describe cell population dynamics upon progression of viral infection in cell culture, which results in cell apoptosis (programmed cell death) and necrosis (direct cell death). Several model parameters necessary for computer simulation were determined by reviewing and analyzing available published experimental data. By comparing experimental data to computer modelling results, we identify the parameters that are the most sensitive to the measured system properties and allow for the best data fitting. Our model allows extraction of parameters from experimental data and also has predictive power. Using the model we describe interesting time-dependent quantities that were not directly measured in the experiment and identify correlations among the fitted parameter values. Numerical simulation of viral infection progression is done by a rate-equation approach resulting in a system of ``stiff'' equations, which are solved by using a novel variant of the stochastic ensemble modelling approach. The latter was originally developed for coupled chemical reactions.
Hydrodynamic Aspects of Particle Clogging in Porous Media
MAYS, DAVID C.; HUNT, JAMES R.
2010-01-01
Data from 6 filtration studies, representing 43 experiments, are analyzed with a simplified version of the single-parameter O’Melia and Ali clogging model. The model parameter displays a systematic dependence on fluid velocity, which was an independent variable in each study. A cake filtration model also explains the data from one filtration study by varying a single, velocity-dependent parameter, highlighting that clogging models, because they are empirical, are not unique. Limited experimental data indicate exponential depth dependence of particle accumulation, whose impact on clogging is quantified with an extended O’Melia and Ali model. The resulting two-parameter model successfully describes the increased clogging that is always observed in the top segment of a filter. However, even after accounting for particle penetration, the two-parameter model suggests that a velocity-dependent parameter representing deposit morphology must also be included to explain the data. Most of the experimental data are described by the single-parameter O’Melia and Ali model, and the model parameter is correlated to the collector Peclet number. PMID:15707058
Assessing first-order emulator inference for physical parameters in nonlinear mechanistic models
Hooten, Mevin B.; Leeds, William B.; Fiechter, Jerome; Wikle, Christopher K.
2011-01-01
We present an approach for estimating physical parameters in nonlinear models that relies on an approximation to the mechanistic model itself for computational efficiency. The proposed methodology is validated and applied in two different modeling scenarios: (a) Simulation and (b) lower trophic level ocean ecosystem model. The approach we develop relies on the ability to predict right singular vectors (resulting from a decomposition of computer model experimental output) based on the computer model input and an experimental set of parameters. Critically, we model the right singular vectors in terms of the model parameters via a nonlinear statistical model. Specifically, we focus our attention on first-order models of these right singular vectors rather than the second-order (covariance) structure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jorgensen, S.
Testing the behavior of metals in extreme environments is not always feasible, so material scientists use models to try and predict the behavior. To achieve accurate results it is necessary to use the appropriate model and material-specific parameters. This research evaluated the performance of six material models available in the MIDAS database [1] to determine at which temperatures and strain-rates they perform best, and to determine to which experimental data their parameters were optimized. Additionally, parameters were optimized for the Johnson-Cook model using experimental data from Lassila et al [2].
DOE Office of Scientific and Technical Information (OSTI.GOV)
Domanskyi, Sergii; Schilling, Joshua E.; Privman, Vladimir, E-mail: privman@clarkson.edu
We develop a theoretical approach that uses physiochemical kinetics modelling to describe cell population dynamics upon progression of viral infection in cell culture, which results in cell apoptosis (programmed cell death) and necrosis (direct cell death). Several model parameters necessary for computer simulation were determined by reviewing and analyzing available published experimental data. By comparing experimental data to computer modelling results, we identify the parameters that are the most sensitive to the measured system properties and allow for the best data fitting. Our model allows extraction of parameters from experimental data and also has predictive power. Using the model wemore » describe interesting time-dependent quantities that were not directly measured in the experiment and identify correlations among the fitted parameter values. Numerical simulation of viral infection progression is done by a rate-equation approach resulting in a system of “stiff” equations, which are solved by using a novel variant of the stochastic ensemble modelling approach. The latter was originally developed for coupled chemical reactions.« less
NASA Astrophysics Data System (ADS)
Machado, M. R.; Adhikari, S.; Dos Santos, J. M. C.; Arruda, J. R. F.
2018-03-01
Structural parameter estimation is affected not only by measurement noise but also by unknown uncertainties which are present in the system. Deterministic structural model updating methods minimise the difference between experimentally measured data and computational prediction. Sensitivity-based methods are very efficient in solving structural model updating problems. Material and geometrical parameters of the structure such as Poisson's ratio, Young's modulus, mass density, modal damping, etc. are usually considered deterministic and homogeneous. In this paper, the distributed and non-homogeneous characteristics of these parameters are considered in the model updating. The parameters are taken as spatially correlated random fields and are expanded in a spectral Karhunen-Loève (KL) decomposition. Using the KL expansion, the spectral dynamic stiffness matrix of the beam is expanded as a series in terms of discretized parameters, which can be estimated using sensitivity-based model updating techniques. Numerical and experimental tests involving a beam with distributed bending rigidity and mass density are used to verify the proposed method. This extension of standard model updating procedures can enhance the dynamic description of structural dynamic models.
An experimental and modeling study of isothermal charge/discharge behavior of commercial Ni-MH cells
NASA Astrophysics Data System (ADS)
Pan, Y. H.; Srinivasan, V.; Wang, C. Y.
In this study, a previously developed nickel-metal hydride (Ni-MH) battery model is applied in conjunction with experimental characterization. Important geometric parameters, including the active surface area and micro-diffusion length for both electrodes, are measured and incorporated in the model. The kinetic parameters of the oxygen evolution reaction are also characterized using constant potential experiments. Two separate equilibrium equations for the Ni electrode, one for charge and the other for discharge, are determined to provide a better description of the electrode hysteresis effect, and their use results in better agreement of simulation results with experimental data on both charge and discharge. The Ni electrode kinetic parameters are re-calibrated for the battery studied. The Ni-MH cell model coupled with the updated electrochemical properties is then used to simulate a wide range of experimental discharge and charge curves with satisfactory agreement. The experimentally validated model is used to predict and compare various charge algorithms so as to provide guidelines for application-specific optimization.
Basha, Shaik; Jaiswar, Santlal; Jha, Bhavanath
2010-09-01
The biosorption equilibrium isotherms of Ni(II) onto marine brown algae Lobophora variegata, which was chemically-modified by CaCl(2) were studied and modeled. To predict the biosorption isotherms and to determine the characteristic parameters for process design, twenty-three one-, two-, three-, four- and five-parameter isotherm models were applied to experimental data. The interaction among biosorbed molecules is attractive and biosorption is carried out on energetically different sites and is an endothermic process. The five-parameter Fritz-Schluender model gives the most accurate fit with high regression coefficient, R (2) (0.9911-0.9975) and F-ratio (118.03-179.96), and low standard error, SE (0.0902-0.0.1556) and the residual or sum of square error, SSE (0.0012-0.1789) values to all experimental data in comparison to other models. The biosorption isotherm models fitted the experimental data in the order: Fritz-Schluender (five-parameter) > Freundlich (two-parameter) > Langmuir (two-parameter) > Khan (three-parameter) > Fritz-Schluender (four-parameter). The thermodynamic parameters such as DeltaG (0), DeltaH (0) and DeltaS (0) have been determined, which indicates the sorption of Ni(II) onto L. variegata was spontaneous and endothermic in nature.
Deng, Zhimin; Tian, Tianhai
2014-07-29
The advances of systems biology have raised a large number of sophisticated mathematical models for describing the dynamic property of complex biological systems. One of the major steps in developing mathematical models is to estimate unknown parameters of the model based on experimentally measured quantities. However, experimental conditions limit the amount of data that is available for mathematical modelling. The number of unknown parameters in mathematical models may be larger than the number of observation data. The imbalance between the number of experimental data and number of unknown parameters makes reverse-engineering problems particularly challenging. To address the issue of inadequate experimental data, we propose a continuous optimization approach for making reliable inference of model parameters. This approach first uses a spline interpolation to generate continuous functions of system dynamics as well as the first and second order derivatives of continuous functions. The expanded dataset is the basis to infer unknown model parameters using various continuous optimization criteria, including the error of simulation only, error of both simulation and the first derivative, or error of simulation as well as the first and second derivatives. We use three case studies to demonstrate the accuracy and reliability of the proposed new approach. Compared with the corresponding discrete criteria using experimental data at the measurement time points only, numerical results of the ERK kinase activation module show that the continuous absolute-error criteria using both function and high order derivatives generate estimates with better accuracy. This result is also supported by the second and third case studies for the G1/S transition network and the MAP kinase pathway, respectively. This suggests that the continuous absolute-error criteria lead to more accurate estimates than the corresponding discrete criteria. We also study the robustness property of these three models to examine the reliability of estimates. Simulation results show that the models with estimated parameters using continuous fitness functions have better robustness properties than those using the corresponding discrete fitness functions. The inference studies and robustness analysis suggest that the proposed continuous optimization criteria are effective and robust for estimating unknown parameters in mathematical models.
Comparison of existing models to simulate anaerobic digestion of lipid-rich waste.
Béline, F; Rodriguez-Mendez, R; Girault, R; Bihan, Y Le; Lessard, P
2017-02-01
Models for anaerobic digestion of lipid-rich waste taking inhibition into account were reviewed and, if necessary, adjusted to the ADM1 model framework in order to compare them. Experimental data from anaerobic digestion of slaughterhouse waste at an organic loading rate (OLR) ranging from 0.3 to 1.9kgVSm -3 d -1 were used to compare and evaluate models. Experimental data obtained at low OLRs were accurately modeled whatever the model thereby validating the stoichiometric parameters used and influent fractionation. However, at higher OLRs, although inhibition parameters were optimized to reduce differences between experimental and simulated data, no model was able to accurately simulate accumulation of substrates and intermediates, mainly due to the wrong simulation of pH. A simulation using pH based on experimental data showed that acetogenesis and methanogenesis were the most sensitive steps to LCFA inhibition and enabled identification of the inhibition parameters of both steps. Copyright © 2016 Elsevier Ltd. All rights reserved.
In silico simulations of experimental protocols for cardiac modeling.
Carro, Jesus; Rodriguez, Jose Felix; Pueyo, Esther
2014-01-01
A mathematical model of the AP involves the sum of different transmembrane ionic currents and the balance of intracellular ionic concentrations. To each ionic current corresponds an equation involving several effects. There are a number of model parameters that must be identified using specific experimental protocols in which the effects are considered as independent. However, when the model complexity grows, the interaction between effects becomes increasingly important. Therefore, model parameters identified considering the different effects as independent might be misleading. In this work, a novel methodology consisting in performing in silico simulations of the experimental protocol and then comparing experimental and simulated outcomes is proposed for parameter model identification and validation. The potential of the methodology is demonstrated by validating voltage-dependent L-type calcium current (ICaL) inactivation in recently proposed human ventricular AP models with different formulations. Our results show large differences between ICaL inactivation as calculated from the model equation and ICaL inactivation from the in silico simulations due to the interaction between effects and/or to the experimental protocol. Our results suggest that, when proposing any new model formulation, consistency between such formulation and the corresponding experimental data that is aimed at being reproduced needs to be first verified considering all involved factors.
Experimental Design for Parameter Estimation of Gene Regulatory Networks
Timmer, Jens
2012-01-01
Systems biology aims for building quantitative models to address unresolved issues in molecular biology. In order to describe the behavior of biological cells adequately, gene regulatory networks (GRNs) are intensively investigated. As the validity of models built for GRNs depends crucially on the kinetic rates, various methods have been developed to estimate these parameters from experimental data. For this purpose, it is favorable to choose the experimental conditions yielding maximal information. However, existing experimental design principles often rely on unfulfilled mathematical assumptions or become computationally demanding with growing model complexity. To solve this problem, we combined advanced methods for parameter and uncertainty estimation with experimental design considerations. As a showcase, we optimized three simulated GRNs in one of the challenges from the Dialogue for Reverse Engineering Assessment and Methods (DREAM). This article presents our approach, which was awarded the best performing procedure at the DREAM6 Estimation of Model Parameters challenge. For fast and reliable parameter estimation, local deterministic optimization of the likelihood was applied. We analyzed identifiability and precision of the estimates by calculating the profile likelihood. Furthermore, the profiles provided a way to uncover a selection of most informative experiments, from which the optimal one was chosen using additional criteria at every step of the design process. In conclusion, we provide a strategy for optimal experimental design and show its successful application on three highly nonlinear dynamic models. Although presented in the context of the GRNs to be inferred for the DREAM6 challenge, the approach is generic and applicable to most types of quantitative models in systems biology and other disciplines. PMID:22815723
Keenan, Kevin G; Valero-Cuevas, Francisco J
2007-09-01
Computational models of motor-unit populations are the objective implementations of the hypothesized mechanisms by which neural and muscle properties give rise to electromyograms (EMGs) and force. However, the variability/uncertainty of the parameters used in these models--and how they affect predictions--confounds assessing these hypothesized mechanisms. We perform a large-scale computational sensitivity analysis on the state-of-the-art computational model of surface EMG, force, and force variability by combining a comprehensive review of published experimental data with Monte Carlo simulations. To exhaustively explore model performance and robustness, we ran numerous iterative simulations each using a random set of values for nine commonly measured motor neuron and muscle parameters. Parameter values were sampled across their reported experimental ranges. Convergence after 439 simulations found that only 3 simulations met our two fitness criteria: approximating the well-established experimental relations for the scaling of EMG amplitude and force variability with mean force. An additional 424 simulations preferentially sampling the neighborhood of those 3 valid simulations converged to reveal 65 additional sets of parameter values for which the model predictions approximate the experimentally known relations. We find the model is not sensitive to muscle properties but very sensitive to several motor neuron properties--especially peak discharge rates and recruitment ranges. Therefore to advance our understanding of EMG and muscle force, it is critical to evaluate the hypothesized neural mechanisms as implemented in today's state-of-the-art models of motor unit function. We discuss experimental and analytical avenues to do so as well as new features that may be added in future implementations of motor-unit models to improve their experimental validity.
Model-based high-throughput design of ion exchange protein chromatography.
Khalaf, Rushd; Heymann, Julia; LeSaout, Xavier; Monard, Florence; Costioli, Matteo; Morbidelli, Massimo
2016-08-12
This work describes the development of a model-based high-throughput design (MHD) tool for the operating space determination of a chromatographic cation-exchange protein purification process. Based on a previously developed thermodynamic mechanistic model, the MHD tool generates a large amount of system knowledge and thereby permits minimizing the required experimental workload. In particular, each new experiment is designed to generate information needed to help refine and improve the model. Unnecessary experiments that do not increase system knowledge are avoided. Instead of aspiring to a perfectly parameterized model, the goal of this design tool is to use early model parameter estimates to find interesting experimental spaces, and to refine the model parameter estimates with each new experiment until a satisfactory set of process parameters is found. The MHD tool is split into four sections: (1) prediction, high throughput experimentation using experiments in (2) diluted conditions and (3) robotic automated liquid handling workstations (robotic workstation), and (4) operating space determination and validation. (1) Protein and resin information, in conjunction with the thermodynamic model, is used to predict protein resin capacity. (2) The predicted model parameters are refined based on gradient experiments in diluted conditions. (3) Experiments on the robotic workstation are used to further refine the model parameters. (4) The refined model is used to determine operating parameter space that allows for satisfactory purification of the protein of interest on the HPLC scale. Each section of the MHD tool is used to define the adequate experimental procedures for the next section, thus avoiding any unnecessary experimental work. We used the MHD tool to design a polishing step for two proteins, a monoclonal antibody and a fusion protein, on two chromatographic resins, in order to demonstrate it has the ability to strongly accelerate the early phases of process development. Copyright © 2016 Elsevier B.V. All rights reserved.
A global sensitivity analysis approach for morphogenesis models.
Boas, Sonja E M; Navarro Jimenez, Maria I; Merks, Roeland M H; Blom, Joke G
2015-11-21
Morphogenesis is a developmental process in which cells organize into shapes and patterns. Complex, non-linear and multi-factorial models with images as output are commonly used to study morphogenesis. It is difficult to understand the relation between the uncertainty in the input and the output of such 'black-box' models, giving rise to the need for sensitivity analysis tools. In this paper, we introduce a workflow for a global sensitivity analysis approach to study the impact of single parameters and the interactions between them on the output of morphogenesis models. To demonstrate the workflow, we used a published, well-studied model of vascular morphogenesis. The parameters of this cellular Potts model (CPM) represent cell properties and behaviors that drive the mechanisms of angiogenic sprouting. The global sensitivity analysis correctly identified the dominant parameters in the model, consistent with previous studies. Additionally, the analysis provided information on the relative impact of single parameters and of interactions between them. This is very relevant because interactions of parameters impede the experimental verification of the predicted effect of single parameters. The parameter interactions, although of low impact, provided also new insights in the mechanisms of in silico sprouting. Finally, the analysis indicated that the model could be reduced by one parameter. We propose global sensitivity analysis as an alternative approach to study the mechanisms of morphogenesis. Comparison of the ranking of the impact of the model parameters to knowledge derived from experimental data and from manipulation experiments can help to falsify models and to find the operand mechanisms in morphogenesis. The workflow is applicable to all 'black-box' models, including high-throughput in vitro models in which output measures are affected by a set of experimental perturbations.
NASA Astrophysics Data System (ADS)
Henry, Christine; Kramb, Victoria; Welter, John T.; Wertz, John N.; Lindgren, Eric A.; Aldrin, John C.; Zainey, David
2018-04-01
Advances in NDE method development are greatly improved through model-guided experimentation. In the case of ultrasonic inspections, models which provide insight into complex mode conversion processes and sound propagation paths are essential for understanding the experimental data and inverting the experimental data into relevant information. However, models must also be verified using experimental data obtained under well-documented and understood conditions. Ideally, researchers would utilize the model simulations and experimental approach to efficiently converge on the optimal solution. However, variability in experimental parameters introduce extraneous signals that are difficult to differentiate from the anticipated response. This paper discusses the results of an ultrasonic experiment designed to evaluate the effect of controllable variables on the anticipated signal, and the effect of unaccounted for experimental variables on the uncertainty in those results. Controlled experimental parameters include the transducer frequency, incidence beam angle and focal depth.
Parametric study of closed wet cooling tower thermal performance
NASA Astrophysics Data System (ADS)
Qasim, S. M.; Hayder, M. J.
2017-08-01
The present study involves experimental and theoretical analysis to evaluate the thermal performance of modified Closed Wet Cooling Tower (CWCT). The experimental study includes: design, manufacture and testing prototype of a modified counter flow forced draft CWCT. The modification based on addition packing to the conventional CWCT. A series of experiments was carried out at different operational parameters. In view of energy analysis, the thermal performance parameters of the tower are: cooling range, tower approach, cooling capacity, thermal efficiency, heat and mass transfer coefficients. The theoretical study included develops Artificial Neural Network (ANN) models to predicting various thermal performance parameters of the tower. Utilizing experimental data for training and testing, the models simulated by multi-layer back propagation algorithm for varying all operational parameters stated in experimental test.
NASA Astrophysics Data System (ADS)
Hai-yang, Zhao; Min-qiang, Xu; Jin-dong, Wang; Yong-bo, Li
2015-05-01
In order to improve the accuracy of dynamics response simulation for mechanism with joint clearance, a parameter optimization method for planar joint clearance contact force model was presented in this paper, and the optimized parameters were applied to the dynamics response simulation for mechanism with oversized joint clearance fault. By studying the effect of increased clearance on the parameters of joint clearance contact force model, the relation of model parameters between different clearances was concluded. Then the dynamic equation of a two-stage reciprocating compressor with four joint clearances was developed using Lagrange method, and a multi-body dynamic model built in ADAMS software was used to solve this equation. To obtain a simulated dynamic response much closer to that of experimental tests, the parameters of joint clearance model, instead of using the designed values, were optimized by genetic algorithms approach. Finally, the optimized parameters were applied to simulate the dynamics response of model with oversized joint clearance fault according to the concluded parameter relation. The dynamics response of experimental test verified the effectiveness of this application.
Calculation of Optical Parameters of Liquid Crystals
NASA Astrophysics Data System (ADS)
Kumar, A.
2007-12-01
Validation of a modified four-parameter model describing temperature effect on liquid crystal refractive indices is being reported in the present article. This model is based upon the Vuks equation. Experimental data of ordinary and extraordinary refractive indices for two liquid crystal samples MLC-9200-000 and MLC-6608 are used to validate the above-mentioned theoretical model. Using these experimental data, birefringence, order parameter, normalized polarizabilities, and the temperature gradient of refractive indices are determined. Two methods: directly using birefringence measurements and using Haller's extrapolation procedure are adopted for the determination of order parameter. Both approches of order parameter calculation are compared. The temperature dependences of all these parameters are discussed. A close agreement between theory and experiment is obtained.
Shen, Jiajian; Tryggestad, Erik; Younkin, James E; Keole, Sameer R; Furutani, Keith M; Kang, Yixiu; Herman, Michael G; Bues, Martin
2017-10-01
To accurately model the beam delivery time (BDT) for a synchrotron-based proton spot scanning system using experimentally determined beam parameters. A model to simulate the proton spot delivery sequences was constructed, and BDT was calculated by summing times for layer switch, spot switch, and spot delivery. Test plans were designed to isolate and quantify the relevant beam parameters in the operation cycle of the proton beam therapy delivery system. These parameters included the layer switch time, magnet preparation and verification time, average beam scanning speeds in x- and y-directions, proton spill rate, and maximum charge and maximum extraction time for each spill. The experimentally determined parameters, as well as the nominal values initially provided by the vendor, served as inputs to the model to predict BDTs for 602 clinical proton beam deliveries. The calculated BDTs (T BDT ) were compared with the BDTs recorded in the treatment delivery log files (T Log ): ∆t = T Log -T BDT . The experimentally determined average layer switch time for all 97 energies was 1.91 s (ranging from 1.9 to 2.0 s for beam energies from 71.3 to 228.8 MeV), average magnet preparation and verification time was 1.93 ms, the average scanning speeds were 5.9 m/s in x-direction and 19.3 m/s in y-direction, the proton spill rate was 8.7 MU/s, and the maximum proton charge available for one acceleration is 2.0 ± 0.4 nC. Some of the measured parameters differed from the nominal values provided by the vendor. The calculated BDTs using experimentally determined parameters matched the recorded BDTs of 602 beam deliveries (∆t = -0.49 ± 1.44 s), which were significantly more accurate than BDTs calculated using nominal timing parameters (∆t = -7.48 ± 6.97 s). An accurate model for BDT prediction was achieved by using the experimentally determined proton beam therapy delivery parameters, which may be useful in modeling the interplay effect and patient throughput. The model may provide guidance on how to effectively reduce BDT and may be used to identifying deteriorating machine performance. © 2017 American Association of Physicists in Medicine.
Set-base dynamical parameter estimation and model invalidation for biochemical reaction networks.
Rumschinski, Philipp; Borchers, Steffen; Bosio, Sandro; Weismantel, Robert; Findeisen, Rolf
2010-05-25
Mathematical modeling and analysis have become, for the study of biological and cellular processes, an important complement to experimental research. However, the structural and quantitative knowledge available for such processes is frequently limited, and measurements are often subject to inherent and possibly large uncertainties. This results in competing model hypotheses, whose kinetic parameters may not be experimentally determinable. Discriminating among these alternatives and estimating their kinetic parameters is crucial to improve the understanding of the considered process, and to benefit from the analytical tools at hand. In this work we present a set-based framework that allows to discriminate between competing model hypotheses and to provide guaranteed outer estimates on the model parameters that are consistent with the (possibly sparse and uncertain) experimental measurements. This is obtained by means of exact proofs of model invalidity that exploit the polynomial/rational structure of biochemical reaction networks, and by making use of an efficient strategy to balance solution accuracy and computational effort. The practicability of our approach is illustrated with two case studies. The first study shows that our approach allows to conclusively rule out wrong model hypotheses. The second study focuses on parameter estimation, and shows that the proposed method allows to evaluate the global influence of measurement sparsity, uncertainty, and prior knowledge on the parameter estimates. This can help in designing further experiments leading to improved parameter estimates.
Set-base dynamical parameter estimation and model invalidation for biochemical reaction networks
2010-01-01
Background Mathematical modeling and analysis have become, for the study of biological and cellular processes, an important complement to experimental research. However, the structural and quantitative knowledge available for such processes is frequently limited, and measurements are often subject to inherent and possibly large uncertainties. This results in competing model hypotheses, whose kinetic parameters may not be experimentally determinable. Discriminating among these alternatives and estimating their kinetic parameters is crucial to improve the understanding of the considered process, and to benefit from the analytical tools at hand. Results In this work we present a set-based framework that allows to discriminate between competing model hypotheses and to provide guaranteed outer estimates on the model parameters that are consistent with the (possibly sparse and uncertain) experimental measurements. This is obtained by means of exact proofs of model invalidity that exploit the polynomial/rational structure of biochemical reaction networks, and by making use of an efficient strategy to balance solution accuracy and computational effort. Conclusions The practicability of our approach is illustrated with two case studies. The first study shows that our approach allows to conclusively rule out wrong model hypotheses. The second study focuses on parameter estimation, and shows that the proposed method allows to evaluate the global influence of measurement sparsity, uncertainty, and prior knowledge on the parameter estimates. This can help in designing further experiments leading to improved parameter estimates. PMID:20500862
Uncertainty quantification for constitutive model calibration of brain tissue.
Brewick, Patrick T; Teferra, Kirubel
2018-05-31
The results of a study comparing model calibration techniques for Ogden's constitutive model that describes the hyperelastic behavior of brain tissue are presented. One and two-term Ogden models are fit to two different sets of stress-strain experimental data for brain tissue using both least squares optimization and Bayesian estimation. For the Bayesian estimation, the joint posterior distribution of the constitutive parameters is calculated by employing Hamiltonian Monte Carlo (HMC) sampling, a type of Markov Chain Monte Carlo method. The HMC method is enriched in this work to intrinsically enforce the Drucker stability criterion by formulating a nonlinear parameter constraint function, which ensures the constitutive model produces physically meaningful results. Through application of the nested sampling technique, 95% confidence bounds on the constitutive model parameters are identified, and these bounds are then propagated through the constitutive model to produce the resultant bounds on the stress-strain response. The behavior of the model calibration procedures and the effect of the characteristics of the experimental data are extensively evaluated. It is demonstrated that increasing model complexity (i.e., adding an additional term in the Ogden model) improves the accuracy of the best-fit set of parameters while also increasing the uncertainty via the widening of the confidence bounds of the calibrated parameters. Despite some similarity between the two data sets, the resulting distributions are noticeably different, highlighting the sensitivity of the calibration procedures to the characteristics of the data. For example, the amount of uncertainty reported on the experimental data plays an essential role in how data points are weighted during the calibration, and this significantly affects how the parameters are calibrated when combining experimental data sets from disparate sources. Published by Elsevier Ltd.
Advanced Method to Estimate Fuel Slosh Simulation Parameters
NASA Technical Reports Server (NTRS)
Schlee, Keith; Gangadharan, Sathya; Ristow, James; Sudermann, James; Walker, Charles; Hubert, Carl
2005-01-01
The nutation (wobble) of a spinning spacecraft in the presence of energy dissipation is a well-known problem in dynamics and is of particular concern for space missions. The nutation of a spacecraft spinning about its minor axis typically grows exponentially and the rate of growth is characterized by the Nutation Time Constant (NTC). For launch vehicles using spin-stabilized upper stages, fuel slosh in the spacecraft propellant tanks is usually the primary source of energy dissipation. For analytical prediction of the NTC this fuel slosh is commonly modeled using simple mechanical analogies such as pendulums or rigid rotors coupled to the spacecraft. Identifying model parameter values which adequately represent the sloshing dynamics is the most important step in obtaining an accurate NTC estimate. Analytic determination of the slosh model parameters has met with mixed success and is made even more difficult by the introduction of propellant management devices and elastomeric diaphragms. By subjecting full-sized fuel tanks with actual flight fuel loads to motion similar to that experienced in flight and measuring the forces experienced by the tanks these parameters can be determined experimentally. Currently, the identification of the model parameters is a laborious trial-and-error process in which the equations of motion for the mechanical analog are hand-derived, evaluated, and their results are compared with the experimental results. The proposed research is an effort to automate the process of identifying the parameters of the slosh model using a MATLAB/SimMechanics-based computer simulation of the experimental setup. Different parameter estimation and optimization approaches are evaluated and compared in order to arrive at a reliable and effective parameter identification process. To evaluate each parameter identification approach, a simple one-degree-of-freedom pendulum experiment is constructed and motion is induced using an electric motor. By applying the estimation approach to a simple, accurately modeled system, its effectiveness and accuracy can be evaluated. The same experimental setup can then be used with fluid-filled tanks to further evaluate the effectiveness of the process. Ultimately, the proven process can be applied to the full-sized spinning experimental setup to quickly and accurately determine the slosh model parameters for a particular spacecraft mission. Automating the parameter identification process will save time, allow more changes to be made to proposed designs, and lower the cost in the initial design stages.
Tong, Xuming; Chen, Jinghang; Miao, Hongyu; Li, Tingting; Zhang, Le
2015-01-01
Agent-based models (ABM) and differential equations (DE) are two commonly used methods for immune system simulation. However, it is difficult for ABM to estimate key parameters of the model by incorporating experimental data, whereas the differential equation model is incapable of describing the complicated immune system in detail. To overcome these problems, we developed an integrated ABM regression model (IABMR). It can combine the advantages of ABM and DE by employing ABM to mimic the multi-scale immune system with various phenotypes and types of cells as well as using the input and output of ABM to build up the Loess regression for key parameter estimation. Next, we employed the greedy algorithm to estimate the key parameters of the ABM with respect to the same experimental data set and used ABM to describe a 3D immune system similar to previous studies that employed the DE model. These results indicate that IABMR not only has the potential to simulate the immune system at various scales, phenotypes and cell types, but can also accurately infer the key parameters like DE model. Therefore, this study innovatively developed a complex system development mechanism that could simulate the complicated immune system in detail like ABM and validate the reliability and efficiency of model like DE by fitting the experimental data. PMID:26535589
Parameter estimation for lithium ion batteries
NASA Astrophysics Data System (ADS)
Santhanagopalan, Shriram
With an increase in the demand for lithium based batteries at the rate of about 7% per year, the amount of effort put into improving the performance of these batteries from both experimental and theoretical perspectives is increasing. There exist a number of mathematical models ranging from simple empirical models to complicated physics-based models to describe the processes leading to failure of these cells. The literature is also rife with experimental studies that characterize the various properties of the system in an attempt to improve the performance of lithium ion cells. However, very little has been done to quantify the experimental observations and relate these results to the existing mathematical models. In fact, the best of the physics based models in the literature show as much as 20% discrepancy when compared to experimental data. The reasons for such a big difference include, but are not limited to, numerical complexities involved in extracting parameters from experimental data and inconsistencies in interpreting directly measured values for the parameters. In this work, an attempt has been made to implement simplified models to extract parameter values that accurately characterize the performance of lithium ion cells. The validity of these models under a variety of experimental conditions is verified using a model discrimination procedure. Transport and kinetic properties are estimated using a non-linear estimation procedure. The initial state of charge inside each electrode is also maintained as an unknown parameter, since this value plays a significant role in accurately matching experimental charge/discharge curves with model predictions and is not readily known from experimental data. The second part of the dissertation focuses on parameters that change rapidly with time. For example, in the case of lithium ion batteries used in Hybrid Electric Vehicle (HEV) applications, the prediction of the State of Charge (SOC) of the cell under a variety of road conditions is important. An algorithm to predict the SOC in time intervals as small as 5 ms is of critical demand. In such cases, the conventional non-linear estimation procedure is not time-effective. There exist methodologies in the literature, such as those based on fuzzy logic; however, these techniques require a lot of computational storage space. Consequently, it is not possible to implement such techniques on a micro-chip for integration as a part of a real-time device. The Extended Kalman Filter (EKF) based approach presented in this work is a first step towards developing an efficient method to predict online, the State of Charge of a lithium ion cell based on an electrochemical model. The final part of the dissertation focuses on incorporating uncertainty in parameter values into electrochemical models using the polynomial chaos theory (PCT).
NASA Astrophysics Data System (ADS)
Turnbull, Heather; Omenzetter, Piotr
2018-03-01
vDifficulties associated with current health monitoring and inspection practices combined with harsh, often remote, operational environments of wind turbines highlight the requirement for a non-destructive evaluation system capable of remotely monitoring the current structural state of turbine blades. This research adopted a physics based structural health monitoring methodology through calibration of a finite element model using inverse techniques. A 2.36m blade from a 5kW turbine was used as an experimental specimen, with operational modal analysis techniques utilised to realize the modal properties of the system. Modelling the experimental responses as fuzzy numbers using the sub-level technique, uncertainty in the response parameters was propagated back through the model and into the updating parameters. Initially, experimental responses of the blade were obtained, with a numerical model of the blade created and updated. Deterministic updating was carried out through formulation and minimisation of a deterministic objective function using both firefly algorithm and virus optimisation algorithm. Uncertainty in experimental responses were modelled using triangular membership functions, allowing membership functions of updating parameters (Young's modulus and shear modulus) to be obtained. Firefly algorithm and virus optimisation algorithm were again utilised, however, this time in the solution of fuzzy objective functions. This enabled uncertainty associated with updating parameters to be quantified. Varying damage location and severity was simulated experimentally through addition of small masses to the structure intended to cause a structural alteration. A damaged model was created, modelling four variable magnitude nonstructural masses at predefined points and updated to provide a deterministic damage prediction and information in relation to the parameters uncertainty via fuzzy updating.
Yoschenko, V I; Kashparov, V A; Levchuk, S E; Glukhovskiy, A S; Khomutinin, Yu V; Protsak, V P; Lundin, S M; Tschiersch, J
2006-01-01
To predict parameters of radionuclide resuspension, transport and deposition during forest and grassland fires, several model modules were developed and adapted. Experimental data of controlled burning of prepared experimental plots in the Chernobyl exclusion zone have been used to evaluate the prognostic power of the models. The predicted trajectories and elevations of the plume match with those visually observed during the fire experiments in the grassland and forest sites. Experimentally determined parameters could be successfully used for the calculation of the initial plume parameters which provide the tools for the description of various fire scenarios and enable prognostic calculations. In summary, the model predicts a release of some per thousand from the radionuclide inventory of the fuel material by the grassland fires. During the forest fire, up to 4% of (137)Cs and (90)Sr and up to 1% of the Pu isotopes can be released from the forest litter according to the model calculations. However, these results depend on the parameters of the fire events. In general, the modeling results are in good accordance with the experimental data. Therefore, the considered models were successfully validated and can be recommended for the assessment of the resuspension and redistribution of radionuclides during grassland and forest fires in contaminated territories.
NASA Astrophysics Data System (ADS)
Cara, Javier
2016-05-01
Modal parameters comprise natural frequencies, damping ratios, modal vectors and modal masses. In a theoretic framework, these parameters are the basis for the solution of vibration problems using the theory of modal superposition. In practice, they can be computed from input-output vibration data: the usual procedure is to estimate a mathematical model from the data and then to compute the modal parameters from the estimated model. The most popular models for input-output data are based on the frequency response function, but in recent years the state space model in the time domain has become popular among researchers and practitioners of modal analysis with experimental data. In this work, the equations to compute the modal parameters from the state space model when input and output data are available (like in combined experimental-operational modal analysis) are derived in detail using invariants of the state space model: the equations needed to compute natural frequencies, damping ratios and modal vectors are well known in the operational modal analysis framework, but the equation needed to compute the modal masses has not generated much interest in technical literature. These equations are applied to both a numerical simulation and an experimental study in the last part of the work.
A lateral dynamics of a wheelchair: identification and analysis of tire parameters.
Silva, L C A; Corrêa, F C; Eckert, J J; Santiciolli, F M; Dedini, F G
2017-02-01
In vehicle dynamics studies, the tire behaviour plays an important role in planar motion of the vehicle. Therefore, a correct representation of tire is a necessity. This paper describes a mathematical model for wheelchair tire based on the Magic Formula model. This model is widely used to represent forces and moments between the tire and the ground; however some experimental parameters must be determined. The purpose of this work is to identify the tire parameters for the wheelchair tire model, implementing them in a dynamic model of the wheelchair. For this, we developed an experimental test rig to measure the tires parameters for the lateral dynamics of a wheelchair. This dynamic model was made using a multi-body software and the wheelchair behaviour was analysed and discussed according to the tire parameters. The result of this work is one step further towards the understanding of wheelchair dynamics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Z. Q.; Chim, W. K.; Chiam, S. Y
2011-11-01
In this work, photoelectron spectroscopy is used to characterize the band alignment of lanthanum aluminate heterostructures which possess a wide range of potential applications. It is found that our experimental slope parameter agrees with theory using the metal-induced gap states model while the interface induced gap states (IFIGS) model yields unsatisfactory results. We show that this discrepancy can be attributed to the correlation between the dielectric work function and the electronegativity in the IFIGS model. It is found that the original trend, as established largely by metals, may not be accurate for larger band gap materials. By using a newmore » correlation, our experimental data shows good agreement of the slope parameter using the IFIGS model. This correlation, therefore, plays a crucial role in heterostructures involving wider bandgap materials for accurate band alignment prediction using the IFIGS model.« less
A Probabilistic Approach to Model Update
NASA Technical Reports Server (NTRS)
Horta, Lucas G.; Reaves, Mercedes C.; Voracek, David F.
2001-01-01
Finite element models are often developed for load validation, structural certification, response predictions, and to study alternate design concepts. In rare occasions, models developed with a nominal set of parameters agree with experimental data without the need to update parameter values. Today, model updating is generally heuristic and often performed by a skilled analyst with in-depth understanding of the model assumptions. Parameter uncertainties play a key role in understanding the model update problem and therefore probabilistic analysis tools, developed for reliability and risk analysis, may be used to incorporate uncertainty in the analysis. In this work, probability analysis (PA) tools are used to aid the parameter update task using experimental data and some basic knowledge of potential error sources. Discussed here is the first application of PA tools to update parameters of a finite element model for a composite wing structure. Static deflection data at six locations are used to update five parameters. It is shown that while prediction of individual response values may not be matched identically, the system response is significantly improved with moderate changes in parameter values.
NASA Astrophysics Data System (ADS)
Goudarzi, Shervin; Amrollahi, R.; Niknam Sharak, M.
2014-06-01
In this paper the results of the numerical simulation for Amirkabir Mather-type Plasma Focus Facility (16 kV, 36μF and 115 nH) in several experiments with Argon as working gas at different working conditions (different discharge voltages and gas pressures) have been presented and compared with the experimental results. Two different models have been used for simulation: five-phase model of Lee and lumped parameter model of Gonzalez. It is seen that the results (optimum pressures and current signals) of the Lee model at different working conditions show better agreement than lumped parameter model with experimental values.
Aerothermal modeling, phase 1. Volume 2: Experimental data
NASA Technical Reports Server (NTRS)
Kenworthy, M. J.; Correa, S. M.; Burrus, D. L.
1983-01-01
The experimental test effort is discussed. The test data are presented. The compilation is divided into sets representing each of the 18 experimental configurations tested. A detailed description of each configuration, and plots of the temperature difference ratio parameter or pattern factor parameter calculated from the test data are also provided.
2014-01-01
Background Accurate estimation of parameters of biochemical models is required to characterize the dynamics of molecular processes. This problem is intimately linked to identifying the most informative experiments for accomplishing such tasks. While significant progress has been made, effective experimental strategies for parameter identification and for distinguishing among alternative network topologies remain unclear. We approached these questions in an unbiased manner using a unique community-based approach in the context of the DREAM initiative (Dialogue for Reverse Engineering Assessment of Methods). We created an in silico test framework under which participants could probe a network with hidden parameters by requesting a range of experimental assays; results of these experiments were simulated according to a model of network dynamics only partially revealed to participants. Results We proposed two challenges; in the first, participants were given the topology and underlying biochemical structure of a 9-gene regulatory network and were asked to determine its parameter values. In the second challenge, participants were given an incomplete topology with 11 genes and asked to find three missing links in the model. In both challenges, a budget was provided to buy experimental data generated in silico with the model and mimicking the features of different common experimental techniques, such as microarrays and fluorescence microscopy. Data could be bought at any stage, allowing participants to implement an iterative loop of experiments and computation. Conclusions A total of 19 teams participated in this competition. The results suggest that the combination of state-of-the-art parameter estimation and a varied set of experimental methods using a few datasets, mostly fluorescence imaging data, can accurately determine parameters of biochemical models of gene regulation. However, the task is considerably more difficult if the gene network topology is not completely defined, as in challenge 2. Importantly, we found that aggregating independent parameter predictions and network topology across submissions creates a solution that can be better than the one from the best-performing submission. PMID:24507381
Experimental analysis and simulation calculation of the inductances of loosely coupled transformer
NASA Astrophysics Data System (ADS)
Kerui, Chen; Yang, Han; Yan, Zhang; Nannan, Gao; Ying, Pei; Hongbo, Li; Pei, Li; Liangfeng, Guo
2017-11-01
The experimental design of iron-core wireless power transmission system is designed, and an experimental model of loosely coupled transformer is built. Measuring the air gap on both sides of the transformer 15mm inductor under the parameters. The feasibility and feasibility of using the finite element method to calculate the coil inductance parameters of the loosely coupled transformer are analyzed. The system was modeled by ANSYS, and the magnetic field was calculated by finite element method, and the inductance parameters were calculated. The finite element method is used to calculate the inductive parameters of the loosely coupled transformer, and the basis for the accurate compensation of the capacitance of the wireless power transmission system is established.
Flassig, Robert J; Migal, Iryna; der Zalm, Esther van; Rihko-Struckmann, Liisa; Sundmacher, Kai
2015-01-16
Understanding the dynamics of biological processes can substantially be supported by computational models in the form of nonlinear ordinary differential equations (ODE). Typically, this model class contains many unknown parameters, which are estimated from inadequate and noisy data. Depending on the ODE structure, predictions based on unmeasured states and associated parameters are highly uncertain, even undetermined. For given data, profile likelihood analysis has been proven to be one of the most practically relevant approaches for analyzing the identifiability of an ODE structure, and thus model predictions. In case of highly uncertain or non-identifiable parameters, rational experimental design based on various approaches has shown to significantly reduce parameter uncertainties with minimal amount of effort. In this work we illustrate how to use profile likelihood samples for quantifying the individual contribution of parameter uncertainty to prediction uncertainty. For the uncertainty quantification we introduce the profile likelihood sensitivity (PLS) index. Additionally, for the case of several uncertain parameters, we introduce the PLS entropy to quantify individual contributions to the overall prediction uncertainty. We show how to use these two criteria as an experimental design objective for selecting new, informative readouts in combination with intervention site identification. The characteristics of the proposed multi-criterion objective are illustrated with an in silico example. We further illustrate how an existing practically non-identifiable model for the chlorophyll fluorescence induction in a photosynthetic organism, D. salina, can be rendered identifiable by additional experiments with new readouts. Having data and profile likelihood samples at hand, the here proposed uncertainty quantification based on prediction samples from the profile likelihood provides a simple way for determining individual contributions of parameter uncertainties to uncertainties in model predictions. The uncertainty quantification of specific model predictions allows identifying regions, where model predictions have to be considered with care. Such uncertain regions can be used for a rational experimental design to render initially highly uncertain model predictions into certainty. Finally, our uncertainty quantification directly accounts for parameter interdependencies and parameter sensitivities of the specific prediction.
NASA Technical Reports Server (NTRS)
Perez, Jose G.; Parks, Russel, A.; Lazor, Daniel R.
2012-01-01
The slosh dynamics of propellant tanks can be represented by an equivalent mass-pendulum-dashpot mechanical model. The parameters of this equivalent model, identified as slosh mechanical model parameters, are slosh frequency, slosh mass, and pendulum hinge point location. They can be obtained by both analysis and testing for discrete fill levels. Anti-slosh baffles are usually needed in propellant tanks to control the movement of the fluid inside the tank. Lateral slosh testing, involving both random excitation testing and free-decay testing, are performed to validate the slosh mechanical model parameters and the damping added to the fluid by the anti-slosh baffles. Traditional modal analysis procedures were used to extract the parameters from the experimental data. Test setup of sub-scale tanks will be described. A comparison between experimental results and analysis will be presented.
NASA Technical Reports Server (NTRS)
Perez, Jose G.; Parks, Russel A.; Lazor, Daniel R.
2012-01-01
The slosh dynamics of propellant tanks can be represented by an equivalent pendulum-mass mechanical model. The parameters of this equivalent model, identified as slosh model parameters, are slosh mass, slosh mass center of gravity, slosh frequency, and smooth-wall damping. They can be obtained by both analysis and testing for discrete fill heights. Anti-slosh baffles are usually needed in propellant tanks to control the movement of the fluid inside the tank. Lateral slosh testing, involving both random testing and free-decay testing, are performed to validate the slosh model parameters and the damping added to the fluid by the anti-slosh baffles. Traditional modal analysis procedures are used to extract the parameters from the experimental data. Test setup of sub-scale test articles of cylindrical and spherical shapes will be described. A comparison between experimental results and analysis will be presented.
Experiment Analysis and Modelling of Compaction Behaviour of Ag60Cu30Sn10 Mixed Metal Powders
NASA Astrophysics Data System (ADS)
Zhou, Mengcheng; Huang, Shangyu; Liu, Wei; Lei, Yu; Yan, Shiwei
2018-03-01
A novel process method combines powder compaction and sintering was employed to fabricate thin sheets of cadmium-free silver based filler metals, the compaction densification behaviour of Ag60Cu30Sn10 mixed metal powders was investigated experimentally. Based on the equivalent density method, the density-dependent Drucker-Prager Cap (DPC) model was introduced to model the powder compaction behaviour. Various experiment procedures were completed to determine the model parameters. The friction coefficients in lubricated and unlubricated die were experimentally determined. The determined material parameters were validated by experiments and numerical simulation of powder compaction process using a user subroutine (USDFLD) in ABAQUS/Standard. The good agreement between the simulated and experimental results indicates that the determined model parameters are able to describe the compaction behaviour of the multicomponent mixed metal powders, which can be further used for process optimization simulations.
Band head spin assignment of superdeformed bands in 133Pr using two-parameter formulae
NASA Astrophysics Data System (ADS)
Sharma, Honey; Mittal, H. M.
2018-03-01
The two-parameter formulae viz. the power index formula, the nuclear softness formula and the VMI model are adopted to accredit the band head spin (I0) of four superdeformed rotational bands in 133Pr. The technique of least square fitting is used to accredit the band head spin for four superdeformed rotational bands in 133Pr. The root mean deviation among the computed transition energies and well-known experimental transition energies are attained by extracting the model parameters from the two-parameter formulae. The determined transition energies are in excellent agreement with the experimental transition energies, whenever exact spins are accredited. The power index formula coincides well with the experimental data and provides minimum root mean deviation. So, the power index formula is more efficient tool than the nuclear softness formula and the VMI model. The deviation of dynamic moment of inertia J(2) against the rotational frequency is also examined.
Jiang, Yang; Zhang, Haiyang; Feng, Wei; Tan, Tianwei
2015-12-28
Metal ions play an important role in the catalysis of metalloenzymes. To investigate metalloenzymes via molecular modeling, a set of accurate force field parameters for metal ions is highly imperative. To extend its application range and improve the performance, the dummy atom model of metal ions was refined through a simple parameter screening strategy using the Mg(2+) ion as an example. Using the AMBER ff03 force field with the TIP3P model, the refined model accurately reproduced the experimental geometric and thermodynamic properties of Mg(2+). Compared with point charge models and previous dummy atom models, the refined dummy atom model yields an enhanced performance for producing reliable ATP/GTP-Mg(2+)-protein conformations in three metalloenzyme systems with single or double metal centers. Similar to other unbounded models, the refined model failed to reproduce the Mg-Mg distance and favored a monodentate binding of carboxylate groups, and these drawbacks needed to be considered with care. The outperformance of the refined model is mainly attributed to the use of a revised (more accurate) experimental solvation free energy and a suitable free energy correction protocol. This work provides a parameter screening strategy that can be readily applied to refine the dummy atom models for metal ions.
Parameter Estimation for Viscoplastic Material Modeling
NASA Technical Reports Server (NTRS)
Saleeb, Atef F.; Gendy, Atef S.; Wilt, Thomas E.
1997-01-01
A key ingredient in the design of engineering components and structures under general thermomechanical loading is the use of mathematical constitutive models (e.g. in finite element analysis) capable of accurate representation of short and long term stress/deformation responses. In addition to the ever-increasing complexity of recent viscoplastic models of this type, they often also require a large number of material constants to describe a host of (anticipated) physical phenomena and complicated deformation mechanisms. In turn, the experimental characterization of these material parameters constitutes the major factor in the successful and effective utilization of any given constitutive model; i.e., the problem of constitutive parameter estimation from experimental measurements.
Forecasting impact injuries of unrestrained occupants in railway vehicle passenger compartments.
Xie, Suchao; Zhou, Hui
2014-01-01
In order to predict the injury parameters of the occupants corresponding to different experimental parameters and to determine impact injury indices conveniently and efficiently, a model forecasting occupant impact injury was established in this work. The work was based on finite experimental observation values obtained by numerical simulation. First, the various factors influencing the impact injuries caused by the interaction between unrestrained occupants and the compartment's internal structures were collated and the most vulnerable regions of the occupant's body were analyzed. Then, the forecast model was set up based on a genetic algorithm-back propagation (GA-BP) hybrid algorithm, which unified the individual characteristics of the back propagation-artificial neural network (BP-ANN) model and the genetic algorithm (GA). The model was well suited to studies of occupant impact injuries and allowed multiple-parameter forecasts of the occupant impact injuries to be realized assuming values for various influencing factors. Finally, the forecast results for three types of secondary collision were analyzed using forecasting accuracy evaluation methods. All of the results showed the ideal accuracy of the forecast model. When an occupant faced a table, the relative errors between the predicted and experimental values of the respective injury parameters were kept within ± 6.0 percent and the average relative error (ARE) values did not exceed 3.0 percent. When an occupant faced a seat, the relative errors between the predicted and experimental values of the respective injury parameters were kept within ± 5.2 percent and the ARE values did not exceed 3.1 percent. When the occupant faced another occupant, the relative errors between the predicted and experimental values of the respective injury parameters were kept within ± 6.3 percent and the ARE values did not exceed 3.8 percent. The injury forecast model established in this article reduced repeat experiment times and improved the design efficiency of the internal compartment's structure parameters, and it provided a new way for assessing the safety performance of the interior structural parameters in existing, and newly designed, railway vehicle compartments.
Pogliani, Lionello
2010-01-30
Twelve properties of a highly heterogeneous class of organic solvents have been modeled with a graph-theoretical molecular connectivity modified (MC) method, which allows to encode the core electrons and the hydrogen atoms. The graph-theoretical method uses the concepts of simple, general, and complete graphs, where these last types of graphs are used to encode the core electrons. The hydrogen atoms have been encoded by the aid of a graph-theoretical perturbation parameter, which contributes to the definition of the valence delta, delta(v), a key parameter in molecular connectivity studies. The model of the twelve properties done with a stepwise search algorithm is always satisfactory, and it allows to check the influence of the hydrogen content of the solvent molecules on the choice of the type of descriptor. A similar argument holds for the influence of the halogen atoms on the type of core electron representation. In some cases the molar mass, and in a minor way, special "ad hoc" parameters have been used to improve the model. A very good model of the surface tension could be obtained by the aid of five experimental parameters. A mixed model method based on experimental parameters plus molecular connectivity indices achieved, instead, to consistently improve the model quality of five properties. To underline is the importance of the boiling point temperatures as descriptors in these last two model methodologies. Copyright 2009 Wiley Periodicals, Inc.
Viability of Cross-Flow Fan with Helical Blades for Vertical Take-off and Landing Aircraft
2012-09-01
fluid dynamics (CFD) software, ANSYS - CFX , a three-dimensional (3-D) straight-bladed model was validated against previous study’s experimental results...computational fluid dynamics software (CFD), ANSYS - CFX , a three-dimensional (3-D) straight-bladed model was validated against previous study’s experimental...37 B. SIZING PARAMETERS AND ILLUSTRATION ................................. 37 APPENDIX B. ANSYS CFX PARAMETERS
Inverse problems in the design, modeling and testing of engineering systems
NASA Technical Reports Server (NTRS)
Alifanov, Oleg M.
1991-01-01
Formulations, classification, areas of application, and approaches to solving different inverse problems are considered for the design of structures, modeling, and experimental data processing. Problems in the practical implementation of theoretical-experimental methods based on solving inverse problems are analyzed in order to identify mathematical models of physical processes, aid in input data preparation for design parameter optimization, help in design parameter optimization itself, and to model experiments, large-scale tests, and real tests of engineering systems.
The validation of a generalized Hooke's law for coronary arteries.
Wang, Chong; Zhang, Wei; Kassab, Ghassan S
2008-01-01
The exponential form of constitutive model is widely used in biomechanical studies of blood vessels. There are two main issues, however, with this model: 1) the curve fits of experimental data are not always satisfactory, and 2) the material parameters may be oversensitive. A new type of strain measure in a generalized Hooke's law for blood vessels was recently proposed by our group to address these issues. The new model has one nonlinear parameter and six linear parameters. In this study, the stress-strain equation is validated by fitting the model to experimental data of porcine coronary arteries. Material constants of left anterior descending artery and right coronary artery for the Hooke's law were computed with a separable nonlinear least-squares method with an excellent goodness of fit. A parameter sensitivity analysis shows that the stability of material constants is improved compared with the exponential model and a biphasic model. A boundary value problem was solved to demonstrate that the model prediction can match the measured arterial deformation under experimental loading conditions. The validated constitutive relation will serve as a basis for the solution of various boundary value problems of cardiovascular biomechanics.
NASA Astrophysics Data System (ADS)
Gambino, James; Tarver, Craig; Springer, H. Keo; White, Bradley; Fried, Laurence
2017-06-01
We present a novel method for optimizing parameters of the Ignition and Growth reactive flow (I&G) model for high explosives. The I&G model can yield accurate predictions of experimental observations. However, calibrating the model is a time-consuming task especially with multiple experiments. In this study, we couple the differential evolution global optimization algorithm to simulations of shock initiation experiments in the multi-physics code ALE3D. We develop parameter sets for HMX based explosives LX-07 and LX-10. The optimization finds the I&G model parameters that globally minimize the difference between calculated and experimental shock time of arrival at embedded pressure gauges. This work was performed under the auspices of the U.S. DOE by LLNL under contract DE-AC52-07NA27344. LLNS, LLC LLNL-ABS- 724898.
Kumar, B Shiva; Venkateswarlu, Ch
2014-08-01
The complex nature of biological reactions in biofilm reactors often poses difficulties in analyzing such reactors experimentally. Mathematical models could be very useful for their design and analysis. However, application of biofilm reactor models to practical problems proves somewhat ineffective due to the lack of knowledge of accurate kinetic models and uncertainty in model parameters. In this work, we propose an inverse modeling approach based on tabu search (TS) to estimate the parameters of kinetic and film thickness models. TS is used to estimate these parameters as a consequence of the validation of the mathematical models of the process with the aid of measured data obtained from an experimental fixed-bed anaerobic biofilm reactor involving the treatment of pharmaceutical industry wastewater. The results evaluated for different modeling configurations of varying degrees of complexity illustrate the effectiveness of TS for accurate estimation of kinetic and film thickness model parameters of the biofilm process. The results show that the two-dimensional mathematical model with Edward kinetics (with its optimum parameters as mu(max)rho(s)/Y = 24.57, Ks = 1.352 and Ki = 102.36) and three-parameter film thickness expression (with its estimated parameters as a = 0.289 x 10(-5), b = 1.55 x 10(-4) and c = 15.2 x 10(-6)) better describes the biofilm reactor treating the industry wastewater.
Validation and upgrading of physically based mathematical models
NASA Technical Reports Server (NTRS)
Duval, Ronald
1992-01-01
The validation of the results of physically-based mathematical models against experimental results was discussed. Systematic techniques are used for: (1) isolating subsets of the simulator mathematical model and comparing the response of each subset to its experimental response for the same input conditions; (2) evaluating the response error to determine whether it is the result of incorrect parameter values, incorrect structure of the model subset, or unmodeled external effects of cross coupling; and (3) modifying and upgrading the model and its parameter values to determine the most physically appropriate combination of changes.
The estimation of material and patch parameters in a PDE-based circular plate model
NASA Technical Reports Server (NTRS)
Banks, H. T.; Smith, Ralph C.; Brown, D. E.; Metcalf, Vern L.; Silcox, R. J.
1995-01-01
The estimation of material and patch parameters for a system involving a circular plate, to which piezoceramic patches are bonded, is considered. A partial differential equation (PDE) model for the thin circular plate is used with the passive and active contributions form the patches included in the internal and external bending moments. This model contains piecewise constant parameters describing the density, flexural rigidity, Poisson ratio, and Kelvin-Voigt damping for the system as well as patch constants and a coefficient for viscous air damping. Examples demonstrating the estimation of these parameters with experimental acceleration data and a variety of inputs to the experimental plate are presented. By using a physically-derived PDE model to describe the system, parameter sets consistent across experiments are obtained, even when phenomena such as damping due to electric circuits affect the system dynamics.
Seven-parameter statistical model for BRDF in the UV band.
Bai, Lu; Wu, Zhensen; Zou, Xiren; Cao, Yunhua
2012-05-21
A new semi-empirical seven-parameter BRDF model is developed in the UV band using experimentally measured data. The model is based on the five-parameter model of Wu and the fourteen-parameter model of Renhorn and Boreman. Surface scatter, bulk scatter and retro-reflection scatter are considered. An optimizing modeling method, the artificial immune network genetic algorithm, is used to fit the BRDF measurement data over a wide range of incident angles. The calculation time and accuracy of the five- and seven-parameter models are compared. After fixing the seven parameters, the model can well describe scattering data in the UV band.
Model Selection in Systems Biology Depends on Experimental Design
Silk, Daniel; Kirk, Paul D. W.; Barnes, Chris P.; Toni, Tina; Stumpf, Michael P. H.
2014-01-01
Experimental design attempts to maximise the information available for modelling tasks. An optimal experiment allows the inferred models or parameters to be chosen with the highest expected degree of confidence. If the true system is faithfully reproduced by one of the models, the merit of this approach is clear - we simply wish to identify it and the true parameters with the most certainty. However, in the more realistic situation where all models are incorrect or incomplete, the interpretation of model selection outcomes and the role of experimental design needs to be examined more carefully. Using a novel experimental design and model selection framework for stochastic state-space models, we perform high-throughput in-silico analyses on families of gene regulatory cascade models, to show that the selected model can depend on the experiment performed. We observe that experimental design thus makes confidence a criterion for model choice, but that this does not necessarily correlate with a model's predictive power or correctness. Finally, in the special case of linear ordinary differential equation (ODE) models, we explore how wrong a model has to be before it influences the conclusions of a model selection analysis. PMID:24922483
Model selection in systems biology depends on experimental design.
Silk, Daniel; Kirk, Paul D W; Barnes, Chris P; Toni, Tina; Stumpf, Michael P H
2014-06-01
Experimental design attempts to maximise the information available for modelling tasks. An optimal experiment allows the inferred models or parameters to be chosen with the highest expected degree of confidence. If the true system is faithfully reproduced by one of the models, the merit of this approach is clear - we simply wish to identify it and the true parameters with the most certainty. However, in the more realistic situation where all models are incorrect or incomplete, the interpretation of model selection outcomes and the role of experimental design needs to be examined more carefully. Using a novel experimental design and model selection framework for stochastic state-space models, we perform high-throughput in-silico analyses on families of gene regulatory cascade models, to show that the selected model can depend on the experiment performed. We observe that experimental design thus makes confidence a criterion for model choice, but that this does not necessarily correlate with a model's predictive power or correctness. Finally, in the special case of linear ordinary differential equation (ODE) models, we explore how wrong a model has to be before it influences the conclusions of a model selection analysis.
Wen, Jessica; Koo, Soh Myoung; Lape, Nancy
2018-02-01
While predictive models of transdermal transport have the potential to reduce human and animal testing, microscopic stratum corneum (SC) model output is highly dependent on idealized SC geometry, transport pathway (transcellular vs. intercellular), and penetrant transport parameters (e.g., compound diffusivity in lipids). Most microscopic models are limited to a simple rectangular brick-and-mortar SC geometry and do not account for variability across delivery sites, hydration levels, and populations. In addition, these models rely on transport parameters obtained from pure theory, parameter fitting to match in vivo experiments, and time-intensive diffusion experiments for each compound. In this work, we develop a microscopic finite element model that allows us to probe model sensitivity to variations in geometry, transport pathway, and hydration level. Given the dearth of experimentally-validated transport data and the wide range in theoretically-predicted transport parameters, we examine the model's response to a variety of transport parameters reported in the literature. Results show that model predictions are strongly dependent on all aforementioned variations, resulting in order-of-magnitude differences in lag times and permeabilities for distinct structure, hydration, and parameter combinations. This work demonstrates that universally predictive models cannot fully succeed without employing experimentally verified transport parameters and individualized SC structures. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Noh, Seong Jin; Lee, Seungsoo; An, Hyunuk; Kawaike, Kenji; Nakagawa, Hajime
2016-11-01
An urban flood is an integrated phenomenon that is affected by various uncertainty sources such as input forcing, model parameters, complex geometry, and exchanges of flow among different domains in surfaces and subsurfaces. Despite considerable advances in urban flood modeling techniques, limited knowledge is currently available with regard to the impact of dynamic interaction among different flow domains on urban floods. In this paper, an ensemble method for urban flood modeling is presented to consider the parameter uncertainty of interaction models among a manhole, a sewer pipe, and surface flow. Laboratory-scale experiments on urban flood and inundation are performed under various flow conditions to investigate the parameter uncertainty of interaction models. The results show that ensemble simulation using interaction models based on weir and orifice formulas reproduces experimental data with high accuracy and detects the identifiability of model parameters. Among interaction-related parameters, the parameters of the sewer-manhole interaction show lower uncertainty than those of the sewer-surface interaction. Experimental data obtained under unsteady-state conditions are more informative than those obtained under steady-state conditions to assess the parameter uncertainty of interaction models. Although the optimal parameters vary according to the flow conditions, the difference is marginal. Simulation results also confirm the capability of the interaction models and the potential of the ensemble-based approaches to facilitate urban flood simulation.
Slavinskaya, N. A.; Abbasi, M.; Starcke, J. H.; ...
2017-01-24
An automated data-centric infrastructure, Process Informatics Model (PrIMe), was applied to validation and optimization of a syngas combustion model. The Bound-to-Bound Data Collaboration (B2BDC) module of PrIMe was employed to discover the limits of parameter modifications based on uncertainty quantification (UQ) and consistency analysis of the model–data system and experimental data, including shock-tube ignition delay times and laminar flame speeds. Existing syngas reaction models are reviewed, and the selected kinetic data are described in detail. Empirical rules were developed and applied to evaluate the uncertainty bounds of the literature experimental data. Here, the initial H 2/CO reaction model, assembled frommore » 73 reactions and 17 species, was subjected to a B2BDC analysis. For this purpose, a dataset was constructed that included a total of 167 experimental targets and 55 active model parameters. Consistency analysis of the composed dataset revealed disagreement between models and data. Further analysis suggested that removing 45 experimental targets, 8 of which were self-inconsistent, would lead to a consistent dataset. This dataset was subjected to a correlation analysis, which highlights possible directions for parameter modification and model improvement. Additionally, several methods of parameter optimization were applied, some of them unique to the B2BDC framework. The optimized models demonstrated improved agreement with experiments compared to the initially assembled model, and their predictions for experiments not included in the initial dataset (i.e., a blind prediction) were investigated. The results demonstrate benefits of applying the B2BDC methodology for developing predictive kinetic models.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Slavinskaya, N. A.; Abbasi, M.; Starcke, J. H.
An automated data-centric infrastructure, Process Informatics Model (PrIMe), was applied to validation and optimization of a syngas combustion model. The Bound-to-Bound Data Collaboration (B2BDC) module of PrIMe was employed to discover the limits of parameter modifications based on uncertainty quantification (UQ) and consistency analysis of the model–data system and experimental data, including shock-tube ignition delay times and laminar flame speeds. Existing syngas reaction models are reviewed, and the selected kinetic data are described in detail. Empirical rules were developed and applied to evaluate the uncertainty bounds of the literature experimental data. Here, the initial H 2/CO reaction model, assembled frommore » 73 reactions and 17 species, was subjected to a B2BDC analysis. For this purpose, a dataset was constructed that included a total of 167 experimental targets and 55 active model parameters. Consistency analysis of the composed dataset revealed disagreement between models and data. Further analysis suggested that removing 45 experimental targets, 8 of which were self-inconsistent, would lead to a consistent dataset. This dataset was subjected to a correlation analysis, which highlights possible directions for parameter modification and model improvement. Additionally, several methods of parameter optimization were applied, some of them unique to the B2BDC framework. The optimized models demonstrated improved agreement with experiments compared to the initially assembled model, and their predictions for experiments not included in the initial dataset (i.e., a blind prediction) were investigated. The results demonstrate benefits of applying the B2BDC methodology for developing predictive kinetic models.« less
Operational models of pharmacological agonism.
Black, J W; Leff, P
1983-12-22
The traditional receptor-stimulus model of agonism began with a description of drug action based on the law of mass action and has developed by a series of modifications, each accounting for new experimental evidence. By contrast, in this paper an approach to modelling agonism is taken that begins with the observation that experimental agonist-concentration effect, E/[A], curves are commonly hyperbolic and develops using the deduction that the relation between occupancy and effect must be hyperbolic if the law of mass action applies at the agonist-receptor level. The result is a general model that explicitly describes agonism by three parameters: an agonist-receptor dissociation constant, KA; the total receptor concentration, [R0]; and a parameter, KE, defining the transduction of agonist-receptor complex, AR, into pharmacological effect. The ratio, [R0]/KE, described here as the 'transducer ratio', tau, is a logical definition for the efficacy of an agonist in a system. The model may be extended to account for non-hyperbolic E/[A] curves with no loss of meaning. Analysis shows that an explicit formulation of the traditional receptor-stimulus model is one particular form of the general model but that it is not the simplest. An alternative model is proposed, representing the cognitive and transducer functions of a receptor, that describes agonist action with one fewer parameter than the traditional model. In addition, this model provides a chemical definition of intrinsic efficacy making this parameter experimentally accessible in principle. The alternative models are compared and contrasted with regard to their practical and conceptual utilities in experimental pharmacology.
Ismail, Ahmad Muhaimin; Mohamad, Mohd Saberi; Abdul Majid, Hairudin; Abas, Khairul Hamimah; Deris, Safaai; Zaki, Nazar; Mohd Hashim, Siti Zaiton; Ibrahim, Zuwairie; Remli, Muhammad Akmal
2017-12-01
Mathematical modelling is fundamental to understand the dynamic behavior and regulation of the biochemical metabolisms and pathways that are found in biological systems. Pathways are used to describe complex processes that involve many parameters. It is important to have an accurate and complete set of parameters that describe the characteristics of a given model. However, measuring these parameters is typically difficult and even impossible in some cases. Furthermore, the experimental data are often incomplete and also suffer from experimental noise. These shortcomings make it challenging to identify the best-fit parameters that can represent the actual biological processes involved in biological systems. Computational approaches are required to estimate these parameters. The estimation is converted into multimodal optimization problems that require a global optimization algorithm that can avoid local solutions. These local solutions can lead to a bad fit when calibrating with a model. Although the model itself can potentially match a set of experimental data, a high-performance estimation algorithm is required to improve the quality of the solutions. This paper describes an improved hybrid of particle swarm optimization and the gravitational search algorithm (IPSOGSA) to improve the efficiency of a global optimum (the best set of kinetic parameter values) search. The findings suggest that the proposed algorithm is capable of narrowing down the search space by exploiting the feasible solution areas. Hence, the proposed algorithm is able to achieve a near-optimal set of parameters at a fast convergence speed. The proposed algorithm was tested and evaluated based on two aspartate pathways that were obtained from the BioModels Database. The results show that the proposed algorithm outperformed other standard optimization algorithms in terms of accuracy and near-optimal kinetic parameter estimation. Nevertheless, the proposed algorithm is only expected to work well in small scale systems. In addition, the results of this study can be used to estimate kinetic parameter values in the stage of model selection for different experimental conditions. Copyright © 2017 Elsevier B.V. All rights reserved.
Nilsson, Ingemar; Polla, Magnus O
2012-10-01
Drug design is a multi-parameter task present in the analysis of experimental data for synthesized compounds and in the prediction of new compounds with desired properties. This article describes the implementation of a binned scoring and composite ranking scheme for 11 experimental parameters that were identified as key drivers in the MC4R project. The composite ranking scheme was implemented in an AstraZeneca tool for analysis of project data, thereby providing an immediate re-ranking as new experimental data was added. The automated ranking also highlighted compounds overlooked by the project team. The successful implementation of a composite ranking on experimental data led to the development of an equivalent virtual score, which was based on Free-Wilson models of the parameters from the experimental ranking. The individual Free-Wilson models showed good to high predictive power with a correlation coefficient between 0.45 and 0.97 based on the external test set. The virtual ranking adds value to the selection of compounds for synthesis but error propagation must be controlled. The experimental ranking approach adds significant value, is parameter independent and can be tuned and applied to any drug discovery project.
Optimization-Based Inverse Identification of the Parameters of a Concrete Cap Material Model
NASA Astrophysics Data System (ADS)
Král, Petr; Hokeš, Filip; Hušek, Martin; Kala, Jiří; Hradil, Petr
2017-10-01
Issues concerning the advanced numerical analysis of concrete building structures in sophisticated computing systems currently require the involvement of nonlinear mechanics tools. The efforts to design safer, more durable and mainly more economically efficient concrete structures are supported via the use of advanced nonlinear concrete material models and the geometrically nonlinear approach. The application of nonlinear mechanics tools undoubtedly presents another step towards the approximation of the real behaviour of concrete building structures within the framework of computer numerical simulations. However, the success rate of this application depends on having a perfect understanding of the behaviour of the concrete material models used and having a perfect understanding of the used material model parameters meaning. The effective application of nonlinear concrete material models within computer simulations often becomes very problematic because these material models very often contain parameters (material constants) whose values are difficult to obtain. However, getting of the correct values of material parameters is very important to ensure proper function of a concrete material model used. Today, one possibility, which permits successful solution of the mentioned problem, is the use of optimization algorithms for the purpose of the optimization-based inverse material parameter identification. Parameter identification goes hand in hand with experimental investigation while it trying to find parameter values of the used material model so that the resulting data obtained from the computer simulation will best approximate the experimental data. This paper is focused on the optimization-based inverse identification of the parameters of a concrete cap material model which is known under the name the Continuous Surface Cap Model. Within this paper, material parameters of the model are identified on the basis of interaction between nonlinear computer simulations, gradient based and nature inspired optimization algorithms and experimental data, the latter of which take the form of a load-extension curve obtained from the evaluation of uniaxial tensile test results. The aim of this research was to obtain material model parameters corresponding to the quasi-static tensile loading which may be further used for the research involving dynamic and high-speed tensile loading. Based on the obtained results it can be concluded that the set goal has been reached.
Linear system identification via backward-time observer models
NASA Technical Reports Server (NTRS)
Juang, Jer-Nan; Phan, Minh
1993-01-01
This paper presents an algorithm to identify a state-space model of a linear system using a backward-time approach. The procedure consists of three basic steps. First, the Markov parameters of a backward-time observer are computed from experimental input-output data. Second, the backward-time observer Markov parameters are decomposed to obtain the backward-time system Markov parameters (backward-time pulse response samples) from which a backward-time state-space model is realized using the Eigensystem Realization Algorithm. Third, the obtained backward-time state space model is converted to the usual forward-time representation. Stochastic properties of this approach will be discussed. Experimental results are given to illustrate when and to what extent this concept works.
NASA Astrophysics Data System (ADS)
Hejri, Mohammad; Mokhtari, Hossein; Azizian, Mohammad Reza; Söder, Lennart
2016-04-01
Parameter extraction of the five-parameter single-diode model of solar cells and modules from experimental data is a challenging problem. These parameters are evaluated from a set of nonlinear equations that cannot be solved analytically. On the other hand, a numerical solution of such equations needs a suitable initial guess to converge to a solution. This paper presents a new set of approximate analytical solutions for the parameters of a five-parameter single-diode model of photovoltaic (PV) cells and modules. The proposed solutions provide a good initial point which guarantees numerical analysis convergence. The proposed technique needs only a few data from the PV current-voltage characteristics, i.e. open circuit voltage Voc, short circuit current Isc and maximum power point current and voltage Im; Vm making it a fast and low cost parameter determination technique. The accuracy of the presented theoretical I-V curves is verified by experimental data.
Automated optimization of water-water interaction parameters for a coarse-grained model.
Fogarty, Joseph C; Chiu, See-Wing; Kirby, Peter; Jakobsson, Eric; Pandit, Sagar A
2014-02-13
We have developed an automated parameter optimization software framework (ParOpt) that implements the Nelder-Mead simplex algorithm and applied it to a coarse-grained polarizable water model. The model employs a tabulated, modified Morse potential with decoupled short- and long-range interactions incorporating four water molecules per interaction site. Polarizability is introduced by the addition of a harmonic angle term defined among three charged points within each bead. The target function for parameter optimization was based on the experimental density, surface tension, electric field permittivity, and diffusion coefficient. The model was validated by comparison of statistical quantities with experimental observation. We found very good performance of the optimization procedure and good agreement of the model with experiment.
NASA Astrophysics Data System (ADS)
Capote, R.; Herman, M.; Obložinský, P.; Young, P. G.; Goriely, S.; Belgya, T.; Ignatyuk, A. V.; Koning, A. J.; Hilaire, S.; Plujko, V. A.; Avrigeanu, M.; Bersillon, O.; Chadwick, M. B.; Fukahori, T.; Ge, Zhigang; Han, Yinlu; Kailas, S.; Kopecky, J.; Maslov, V. M.; Reffo, G.; Sin, M.; Soukhovitskii, E. Sh.; Talou, P.
2009-12-01
We describe the physics and data included in the Reference Input Parameter Library, which is devoted to input parameters needed in calculations of nuclear reactions and nuclear data evaluations. Advanced modelling codes require substantial numerical input, therefore the International Atomic Energy Agency (IAEA) has worked extensively since 1993 on a library of validated nuclear-model input parameters, referred to as the Reference Input Parameter Library (RIPL). A final RIPL coordinated research project (RIPL-3) was brought to a successful conclusion in December 2008, after 15 years of challenging work carried out through three consecutive IAEA projects. The RIPL-3 library was released in January 2009, and is available on the Web through http://www-nds.iaea.org/RIPL-3/. This work and the resulting database are extremely important to theoreticians involved in the development and use of nuclear reaction modelling (ALICE, EMPIRE, GNASH, UNF, TALYS) both for theoretical research and nuclear data evaluations. The numerical data and computer codes included in RIPL-3 are arranged in seven segments: MASSES contains ground-state properties of nuclei for about 9000 nuclei, including three theoretical predictions of masses and the evaluated experimental masses of Audi et al. (2003). DISCRETE LEVELS contains 117 datasets (one for each element) with all known level schemes, electromagnetic and γ-ray decay probabilities available from ENSDF in October 2007. NEUTRON RESONANCES contains average resonance parameters prepared on the basis of the evaluations performed by Ignatyuk and Mughabghab. OPTICAL MODEL contains 495 sets of phenomenological optical model parameters defined in a wide energy range. When there are insufficient experimental data, the evaluator has to resort to either global parameterizations or microscopic approaches. Radial density distributions to be used as input for microscopic calculations are stored in the MASSES segment. LEVEL DENSITIES contains phenomenological parameterizations based on the modified Fermi gas and superfluid models and microscopic calculations which are based on a realistic microscopic single-particle level scheme. Partial level densities formulae are also recommended. All tabulated total level densities are consistent with both the recommended average neutron resonance parameters and discrete levels. GAMMA contains parameters that quantify giant resonances, experimental gamma-ray strength functions and methods for calculating gamma emission in statistical model codes. The experimental GDR parameters are represented by Lorentzian fits to the photo-absorption cross sections for 102 nuclides ranging from 51V to 239Pu. FISSION includes global prescriptions for fission barriers and nuclear level densities at fission saddle points based on microscopic HFB calculations constrained by experimental fission cross sections.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Capote, R.; Herman, M.; Oblozinsky, P.
We describe the physics and data included in the Reference Input Parameter Library, which is devoted to input parameters needed in calculations of nuclear reactions and nuclear data evaluations. Advanced modelling codes require substantial numerical input, therefore the International Atomic Energy Agency (IAEA) has worked extensively since 1993 on a library of validated nuclear-model input parameters, referred to as the Reference Input Parameter Library (RIPL). A final RIPL coordinated research project (RIPL-3) was brought to a successful conclusion in December 2008, after 15 years of challenging work carried out through three consecutive IAEA projects. The RIPL-3 library was released inmore » January 2009, and is available on the Web through (http://www-nds.iaea.org/RIPL-3/). This work and the resulting database are extremely important to theoreticians involved in the development and use of nuclear reaction modelling (ALICE, EMPIRE, GNASH, UNF, TALYS) both for theoretical research and nuclear data evaluations. The numerical data and computer codes included in RIPL-3 are arranged in seven segments: MASSES contains ground-state properties of nuclei for about 9000 nuclei, including three theoretical predictions of masses and the evaluated experimental masses of Audi et al. (2003). DISCRETE LEVELS contains 117 datasets (one for each element) with all known level schemes, electromagnetic and {gamma}-ray decay probabilities available from ENSDF in October 2007. NEUTRON RESONANCES contains average resonance parameters prepared on the basis of the evaluations performed by Ignatyuk and Mughabghab. OPTICAL MODEL contains 495 sets of phenomenological optical model parameters defined in a wide energy range. When there are insufficient experimental data, the evaluator has to resort to either global parameterizations or microscopic approaches. Radial density distributions to be used as input for microscopic calculations are stored in the MASSES segment. LEVEL DENSITIES contains phenomenological parameterizations based on the modified Fermi gas and superfluid models and microscopic calculations which are based on a realistic microscopic single-particle level scheme. Partial level densities formulae are also recommended. All tabulated total level densities are consistent with both the recommended average neutron resonance parameters and discrete levels. GAMMA contains parameters that quantify giant resonances, experimental gamma-ray strength functions and methods for calculating gamma emission in statistical model codes. The experimental GDR parameters are represented by Lorentzian fits to the photo-absorption cross sections for 102 nuclides ranging from {sup 51}V to {sup 239}Pu. FISSION includes global prescriptions for fission barriers and nuclear level densities at fission saddle points based on microscopic HFB calculations constrained by experimental fission cross sections.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Capote, R.; Herman, M.; Capote,R.
We describe the physics and data included in the Reference Input Parameter Library, which is devoted to input parameters needed in calculations of nuclear reactions and nuclear data evaluations. Advanced modelling codes require substantial numerical input, therefore the International Atomic Energy Agency (IAEA) has worked extensively since 1993 on a library of validated nuclear-model input parameters, referred to as the Reference Input Parameter Library (RIPL). A final RIPL coordinated research project (RIPL-3) was brought to a successful conclusion in December 2008, after 15 years of challenging work carried out through three consecutive IAEA projects. The RIPL-3 library was released inmore » January 2009, and is available on the Web through http://www-nds.iaea.org/RIPL-3/. This work and the resulting database are extremely important to theoreticians involved in the development and use of nuclear reaction modelling (ALICE, EMPIRE, GNASH, UNF, TALYS) both for theoretical research and nuclear data evaluations. The numerical data and computer codes included in RIPL-3 are arranged in seven segments: MASSES contains ground-state properties of nuclei for about 9000 nuclei, including three theoretical predictions of masses and the evaluated experimental masses of Audi et al. (2003). DISCRETE LEVELS contains 117 datasets (one for each element) with all known level schemes, electromagnetic and {gamma}-ray decay probabilities available from ENSDF in October 2007. NEUTRON RESONANCES contains average resonance parameters prepared on the basis of the evaluations performed by Ignatyuk and Mughabghab. OPTICAL MODEL contains 495 sets of phenomenological optical model parameters defined in a wide energy range. When there are insufficient experimental data, the evaluator has to resort to either global parameterizations or microscopic approaches. Radial density distributions to be used as input for microscopic calculations are stored in the MASSES segment. LEVEL DENSITIES contains phenomenological parameterizations based on the modified Fermi gas and superfluid models and microscopic calculations which are based on a realistic microscopic single-particle level scheme. Partial level densities formulae are also recommended. All tabulated total level densities are consistent with both the recommended average neutron resonance parameters and discrete levels. GAMMA contains parameters that quantify giant resonances, experimental gamma-ray strength functions and methods for calculating gamma emission in statistical model codes. The experimental GDR parameters are represented by Lorentzian fits to the photo-absorption cross sections for 102 nuclides ranging from {sup 51}V to {sup 239}Pu. FISSION includes global prescriptions for fission barriers and nuclear level densities at fission saddle points based on microscopic HFB calculations constrained by experimental fission cross sections.« less
Verification technology of remote sensing camera satellite imaging simulation based on ray tracing
NASA Astrophysics Data System (ADS)
Gu, Qiongqiong; Chen, Xiaomei; Yang, Deyun
2017-08-01
Remote sensing satellite camera imaging simulation technology is broadly used to evaluate the satellite imaging quality and to test the data application system. But the simulation precision is hard to examine. In this paper, we propose an experimental simulation verification method, which is based on the test parameter variation comparison. According to the simulation model based on ray-tracing, the experiment is to verify the model precision by changing the types of devices, which are corresponding the parameters of the model. The experimental results show that the similarity between the imaging model based on ray tracing and the experimental image is 91.4%, which can simulate the remote sensing satellite imaging system very well.
A mathematical model of physiological processes and its application to the study of aging
NASA Technical Reports Server (NTRS)
Hibbs, A. R.; Walford, R. L.
1989-01-01
The behavior of a physiological system which, after displacement, returns by homeostatic mechanisms to its original condition can be described by a simple differential equation in which the "recovery time" is a parameter. Two such systems, which influence one another, can be linked mathematically by the use of "coupling" or "feedback" coefficients. These concepts are the basis for many mathematical models of physiological behavior, and we describe the general nature of such models. Next, we introduce the concept of a "fatal limit" for the displacement of a physiological system, and show how measures of such limits can be included in mathematical models. We show how the numerical values of such limits depend on the values of other system parameters, i.e., recovery times and coupling coefficients, and suggest ways of measuring all these parameters experimentally, for example by monitoring changes induced by X-irradiation. Next, we discuss age-related changes in these parameters, and show how the parameters of mortality statistics, such as the famous Gompertz parameters, can be derived from experimentally measurable changes. Concepts of onset-of-aging, critical or fatal limits, equilibrium value (homeostasis), recovery times and coupling constants are involved. Illustrations are given using published data from mouse and rat populations. We believe that this method of deriving survival patterns from model that is experimentally testable is unique.
Computational modeling of cardiovascular response to orthostatic stress
NASA Technical Reports Server (NTRS)
Heldt, Thomas; Shim, Eun B.; Kamm, Roger D.; Mark, Roger G.
2002-01-01
The objective of this study is to develop a model of the cardiovascular system capable of simulating the short-term (< or = 5 min) transient and steady-state hemodynamic responses to head-up tilt and lower body negative pressure. The model consists of a closed-loop lumped-parameter representation of the circulation connected to set-point models of the arterial and cardiopulmonary baroreflexes. Model parameters are largely based on literature values. Model verification was performed by comparing the simulation output under baseline conditions and at different levels of orthostatic stress to sets of population-averaged hemodynamic data reported in the literature. On the basis of experimental evidence, we adjusted some model parameters to simulate experimental data. Orthostatic stress simulations are not statistically different from experimental data (two-sided test of significance with Bonferroni adjustment for multiple comparisons). Transient response characteristics of heart rate to tilt also compare well with reported data. A case study is presented on how the model is intended to be used in the future to investigate the effects of post-spaceflight orthostatic intolerance.
Theoretical and experimental researches of the liquid evaporation during thermal vacuum influences
NASA Astrophysics Data System (ADS)
Trushlyakov, V.; Panichkin, A.; Prusova, O.; Zharikov, K.; Dron, M.
2018-01-01
The mathematical model of the evaporation process of model liquid with the free surface boundary conditions of the "mirror" type under thermal vacuum influence and the numerical estimates of the evaporation process parameters are developed. An experimental stand, comprising a vacuum chamber, an experimental model tank with a heating element is designed; the experimental data are obtained. A comparative analysis of numerical and experimental results showed their close match.
NASA Astrophysics Data System (ADS)
Ribeiro, J. B.; Silva, C.; Mendes, R.
2010-10-01
A real coded genetic algorithm methodology that has been developed for the estimation of the parameters of the reaction rate equation of the Lee-Tarver reactive flow model is described in detail. This methodology allows, in a single optimization procedure, using only one experimental result and, without the need of any starting solution, to seek the 15 parameters of the reaction rate equation that fit the numerical to the experimental results. Mass averaging and the plate-gap model have been used for the determination of the shock data used in the unreacted explosive JWL equation of state (EOS) assessment and the thermochemical code THOR retrieved the data used in the detonation products' JWL EOS assessments. The developed methodology was applied for the estimation of the referred parameters for an ammonium nitrate-based emulsion explosive using poly(methyl methacrylate) (PMMA)-embedded manganin gauge pressure-time data. The obtained parameters allow a reasonably good description of the experimental data and show some peculiarities arising from the intrinsic nature of this kind of composite explosive.
Intervertebral disc response to cyclic loading--an animal model.
Ekström, L; Kaigle, A; Hult, E; Holm, S; Rostedt, M; Hansson, T
1996-01-01
The viscoelastic response of a lumbar motion segment loaded in cyclic compression was studied in an in vivo porcine model (N = 7). Using surgical techniques, a miniaturized servohydraulic exciter was attached to the L2-L3 motion segment via pedicle fixation. A dynamic loading scheme was implemented, which consisted of one hour of sinusoidal vibration at 5 Hz, 50 N peak load, followed by one hour of restitution at zero load and one hour of sinusoidal vibration at 5 Hz, 100 N peak load. The force and displacement responses of the motion segment were sampled at 25 Hz. The experimental data were used for evaluating the parameters of two viscoelastic models: a standard linear solid model (three-parameter) and a linear Burger's fluid model (four-parameter). In this study, the creep behaviour under sinusoidal vibration at 5 Hz closely resembled the creep behaviour under static loading observed in previous studies. Expanding the three-parameter solid model into a four-parameter fluid model made it possible to separate out a progressive linear displacement term. This deformation was not fully recovered during restitution and is therefore an indication of a specific effect caused by the cyclic loading. High variability was observed in the parameters determined from the 50 N experimental data, particularly for the elastic modulus E1. However, at the 100 N load level, significant differences between the models were found. Both models accurately predicted the creep response under the first 800 s of 100 N loading, as displayed by mean absolute errors for the calculated deformation data from the experimental data of 1.26 and 0.97 percent for the solid and fluid models respectively. The linear Burger's fluid model, however, yielded superior predictions particularly for the initial elastic response.
PyDREAM: high-dimensional parameter inference for biological models in python.
Shockley, Erin M; Vrugt, Jasper A; Lopez, Carlos F; Valencia, Alfonso
2018-02-15
Biological models contain many parameters whose values are difficult to measure directly via experimentation and therefore require calibration against experimental data. Markov chain Monte Carlo (MCMC) methods are suitable to estimate multivariate posterior model parameter distributions, but these methods may exhibit slow or premature convergence in high-dimensional search spaces. Here, we present PyDREAM, a Python implementation of the (Multiple-Try) Differential Evolution Adaptive Metropolis [DREAM(ZS)] algorithm developed by Vrugt and ter Braak (2008) and Laloy and Vrugt (2012). PyDREAM achieves excellent performance for complex, parameter-rich models and takes full advantage of distributed computing resources, facilitating parameter inference and uncertainty estimation of CPU-intensive biological models. PyDREAM is freely available under the GNU GPLv3 license from the Lopez lab GitHub repository at http://github.com/LoLab-VU/PyDREAM. c.lopez@vanderbilt.edu. Supplementary data are available at Bioinformatics online. © The Author(s) 2017. Published by Oxford University Press.
Modeling of weak blast wave propagation in the lung.
D'yachenko, A I; Manyuhina, O V
2006-01-01
Blast injuries of the lung are the most life-threatening after an explosion. The choice of physical parameters responsible for trauma is important to understand its mechanism. We developed a one-dimensional linear model of an elastic wave propagation in foam-like pulmonary parenchyma to identify the possible cause of edema due to the impact load. The model demonstrates different injury localizations for free and rigid boundary conditions. The following parameters were considered: strain, velocity, pressure in the medium and stresses in structural elements, energy dissipation, parameter of viscous criterion. Maximum underpressure is the most suitable wave parameter to be the criterion for edema formation in a rabbit lung. We supposed that observed scattering of experimental data on edema severity is induced by the physiological variety of rabbit lungs. The criterion and the model explain this scattering. The model outlines the demands for experimental data to make an unambiguous choice of physical parameters responsible for lung trauma due to impact load.
NASA Astrophysics Data System (ADS)
Babakhani, Peyman; Bridge, Jonathan; Doong, Ruey-an; Phenrat, Tanapon
2017-06-01
The continuing rapid expansion of industrial and consumer processes based on nanoparticles (NP) necessitates a robust model for delineating their fate and transport in groundwater. An ability to reliably specify the full parameter set for prediction of NP transport using continuum models is crucial. In this paper we report the reanalysis of a data set of 493 published column experiment outcomes together with their continuum modeling results. Experimental properties were parameterized into 20 factors which are commonly available. They were then used to predict five key continuum model parameters as well as the effluent concentration via artificial neural network (ANN)-based correlations. The Partial Derivatives (PaD) technique and Monte Carlo method were used for the analysis of sensitivities and model-produced uncertainties, respectively. The outcomes shed light on several controversial relationships between the parameters, e.g., it was revealed that the trend of Katt with average pore water velocity was positive. The resulting correlations, despite being developed based on a "black-box" technique (ANN), were able to explain the effects of theoretical parameters such as critical deposition concentration (CDC), even though these parameters were not explicitly considered in the model. Porous media heterogeneity was considered as a parameter for the first time and showed sensitivities higher than those of dispersivity. The model performance was validated well against subsets of the experimental data and was compared with current models. The robustness of the correlation matrices was not completely satisfactory, since they failed to predict the experimental breakthrough curves (BTCs) at extreme values of ionic strengths.
A stochastic Iwan-type model for joint behavior variability modeling
NASA Astrophysics Data System (ADS)
Mignolet, Marc P.; Song, Pengchao; Wang, X. Q.
2015-08-01
This paper focuses overall on the development and validation of a stochastic model to describe the dissipation and stiffness properties of a bolted joint for which experimental data is available and exhibits a large scatter. An extension of the deterministic parallel-series Iwan model for the characterization of the force-displacement behavior of joints is first carried out. This new model involves dynamic and static coefficients of friction differing from each other and a broadly defined distribution of Jenkins elements. Its applicability is next investigated using the experimental data, i.e. stiffness and dissipation measurements obtained in harmonic testing of 9 nominally identical bolted joints. The model is found to provide a very good fit of the experimental data for each bolted joint notwithstanding the significant variability of their behavior. This finding suggests that this variability can be simulated through the randomization of only the parameters of the proposed Iwan-type model. The distribution of these parameters is next selected based on maximum entropy concepts and their corresponding parameters, i.e. the hyperparameters of the model, are identified using a maximum likelihood strategy. Proceeding with a Monte Carlo simulation of this stochastic Iwan model demonstrates that the experimental data fits well within the uncertainty band corresponding to the 5th and 95th percentiles of the model predictions which well supports the adequacy of the modeling effort.
Improving RNA nearest neighbor parameters for helices by going beyond the two-state model.
Spasic, Aleksandar; Berger, Kyle D; Chen, Jonathan L; Seetin, Matthew G; Turner, Douglas H; Mathews, David H
2018-06-01
RNA folding free energy change nearest neighbor parameters are widely used to predict folding stabilities of secondary structures. They were determined by linear regression to datasets of optical melting experiments on small model systems. Traditionally, the optical melting experiments are analyzed assuming a two-state model, i.e. a structure is either complete or denatured. Experimental evidence, however, shows that structures exist in an ensemble of conformations. Partition functions calculated with existing nearest neighbor parameters predict that secondary structures can be partially denatured, which also directly conflicts with the two-state model. Here, a new approach for determining RNA nearest neighbor parameters is presented. Available optical melting data for 34 Watson-Crick helices were fit directly to a partition function model that allows an ensemble of conformations. Fitting parameters were the enthalpy and entropy changes for helix initiation, terminal AU pairs, stacks of Watson-Crick pairs and disordered internal loops. The resulting set of nearest neighbor parameters shows a 38.5% improvement in the sum of residuals in fitting the experimental melting curves compared to the current literature set.
NASA Astrophysics Data System (ADS)
Zuo, Weiguang; Liu, Ming; Fan, Tianhui; Wang, Pengtao
2018-06-01
This paper presents the probability distribution of the slamming pressure from an experimental study of regular wave slamming on an elastically supported horizontal deck. The time series of the slamming pressure during the wave impact were first obtained through statistical analyses on experimental data. The exceeding probability distribution of the maximum slamming pressure peak and distribution parameters were analyzed, and the results show that the exceeding probability distribution of the maximum slamming pressure peak accords with the three-parameter Weibull distribution. Furthermore, the range and relationships of the distribution parameters were studied. The sum of the location parameter D and the scale parameter L was approximately equal to 1.0, and the exceeding probability was more than 36.79% when the random peak was equal to the sample average during the wave impact. The variation of the distribution parameters and slamming pressure under different model conditions were comprehensively presented, and the parameter values of the Weibull distribution of wave-slamming pressure peaks were different due to different test models. The parameter values were found to decrease due to the increased stiffness of the elastic support. The damage criterion of the structure model caused by the wave impact was initially discussed, and the structure model was destroyed when the average slamming time was greater than a certain value during the duration of the wave impact. The conclusions of the experimental study were then described.
NASA Astrophysics Data System (ADS)
Jia, Bing
2014-03-01
A comb-shaped chaotic region has been simulated in multiple two-dimensional parameter spaces using the Hindmarsh—Rose (HR) neuron model in many recent studies, which can interpret almost all of the previously simulated bifurcation processes with chaos in neural firing patterns. In the present paper, a comb-shaped chaotic region in a two-dimensional parameter space was reproduced, which presented different processes of period-adding bifurcations with chaos with changing one parameter and fixed the other parameter at different levels. In the biological experiments, different period-adding bifurcation scenarios with chaos by decreasing the extra-cellular calcium concentration were observed from some neural pacemakers at different levels of extra-cellular 4-aminopyridine concentration and from other pacemakers at different levels of extra-cellular caesium concentration. By using the nonlinear time series analysis method, the deterministic dynamics of the experimental chaotic firings were investigated. The period-adding bifurcations with chaos observed in the experiments resembled those simulated in the comb-shaped chaotic region using the HR model. The experimental results show that period-adding bifurcations with chaos are preserved in different two-dimensional parameter spaces, which provides evidence of the existence of the comb-shaped chaotic region and a demonstration of the simulation results in different two-dimensional parameter spaces in the HR neuron model. The results also present relationships between different firing patterns in two-dimensional parameter spaces.
Revised Parameters for the AMOEBA Polarizable Atomic Multipole Water Model.
Laury, Marie L; Wang, Lee-Ping; Pande, Vijay S; Head-Gordon, Teresa; Ponder, Jay W
2015-07-23
A set of improved parameters for the AMOEBA polarizable atomic multipole water model is developed. An automated procedure, ForceBalance, is used to adjust model parameters to enforce agreement with ab initio-derived results for water clusters and experimental data for a variety of liquid phase properties across a broad temperature range. The values reported here for the new AMOEBA14 water model represent a substantial improvement over the previous AMOEBA03 model. The AMOEBA14 model accurately predicts the temperature of maximum density and qualitatively matches the experimental density curve across temperatures from 249 to 373 K. Excellent agreement is observed for the AMOEBA14 model in comparison to experimental properties as a function of temperature, including the second virial coefficient, enthalpy of vaporization, isothermal compressibility, thermal expansion coefficient, and dielectric constant. The viscosity, self-diffusion constant, and surface tension are also well reproduced. In comparison to high-level ab initio results for clusters of 2-20 water molecules, the AMOEBA14 model yields results similar to AMOEBA03 and the direct polarization iAMOEBA models. With advances in computing power, calibration data, and optimization techniques, we recommend the use of the AMOEBA14 water model for future studies employing a polarizable water model.
Kashefolgheta, Sadra; Vila Verde, Ana
2017-08-09
We present a set of Lennard-Jones parameters for classical, all-atom models of acetate and various alkylated and non-alkylated forms of sulfate, sulfonate and phosphate ions, optimized to reproduce their interactions with water and with the physiologically relevant sodium, ammonium and methylammonium cations. The parameters are internally consistent and are fully compatible with the Generalized Amber Force Field (GAFF), the AMBER force field for proteins, the accompanying TIP3P water model and the sodium model of Joung and Cheatham. The parameters were developed primarily relying on experimental information - hydration free energies and solution activity derivatives at 0.5 m concentration - with ab initio, gas phase calculations being used for the cases where experimental information is missing. The ab initio parameterization scheme presented here is distinct from other approaches because it explicitly connects gas phase binding energies to intermolecular interactions in solution. We demonstrate that the original GAFF/AMBER parameters often overestimate anion-cation interactions, leading to an excessive number of contact ion pairs in solutions of carboxylate ions, and to aggregation in solutions of divalent ions. GAFF/AMBER parameters lead to excessive numbers of salt bridges in proteins and of contact ion pairs between sodium and acidic protein groups, issues that are resolved by using the optimized parameters presented here.
Van Derlinden, E; Bernaerts, K; Van Impe, J F
2010-05-21
Optimal experiment design for parameter estimation (OED/PE) has become a popular tool for efficient and accurate estimation of kinetic model parameters. When the kinetic model under study encloses multiple parameters, different optimization strategies can be constructed. The most straightforward approach is to estimate all parameters simultaneously from one optimal experiment (single OED/PE strategy). However, due to the complexity of the optimization problem or the stringent limitations on the system's dynamics, the experimental information can be limited and parameter estimation convergence problems can arise. As an alternative, we propose to reduce the optimization problem to a series of two-parameter estimation problems, i.e., an optimal experiment is designed for a combination of two parameters while presuming the other parameters known. Two different approaches can be followed: (i) all two-parameter optimal experiments are designed based on identical initial parameter estimates and parameters are estimated simultaneously from all resulting experimental data (global OED/PE strategy), and (ii) optimal experiments are calculated and implemented sequentially whereby the parameter values are updated intermediately (sequential OED/PE strategy). This work exploits OED/PE for the identification of the Cardinal Temperature Model with Inflection (CTMI) (Rosso et al., 1993). This kinetic model describes the effect of temperature on the microbial growth rate and encloses four parameters. The three OED/PE strategies are considered and the impact of the OED/PE design strategy on the accuracy of the CTMI parameter estimation is evaluated. Based on a simulation study, it is observed that the parameter values derived from the sequential approach deviate more from the true parameters than the single and global strategy estimates. The single and global OED/PE strategies are further compared based on experimental data obtained from design implementation in a bioreactor. Comparable estimates are obtained, but global OED/PE estimates are, in general, more accurate and reliable. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Cataldo, E; Soize, C
2018-06-06
Jitter, in voice production applications, is a random phenomenon characterized by the deviation of the glottal cycle length with respect to a mean value. Its study can help in identifying pathologies related to the vocal folds according to the values obtained through the different ways to measure it. This paper aims to propose a stochastic model, considering three control parameters, to generate jitter based on a deterministic one-mass model for the dynamics of the vocal folds and to identify parameters from the stochastic model taking into account real voice signals experimentally obtained. To solve the corresponding stochastic inverse problem, the cost function used is based on the distance between probability density functions of the random variables associated with the fundamental frequencies obtained by the experimental voices and the simulated ones, and also on the distance between features extracted from the voice signals, simulated and experimental, to calculate jitter. The results obtained show that the model proposed is valid and some samples of voices are synthesized considering the identified parameters for normal and pathological cases. The strategy adopted is also a novelty and mainly because a solution was obtained. In addition to the use of three parameters to construct the model of jitter, it is the discussion of a parameter related to the bandwidth of the power spectral density function of the stochastic process to measure the quality of the signal generated. A study about the influence of all the main parameters is also performed. The identification of the parameters of the model considering pathological cases is maybe of all novelties introduced by the paper the most interesting. Copyright © 2018 Elsevier Ltd. All rights reserved.
Eisenberg, Marisa C; Jain, Harsh V
2017-10-27
Mathematical modeling has a long history in the field of cancer therapeutics, and there is increasing recognition that it can help uncover the mechanisms that underlie tumor response to treatment. However, making quantitative predictions with such models often requires parameter estimation from data, raising questions of parameter identifiability and estimability. Even in the case of structural (theoretical) identifiability, imperfect data and the resulting practical unidentifiability of model parameters can make it difficult to infer the desired information, and in some cases, to yield biologically correct inferences and predictions. Here, we examine parameter identifiability and estimability using a case study of two compartmental, ordinary differential equation models of cancer treatment with drugs that are cell cycle-specific (taxol) as well as non-specific (oxaliplatin). We proceed through model building, structural identifiability analysis, parameter estimation, practical identifiability analysis and its biological implications, as well as alternative data collection protocols and experimental designs that render the model identifiable. We use the differential algebra/input-output relationship approach for structural identifiability, and primarily the profile likelihood approach for practical identifiability. Despite the models being structurally identifiable, we show that without consideration of practical identifiability, incorrect cell cycle distributions can be inferred, that would result in suboptimal therapeutic choices. We illustrate the usefulness of estimating practically identifiable combinations (in addition to the more typically considered structurally identifiable combinations) in generating biologically meaningful insights. We also use simulated data to evaluate how the practical identifiability of the model would change under alternative experimental designs. These results highlight the importance of understanding the underlying mechanisms rather than purely using parsimony or information criteria/goodness-of-fit to decide model selection questions. The overall roadmap for identifiability testing laid out here can be used to help provide mechanistic insight into complex biological phenomena, reduce experimental costs, and optimize model-driven experimentation. Copyright © 2017. Published by Elsevier Ltd.
Hussain, Faraz; Jha, Sumit K; Jha, Susmit; Langmead, Christopher J
2014-01-01
Stochastic models are increasingly used to study the behaviour of biochemical systems. While the structure of such models is often readily available from first principles, unknown quantitative features of the model are incorporated into the model as parameters. Algorithmic discovery of parameter values from experimentally observed facts remains a challenge for the computational systems biology community. We present a new parameter discovery algorithm that uses simulated annealing, sequential hypothesis testing, and statistical model checking to learn the parameters in a stochastic model. We apply our technique to a model of glucose and insulin metabolism used for in-silico validation of artificial pancreata and demonstrate its effectiveness by developing parallel CUDA-based implementation for parameter synthesis in this model.
NASA Astrophysics Data System (ADS)
Brown, Alexander; Eviston, Connor
2017-02-01
Multiple FEM models of complex eddy current coil geometries were created and validated to calculate the change of impedance due to the presence of a notch. Capable realistic simulations of eddy current inspections are required for model assisted probability of detection (MAPOD) studies, inversion algorithms, experimental verification, and tailored probe design for NDE applications. An FEM solver was chosen to model complex real world situations including varying probe dimensions and orientations along with complex probe geometries. This will also enable creation of a probe model library database with variable parameters. Verification and validation was performed using other commercially available eddy current modeling software as well as experimentally collected benchmark data. Data analysis and comparison showed that the created models were able to correctly model the probe and conductor interactions and accurately calculate the change in impedance of several experimental scenarios with acceptable error. The promising results of the models enabled the start of an eddy current probe model library to give experimenters easy access to powerful parameter based eddy current models for alternate project applications.
Physical and mathematical modelling of ladle metallurgy operations. [steelmaking
NASA Technical Reports Server (NTRS)
El-Kaddah, N.; Szekely, J.
1982-01-01
Experimental measurements are reported, on the velocity fields and turbulence parameters on a water model of an argon stirred ladle. These velocity measurements are complemented by direct heat transfer measurements, obtained by studying the rate at which ice rods immersed into the system melt, at various locations. The theoretical work undertaken involved the use of the turbulence Navier-Stokes equations in conjunction with the kappa-epsilon model to predict the local velocity fields and the maps of the turbulence parameters. Theoretical predictions were in reasonably good agreement with the experimentally measured velocity fields; the agreement between the predicted and the measured turbulence parameters was less perfect, but still satisfactory. The implications of these findings to the modelling of ladle metallurgical operations are discussed.
Three-dimensional FEM model of FBGs in PANDA fibers with experimentally determined model parameters
NASA Astrophysics Data System (ADS)
Lindner, Markus; Hopf, Barbara; Koch, Alexander W.; Roths, Johannes
2017-04-01
A 3D-FEM model has been developed to improve the understanding of multi-parameter sensing with Bragg gratings in attached or embedded polarization maintaining fibers. The material properties of the fiber, especially Young's modulus and Poisson's ratio of the fiber's stress applying parts, are crucial for accurate simulations, but are usually not provided by the manufacturers. A methodology is presented to determine the unknown parameters by using experimental characterizations of the fiber and iterative FEM simulations. The resulting 3D-Model is capable of describing the change in birefringence of the free fiber when exposed to longitudinal strain. In future studies the 3D-FEM model will be employed to study the interaction of PANDA fibers with the surrounding materials in which they are embedded.
Vavoulis, Dimitrios V.; Straub, Volko A.; Aston, John A. D.; Feng, Jianfeng
2012-01-01
Traditional approaches to the problem of parameter estimation in biophysical models of neurons and neural networks usually adopt a global search algorithm (for example, an evolutionary algorithm), often in combination with a local search method (such as gradient descent) in order to minimize the value of a cost function, which measures the discrepancy between various features of the available experimental data and model output. In this study, we approach the problem of parameter estimation in conductance-based models of single neurons from a different perspective. By adopting a hidden-dynamical-systems formalism, we expressed parameter estimation as an inference problem in these systems, which can then be tackled using a range of well-established statistical inference methods. The particular method we used was Kitagawa's self-organizing state-space model, which was applied on a number of Hodgkin-Huxley-type models using simulated or actual electrophysiological data. We showed that the algorithm can be used to estimate a large number of parameters, including maximal conductances, reversal potentials, kinetics of ionic currents, measurement and intrinsic noise, based on low-dimensional experimental data and sufficiently informative priors in the form of pre-defined constraints imposed on model parameters. The algorithm remained operational even when very noisy experimental data were used. Importantly, by combining the self-organizing state-space model with an adaptive sampling algorithm akin to the Covariance Matrix Adaptation Evolution Strategy, we achieved a significant reduction in the variance of parameter estimates. The algorithm did not require the explicit formulation of a cost function and it was straightforward to apply on compartmental models and multiple data sets. Overall, the proposed methodology is particularly suitable for resolving high-dimensional inference problems based on noisy electrophysiological data and, therefore, a potentially useful tool in the construction of biophysical neuron models. PMID:22396632
Chan, H W; Unsworth, J
1989-01-01
A theoretical model is presented for combining parameters of 1-3 ultrasonic composite materials in order to predict ultrasonic characteristics such as velocity, acoustic impedance, electromechanical coupling factor, and piezoelectric coefficients. Hence, the model allows the estimation of resonance frequencies of 1-3 composite transducers. This model has been extended to cover more material parameters, and they are compared to experimental results up to PZT volume fraction nu of 0.8. The model covers calculation of piezoelectric charge constants d(33) and d(31). Values are found to be in good agreement with experimental results obtained for PZT 7A/Araldite D 1-3 composites. The acoustic velocity, acoustic impedance, and electromechanical coupling factor are predicted and found to be close to the values determined experimentally.
Zimmer, Christoph
2016-01-01
Computational modeling is a key technique for analyzing models in systems biology. There are well established methods for the estimation of the kinetic parameters in models of ordinary differential equations (ODE). Experimental design techniques aim at devising experiments that maximize the information encoded in the data. For ODE models there are well established approaches for experimental design and even software tools. However, data from single cell experiments on signaling pathways in systems biology often shows intrinsic stochastic effects prompting the development of specialized methods. While simulation methods have been developed for decades and parameter estimation has been targeted for the last years, only very few articles focus on experimental design for stochastic models. The Fisher information matrix is the central measure for experimental design as it evaluates the information an experiment provides for parameter estimation. This article suggest an approach to calculate a Fisher information matrix for models containing intrinsic stochasticity and high nonlinearity. The approach makes use of a recently suggested multiple shooting for stochastic systems (MSS) objective function. The Fisher information matrix is calculated by evaluating pseudo data with the MSS technique. The performance of the approach is evaluated with simulation studies on an Immigration-Death, a Lotka-Volterra, and a Calcium oscillation model. The Calcium oscillation model is a particularly appropriate case study as it contains the challenges inherent to signaling pathways: high nonlinearity, intrinsic stochasticity, a qualitatively different behavior from an ODE solution, and partial observability. The computational speed of the MSS approach for the Fisher information matrix allows for an application in realistic size models.
Simulation model for electron irradiated IGZO thin film transistors
NASA Astrophysics Data System (ADS)
Dayananda, G. K.; Shantharama Rai, C.; Jayarama, A.; Kim, Hyun Jae
2018-02-01
An efficient drain current simulation model for the electron irradiation effect on the electrical parameters of amorphous In-Ga-Zn-O (IGZO) thin-film transistors is developed. The model is developed based on the specifications such as gate capacitance, channel length, channel width, flat band voltage etc. Electrical parameters of un-irradiated IGZO samples were simulated and compared with the experimental parameters and 1 kGy electron irradiated parameters. The effect of electron irradiation on the IGZO sample was analysed by developing a mathematical model.
Van Daele, Timothy; Gernaey, Krist V; Ringborg, Rolf H; Börner, Tim; Heintz, Søren; Van Hauwermeiren, Daan; Grey, Carl; Krühne, Ulrich; Adlercreutz, Patrick; Nopens, Ingmar
2017-09-01
The aim of model calibration is to estimate unique parameter values from available experimental data, here applied to a biocatalytic process. The traditional approach of first gathering data followed by performing a model calibration is inefficient, since the information gathered during experimentation is not actively used to optimize the experimental design. By applying an iterative robust model-based optimal experimental design, the limited amount of data collected is used to design additional informative experiments. The algorithm is used here to calibrate the initial reaction rate of an ω-transaminase catalyzed reaction in a more accurate way. The parameter confidence region estimated from the Fisher Information Matrix is compared with the likelihood confidence region, which is not only more accurate but also a computationally more expensive method. As a result, an important deviation between both approaches is found, confirming that linearization methods should be applied with care for nonlinear models. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1278-1293, 2017. © 2017 American Institute of Chemical Engineers.
Designing novel cellulase systems through agent-based modeling and global sensitivity analysis.
Apte, Advait A; Senger, Ryan S; Fong, Stephen S
2014-01-01
Experimental techniques allow engineering of biological systems to modify functionality; however, there still remains a need to develop tools to prioritize targets for modification. In this study, agent-based modeling (ABM) was used to build stochastic models of complexed and non-complexed cellulose hydrolysis, including enzymatic mechanisms for endoglucanase, exoglucanase, and β-glucosidase activity. Modeling results were consistent with experimental observations of higher efficiency in complexed systems than non-complexed systems and established relationships between specific cellulolytic mechanisms and overall efficiency. Global sensitivity analysis (GSA) of model results identified key parameters for improving overall cellulose hydrolysis efficiency including: (1) the cellulase half-life, (2) the exoglucanase activity, and (3) the cellulase composition. Overall, the following parameters were found to significantly influence cellulose consumption in a consolidated bioprocess (CBP): (1) the glucose uptake rate of the culture, (2) the bacterial cell concentration, and (3) the nature of the cellulase enzyme system (complexed or non-complexed). Broadly, these results demonstrate the utility of combining modeling and sensitivity analysis to identify key parameters and/or targets for experimental improvement.
Designing novel cellulase systems through agent-based modeling and global sensitivity analysis
Apte, Advait A; Senger, Ryan S; Fong, Stephen S
2014-01-01
Experimental techniques allow engineering of biological systems to modify functionality; however, there still remains a need to develop tools to prioritize targets for modification. In this study, agent-based modeling (ABM) was used to build stochastic models of complexed and non-complexed cellulose hydrolysis, including enzymatic mechanisms for endoglucanase, exoglucanase, and β-glucosidase activity. Modeling results were consistent with experimental observations of higher efficiency in complexed systems than non-complexed systems and established relationships between specific cellulolytic mechanisms and overall efficiency. Global sensitivity analysis (GSA) of model results identified key parameters for improving overall cellulose hydrolysis efficiency including: (1) the cellulase half-life, (2) the exoglucanase activity, and (3) the cellulase composition. Overall, the following parameters were found to significantly influence cellulose consumption in a consolidated bioprocess (CBP): (1) the glucose uptake rate of the culture, (2) the bacterial cell concentration, and (3) the nature of the cellulase enzyme system (complexed or non-complexed). Broadly, these results demonstrate the utility of combining modeling and sensitivity analysis to identify key parameters and/or targets for experimental improvement. PMID:24830736
NASA Astrophysics Data System (ADS)
Farroni, Flavio; Lamberti, Raffaele; Mancinelli, Nicolò; Timpone, Francesco
2018-03-01
Tyres play a key role in ground vehicles' dynamics because they are responsible for traction, braking and cornering. A proper tyre-road interaction model is essential for a useful and reliable vehicle dynamics model. In the last two decades Pacejka's Magic Formula (MF) has become a standard in simulation field. This paper presents a Tool, called TRIP-ID (Tyre Road Interaction Parameters IDentification), developed to characterize and to identify with a high grade of accuracy and reliability MF micro-parameters from experimental data deriving from telemetry or from test rig. The tool guides interactively the user through the identification process on the basis of strong diagnostic considerations about the experimental data made evident by the tool itself. A motorsport application of the tool is shown as a case study.
Effects of human running cadence and experimental validation of the bouncing ball model
NASA Astrophysics Data System (ADS)
Bencsik, László; Zelei, Ambrus
2017-05-01
The biomechanical analysis of human running is a complex problem, because of the large number of parameters and degrees of freedom. However, simplified models can be constructed, which are usually characterized by some fundamental parameters, like step length, foot strike pattern and cadence. The bouncing ball model of human running is analysed theoretically and experimentally in this work. It is a minimally complex dynamic model when the aim is to estimate the energy cost of running and the tendency of ground-foot impact intensity as a function of cadence. The model shows that cadence has a direct effect on energy efficiency of running and ground-foot impact intensity. Furthermore, it shows that higher cadence implies lower risk of injury and better energy efficiency. An experimental data collection of 121 amateur runners is presented. The experimental results validate the model and provides information about the walk-to-run transition speed and the typical development of cadence and grounded phase ratio in different running speed ranges.
Gemmell, Philip; Burrage, Kevin; Rodriguez, Blanca; Quinn, T Alexander
2014-01-01
Variability is observed at all levels of cardiac electrophysiology. Yet, the underlying causes and importance of this variability are generally unknown, and difficult to investigate with current experimental techniques. The aim of the present study was to generate populations of computational ventricular action potential models that reproduce experimentally observed intercellular variability of repolarisation (represented by action potential duration) and to identify its potential causes. A systematic exploration of the effects of simultaneously varying the magnitude of six transmembrane current conductances (transient outward, rapid and slow delayed rectifier K(+), inward rectifying K(+), L-type Ca(2+), and Na(+)/K(+) pump currents) in two rabbit-specific ventricular action potential models (Shannon et al. and Mahajan et al.) at multiple cycle lengths (400, 600, 1,000 ms) was performed. This was accomplished with distributed computing software specialised for multi-dimensional parameter sweeps and grid execution. An initial population of 15,625 parameter sets was generated for both models at each cycle length. Action potential durations of these populations were compared to experimentally derived ranges for rabbit ventricular myocytes. 1,352 parameter sets for the Shannon model and 779 parameter sets for the Mahajan model yielded action potential duration within the experimental range, demonstrating that a wide array of ionic conductance values can be used to simulate a physiological rabbit ventricular action potential. Furthermore, by using clutter-based dimension reordering, a technique that allows visualisation of multi-dimensional spaces in two dimensions, the interaction of current conductances and their relative importance to the ventricular action potential at different cycle lengths were revealed. Overall, this work represents an important step towards a better understanding of the role that variability in current conductances may play in experimentally observed intercellular variability of rabbit ventricular action potential repolarisation.
Gemmell, Philip; Burrage, Kevin; Rodriguez, Blanca; Quinn, T. Alexander
2014-01-01
Variability is observed at all levels of cardiac electrophysiology. Yet, the underlying causes and importance of this variability are generally unknown, and difficult to investigate with current experimental techniques. The aim of the present study was to generate populations of computational ventricular action potential models that reproduce experimentally observed intercellular variability of repolarisation (represented by action potential duration) and to identify its potential causes. A systematic exploration of the effects of simultaneously varying the magnitude of six transmembrane current conductances (transient outward, rapid and slow delayed rectifier K+, inward rectifying K+, L-type Ca2+, and Na+/K+ pump currents) in two rabbit-specific ventricular action potential models (Shannon et al. and Mahajan et al.) at multiple cycle lengths (400, 600, 1,000 ms) was performed. This was accomplished with distributed computing software specialised for multi-dimensional parameter sweeps and grid execution. An initial population of 15,625 parameter sets was generated for both models at each cycle length. Action potential durations of these populations were compared to experimentally derived ranges for rabbit ventricular myocytes. 1,352 parameter sets for the Shannon model and 779 parameter sets for the Mahajan model yielded action potential duration within the experimental range, demonstrating that a wide array of ionic conductance values can be used to simulate a physiological rabbit ventricular action potential. Furthermore, by using clutter-based dimension reordering, a technique that allows visualisation of multi-dimensional spaces in two dimensions, the interaction of current conductances and their relative importance to the ventricular action potential at different cycle lengths were revealed. Overall, this work represents an important step towards a better understanding of the role that variability in current conductances may play in experimentally observed intercellular variability of rabbit ventricular action potential repolarisation. PMID:24587229
Thermodynamic characterization of tandem mismatches found in naturally occurring RNA
Christiansen, Martha E.; Znosko, Brent M.
2009-01-01
Although all sequence symmetric tandem mismatches and some sequence asymmetric tandem mismatches have been thermodynamically characterized and a model has been proposed to predict the stability of previously unmeasured sequence asymmetric tandem mismatches [Christiansen,M.E. and Znosko,B.M. (2008) Biochemistry, 47, 4329–4336], experimental thermodynamic data for frequently occurring tandem mismatches is lacking. Since experimental data is preferred over a predictive model, the thermodynamic parameters for 25 frequently occurring tandem mismatches were determined. These new experimental values, on average, are 1.0 kcal/mol different from the values predicted for these mismatches using the previous model. The data for the sequence asymmetric tandem mismatches reported here were then combined with the data for 72 sequence asymmetric tandem mismatches that were published previously, and the parameters used to predict the thermodynamics of previously unmeasured sequence asymmetric tandem mismatches were updated. The average absolute difference between the measured values and the values predicted using these updated parameters is 0.5 kcal/mol. This updated model improves the prediction for tandem mismatches that were predicted rather poorly by the previous model. This new experimental data and updated predictive model allow for more accurate calculations of the free energy of RNA duplexes containing tandem mismatches, and, furthermore, should allow for improved prediction of secondary structure from sequence. PMID:19509311
Estimating Colloidal Contact Model Parameters Using Quasi-Static Compression Simulations.
Bürger, Vincent; Briesen, Heiko
2016-10-05
For colloidal particles interacting in suspensions, clusters, or gels, contact models should attempt to include all physical phenomena experimentally observed. One critical point when formulating a contact model is to ensure that the interaction parameters can be easily obtained from experiments. Experimental determinations of contact parameters for particles either are based on bulk measurements for simulations on the macroscopic scale or require elaborate setups for obtaining tangential parameters such as using atomic force microscopy. However, on the colloidal scale, a simple method is required to obtain all interaction parameters simultaneously. This work demonstrates that quasi-static compression of a fractal-like particle network provides all the necessary information to obtain particle interaction parameters using a simple spring-based contact model. These springs provide resistances against all degrees of freedom associated with two-particle interactions, and include critical forces or moments where such springs break, indicating a bond-breakage event. A position-based cost function is introduced to show the identifiability of the two-particle contact parameters, and a discrete, nonlinear, and non-gradient-based global optimization method (simplex with simulated annealing, SIMPSA) is used to minimize the cost function calculated from deviations of particle positions. Results show that, in principle, all necessary contact parameters for an arbitrary particle network can be identified, although numerical efficiency as well as experimental noise must be addressed when applying this method. Such an approach lays the groundwork for identifying particle-contact parameters from a position-based particle analysis for a colloidal system using just one experiment. Spring constants also directly influence the time step of the discrete-element method, and a detailed knowledge of all necessary interaction parameters will help to improve the efficiency of colloidal particle simulations.
Bayesian parameter estimation of a k-ε model for accurate jet-in-crossflow simulations
Ray, Jaideep; Lefantzi, Sophia; Arunajatesan, Srinivasan; ...
2016-05-31
Reynolds-averaged Navier–Stokes models are not very accurate for high-Reynolds-number compressible jet-in-crossflow interactions. The inaccuracy arises from the use of inappropriate model parameters and model-form errors in the Reynolds-averaged Navier–Stokes model. In this study, the hypothesis is pursued that Reynolds-averaged Navier–Stokes predictions can be significantly improved by using parameters inferred from experimental measurements of a supersonic jet interacting with a transonic crossflow.
Tosun, İsmail
2012-01-01
The adsorption isotherm, the adsorption kinetics, and the thermodynamic parameters of ammonium removal from aqueous solution by using clinoptilolite in aqueous solution was investigated in this study. Experimental data obtained from batch equilibrium tests have been analyzed by four two-parameter (Freundlich, Langmuir, Tempkin and Dubinin-Radushkevich (D-R)) and four three-parameter (Redlich-Peterson (R-P), Sips, Toth and Khan) isotherm models. D-R and R-P isotherms were the models that best fitted to experimental data over the other two- and three-parameter models applied. The adsorption energy (E) from the D-R isotherm was found to be approximately 7 kJ/mol for the ammonium-clinoptilolite system, thereby indicating that ammonium is adsorbed on clinoptilolite by physisorption. Kinetic parameters were determined by analyzing the nth-order kinetic model, the modified second-order model and the double exponential model, and each model resulted in a coefficient of determination (R2) of above 0.989 with an average relative error lower than 5%. A Double Exponential Model (DEM) showed that the adsorption process develops in two stages as rapid and slow phase. Changes in standard free energy (∆G°), enthalpy (∆H°) and entropy (∆S°) of ammonium-clinoptilolite system were estimated by using the thermodynamic equilibrium coefficients. PMID:22690177
Tosun, Ismail
2012-03-01
The adsorption isotherm, the adsorption kinetics, and the thermodynamic parameters of ammonium removal from aqueous solution by using clinoptilolite in aqueous solution was investigated in this study. Experimental data obtained from batch equilibrium tests have been analyzed by four two-parameter (Freundlich, Langmuir, Tempkin and Dubinin-Radushkevich (D-R)) and four three-parameter (Redlich-Peterson (R-P), Sips, Toth and Khan) isotherm models. D-R and R-P isotherms were the models that best fitted to experimental data over the other two- and three-parameter models applied. The adsorption energy (E) from the D-R isotherm was found to be approximately 7 kJ/mol for the ammonium-clinoptilolite system, thereby indicating that ammonium is adsorbed on clinoptilolite by physisorption. Kinetic parameters were determined by analyzing the nth-order kinetic model, the modified second-order model and the double exponential model, and each model resulted in a coefficient of determination (R(2)) of above 0.989 with an average relative error lower than 5%. A Double Exponential Model (DEM) showed that the adsorption process develops in two stages as rapid and slow phase. Changes in standard free energy (∆G°), enthalpy (∆H°) and entropy (∆S°) of ammonium-clinoptilolite system were estimated by using the thermodynamic equilibrium coefficients.
Jang, Cheongjae; Ha, Junhyoung; Dupont, Pierre E.; Park, Frank Chongwoo
2017-01-01
Although existing mechanics-based models of concentric tube robots have been experimentally demonstrated to approximate the actual kinematics, determining accurate estimates of model parameters remains difficult due to the complex relationship between the parameters and available measurements. Further, because the mechanics-based models neglect some phenomena like friction, nonlinear elasticity, and cross section deformation, it is also not clear if model error is due to model simplification or to parameter estimation errors. The parameters of the superelastic materials used in these robots can be slowly time-varying, necessitating periodic re-estimation. This paper proposes a method for estimating the mechanics-based model parameters using an extended Kalman filter as a step toward on-line parameter estimation. Our methodology is validated through both simulation and experiments. PMID:28717554
Experimental evidence of a pathogen invasion threshold
Krkošek, Martin
2018-01-01
Host density thresholds to pathogen invasion separate regions of parameter space corresponding to endemic and disease-free states. The host density threshold is a central concept in theoretical epidemiology and a common target of human and wildlife disease control programmes, but there is mixed evidence supporting the existence of thresholds, especially in wildlife populations or for pathogens with complex transmission modes (e.g. environmental transmission). Here, we demonstrate the existence of a host density threshold for an environmentally transmitted pathogen by combining an epidemiological model with a microcosm experiment. Experimental epidemics consisted of replicate populations of naive crustacean zooplankton (Daphnia dentifera) hosts across a range of host densities (20–640 hosts l−1) that were exposed to an environmentally transmitted fungal pathogen (Metschnikowia bicuspidata). Epidemiological model simulations, parametrized independently of the experiment, qualitatively predicted experimental pathogen invasion thresholds. Variability in parameter estimates did not strongly influence outcomes, though systematic changes to key parameters have the potential to shift pathogen invasion thresholds. In summary, we provide one of the first clear experimental demonstrations of pathogen invasion thresholds in a replicated experimental system, and provide evidence that such thresholds may be predictable using independently constructed epidemiological models. PMID:29410876
Boos, Moritz; Seer, Caroline; Lange, Florian; Kopp, Bruno
2016-01-01
Cognitive determinants of probabilistic inference were examined using hierarchical Bayesian modeling techniques. A classic urn-ball paradigm served as experimental strategy, involving a factorial two (prior probabilities) by two (likelihoods) design. Five computational models of cognitive processes were compared with the observed behavior. Parameter-free Bayesian posterior probabilities and parameter-free base rate neglect provided inadequate models of probabilistic inference. The introduction of distorted subjective probabilities yielded more robust and generalizable results. A general class of (inverted) S-shaped probability weighting functions had been proposed; however, the possibility of large differences in probability distortions not only across experimental conditions, but also across individuals, seems critical for the model's success. It also seems advantageous to consider individual differences in parameters of probability weighting as being sampled from weakly informative prior distributions of individual parameter values. Thus, the results from hierarchical Bayesian modeling converge with previous results in revealing that probability weighting parameters show considerable task dependency and individual differences. Methodologically, this work exemplifies the usefulness of hierarchical Bayesian modeling techniques for cognitive psychology. Theoretically, human probabilistic inference might be best described as the application of individualized strategic policies for Bayesian belief revision. PMID:27303323
Uncertainty quantification of voice signal production mechanical model and experimental updating
NASA Astrophysics Data System (ADS)
Cataldo, E.; Soize, C.; Sampaio, R.
2013-11-01
The aim of this paper is to analyze the uncertainty quantification in a voice production mechanical model and update the probability density function corresponding to the tension parameter using the Bayes method and experimental data. Three parameters are considered uncertain in the voice production mechanical model used: the tension parameter, the neutral glottal area and the subglottal pressure. The tension parameter of the vocal folds is mainly responsible for the changing of the fundamental frequency of a voice signal, generated by a mechanical/mathematical model for producing voiced sounds. The three uncertain parameters are modeled by random variables. The probability density function related to the tension parameter is considered uniform and the probability density functions related to the neutral glottal area and the subglottal pressure are constructed using the Maximum Entropy Principle. The output of the stochastic computational model is the random voice signal and the Monte Carlo method is used to solve the stochastic equations allowing realizations of the random voice signals to be generated. For each realization of the random voice signal, the corresponding realization of the random fundamental frequency is calculated and the prior pdf of this random fundamental frequency is then estimated. Experimental data are available for the fundamental frequency and the posterior probability density function of the random tension parameter is then estimated using the Bayes method. In addition, an application is performed considering a case with a pathology in the vocal folds. The strategy developed here is important mainly due to two things. The first one is related to the possibility of updating the probability density function of a parameter, the tension parameter of the vocal folds, which cannot be measured direct and the second one is related to the construction of the likelihood function. In general, it is predefined using the known pdf. Here, it is constructed in a new and different manner, using the own system considered.
A new simple local muscle recovery model and its theoretical and experimental validation.
Ma, Liang; Zhang, Wei; Wu, Su; Zhang, Zhanwu
2015-01-01
This study was conducted to provide theoretical and experimental validation of a local muscle recovery model. Muscle recovery has been modeled in different empirical and theoretical approaches to determine work-rest allowance for musculoskeletal disorder (MSD) prevention. However, time-related parameters and individual attributes have not been sufficiently considered in conventional approaches. A new muscle recovery model was proposed by integrating time-related task parameters and individual attributes. Theoretically, this muscle recovery model was compared to other theoretical models mathematically. Experimentally, a total of 20 subjects participated in the experimental validation. Hand grip force recovery and shoulder joint strength recovery were measured after a fatiguing operation. The recovery profile was fitted by using the recovery model, and individual recovery rates were calculated as well after fitting. Good fitting values (r(2) > .8) were found for all the subjects. Significant differences in recovery rates were found among different muscle groups (p < .05). The theoretical muscle recovery model was primarily validated by characterization of the recovery process after fatiguing operation. The determined recovery rate may be useful to represent individual recovery attribute.
NASA Astrophysics Data System (ADS)
Torki-Harchegani, Mehdi; Ghanbarian, Davoud; Sadeghi, Morteza
2015-08-01
To design new dryers or improve existing drying equipments, accurate values of mass transfer parameters is of great importance. In this study, an experimental and theoretical investigation of drying whole lemons was carried out. The whole lemons were dried in a convective hot air dryer at different air temperatures (50, 60 and 75 °C) and a constant air velocity (1 m s-1). In theoretical consideration, three moisture transfer models including Dincer and Dost model, Bi- G correlation approach and conventional solution of Fick's second law of diffusion were used to determine moisture transfer parameters and predict dimensionless moisture content curves. The predicted results were then compared with the experimental data and the higher degree of prediction accuracy was achieved by the Dincer and Dost model.
Caiazzo, A; Caforio, Federica; Montecinos, Gino; Muller, Lucas O; Blanco, Pablo J; Toro, Eluterio F
2016-10-25
This work presents a detailed investigation of a parameter estimation approach on the basis of the reduced-order unscented Kalman filter (ROUKF) in the context of 1-dimensional blood flow models. In particular, the main aims of this study are (1) to investigate the effects of using real measurements versus synthetic data for the estimation procedure (i.e., numerical results of the same in silico model, perturbed with noise) and (2) to identify potential difficulties and limitations of the approach in clinically realistic applications to assess the applicability of the filter to such setups. For these purposes, the present numerical study is based on a recently published in vitro model of the arterial network, for which experimental flow and pressure measurements are available at few selected locations. To mimic clinically relevant situations, we focus on the estimation of terminal resistances and arterial wall parameters related to vessel mechanics (Young's modulus and wall thickness) using few experimental observations (at most a single pressure or flow measurement per vessel). In all cases, we first perform a theoretical identifiability analysis on the basis of the generalized sensitivity function, comparing then the results owith the ROUKF, using either synthetic or experimental data, to results obtained using reference parameters and to available measurements. Copyright © 2016 John Wiley & Sons, Ltd.
One-Dimensional Simulations for Spall in Metals with Intra- and Inter-grain failure models
NASA Astrophysics Data System (ADS)
Ferri, Brian; Dwivedi, Sunil; McDowell, David
2017-06-01
The objective of the present work is to model spall failure in metals with coupled effect of intra-grain and inter-grain failure mechanisms. The two mechanisms are modeled by a void nucleation, growth, and coalescence (VNGC) model and contact-cohesive model respectively. Both models were implemented in a 1-D code to simulate spall in 6061-T6 aluminum at two impact velocities. The parameters of the VNGC model without inter-grain failure and parameters of the cohesive model without intra-grain failure were first determined to obtain pull-back velocity profiles in agreement with experimental data. With the same impact velocities, the same sets of parameters did not predict the velocity profiles when both mechanisms were simultaneously activated. A sensitivity study was performed to predict spall under combined mechanisms by varying critical stress in the VNGC model and maximum traction in the cohesive model. The study provided possible sets of the two parameters leading to spall. Results will be presented comparing the predicted velocity profile with experimental data using one such set of parameters for the combined intra-grain and inter-grain failures during spall. Work supported by HDTRA1-12-1-0004 gran and by the School of Mechanical Engineering GTA.
NASA Workshop on Distributed Parameter Modeling and Control of Flexible Aerospace Systems
NASA Technical Reports Server (NTRS)
Marks, Virginia B. (Compiler); Keckler, Claude R. (Compiler)
1994-01-01
Although significant advances have been made in modeling and controlling flexible systems, there remains a need for improvements in model accuracy and in control performance. The finite element models of flexible systems are unduly complex and are almost intractable to optimum parameter estimation for refinement using experimental data. Distributed parameter or continuum modeling offers some advantages and some challenges in both modeling and control. Continuum models often result in a significantly reduced number of model parameters, thereby enabling optimum parameter estimation. The dynamic equations of motion of continuum models provide the advantage of allowing the embedding of the control system dynamics, thus forming a complete set of system dynamics. There is also increased insight provided by the continuum model approach.
Gupta, Manoj; Gupta, T C
2017-10-01
The present study aims to accurately estimate inertial, physical, and dynamic parameters of human body vibratory model consistent with physical structure of the human body that also replicates its dynamic response. A 13 degree-of-freedom (DOF) lumped parameter model for standing person subjected to support excitation is established. Model parameters are determined from anthropometric measurements, uniform mass density, elastic modulus of individual body segments, and modal damping ratios. Elastic moduli of ellipsoidal body segments are initially estimated by comparing stiffness of spring elements, calculated from a detailed scheme, and values available in literature for same. These values are further optimized by minimizing difference between theoretically calculated platform-to-head transmissibility ratio (TR) and experimental measurements. Modal damping ratios are estimated from experimental transmissibility response using two dominant peaks in the frequency range of 0-25 Hz. From comparison between dynamic response determined form modal analysis and experimental results, a set of elastic moduli for different segments of human body and a novel scheme to determine modal damping ratios from TR plots, are established. Acceptable match between transmissibility values calculated from the vibratory model and experimental measurements for 50th percentile U.S. male, except at very low frequencies, establishes the human body model developed. Also, reasonable agreement obtained between theoretical response curve and experimental response envelop for average Indian male, affirms the technique used for constructing vibratory model of a standing person. Present work attempts to develop effective technique for constructing subject specific damped vibratory model based on its physical measurements.
Revised Parameters for the AMOEBA Polarizable Atomic Multipole Water Model
Pande, Vijay S.; Head-Gordon, Teresa; Ponder, Jay W.
2016-01-01
A set of improved parameters for the AMOEBA polarizable atomic multipole water model is developed. The protocol uses an automated procedure, ForceBalance, to adjust model parameters to enforce agreement with ab initio-derived results for water clusters and experimentally obtained data for a variety of liquid phase properties across a broad temperature range. The values reported here for the new AMOEBA14 water model represent a substantial improvement over the previous AMOEBA03 model. The new AMOEBA14 water model accurately predicts the temperature of maximum density and qualitatively matches the experimental density curve across temperatures ranging from 249 K to 373 K. Excellent agreement is observed for the AMOEBA14 model in comparison to a variety of experimental properties as a function of temperature, including the 2nd virial coefficient, enthalpy of vaporization, isothermal compressibility, thermal expansion coefficient and dielectric constant. The viscosity, self-diffusion constant and surface tension are also well reproduced. In comparison to high-level ab initio results for clusters of 2 to 20 water molecules, the AMOEBA14 model yields results similar to the AMOEBA03 and the direct polarization iAMOEBA models. With advances in computing power, calibration data, and optimization techniques, we recommend the use of the AMOEBA14 water model for future studies employing a polarizable water model. PMID:25683601
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marzouk, Youssef
Predictive simulation of complex physical systems increasingly rests on the interplay of experimental observations with computational models. Key inputs, parameters, or structural aspects of models may be incomplete or unknown, and must be developed from indirect and limited observations. At the same time, quantified uncertainties are needed to qualify computational predictions in the support of design and decision-making. In this context, Bayesian statistics provides a foundation for inference from noisy and limited data, but at prohibitive computional expense. This project intends to make rigorous predictive modeling *feasible* in complex physical systems, via accelerated and scalable tools for uncertainty quantification, Bayesianmore » inference, and experimental design. Specific objectives are as follows: 1. Develop adaptive posterior approximations and dimensionality reduction approaches for Bayesian inference in high-dimensional nonlinear systems. 2. Extend accelerated Bayesian methodologies to large-scale {\\em sequential} data assimilation, fully treating nonlinear models and non-Gaussian state and parameter distributions. 3. Devise efficient surrogate-based methods for Bayesian model selection and the learning of model structure. 4. Develop scalable simulation/optimization approaches to nonlinear Bayesian experimental design, for both parameter inference and model selection. 5. Demonstrate these inferential tools on chemical kinetic models in reacting flow, constructing and refining thermochemical and electrochemical models from limited data. Demonstrate Bayesian filtering on canonical stochastic PDEs and in the dynamic estimation of inhomogeneous subsurface properties and flow fields.« less
Charge Transport in Nonaqueous Liquid Electrolytes: A Paradigm Shift
2015-05-18
that provide inadequate descriptions of experimental data, often using empirical equations whose fitting parameters have no physical significance...provide inadequate descriptions of experimental data, often using empirical equations whose fitting parameters have no physical significance...Ea The hydrodynamic model, utilizing the Stokes equation describes isothermal conductivity, self-diffusion coefficient, and the dielectric
A joint-space numerical model of metabolic energy expenditure for human multibody dynamic system.
Kim, Joo H; Roberts, Dustyn
2015-09-01
Metabolic energy expenditure (MEE) is a critical performance measure of human motion. In this study, a general joint-space numerical model of MEE is derived by integrating the laws of thermodynamics and principles of multibody system dynamics, which can evaluate MEE without the limitations inherent in experimental measurements (phase delays, steady state and task restrictions, and limited range of motion) or muscle-space models (complexities and indeterminacies from excessive DOFs, contacts and wrapping interactions, and reliance on in vitro parameters). Muscle energetic components are mapped to the joint space, in which the MEE model is formulated. A constrained multi-objective optimization algorithm is established to estimate the model parameters from experimental walking data also used for initial validation. The joint-space parameters estimated directly from active subjects provide reliable MEE estimates with a mean absolute error of 3.6 ± 3.6% relative to validation values, which can be used to evaluate MEE for complex non-periodic tasks that may not be experimentally verifiable. This model also enables real-time calculations of instantaneous MEE rate as a function of time for transient evaluations. Although experimental measurements may not be completely replaced by model evaluations, predicted quantities can be used as strong complements to increase reliability of the results and yield unique insights for various applications. Copyright © 2015 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Zou, Yan-Rong; Wang, Lianyuan; Shuai, Yanhua; Peng, Ping'an
2005-08-01
A new kinetic model and an Excel © spreadsheet program for modeling the stable carbon isotope composition of natural gases is provided in this paper. The model and spreadsheet could be used to describe and predict the variances in stable carbon isotope of natural gases under both experimental and geological conditions with heating temperature or geological time. It is a user-friendly convenient tool for the modeling of isotope variation with time under experimental and geological conditions. The spreadsheet, based on experimental data, requires the input of the kinetic parameters of gaseous hydrocarbons generation. Some assumptions are made in this model: the conventional (non-isotope species) kinetic parameters represent the light isotope species; the initial isotopic value is the same for all parallel chemical reaction of gaseous hydrocarbons generation for simplicity, the re-exponential factor ratio, 13A/ 12A, is a constant, and both heavy and light isotope species have similar activation energy distribution. These assumptions are common in modeling of isotope ratios. The spreadsheet is used for searching the best kinetic parameters of the heavy isotope species to reach the minimum errors compared with experimental data, and then extrapolating isotopic changes to the thermal history of sedimentary basins. A short calculation example on the variation in δ13C values of methane is provided in this paper to show application to geological conditions.
Automatic Parametrization of Somatosensory Evoked Potentials With Chirp Modeling.
Vayrynen, Eero; Noponen, Kai; Vipin, Ashwati; Thow, X Y; Al-Nashash, Hasan; Kortelainen, Jukka; All, Angelo
2016-09-01
In this paper, an approach using polynomial phase chirp signals to model somatosensory evoked potentials (SEPs) is proposed. SEP waveforms are assumed as impulses undergoing group velocity dispersion while propagating along a multipath neural connection. Mathematical analysis of pulse dispersion resulting in chirp signals is performed. An automatic parameterization of SEPs is proposed using chirp models. A Particle Swarm Optimization algorithm is used to optimize the model parameters. Features describing the latencies and amplitudes of SEPs are automatically derived. A rat model is then used to evaluate the automatic parameterization of SEPs in two experimental cases, i.e., anesthesia level and spinal cord injury (SCI). Experimental results show that chirp-based model parameters and the derived SEP features are significant in describing both anesthesia level and SCI changes. The proposed automatic optimization based approach for extracting chirp parameters offers potential for detailed SEP analysis in future studies. The method implementation in Matlab technical computing language is provided online.
Ferrets as Models for Influenza Virus Transmission Studies and Pandemic Risk Assessments
Barclay, Wendy; Barr, Ian; Fouchier, Ron A.M.; Matsuyama, Ryota; Nishiura, Hiroshi; Peiris, Malik; Russell, Charles J.; Subbarao, Kanta; Zhu, Huachen
2018-01-01
The ferret transmission model is extensively used to assess the pandemic potential of emerging influenza viruses, yet experimental conditions and reported results vary among laboratories. Such variation can be a critical consideration when contextualizing results from independent risk-assessment studies of novel and emerging influenza viruses. To streamline interpretation of data generated in different laboratories, we provide a consensus on experimental parameters that define risk-assessment experiments of influenza virus transmissibility, including disclosure of variables known or suspected to contribute to experimental variability in this model, and advocate adoption of more standardized practices. We also discuss current limitations of the ferret transmission model and highlight continued refinements and advances to this model ongoing in laboratories. Understanding, disclosing, and standardizing the critical parameters of ferret transmission studies will improve the comparability and reproducibility of pandemic influenza risk assessment and increase the statistical power and, perhaps, accuracy of this model. PMID:29774862
A Quantitative Model of Early Atherosclerotic Plaques Parameterized Using In Vitro Experiments.
Thon, Moritz P; Ford, Hugh Z; Gee, Michael W; Myerscough, Mary R
2018-01-01
There are a growing number of studies that model immunological processes in the artery wall that lead to the development of atherosclerotic plaques. However, few of these models use parameters that are obtained from experimental data even though data-driven models are vital if mathematical models are to become clinically relevant. We present the development and analysis of a quantitative mathematical model for the coupled inflammatory, lipid and macrophage dynamics in early atherosclerotic plaques. Our modeling approach is similar to the biologists' experimental approach where the bigger picture of atherosclerosis is put together from many smaller observations and findings from in vitro experiments. We first develop a series of three simpler submodels which are least-squares fitted to various in vitro experimental results from the literature. Subsequently, we use these three submodels to construct a quantitative model of the development of early atherosclerotic plaques. We perform a local sensitivity analysis of the model with respect to its parameters that identifies critical parameters and processes. Further, we present a systematic analysis of the long-term outcome of the model which produces a characterization of the stability of model plaques based on the rates of recruitment of low-density lipoproteins, high-density lipoproteins and macrophages. The analysis of the model suggests that further experimental work quantifying the different fates of macrophages as a function of cholesterol load and the balance between free cholesterol and cholesterol ester inside macrophages may give valuable insight into long-term atherosclerotic plaque outcomes. This model is an important step toward models applicable in a clinical setting.
Liang, Yuzhen; Torralba-Sanchez, Tifany L; Di Toro, Dominic M
2018-04-18
Polyparameter Linear Free Energy Relationships (pp-LFERs) using Abraham system parameters have many useful applications. However, developing the Abraham system parameters depends on the availability and quality of the Abraham solute parameters. Using Quantum Chemically estimated Abraham solute Parameters (QCAP) is shown to produce pp-LFERs that have lower root mean square errors (RMSEs) of predictions for solvent-water partition coefficients than parameters that are estimated using other presently available methods. pp-LFERs system parameters are estimated for solvent-water, plant cuticle-water systems, and for novel compounds using QCAP solute parameters and experimental partition coefficients. Refitting the system parameter improves the calculation accuracy and eliminates the bias. Refitted models for solvent-water partition coefficients using QCAP solute parameters give better results (RMSE = 0.278 to 0.506 log units for 24 systems) than those based on ABSOLV (0.326 to 0.618) and QSPR (0.294 to 0.700) solute parameters. For munition constituents and munition-like compounds not included in the calibration of the refitted model, QCAP solute parameters produce pp-LFER models with much lower RMSEs for solvent-water partition coefficients (RMSE = 0.734 and 0.664 for original and refitted model, respectively) than ABSOLV (4.46 and 5.98) and QSPR (2.838 and 2.723). Refitting plant cuticle-water pp-LFER including munition constituents using QCAP solute parameters also results in lower RMSE (RMSE = 0.386) than that using ABSOLV (0.778) and QSPR (0.512) solute parameters. Therefore, for fitting a model in situations for which experimental data exist and system parameters can be re-estimated, or for which system parameters do not exist and need to be developed, QCAP is the quantum chemical method of choice.
Determination of the atrazine migration parameters in Vertisol
NASA Astrophysics Data System (ADS)
Raymundo-Raymundo, E.; Hernandez-Vargas, J.; Nikol'Skii, Yu. N.; Guber, A. K.; Gavi-Reyes, F.; Prado-Pano, B. L.; Figueroa-Sandoval, B.; Mendosa-Hernandez, J. R.
2010-05-01
The parameters of the atrazine migration in columns with undisturbed Vertisol sampled from an irrigated plot in Guanajuato, Mexico were determined. A model of the convection-dispersion transport of the chemical compounds accounting for the decomposition and equilibrium adsorption, which is widely applied for assessing the risk of contamination of natural waters with pesticides, was used. The model parameters were obtained by solving the inverse problem of the transport equation on the basis of laboratory experiments on the transport of the 18O isotope and atrazine in soil columns with an undisturbed structure at three filtration velocities. The model adequately described the experimental data at the individual selection of the parameters for each output curve. Physically unsubstantiated parameters of the atrazine adsorption and degradation were obtained when the parameter of the hydrodynamic dispersion was determined from the data on the 18O migration. The simulation also showed that the use of parameters obtained at water content close to saturation in the calculations for an unsaturated soil resulted in the overestimation of the leaching rate and the maximum concentration of atrazine in the output curve compared to the experimental data.
Uncertainty Analysis in 3D Equilibrium Reconstruction
Cianciosa, Mark R.; Hanson, James D.; Maurer, David A.
2018-02-21
Reconstruction is an inverse process where a parameter space is searched to locate a set of parameters with the highest probability of describing experimental observations. Due to systematic errors and uncertainty in experimental measurements, this optimal set of parameters will contain some associated uncertainty. This uncertainty in the optimal parameters leads to uncertainty in models derived using those parameters. V3FIT is a three-dimensional (3D) equilibrium reconstruction code that propagates uncertainty from the input signals, to the reconstructed parameters, and to the final model. Here in this paper, we describe the methods used to propagate uncertainty in V3FIT. Using the resultsmore » of whole shot 3D equilibrium reconstruction of the Compact Toroidal Hybrid, this propagated uncertainty is validated against the random variation in the resulting parameters. Two different model parameterizations demonstrate how the uncertainty propagation can indicate the quality of a reconstruction. As a proxy for random sampling, the whole shot reconstruction results in a time interval that will be used to validate the propagated uncertainty from a single time slice.« less
Uncertainty Analysis in 3D Equilibrium Reconstruction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cianciosa, Mark R.; Hanson, James D.; Maurer, David A.
Reconstruction is an inverse process where a parameter space is searched to locate a set of parameters with the highest probability of describing experimental observations. Due to systematic errors and uncertainty in experimental measurements, this optimal set of parameters will contain some associated uncertainty. This uncertainty in the optimal parameters leads to uncertainty in models derived using those parameters. V3FIT is a three-dimensional (3D) equilibrium reconstruction code that propagates uncertainty from the input signals, to the reconstructed parameters, and to the final model. Here in this paper, we describe the methods used to propagate uncertainty in V3FIT. Using the resultsmore » of whole shot 3D equilibrium reconstruction of the Compact Toroidal Hybrid, this propagated uncertainty is validated against the random variation in the resulting parameters. Two different model parameterizations demonstrate how the uncertainty propagation can indicate the quality of a reconstruction. As a proxy for random sampling, the whole shot reconstruction results in a time interval that will be used to validate the propagated uncertainty from a single time slice.« less
Zimmer, Christoph
2016-01-01
Background Computational modeling is a key technique for analyzing models in systems biology. There are well established methods for the estimation of the kinetic parameters in models of ordinary differential equations (ODE). Experimental design techniques aim at devising experiments that maximize the information encoded in the data. For ODE models there are well established approaches for experimental design and even software tools. However, data from single cell experiments on signaling pathways in systems biology often shows intrinsic stochastic effects prompting the development of specialized methods. While simulation methods have been developed for decades and parameter estimation has been targeted for the last years, only very few articles focus on experimental design for stochastic models. Methods The Fisher information matrix is the central measure for experimental design as it evaluates the information an experiment provides for parameter estimation. This article suggest an approach to calculate a Fisher information matrix for models containing intrinsic stochasticity and high nonlinearity. The approach makes use of a recently suggested multiple shooting for stochastic systems (MSS) objective function. The Fisher information matrix is calculated by evaluating pseudo data with the MSS technique. Results The performance of the approach is evaluated with simulation studies on an Immigration-Death, a Lotka-Volterra, and a Calcium oscillation model. The Calcium oscillation model is a particularly appropriate case study as it contains the challenges inherent to signaling pathways: high nonlinearity, intrinsic stochasticity, a qualitatively different behavior from an ODE solution, and partial observability. The computational speed of the MSS approach for the Fisher information matrix allows for an application in realistic size models. PMID:27583802
Description of the Hexadecapole Deformation Parameter in the sdg Interacting Boson Model
NASA Astrophysics Data System (ADS)
Liu, Yu-xin; Sun, Di; Wang, Jia-jun; Han, Qi-zhi
1998-04-01
The hexadecapole deformation parameter β4 of the rare-earth and actinide nuclei is investigated in the framework of the sdg interacing boson model. An explicit relation between the geometric hexadecapole deformation parameter β4 and the intrinsic deformation parameters epsilon4, epsilon2 are obtained. The deformation parameters β4 of the rare-earths and actinides are determined without any free parameter. The calculated results agree with experimental data well. It also shows that the SU(5) limit of the sdg interacting boson model can describe the β4 systematics as well as the SU(3) limit.
Wang, Qianqian; Zhao, Jing; Gong, Yong; Hao, Qun; Peng, Zhong
2017-11-20
A hybrid artificial bee colony (ABC) algorithm inspired by the best-so-far solution and bacterial chemotaxis was introduced to optimize the parameters of the five-parameter bidirectional reflectance distribution function (BRDF) model. To verify the performance of the hybrid ABC algorithm, we measured BRDF of three kinds of samples and simulated the undetermined parameters of the five-parameter BRDF model using the hybrid ABC algorithm and the genetic algorithm, respectively. The experimental results demonstrate that the hybrid ABC algorithm outperforms the genetic algorithm in convergence speed, accuracy, and time efficiency under the same conditions.
Cheng, Mingjian; Guo, Ya; Li, Jiangting; Zheng, Xiaotong; Guo, Lixin
2018-04-20
We introduce an alternative distribution to the gamma-gamma (GG) distribution, called inverse Gaussian gamma (IGG) distribution, which can efficiently describe moderate-to-strong irradiance fluctuations. The proposed stochastic model is based on a modulation process between small- and large-scale irradiance fluctuations, which are modeled by gamma and inverse Gaussian distributions, respectively. The model parameters of the IGG distribution are directly related to atmospheric parameters. The accuracy of the fit among the IGG, log-normal, and GG distributions with the experimental probability density functions in moderate-to-strong turbulence are compared, and results indicate that the newly proposed IGG model provides an excellent fit to the experimental data. As the receiving diameter is comparable with the atmospheric coherence radius, the proposed IGG model can reproduce the shape of the experimental data, whereas the GG and LN models fail to match the experimental data. The fundamental channel statistics of a free-space optical communication system are also investigated in an IGG-distributed turbulent atmosphere, and a closed-form expression for the outage probability of the system is derived with Meijer's G-function.
Microstructure and rheology of thermoreversible nanoparticle gels.
Ramakrishnan, S; Zukoski, C F
2006-08-29
Naïve mode coupling theory is applied to particles interacting with short-range Yukawa attractions. Model results for the location of the gel line and the modulus of the resulting gels are reduced to algebraic equations capturing the effects of the range and strength of attraction. This model is then applied to thermo reversible gels composed of octadecyl silica particles suspended in decalin. The application of the model to the experimental system requires linking the experimental variable controlling strength of attraction, temperature, to the model strength of attraction. With this link, the model predicts temperature and volume fraction dependencies of gelation and modulus with five parameters: particle size, particle volume fraction, overlap volume of surface hairs, and theta temperature. In comparing model predictions with experimental results, we first observe that in these thermal gels there is no evidence of clustering as has been reported in depletion gels. One consequence of this observation is that there are no additional adjustable parameters required to make quantitative comparisons between experimental results and model predictions. Our results indicate that the naïve mode coupling approach taken here in conjunction with a model linking temperature to strength of attraction provides a robust approach for making quantitative predictions of gel mechanical properties. Extension of model predictions to additional experimental systems requires linking experimental variables to the Yukawa strength and range of attraction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
López C, Diana C.; Wozny, Günter; Flores-Tlacuahuac, Antonio
2016-03-23
The lack of informative experimental data and the complexity of first-principles battery models make the recovery of kinetic, transport, and thermodynamic parameters complicated. We present a computational framework that combines sensitivity, singular value, and Monte Carlo analysis to explore how different sources of experimental data affect parameter structural ill conditioning and identifiability. Our study is conducted on a modified version of the Doyle-Fuller-Newman model. We demonstrate that the use of voltage discharge curves only enables the identification of a small parameter subset, regardless of the number of experiments considered. Furthermore, we show that the inclusion of a single electrolyte concentrationmore » measurement significantly aids identifiability and mitigates ill-conditioning.« less
Claydon, Leica S; Chesterton, Linda S; Barlas, Panos; Sim, Julius
2011-09-01
To determine the hypoalgesic effects of transcutaneous electrical nerve stimulation (TENS) parameter combinations on experimental models in healthy humans. Searches were performed using the electronic databases Ovid MEDLINE, CINAHL, AMED, and Web of Science (from inception to December 2009). Manual searches of journals and reference lists of retrieved trials were also performed. Randomized controlled trials (RCTs) were included in the review if they compared the hypoalgesic effect of TENS relative with placebo and control, using an experimental pain model in healthy human participants. Two reviewers independently selected the trials, assessed their methodologic quality and extracted data. Forty-three RCTs were eligible for inclusion. A best evidence synthesis revealed: Overall "conflicting" (inconsistent findings in multiple RCTs) evidence of TENS efficacy on experimental pain irrespective of TENS parameters used. Overall intense TENS has "moderate" evidence of efficacy (1 high-quality and 2 low-quality trials). Conventional TENS has overall conflicting evidence of efficacy, this is derived from "strong" evidence of efficacy (generally consistent findings in multiple high-quality RCTs) on pressure pain but strong evidence of inefficacy on other pain models. "Limited" evidence (positive findings from 1 RCT) of hypoalgesia exists for some novel parameters. Low-intensity, low-frequency, local TENS has strong evidence of inefficacy. Inappropriate TENS (using "barely perceptible" intensities) has moderate evidence of inefficacy. The level of hypoalgesic efficacy of TENS is clearly dependent on TENS parameter combination selection (defined in terms of intensity, frequency, and stimulation site) and experimental pain model. Future clinical RCTs may consider these TENS dose responses.
NASA Astrophysics Data System (ADS)
Chrobak, Ł.; Maliński, M.
2018-06-01
This paper presents a comparison of three nondestructive and contactless techniques used for determination of recombination parameters of silicon samples. They are: photoacoustic method, modulated free carriers absorption method and the photothermal radiometry method. In the paper the experimental set-ups used for measurements of the recombination parameters in these methods as also theoretical models used for interpretation of obtained experimental data have been presented and described. The experimental results and their respective fits obtained with these nondestructive techniques are shown and discussed. The values of the recombination parameters obtained with these methods are also presented and compared. Main advantages and disadvantages of presented methods have been discussed.
A Computing Method to Determine the Performance of an Ionic Liquid Gel Soft Actuator
Zhang, Chenghong; Zhou, Yanmin; Wang, Zhipeng
2018-01-01
A new type of soft actuator material—an ionic liquid gel (ILG) that consists of BMIMBF4, HEMA, DEAP, and ZrO2—is polymerized into a gel state under ultraviolet (UV) light irradiation. In this paper, we first propose that the ILG conforms to the assumptions of hyperelastic theory and that the Mooney-Rivlin model can be used to study the properties of the ILG. Under the five-parameter and nine-parameter Mooney-Rivlin models, the formulas for the calculation of the uniaxial tensile stress, plane uniform tensile stress, and 3D directional stress are deduced. The five-parameter and nine-parameter Mooney-Rivlin models of the ILG with a ZrO2 content of 3 wt% were obtained by uniaxial tensile testing, and the parameters are denoted as c10, c01, c20, c11, and c02 and c10, c01, c20, c11, c02, c30, c21, c12, and c03, respectively. Through the analysis and comparison of the uniaxial tensile stress between the calculated and experimental data, the error between the stress data calculated from the five-parameter Mooney-Rivlin model and the experimental data is less than 0.51%, and the error between the stress data calculated from the nine-parameter Mooney-Rivlin model and the experimental data is no more than 8.87%. Hence, our work presents a feasible and credible formula for the calculation of the stress of the ILG. This work opens a new path to assess the performance of a soft actuator composed of an ILG and will contribute to the optimized design of soft robots. PMID:29853999
A Computing Method to Determine the Performance of an Ionic Liquid Gel Soft Actuator.
He, Bin; Zhang, Chenghong; Zhou, Yanmin; Wang, Zhipeng
2018-01-01
A new type of soft actuator material-an ionic liquid gel (ILG) that consists of BMIMBF 4 , HEMA, DEAP, and ZrO 2 -is polymerized into a gel state under ultraviolet (UV) light irradiation. In this paper, we first propose that the ILG conforms to the assumptions of hyperelastic theory and that the Mooney-Rivlin model can be used to study the properties of the ILG. Under the five-parameter and nine-parameter Mooney-Rivlin models, the formulas for the calculation of the uniaxial tensile stress, plane uniform tensile stress, and 3D directional stress are deduced. The five-parameter and nine-parameter Mooney-Rivlin models of the ILG with a ZrO 2 content of 3 wt% were obtained by uniaxial tensile testing, and the parameters are denoted as c 10 , c 01 , c 20 , c 11 , and c 02 and c 10 , c 01 , c 20 , c 11 , c 02 , c 30 , c 21 , c 12 , and c 03 , respectively. Through the analysis and comparison of the uniaxial tensile stress between the calculated and experimental data, the error between the stress data calculated from the five-parameter Mooney-Rivlin model and the experimental data is less than 0.51%, and the error between the stress data calculated from the nine-parameter Mooney-Rivlin model and the experimental data is no more than 8.87%. Hence, our work presents a feasible and credible formula for the calculation of the stress of the ILG. This work opens a new path to assess the performance of a soft actuator composed of an ILG and will contribute to the optimized design of soft robots.
NASA Astrophysics Data System (ADS)
Sadi, Maryam
2018-01-01
In this study a group method of data handling model has been successfully developed to predict heat capacity of ionic liquid based nanofluids by considering reduced temperature, acentric factor and molecular weight of ionic liquids, and nanoparticle concentration as input parameters. In order to accomplish modeling, 528 experimental data points extracted from the literature have been divided into training and testing subsets. The training set has been used to predict model coefficients and the testing set has been applied for model validation. The ability and accuracy of developed model, has been evaluated by comparison of model predictions with experimental values using different statistical parameters such as coefficient of determination, mean square error and mean absolute percentage error. The mean absolute percentage error of developed model for training and testing sets are 1.38% and 1.66%, respectively, which indicate excellent agreement between model predictions and experimental data. Also, the results estimated by the developed GMDH model exhibit a higher accuracy when compared to the available theoretical correlations.
Scholz, M; Ackermann, M; Engel, C; Emmrich, F; Loeffler, M; Kamprad, M
2009-12-01
Recombinant human granulocyte colony-stimulating factor (rhG-CSF) is widely used as treatment for granulocytopaenia during cytotoxic chemotherapy; however, optimal scheduling of this pharmaceutical is unknown. Biomathematical models can help to pre-select optimal application schedules but precise pharmacokinetic properties of the pharmaceuticals are required at first. In this study, we have aimed to construct a pharmacokinetic model of G-CSF derivatives filgrastim and pegfilgrastim in mice. Healthy CD-1 mice and those with cyclophosphamide-induced granulocytopaenia were studied after administration of filgrastim and pegfilgrastim in different dosing and timing schedules. Close meshed time series of granulocytes and G-CSF plasma concentrations were determined. An ordinary differential equations model of pharmacokinetics was constructed on the basis of known mechanisms of drug distribution and degradation. Predictions of the model fit well with all experimental data for both filgrastim and pegfilgrastim. We obtained a unique parameter setting for all experimental scenarios. Differences in pharmacokinetics between filgrastim and pegfilgrastim can be explained by different estimates of model parameters rather than by different model mechanisms. Parameter estimates with respect to distribution and clearance of the drug derivatives are in agreement with qualitative experimental results. Dynamics of filgrastim and pegfilgrastim plasma levels can be explained by the same pharmacokinetic model but different model parameters. Beause of a strong clearance mechanism mediated by granulocytes, granulocytotic and granulocytopaenic conditions must be studied simultaneously to construct a reliable model. The pharmacokinetic model will be extended to a murine model of granulopoiesis under chemotherapy and G-CSF application.
Analysis of Network Topologies Underlying Ethylene Growth Response Kinetics
Prescott, Aaron M.; McCollough, Forest W.; Eldreth, Bryan L.; Binder, Brad M.; Abel, Steven M.
2016-01-01
Most models for ethylene signaling involve a linear pathway. However, measurements of seedling growth kinetics when ethylene is applied and removed have resulted in more complex network models that include coherent feedforward, negative feedback, and positive feedback motifs. The dynamical responses of the proposed networks have not been explored in a quantitative manner. Here, we explore (i) whether any of the proposed models are capable of producing growth-response behaviors consistent with experimental observations and (ii) what mechanistic roles various parts of the network topologies play in ethylene signaling. To address this, we used computational methods to explore two general network topologies: The first contains a coherent feedforward loop that inhibits growth and a negative feedback from growth onto itself (CFF/NFB). In the second, ethylene promotes the cleavage of EIN2, with the product of the cleavage inhibiting growth and promoting the production of EIN2 through a positive feedback loop (PFB). Since few network parameters for ethylene signaling are known in detail, we used an evolutionary algorithm to explore sets of parameters that produce behaviors similar to experimental growth response kinetics of both wildtype and mutant seedlings. We generated a library of parameter sets by independently running the evolutionary algorithm many times. Both network topologies produce behavior consistent with experimental observations, and analysis of the parameter sets allows us to identify important network interactions and parameter constraints. We additionally screened these parameter sets for growth recovery in the presence of sub-saturating ethylene doses, which is an experimentally-observed property that emerges in some of the evolved parameter sets. Finally, we probed simplified networks maintaining key features of the CFF/NFB and PFB topologies. From this, we verified observations drawn from the larger networks about mechanisms underlying ethylene signaling. Analysis of each network topology results in predictions about changes that occur in network components that can be experimentally tested to give insights into which, if either, network underlies ethylene responses. PMID:27625669
Prediction and Computation of Corrosion Rates of A36 Mild Steel in Oilfield Seawater
NASA Astrophysics Data System (ADS)
Paul, Subir; Mondal, Rajdeep
2018-04-01
The parameters which primarily control the corrosion rate and life of steel structures are several and they vary across the different ocean and seawater as well as along the depth. While the effect of single parameter on corrosion behavior is known, the conjoint effects of multiple parameters and the interrelationship among the variables are complex. Millions sets of experiments are required to understand the mechanism of corrosion failure. Statistical modeling such as ANN is one solution that can reduce the number of experimentation. ANN model was developed using 170 sets of experimental data of A35 mild steel in simulated seawater, varying the corrosion influencing parameters SO4 2-, Cl-, HCO3 -,CO3 2-, CO2, O2, pH and temperature as input and the corrosion current as output. About 60% of experimental data were used to train the model, 20% for testing and 20% for validation. The model was developed by programming in Matlab. 80% of the validated data could predict the corrosion rate correctly. Corrosion rates predicted by the ANN model are displayed in 3D graphics which show many interesting phenomenon of the conjoint effects of multiple variables that might throw new ideas of mitigation of corrosion by simply modifying the chemistry of the constituents. The model could predict the corrosion rates of some real systems.
Briggs, Martin A.; Day-Lewis, Frederick D.; Ong, John B.; Harvey, Judson W.; Lane, John W.
2014-01-01
Models of dual-domain mass transfer (DDMT) are used to explain anomalous aquifer transport behavior such as the slow release of contamination and solute tracer tailing. Traditional tracer experiments to characterize DDMT are performed at the flow path scale (meters), which inherently incorporates heterogeneous exchange processes; hence, estimated “effective” parameters are sensitive to experimental design (i.e., duration and injection velocity). Recently, electrical geophysical methods have been used to aid in the inference of DDMT parameters because, unlike traditional fluid sampling, electrical methods can directly sense less-mobile solute dynamics and can target specific points along subsurface flow paths. Here we propose an analytical framework for graphical parameter inference based on a simple petrophysical model explaining the hysteretic relation between measurements of bulk and fluid conductivity arising in the presence of DDMT at the local scale. Analysis is graphical and involves visual inspection of hysteresis patterns to (1) determine the size of paired mobile and less-mobile porosities and (2) identify the exchange rate coefficient through simple curve fitting. We demonstrate the approach using laboratory column experimental data, synthetic streambed experimental data, and field tracer-test data. Results from the analytical approach compare favorably with results from calibration of numerical models and also independent measurements of mobile and less-mobile porosity. We show that localized electrical hysteresis patterns resulting from diffusive exchange are independent of injection velocity, indicating that repeatable parameters can be extracted under varied experimental designs, and these parameters represent the true intrinsic properties of specific volumes of porous media of aquifers and hyporheic zones.
NASA Astrophysics Data System (ADS)
Briggs, Martin A.; Day-Lewis, Frederick D.; Ong, John B.; Harvey, Judson W.; Lane, John W.
2014-10-01
Models of dual-domain mass transfer (DDMT) are used to explain anomalous aquifer transport behavior such as the slow release of contamination and solute tracer tailing. Traditional tracer experiments to characterize DDMT are performed at the flow path scale (meters), which inherently incorporates heterogeneous exchange processes; hence, estimated "effective" parameters are sensitive to experimental design (i.e., duration and injection velocity). Recently, electrical geophysical methods have been used to aid in the inference of DDMT parameters because, unlike traditional fluid sampling, electrical methods can directly sense less-mobile solute dynamics and can target specific points along subsurface flow paths. Here we propose an analytical framework for graphical parameter inference based on a simple petrophysical model explaining the hysteretic relation between measurements of bulk and fluid conductivity arising in the presence of DDMT at the local scale. Analysis is graphical and involves visual inspection of hysteresis patterns to (1) determine the size of paired mobile and less-mobile porosities and (2) identify the exchange rate coefficient through simple curve fitting. We demonstrate the approach using laboratory column experimental data, synthetic streambed experimental data, and field tracer-test data. Results from the analytical approach compare favorably with results from calibration of numerical models and also independent measurements of mobile and less-mobile porosity. We show that localized electrical hysteresis patterns resulting from diffusive exchange are independent of injection velocity, indicating that repeatable parameters can be extracted under varied experimental designs, and these parameters represent the true intrinsic properties of specific volumes of porous media of aquifers and hyporheic zones.
Computer simulation of fibrillation threshold measurements and electrophysiologic testing procedures
NASA Technical Reports Server (NTRS)
Grumbach, M. P.; Saxberg, B. E.; Cohen, R. J.
1987-01-01
A finite element model of cardiac conduction was used to simulate two experimental protocols: 1) fibrillation threshold measurements and 2) clinical electrophysiologic (EP) testing procedures. The model consisted of a cylindrical lattice whose properties were determined by four parameters: element length, conduction velocity, mean refractory period, and standard deviation of refractory periods. Different stimulation patterns were applied to the lattice under a given set of lattice parameter values and the response of the model was observed through a simulated electrocardiogram. The studies confirm that the model can account for observations made in experimental fibrillation threshold measurements and in clinical EP testing protocols.
Vidali, Roza; Remoundaki, Emmanouela; Tsezos, Marios
2009-11-15
Humic substances are the most abundant components of the colloidal and the dissolved fraction of natural organic matter (NOM) and they are characterized by a strong binding capacity for both metals and organic pollutants, affecting their mobility and bioavailability. The understanding of the humic acidic character is the first necessary step for the study of the mechanisms of binding of other positively charged soluble metal species by humic molecules. The present work, which constitutes part of the Ph.D. thesis of Roza Vidali, reports results on the influence of the concentration of humic acids on the binding of protons obtained through both an experimental and a modeling approach. A reference purified peat humic acid (PPHA) isolated by the International Humic Substances Society (IHSS) and a humic acid from a Greek soil (GHA) were experimentally studied at various humic acid concentrations, ranging from 20 to 200mgL(-1). The proton binding isotherms obtained at different humic acid concentrations have shown that proton binding is dependent on the concentration of both humic acids. Proton binding experimental data were fitted to the NICA-Donnan model and the model parameter values were calculated for humic acid concentrations of 20 and >or=100mgL(-1). The results obtained for the NICA-Donnan parameters at humic acid concentrations >or=100mgL(-1) are in excellent agreement with those reported in the literature. However, these model parameter values cannot be used for modeling and predicting cation binding in natural aquatic systems, where humic acid concentrations are much lower. Two sets of the NICA-Donnan parameters are reported: one for humic acid concentrations of >or=100mgL(-1) and one for humic acid concentration of 20mgL(-1). The significance of the parameters values for each concentration level is also discussed.
Identification of vehicle suspension parameters by design optimization
NASA Astrophysics Data System (ADS)
Tey, J. Y.; Ramli, R.; Kheng, C. W.; Chong, S. Y.; Abidin, M. A. Z.
2014-05-01
The design of a vehicle suspension system through simulation requires accurate representation of the design parameters. These parameters are usually difficult to measure or sometimes unavailable. This article proposes an efficient approach to identify the unknown parameters through optimization based on experimental results, where the covariance matrix adaptation-evolutionary strategy (CMA-es) is utilized to improve the simulation and experimental results against the kinematic and compliance tests. This speeds up the design and development cycle by recovering all the unknown data with respect to a set of kinematic measurements through a single optimization process. A case study employing a McPherson strut suspension system is modelled in a multi-body dynamic system. Three kinematic and compliance tests are examined, namely, vertical parallel wheel travel, opposite wheel travel and single wheel travel. The problem is formulated as a multi-objective optimization problem with 40 objectives and 49 design parameters. A hierarchical clustering method based on global sensitivity analysis is used to reduce the number of objectives to 30 by grouping correlated objectives together. Then, a dynamic summation of rank value is used as pseudo-objective functions to reformulate the multi-objective optimization to a single-objective optimization problem. The optimized results show a significant improvement in the correlation between the simulated model and the experimental model. Once accurate representation of the vehicle suspension model is achieved, further analysis, such as ride and handling performances, can be implemented for further optimization.
Development and parameter identification of a visco-hyperelastic model for the periodontal ligament.
Huang, Huixiang; Tang, Wencheng; Tan, Qiyan; Yan, Bin
2017-04-01
The present study developed and implemented a new visco-hyperelastic model that is capable of predicting the time-dependent biomechanical behavior of the periodontal ligament. The constitutive model has been implemented into the finite element package ABAQUS by means of a user-defined material subroutine (UMAT). The stress response is decomposed into two constitutive parts in parallel which are a hyperelastic and a time-dependent viscoelastic stress response. In order to identify the model parameters, the indentation equation based on V-W hyperelastic model and the indentation creep model are developed. Then the parameters are determined by fitting them to the corresponding nanoindentation experimental data of the PDL. The nanoindentation experiment was simulated by finite element analysis to validate the visco-hyperelastic model. The simulated results are in good agreement with the experimental data, which demonstrates that the visco-hyperelastic model developed is able to accurately predict the time-dependent mechanical behavior of the PDL. Copyright © 2017 Elsevier Ltd. All rights reserved.
Modeling of Density-Dependent Flow based on the Thermodynamically Constrained Averaging Theory
NASA Astrophysics Data System (ADS)
Weigand, T. M.; Schultz, P. B.; Kelley, C. T.; Miller, C. T.; Gray, W. G.
2016-12-01
The thermodynamically constrained averaging theory (TCAT) has been used to formulate general classes of porous medium models, including new models for density-dependent flow. The TCAT approach provides advantages that include a firm connection between the microscale, or pore scale, and the macroscale; a thermodynamically consistent basis; explicit inclusion of factors such as a diffusion that arises from gradients associated with pressure and activity and the ability to describe both high and low concentration displacement. The TCAT model is presented and closure relations for the TCAT model are postulated based on microscale averages and a parameter estimation is performed on a subset of the experimental data. Due to the sharpness of the fronts, an adaptive moving mesh technique was used to ensure grid independent solutions within the run time constraints. The optimized parameters are then used for forward simulations and compared to the set of experimental data not used for the parameter estimation.
NASA Astrophysics Data System (ADS)
Sutton, Jonathan E.; Guo, Wei; Katsoulakis, Markos A.; Vlachos, Dionisios G.
2016-04-01
Kinetic models based on first principles are becoming common place in heterogeneous catalysis because of their ability to interpret experimental data, identify the rate-controlling step, guide experiments and predict novel materials. To overcome the tremendous computational cost of estimating parameters of complex networks on metal catalysts, approximate quantum mechanical calculations are employed that render models potentially inaccurate. Here, by introducing correlative global sensitivity analysis and uncertainty quantification, we show that neglecting correlations in the energies of species and reactions can lead to an incorrect identification of influential parameters and key reaction intermediates and reactions. We rationalize why models often underpredict reaction rates and show that, despite the uncertainty being large, the method can, in conjunction with experimental data, identify influential missing reaction pathways and provide insights into the catalyst active site and the kinetic reliability of a model. The method is demonstrated in ethanol steam reforming for hydrogen production for fuel cells.
Zuthi, M F R; Ngo, H H; Guo, W S; Nghiem, L D; Hai, F I; Xia, S Q; Zhang, Z Q; Li, J X
2015-08-01
This study investigates the influence of key biomass parameters on specific oxygen uptake rate (SOUR) in a sponge submerged membrane bioreactor (SSMBR) to develop mathematical models of biomass viability. Extra-cellular polymeric substances (EPS) were considered as a lumped parameter of bound EPS (bEPS) and soluble microbial products (SMP). Statistical analyses of experimental results indicate that the bEPS, SMP, mixed liquor suspended solids and volatile suspended solids (MLSS and MLVSS) have functional relationships with SOUR and their relative influence on SOUR was in the order of EPS>bEPS>SMP>MLVSS/MLSS. Based on correlations among biomass parameters and SOUR, two independent empirical models of biomass viability were developed. The models were validated using results of the SSMBR. However, further validation of the models for different operating conditions is suggested. Copyright © 2015 Elsevier Ltd. All rights reserved.
Modelling of influential parameters on a continuous evaporation process by Doehlert shells
Porte, Catherine; Havet, Jean-Louis; Daguet, David
2003-01-01
The modelling of the parameters that influence the continuous evaporation of an alcoholic extract was considered using Doehlert matrices. The work was performed with a wiped falling film evaporator that allowed us to study the influence of the pressure, temperature, feed flow and dry matter of the feed solution on the dry matter contents of the resulting concentrate, and the productivity of the process. The Doehlert shells were used to model the influential parameters. The pattern obtained from the experimental results was checked allowing for some dysfunction in the unit. The evaporator was modified and a new model applied; the experimental results were then in agreement with the equations. The model was finally determined and successfully checked in order to obtain an 8% dry matter concentrate with the best productivity; the results fit in with the industrial constraints of subsequent processes. PMID:18924887
ADMIT: a toolbox for guaranteed model invalidation, estimation and qualitative–quantitative modeling
Streif, Stefan; Savchenko, Anton; Rumschinski, Philipp; Borchers, Steffen; Findeisen, Rolf
2012-01-01
Summary: Often competing hypotheses for biochemical networks exist in the form of different mathematical models with unknown parameters. Considering available experimental data, it is then desired to reject model hypotheses that are inconsistent with the data, or to estimate the unknown parameters. However, these tasks are complicated because experimental data are typically sparse, uncertain, and are frequently only available in form of qualitative if–then observations. ADMIT (Analysis, Design and Model Invalidation Toolbox) is a MatLabTM-based tool for guaranteed model invalidation, state and parameter estimation. The toolbox allows the integration of quantitative measurement data, a priori knowledge of parameters and states, and qualitative information on the dynamic or steady-state behavior. A constraint satisfaction problem is automatically generated and algorithms are implemented for solving the desired estimation, invalidation or analysis tasks. The implemented methods built on convex relaxation and optimization and therefore provide guaranteed estimation results and certificates for invalidity. Availability: ADMIT, tutorials and illustrative examples are available free of charge for non-commercial use at http://ifatwww.et.uni-magdeburg.de/syst/ADMIT/ Contact: stefan.streif@ovgu.de PMID:22451270
Streif, Stefan; Savchenko, Anton; Rumschinski, Philipp; Borchers, Steffen; Findeisen, Rolf
2012-05-01
Often competing hypotheses for biochemical networks exist in the form of different mathematical models with unknown parameters. Considering available experimental data, it is then desired to reject model hypotheses that are inconsistent with the data, or to estimate the unknown parameters. However, these tasks are complicated because experimental data are typically sparse, uncertain, and are frequently only available in form of qualitative if-then observations. ADMIT (Analysis, Design and Model Invalidation Toolbox) is a MatLab(TM)-based tool for guaranteed model invalidation, state and parameter estimation. The toolbox allows the integration of quantitative measurement data, a priori knowledge of parameters and states, and qualitative information on the dynamic or steady-state behavior. A constraint satisfaction problem is automatically generated and algorithms are implemented for solving the desired estimation, invalidation or analysis tasks. The implemented methods built on convex relaxation and optimization and therefore provide guaranteed estimation results and certificates for invalidity. ADMIT, tutorials and illustrative examples are available free of charge for non-commercial use at http://ifatwww.et.uni-magdeburg.de/syst/ADMIT/
NASA Astrophysics Data System (ADS)
Li, Xiang; Yao, Zhiyuan; He, Yigang; Dai, Shichao
2017-09-01
Ultrasonic motor operation relies on high-frequency vibration of a piezoelectric vibrator and interface friction between the stator and rotor/slider, which can cause temperature rise of the motor under continuous operation, and can affect motor parameters and performance in turn. In this paper, an integral model is developed to study the thermal-mechanical-electric coupling dynamics in a typical standing wave ultrasonic motor. Stick-slip motion at the contact interface and the temperature dependence of material parameters of the stator are taken into account in this model. The elastic, piezoelectric and dielectric material coefficients of the piezoelectric ceramic, as a function of temperature, are determined experimentally using a resonance method. The critical parameters in the model are identified via measured results. The resulting model can be used to evaluate the variation in output characteristics of the motor caused by the thermal-mechanical-electric coupling effects. Furthermore, the dynamic temperature rise of the motor can be accurately predicted under different input parameters using the developed model, which will contribute to improving the reliable life of a motor for long-term running.
NASA Astrophysics Data System (ADS)
Yadav, Vinod; Singh, Arbind Kumar; Dixit, Uday Shanker
2017-08-01
Flat rolling is one of the most widely used metal forming processes. For proper control and optimization of the process, modelling of the process is essential. Modelling of the process requires input data about material properties and friction. In batch production mode of rolling with newer materials, it may be difficult to determine the input parameters offline. In view of it, in the present work, a methodology to determine these parameters online by the measurement of exit temperature and slip is verified experimentally. It is observed that the inverse prediction of input parameters could be done with a reasonable accuracy. It was also assessed experimentally that there is a correlation between micro-hardness and flow stress of the material; however the correlation between surface roughness and reduction is not that obvious.
Probing Quark-Gluon-Plasma properties with a Bayesian model-to-data comparison
NASA Astrophysics Data System (ADS)
Cai, Tianji; Bernhard, Jonah; Ke, Weiyao; Bass, Steffen; Duke QCD Group Team
2016-09-01
Experiments at RHIC and LHC study a special state of matter called the Quark Gluon Plasma (QGP), where quarks and gluons roam freely, by colliding relativistic heavy-ions. Given the transitory nature of the QGP, its properties can only be explored by comparing computational models of its formation and evolution to experimental data. The models fall, roughly speaking, under two categories-those solely using relativistic viscous hydrodynamics (pure hydro model) and those that in addition couple to a microscopic Boltzmann transport for the later evolution of the hadronic decay products (hybrid model). Each of these models has multiple parameters that encode the physical properties we want to probe and that need to be calibrated to experimental data, a task which is computationally expensive, but necessary for the knowledge extraction and determination of the models' quality. Our group has developed an analysis technique based on Bayesian Statistics to perform the model calibration and to extract probability distributions for each model parameter. Following the previous work that applies the technique to the hybrid model, we now perform a similar analysis on a pure-hydro model and display the posterior distributions for the same set of model parameters. We also develop a set of criteria to assess the quality of the two models with respect to their ability to describe current experimental data. Funded by Duke University Goldman Sachs Research Fellowship.
Crystal field parameters and energy levels scheme of trivalent chromium doped BSO
NASA Astrophysics Data System (ADS)
Petkova, P.; Andreici, E.-L.; Avram, N. M.
2014-11-01
The aim of this paper is to give an analysis of crystal field parameters and energy levels schemes for the above doped material, in order to give a reliable explanation for experimental data. The crystal field parameters have been modeled in the frame of Exchange Charge Model (ECM) of the crystal field theory, taken into account the geometry of systems, with actually site symmetry of the impurity ions. The effect of the charges of the ligands and covalence bonding between chromium cation and oxygen anions, in the cluster approach, also were taken into account. With the obtained values of the crystal field parameters we simulated the scheme of energy levels of chromium ions by diagonalizing the matrix of the Hamiltonian of the doped crystal. The obtained energy levels and estimated Racah parameters B and C were compared with the experimental spectroscopic data and discussed. Comparison with experiment shows that the results are quite satisfactory which justify the model and simulation scheme used for the title system.
Crystal field parameters and energy levels scheme of trivalent chromium doped BSO
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petkova, P.; Andreici, E.-L.; Avram, N. M., E-mail: n1m2marva@yahoo.com
The aim of this paper is to give an analysis of crystal field parameters and energy levels schemes for the above doped material, in order to give a reliable explanation for experimental data. The crystal field parameters have been modeled in the frame of Exchange Charge Model (ECM) of the crystal field theory, taken into account the geometry of systems, with actually site symmetry of the impurity ions. The effect of the charges of the ligands and covalence bonding between chromium cation and oxygen anions, in the cluster approach, also were taken into account. With the obtained values of themore » crystal field parameters we simulated the scheme of energy levels of chromium ions by diagonalizing the matrix of the Hamiltonian of the doped crystal. The obtained energy levels and estimated Racah parameters B and C were compared with the experimental spectroscopic data and discussed. Comparison with experiment shows that the results are quite satisfactory which justify the model and simulation scheme used for the title system.« less
Numerical simulation of asphalt mixtures fracture using continuum models
NASA Astrophysics Data System (ADS)
Szydłowski, Cezary; Górski, Jarosław; Stienss, Marcin; Smakosz, Łukasz
2018-01-01
The paper considers numerical models of fracture processes of semi-circular asphalt mixture specimens subjected to three-point bending. Parameter calibration of the asphalt mixture constitutive models requires advanced, complex experimental test procedures. The highly non-homogeneous material is numerically modelled by a quasi-continuum model. The computational parameters are averaged data of the components, i.e. asphalt, aggregate and the air voids composing the material. The model directly captures random nature of material parameters and aggregate distribution in specimens. Initial results of the analysis are presented here.
An approach to adjustment of relativistic mean field model parameters
NASA Astrophysics Data System (ADS)
Bayram, Tuncay; Akkoyun, Serkan
2017-09-01
The Relativistic Mean Field (RMF) model with a small number of adjusted parameters is powerful tool for correct predictions of various ground-state nuclear properties of nuclei. Its success for describing nuclear properties of nuclei is directly related with adjustment of its parameters by using experimental data. In the present study, the Artificial Neural Network (ANN) method which mimics brain functionality has been employed for improvement of the RMF model parameters. In particular, the understanding capability of the ANN method for relations between the RMF model parameters and their predictions for binding energies (BEs) of 58Ni and 208Pb have been found in agreement with the literature values.
Carniel, Emanuele L; Mencattelli, Margherita; Bonsignori, Gabriella; Fontanella, Chiara G; Frigo, Alessandro; Rubini, Alessandro; Stefanini, Cesare; Natali, Arturo N
2015-11-01
A coupled experimental and computational approach is provided for the identification of the structural behaviour of gastrointestinal regions, accounting for both elastic and visco-elastic properties. The developed procedure is applied to characterize the mechanics of gastrointestinal samples from pig colons. Experimental data about the structural behaviour of colonic segments are provided by inflation tests. Different inflation processes are performed according to progressively increasing top pressure conditions. Each inflation test consists of an air in-flow, according to an almost constant increasing pressure rate, such as 3.5 mmHg/s, up to a prescribed top pressure, which is held constant for about 300 s to allow the development of creep phenomena. Different tests are interspersed by 600 s of rest to allow the recovery of the tissues' mechanical condition. Data from structural tests are post-processed by a physio-mechanical model in order to identify the mechanical parameters that interpret both the non-linear elastic behaviour of the sample, as the instantaneous pressure-stretch trend, and the time-dependent response, as the stretch increase during the creep processes. The parameters are identified by minimizing the discrepancy between experimental and model results. Different sets of parameters are evaluated for different specimens from different pigs. A statistical analysis is performed to evaluate the distribution of the parameters and to assess the reliability of the experimental and computational activities. © IMechE 2015.
Linear system identification via backward-time observer models
NASA Technical Reports Server (NTRS)
Juang, Jer-Nan; Phan, Minh Q.
1992-01-01
Presented here is an algorithm to compute the Markov parameters of a backward-time observer for a backward-time model from experimental input and output data. The backward-time observer Markov parameters are decomposed to obtain the backward-time system Markov parameters (backward-time pulse response samples) for the backward-time system identification. The identified backward-time system Markov parameters are used in the Eigensystem Realization Algorithm to identify a backward-time state-space model, which can be easily converted to the usual forward-time representation. If one reverses time in the model to be identified, what were damped true system modes become modes with negative damping, growing as the reversed time increases. On the other hand, the noise modes in the identification still maintain the property that they are stable. The shift from positive damping to negative damping of the true system modes allows one to distinguish these modes from noise modes. Experimental results are given to illustrate when and to what extent this concept works.
A review of model applications for structured soils: b) Pesticide transport.
Köhne, John Maximilian; Köhne, Sigrid; Simůnek, Jirka
2009-02-16
The past decade has seen considerable progress in the development of models simulating pesticide transport in structured soils subject to preferential flow (PF). Most PF pesticide transport models are based on the two-region concept and usually assume one (vertical) dimensional flow and transport. Stochastic parameter sets are sometimes used to account for the effects of spatial variability at the field scale. In the past decade, PF pesticide models were also coupled with Geographical Information Systems (GIS) and groundwater flow models for application at the catchment and larger regional scales. A review of PF pesticide model applications reveals that the principal difficulty of their application is still the appropriate parameterization of PF and pesticide processes. Experimental solution strategies involve improving measurement techniques and experimental designs. Model strategies aim at enhancing process descriptions, studying parameter sensitivity, uncertainty, inverse parameter identification, model calibration, and effects of spatial variability, as well as generating model emulators and databases. Model comparison studies demonstrated that, after calibration, PF pesticide models clearly outperform chromatographic models for structured soils. Considering nonlinear and kinetic sorption reactions further enhanced the pesticide transport description. However, inverse techniques combined with typically available experimental data are often limited in their ability to simultaneously identify parameters for describing PF, sorption, degradation and other processes. On the other hand, the predictive capacity of uncalibrated PF pesticide models currently allows at best an approximate (order-of-magnitude) estimation of concentrations. Moreover, models should target the entire soil-plant-atmosphere system, including often neglected above-ground processes such as pesticide volatilization, interception, sorption to plant residues, root uptake, and losses by runoff. The conclusions compile progress, problems, and future research choices for modelling pesticide displacement in structured soils.
Parameter optimization for the visco-hyperelastic constitutive model of tendon using FEM.
Tang, C Y; Ng, G Y F; Wang, Z W; Tsui, C P; Zhang, G
2011-01-01
Numerous constitutive models describing the mechanical properties of tendons have been proposed during the past few decades. However, few were widely used owing to the lack of implementation in the general finite element (FE) software, and very few systematic studies have been done on selecting the most appropriate parameters for these constitutive laws. In this work, the visco-hyperelastic constitutive model of the tendon implemented through the use of three-parameter Mooney-Rivlin form and sixty-four-parameter Prony series were firstly analyzed using ANSYS FE software. Afterwards, an integrated optimization scheme was developed by coupling two optimization toolboxes (OPTs) of ANSYS and MATLAB for estimating these unknown constitutive parameters of the tendon. Finally, a group of Sprague-Dawley rat tendons was used to execute experimental and numerical simulation investigation. The simulated results showed good agreement with the experimental data. An important finding revealed that too many Maxwell elements was not necessary for assuring accuracy of the model, which is often neglected in most open literatures. Thus, all these proved that the constitutive parameter optimization scheme was reliable and highly efficient. Furthermore, the approach can be extended to study other tendons or ligaments, as well as any visco-hyperelastic solid materials.
Parameter Estimation and Model Selection in Computational Biology
Lillacci, Gabriele; Khammash, Mustafa
2010-01-01
A central challenge in computational modeling of biological systems is the determination of the model parameters. Typically, only a fraction of the parameters (such as kinetic rate constants) are experimentally measured, while the rest are often fitted. The fitting process is usually based on experimental time course measurements of observables, which are used to assign parameter values that minimize some measure of the error between these measurements and the corresponding model prediction. The measurements, which can come from immunoblotting assays, fluorescent markers, etc., tend to be very noisy and taken at a limited number of time points. In this work we present a new approach to the problem of parameter selection of biological models. We show how one can use a dynamic recursive estimator, known as extended Kalman filter, to arrive at estimates of the model parameters. The proposed method follows. First, we use a variation of the Kalman filter that is particularly well suited to biological applications to obtain a first guess for the unknown parameters. Secondly, we employ an a posteriori identifiability test to check the reliability of the estimates. Finally, we solve an optimization problem to refine the first guess in case it should not be accurate enough. The final estimates are guaranteed to be statistically consistent with the measurements. Furthermore, we show how the same tools can be used to discriminate among alternate models of the same biological process. We demonstrate these ideas by applying our methods to two examples, namely a model of the heat shock response in E. coli, and a model of a synthetic gene regulation system. The methods presented are quite general and may be applied to a wide class of biological systems where noisy measurements are used for parameter estimation or model selection. PMID:20221262
EDDIX--a database of ionisation double differential cross sections.
MacGibbon, J H; Emerson, S; Liamsuwan, T; Nikjoo, H
2011-02-01
The use of Monte Carlo track structure is a choice method in biophysical modelling and calculations. To precisely model 3D and 4D tracks, the cross section for the ionisation by an incoming ion, double differential in the outgoing electron energy and angle, is required. However, the double differential cross section cannot be theoretically modelled over the full range of parameters. To address this issue, a database of all available experimental data has been constructed. Currently, the database of Experimental Double Differential Ionisation Cross sections (EDDIX) contains over 1200 digitalised experimentally measured datasets from the 1960s to present date, covering all available ion species (hydrogen to uranium) and all available target species. Double differential cross sections are also presented with the aid of an eight parameter functions fitted to the cross sections. The parameters include projectile species and charge, target nuclear charge and atomic mass, projectile atomic mass and energy, electron energy and deflection angle. It is planned to freely distribute EDDIX and make it available to the radiation research community for use in the analytical and numerical modelling of track structure.
Calibration of micromechanical parameters for DEM simulations by using the particle filter
NASA Astrophysics Data System (ADS)
Cheng, Hongyang; Shuku, Takayuki; Thoeni, Klaus; Yamamoto, Haruyuki
2017-06-01
The calibration of DEM models is typically accomplished by trail and error. However, the procedure lacks of objectivity and has several uncertainties. To deal with these issues, the particle filter is employed as a novel approach to calibrate DEM models of granular soils. The posterior probability distribution of the microparameters that give numerical results in good agreement with the experimental response of a Toyoura sand specimen is approximated by independent model trajectories, referred as `particles', based on Monte Carlo sampling. The soil specimen is modeled by polydisperse packings with different numbers of spherical grains. Prepared in `stress-free' states, the packings are subjected to triaxial quasistatic loading. Given the experimental data, the posterior probability distribution is incrementally updated, until convergence is reached. The resulting `particles' with higher weights are identified as the calibration results. The evolutions of the weighted averages and posterior probability distribution of the micro-parameters are plotted to show the advantage of using a particle filter, i.e., multiple solutions are identified for each parameter with known probabilities of reproducing the experimental response.
NASA Astrophysics Data System (ADS)
Ribeiro, José B.; Silva, Cristóvão; Mendes, Ricardo; Plaksin, I.; Campos, Jose
2012-03-01
The use of emulsion explosives [EEx] for processing materials (compaction, welding and forming) requires the ability to perform detailed simulations of its detonation process [DP]. Detailed numerical simulations of the DP of this kind of explosives, characterized by having a finite reaction zone thickness, are thought to be suitably performed using the Lee-Tarver reactive flow model. In this work a real coded genetic algorithm methodology was used to estimate the 15 parameters of the reaction rate equation [RRE] of that model for a particular EEx. This methodology allows, in a single optimization procedure, using only one experimental result and without the need of any starting solution, to seek for the 15 parameters of the RRE that fit the numerical to the experimental results. Mass averaging and the Plate-Gap Model have been used for the determination of the shock data used in the unreacted explosive JWL EoS assessment, and the thermochemical code THOR retrieved the data used in the detonation products JWL EoS assessment. The obtained parameters allow a reasonable description of the experimental data.
Cellular signaling identifiability analysis: a case study.
Roper, Ryan T; Pia Saccomani, Maria; Vicini, Paolo
2010-05-21
Two primary purposes for mathematical modeling in cell biology are (1) simulation for making predictions of experimental outcomes and (2) parameter estimation for drawing inferences from experimental data about unobserved aspects of biological systems. While the former purpose has become common in the biological sciences, the latter is less common, particularly when studying cellular and subcellular phenomena such as signaling-the focus of the current study. Data are difficult to obtain at this level. Therefore, even models of only modest complexity can contain parameters for which the available data are insufficient for estimation. In the present study, we use a set of published cellular signaling models to address issues related to global parameter identifiability. That is, we address the following question: assuming known time courses for some model variables, which parameters is it theoretically impossible to estimate, even with continuous, noise-free data? Following an introduction to this problem and its relevance, we perform a full identifiability analysis on a set of cellular signaling models using DAISY (Differential Algebra for the Identifiability of SYstems). We use our analysis to bring to light important issues related to parameter identifiability in ordinary differential equation (ODE) models. We contend that this is, as of yet, an under-appreciated issue in biological modeling and, more particularly, cell biology. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Bayesian analysis of physiologically based toxicokinetic and toxicodynamic models.
Hack, C Eric
2006-04-17
Physiologically based toxicokinetic (PBTK) and toxicodynamic (TD) models of bromate in animals and humans would improve our ability to accurately estimate the toxic doses in humans based on available animal studies. These mathematical models are often highly parameterized and must be calibrated in order for the model predictions of internal dose to adequately fit the experimentally measured doses. Highly parameterized models are difficult to calibrate and it is difficult to obtain accurate estimates of uncertainty or variability in model parameters with commonly used frequentist calibration methods, such as maximum likelihood estimation (MLE) or least squared error approaches. The Bayesian approach called Markov chain Monte Carlo (MCMC) analysis can be used to successfully calibrate these complex models. Prior knowledge about the biological system and associated model parameters is easily incorporated in this approach in the form of prior parameter distributions, and the distributions are refined or updated using experimental data to generate posterior distributions of parameter estimates. The goal of this paper is to give the non-mathematician a brief description of the Bayesian approach and Markov chain Monte Carlo analysis, how this technique is used in risk assessment, and the issues associated with this approach.
Model reduction for experimental thermal characterization of a holding furnace
NASA Astrophysics Data System (ADS)
Loussouarn, Thomas; Maillet, Denis; Remy, Benjamin; Dan, Diane
2017-09-01
Vacuum holding induction furnaces are used for the manufacturing of turbine blades by loss wax foundry process. The control of solidification parameters is a key factor for the manufacturing of these parts. The definition of the structure of a reduced heat transfer model with experimental identification through an estimation of its parameters is required here. Internal sensors outputs, together with this model, can be used for assessing the thermal state of the furnace through an inverse approach, for a better control. Here, an axisymmetric furnace and its load have been numerically modelled using FlexPDE, a finite elements code. The internal induction heat source as well as the transient radiative transfer inside the furnace are calculated through this detailed model. A reduced lumped body model has been constructed to represent the numerical furnace. The model reduction and the estimation of the parameters of the lumped body have been made using a Levenberg-Marquardt least squares minimization algorithm, using two synthetic temperature signals with a further validation test.
Numerical optimization of Ignition and Growth reactive flow modeling for PAX2A
NASA Astrophysics Data System (ADS)
Baker, E. L.; Schimel, B.; Grantham, W. J.
1996-05-01
Variable metric nonlinear optimization has been successfully applied to the parameterization of unreacted and reacted products thermodynamic equations of state and reactive flow modeling of the HMX based high explosive PAX2A. The NLQPEB nonlinear optimization program has been recently coupled to the LLNL developed two-dimensional high rate continuum modeling programs DYNA2D and CALE. The resulting program has the ability to optimize initial modeling parameters. This new optimization capability was used to optimally parameterize the Ignition and Growth reactive flow model to experimental manganin gauge records. The optimization varied the Ignition and Growth reaction rate model parameters in order to minimize the difference between the calculated pressure histories and the experimental pressure histories.
Temperature-viscosity models reassessed.
Peleg, Micha
2017-05-04
The temperature effect on viscosity of liquid and semi-liquid foods has been traditionally described by the Arrhenius equation, a few other mathematical models, and more recently by the WLF and VTF (or VFT) equations. The essence of the Arrhenius equation is that the viscosity is proportional to the absolute temperature's reciprocal and governed by a single parameter, namely, the energy of activation. However, if the absolute temperature in K in the Arrhenius equation is replaced by T + b where both T and the adjustable b are in °C, the result is a two-parameter model, which has superior fit to experimental viscosity-temperature data. This modified version of the Arrhenius equation is also mathematically equal to the WLF and VTF equations, which are known to be equal to each other. Thus, despite their dissimilar appearances all three equations are essentially the same model, and when used to fit experimental temperature-viscosity data render exactly the same very high regression coefficient. It is shown that three new hybrid two-parameter mathematical models, whose formulation bears little resemblance to any of the conventional models, can also have excellent fit with r 2 ∼ 1. This is demonstrated by comparing the various models' regression coefficients to published viscosity-temperature relationships of 40% sucrose solution, soybean oil, and 70°Bx pear juice concentrate at different temperature ranges. Also compared are reconstructed temperature-viscosity curves using parameters calculated directly from 2 or 3 data points and fitted curves obtained by nonlinear regression using a larger number of experimental viscosity measurements.
Sperlich, Alexander; Werner, Arne; Genz, Arne; Amy, Gary; Worch, Eckhard; Jekel, Martin
2005-03-01
Breakthrough curves (BTC) for the adsorption of arsenate and salicylic acid onto granulated ferric hydroxide (GFH) in fixed-bed adsorbers were experimentally determined and modeled using the homogeneous surface diffusion model (HSDM). The input parameters for the HSDM, the Freundlich isotherm constants and mass transfer coefficients for film and surface diffusion, were experimentally determined. The BTC for salicylic acid revealed a shape typical for trace organic compound adsorption onto activated carbon, and model results agreed well with the experimental curves. Unlike salicylic acid, arsenate BTCs showed a non-ideal shape with a leveling off at c/c0 approximately 0.6. Model results based on the experimentally derived parameters over-predicted the point of arsenic breakthrough for all simulated curves, lab-scale or full-scale, and were unable to catch the shape of the curve. The use of a much lower surface diffusion coefficient D(S) for modeling led to an improved fit of the later stages of the BTC shape, pointing on a time-dependent D(S). The mechanism for this time dependence is still unknown. Surface precipitation was discussed as one possible removal mechanism for arsenate besides pure adsorption interfering the determination of Freundlich constants and D(S). Rapid small-scale column tests (RSSCT) proved to be a powerful experimental alternative to the modeling procedure for arsenic.
Kwok, T; Smith, K A
2000-09-01
The aim of this paper is to study both the theoretical and experimental properties of chaotic neural network (CNN) models for solving combinatorial optimization problems. Previously we have proposed a unifying framework which encompasses the three main model types, namely, Chen and Aihara's chaotic simulated annealing (CSA) with decaying self-coupling, Wang and Smith's CSA with decaying timestep, and the Hopfield network with chaotic noise. Each of these models can be represented as a special case under the framework for certain conditions. This paper combines the framework with experimental results to provide new insights into the effect of the chaotic neurodynamics of each model. By solving the N-queen problem of various sizes with computer simulations, the CNN models are compared in different parameter spaces, with optimization performance measured in terms of feasibility, efficiency, robustness and scalability. Furthermore, characteristic chaotic neurodynamics crucial to effective optimization are identified, together with a guide to choosing the corresponding model parameters.
NASA Astrophysics Data System (ADS)
Fiorenti, Simone; Guanetti, Jacopo; Guezennec, Yann; Onori, Simona
2013-11-01
This paper presents the development and experimental validation of a dynamic model of a Hybridized Energy Storage System (HESS) consisting of a parallel connection of a lead acid (PbA) battery and double layer capacitors (DLCs), for automotive applications. The dynamic modeling of both the PbA battery and the DLC has been tackled via the equivalent electric circuit based approach. Experimental tests are designed for identification purposes. Parameters of the PbA battery model are identified as a function of state of charge and current direction, whereas parameters of the DLC model are identified for different temperatures. A physical HESS has been assembled at the Center for Automotive Research The Ohio State University and used as a test-bench to validate the model against a typical current profile generated for Start&Stop applications. The HESS model is then integrated into a vehicle simulator to assess the effects of the battery hybridization on the vehicle fuel economy and mitigation of the battery stress.
Karr, Jonathan R; Williams, Alex H; Zucker, Jeremy D; Raue, Andreas; Steiert, Bernhard; Timmer, Jens; Kreutz, Clemens; Wilkinson, Simon; Allgood, Brandon A; Bot, Brian M; Hoff, Bruce R; Kellen, Michael R; Covert, Markus W; Stolovitzky, Gustavo A; Meyer, Pablo
2015-05-01
Whole-cell models that explicitly represent all cellular components at the molecular level have the potential to predict phenotype from genotype. However, even for simple bacteria, whole-cell models will contain thousands of parameters, many of which are poorly characterized or unknown. New algorithms are needed to estimate these parameters and enable researchers to build increasingly comprehensive models. We organized the Dialogue for Reverse Engineering Assessments and Methods (DREAM) 8 Whole-Cell Parameter Estimation Challenge to develop new parameter estimation algorithms for whole-cell models. We asked participants to identify a subset of parameters of a whole-cell model given the model's structure and in silico "experimental" data. Here we describe the challenge, the best performing methods, and new insights into the identifiability of whole-cell models. We also describe several valuable lessons we learned toward improving future challenges. Going forward, we believe that collaborative efforts supported by inexpensive cloud computing have the potential to solve whole-cell model parameter estimation.
Tube-Load Model Parameter Estimation for Monitoring Arterial Hemodynamics
Zhang, Guanqun; Hahn, Jin-Oh; Mukkamala, Ramakrishna
2011-01-01
A useful model of the arterial system is the uniform, lossless tube with parametric load. This tube-load model is able to account for wave propagation and reflection (unlike lumped-parameter models such as the Windkessel) while being defined by only a few parameters (unlike comprehensive distributed-parameter models). As a result, the parameters may be readily estimated by accurate fitting of the model to available arterial pressure and flow waveforms so as to permit improved monitoring of arterial hemodynamics. In this paper, we review tube-load model parameter estimation techniques that have appeared in the literature for monitoring wave reflection, large artery compliance, pulse transit time, and central aortic pressure. We begin by motivating the use of the tube-load model for parameter estimation. We then describe the tube-load model, its assumptions and validity, and approaches for estimating its parameters. We next summarize the various techniques and their experimental results while highlighting their advantages over conventional techniques. We conclude the review by suggesting future research directions and describing potential applications. PMID:22053157
NASA Astrophysics Data System (ADS)
Mackay, C.; Hayward, D.; Mulholland, A. J.; McKee, S.; Pethrick, R. A.
2005-06-01
An inverse problem motivated by the nondestructive testing of adhesively bonded structures used in the aircraft industry is studied. Using transmission line theory, a model is developed which, when supplied with electrical and geometrical parameters, accurately predicts the reflection coefficient associated with such structures. Particular attention is paid to modelling the connection between the structures and the equipment used to measure the reflection coefficient. The inverse problem is then studied and an optimization approach employed to recover these electrical and geometrical parameters from experimentally obtained data. In particular the approach focuses on the recovery of spatially varying geometrical parameters as this is paramount to the successful reconstruction of electrical parameters. Reconstructions of structure geometry using this method are found to be in close agreement with experimental observations.
Optimal design of stimulus experiments for robust discrimination of biochemical reaction networks.
Flassig, R J; Sundmacher, K
2012-12-01
Biochemical reaction networks in the form of coupled ordinary differential equations (ODEs) provide a powerful modeling tool for understanding the dynamics of biochemical processes. During the early phase of modeling, scientists have to deal with a large pool of competing nonlinear models. At this point, discrimination experiments can be designed and conducted to obtain optimal data for selecting the most plausible model. Since biological ODE models have widely distributed parameters due to, e.g. biologic variability or experimental variations, model responses become distributed. Therefore, a robust optimal experimental design (OED) for model discrimination can be used to discriminate models based on their response probability distribution functions (PDFs). In this work, we present an optimal control-based methodology for designing optimal stimulus experiments aimed at robust model discrimination. For estimating the time-varying model response PDF, which results from the nonlinear propagation of the parameter PDF under the ODE dynamics, we suggest using the sigma-point approach. Using the model overlap (expected likelihood) as a robust discrimination criterion to measure dissimilarities between expected model response PDFs, we benchmark the proposed nonlinear design approach against linearization with respect to prediction accuracy and design quality for two nonlinear biological reaction networks. As shown, the sigma-point outperforms the linearization approach in the case of widely distributed parameter sets and/or existing multiple steady states. Since the sigma-point approach scales linearly with the number of model parameter, it can be applied to large systems for robust experimental planning. An implementation of the method in MATLAB/AMPL is available at http://www.uni-magdeburg.de/ivt/svt/person/rf/roed.html. flassig@mpi-magdeburg.mpg.de Supplementary data are are available at Bioinformatics online.
SiC-VJFETs power switching devices: an improved model and parameter optimization technique
NASA Astrophysics Data System (ADS)
Ben Salah, T.; Lahbib, Y.; Morel, H.
2009-12-01
Silicon carbide junction field effect transistor (SiC-JFETs) is a mature power switch newly applied in several industrial applications. SiC-JFETs are often simulated by Spice model in order to predict their electrical behaviour. Although such a model provides sufficient accuracy for some applications, this paper shows that it presents serious shortcomings in terms of the neglect of the body diode model, among many others in circuit model topology. Simulation correction is then mandatory and a new model should be proposed. Moreover, this paper gives an enhanced model based on experimental dc and ac data. New devices are added to the conventional circuit model giving accurate static and dynamic behaviour, an effect not accounted in the Spice model. The improved model is implemented into VHDL-AMS language and steady-state dynamic and transient responses are simulated for many SiC-VJFETs samples. Very simple and reliable optimization algorithm based on the optimization of a cost function is proposed to extract the JFET model parameters. The obtained parameters are verified by comparing errors between simulations results and experimental data.
Estimation of Unsteady Aerodynamic Models from Dynamic Wind Tunnel Data
NASA Technical Reports Server (NTRS)
Murphy, Patrick; Klein, Vladislav
2011-01-01
Demanding aerodynamic modelling requirements for military and civilian aircraft have motivated researchers to improve computational and experimental techniques and to pursue closer collaboration in these areas. Model identification and validation techniques are key components for this research. This paper presents mathematical model structures and identification techniques that have been used successfully to model more general aerodynamic behaviours in single-degree-of-freedom dynamic testing. Model parameters, characterizing aerodynamic properties, are estimated using linear and nonlinear regression methods in both time and frequency domains. Steps in identification including model structure determination, parameter estimation, and model validation, are addressed in this paper with examples using data from one-degree-of-freedom dynamic wind tunnel and water tunnel experiments. These techniques offer a methodology for expanding the utility of computational methods in application to flight dynamics, stability, and control problems. Since flight test is not always an option for early model validation, time history comparisons are commonly made between computational and experimental results and model adequacy is inferred by corroborating results. An extension is offered to this conventional approach where more general model parameter estimates and their standard errors are compared.
NASA Astrophysics Data System (ADS)
Gomez, Jamie; Nelson, Ruben; Kalu, Egwu E.; Weatherspoon, Mark H.; Zheng, Jim P.
2011-05-01
Equivalent circuit model (EMC) of a high-power Li-ion battery that accounts for both temperature and state of charge (SOC) effects known to influence battery performance is presented. Electrochemical impedance measurements of a commercial high power Li-ion battery obtained in the temperature range 20 to 50 °C at various SOC values was used to develop a simple EMC which was used in combination with a non-linear least squares fitting procedure that used thirteen parameters for the analysis of the Li-ion cell. The experimental results show that the solution and charge transfer resistances decreased with increase in cell operating temperature and decreasing SOC. On the other hand, the Warburg admittance increased with increasing temperature and decreasing SOC. The developed model correlations that are capable of being used in process control algorithms are presented for the observed impedance behavior with respect to temperature and SOC effects. The predicted model parameters for the impedance elements Rs, Rct and Y013 show low variance of 5% when compared to the experimental data and therefore indicates a good statistical agreement of correlation model to the actual experimental values.
Control and Diagnostic Model of Brushless Dc Motor
NASA Astrophysics Data System (ADS)
Abramov, Ivan V.; Nikitin, Yury R.; Abramov, Andrei I.; Sosnovich, Ella V.; Božek, Pavol
2014-09-01
A simulation model of brushless DC motor (BLDC) control and diagnostics is considered. The model has been developed using a freeware complex "Modeling in technical devices". Faults and diagnostic parameters of BLDC are analyzed. A logicallinguistic diagnostic model of BLDC has been developed on basis of fuzzy logic. The calculated rules determine dependence of technical condition on diagnostic parameters, their trends and utilized lifetime of BLDC. Experimental results of BLDC technical condition diagnostics are discussed. It is shown that in the course of BLDC degradation the motor condition change depends on diagnostic parameter values
Dynamics of large-scale brain activity in normal arousal states and epileptic seizures
NASA Astrophysics Data System (ADS)
Robinson, P. A.; Rennie, C. J.; Rowe, D. L.
2002-04-01
Links between electroencephalograms (EEGs) and underlying aspects of neurophysiology and anatomy are poorly understood. Here a nonlinear continuum model of large-scale brain electrical activity is used to analyze arousal states and their stability and nonlinear dynamics for physiologically realistic parameters. A simple ordered arousal sequence in a reduced parameter space is inferred and found to be consistent with experimentally determined parameters of waking states. Instabilities arise at spectral peaks of the major clinically observed EEG rhythms-mainly slow wave, delta, theta, alpha, and sleep spindle-with each instability zone lying near its most common experimental precursor arousal states in the reduced space. Theta, alpha, and spindle instabilities evolve toward low-dimensional nonlinear limit cycles that correspond closely to EEGs of petit mal seizures for theta instability, and grand mal seizures for the other types. Nonlinear stimulus-induced entrainment and seizures are also seen, EEG spectra and potentials evoked by stimuli are reproduced, and numerous other points of experimental agreement are found. Inverse modeling enables physiological parameters underlying observed EEGs to be determined by a new, noninvasive route. This model thus provides a single, powerful framework for quantitative understanding of a wide variety of brain phenomena.
Overview of refinement procedures within REFMAC5: utilizing data from different sources.
Kovalevskiy, Oleg; Nicholls, Robert A; Long, Fei; Carlon, Azzurra; Murshudov, Garib N
2018-03-01
Refinement is a process that involves bringing into agreement the structural model, available prior knowledge and experimental data. To achieve this, the refinement procedure optimizes a posterior conditional probability distribution of model parameters, including atomic coordinates, atomic displacement parameters (B factors), scale factors, parameters of the solvent model and twin fractions in the case of twinned crystals, given observed data such as observed amplitudes or intensities of structure factors. A library of chemical restraints is typically used to ensure consistency between the model and the prior knowledge of stereochemistry. If the observation-to-parameter ratio is small, for example when diffraction data only extend to low resolution, the Bayesian framework implemented in REFMAC5 uses external restraints to inject additional information extracted from structures of homologous proteins, prior knowledge about secondary-structure formation and even data obtained using different experimental methods, for example NMR. The refinement procedure also generates the `best' weighted electron-density maps, which are useful for further model (re)building. Here, the refinement of macromolecular structures using REFMAC5 and related tools distributed as part of the CCP4 suite is discussed.
The role of structural parameters in DNA cyclization
Alexandrov, Ludmil B.; Bishop, Alan R.; Rasmussen, Kim O.; ...
2016-02-04
The intrinsic bendability of DNA plays an important role with relevance for myriad of essential cellular mechanisms. The flexibility of a DNA fragment can be experimentally and computationally examined by its propensity for cyclization, quantified by the Jacobson-Stockmayer J factor. In this paper, we use a well-established coarse-grained three-dimensional model of DNA and seven distinct sets of experimentally and computationally derived conformational parameters of the double helix to evaluate the role of structural parameters in calculating DNA cyclization.
Model of head-neck joint fast movements in the frontal plane.
Pedrocchi, A; Ferrigno, G
2004-06-01
The objective of this work is to develop a model representing the physiological systems driving fast head movements in frontal plane. All the contributions occurring mechanically in the head movement are considered: damping, stiffness, physiological limit of range of motion, gravitational field, and muscular torques due to voluntary activation as well as to stretch reflex depending on fusal afferences. Model parameters are partly derived from the literature, when possible, whereas undetermined block parameters are determined by optimising the model output, fitting to real kinematics data acquired by a motion capture system in specific experimental set-ups. The optimisation for parameter identification is performed by genetic algorithms. Results show that the model represents very well fast head movements in the whole range of inclination in the frontal plane. Such a model could be proposed as a tool for transforming kinematics data on head movements in 'neural equivalent data', especially for assessing head control disease and properly planning the rehabilitation process. In addition, the use of genetic algorithms seems to fit well the problem of parameter identification, allowing for the use of a very simple experimental set-up and granting model robustness.
Cotten, Cameron; Reed, Jennifer L
2013-01-30
Constraint-based modeling uses mass balances, flux capacity, and reaction directionality constraints to predict fluxes through metabolism. Although transcriptional regulation and thermodynamic constraints have been integrated into constraint-based modeling, kinetic rate laws have not been extensively used. In this study, an in vivo kinetic parameter estimation problem was formulated and solved using multi-omic data sets for Escherichia coli. To narrow the confidence intervals for kinetic parameters, a series of kinetic model simplifications were made, resulting in fewer kinetic parameters than the full kinetic model. These new parameter values are able to account for flux and concentration data from 20 different experimental conditions used in our training dataset. Concentration estimates from the simplified kinetic model were within one standard deviation for 92.7% of the 790 experimental measurements in the training set. Gibbs free energy changes of reaction were calculated to identify reactions that were often operating close to or far from equilibrium. In addition, enzymes whose activities were positively or negatively influenced by metabolite concentrations were also identified. The kinetic model was then used to calculate the maximum and minimum possible flux values for individual reactions from independent metabolite and enzyme concentration data that were not used to estimate parameter values. Incorporating these kinetically-derived flux limits into the constraint-based metabolic model improved predictions for uptake and secretion rates and intracellular fluxes in constraint-based models of central metabolism. This study has produced a method for in vivo kinetic parameter estimation and identified strategies and outcomes of kinetic model simplification. We also have illustrated how kinetic constraints can be used to improve constraint-based model predictions for intracellular fluxes and biomass yield and identify potential metabolic limitations through the integrated analysis of multi-omics datasets.
2013-01-01
Background Constraint-based modeling uses mass balances, flux capacity, and reaction directionality constraints to predict fluxes through metabolism. Although transcriptional regulation and thermodynamic constraints have been integrated into constraint-based modeling, kinetic rate laws have not been extensively used. Results In this study, an in vivo kinetic parameter estimation problem was formulated and solved using multi-omic data sets for Escherichia coli. To narrow the confidence intervals for kinetic parameters, a series of kinetic model simplifications were made, resulting in fewer kinetic parameters than the full kinetic model. These new parameter values are able to account for flux and concentration data from 20 different experimental conditions used in our training dataset. Concentration estimates from the simplified kinetic model were within one standard deviation for 92.7% of the 790 experimental measurements in the training set. Gibbs free energy changes of reaction were calculated to identify reactions that were often operating close to or far from equilibrium. In addition, enzymes whose activities were positively or negatively influenced by metabolite concentrations were also identified. The kinetic model was then used to calculate the maximum and minimum possible flux values for individual reactions from independent metabolite and enzyme concentration data that were not used to estimate parameter values. Incorporating these kinetically-derived flux limits into the constraint-based metabolic model improved predictions for uptake and secretion rates and intracellular fluxes in constraint-based models of central metabolism. Conclusions This study has produced a method for in vivo kinetic parameter estimation and identified strategies and outcomes of kinetic model simplification. We also have illustrated how kinetic constraints can be used to improve constraint-based model predictions for intracellular fluxes and biomass yield and identify potential metabolic limitations through the integrated analysis of multi-omics datasets. PMID:23360254
NASA Astrophysics Data System (ADS)
Montazeri, A.; West, C.; Monk, S. D.; Taylor, C. J.
2017-04-01
This paper concerns the problem of dynamic modelling and parameter estimation for a seven degree of freedom hydraulic manipulator. The laboratory example is a dual-manipulator mobile robotic platform used for research into nuclear decommissioning. In contrast to earlier control model-orientated research using the same machine, the paper develops a nonlinear, mechanistic simulation model that can subsequently be used to investigate physically meaningful disturbances. The second contribution is to optimise the parameters of the new model, i.e. to determine reliable estimates of the physical parameters of a complex robotic arm which are not known in advance. To address the nonlinear and non-convex nature of the problem, the research relies on the multi-objectivisation of an output error single-performance index. The developed algorithm utilises a multi-objective genetic algorithm (GA) in order to find a proper solution. The performance of the model and the GA is evaluated using both simulated (i.e. with a known set of 'true' parameters) and experimental data. Both simulation and experimental results show that multi-objectivisation has improved convergence of the estimated parameters compared to the single-objective output error problem formulation. This is achieved by integrating the validation phase inside the algorithm implicitly and exploiting the inherent structure of the multi-objective GA for this specific system identification problem.
Experimental analysis of green roof substrate detention characteristics.
Yio, Marcus H N; Stovin, Virginia; Werdin, Jörg; Vesuviano, Gianni
2013-01-01
Green roofs may make an important contribution to urban stormwater management. Rainfall-runoff models are required to evaluate green roof responses to specific rainfall inputs. The roof's hydrological response is a function of its configuration, with the substrate - or growing media - providing both retention and detention of rainfall. The objective of the research described here is to quantify the detention effects due to green roof substrates, and to propose a suitable hydrological modelling approach. Laboratory results from experimental detention tests on green roof substrates are presented. It is shown that detention increases with substrate depth and as a result of increasing substrate organic content. Model structures based on reservoir routing are evaluated, and it is found that a one-parameter reservoir routing model coupled with a parameter that describes the delay to start of runoff best fits the observed data. Preliminary findings support the hypothesis that the reservoir routing parameter values can be defined from the substrate's physical characteristics.
Scheiblauer, Johannes; Scheiner, Stefan; Joksch, Martin; Kavsek, Barbara
2018-09-14
A combined experimental/theoretical approach is presented, for improving the predictability of Saccharomyces cerevisiae fermentations. In particular, a mathematical model was developed explicitly taking into account the main mechanisms of the fermentation process, allowing for continuous computation of key process variables, including the biomass concentration and the respiratory quotient (RQ). For model calibration and experimental validation, batch and fed-batch fermentations were carried out. Comparison of the model-predicted biomass concentrations and RQ developments with the corresponding experimentally recorded values shows a remarkably good agreement for both batch and fed-batch processes, confirming the adequacy of the model. Furthermore, sensitivity studies were performed, in order to identify model parameters whose variations have significant effects on the model predictions: our model responds with significant sensitivity to the variations of only six parameters. These studies provide a valuable basis for model reduction, as also demonstrated in this paper. Finally, optimization-based parametric studies demonstrate how our model can be utilized for improving the efficiency of Saccharomyces cerevisiae fermentations. Copyright © 2018 Elsevier Ltd. All rights reserved.
Pekalski, A A; Zevenbergen, J F; Braithwaite, M; Lemkowitz, S M; Pasman, H J
2005-02-14
Experimental and theoretical investigation of explosive decomposition of ethylene oxide (EO) at fixed initial experimental parameters (T=100 degrees C, P=4 bar) in a 20-l sphere was conducted. Safety-related parameters, namely the maximum explosion pressure, the maximum rate of pressure rise, and the Kd values, were experimentally determined for pure ethylene oxide and ethylene oxide diluted with nitrogen. The influence of the ignition energy on the explosion parameters was also studied. All these dependencies are quantified in empirical formulas. Additionally, the effect of turbulence on explosive decomposition of ethylene oxide was investigated. In contrast to previous studies, it is found that turbulence significantly influences the explosion severity parameters, mostly the rate of pressure rise. Thermodynamic models are used to calculate the maximum explosion pressure of pure and of nitrogen-diluted ethylene oxide, at different initial temperatures. Soot formation was experimentally observed. Relation between the amounts of soot formed and the explosion pressure was experimentally observed and was calculated.
Lakshmikanthan, P; Sughosh, P; White, James; Sivakumar Babu, G L
2017-07-01
The performance of an anaerobic bioreactor in treating mechanically biologically treated municipal solid waste was investigated using experimental and modelling techniques. The key parameters measured during the experimental test period included the gas yield, leachate generation and settlement under applied load. Modelling of the anaerobic bioreactor was carried out using the University of Southampton landfill degradation and transport model. The model was used to simulate the actual gas production and settlement. A sensitivity analysis showed that the most influential model parameters are the monod growth rate and moisture. In this case, pH had no effect on the total gas production and waste settlement, and only a small variation in the gas production was observed when the heat transfer coefficient of waste was varied from 20 to 100 kJ/(m d K) -1 . The anaerobic bioreactor contained 1.9 kg (dry) of mechanically biologically treated waste producing 10 L of landfill gas over 125 days.
Parameter recovery, bias and standard errors in the linear ballistic accumulator model.
Visser, Ingmar; Poessé, Rens
2017-05-01
The linear ballistic accumulator (LBA) model (Brown & Heathcote, , Cogn. Psychol., 57, 153) is increasingly popular in modelling response times from experimental data. An R package, glba, has been developed to fit the LBA model using maximum likelihood estimation which is validated by means of a parameter recovery study. At sufficient sample sizes parameter recovery is good, whereas at smaller sample sizes there can be large bias in parameters. In a second simulation study, two methods for computing parameter standard errors are compared. The Hessian-based method is found to be adequate and is (much) faster than the alternative bootstrap method. The use of parameter standard errors in model selection and inference is illustrated in an example using data from an implicit learning experiment (Visser et al., , Mem. Cogn., 35, 1502). It is shown that typical implicit learning effects are captured by different parameters of the LBA model. © 2017 The British Psychological Society.
NASA Technical Reports Server (NTRS)
1979-01-01
The computer model for erythropoietic control was adapted to the mouse system by altering system parameters originally given for the human to those which more realistically represent the mouse. Parameter values were obtained from a variety of literature sources. Using the mouse model, the mouse was studied as a potential experimental model for spaceflight. Simulation studies of dehydration and hypoxia were performed. A comparison of system parameters for the mouse and human models is presented. Aside from the obvious differences expected in fluid volumes, blood flows and metabolic rates, larger differences were observed in the following: erythrocyte life span, erythropoietin half-life, and normal arterial pO2.
A six-parameter Iwan model and its application
NASA Astrophysics Data System (ADS)
Li, Yikun; Hao, Zhiming
2016-02-01
Iwan model is a practical tool to describe the constitutive behaviors of joints. In this paper, a six-parameter Iwan model based on a truncated power-law distribution with two Dirac delta functions is proposed, which gives a more comprehensive description of joints than the previous Iwan models. Its analytical expressions including backbone curve, unloading curves and energy dissipation are deduced. Parameter identification procedures and the discretization method are also provided. A model application based on Segalman et al.'s experiment works with bolted joints is carried out. Simulation effects of different numbers of Jenkins elements are discussed. The results indicate that the six-parameter Iwan model can be used to accurately reproduce the experimental phenomena of joints.
Wang, Tianmiao; Wu, Yao; Liang, Jianhong; Han, Chenhao; Chen, Jiao; Zhao, Qiteng
2015-04-24
Skid-steering mobile robots are widely used because of their simple mechanism and robustness. However, due to the complex wheel-ground interactions and the kinematic constraints, it is a challenge to understand the kinematics and dynamics of such a robotic platform. In this paper, we develop an analysis and experimental kinematic scheme for a skid-steering wheeled vehicle based-on a laser scanner sensor. The kinematics model is established based on the boundedness of the instantaneous centers of rotation (ICR) of treads on the 2D motion plane. The kinematic parameters (the ICR coefficient , the path curvature variable and robot speed ), including the effect of vehicle dynamics, are introduced to describe the kinematics model. Then, an exact but costly dynamic model is used and the simulation of this model's stationary response for the vehicle shows a qualitative relationship for the specified parameters and . Moreover, the parameters of the kinematic model are determined based-on a laser scanner localization experimental analysis method with a skid-steering robotic platform, Pioneer P3-AT. The relationship between the ICR coefficient and two physical factors is studied, i.e., the radius of the path curvature and the robot speed . An empirical function-based relationship between the ICR coefficient of the robot and the path parameters is derived. To validate the obtained results, it is empirically demonstrated that the proposed kinematics model significantly improves the dead-reckoning performance of this skid-steering robot.
NASA Technical Reports Server (NTRS)
Agena, S. M.; Pusey, M. L.; Bogle, I. D.
1999-01-01
A thermodynamic framework (UNIQUAC model with temperature dependent parameters) is applied to model the salt-induced protein crystallization equilibrium, i.e., protein solubility. The framework introduces a term for the solubility product describing protein transfer between the liquid and solid phase and a term for the solution behavior describing deviation from ideal solution. Protein solubility is modeled as a function of salt concentration and temperature for a four-component system consisting of a protein, pseudo solvent (water and buffer), cation, and anion (salt). Two different systems, lysozyme with sodium chloride and concanavalin A with ammonium sulfate, are investigated. Comparison of the modeled and experimental protein solubility data results in an average root mean square deviation of 5.8%, demonstrating that the model closely follows the experimental behavior. Model calculations and model parameters are reviewed to examine the model and protein crystallization process. Copyright 1999 John Wiley & Sons, Inc.
Parameter estimation and sensitivity analysis for a mathematical model with time delays of leukemia
NASA Astrophysics Data System (ADS)
Cândea, Doina; Halanay, Andrei; Rǎdulescu, Rodica; Tǎlmaci, Rodica
2017-01-01
We consider a system of nonlinear delay differential equations that describes the interaction between three competing cell populations: healthy, leukemic and anti-leukemia T cells involved in Chronic Myeloid Leukemia (CML) under treatment with Imatinib. The aim of this work is to establish which model parameters are the most important in the success or failure of leukemia remission under treatment using a sensitivity analysis of the model parameters. For the most significant parameters of the model which affect the evolution of CML disease during Imatinib treatment we try to estimate the realistic values using some experimental data. For these parameters, steady states are calculated and their stability is analyzed and biologically interpreted.
Electrochemical carbon dioxide concentrator: Math model
NASA Technical Reports Server (NTRS)
Marshall, R. D.; Schubert, F. H.; Carlson, J. N.
1973-01-01
A steady state computer simulation model of an Electrochemical Depolarized Carbon Dioxide Concentrator (EDC) has been developed. The mathematical model combines EDC heat and mass balance equations with empirical correlations derived from experimental data to describe EDC performance as a function of the operating parameters involved. The model is capable of accurately predicting performance over EDC operating ranges. Model simulation results agree with the experimental data obtained over the prediction range.
Mapping the parameter space of a T2-dependent model of water diffusion MR in brain tissue.
Hansen, Brian; Vestergaard-Poulsen, Peter
2006-10-01
We present a new model for describing the diffusion-weighted (DW) proton nuclear magnetic resonance signal obtained from normal grey matter. Our model is analytical and, in some respects, is an extension of earlier model schemes. We model tissue as composed of three separate compartments with individual properties of diffusion and transverse relaxation. Our study assumes slow exchange between compartments. We attempt to take cell morphology into account, along with its effect on water diffusion in tissues. Using this model, we simulate diffusion-sensitive MR signals and compare model output to experimental data from human grey matter. In doing this comparison, we perform a global search for good fits in the parameter space of the model. The characteristic nonmonoexponential behavior of the signal as a function of experimental b value is reproduced quite well, along with established values for tissue-specific parameters such as volume fraction, tortuosity and apparent diffusion coefficient. We believe that the presented approach to modeling diffusion in grey matter adds new aspects to the treatment of a longstanding problem.
Ng, Candy K S; Osuna-Sanchez, Hector; Valéry, Eric; Sørensen, Eva; Bracewell, Daniel G
2012-06-15
An integrated experimental and modeling approach for the design of high productivity protein A chromatography is presented to maximize productivity in bioproduct manufacture. The approach consists of four steps: (1) small-scale experimentation, (2) model parameter estimation, (3) productivity optimization and (4) model validation with process verification. The integrated use of process experimentation and modeling enables fewer experiments to be performed, and thus minimizes the time and materials required in order to gain process understanding, which is of key importance during process development. The application of the approach is demonstrated for the capture of antibody by a novel silica-based high performance protein A adsorbent named AbSolute. In the example, a series of pulse injections and breakthrough experiments were performed to develop a lumped parameter model, which was then used to find the best design that optimizes the productivity of a batch protein A chromatographic process for human IgG capture. An optimum productivity of 2.9 kg L⁻¹ day⁻¹ for a column of 5mm diameter and 8.5 cm length was predicted, and subsequently verified experimentally, completing the whole process design approach in only 75 person-hours (or approximately 2 weeks). Copyright © 2012 Elsevier B.V. All rights reserved.
Tashkova, Katerina; Korošec, Peter; Silc, Jurij; Todorovski, Ljupčo; Džeroski, Sašo
2011-10-11
We address the task of parameter estimation in models of the dynamics of biological systems based on ordinary differential equations (ODEs) from measured data, where the models are typically non-linear and have many parameters, the measurements are imperfect due to noise, and the studied system can often be only partially observed. A representative task is to estimate the parameters in a model of the dynamics of endocytosis, i.e., endosome maturation, reflected in a cut-out switch transition between the Rab5 and Rab7 domain protein concentrations, from experimental measurements of these concentrations. The general parameter estimation task and the specific instance considered here are challenging optimization problems, calling for the use of advanced meta-heuristic optimization methods, such as evolutionary or swarm-based methods. We apply three global-search meta-heuristic algorithms for numerical optimization, i.e., differential ant-stigmergy algorithm (DASA), particle-swarm optimization (PSO), and differential evolution (DE), as well as a local-search derivative-based algorithm 717 (A717) to the task of estimating parameters in ODEs. We evaluate their performance on the considered representative task along a number of metrics, including the quality of reconstructing the system output and the complete dynamics, as well as the speed of convergence, both on real-experimental data and on artificial pseudo-experimental data with varying amounts of noise. We compare the four optimization methods under a range of observation scenarios, where data of different completeness and accuracy of interpretation are given as input. Overall, the global meta-heuristic methods (DASA, PSO, and DE) clearly and significantly outperform the local derivative-based method (A717). Among the three meta-heuristics, differential evolution (DE) performs best in terms of the objective function, i.e., reconstructing the output, and in terms of convergence. These results hold for both real and artificial data, for all observability scenarios considered, and for all amounts of noise added to the artificial data. In sum, the meta-heuristic methods considered are suitable for estimating the parameters in the ODE model of the dynamics of endocytosis under a range of conditions: With the model and conditions being representative of parameter estimation tasks in ODE models of biochemical systems, our results clearly highlight the promise of bio-inspired meta-heuristic methods for parameter estimation in dynamic system models within system biology.
2011-01-01
Background We address the task of parameter estimation in models of the dynamics of biological systems based on ordinary differential equations (ODEs) from measured data, where the models are typically non-linear and have many parameters, the measurements are imperfect due to noise, and the studied system can often be only partially observed. A representative task is to estimate the parameters in a model of the dynamics of endocytosis, i.e., endosome maturation, reflected in a cut-out switch transition between the Rab5 and Rab7 domain protein concentrations, from experimental measurements of these concentrations. The general parameter estimation task and the specific instance considered here are challenging optimization problems, calling for the use of advanced meta-heuristic optimization methods, such as evolutionary or swarm-based methods. Results We apply three global-search meta-heuristic algorithms for numerical optimization, i.e., differential ant-stigmergy algorithm (DASA), particle-swarm optimization (PSO), and differential evolution (DE), as well as a local-search derivative-based algorithm 717 (A717) to the task of estimating parameters in ODEs. We evaluate their performance on the considered representative task along a number of metrics, including the quality of reconstructing the system output and the complete dynamics, as well as the speed of convergence, both on real-experimental data and on artificial pseudo-experimental data with varying amounts of noise. We compare the four optimization methods under a range of observation scenarios, where data of different completeness and accuracy of interpretation are given as input. Conclusions Overall, the global meta-heuristic methods (DASA, PSO, and DE) clearly and significantly outperform the local derivative-based method (A717). Among the three meta-heuristics, differential evolution (DE) performs best in terms of the objective function, i.e., reconstructing the output, and in terms of convergence. These results hold for both real and artificial data, for all observability scenarios considered, and for all amounts of noise added to the artificial data. In sum, the meta-heuristic methods considered are suitable for estimating the parameters in the ODE model of the dynamics of endocytosis under a range of conditions: With the model and conditions being representative of parameter estimation tasks in ODE models of biochemical systems, our results clearly highlight the promise of bio-inspired meta-heuristic methods for parameter estimation in dynamic system models within system biology. PMID:21989196
Modelling of hydrogen conditioning, retention and release in Tore Supra
NASA Astrophysics Data System (ADS)
Grisolia, C.; Horton, L. D.; Ehrenberg, J. K.
1995-04-01
A model based on a local mixing model has been previously developed at JET to explain the recovery of tritium after the first PTE experiment. This model is extended by a 0D plasma particle balance model and is applied to data from Tore Supra wall saturation experiments. With only two free parameters, representing the diffusion of hydrogen atoms and the volume recombination process between hydrogen atoms into molecules, the model can reproduce experimental data. The time evolution of the after-shot outgassing and the integral amount of particles recovered after the shot (assuming 13 m 2 of interacting surfaces between plasma and walls) are in good agreement with the experimental observations. The same set of parameters allows the model to simulate after-shot outgassing of five consecutive discharges. However, the model fails to predict the observed saturation of the walls by the plasma. Results from helium glow discharge (HeGD) can only be partially described. Good agreement with the experimental hydrogen release and its time evolution during HeGD is observed, but the model fails to describe the stability of a saturated graphite wall.
Predicting network modules of cell cycle regulators using relative protein abundance statistics.
Oguz, Cihan; Watson, Layne T; Baumann, William T; Tyson, John J
2017-02-28
Parameter estimation in systems biology is typically done by enforcing experimental observations through an objective function as the parameter space of a model is explored by numerical simulations. Past studies have shown that one usually finds a set of "feasible" parameter vectors that fit the available experimental data equally well, and that these alternative vectors can make different predictions under novel experimental conditions. In this study, we characterize the feasible region of a complex model of the budding yeast cell cycle under a large set of discrete experimental constraints in order to test whether the statistical features of relative protein abundance predictions are influenced by the topology of the cell cycle regulatory network. Using differential evolution, we generate an ensemble of feasible parameter vectors that reproduce the phenotypes (viable or inviable) of wild-type yeast cells and 110 mutant strains. We use this ensemble to predict the phenotypes of 129 mutant strains for which experimental data is not available. We identify 86 novel mutants that are predicted to be viable and then rank the cell cycle proteins in terms of their contributions to cumulative variability of relative protein abundance predictions. Proteins involved in "regulation of cell size" and "regulation of G1/S transition" contribute most to predictive variability, whereas proteins involved in "positive regulation of transcription involved in exit from mitosis," "mitotic spindle assembly checkpoint" and "negative regulation of cyclin-dependent protein kinase by cyclin degradation" contribute the least. These results suggest that the statistics of these predictions may be generating patterns specific to individual network modules (START, S/G2/M, and EXIT). To test this hypothesis, we develop random forest models for predicting the network modules of cell cycle regulators using relative abundance statistics as model inputs. Predictive performance is assessed by the areas under receiver operating characteristics curves (AUC). Our models generate an AUC range of 0.83-0.87 as opposed to randomized models with AUC values around 0.50. By using differential evolution and random forest modeling, we show that the model prediction statistics generate distinct network module-specific patterns within the cell cycle network.
NASA Astrophysics Data System (ADS)
Allison, C. M.; Roggensack, K.; Clarke, A. B.
2017-12-01
Volatile solubility in magmas is dependent on several factors, including composition and pressure. Mafic (basaltic) magmas with high concentrations of alkali elements (Na and K) are capable of dissolving larger quantities of H2O and CO2 than low-alkali basalt. The exsolution of abundant gases dissolved in alkali-rich mafic magmas can contribute to large explosive eruptions. Existing volatile solubility models for alkali-rich mafic magmas are well calibrated below 200 MPa, but at greater pressures the experimental data is sparse. To allow for accurate interpretation of mafic magmatic systems at higher pressures, we conducted a set of mixed H2O-CO2 volatile solubility experiments between 400 and 600 MPa at 1200 °C in six mafic compositions with variable alkali contents. Compositions include magmas from volcanoes in Italy, Antarctica, and Arizona. Results from our experiments indicate that existing volatile solubility models for alkali-rich mafic magmas, if extrapolated beyond their calibrated range, over-predict CO2 solubility at mid-crustal pressures. Physically, these results suggest that volatile exsolution can occur at deeper levels than what can be resolved from the lower-pressure experimental data. Existing thermodynamic models used to calculate volatile solubility at different pressures require two experimentally derived parameters. These parameters represent the partial molar volume of the condensed volatile species in the melt and its equilibrium constant, both calculated at a standard temperature and pressure. We derived these parameters for each studied composition and the corresponding thermodynamic model shows good agreement with the CO2 solubility data of the experiments. A general alkali basalt solubility model was also constructed by establishing a relationship between magma composition and the thermodynamic parameters. We utilize cation fractions from our six compositions along with four compositions from the experimental literature in a linear regression to generate this compositional relationship. Our revised general model provides a new framework to interpret volcanic data, yielding greater depths for melt inclusion entrapment than previously calculated using other models, and it can be applied to mafic magma compositions for which no experimental data is available.
Serrancolí, Gil; Kinney, Allison L.; Fregly, Benjamin J.; Font-Llagunes, Josep M.
2016-01-01
Though walking impairments are prevalent in society, clinical treatments are often ineffective at restoring lost function. For this reason, researchers have begun to explore the use of patient-specific computational walking models to develop more effective treatments. However, the accuracy with which models can predict internal body forces in muscles and across joints depends on how well relevant model parameter values can be calibrated for the patient. This study investigated how knowledge of internal knee contact forces affects calibration of neuromusculoskeletal model parameter values and subsequent prediction of internal knee contact and leg muscle forces during walking. Model calibration was performed using a novel two-level optimization procedure applied to six normal walking trials from the Fourth Grand Challenge Competition to Predict In Vivo Knee Loads. The outer-level optimization adjusted time-invariant model parameter values to minimize passive muscle forces, reserve actuator moments, and model parameter value changes with (Approach A) and without (Approach B) tracking of experimental knee contact forces. Using the current guess for model parameter values but no knee contact force information, the inner-level optimization predicted time-varying muscle activations that were close to experimental muscle synergy patterns and consistent with the experimental inverse dynamic loads (both approaches). For all the six gait trials, Approach A predicted knee contact forces with high accuracy for both compartments (average correlation coefficient r = 0.99 and root mean square error (RMSE) = 52.6 N medial; average r = 0.95 and RMSE = 56.6 N lateral). In contrast, Approach B overpredicted contact force magnitude for both compartments (average RMSE = 323 N medial and 348 N lateral) and poorly matched contact force shape for the lateral compartment (average r = 0.90 medial and −0.10 lateral). Approach B had statistically higher lateral muscle forces and lateral optimal muscle fiber lengths but lower medial, central, and lateral normalized muscle fiber lengths compared to Approach A. These findings suggest that poorly calibrated model parameter values may be a major factor limiting the ability of neuromusculoskeletal models to predict knee contact and leg muscle forces accurately for walking. PMID:27210105
Comparative Sensitivity Analysis of Muscle Activation Dynamics
Günther, Michael; Götz, Thomas
2015-01-01
We mathematically compared two models of mammalian striated muscle activation dynamics proposed by Hatze and Zajac. Both models are representative for a broad variety of biomechanical models formulated as ordinary differential equations (ODEs). These models incorporate parameters that directly represent known physiological properties. Other parameters have been introduced to reproduce empirical observations. We used sensitivity analysis to investigate the influence of model parameters on the ODE solutions. In addition, we expanded an existing approach to treating initial conditions as parameters and to calculating second-order sensitivities. Furthermore, we used a global sensitivity analysis approach to include finite ranges of parameter values. Hence, a theoretician striving for model reduction could use the method for identifying particularly low sensitivities to detect superfluous parameters. An experimenter could use it for identifying particularly high sensitivities to improve parameter estimation. Hatze's nonlinear model incorporates some parameters to which activation dynamics is clearly more sensitive than to any parameter in Zajac's linear model. Other than Zajac's model, Hatze's model can, however, reproduce measured shifts in optimal muscle length with varied muscle activity. Accordingly we extracted a specific parameter set for Hatze's model that combines best with a particular muscle force-length relation. PMID:26417379
El Amrani, Loubna; Porres, Jesús M; Merzouki, Abderrahmane; Louktibi, Abdelaziz; Aranda, Pilar; López-Jurado, María; Urbano, Gloria
2013-01-01
Vitamin A deficiency can result from malnutrition, malabsorption of vitamin A, impaired vitamin metabolism associated with liver disease, or chronic debilitating diseases like HIV infection or cancer. Cannabis administration has been described as a palliative symptom management therapy in such pathological stages. Therefore, this research aimed to study the effects of acute administration of cannabidiol (CBD) or thetrahydrocannabinol (THC) on the levels of retinol in plasma and in the liver, and biochemical parameters related to lipid and glucose metabolism (cholesterolaemia, triglyceridemia and glycemia) in a rat experimental model of vitamin A deficiency. The experimental animal model of Vitamin A deficiency was developed during a 50-day experimental period in which rats consumed a vitamin A-free diet. Cannabidiol (10 mg/kg body weight) or thetrahydrocannabinol (5 mg/kg body weight) were administered intraperitoneally 2 hours prior to sacrifice of the animals. The nutritional deficiency caused a significant decrease in plasmatic and liver contents of retinol and biochemical parameters of glycemic, lipidic, and mineral metabolism. Acute intraperitoneal administration of Cannabidiol and thetrahydrocannabinol did not improve the indices of vitamin A status in either control or vitamin A-deficient rats. However, it had a significant effect on specific biochemical parameters such as glucose, triglycerides, and cholesterol. Under our experimental conditions, the reported effects of cannabinoid administration on certain signs of nutritional vitamin A deficiency appeared to be mediated through mechanisms other than changes in retinol metabolism or its mobilization after the acute administration of such compounds. Copyright © AULA MEDICA EDICIONES 2013. Published by AULA MEDICA. All rights reserved.
Throughput and latency programmable optical transceiver by using DSP and FEC control.
Tanimura, Takahito; Hoshida, Takeshi; Kato, Tomoyuki; Watanabe, Shigeki; Suzuki, Makoto; Morikawa, Hiroyuki
2017-05-15
We propose and experimentally demonstrate a proof-of-concept of a programmable optical transceiver that enables simultaneous optimization of multiple programmable parameters (modulation format, symbol rate, power allocation, and FEC) for satisfying throughput, signal quality, and latency requirements. The proposed optical transceiver also accommodates multiple sub-channels that can transport different optical signals with different requirements. Multi-degree-of-freedom of the parameters often leads to difficulty in finding the optimum combination among the parameters due to an explosion of the number of combinations. The proposed optical transceiver reduces the number of combinations and finds feasible sets of programmable parameters by using constraints of the parameters combined with a precise analytical model. For precise BER prediction with the specified set of parameters, we model the sub-channel BER as a function of OSNR, modulation formats, symbol rates, and power difference between sub-channels. Next, we formulate simple constraints of the parameters and combine the constraints with the analytical model to seek feasible sets of programmable parameters. Finally, we experimentally demonstrate the end-to-end operation of the proposed optical transceiver with offline manner including low-density parity-check (LDPC) FEC encoding and decoding under a specific use case with latency-sensitive application and 40-km transmission.
Review: Optimization methods for groundwater modeling and management
NASA Astrophysics Data System (ADS)
Yeh, William W.-G.
2015-09-01
Optimization methods have been used in groundwater modeling as well as for the planning and management of groundwater systems. This paper reviews and evaluates the various optimization methods that have been used for solving the inverse problem of parameter identification (estimation), experimental design, and groundwater planning and management. Various model selection criteria are discussed, as well as criteria used for model discrimination. The inverse problem of parameter identification concerns the optimal determination of model parameters using water-level observations. In general, the optimal experimental design seeks to find sampling strategies for the purpose of estimating the unknown model parameters. A typical objective of optimal conjunctive-use planning of surface water and groundwater is to minimize the operational costs of meeting water demand. The optimization methods include mathematical programming techniques such as linear programming, quadratic programming, dynamic programming, stochastic programming, nonlinear programming, and the global search algorithms such as genetic algorithms, simulated annealing, and tabu search. Emphasis is placed on groundwater flow problems as opposed to contaminant transport problems. A typical two-dimensional groundwater flow problem is used to explain the basic formulations and algorithms that have been used to solve the formulated optimization problems.
Polydisperse sphere packing in high dimensions, a search for an upper critical dimension
NASA Astrophysics Data System (ADS)
Morse, Peter; Clusel, Maxime; Corwin, Eric
2012-02-01
The recently introduced granocentric model for polydisperse sphere packings has been shown to be in good agreement with experimental and simulational data in two and three dimensions. This model relies on two effective parameters that have to be estimated from experimental/simulational results. The non-trivial values obtained allow the model to take into account the essential effects of correlations in the packing. Once these parameters are set, the model provides a full statistical description of a sphere packing for a given polydispersity. We investigate the evolution of these effective parameters with the spatial dimension to see if, in analogy with the upper critical dimension in critical phenomena, there exists a dimension above which correlations become irrelevant and the model parameters can be fixed a priori as a function of polydispersity. This would turn the model into a proper theory of polydisperse sphere packings at that upper critical dimension. We perform infinite temperature quench simulations of frictionless polydisperse sphere packings in dimensions 2-8 using a parallel algorithm implemented on a GPGPU. We analyze the resulting packings by implementing an algorithm to calculate the additively weighted Voronoi diagram in arbitrary dimension.
Bell's theorem and the problem of decidability between the views of Einstein and Bohr.
Hess, K; Philipp, W
2001-12-04
Einstein, Podolsky, and Rosen (EPR) have designed a gedanken experiment that suggested a theory that was more complete than quantum mechanics. The EPR design was later realized in various forms, with experimental results close to the quantum mechanical prediction. The experimental results by themselves have no bearing on the EPR claim that quantum mechanics must be incomplete nor on the existence of hidden parameters. However, the well known inequalities of Bell are based on the assumption that local hidden parameters exist and, when combined with conflicting experimental results, do appear to prove that local hidden parameters cannot exist. This fact leaves only instantaneous actions at a distance (called "spooky" by Einstein) to explain the experiments. The Bell inequalities are based on a mathematical model of the EPR experiments. They have no experimental confirmation, because they contradict the results of all EPR experiments. In addition to the assumption that hidden parameters exist, Bell tacitly makes a variety of other assumptions; for instance, he assumes that the hidden parameters are governed by a single probability measure independent of the analyzer settings. We argue that the mathematical model of Bell excludes a large set of local hidden variables and a large variety of probability densities. Our set of local hidden variables includes time-like correlated parameters and a generalized probability density. We prove that our extended space of local hidden variables does permit derivation of the quantum result and is consistent with all known experiments.
Feng, Yuan; Lee, Chung-Hao; Sun, Lining; Ji, Songbai; Zhao, Xuefeng
2017-01-01
Characterizing the mechanical properties of white matter is important to understand and model brain development and injury. With embedded aligned axonal fibers, white matter is typically modeled as a transversely isotropic material. However, most studies characterize the white matter tissue using models with a single anisotropic invariant or in a small-strain regime. In this study, we combined a single experimental procedure - asymmetric indentation - with inverse finite element (FE) modeling to estimate the nearly incompressible transversely isotropic material parameters of white matter. A minimal form comprising three parameters was employed to simulate indentation responses in the large-strain regime. The parameters were estimated using a global optimization procedure based on a genetic algorithm (GA). Experimental data from two indentation configurations of porcine white matter, parallel and perpendicular to the axonal fiber direction, were utilized to estimate model parameters. Results in this study confirmed a strong mechanical anisotropy of white matter in large strain. Further, our results suggested that both indentation configurations are needed to estimate the parameters with sufficient accuracy, and that the indenter-sample friction is important. Finally, we also showed that the estimated parameters were consistent with those previously obtained via a trial-and-error forward FE method in the small-strain regime. These findings are useful in modeling and parameterization of white matter, especially under large deformation, and demonstrate the potential of the proposed asymmetric indentation technique to characterize other soft biological tissues with transversely isotropic properties. Copyright © 2016 Elsevier Ltd. All rights reserved.
Tian, Lu; Wei, Wan-Zhi; Mao, You-An
2004-04-01
The adsorption of human serum albumin onto hydroxyapatite-modified silver electrodes has been in situ investigated by utilizing the piezoelectric quartz crystal impedance technique. The changes of equivalent circuit parameters were used to interpret the adsorption process. A kinetic model of two consecutive steps was derived to describe the process and compared with a first-order kinetic model by using residual analysis. The experimental data of frequency shift fitted to the model and kinetics parameters, k1, k2, psi1, psi2 and qr, were obtained. All fitted results were in reasonable agreement with the corresponding experimental results. Two adsorption constants (7.19 kJ mol(-1) and 22.89 kJ mol(-1)) were calculated according to the Arrhenius formula.
Puente, Gabriela F; Urteaga, Raúl; Bonetto, Fabián J
2005-10-01
We performed a comprehensive numerical and experimental analysis of dissociation effects in an air bubble in water acoustically levitated in a spherical resonator. Our numerical approach is based on suitable models for the different effects considered. We compared model predictions with experimental results obtained in our laboratory in the whole phase parameter space, for acoustic pressures from the bubble dissolution limit up to bubble extinction. The effects were taken into account simultaneously to consider the transition from nonsonoluminescence to sonoluminescence bubbles. The model includes (1) inside the bubble, transient and spatially nonuniform heat transfer using a collocation points method, dissociation of O2 and N2, and mass diffusion of vapor in the noncondensable gases; (2) at the bubble interface, nonequilibrium evaporation and condensation of water and a temperature jump due to the accommodation coefficient; (3) in the liquid, transient and spatially nonuniform heat transfer using a collocation points method, and mass diffusion of the gas in the liquid. The model is completed with a Rayleigh-Plesset equation with liquid compressible terms and vapor mass transfer. We computed the boundary for the shape instability based on the temporal evolution of the computed radius. The model is valid for an arbitrary number of dissociable gases dissolved in the liquid. We also obtained absolute measurements for R(t) using two photodetectors and Mie scattering calculations. The robust technique used allows the estimation of experimental results of absolute R0 and P(a). The technique is based on identifying the bubble dissolution limit coincident with the parametric instability in (P(a),R0) parameter space. We take advantage of the fact that this point can be determined experimentally with high precision and replicability. We computed the equilibrium concentration of the different gaseous species and water vapor during collapse as a function of P(a) and R0. The model obtains from first principles the result that in sonoluminescence the bubble is practically 100% argon for air dissolved in water. Therefore, the dissociation reactions in air bubbles must be taken into account for quantitative computations of maximum temperatures. The agreement found between the numerical and experimental data is very good in the whole parameter space explored. We do not fit any parameter in the model. We believe that we capture all the relevant physics with the model.
A global parallel model based design of experiments method to minimize model output uncertainty.
Bazil, Jason N; Buzzard, Gregory T; Rundell, Ann E
2012-03-01
Model-based experiment design specifies the data to be collected that will most effectively characterize the biological system under study. Existing model-based design of experiment algorithms have primarily relied on Fisher Information Matrix-based methods to choose the best experiment in a sequential manner. However, these are largely local methods that require an initial estimate of the parameter values, which are often highly uncertain, particularly when data is limited. In this paper, we provide an approach to specify an informative sequence of multiple design points (parallel design) that will constrain the dynamical uncertainty of the biological system responses to within experimentally detectable limits as specified by the estimated experimental noise. The method is based upon computationally efficient sparse grids and requires only a bounded uncertain parameter space; it does not rely upon initial parameter estimates. The design sequence emerges through the use of scenario trees with experimental design points chosen to minimize the uncertainty in the predicted dynamics of the measurable responses of the system. The algorithm was illustrated herein using a T cell activation model for three problems that ranged in dimension from 2D to 19D. The results demonstrate that it is possible to extract useful information from a mathematical model where traditional model-based design of experiments approaches most certainly fail. The experiments designed via this method fully constrain the model output dynamics to within experimentally resolvable limits. The method is effective for highly uncertain biological systems characterized by deterministic mathematical models with limited data sets. Also, it is highly modular and can be modified to include a variety of methodologies such as input design and model discrimination.
Robust parameter design for automatically controlled systems and nanostructure synthesis
NASA Astrophysics Data System (ADS)
Dasgupta, Tirthankar
2007-12-01
This research focuses on developing comprehensive frameworks for developing robust parameter design methodology for dynamic systems with automatic control and for synthesis of nanostructures. In many automatically controlled dynamic processes, the optimal feedback control law depends on the parameter design solution and vice versa and therefore an integrated approach is necessary. A parameter design methodology in the presence of feedback control is developed for processes of long duration under the assumption that experimental noise factors are uncorrelated over time. Systems that follow a pure-gain dynamic model are considered and the best proportional-integral and minimum mean squared error control strategies are developed by using robust parameter design. The proposed method is illustrated using a simulated example and a case study in a urea packing plant. This idea is also extended to cases with on-line noise factors. The possibility of integrating feedforward control with a minimum mean squared error feedback control scheme is explored. To meet the needs of large scale synthesis of nanostructures, it is critical to systematically find experimental conditions under which the desired nanostructures are synthesized reproducibly, at large quantity and with controlled morphology. The first part of the research in this area focuses on modeling and optimization of existing experimental data. Through a rigorous statistical analysis of experimental data, models linking the probabilities of obtaining specific morphologies to the process variables are developed. A new iterative algorithm for fitting a Multinomial GLM is proposed and used. The optimum process conditions, which maximize the above probabilities and make the synthesis process less sensitive to variations of process variables around set values, are derived from the fitted models using Monte-Carlo simulations. The second part of the research deals with development of an experimental design methodology, tailor-made to address the unique phenomena associated with nanostructure synthesis. A sequential space filling design called Sequential Minimum Energy Design (SMED) for exploring best process conditions for synthesis of nanowires. The SMED is a novel approach to generate sequential designs that are model independent, can quickly "carve out" regions with no observable nanostructure morphology, and allow for the exploration of complex response surfaces.
Estimation of the viscosities of liquid binary alloys
NASA Astrophysics Data System (ADS)
Wu, Min; Su, Xiang-Yu
2018-01-01
As one of the most important physical and chemical properties, viscosity plays a critical role in physics and materials as a key parameter to quantitatively understanding the fluid transport process and reaction kinetics in metallurgical process design. Experimental and theoretical studies on liquid metals are problematic. Today, there are many empirical and semi-empirical models available with which to evaluate the viscosity of liquid metals and alloys. However, the parameter of mixed energy in these models is not easily determined, and most predictive models have been poorly applied. In the present study, a new thermodynamic parameter Δ G is proposed to predict liquid alloy viscosity. The prediction equation depends on basic physical and thermodynamic parameters, namely density, melting temperature, absolute atomic mass, electro-negativity, electron density, molar volume, Pauling radius, and mixing enthalpy. Our results show that the liquid alloy viscosity predicted using the proposed model is closely in line with the experimental values. In addition, if the component radius difference is greater than 0.03 nm at a certain temperature, the atomic size factor has a significant effect on the interaction of the binary liquid metal atoms. The proposed thermodynamic parameter Δ G also facilitates the study of other physical properties of liquid metals.
Spectral Analysis and Experimental Modeling of Ice Accretion Roughness
NASA Technical Reports Server (NTRS)
Orr, D. J.; Breuer, K. S.; Torres, B. E.; Hansman, R. J., Jr.
1996-01-01
A self-consistent scheme for relating wind tunnel ice accretion roughness to the resulting enhancement of heat transfer is described. First, a spectral technique of quantitative analysis of early ice roughness images is reviewed. The image processing scheme uses a spectral estimation technique (SET) which extracts physically descriptive parameters by comparing scan lines from the experimentally-obtained accretion images to a prescribed test function. Analysis using this technique for both streamwise and spanwise directions of data from the NASA Lewis Icing Research Tunnel (IRT) are presented. An experimental technique is then presented for constructing physical roughness models suitable for wind tunnel testing that match the SET parameters extracted from the IRT images. The icing castings and modeled roughness are tested for enhancement of boundary layer heat transfer using infrared techniques in a "dry" wind tunnel.
Dynamics of morphological evolution in experimental Escherichia coli populations.
Cui, F; Yuan, B
2016-08-30
Here, we applied a two-stage clonal expansion model of morphological (cell-size) evolution to a long-term evolution experiment with Escherichia coli. Using this model, we derived the incidence function of the appearance of cell-size stability, the waiting time until this morphological stability, and the conditional and unconditional probabilities of morphological stability. After assessing the parameter values, we verified that the calculated waiting time was consistent with the experimental results, demonstrating the effectiveness of the two-stage model. According to the relative contributions of parameters to the incidence function and the waiting time, cell-size evolution is largely determined by the promotion rate, i.e., the clonal expansion rate of selectively advantageous organisms. This rate plays a prominent role in the evolution of cell size in experimental populations, whereas all other evolutionary forces were found to be less influential.
Tensor methods for parameter estimation and bifurcation analysis of stochastic reaction networks
Liao, Shuohao; Vejchodský, Tomáš; Erban, Radek
2015-01-01
Stochastic modelling of gene regulatory networks provides an indispensable tool for understanding how random events at the molecular level influence cellular functions. A common challenge of stochastic models is to calibrate a large number of model parameters against the experimental data. Another difficulty is to study how the behaviour of a stochastic model depends on its parameters, i.e. whether a change in model parameters can lead to a significant qualitative change in model behaviour (bifurcation). In this paper, tensor-structured parametric analysis (TPA) is developed to address these computational challenges. It is based on recently proposed low-parametric tensor-structured representations of classical matrices and vectors. This approach enables simultaneous computation of the model properties for all parameter values within a parameter space. The TPA is illustrated by studying the parameter estimation, robustness, sensitivity and bifurcation structure in stochastic models of biochemical networks. A Matlab implementation of the TPA is available at http://www.stobifan.org. PMID:26063822
Tensor methods for parameter estimation and bifurcation analysis of stochastic reaction networks.
Liao, Shuohao; Vejchodský, Tomáš; Erban, Radek
2015-07-06
Stochastic modelling of gene regulatory networks provides an indispensable tool for understanding how random events at the molecular level influence cellular functions. A common challenge of stochastic models is to calibrate a large number of model parameters against the experimental data. Another difficulty is to study how the behaviour of a stochastic model depends on its parameters, i.e. whether a change in model parameters can lead to a significant qualitative change in model behaviour (bifurcation). In this paper, tensor-structured parametric analysis (TPA) is developed to address these computational challenges. It is based on recently proposed low-parametric tensor-structured representations of classical matrices and vectors. This approach enables simultaneous computation of the model properties for all parameter values within a parameter space. The TPA is illustrated by studying the parameter estimation, robustness, sensitivity and bifurcation structure in stochastic models of biochemical networks. A Matlab implementation of the TPA is available at http://www.stobifan.org.
Tsamandouras, Nikolaos; Rostami-Hodjegan, Amin; Aarons, Leon
2015-01-01
Pharmacokinetic models range from being entirely exploratory and empirical, to semi-mechanistic and ultimately complex physiologically based pharmacokinetic (PBPK) models. This choice is conditional on the modelling purpose as well as the amount and quality of the available data. The main advantage of PBPK models is that they can be used to extrapolate outside the studied population and experimental conditions. The trade-off for this advantage is a complex system of differential equations with a considerable number of model parameters. When these parameters cannot be informed from in vitro or in silico experiments they are usually optimized with respect to observed clinical data. Parameter estimation in complex models is a challenging task associated with many methodological issues which are discussed here with specific recommendations. Concepts such as structural and practical identifiability are described with regards to PBPK modelling and the value of experimental design and sensitivity analyses is sketched out. Parameter estimation approaches are discussed, while we also highlight the importance of not neglecting the covariance structure between model parameters and the uncertainty and population variability that is associated with them. Finally the possibility of using model order reduction techniques and minimal semi-mechanistic models that retain the physiological-mechanistic nature only in the parts of the model which are relevant to the desired modelling purpose is emphasized. Careful attention to all the above issues allows us to integrate successfully information from in vitro or in silico experiments together with information deriving from observed clinical data and develop mechanistically sound models with clinical relevance. PMID:24033787
A new approach to the extraction of single exponential diode model parameters
NASA Astrophysics Data System (ADS)
Ortiz-Conde, Adelmo; García-Sánchez, Francisco J.
2018-06-01
A new integration method is presented for the extraction of the parameters of a single exponential diode model with series resistance from the measured forward I-V characteristics. The extraction is performed using auxiliary functions based on the integration of the data which allow to isolate the effects of each of the model parameters. A differentiation method is also presented for data with low level of experimental noise. Measured and simulated data are used to verify the applicability of both proposed method. Physical insight about the validity of the model is also obtained by using the proposed graphical determinations of the parameters.
Two-electrons quantum dot in plasmas under the external fields
NASA Astrophysics Data System (ADS)
Bahar, M. K.; Soylu, A.
2018-02-01
In this study, for the first time, the combined effects of the external electric field, magnetic field, and confinement frequency on energies of two-electron parabolic quantum dots in Debye and quantum plasmas modeled by more general exponential cosine screened Coulomb (MGECSC) potential are investigated by numerically solving the Schrödinger equation using the asymptotic iteration method. The MGECSC potential includes four different potential forms when considering different sets of the parameters in potential. Since the plasma is an important experimental argument for quantum dots, the influence of plasmas modeled by the MGECSC potential on quantum dots is probed. The confinement frequency of quantum dots and the external fields created significant quantum restrictions on quantum dot. In this study, as well as discussion of the functionalities of the quantum restrictions for experimental applications, the parameters are also compared with each other in terms of influence and behaviour. In this manner, the motivation points of this study are summarized as follows: Which parameter can be alternative to which parameter, in terms of experimental applications? Which parameters exhibit similar behaviour? What is the role of plasmas on the corresponding behaviours? In the light of these research studies, it can be said that obtained results and performed discussions would be important in experimental and theoretical research related to plasma physics and/or quantum dots.
Liang, Hua; Miao, Hongyu; Wu, Hulin
2010-03-01
Modeling viral dynamics in HIV/AIDS studies has resulted in deep understanding of pathogenesis of HIV infection from which novel antiviral treatment guidance and strategies have been derived. Viral dynamics models based on nonlinear differential equations have been proposed and well developed over the past few decades. However, it is quite challenging to use experimental or clinical data to estimate the unknown parameters (both constant and time-varying parameters) in complex nonlinear differential equation models. Therefore, investigators usually fix some parameter values, from the literature or by experience, to obtain only parameter estimates of interest from clinical or experimental data. However, when such prior information is not available, it is desirable to determine all the parameter estimates from data. In this paper, we intend to combine the newly developed approaches, a multi-stage smoothing-based (MSSB) method and the spline-enhanced nonlinear least squares (SNLS) approach, to estimate all HIV viral dynamic parameters in a nonlinear differential equation model. In particular, to the best of our knowledge, this is the first attempt to propose a comparatively thorough procedure, accounting for both efficiency and accuracy, to rigorously estimate all key kinetic parameters in a nonlinear differential equation model of HIV dynamics from clinical data. These parameters include the proliferation rate and death rate of uninfected HIV-targeted cells, the average number of virions produced by an infected cell, and the infection rate which is related to the antiviral treatment effect and is time-varying. To validate the estimation methods, we verified the identifiability of the HIV viral dynamic model and performed simulation studies. We applied the proposed techniques to estimate the key HIV viral dynamic parameters for two individual AIDS patients treated with antiretroviral therapies. We demonstrate that HIV viral dynamics can be well characterized and quantified for individual patients. As a result, personalized treatment decision based on viral dynamic models is possible.
IPMP Global Fit - A one-step direct data analysis tool for predictive microbiology.
Huang, Lihan
2017-12-04
The objective of this work is to develop and validate a unified optimization algorithm for performing one-step global regression analysis of isothermal growth and survival curves for determination of kinetic parameters in predictive microbiology. The algorithm is incorporated with user-friendly graphical interfaces (GUIs) to develop a data analysis tool, the USDA IPMP-Global Fit. The GUIs are designed to guide the users to easily navigate through the data analysis process and properly select the initial parameters for different combinations of mathematical models. The software is developed for one-step kinetic analysis to directly construct tertiary models by minimizing the global error between the experimental observations and mathematical models. The current version of the software is specifically designed for constructing tertiary models with time and temperature as the independent model parameters in the package. The software is tested with a total of 9 different combinations of primary and secondary models for growth and survival of various microorganisms. The results of data analysis show that this software provides accurate estimates of kinetic parameters. In addition, it can be used to improve the experimental design and data collection for more accurate estimation of kinetic parameters. IPMP-Global Fit can be used in combination with the regular USDA-IPMP for solving the inverse problems and developing tertiary models in predictive microbiology. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Bouaziz, Nadia; Ben Manaa, Marwa; Ben Lamine, Abdelmottaleb
2017-11-01
The hydrogen absorption-desorption isotherms on LaNi3.8Al1.2-xMnx alloy at temperature T = 433 K is studied through various theoretical models. The analytical expressions of these models were deduced exploiting the grand canonical ensemble in statistical physics by taking some simplifying hypotheses. Among these models an adequate model which presents a good correlation with the experimental curves has been selected. The physicochemical parameters intervening in the absorption-desorption processes and involved in the model expressions could be directly deduced from the experimental isotherms by numerical simulation. Six parameters of the model are adjusted, namely the numbers of hydrogen atoms per site n1 and n2, the receptor site densities N1m and N2m, and the energetic parameters P1 and P2. The behaviors of these parameters are discussed in relation with absorption and desorption processes to better understand and compare these phenomena. Thanks to the energetic parameters, we calculated the sorption energies which are typically ranged between 266 and 269.4 KJ/mol for absorption process and between 267 and 269.5 KJ/mol for desorption process comparable to usual chemical bond energies. Using the adopted model expression, the thermodynamic potential functions which govern the absorption/desorption process such as internal energy Eint, free enthalpy of Gibbs G and entropy Sa are derived.
Scaling properties of a rice-pile model: inertia and friction effects.
Khfifi, M; Loulidi, M
2008-11-01
We present a rice-pile cellular automaton model that includes inertial and friction effects. This model is studied in one dimension, where the updating of metastable sites is done according to a stochastic dynamics governed by a probabilistic toppling parameter p that depends on the accumulated energy of moving grains. We investigate the scaling properties of the model using finite-size scaling analysis. The avalanche size, the lifetime, and the residence time distributions exhibit a power-law behavior. Their corresponding critical exponents, respectively, tau, y, and yr, are not universal. They present continuous variation versus the parameters of the system. The maximal value of the critical exponent tau that our model gives is very close to the experimental one, tau=2.02 [Frette, Nature (London) 379, 49 (1996)], and the probability distribution of the residence time is in good agreement with the experimental results. We note that the critical behavior is observed only in a certain range of parameter values of the system which correspond to low inertia and high friction.
Determination of Kinetic Parameters for the Thermal Decomposition of Parthenium hysterophorus
NASA Astrophysics Data System (ADS)
Dhaundiyal, Alok; Singh, Suraj B.; Hanon, Muammel M.; Rawat, Rekha
2018-02-01
A kinetic study of pyrolysis process of Parthenium hysterophorous is carried out by using thermogravimetric analysis (TGA) equipment. The present study investigates the thermal degradation and determination of the kinetic parameters such as activation E and the frequency factor A using model-free methods given by Flynn Wall and Ozawa (FWO), Kissinger-Akahira-Sonuse (KAS) and Kissinger, and model-fitting (Coats Redfern). The results derived from thermal decomposition process demarcate decomposition of Parthenium hysterophorous among the three main stages, such as dehydration, active and passive pyrolysis. It is shown through DTG thermograms that the increase in the heating rate caused temperature peaks at maximum weight loss rate to shift towards higher temperature regime. The results are compared with Coats Redfern (Integral method) and experimental results have shown that values of kinetic parameters obtained from model-free methods are in good agreement. Whereas the results obtained through Coats Redfern model at different heating rates are not promising, however, the diffusion models provided the good fitting with the experimental data.
Static and Dynamic Model Update of an Inflatable/Rigidizable Torus Structure
NASA Technical Reports Server (NTRS)
Horta, Lucas G.; Reaves, mercedes C.
2006-01-01
The present work addresses the development of an experimental and computational procedure for validating finite element models. A torus structure, part of an inflatable/rigidizable Hexapod, is used to demonstrate the approach. Because of fabrication, materials, and geometric uncertainties, a statistical approach combined with optimization is used to modify key model parameters. Static test results are used to update stiffness parameters and dynamic test results are used to update the mass distribution. Updated parameters are computed using gradient and non-gradient based optimization algorithms. Results show significant improvements in model predictions after parameters are updated. Lessons learned in the areas of test procedures, modeling approaches, and uncertainties quantification are presented.
Equivalent parameter model of 1-3 piezocomposite with a sandwich polymer
NASA Astrophysics Data System (ADS)
Zhang, Yanjun; Wang, Likun; Qin, Lei
2018-06-01
A theoretical model was developed to investigate the performance of 1-3 piezoelectric composites with a sandwich polymer. Effective parameters, such as the electromechanical coupling factor, longitudinal velocity, and characteristic acoustic impedance of the piezocomposite, were predicted using the developed model. The influences of volume fractions and components of the polymer phase on the effective parameters of the piezoelectric composite were studied. The theoretical model was verified experimentally. The proposed model can reproduce the effective parameters of 1-3 piezoelectric composites with a sandwich polymer in the thickness mode. The measured electromechanical coupling factor was improved by more than 9.8% over the PZT/resin 1-3 piezoelectric composite.
Unsteady hovering wake parameters identified from dynamic model tests, part 1
NASA Technical Reports Server (NTRS)
Hohenemser, K. H.; Crews, S. T.
1977-01-01
The development of a 4-bladed model rotor is reported that can be excited with a simple eccentric mechanism in progressing and regressing modes with either harmonic or transient inputs. Parameter identification methods were applied to the problem of extracting parameters for linear perturbation models, including rotor dynamic inflow effects, from the measured blade flapping responses to transient pitch stirring excitations. These perturbation models were then used to predict blade flapping response to other pitch stirring transient inputs, and rotor wake and blade flapping responses to harmonic inputs. The viability and utility of using parameter identification methods for extracting the perturbation models from transients are demonstrated through these combined analytical and experimental studies.
Espinosa-Loza, Francisco; Stadermann, Michael; Aracne-Ruddle, Chantel; ...
2017-11-16
A modeling method to extract the mechanical properties of ultra-thin films (10–100 nm thick) from experimental data generated by indentation of freestanding circular films using a spherical indenter is presented. The relationship between the mechanical properties of the film and experimental parameters including load, and deflection are discussed in the context of a constitutive material model, test variables, and analytical approaches. As a result, elastic and plastic regimes are identified by comparison of finite element simulation and experimental data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Espinosa-Loza, Francisco; Stadermann, Michael; Aracne-Ruddle, Chantel
A modeling method to extract the mechanical properties of ultra-thin films (10–100 nm thick) from experimental data generated by indentation of freestanding circular films using a spherical indenter is presented. The relationship between the mechanical properties of the film and experimental parameters including load, and deflection are discussed in the context of a constitutive material model, test variables, and analytical approaches. As a result, elastic and plastic regimes are identified by comparison of finite element simulation and experimental data.
Hameed, Shilan S.; Aziz, Fakhra; Sulaiman, Khaulah; Ahmad, Zubair
2017-01-01
In this research work, numerical simulations are performed to correlate the photovoltaic parameters with various internal and external factors influencing the performance of solar cells. Single-diode modeling approach is utilized for this purpose and theoretical investigations are compared with the reported experimental evidences for organic and inorganic solar cells at various electrical and thermal conditions. Electrical parameters include parasitic resistances (Rs and Rp) and ideality factor (n), while thermal parameters can be defined by the cells temperature (T). A comprehensive analysis concerning broad spectral variations in the short circuit current (Isc), open circuit voltage (Voc), fill factor (FF) and efficiency (η) is presented and discussed. It was generally concluded that there exists a good agreement between the simulated results and experimental findings. Nevertheless, the controversial consequence of temperature impact on the performance of organic solar cells necessitates the development of a complementary model which is capable of well simulating the temperature impact on these devices performance. PMID:28793325
Galvanin, Federico; Ballan, Carlo C; Barolo, Massimiliano; Bezzo, Fabrizio
2013-08-01
The use of pharmacokinetic (PK) and pharmacodynamic (PD) models is a common and widespread practice in the preliminary stages of drug development. However, PK-PD models may be affected by structural identifiability issues intrinsically related to their mathematical formulation. A preliminary structural identifiability analysis is usually carried out to check if the set of model parameters can be uniquely determined from experimental observations under the ideal assumptions of noise-free data and no model uncertainty. However, even for structurally identifiable models, real-life experimental conditions and model uncertainty may strongly affect the practical possibility to estimate the model parameters in a statistically sound way. A systematic procedure coupling the numerical assessment of structural identifiability with advanced model-based design of experiments formulations is presented in this paper. The objective is to propose a general approach to design experiments in an optimal way, detecting a proper set of experimental settings that ensure the practical identifiability of PK-PD models. Two simulated case studies based on in vitro bacterial growth and killing models are presented to demonstrate the applicability and generality of the methodology to tackle model identifiability issues effectively, through the design of feasible and highly informative experiments.
NASA Astrophysics Data System (ADS)
Ribeiro, Jose; Silva, Cristovao; Mendes, Ricardo; Plaksin, Igor; Campos, Jose
2011-06-01
The use of emulsion explosives [EEx] for processing materials (compaction, welding and forming) requires the ability to perform detailed simulations of its detonation process [DP]. Detailed numerical simulations of the DP of this kind of explosives, characterized by having a finite reaction zone thickness, are thought to be suitable performed using the Lee-Tarver reactive flow model. In this work a real coded genetic algorithm methodology was used to estimate the 15 parameters of the reaction rate equation [RRE] of that model for a particular EEx. This methodology allows, in a single optimization procedure, using only one experimental result and without the need of any starting solution, to seek for the 15 parameters of the RRE that fit the numerical to the experimental results. Mass averaging and the Plate-Gap Model have been used for the determination of the shock data used in the unreacted explosive JWL EoS assessment and the thermochemical code THOR retrieved the data used in the detonation products JWL EoS assessment. The obtained parameters allow a good description of the experimental data and show some peculiarities arising from the intrinsic nature of this kind of composite explosive.
Modeling of transport phenomena in tokamak plasmas with neural networks
Meneghini, Orso; Luna, Christopher J.; Smith, Sterling P.; ...
2014-06-23
A new transport model that uses neural networks (NNs) to yield electron and ion heat ux pro les has been developed. Given a set of local dimensionless plasma parameters similar to the ones that the highest delity models use, the NN model is able to efficiently and accurately predict the ion and electron heat transport pro les. As a benchmark, a NN was built, trained, and tested on data from the 2012 and 2013 DIII-D experimental campaigns. It is found that NN can capture the experimental behavior over the majority of the plasma radius and across a broad range ofmore » plasma regimes. Although each radial location is calculated independently from the others, the heat ux pro les are smooth, suggesting that the solution found by the NN is a smooth function of the local input parameters. This result supports the evidence of a well-de ned, non-stochastic relationship between the input parameters and the experimentally measured transport uxes. Finally, the numerical efficiency of this method, requiring only a few CPU-μs per data point, makes it ideal for scenario development simulations and real-time plasma control.« less
Neugebauer, R; Werner, M; Voigt, C; Steinke, H; Scholz, R; Scherer, S; Quickert, M
2011-05-17
To provide a close-to-reality simulation model, such as for improved surgery planning, this model has to be experimentally verified. The present article describes the use of a 3D laser vibrometer for determining modal parameters of human pelvic bones that can be used for verifying a finite elements model. Compared to previously used sensors, such as acceleration sensors or strain gauges, the laser vibrometric procedure used here is a non-contact and non-interacting measuring method that allows a high density of measuring points and measurement in a global coordinate system. Relevant modal parameters were extracted from the measured data and provided for verifying the model. The use of the 3D laser vibrometer allowed the establishment of a process chain for experimental examination of the pelvic bones that was optimized with respect to time and effort involved. The transfer functions determined feature good signal quality. Furthermore, a comparison of the results obtained from pairs of pelvic bones showed that repeatable measurements can be obtained with the method used. Copyright © 2011 Elsevier Ltd. All rights reserved.
Hybrid, experimental and computational, investigation of mechanical components
NASA Astrophysics Data System (ADS)
Furlong, Cosme; Pryputniewicz, Ryszard J.
1996-07-01
Computational and experimental methodologies have unique features for the analysis and solution of a wide variety of engineering problems. Computations provide results that depend on selection of input parameters such as geometry, material constants, and boundary conditions which, for correct modeling purposes, have to be appropriately chosen. In addition, it is relatively easy to modify the input parameters in order to computationally investigate different conditions. Experiments provide solutions which characterize the actual behavior of the object of interest subjected to specific operating conditions. However, it is impractical to experimentally perform parametric investigations. This paper discusses the use of a hybrid, computational and experimental, approach for study and optimization of mechanical components. Computational techniques are used for modeling the behavior of the object of interest while it is experimentally tested using noninvasive optical techniques. Comparisons are performed through a fringe predictor program used to facilitate the correlation between both techniques. In addition, experimentally obtained quantitative information, such as displacements and shape, can be applied in the computational model in order to improve this correlation. The result is a validated computational model that can be used for performing quantitative analyses and structural optimization. Practical application of the hybrid approach is illustrated with a representative example which demonstrates the viability of the approach as an engineering tool for structural analysis and optimization.
NASA Technical Reports Server (NTRS)
Dewan, Mohammad W.; Huggett, Daniel J.; Liao, T. Warren; Wahab, Muhammad A.; Okeil, Ayman M.
2015-01-01
Friction-stir-welding (FSW) is a solid-state joining process where joint properties are dependent on welding process parameters. In the current study three critical process parameters including spindle speed (??), plunge force (????), and welding speed (??) are considered key factors in the determination of ultimate tensile strength (UTS) of welded aluminum alloy joints. A total of 73 weld schedules were welded and tensile properties were subsequently obtained experimentally. It is observed that all three process parameters have direct influence on UTS of the welded joints. Utilizing experimental data, an optimized adaptive neuro-fuzzy inference system (ANFIS) model has been developed to predict UTS of FSW joints. A total of 1200 models were developed by varying the number of membership functions (MFs), type of MFs, and combination of four input variables (??,??,????,??????) utilizing a MATLAB platform. Note EFI denotes an empirical force index derived from the three process parameters. For comparison, optimized artificial neural network (ANN) models were also developed to predict UTS from FSW process parameters. By comparing ANFIS and ANN predicted results, it was found that optimized ANFIS models provide better results than ANN. This newly developed best ANFIS model could be utilized for prediction of UTS of FSW joints.
Photovoltaic Grid-Connected Modeling and Characterization Based on Experimental Results.
Humada, Ali M; Hojabri, Mojgan; Sulaiman, Mohd Herwan Bin; Hamada, Hussein M; Ahmed, Mushtaq N
2016-01-01
A grid-connected photovoltaic (PV) system operates under fluctuated weather condition has been modeled and characterized based on specific test bed. A mathematical model of a small-scale PV system has been developed mainly for residential usage, and the potential results have been simulated. The proposed PV model based on three PV parameters, which are the photocurrent, IL, the reverse diode saturation current, Io, the ideality factor of diode, n. Accuracy of the proposed model and its parameters evaluated based on different benchmarks. The results showed that the proposed model fitting the experimental results with high accuracy compare to the other models, as well as the I-V characteristic curve. The results of this study can be considered valuable in terms of the installation of a grid-connected PV system in fluctuated climatic conditions.
Photovoltaic Grid-Connected Modeling and Characterization Based on Experimental Results
Humada, Ali M.; Hojabri, Mojgan; Sulaiman, Mohd Herwan Bin; Hamada, Hussein M.; Ahmed, Mushtaq N.
2016-01-01
A grid-connected photovoltaic (PV) system operates under fluctuated weather condition has been modeled and characterized based on specific test bed. A mathematical model of a small-scale PV system has been developed mainly for residential usage, and the potential results have been simulated. The proposed PV model based on three PV parameters, which are the photocurrent, IL, the reverse diode saturation current, Io, the ideality factor of diode, n. Accuracy of the proposed model and its parameters evaluated based on different benchmarks. The results showed that the proposed model fitting the experimental results with high accuracy compare to the other models, as well as the I-V characteristic curve. The results of this study can be considered valuable in terms of the installation of a grid-connected PV system in fluctuated climatic conditions. PMID:27035575
Automated Optimization of Potential Parameters
Michele, Di Pierro; Ron, Elber
2013-01-01
An algorithm and software to refine parameters of empirical energy functions according to condensed phase experimental measurements are discussed. The algorithm is based on sensitivity analysis and local minimization of the differences between experiment and simulation as a function of potential parameters. It is illustrated for a toy problem of alanine dipeptide and is applied to folding of the peptide WAAAH. The helix fraction is highly sensitive to the potential parameters while the slope of the melting curve is not. The sensitivity variations make it difficult to satisfy both observations simultaneously. We conjecture that there is no set of parameters that reproduces experimental melting curves of short peptides that are modeled with the usual functional form of a force field. PMID:24015115
Dynamic characterization and modeling of potting materials for electronics assemblies
NASA Astrophysics Data System (ADS)
Joshi, Vasant S.; Lee, Gilbert F.; Santiago, Jaime R.
2017-01-01
Prediction of survivability of encapsulated electronic components subject to impact relies on accurate modeling, which in turn needs both static and dynamic characterization of individual electronic components and encapsulation material to generate reliable material parameters for a robust material model. Current focus is on potting materials to mitigate high rate loading on impact. In this effort, difficulty arises in capturing one of the critical features characteristic of the loading environment in a high velocity impact: multiple loading events coupled with multi-axial stress states. Hence, potting materials need to be characterized well to understand its damping capacity at different frequencies and strain rates. An encapsulation scheme to protect electronic boards consists of multiple layers of filled as well as unfilled polymeric materials like Sylgard 184 and Trigger bond Epoxy # 20-3001. A combination of experiments conducted for characterization of materials used Split Hopkinson Pressure Bar (SHPB), and dynamic material analyzer (DMA). For material which behaves in an ideal manner, a master curve can be fitted to Williams-Landel-Ferry (WLF) model. To verify the applicability of WLF model, a new temperature-time shift (TTS) macro was written to compare idealized temperature shift factor with experimental incremental shift factor. Deviations can be readily observed by comparison of experimental data with the model fit to determine if model parameters reflect the actual material behavior. Similarly, another macro written for obtaining Ogden model parameter from Hopkinson Bar tests can readily indicate deviations from experimental high strain rate data. Experimental results for different materials used for mitigating impact, and ways to combine data from DMA and Hopkinson bar together with modeling refinements are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurosu, K; Department of Medical Physics ' Engineering, Osaka University Graduate School of Medicine, Osaka; Takashina, M
Purpose: Monte Carlo codes are becoming important tools for proton beam dosimetry. However, the relationships between the customizing parameters and percentage depth dose (PDD) of GATE and PHITS codes have not been reported which are studied for PDD and proton range compared to the FLUKA code and the experimental data. Methods: The beam delivery system of the Indiana University Health Proton Therapy Center was modeled for the uniform scanning beam in FLUKA and transferred identically into GATE and PHITS. This computational model was built from the blue print and validated with the commissioning data. Three parameters evaluated are the maximummore » step size, cut off energy and physical and transport model. The dependence of the PDDs on the customizing parameters was compared with the published results of previous studies. Results: The optimal parameters for the simulation of the whole beam delivery system were defined by referring to the calculation results obtained with each parameter. Although the PDDs from FLUKA and the experimental data show a good agreement, those of GATE and PHITS obtained with our optimal parameters show a minor discrepancy. The measured proton range R90 was 269.37 mm, compared to the calculated range of 269.63 mm, 268.96 mm, and 270.85 mm with FLUKA, GATE and PHITS, respectively. Conclusion: We evaluated the dependence of the results for PDDs obtained with GATE and PHITS Monte Carlo generalpurpose codes on the customizing parameters by using the whole computational model of the treatment nozzle. The optimal parameters for the simulation were then defined by referring to the calculation results. The physical model, particle transport mechanics and the different geometrybased descriptions need accurate customization in three simulation codes to agree with experimental data for artifact-free Monte Carlo simulation. This study was supported by Grants-in Aid for Cancer Research (H22-3rd Term Cancer Control-General-043) from the Ministry of Health, Labor and Welfare of Japan, Grants-in-Aid for Scientific Research (No. 23791419), and JSPS Core-to-Core program (No. 23003). The authors have no conflict of interest.« less
Khan, Mohammad Jakir Hossain; Hussain, Mohd Azlan; Mujtaba, Iqbal Mohammed
2014-01-01
Propylene is one type of plastic that is widely used in our everyday life. This study focuses on the identification and justification of the optimum process parameters for polypropylene production in a novel pilot plant based fluidized bed reactor. This first-of-its-kind statistical modeling with experimental validation for the process parameters of polypropylene production was conducted by applying ANNOVA (Analysis of variance) method to Response Surface Methodology (RSM). Three important process variables i.e., reaction temperature, system pressure and hydrogen percentage were considered as the important input factors for the polypropylene production in the analysis performed. In order to examine the effect of process parameters and their interactions, the ANOVA method was utilized among a range of other statistical diagnostic tools such as the correlation between actual and predicted values, the residuals and predicted response, outlier t plot, 3D response surface and contour analysis plots. The statistical analysis showed that the proposed quadratic model had a good fit with the experimental results. At optimum conditions with temperature of 75°C, system pressure of 25 bar and hydrogen percentage of 2%, the highest polypropylene production obtained is 5.82% per pass. Hence it is concluded that the developed experimental design and proposed model can be successfully employed with over a 95% confidence level for optimum polypropylene production in a fluidized bed catalytic reactor (FBCR). PMID:28788576
Garitte, B.; Shao, H.; Wang, X. R.; ...
2017-01-09
Process understanding and parameter identification using numerical methods based on experimental findings are a key aspect of the international cooperative project DECOVALEX. Comparing the predictions from numerical models against experimental results increases confidence in the site selection and site evaluation process for a radioactive waste repository in deep geological formations. In the present phase of the project, DECOVALEX-2015, eight research teams have developed and applied models for simulating an in-situ heater experiment HE-E in the Opalinus Clay in the Mont Terri Rock Laboratory in Switzerland. The modelling task was divided into two study stages, related to prediction and interpretation ofmore » the experiment. A blind prediction of the HE-E experiment was performed based on calibrated parameter values for both the Opalinus Clay, that were based on the modelling of another in-situ experiment (HE-D), and modelling of laboratory column experiments on MX80 granular bentonite and a sand/bentonite mixture .. After publication of the experimental data, additional coupling functions were analysed and considered in the different models. Moreover, parameter values were varied to interpret the measured temperature, relative humidity and pore pressure evolution. The analysis of the predictive and interpretative results reveals the current state of understanding and predictability of coupled THM behaviours associated with geologic nuclear waste disposal in clay formations.« less
van der Horst, Arjen; van den Broek, Chantal N; van de Vosse, Frans N; Rutten, Marcel C M
2012-03-01
A patient-specific mechanical description of the coronary arterial wall is indispensable for individualized diagnosis and treatment of coronary artery disease. A way to determine the artery's mechanical properties is to fit the parameters of a constitutive model to patient-specific experimental data. Clinical data, however, essentially lack information about the stress-free geometry of an artery, which is necessary for constitutive modeling. In previous research, it has been shown that a way to circumvent this problem is to impose extra modeling constraints on the parameter estimation procedure. In this study, we propose a new modeling constraint concerning the in-situ fiber orientation (β (phys)). β (phys), which is a major contributor to the arterial stress-strain behavior, was determined for porcine and human coronary arteries using a mixed numerical-experimental method. The in-situ situation was mimicked using in-vitro experiments at a physiological axial pre-stretch, in which pressure-radius and pressure-axial force were measured. A single-layered, hyperelastic, thick-walled, two-fiber material model was accurately fitted to the experimental data, enabling the computation of stress, strain, and fiber orientation. β (phys) was found to be almost equal for all vessels measured (36.4 ± 0.3)°, which theoretically can be explained using netting analysis. In further research, this finding can be used as an extra modeling constraint in parameter estimation from clinical data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garitte, B.; Shao, H.; Wang, X. R.
Process understanding and parameter identification using numerical methods based on experimental findings are a key aspect of the international cooperative project DECOVALEX. Comparing the predictions from numerical models against experimental results increases confidence in the site selection and site evaluation process for a radioactive waste repository in deep geological formations. In the present phase of the project, DECOVALEX-2015, eight research teams have developed and applied models for simulating an in-situ heater experiment HE-E in the Opalinus Clay in the Mont Terri Rock Laboratory in Switzerland. The modelling task was divided into two study stages, related to prediction and interpretation ofmore » the experiment. A blind prediction of the HE-E experiment was performed based on calibrated parameter values for both the Opalinus Clay, that were based on the modelling of another in-situ experiment (HE-D), and modelling of laboratory column experiments on MX80 granular bentonite and a sand/bentonite mixture .. After publication of the experimental data, additional coupling functions were analysed and considered in the different models. Moreover, parameter values were varied to interpret the measured temperature, relative humidity and pore pressure evolution. The analysis of the predictive and interpretative results reveals the current state of understanding and predictability of coupled THM behaviours associated with geologic nuclear waste disposal in clay formations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Yongming; Oskay, Caglar
This report outlines the research activities that were carried out for the integrated experimental and simulation investigation of creep-fatigue damage mechanism and life prediction of Nickel-based alloy, Inconel 617 at high temperatures (950° and 850°). First, a novel experimental design using a hybrid control technique is proposed. The newly developed experimental technique can generate different combinations of creep and fatigue damage by changing the experimental design parameters. Next, detailed imaging analysis and statistical data analysis are performed to quantify the failure mechanisms of the creep fatigue of alloy 617 at high temperatures. It is observed that the creep damage ismore » directly associated with the internal voids at the grain boundaries and the fatigue damage is directly related to the surface cracking. It is also observed that the classical time fraction approach does not has a good correlation with the experimental observed damage features. An effective time fraction parameter is seen to have an excellent correlation with the material microstructural damage. Thus, a new empirical damage interaction diagram is proposed based on the experimental observations. Following this, a macro level viscoplastic model coupled with damage is developed to simulate the stress/strain response under creep fatigue loadings. A damage rate function based on the hysteresis energy and creep energy is proposed to capture the softening behavior of the material and a good correlation with life prediction and material hysteresis behavior is observed. The simulation work is extended to include the microstructural heterogeneity. A crystal plasticity finite element model considering isothermal and large deformation conditions at the microstructural scale has been developed for fatigue, creep-fatigue as well as creep deformation and rupture at high temperature. The model considers collective dislocation glide and climb of the grains and progressive damage accumulation of the grain boundaries. The glide model incorporates a slip resistance evolution model that characterizes the solute-drag creep effects and can capture well the stress-strain and stress time response of fatigue and creep-fatigue tests at various strain ranges and hold times. In order to accurately capture the creep strains that accumulate particularly at relatively low stress levels, a dislocation climb model has been incorporated into the crystal plasticity modeling framework. The dislocation climb model parameters are calibrated and verified through experimental creep tests performed at 950°. In addition, a cohesive zone model has been fully implemented in the context of the crystal plasticity finite element model to capture the intergranular creep damage. The parameters of the cohesive zone model have been calibrated using available experimental data. The numerical simulations illustrate the capability of the proposed model in capturing damage initiation and growth under creep loads as compared to the experimental observations. The microscale analysis sheds light on the crack initiation sites and propagation patterns within the microstructure. The model is also utilized to investigate the hybrid-controlled creep-fatigue tests and has been found to capture reasonably well the stress-strain response with different hold times and hold stress magnitudes.« less
Development and evaluation of a musculoskeletal model of the elbow joint complex
NASA Technical Reports Server (NTRS)
Gonzalez, Roger V.; Hutchins, E. L.; Barr, Ronald E.; Abraham, Lawrence D.
1993-01-01
This paper describes the development and evaluation of a musculoskeletal model that represents human elbow flexion-extension and forearm pronation-supination. The length, velocity, and moment arm for each of the eight musculotendon actuators were based on skeletal anatomy and position. Musculotendon parameters were determined for each actuator and verified by comparing analytical torque-angle curves with experimental joint torque data. The parameters and skeletal geometry were also utilized in the musculoskeletal model for the analysis of ballistic elbow joint complex movements. The key objective was to develop a computational model, guided by parameterized optimal control, to investigate the relationship among patterns of muscle excitation, individual muscle forces, and movement kinematics. The model was verified using experimental kinematic, torque, and electromyographic data from volunteer subjects performing ballistic elbow joint complex movements.
Bayesian experimental design for models with intractable likelihoods.
Drovandi, Christopher C; Pettitt, Anthony N
2013-12-01
In this paper we present a methodology for designing experiments for efficiently estimating the parameters of models with computationally intractable likelihoods. The approach combines a commonly used methodology for robust experimental design, based on Markov chain Monte Carlo sampling, with approximate Bayesian computation (ABC) to ensure that no likelihood evaluations are required. The utility function considered for precise parameter estimation is based upon the precision of the ABC posterior distribution, which we form efficiently via the ABC rejection algorithm based on pre-computed model simulations. Our focus is on stochastic models and, in particular, we investigate the methodology for Markov process models of epidemics and macroparasite population evolution. The macroparasite example involves a multivariate process and we assess the loss of information from not observing all variables. © 2013, The International Biometric Society.
Turbulent flow in a 180 deg bend: Modeling and computations
NASA Technical Reports Server (NTRS)
Kaul, Upender K.
1989-01-01
A low Reynolds number k-epsilon turbulence model was presented which yields accurate predictions of the kinetic energy near the wall. The model is validated with the experimental channel flow data of Kreplin and Eckelmann. The predictions are also compared with earlier results from direct simulation of turbulent channel flow. The model is especially useful for internal flows where the inflow boundary condition of epsilon is not easily prescribed. The model partly derives from some observations based on earlier direct simulation results of near-wall turbulence. The low Reynolds number turbulence model together with an existing curvature correction appropriate to spinning cylinder flows was used to simulate the flow in a U-bend with the same radius of curvature as the Space Shuttle Main Engine (SSME) Turn-Around Duct (TAD). The present computations indicate a space varying curvature correction parameter as opposed to a constant parameter as used in the spinning cylinder flows. Comparison with limited available experimental data is made. The comparison is favorable, but detailed experimental data is needed to further improve the curvature model.
NASA Astrophysics Data System (ADS)
Vrabec, Jadran; Kedia, Gaurav Kumar; Buchhauser, Ulrich; Meyer-Pittroff, Roland; Hasse, Hans
2009-02-01
For the design and optimization of CO 2 recovery from alcoholic fermentation processes by distillation, models for vapor-liquid equilibria (VLE) are needed. Two such thermodynamic models, the Peng-Robinson equation of state (EOS) and a model based on Henry's law constants, are proposed for the ternary mixture N 2 + O 2 + CO 2. Pure substance parameters of the Peng-Robinson EOS are taken from the literature, whereas the binary parameters of the Van der Waals one-fluid mixing rule are adjusted to experimental binary VLE data. The Peng-Robinson EOS describes both binary and ternary experimental data well, except at high pressures approaching the critical region. A molecular model is validated by simulation using binary and ternary experimental VLE data. On the basis of this model, the Henry's law constants of N 2 and O 2 in CO 2 are predicted by molecular simulation. An easy-to-use thermodynamic model, based on those Henry's law constants, is developed to reliably describe the VLE in the CO 2-rich region.
Olondo, C; Legarda, F; Herranz, M; Idoeta, R
2017-04-01
This paper shows the procedure performed to validate the migration equation and the migration parameters' values presented in a previous paper (Legarda et al., 2011) regarding the migration of 137 Cs in Spanish mainland soils. In this paper, this model validation has been carried out checking experimentally obtained activity concentration values against those predicted by the model. This experimental data come from the measured vertical activity profiles of 8 new sampling points which are located in northern Spain. Before testing predicted values of the model, the uncertainty of those values has been assessed with the appropriate uncertainty analysis. Once establishing the uncertainty of the model, both activity concentration values, experimental versus model predicted ones, have been compared. Model validation has been performed analyzing its accuracy, studying it as a whole and also at different depth intervals. As a result, this model has been validated as a tool to predict 137 Cs behaviour in a Mediterranean environment. Copyright © 2017 Elsevier Ltd. All rights reserved.
Modeling and Bayesian parameter estimation for shape memory alloy bending actuators
NASA Astrophysics Data System (ADS)
Crews, John H.; Smith, Ralph C.
2012-04-01
In this paper, we employ a homogenized energy model (HEM) for shape memory alloy (SMA) bending actuators. Additionally, we utilize a Bayesian method for quantifying parameter uncertainty. The system consists of a SMA wire attached to a flexible beam. As the actuator is heated, the beam bends, providing endoscopic motion. The model parameters are fit to experimental data using an ordinary least-squares approach. The uncertainty in the fit model parameters is then quantified using Markov Chain Monte Carlo (MCMC) methods. The MCMC algorithm provides bounds on the parameters, which will ultimately be used in robust control algorithms. One purpose of the paper is to test the feasibility of the Random Walk Metropolis algorithm, the MCMC method used here.
PeTTSy: a computational tool for perturbation analysis of complex systems biology models.
Domijan, Mirela; Brown, Paul E; Shulgin, Boris V; Rand, David A
2016-03-10
Over the last decade sensitivity analysis techniques have been shown to be very useful to analyse complex and high dimensional Systems Biology models. However, many of the currently available toolboxes have either used parameter sampling, been focused on a restricted set of model observables of interest, studied optimisation of a objective function, or have not dealt with multiple simultaneous model parameter changes where the changes can be permanent or temporary. Here we introduce our new, freely downloadable toolbox, PeTTSy (Perturbation Theory Toolbox for Systems). PeTTSy is a package for MATLAB which implements a wide array of techniques for the perturbation theory and sensitivity analysis of large and complex ordinary differential equation (ODE) based models. PeTTSy is a comprehensive modelling framework that introduces a number of new approaches and that fully addresses analysis of oscillatory systems. It examines sensitivity analysis of the models to perturbations of parameters, where the perturbation timing, strength, length and overall shape can be controlled by the user. This can be done in a system-global setting, namely, the user can determine how many parameters to perturb, by how much and for how long. PeTTSy also offers the user the ability to explore the effect of the parameter perturbations on many different types of outputs: period, phase (timing of peak) and model solutions. PeTTSy can be employed on a wide range of mathematical models including free-running and forced oscillators and signalling systems. To enable experimental optimisation using the Fisher Information Matrix it efficiently allows one to combine multiple variants of a model (i.e. a model with multiple experimental conditions) in order to determine the value of new experiments. It is especially useful in the analysis of large and complex models involving many variables and parameters. PeTTSy is a comprehensive tool for analysing large and complex models of regulatory and signalling systems. It allows for simulation and analysis of models under a variety of environmental conditions and for experimental optimisation of complex combined experiments. With its unique set of tools it makes a valuable addition to the current library of sensitivity analysis toolboxes. We believe that this software will be of great use to the wider biological, systems biology and modelling communities.
NASA Astrophysics Data System (ADS)
Jaber, Khalid Mohammad; Alia, Osama Moh'd.; Shuaib, Mohammed Mahmod
2018-03-01
Finding the optimal parameters that can reproduce experimental data (such as the velocity-density relation and the specific flow rate) is a very important component of the validation and calibration of microscopic crowd dynamic models. Heavy computational demand during parameter search is a known limitation that exists in a previously developed model known as the Harmony Search-Based Social Force Model (HS-SFM). In this paper, a parallel-based mechanism is proposed to reduce the computational time and memory resource utilisation required to find these parameters. More specifically, two MATLAB-based multicore techniques (parfor and create independent jobs) using shared memory are developed by taking advantage of the multithreading capabilities of parallel computing, resulting in a new framework called the Parallel Harmony Search-Based Social Force Model (P-HS-SFM). The experimental results show that the parfor-based P-HS-SFM achieved a better computational time of about 26 h, an efficiency improvement of ? 54% and a speedup factor of 2.196 times in comparison with the HS-SFM sequential processor. The performance of the P-HS-SFM using the create independent jobs approach is also comparable to parfor with a computational time of 26.8 h, an efficiency improvement of about 30% and a speedup of 2.137 times.
Mechanistic equivalent circuit modelling of a commercial polymer electrolyte membrane fuel cell
NASA Astrophysics Data System (ADS)
Giner-Sanz, J. J.; Ortega, E. M.; Pérez-Herranz, V.
2018-03-01
Electrochemical impedance spectroscopy (EIS) has been widely used in the fuel cell field since it allows deconvolving the different physic-chemical processes that affect the fuel cell performance. Typically, EIS spectra are modelled using electric equivalent circuits. In this work, EIS spectra of an individual cell of a commercial PEM fuel cell stack were obtained experimentally. The goal was to obtain a mechanistic electric equivalent circuit in order to model the experimental EIS spectra. A mechanistic electric equivalent circuit is a semiempirical modelling technique which is based on obtaining an equivalent circuit that does not only correctly fit the experimental spectra, but which elements have a mechanistic physical meaning. In order to obtain the aforementioned electric equivalent circuit, 12 different models with defined physical meanings were proposed. These equivalent circuits were fitted to the obtained EIS spectra. A 2 step selection process was performed. In the first step, a group of 4 circuits were preselected out of the initial list of 12, based on general fitting indicators as the determination coefficient and the fitted parameter uncertainty. In the second step, one of the 4 preselected circuits was selected on account of the consistency of the fitted parameter values with the physical meaning of each parameter.
A mathematical model of electrolyte and fluid transport across corneal endothelium.
Fischbarg, J; Diecke, F P J
2005-01-01
To predict the behavior of a transporting epithelium by intuitive means can be complex and frustrating. As the number of parameters to be considered increases beyond a few, the task can be termed impossible. The alternative is to model epithelial behavior by mathematical means. For that to be feasible, it has been presumed that a large amount of experimental information is required, so as to be able to use known values for the majority of kinetic parameters. However, in the present case, we are modeling corneal endothelial behavior beginning with experimental values for only five of eleven parameters. The remaining parameter values are calculated assuming cellular steady state and using algebraic software. With that as base, as in preceding treatments but with a distribution of channels/transporters suited to the endothelium, temporal cell and tissue behavior are computed by a program written in Basic that monitors changes in chemical and electrical driving forces across cell membranes and the paracellular pathway. We find that the program reproduces quite well the behaviors experimentally observed for the translayer electrical potential difference and rate of fluid transport, (a) in the steady state, (b) after perturbations by changes in ambient conditions HCO3-, Na+, and Cl- concentrations), and (c) after challenge by inhibitors (ouabain, DIDS, Na+- and Cl(-)-channel inhibitors). In addition, we have used the program to compare predictions of translayer fluid transport by two competing theories, electro-osmosis and local osmosis. Only predictions using electro-osmosis fit all the experimental data.
Computational comparison of quantum-mechanical models for multistep direct reactions
NASA Astrophysics Data System (ADS)
Koning, A. J.; Akkermans, J. M.
1993-02-01
We have carried out a computational comparison of all existing quantum-mechanical models for multistep direct (MSD) reactions. The various MSD models, including the so-called Feshbach-Kerman-Koonin, Tamura-Udagawa-Lenske and Nishioka-Yoshida-Weidenmüller models, have been implemented in a single computer system. All model calculations thus use the same set of parameters and the same numerical techniques; only one adjustable parameter is employed. The computational results have been compared with experimental energy spectra and angular distributions for several nuclear reactions, namely, 90Zr(p,p') at 80 MeV, 209Bi(p,p') at 62 MeV, and 93Nb(n,n') at 25.7 MeV. In addition, the results have been compared with the Kalbach systematics and with semiclassical exciton model calculations. All quantum MSD models provide a good fit to the experimental data. In addition, they reproduce the systematics very well and are clearly better than semiclassical model calculations. We furthermore show that the calculated predictions do not differ very strongly between the various quantum MSD models, leading to the conclusion that the simplest MSD model (the Feshbach-Kerman-Koonin model) is adequate for the analysis of experimental data.
Wieser, Stefan; Axmann, Markus; Schütz, Gerhard J.
2008-01-01
We propose here an approach for the analysis of single-molecule trajectories which is based on a comprehensive comparison of an experimental data set with multiple Monte Carlo simulations of the diffusion process. It allows quantitative data analysis, particularly whenever analytical treatment of a model is infeasible. Simulations are performed on a discrete parameter space and compared with the experimental results by a nonparametric statistical test. The method provides a matrix of p-values that assess the probability for having observed the experimental data at each setting of the model parameters. We show the testing approach for three typical situations observed in the cellular plasma membrane: i), free Brownian motion of the tracer, ii), hop diffusion of the tracer in a periodic meshwork of squares, and iii), transient binding of the tracer to slowly diffusing structures. By plotting the p-value as a function of the model parameters, one can easily identify the most consistent parameter settings but also recover mutual dependencies and ambiguities which are difficult to determine by standard fitting routines. Finally, we used the test to reanalyze previous data obtained on the diffusion of the glycosylphosphatidylinositol-protein CD59 in the plasma membrane of the human T24 cell line. PMID:18805933
Molecular dynamics of reversible self-healing materials
NASA Astrophysics Data System (ADS)
Madden, Ian; Luijten, Erik
Hydrolyzable polymers have numerous industrial applications as degradable materials. Recent experimental work by Cheng and co-workers has introduced the concept of hindered urea bond (HUB) chemistry to design self-healing systems. Important control parameters are the steric hindrance of the HUB structures, which is used to tune the hydrolytic degradation kinetics, and their density. We employ molecular dynamics simulations of polymeric interfaces to systematically explore the role of these properties in a coarse-grained model, and make direct comparison to experimental data. Our model provides direct insight into the self-healing process, permitting optimization of the control parameters.
Nonlinear Parameter Identification of a Resonant Electrostatic MEMS Actuator
Al-Ghamdi, Majed S.; Alneamy, Ayman M.; Park, Sangtak; Li, Beichen; Khater, Mahmoud E.; Abdel-Rahman, Eihab M.; Heppler, Glenn R.; Yavuz, Mustafa
2017-01-01
We experimentally investigate the primary superharmonic of order two and subharmonic of order one-half resonances of an electrostatic MEMS actuator under direct excitation. We identify the parameters of a one degree of freedom (1-DOF) generalized Duffing oscillator model representing it. The experiments were conducted in soft vacuum to reduce squeeze-film damping, and the actuator response was measured optically using a laser vibrometer. The predictions of the identified model were found to be in close agreement with the experimental results. We also identified the noise spectral density of process (actuation voltage) and measurement noise. PMID:28505097
Nonlinear Parameter Identification of a Resonant Electrostatic MEMS Actuator.
Al-Ghamdi, Majed S; Alneamy, Ayman M; Park, Sangtak; Li, Beichen; Khater, Mahmoud E; Abdel-Rahman, Eihab M; Heppler, Glenn R; Yavuz, Mustafa
2017-05-13
We experimentally investigate the primary superharmonic of order two and subharmonic of order one-half resonances of an electrostatic MEMS actuator under direct excitation. We identify the parameters of a one degree of freedom (1-DOF) generalized Duffing oscillator model representing it. The experiments were conducted in soft vacuum to reduce squeeze-film damping, and the actuator response was measured optically using a laser vibrometer. The predictions of the identified model were found to be in close agreement with the experimental results. We also identified the noise spectral density of process (actuation voltage) and measurement noise.
Inferring pathological states in cortical neuron microcircuits.
Rydzewski, Jakub; Nowak, Wieslaw; Nicosia, Giuseppe
2015-12-07
The brain activity is to a large extent determined by states of neural cortex microcircuits. Unfortunately, accuracy of results from neural circuits׳ mathematical models is often biased by the presence of uncertainties in underlying experimental data. Moreover, due to problems with uncertainties identification in a multidimensional parameters space, it is almost impossible to classify states of the neural cortex, which correspond to a particular set of the parameters. Here, we develop a complete methodology for determining uncertainties and the novel protocol for classifying all states in any neuroinformatic model. Further, we test this protocol on the mathematical, nonlinear model of such a microcircuit developed by Giugliano et al. (2008) and applied in the experimental data analysis of Huntington׳s disease. Up to now, the link between parameter domains in the mathematical model of Huntington׳s disease and the pathological states in cortical microcircuits has remained unclear. In this paper we precisely identify all the uncertainties, the most crucial input parameters and domains that drive the system into an unhealthy state. The scheme proposed here is general and can be easily applied to other mathematical models of biological phenomena. Copyright © 2015 Elsevier Ltd. All rights reserved.
Estimation of Supercapacitor Energy Storage Based on Fractional Differential Equations.
Kopka, Ryszard
2017-12-22
In this paper, new results on using only voltage measurements on supercapacitor terminals for estimation of accumulated energy are presented. For this purpose, a study based on application of fractional-order models of supercapacitor charging/discharging circuits is undertaken. Parameter estimates of the models are then used to assess the amount of the energy accumulated in supercapacitor. The obtained results are compared with energy determined experimentally by measuring voltage and current on supercapacitor terminals. All the tests are repeated for various input signal shapes and parameters. Very high consistency between estimated and experimental results fully confirm suitability of the proposed approach and thus applicability of the fractional calculus to modelling of supercapacitor energy storage.
Kinter, Elizabeth T; Prior, Thomas J; Carswell, Christopher I; Bridges, John F P
2012-01-01
While the application of conjoint analysis and discrete-choice experiments in health are now widely accepted, a healthy debate exists around competing approaches to experimental design. There remains, however, a paucity of experimental evidence comparing competing design approaches and their impact on the application of these methods in patient-centered outcomes research. Our objectives were to directly compare the choice-model parameters and predictions of an orthogonal and a D-efficient experimental design using a randomized trial (i.e., an experiment on experiments) within an application of conjoint analysis studying patient-centered outcomes among outpatients diagnosed with schizophrenia in Germany. Outpatients diagnosed with schizophrenia were surveyed and randomized to receive choice tasks developed using either an orthogonal or a D-efficient experimental design. The choice tasks elicited judgments from the respondents as to which of two patient profiles (varying across seven outcomes and process attributes) was preferable from their own perspective. The results from the two survey designs were analyzed using the multinomial logit model, and the resulting parameter estimates and their robust standard errors were compared across the two arms of the study (i.e., the orthogonal and D-efficient designs). The predictive performances of the two resulting models were also compared by computing their percentage of survey responses classified correctly, and the potential for variation in scale between the two designs of the experiments was tested statistically and explored graphically. The results of the two models were statistically identical. No difference was found using an overall chi-squared test of equality for the seven parameters (p = 0.69) or via uncorrected pairwise comparisons of the parameter estimates (p-values ranged from 0.30 to 0.98). The D-efficient design resulted in directionally smaller standard errors for six of the seven parameters, of which only two were statistically significant, and no differences were found in the observed D-efficiencies of their standard errors (p = 0.62). The D-efficient design resulted in poorer predictive performance, but this was not significant (p = 0.73); there was some evidence that the parameters of the D-efficient design were biased marginally towards the null. While no statistical difference in scale was detected between the two designs (p = 0.74), the D-efficient design had a higher relative scale (1.06). This could be observed when the parameters were explored graphically, as the D-efficient parameters were lower. Our results indicate that orthogonal and D-efficient experimental designs have produced results that are statistically equivalent. This said, we have identified several qualitative findings that speak to the potential differences in these results that may have been statistically identified in a larger sample. While more comparative studies focused on the statistical efficiency of competing design strategies are needed, a more pressing research problem is to document the impact the experimental design has on respondent efficiency.
Quantifying properties of hot and dense QCD matter through systematic model-to-data comparison
Bernhard, Jonah E.; Marcy, Peter W.; Coleman-Smith, Christopher E.; ...
2015-05-22
We systematically compare an event-by-event heavy-ion collision model to data from the CERN Large Hadron Collider. Using a general Bayesian method, we probe multiple model parameters including fundamental quark-gluon plasma properties such as the specific shear viscosity η/s, calibrate the model to optimally reproduce experimental data, and extract quantitative constraints for all parameters simultaneously. Furthermore, the method is universal and easily extensible to other data and collision models.
Stress-based animal models of depression: Do we actually know what we are doing?
Yin, Xin; Guven, Nuri; Dietis, Nikolas
2016-12-01
Depression is one of the leading causes of disability and a significant health-concern worldwide. Much of our current understanding on the pathogenesis of depression and the pharmacology of antidepressant drugs is based on pre-clinical models. Three of the most popular stress-based rodent models are the forced swimming test, the chronic mild stress paradigm and the learned helplessness model. Despite their recognizable advantages and limitations, they are associated with an immense variability due to the high number of design parameters that define them. Only few studies have reported how minor modifications of these parameters affect the model phenotype. Thus, the existing variability in how these models are used has been a strong barrier for drug development as well as benchmark and evaluation of these pre-clinical models of depression. It also has been the source of confusing variability in the experimental outcomes between research groups using the same models. In this review, we summarize the known variability in the experimental protocols, identify the main and relevant parameters for each model and describe the variable values using characteristic examples. Our view of depression and our efforts to discover novel and effective antidepressants is largely based on our detailed knowledge of these testing paradigms, and requires a sound understanding around the importance of individual parameters to optimize and improve these pre-clinical models. Copyright © 2016 Elsevier B.V. All rights reserved.
A cooperative strategy for parameter estimation in large scale systems biology models.
Villaverde, Alejandro F; Egea, Jose A; Banga, Julio R
2012-06-22
Mathematical models play a key role in systems biology: they summarize the currently available knowledge in a way that allows to make experimentally verifiable predictions. Model calibration consists of finding the parameters that give the best fit to a set of experimental data, which entails minimizing a cost function that measures the goodness of this fit. Most mathematical models in systems biology present three characteristics which make this problem very difficult to solve: they are highly non-linear, they have a large number of parameters to be estimated, and the information content of the available experimental data is frequently scarce. Hence, there is a need for global optimization methods capable of solving this problem efficiently. A new approach for parameter estimation of large scale models, called Cooperative Enhanced Scatter Search (CeSS), is presented. Its key feature is the cooperation between different programs ("threads") that run in parallel in different processors. Each thread implements a state of the art metaheuristic, the enhanced Scatter Search algorithm (eSS). Cooperation, meaning information sharing between threads, modifies the systemic properties of the algorithm and allows to speed up performance. Two parameter estimation problems involving models related with the central carbon metabolism of E. coli which include different regulatory levels (metabolic and transcriptional) are used as case studies. The performance and capabilities of the method are also evaluated using benchmark problems of large-scale global optimization, with excellent results. The cooperative CeSS strategy is a general purpose technique that can be applied to any model calibration problem. Its capability has been demonstrated by calibrating two large-scale models of different characteristics, improving the performance of previously existing methods in both cases. The cooperative metaheuristic presented here can be easily extended to incorporate other global and local search solvers and specific structural information for particular classes of problems.
A cooperative strategy for parameter estimation in large scale systems biology models
2012-01-01
Background Mathematical models play a key role in systems biology: they summarize the currently available knowledge in a way that allows to make experimentally verifiable predictions. Model calibration consists of finding the parameters that give the best fit to a set of experimental data, which entails minimizing a cost function that measures the goodness of this fit. Most mathematical models in systems biology present three characteristics which make this problem very difficult to solve: they are highly non-linear, they have a large number of parameters to be estimated, and the information content of the available experimental data is frequently scarce. Hence, there is a need for global optimization methods capable of solving this problem efficiently. Results A new approach for parameter estimation of large scale models, called Cooperative Enhanced Scatter Search (CeSS), is presented. Its key feature is the cooperation between different programs (“threads”) that run in parallel in different processors. Each thread implements a state of the art metaheuristic, the enhanced Scatter Search algorithm (eSS). Cooperation, meaning information sharing between threads, modifies the systemic properties of the algorithm and allows to speed up performance. Two parameter estimation problems involving models related with the central carbon metabolism of E. coli which include different regulatory levels (metabolic and transcriptional) are used as case studies. The performance and capabilities of the method are also evaluated using benchmark problems of large-scale global optimization, with excellent results. Conclusions The cooperative CeSS strategy is a general purpose technique that can be applied to any model calibration problem. Its capability has been demonstrated by calibrating two large-scale models of different characteristics, improving the performance of previously existing methods in both cases. The cooperative metaheuristic presented here can be easily extended to incorporate other global and local search solvers and specific structural information for particular classes of problems. PMID:22727112
Wedenberg, Minna; Lind, Bengt K; Hårdemark, Björn
2013-04-01
The biological effects of particles are often expressed in relation to that of photons through the concept of relative biological effectiveness, RBE. In proton radiotherapy, a constant RBE of 1.1 is usually assumed. However, there is experimental evidence that RBE depends on various factors. The aim of this study is to develop a model to predict the RBE based on linear energy transfer (LET), dose, and the tissue specific parameter α/β of the linear-quadratic model for the reference radiation. Moreover, the model should capture the basic features of the RBE using a minimum of assumptions, each supported by experimental data. The α and β parameters for protons were studied with respect to their dependence on LET. An RBE model was proposed where the dependence of LET is affected by the (α/β)phot ratio of photons. Published cell survival data with a range of well-defined LETs and cell types were selected for model evaluation rendering a total of 10 cell lines and 24 RBE values. A statistically significant relation was found between α for protons and LET. Moreover, the strength of that relation varied significantly with (α/β)phot. In contrast, no significant relation between β and LET was found. On the whole, the resulting RBE model provided a significantly improved fit (p-value < 0.01) to the experimental data compared to the standard constant RBE. By accounting for the α/β ratio of photons, clearer trends between RBE and LET of protons were found, and our results suggest that late responding tissues are more sensitive to LET changes than early responding tissues and most tumors. An advantage with the proposed RBE model in optimization and evaluation of treatment plans is that it only requires dose, LET, and (α/β)phot as input parameters. Hence, no proton specific biological parameters are needed.
Tominaga, Koji; Aherne, Julian; Watmough, Shaun A; Alveteg, Mattias; Cosby, Bernard J; Driscoll, Charles T; Posch, Maximilian; Pourmokhtarian, Afshin
2010-12-01
The performance and prediction uncertainty (owing to parameter and structural uncertainties) of four dynamic watershed acidification models (MAGIC, PnET-BGC, SAFE, and VSD) were assessed by systematically applying them to data from the Hubbard Brook Experimental Forest (HBEF), New Hampshire, where long-term records of precipitation and stream chemistry were available. In order to facilitate systematic evaluation, Monte Carlo simulation was used to randomly generate common model input data sets (n = 10,000) from parameter distributions; input data were subsequently translated among models to retain consistency. The model simulations were objectively calibrated against observed data (streamwater: 1963-2004, soil: 1983). The ensemble of calibrated models was used to assess future response of soil and stream chemistry to reduced sulfur deposition at the HBEF. Although both hindcast (1850-1962) and forecast (2005-2100) predictions were qualitatively similar across the four models, the temporal pattern of key indicators of acidification recovery (stream acid neutralizing capacity and soil base saturation) differed substantially. The range in predictions resulted from differences in model structure and their associated posterior parameter distributions. These differences can be accommodated by employing multiple models (ensemble analysis) but have implications for individual model applications.
A new UK fission yield evaluation UKFY3.7
NASA Astrophysics Data System (ADS)
Mills, Robert William
2017-09-01
The JEFF neutron induced and spontaneous fission product yield evaluation is currently unchanged from JEFF-3.1.1, also known by its UK designation UKFY3.6A. It is based upon experimental data combined with empirically fitted mass, charge and isomeric state models which are then adjusted within the experimental and model uncertainties to conform to the physical constraints of the fission process. A new evaluation has been prepared for JEFF, called UKFY3.7, that incorporates new experimental data and replaces the current empirical models (multi-Gaussian fits of mass distribution and Wahl Zp model for charge distribution combined with parameter extrapolation), with predictions from GEF. The GEF model has the advantage that one set of parameters allows the prediction of many different fissioning nuclides at different excitation energies unlike previous models where each fissioning nuclide at a specific excitation energy had to be fitted individually to the relevant experimental data. The new UKFY3.7 evaluation, submitted for testing as part of JEFF-3.3, is described alongside initial results of testing. In addition, initial ideas for future developments allowing inclusion of new measurements types and changing from any neutron spectrum type to true neutron energy dependence are discussed. Also, a method is proposed to propagate uncertainties of fission product yields based upon the experimental data that underlies the fission yield evaluation. The covariance terms being determined from the evaluated cumulative and independent yields combined with the experimental uncertainties on the cumulative yield measurements.
SBML-PET-MPI: a parallel parameter estimation tool for Systems Biology Markup Language based models.
Zi, Zhike
2011-04-01
Parameter estimation is crucial for the modeling and dynamic analysis of biological systems. However, implementing parameter estimation is time consuming and computationally demanding. Here, we introduced a parallel parameter estimation tool for Systems Biology Markup Language (SBML)-based models (SBML-PET-MPI). SBML-PET-MPI allows the user to perform parameter estimation and parameter uncertainty analysis by collectively fitting multiple experimental datasets. The tool is developed and parallelized using the message passing interface (MPI) protocol, which provides good scalability with the number of processors. SBML-PET-MPI is freely available for non-commercial use at http://www.bioss.uni-freiburg.de/cms/sbml-pet-mpi.html or http://sites.google.com/site/sbmlpetmpi/.
Effects of developmental variability on the dynamics and self-organization of cell populations
NASA Astrophysics Data System (ADS)
Prabhakara, Kaumudi H.; Gholami, Azam; Zykov, Vladimir S.; Bodenschatz, Eberhard
2017-11-01
We report experimental and theoretical results for spatiotemporal pattern formation in cell populations, where the parameters vary in space and time due to mechanisms intrinsic to the system, namely Dictyostelium discoideum (D.d.) in the starvation phase. We find that different patterns are formed when the populations are initialized at different developmental stages, or when populations at different initial developmental stages are mixed. The experimentally observed patterns can be understood with a modified Kessler-Levine model that takes into account the initial spatial heterogeneity of the cell populations and a developmental path introduced by us, i.e. the time dependence of the various biochemical parameters. The dynamics of the parameters agree with known biochemical studies. Most importantly, the modified model reproduces not only our results, but also the observations of an independent experiment published earlier. This shows that pattern formation can be used to understand and quantify the temporal evolution of the system parameters.
Inference of missing data and chemical model parameters using experimental statistics
NASA Astrophysics Data System (ADS)
Casey, Tiernan; Najm, Habib
2017-11-01
A method for determining the joint parameter density of Arrhenius rate expressions through the inference of missing experimental data is presented. This approach proposes noisy hypothetical data sets from target experiments and accepts those which agree with the reported statistics, in the form of nominal parameter values and their associated uncertainties. The data exploration procedure is formalized using Bayesian inference, employing maximum entropy and approximate Bayesian computation methods to arrive at a joint density on data and parameters. The method is demonstrated in the context of reactions in the H2-O2 system for predictive modeling of combustion systems of interest. Work supported by the US DOE BES CSGB. Sandia National Labs is a multimission lab managed and operated by Nat. Technology and Eng'g Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell Intl, for the US DOE NCSA under contract DE-NA-0003525.
NASA Astrophysics Data System (ADS)
Shuaib, Ali; Bourisly, Ali
2018-02-01
Spinal cord injury (SCI) can result in complete or partial loss of sensation and motor function due to interruption along the severed axonal tract(s). SCI can result in tetraplegia or paraplegia, which can have prohibitive lifetime medical costs and result in shorter life expectancy. A promising therapeutic technique that is currently in experimental phase and that has the potential to be used to treat SCI is Low-level light therapy (LLLT). Preclinical studies have shown that LLLT has reparative and regenerative capabilities on transected spinal cords, and that LLLT can enhance axonal sprouting in animal models. However, despite the promising effects of LLLT as a therapy for SCI, it remains difficult to compare published results due to the use of a wide range of illumination parameters (i.e. different wavelengths, fluences, beam types, and beam diameter), and due to the lack of a standardized experimental protocol(s). Before any clinical applications of LLLT for SCI treatment, it is crucial to standardize illumination parameters and efficacy of light delivery. Therefore, in this study we aim to evaluate the light fluence distribution on a 3D voxelated SCI rat model with different illumination parameters (wavelengths: 660, 810, and 980 nm; beam types: Gaussian and Flat; and beam diameters: 0.1, 0.2, and 0.3 cm) for LLLT using Monte Carlo simulation. This study provides an efficient approach to guide researchers in optimizing the illumination parameters for LLLT spinal cord injury in an experimental model and will aid in quantitative and qualitative standardization of LLLT-SCI treatment.
Coussot, Cecile; Kalyanam, Sureshkumar; Yapp, Rebecca; Insana, Michael F.
2009-01-01
The viscoelastic response of hydropolymers, which include glandular breast tissues, may be accurately characterized for some applications with as few as 3 rheological parameters by applying the Kelvin-Voigt fractional derivative (KVFD) modeling approach. We describe a technique for ultrasonic imaging of KVFD parameters in media undergoing unconfined, quasi-static, uniaxial compression. We analyze the KVFD parameter values in simulated and experimental echo data acquired from phantoms and show that the KVFD parameters may concisely characterize the viscoelastic properties of hydropolymers. We then interpret the KVFD parameter values for normal and cancerous breast tissues and hypothesize that this modeling approach may ultimately be applied to tumor differentiation. PMID:19406700
The development of a tele-monitoring system for physiological parameters based on the B/S model.
Shuicai, Wu; Peijie, Jiang; Chunlan, Yang; Haomin, Li; Yanping, Bai
2010-01-01
The development of a new physiological multi-parameter remote monitoring system is based on the B/S model. The system consists of a server monitoring center, Internet network and PC-based multi-parameter monitors. Using the B/S model, the clients can browse web pages via the server monitoring center and download and install ActiveX controls. The physiological multi-parameters are collected, displayed and remotely transmitted. The experimental results show that the system is stable, reliable and operates in real time. The system is suitable for use in physiological multi-parameter remote monitoring for family and community healthcare. Copyright © 2010 Elsevier Ltd. All rights reserved.
Generalized sensitivity analysis of the minimal model of the intravenous glucose tolerance test.
Munir, Mohammad
2018-06-01
Generalized sensitivity functions characterize the sensitivity of the parameter estimates with respect to the nominal parameters. We observe from the generalized sensitivity analysis of the minimal model of the intravenous glucose tolerance test that the measurements of insulin, 62 min after the administration of the glucose bolus into the experimental subject's body, possess no information about the parameter estimates. The glucose measurements possess the information about the parameter estimates up to three hours. These observations have been verified by the parameter estimation of the minimal model. The standard errors of the estimates and crude Monte Carlo process also confirm this observation. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Patole, Pralhad B.; Kulkarni, Vivek V.
2018-06-01
This paper presents an investigation into the minimum quantity lubrication mode with nano fluid during turning of alloy steel AISI 4340 work piece material with the objective of experimental model in order to predict surface roughness and cutting force and analyze effect of process parameters on machinability. Full factorial design matrix was used for experimental plan. According to design of experiment surface roughness and cutting force were measured. The relationship between the response variables and the process parameters is determined through the response surface methodology, using a quadratic regression model. Results show how much surface roughness is mainly influenced by feed rate and cutting speed. The depth of cut exhibits maximum influence on cutting force components as compared to the feed rate and cutting speed. The values predicted from the model and experimental values are very close to each other.
Anomalous T2 relaxation in normal and degraded cartilage.
Reiter, David A; Magin, Richard L; Li, Weiguo; Trujillo, Juan J; Pilar Velasco, M; Spencer, Richard G
2016-09-01
To compare the ordinary monoexponential model with three anomalous relaxation models-the stretched Mittag-Leffler, stretched exponential, and biexponential functions-using both simulated and experimental cartilage relaxation data. Monte Carlo simulations were used to examine both the ability of identifying a given model under high signal-to-noise ratio (SNR) conditions and the accuracy and precision of parameter estimates under more modest SNR as would be encountered clinically. Experimental transverse relaxation data were analyzed from normal and enzymatically degraded cartilage samples under high SNR and rapid echo sampling to compare each model. Both simulation and experimental results showed improvement in signal representation with the anomalous relaxation models. The stretched exponential model consistently showed the lowest mean squared error in experimental data and closely represents the signal decay over multiple decades of the decay time (e.g., 1-10 ms, 10-100 ms, and >100 ms). The stretched exponential parameter αse showed an inverse correlation with biochemically derived cartilage proteoglycan content. Experimental results obtained at high field suggest potential application of αse as a measure of matrix integrity. Simulation reflecting more clinical imaging conditions, indicate the ability to robustly estimate αse and distinguish between normal and degraded tissue, highlighting its potential as a biomarker for human studies. Magn Reson Med 76:953-962, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
A Laboratory Study of River Discharges into Shallow Seas
NASA Astrophysics Data System (ADS)
Crawford, T. J.; Linden, P. F.
2016-02-01
We present an experimental study that aims to simulate the buoyancy driven coastal currents produced by estuarine freshwater discharges into the ocean. The currents are generated inside a rotating tank filled with saltwater by the continuous release of buoyant freshwater from a source structure located at the fluid surface. The freshwater is discharged horizontally from a finite-depth source, giving rise to significant momentum-flux effects and a non-zero potential vorticity. We perform a parametric study in which we vary the rotation rate, freshwater discharge magnitude, the density difference and the source cross-sectional area. The parameter values are chosen to match the regimes appropriate to the River Rhine and River Elbe when entering the North Sea. Persistent features of an anticyclonic outflow vortex and a propagating boundary current were identified and their properties quantified. We also present a finite potential vorticity, geostrophic model that provides theoretical predictions for the current height, width and velocity as functions of the experimental parameters. The experiments and model are compared with each other in terms of a set of non-dimensional parameters identified in the theoretical analysis of the problem. Good agreement between the model and the experimental data is found. The effect of mixing in the turbulent ocean is also addressed with the addition of an oscillating grid to the experimental setup. The grid generates turbulence in the saltwater ambient that is designed to represent the mixing effects of the wind, tides and bathymetry in a shallow shelf sea. The impact of the addition of turbulence is discussed in terms of the experimental data and through modifications to the theoretical model to include mixing. Once again, good agreement is seen between the experiments and the model.
The momentum transfer of incompressible turbulent separated flow due to cavities with steps
NASA Technical Reports Server (NTRS)
White, R. E.; Norton, D. J.
1977-01-01
An experimental study was conducted using a plate test bed having a turbulent boundary layer to determine the momentum transfer to the faces of step/cavity combinations on the plate. Experimental data were obtained from configurations including an isolated configuration and an array of blocks in tile patterns. A momentum transfer correlation model of pressure forces on an isolated step/cavity was developed with experimental results to relate flow and geometry parameters. Results of the experiments reveal that isolated step/cavity excrecences do not have a unique and unifying parameter group due in part to cavity depth effects and in part to width parameter scale effects. Drag predictions for tile patterns by a kinetic pressure empirical method predict experimental results well. Trends were not, however, predicted by a method of variable roughness density phenomenology.
Estimation of beech pyrolysis kinetic parameters by Shuffled Complex Evolution.
Ding, Yanming; Wang, Changjian; Chaos, Marcos; Chen, Ruiyu; Lu, Shouxiang
2016-01-01
The pyrolysis kinetics of a typical biomass energy feedstock, beech, was investigated based on thermogravimetric analysis over a wide heating rate range from 5K/min to 80K/min. A three-component (corresponding to hemicellulose, cellulose and lignin) parallel decomposition reaction scheme was applied to describe the experimental data. The resulting kinetic reaction model was coupled to an evolutionary optimization algorithm (Shuffled Complex Evolution, SCE) to obtain model parameters. To the authors' knowledge, this is the first study in which SCE has been used in the context of thermogravimetry. The kinetic parameters were simultaneously optimized against data for 10, 20 and 60K/min heating rates, providing excellent fits to experimental data. Furthermore, it was shown that the optimized parameters were applicable to heating rates (5 and 80K/min) beyond those used to generate them. Finally, the predicted results based on optimized parameters were contrasted with those based on the literature. Copyright © 2015 Elsevier Ltd. All rights reserved.
Estimation of k-ε parameters using surrogate models and jet-in-crossflow data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lefantzi, Sophia; Ray, Jaideep; Arunajatesan, Srinivasan
2014-11-01
We demonstrate a Bayesian method that can be used to calibrate computationally expensive 3D RANS (Reynolds Av- eraged Navier Stokes) models with complex response surfaces. Such calibrations, conditioned on experimental data, can yield turbulence model parameters as probability density functions (PDF), concisely capturing the uncertainty in the parameter estimates. Methods such as Markov chain Monte Carlo (MCMC) estimate the PDF by sampling, with each sample requiring a run of the RANS model. Consequently a quick-running surrogate is used instead to the RANS simulator. The surrogate can be very difficult to design if the model's response i.e., the dependence of themore » calibration variable (the observable) on the parameter being estimated is complex. We show how the training data used to construct the surrogate can be employed to isolate a promising and physically realistic part of the parameter space, within which the response is well-behaved and easily modeled. We design a classifier, based on treed linear models, to model the "well-behaved region". This classifier serves as a prior in a Bayesian calibration study aimed at estimating 3 k - ε parameters ( C μ, C ε2 , C ε1 ) from experimental data of a transonic jet-in-crossflow interaction. The robustness of the calibration is investigated by checking its predictions of variables not included in the cal- ibration data. We also check the limit of applicability of the calibration by testing at off-calibration flow regimes. We find that calibration yield turbulence model parameters which predict the flowfield far better than when the nomi- nal values of the parameters are used. Substantial improvements are still obtained when we use the calibrated RANS model to predict jet-in-crossflow at Mach numbers and jet strengths quite different from those used to generate the ex- perimental (calibration) data. Thus the primary reason for poor predictive skill of RANS, when using nominal values of the turbulence model parameters, was parametric uncertainty, which was rectified by calibration. Post-calibration, the dominant contribution to model inaccuraries are due to the structural errors in RANS.« less
Melanoma Cell Colony Expansion Parameters Revealed by Approximate Bayesian Computation
Vo, Brenda N.; Drovandi, Christopher C.; Pettitt, Anthony N.; Pettet, Graeme J.
2015-01-01
In vitro studies and mathematical models are now being widely used to study the underlying mechanisms driving the expansion of cell colonies. This can improve our understanding of cancer formation and progression. Although much progress has been made in terms of developing and analysing mathematical models, far less progress has been made in terms of understanding how to estimate model parameters using experimental in vitro image-based data. To address this issue, a new approximate Bayesian computation (ABC) algorithm is proposed to estimate key parameters governing the expansion of melanoma cell (MM127) colonies, including cell diffusivity, D, cell proliferation rate, λ, and cell-to-cell adhesion, q, in two experimental scenarios, namely with and without a chemical treatment to suppress cell proliferation. Even when little prior biological knowledge about the parameters is assumed, all parameters are precisely inferred with a small posterior coefficient of variation, approximately 2–12%. The ABC analyses reveal that the posterior distributions of D and q depend on the experimental elapsed time, whereas the posterior distribution of λ does not. The posterior mean values of D and q are in the ranges 226–268 µm2h−1, 311–351 µm2h−1 and 0.23–0.39, 0.32–0.61 for the experimental periods of 0–24 h and 24–48 h, respectively. Furthermore, we found that the posterior distribution of q also depends on the initial cell density, whereas the posterior distributions of D and λ do not. The ABC approach also enables information from the two experiments to be combined, resulting in greater precision for all estimates of D and λ. PMID:26642072
Experimental Modeling of a Formula Student Carbon Composite Nose Cone
Fellows, Neil A.
2017-01-01
A numerical impact study is presented on a Formula Student (FS) racing car carbon composite nose cone. The effect of material model and model parameter selection on the numerical deceleration curves is discussed in light of the experimental deceleration data. The models show reasonable correlation in terms of the shape of the deceleration-displacement curves but do not match the peak deceleration values with errors greater that 30%. PMID:28772982
Bouc-Wen hysteresis model identification using Modified Firefly Algorithm
NASA Astrophysics Data System (ADS)
Zaman, Mohammad Asif; Sikder, Urmita
2015-12-01
The parameters of Bouc-Wen hysteresis model are identified using a Modified Firefly Algorithm. The proposed algorithm uses dynamic process control parameters to improve its performance. The algorithm is used to find the model parameter values that results in the least amount of error between a set of given data points and points obtained from the Bouc-Wen model. The performance of the algorithm is compared with the performance of conventional Firefly Algorithm, Genetic Algorithm and Differential Evolution algorithm in terms of convergence rate and accuracy. Compared to the other three optimization algorithms, the proposed algorithm is found to have good convergence rate with high degree of accuracy in identifying Bouc-Wen model parameters. Finally, the proposed method is used to find the Bouc-Wen model parameters from experimental data. The obtained model is found to be in good agreement with measured data.
Online Estimation of Model Parameters of Lithium-Ion Battery Using the Cubature Kalman Filter
NASA Astrophysics Data System (ADS)
Tian, Yong; Yan, Rusheng; Tian, Jindong; Zhou, Shijie; Hu, Chao
2017-11-01
Online estimation of state variables, including state-of-charge (SOC), state-of-energy (SOE) and state-of-health (SOH) is greatly crucial for the operation safety of lithium-ion battery. In order to improve estimation accuracy of these state variables, a precise battery model needs to be established. As the lithium-ion battery is a nonlinear time-varying system, the model parameters significantly vary with many factors, such as ambient temperature, discharge rate and depth of discharge, etc. This paper presents an online estimation method of model parameters for lithium-ion battery based on the cubature Kalman filter. The commonly used first-order resistor-capacitor equivalent circuit model is selected as the battery model, based on which the model parameters are estimated online. Experimental results show that the presented method can accurately track the parameters variation at different scenarios.
An information theoretic approach to use high-fidelity codes to calibrate low-fidelity codes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewis, Allison, E-mail: lewis.allison10@gmail.com; Smith, Ralph; Williams, Brian
For many simulation models, it can be prohibitively expensive or physically infeasible to obtain a complete set of experimental data to calibrate model parameters. In such cases, one can alternatively employ validated higher-fidelity codes to generate simulated data, which can be used to calibrate the lower-fidelity code. In this paper, we employ an information-theoretic framework to determine the reduction in parameter uncertainty that is obtained by evaluating the high-fidelity code at a specific set of design conditions. These conditions are chosen sequentially, based on the amount of information that they contribute to the low-fidelity model parameters. The goal is tomore » employ Bayesian experimental design techniques to minimize the number of high-fidelity code evaluations required to accurately calibrate the low-fidelity model. We illustrate the performance of this framework using heat and diffusion examples, a 1-D kinetic neutron diffusion equation, and a particle transport model, and include initial results from the integration of the high-fidelity thermal-hydraulics code Hydra-TH with a low-fidelity exponential model for the friction correlation factor.« less
Numerical investigation of compaction of deformable particles with bonded-particle model
NASA Astrophysics Data System (ADS)
Dosta, Maksym; Costa, Clara; Al-Qureshi, Hazim
2017-06-01
In this contribution, a novel approach developed for the microscale modelling of particles which undergo large deformations is presented. The proposed method is based on the bonded-particle model (BPM) and multi-stage strategy to adjust material and model parameters. By the BPM, modelled objects are represented as agglomerates which consist of smaller ideally spherical particles and are connected with cylindrical solid bonds. Each bond is considered as a separate object and in each time step the forces and moments acting in them are calculated. The developed approach has been applied to simulate the compaction of elastomeric rubber particles as single particles or in a random packing. To describe the complex mechanical behaviour of the particles, the solid bonds were modelled as ideally elastic beams. The functional parameters of solid bonds as well as material parameters of bonds and primary particles were estimated based on the experimental data for rubber spheres. Obtained results for acting force and for particle deformations during uniaxial compression are in good agreement with experimental data at higher strains.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guan, He; Lv, Hongliang; Guo, Hui, E-mail: hguan@stu.xidian.edu.cn
2015-11-21
Impact ionization affects the radio-frequency (RF) behavior of high-electron-mobility transistors (HEMTs), which have narrow-bandgap semiconductor channels, and this necessitates complex parameter extraction procedures for HEMT modeling. In this paper, an enhanced small-signal equivalent circuit model is developed to investigate the impact ionization, and an improved method is presented in detail for direct extraction of intrinsic parameters using two-step measurements in low-frequency and high-frequency regimes. The practicability of the enhanced model and the proposed direct parameter extraction method are verified by comparing the simulated S-parameters with published experimental data from an InAs/AlSb HEMT operating over a wide frequency range. The resultsmore » demonstrate that the enhanced model with optimal intrinsic parameter values that were obtained by the direct extraction approach can effectively characterize the effects of impact ionization on the RF performance of HEMTs.« less
Modelling and analysis of a direct ascorbic acid fuel cell
NASA Astrophysics Data System (ADS)
Zeng, Yingzhi; Fujiwara, Naoko; Yamazaki, Shin-ichi; Tanimoto, Kazumi; Wu, Ping
L-Ascorbic acid (AA), also known as vitamin C, is an environmentally-benign and biologically-friendly compound that can be used as an alternative fuel for direct oxidation fuel cells. While direct ascorbic acid fuel cells (DAAFCs) have been studied experimentally, modelling and simulation of these devices have been overlooked. In this work, we develop a mathematical model to describe a DAAFC and validate it with experimental data. The model is formulated by integrating the mass and charge balances, and model parameters are estimated by best-fitting to experimental data of current-voltage curves. By comparing the transient voltage curves predicted by dynamic simulation and experiments, the model is further validated. Various parameters that affect the power generation are studied by simulation. The cathodic reaction is found to be the most significant determinant of power generation, followed by fuel feed concentration and the mass-transfer coefficient of ascorbic acid. These studies also reveal that the power density steadily increases with respect to the fuel feed concentration. The results may guide future development and operation of a more efficient DAAFC.
Sresht, Vishnu; Lewandowski, Eric P; Blankschtein, Daniel; Jusufi, Arben
2017-08-22
A molecular modeling approach is presented with a focus on quantitative predictions of the surface tension of aqueous surfactant solutions. The approach combines classical Molecular Dynamics (MD) simulations with a molecular-thermodynamic theory (MTT) [ Y. J. Nikas, S. Puvvada, D. Blankschtein, Langmuir 1992 , 8 , 2680 ]. The MD component is used to calculate thermodynamic and molecular parameters that are needed in the MTT model to determine the surface tension isotherm. The MD/MTT approach provides the important link between the surfactant bulk concentration, the experimental control parameter, and the surfactant surface concentration, the MD control parameter. We demonstrate the capability of the MD/MTT modeling approach on nonionic alkyl polyethylene glycol surfactants at the air-water interface and observe reasonable agreement of the predicted surface tensions and the experimental surface tension data over a wide range of surfactant concentrations below the critical micelle concentration. Our modeling approach can be extended to ionic surfactants and their mixtures with both ionic and nonionic surfactants at liquid-liquid interfaces.
Cluster kinetics model for mixtures of glassformers
NASA Astrophysics Data System (ADS)
Brenskelle, Lisa A.; McCoy, Benjamin J.
2007-10-01
For glassformers we propose a binary mixture relation for parameters in a cluster kinetics model previously shown to represent pure compound data for viscosity and dielectric relaxation as functions of either temperature or pressure. The model parameters are based on activation energies and activation volumes for cluster association-dissociation processes. With the mixture parameters, we calculated dielectric relaxation times and compared the results to experimental values for binary mixtures. Mixtures of sorbitol and glycerol (seven compositions), sorbitol and xylitol (three compositions), and polychloroepihydrin and polyvinylmethylether (three compositions) were studied.
NASA Astrophysics Data System (ADS)
Liu, Jia; Li, Jing; Zhang, Zhong-ping
2013-04-01
In this article, a fatigue damage parameter is proposed to assess the multiaxial fatigue lives of ductile metals based on the critical plane concept: Fatigue crack initiation is controlled by the maximum shear strain, and the other important effect in the fatigue damage process is the normal strain and stress. This fatigue damage parameter introduces a stress-correlated factor, which describes the degree of the non-proportional cyclic hardening. Besides, a three-parameter multiaxial fatigue criterion is used to correlate the fatigue lifetime of metallic materials with the proposed damage parameter. Under the uniaxial loading, this three-parameter model reduces to the recently developed Zhang's model for predicting the uniaxial fatigue crack initiation life. The accuracy and reliability of this three-parameter model are checked against the experimental data found in literature through testing six different ductile metals under various strain paths with zero/non-zero mean stress.
NASA Astrophysics Data System (ADS)
Alekseev, M. V.; Vozhakov, I. S.; Lezhnin, S. I.; Pribaturin, N. A.
2017-09-01
A comparative numerical simulation of the supercritical fluid outflow on the thermodynamic equilibrium and non-equilibrium relaxation models of phase transition for different times of relaxation has been performed. The model for the fixed relaxation time based on the experimentally determined radius of liquid droplets was compared with the model of dynamically changing relaxation time, calculated by the formula (7) and depending on local parameters. It is shown that the relaxation time varies significantly depending on the thermodynamic conditions of the two-phase medium in the course of outflowing. The application of the proposed model with dynamic relaxation time leads to qualitatively correct results. The model can be used for both vaporization and condensation processes. It is shown that the model can be improved on the basis of processing experimental data on the distribution of the droplet sizes formed during the breaking up of the liquid jet.
BGFit: management and automated fitting of biological growth curves.
Veríssimo, André; Paixão, Laura; Neves, Ana Rute; Vinga, Susana
2013-09-25
Existing tools to model cell growth curves do not offer a flexible integrative approach to manage large datasets and automatically estimate parameters. Due to the increase of experimental time-series from microbiology and oncology, the need for a software that allows researchers to easily organize experimental data and simultaneously extract relevant parameters in an efficient way is crucial. BGFit provides a web-based unified platform, where a rich set of dynamic models can be fitted to experimental time-series data, further allowing to efficiently manage the results in a structured and hierarchical way. The data managing system allows to organize projects, experiments and measurements data and also to define teams with different editing and viewing permission. Several dynamic and algebraic models are already implemented, such as polynomial regression, Gompertz, Baranyi, Logistic and Live Cell Fraction models and the user can add easily new models thus expanding current ones. BGFit allows users to easily manage their data and models in an integrated way, even if they are not familiar with databases or existing computational tools for parameter estimation. BGFit is designed with a flexible architecture that focus on extensibility and leverages free software with existing tools and methods, allowing to compare and evaluate different data modeling techniques. The application is described in the context of bacterial and tumor cells growth data fitting, but it is also applicable to any type of two-dimensional data, e.g. physical chemistry and macroeconomic time series, being fully scalable to high number of projects, data and model complexity.
NASA Astrophysics Data System (ADS)
Amjad, M.; Salam, Z.; Ishaque, K.
2014-04-01
In order to design an efficient resonant power supply for ozone gas generator, it is necessary to accurately determine the parameters of the ozone chamber. In the conventional method, the information from Lissajous plot is used to estimate the values of these parameters. However, the experimental setup for this purpose can only predict the parameters at one operating frequency and there is no guarantee that it results in the highest ozone gas yield. This paper proposes a new approach to determine the parameters using a search and optimization technique known as Differential Evolution (DE). The desired objective function of DE is set at the resonance condition and the chamber parameter values can be searched regardless of experimental constraints. The chamber parameters obtained from the DE technique are validated by experiment.
Parameterization of a mesoscopic model for the self-assembly of linear sodium alkyl sulfates
NASA Astrophysics Data System (ADS)
Mai, Zhaohuan; Couallier, Estelle; Rakib, Mohammed; Rousseau, Bernard
2014-05-01
A systematic approach to develop mesoscopic models for a series of linear anionic surfactants (CH3(CH2)n - 1OSO3Na, n = 6, 9, 12, 15) by dissipative particle dynamics (DPD) simulations is presented in this work. The four surfactants are represented by coarse-grained models composed of the same head group and different numbers of identical tail beads. The transferability of the DPD model over different surfactant systems is carefully checked by adjusting the repulsive interaction parameters and the rigidity of surfactant molecules, in order to reproduce key equilibrium properties of the aqueous micellar solutions observed experimentally, including critical micelle concentration (CMC) and average micelle aggregation number (Nag). We find that the chain length is a good index to optimize the parameters and evaluate the transferability of the DPD model. Our models qualitatively reproduce the essential properties of these surfactant analogues with a set of best-fit parameters. It is observed that the logarithm of the CMC value decreases linearly with the surfactant chain length, in agreement with Klevens' rule. With the best-fit and transferable set of parameters, we have been able to calculate the free energy contribution to micelle formation per methylene unit of -1.7 kJ/mol, very close to the experimentally reported value.
Vuckovic, Anita; Kwantes, Peter J; Humphreys, Michael; Neal, Andrew
2014-03-01
Signal Detection Theory (SDT; Green & Swets, 1966) is a popular tool for understanding decision making. However, it does not account for the time taken to make a decision, nor why response bias might change over time. Sequential sampling models provide a way of accounting for speed-accuracy trade-offs and response bias shifts. In this study, we test the validity of a sequential sampling model of conflict detection in a simulated air traffic control task by assessing whether two of its key parameters respond to experimental manipulations in a theoretically consistent way. Through experimental instructions, we manipulated participants' response bias and the relative speed or accuracy of their responses. The sequential sampling model was able to replicate the trends in the conflict responses as well as response time across all conditions. Consistent with our predictions, manipulating response bias was associated primarily with changes in the model's Criterion parameter, whereas manipulating speed-accuracy instructions was associated with changes in the Threshold parameter. The success of the model in replicating the human data suggests we can use the parameters of the model to gain an insight into the underlying response bias and speed-accuracy preferences common to dynamic decision-making tasks. © 2013 American Psychological Association
NASA Astrophysics Data System (ADS)
Grzesik, W.; Niesłony, P.; Laskowski, P.
2017-12-01
In this paper, a special procedure for the prediction of parameters of the Johnson-Cook constitutive material models is proposed based on the experimental data and specially developed MATLAB scripts which allow advanced modeling of complex 3D response surfaces. Experimental investigations concern two various strain rates of 10-3 and 101 1/s and the testing temperature ranging from the ambient up to 700 °C. As a result, a set of mathematical equations which fit the experimental data is determined. The applicability of the experimentally derived constitutive models to the FEM modeling of real machining processes of Inconel 718 alloy is verified.
Kalman filter estimation of human pilot-model parameters
NASA Technical Reports Server (NTRS)
Schiess, J. R.; Roland, V. R.
1975-01-01
The parameters of a human pilot-model transfer function are estimated by applying the extended Kalman filter to the corresponding retarded differential-difference equations in the time domain. Use of computer-generated data indicates that most of the parameters, including the implicit time delay, may be reasonably estimated in this way. When applied to two sets of experimental data obtained from a closed-loop tracking task performed by a human, the Kalman filter generated diverging residuals for one of the measurement types, apparently because of model assumption errors. Application of a modified adaptive technique was found to overcome the divergence and to produce reasonable estimates of most of the parameters.
The Taguchi Method Application to Improve the Quality of a Sustainable Process
NASA Astrophysics Data System (ADS)
Titu, A. M.; Sandu, A. V.; Pop, A. B.; Titu, S.; Ciungu, T. C.
2018-06-01
Taguchi’s method has always been a method used to improve the quality of the analyzed processes and products. This research shows an unusual situation, namely the modeling of some parameters, considered technical parameters, in a process that is wanted to be durable by improving the quality process and by ensuring quality using an experimental research method. Modern experimental techniques can be applied in any field and this study reflects the benefits of interacting between the agriculture sustainability principles and the Taguchi’s Method application. The experimental method used in this practical study consists of combining engineering techniques with experimental statistical modeling to achieve rapid improvement of quality costs, in fact seeking optimization at the level of existing processes and the main technical parameters. The paper is actually a purely technical research that promotes a technical experiment using the Taguchi method, considered to be an effective method since it allows for rapid achievement of 70 to 90% of the desired optimization of the technical parameters. The missing 10 to 30 percent can be obtained with one or two complementary experiments, limited to 2 to 4 technical parameters that are considered to be the most influential. Applying the Taguchi’s Method in the technique and not only, allowed the simultaneous study in the same experiment of the influence factors considered to be the most important in different combinations and, at the same time, determining each factor contribution.
Kinetic model for microbial growth and desulphurisation with Enterobacter sp.
Liu, Long; Guo, Zhiguo; Lu, Jianjiang; Xu, Xiaolin
2015-02-01
Biodesulphurisation was investigated by using Enterobacter sp. D4, which can selectively desulphurise and convert dibenzothiophene into 2-hydroxybiphenyl (2-HBP). The experimental values of growth, substrate consumption and product generation were obtained at 95 % confidence level of the fitted values using three models: Hinshelwood equation, Luedeking-Piret and Luedeking-Piret-like equations. The average error values between experimental values and fitted values were less than 10 %. These kinetic models describe all the experimental data with good statistical parameters. The production of 2-HBP in Enterobacter sp. was by "coupled growth".
Modeling Piezoelectric Stack Actuators for Control of Micromanipulation
NASA Technical Reports Server (NTRS)
Goldfarb, Michael; Celanovic, Nikola
1997-01-01
A nonlinear lumped-parameter model of a piezoelectric stack actuator has been developed to describe actuator behavior for purposes of control system analysis and design, and, in particular, for microrobotic applications requiring accurate position and/or force control. In formulating this model, the authors propose a generalized Maxwell resistive capacitor as a lumped-parameter causal representation of rate-independent hysteresis. Model formulation is validated by comparing results of numerical simulations to experimental data. Validation is followed by a discussion of model implications for purposes of actuator control.
NASA Astrophysics Data System (ADS)
Termini, Donatella
2013-04-01
Recent catastrophic events due to intense rainfalls have mobilized large amount of sediments causing extensive damages in vast areas. These events have highlighted how debris-flows runout estimations are of crucial importance to delineate the potentially hazardous areas and to make reliable assessment of the level of risk of the territory. Especially in recent years, several researches have been conducted in order to define predicitive models. But, existing runout estimation methods need input parameters that can be difficult to estimate. Recent experimental researches have also allowed the assessment of the physics of the debris flows. But, the major part of the experimental studies analyze the basic kinematic conditions which determine the phenomenon evolution. Experimental program has been recently conducted at the Hydraulic laboratory of the Department of Civil, Environmental, Aerospatial and of Materials (DICAM) - University of Palermo (Italy). The experiments, carried out in a laboratory flume appositely constructed, were planned in order to evaluate the influence of different geometrical parameters (such as the slope and the geometrical characteristics of the confluences to the main channel) on the propagation phenomenon of the debris flow and its deposition. Thus, the aim of the present work is to give a contribution to defining input parameters in runout estimation by numerical modeling. The propagation phenomenon is analyzed for different concentrations of solid materials. Particular attention is devoted to the identification of the stopping distance of the debris flow and of the involved parameters (volume, angle of depositions, type of material) in the empirical predictive equations available in literature (Rickenmanm, 1999; Bethurst et al. 1997). Bethurst J.C., Burton A., Ward T.J. 1997. Debris flow run-out and landslide sediment delivery model tests. Journal of hydraulic Engineering, ASCE, 123(5), 419-429 Rickenmann D. 1999. Empirical relationships fro debris flow. Natural hazards, 19, pp. 47-77
Torsional Vibration in the National Wind Technology Center’s 2.5-Megawatt Dynamometer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sethuraman, Latha; Keller, Jonathan; Wallen, Robb
2016-08-31
This report documents the torsional drivetrain dynamics of the NWTC's 2.5-megawatt dynamometer as identified experimentally and as calculated using lumped parameter models using known inertia and stiffness parameters. The report is presented in two parts beginning with the identification of the primary torsional modes followed by the investigation of approaches to damp the torsional vibrations. The key mechanical parameters for the lumped parameter models and justification for the element grouping used in the derivation of the torsional modes are presented. The sensitivities of the torsional modes to different test article properties are discussed. The oscillations observed from the low-speed andmore » generator torque measurements were used to identify the extent of damping inherently achieved through active and passive compensation techniques. A simplified Simulink model of the dynamometer test article integrating the electro-mechanical power conversion and control features was established to emulate the torque behavior that was observed during testing. The torque response in the high-speed, low-speed, and generator shafts were tested and validated against experimental measurements involving step changes in load with the dynamometer operating under speed-regulation mode. The Simulink model serves as a ready reference to identify the torque sensitivities to various system parameters and to explore opportunities to improve torsional damping under different conditions.« less
NASA Astrophysics Data System (ADS)
Chakraborty, Amitav; Roy, Sumit; Banerjee, Rahul
2018-03-01
This experimental work highlights the inherent capability of an adaptive-neuro fuzzy inference system (ANFIS) based model to act as a robust system identification tool (SIT) in prognosticating the performance and emission parameters of an existing diesel engine running of diesel-LPG dual fuel mode. The developed model proved its adeptness by successfully harnessing the effects of the input parameters of load, injection duration and LPG energy share on output parameters of BSFCEQ, BTE, NOX, SOOT, CO and HC. Successive evaluation of the ANFIS model, revealed high levels of resemblance with the already forecasted ANN results for the same input parameters and it was evident that similar to ANN, ANFIS also has the innate ability to act as a robust SIT. The ANFIS predicted data harmonized the experimental data with high overall accuracy. The correlation coefficient (R) values are stretched in between 0.99207 to 0.999988. The mean absolute percentage error (MAPE) tallies were recorded in the range of 0.02-0.173% with the root mean square errors (RMSE) in acceptable margins. Hence the developed model is capable of emulating the actual engine parameters with commendable ranges of accuracy, which in turn would act as a robust prediction platform in the future domains of optimization.
Electrostatics of cysteine residues in proteins: Parameterization and validation of a simple model
Salsbury, Freddie R.; Poole, Leslie B.; Fetrow, Jacquelyn S.
2013-01-01
One of the most popular and simple models for the calculation of pKas from a protein structure is the semi-macroscopic electrostatic model MEAD. This model requires empirical parameters for each residue to calculate pKas. Analysis of current, widely used empirical parameters for cysteine residues showed that they did not reproduce expected cysteine pKas; thus, we set out to identify parameters consistent with the CHARMM27 force field that capture both the behavior of typical cysteines in proteins and the behavior of cysteines which have perturbed pKas. The new parameters were validated in three ways: (1) calculation across a large set of typical cysteines in proteins (where the calculations are expected to reproduce expected ensemble behavior); (2) calculation across a set of perturbed cysteines in proteins (where the calculations are expected to reproduce the shifted ensemble behavior); and (3) comparison to experimentally determined pKa values (where the calculation should reproduce the pKa within experimental error). Both the general behavior of cysteines in proteins and the perturbed pKa in some proteins can be predicted reasonably well using the newly determined empirical parameters within the MEAD model for protein electrostatics. This study provides the first general analysis of the electrostatics of cysteines in proteins, with specific attention paid to capturing both the behavior of typical cysteines in a protein and the behavior of cysteines whose pKa should be shifted, and validation of force field parameters for cysteine residues. PMID:22777874
Roeder, Ingo; Kamminga, Leonie M; Braesel, Katrin; Dontje, Bert; de Haan, Gerald; Loeffler, Markus
2005-01-15
Many current experimental results show the necessity of new conceptual approaches to understand hematopoietic stem cell organization. Recently, we proposed a novel theoretical concept and a corresponding quantitative model based on microenvironment-dependent stem cell plasticity. The objective of our present work is to subject this model to an experimental test for the situation of chimeric hematopoiesis. Investigating clonal competition processes in DBA/2-C57BL/6 mouse chimeras, we observed biphasic chimerism development with initially increasing but long-term declining DBA/2 contribution. These experimental results were used to select the parameters of the mathematical model. To validate the model beyond this specific situation, we fixed the obtained parameter configuration to simulate further experimental settings comprising variations of transplanted DBA/2-C57BL/6 proportions, secondary transplantations, and perturbation of stabilized chimeras by cytokine and cytotoxic treatment. We show that the proposed model is able to consistently describe the situation of chimeric hematopoiesis. Our results strongly support the view that the relative growth advantage of strain-specific stem cells is not a fixed cellular property but is sensitively dependent on the actual state of the entire system. We conclude that hematopoietic stem cell organization should be understood as a flexible, self-organized rather than a fixed, preprogrammed process.
Integrated computational model of the bioenergetics of isolated lung mitochondria
Zhang, Xiao; Jacobs, Elizabeth R.; Camara, Amadou K. S.; Clough, Anne V.
2018-01-01
Integrated computational modeling provides a mechanistic and quantitative framework for describing lung mitochondrial bioenergetics. Thus, the objective of this study was to develop and validate a thermodynamically-constrained integrated computational model of the bioenergetics of isolated lung mitochondria. The model incorporates the major biochemical reactions and transport processes in lung mitochondria. A general framework was developed to model those biochemical reactions and transport processes. Intrinsic model parameters such as binding constants were estimated using previously published isolated enzymes and transporters kinetic data. Extrinsic model parameters such as maximal reaction and transport velocities were estimated by fitting the integrated bioenergetics model to published and new tricarboxylic acid cycle and respirometry data measured in isolated rat lung mitochondria. The integrated model was then validated by assessing its ability to predict experimental data not used for the estimation of the extrinsic model parameters. For example, the model was able to predict reasonably well the substrate and temperature dependency of mitochondrial oxygen consumption, kinetics of NADH redox status, and the kinetics of mitochondrial accumulation of the cationic dye rhodamine 123, driven by mitochondrial membrane potential, under different respiratory states. The latter required the coupling of the integrated bioenergetics model to a pharmacokinetic model for the mitochondrial uptake of rhodamine 123 from buffer. The integrated bioenergetics model provides a mechanistic and quantitative framework for 1) integrating experimental data from isolated lung mitochondria under diverse experimental conditions, and 2) assessing the impact of a change in one or more mitochondrial processes on overall lung mitochondrial bioenergetics. In addition, the model provides important insights into the bioenergetics and respiration of lung mitochondria and how they differ from those of mitochondria from other organs. To the best of our knowledge, this model is the first for the bioenergetics of isolated lung mitochondria. PMID:29889855
Integrated computational model of the bioenergetics of isolated lung mitochondria.
Zhang, Xiao; Dash, Ranjan K; Jacobs, Elizabeth R; Camara, Amadou K S; Clough, Anne V; Audi, Said H
2018-01-01
Integrated computational modeling provides a mechanistic and quantitative framework for describing lung mitochondrial bioenergetics. Thus, the objective of this study was to develop and validate a thermodynamically-constrained integrated computational model of the bioenergetics of isolated lung mitochondria. The model incorporates the major biochemical reactions and transport processes in lung mitochondria. A general framework was developed to model those biochemical reactions and transport processes. Intrinsic model parameters such as binding constants were estimated using previously published isolated enzymes and transporters kinetic data. Extrinsic model parameters such as maximal reaction and transport velocities were estimated by fitting the integrated bioenergetics model to published and new tricarboxylic acid cycle and respirometry data measured in isolated rat lung mitochondria. The integrated model was then validated by assessing its ability to predict experimental data not used for the estimation of the extrinsic model parameters. For example, the model was able to predict reasonably well the substrate and temperature dependency of mitochondrial oxygen consumption, kinetics of NADH redox status, and the kinetics of mitochondrial accumulation of the cationic dye rhodamine 123, driven by mitochondrial membrane potential, under different respiratory states. The latter required the coupling of the integrated bioenergetics model to a pharmacokinetic model for the mitochondrial uptake of rhodamine 123 from buffer. The integrated bioenergetics model provides a mechanistic and quantitative framework for 1) integrating experimental data from isolated lung mitochondria under diverse experimental conditions, and 2) assessing the impact of a change in one or more mitochondrial processes on overall lung mitochondrial bioenergetics. In addition, the model provides important insights into the bioenergetics and respiration of lung mitochondria and how they differ from those of mitochondria from other organs. To the best of our knowledge, this model is the first for the bioenergetics of isolated lung mitochondria.
Modeling and Parameter Estimation of Spacecraft Fuel Slosh with Diaphragms Using Pendulum Analogs
NASA Technical Reports Server (NTRS)
Chatman, Yadira; Gangadharan, Sathya; Schlee, Keith; Ristow, James; Suderman, James; Walker, Charles; Hubert, Carl
2007-01-01
Prediction and control of liquid slosh in moving containers is an important consideration in the design of spacecraft and launch vehicle control systems. Even with modern computing systems, CFD type simulations are not fast enough to allow for large scale Monte Carlo analyses of spacecraft and launch vehicle dynamic behavior with slosh included. It is still desirable to use some type of simplified mechanical analog for the slosh to shorten computation time. Analytic determination of the slosh analog parameters has met with mixed success and is made even more difficult by the introduction of propellant management devices such as elastomeric diaphragms. By subjecting full-sized fuel tanks with actual flight fuel loads to motion similar to that experienced in flight and measuring the forces experienced by the tanks, these parameters can be determined experimentally. Currently, the identification of the model parameters is a laborious trial-and-error process in which the hand-derived equations of motion for the mechanical analog are evaluated and their results compared with the experimental results. This paper will describe efforts by the university component of a team comprised of NASA's Launch Services Program, Embry Riddle Aeronautical University, Southwest Research Institute and Hubert Astronautics to improve the accuracy and efficiency of modeling techniques used to predict these types of motions. Of particular interest is the effect of diaphragms and bladders on the slosh dynamics and how best to model these devices. The previous research was an effort to automate the process of slosh model parameter identification using a MATLAB/SimMechanics-based computer simulation. These results are the first step in applying the same computer estimation to a full-size tank and vehicle propulsion system. The introduction of diaphragms to this experimental set-up will aid in a better and more complete prediction of fuel slosh characteristics and behavior. Automating the parameter identification process will save time and thus allow earlier identification of potential vehicle performance problems.
Edge Modeling by Two Blur Parameters in Varying Contrasts.
Seo, Suyoung
2018-06-01
This paper presents a method of modeling edge profiles with two blur parameters, and estimating and predicting those edge parameters with varying brightness combinations and camera-to-object distances (COD). First, the validity of the edge model is proven mathematically. Then, it is proven experimentally with edges from a set of images captured for specifically designed target sheets and with edges from natural images. Estimation of the two blur parameters for each observed edge profile is performed with a brute-force method to find parameters that produce global minimum errors. Then, using the estimated blur parameters, actual blur parameters of edges with arbitrary brightness combinations are predicted using a surface interpolation method (i.e., kriging). The predicted surfaces show that the two blur parameters of the proposed edge model depend on both dark-side edge brightness and light-side edge brightness following a certain global trend. This is similar across varying CODs. The proposed edge model is compared with a one-blur parameter edge model using experiments of the root mean squared error for fitting the edge models to each observed edge profile. The comparison results suggest that the proposed edge model has superiority over the one-blur parameter edge model in most cases where edges have varying brightness combinations.
Post-Test Analysis of 11% Break at PSB-VVER Experimental Facility using Cathare 2 Code
NASA Astrophysics Data System (ADS)
Sabotinov, Luben; Chevrier, Patrick
The best estimate French thermal-hydraulic computer code CATHARE 2 Version 2.5_1 was used for post-test analysis of the experiment “11% upper plenum break”, conducted at the large-scale test facility PSB-VVER in Russia. The PSB rig is 1:300 scaled model of VVER-1000 NPP. A computer model has been developed for CATHARE 2 V2.5_1, taking into account all important components of the PSB facility: reactor model (lower plenum, core, bypass, upper plenum, downcomer), 4 separated loops, pressurizer, horizontal multitube steam generators, break section. The secondary side is represented by recirculation model. A large number of sensitivity calculations has been performed regarding break modeling, reactor pressure vessel modeling, counter current flow modeling, hydraulic losses, heat losses. The comparison between calculated and experimental results shows good prediction of the basic thermal-hydraulic phenomena and parameters such as pressures, temperatures, void fractions, loop seal clearance, etc. The experimental and calculation results are very sensitive regarding the fuel cladding temperature, which show a periodical nature. With the applied CATHARE 1D modeling, the global thermal-hydraulic parameters and the core heat up have been reasonably predicted.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bamgbade, Babatunde A; Wu, Yue; Baled, Hseen O
2013-08-01
Experimental high-temperature, high-pressure (HTHP) density data for bis(2-ethylhexyl) phthalate (DEHP) are reported in this study. DEHP is a popular choice as a reference fluid for viscosity calibrations in the HTHP region. However, reliable HTHP density values are needed for accurate viscosity calculations for certain viscometers (e.g. rolling ball). HTHP densities are determined at T = (373, 424, 476, 492, and 524) K and P to 270 MPa using a variable-volume, high-pressure view cell. The experimental density data are satisfactorily correlated by the modified Tait equation with a mean absolute percent deviation (δ) of 0.15. The experimental data are modeled withmore » the Peng–Robinson (PREoS), volume-translated PREoS (VT-PREoS), and perturbed chain statistical associating fluid theory (PC-SAFT EoS) models. The required parameters for the two PREoS and the PC-SAFT EoS models are determined using group contribution methods. The PC-SAFT EoS performs the best of the three models with a δ of 2.12. The PC-SAFT EoS is also fit to the experimental data to obtain a new set of pure component parameters that yield a δ of 0.20 for these HTHP conditions.« less
Constraining the symmetry energy with heavy-ion collisions and Bayesian analysis
NASA Astrophysics Data System (ADS)
Tsang, C. Y.; Jhang, G.; Morfouace, P.; Lynch, W. G.; Tsang, M. B.; HiRA Collaboration
2017-09-01
To extract constraints on symmetry energy terms in nuclear Equation of State (EoS), data from heavy ion reactions, are often compared to calculations from transport models. As multiple model input parameters are needed in the transport model, it is necessary to do multi-parameter analysis to understand the relationship especially if strong correlations exist among the parameters. In this talk, I will discuss how four symmetry energy parameters, So, (Symmetry energy) and L (slope) at saturation density as well as the nucleon scaler effective mass (ms*) and the nucleon effective mass splitting, (FI) are obtained by comparing transport mode results with experimental data such as isospin diffusions and n/p spectral ratios using MADAI Bayesian analysis software. Probability of each parameter having a certain value given experimental data can be calculated with Bayes theorem by Markov Chain Monte Carlo integration. Results using single and double ratios of neutron and proton spectra from 124Sn +124Sn, 112Sn +112Sn collisions at 120 MeV/u as well as isospin diffusion from Sn +Sn isotopes, at 50 and 35 MeV/u will be presented. This research is supported by the National Science Foundation under Grant No. PHY-1565546.
Model Construction and Analysis of Respiration in Halobacterium salinarum.
Talaue, Cherryl O; del Rosario, Ricardo C H; Pfeiffer, Friedhelm; Mendoza, Eduardo R; Oesterhelt, Dieter
2016-01-01
The archaeon Halobacterium salinarum can produce energy using three different processes, namely photosynthesis, oxidative phosphorylation and fermentation of arginine, and is thus a model organism in bioenergetics. Compared to its bacteriorhodopsin-driven photosynthesis, less attention has been devoted to modeling its respiratory pathway. We created a system of ordinary differential equations that models its oxidative phosphorylation. The model consists of the electron transport chain, the ATP synthase, the potassium uniport and the sodium-proton antiport. By fitting the model parameters to experimental data, we show that the model can explain data on proton motive force generation, ATP production, and the charge balancing of ions between the sodium-proton antiporter and the potassium uniport. We performed sensitivity analysis of the model parameters to determine how the model will respond to perturbations in parameter values. The model and the parameters we derived provide a resource that can be used for analytical studies of the bioenergetics of H. salinarum.
Structural similitude and design of scaled down laminated models
NASA Technical Reports Server (NTRS)
Simitses, G. J.; Rezaeepazhand, J.
1993-01-01
The excellent mechanical properties of laminated composite structures make them prime candidates for wide variety of applications in aerospace, mechanical and other branches of engineering. The enormous design flexibility of advanced composites is obtained at the cost of large number of design parameters. Due to complexity of the systems and lack of complete design based informations, designers tend to be conservative in their design. Furthermore, any new design is extensively evaluated experimentally until it achieves the necessary reliability, performance and safety. However, the experimental evaluation of composite structures are costly and time consuming. Consequently, it is extremely useful if a full-scale structure can be replaced by a similar scaled-down model which is much easier to work with. Furthermore, a dramatic reduction in cost and time can be achieved, if available experimental data of a specific structure can be used to predict the behavior of a group of similar systems. This study investigates problems associated with the design of scaled models. Such study is important since it provides the necessary scaling laws, and the factors which affect the accuracy of the scale models. Similitude theory is employed to develop the necessary similarity conditions (scaling laws). Scaling laws provide relationship between a full-scale structure and its scale model, and can be used to extrapolate the experimental data of a small, inexpensive, and testable model into design information for a large prototype. Due to large number of design parameters, the identification of the principal scaling laws by conventional method (dimensional analysis) is tedious. Similitude theory based on governing equations of the structural system is more direct and simpler in execution. The difficulty of making completely similar scale models often leads to accept certain type of distortion from exact duplication of the prototype (partial similarity). Both complete and partial similarity are discussed. The procedure consists of systematically observing the effect of each parameter and corresponding scaling laws. Then acceptable intervals and limitations for these parameters and scaling laws are discussed. In each case, a set of valid scaling factors and corresponding response scaling laws that accurately predict the response of prototypes from experimental models is introduced. The examples used include rectangular laminated plates under destabilizing loads, applied individually, vibrational characteristics of same plates, as well as cylindrical bending of beam-plates.
Lehnert, Teresa; Timme, Sandra; Pollmächer, Johannes; Hünniger, Kerstin; Kurzai, Oliver; Figge, Marc Thilo
2015-01-01
Opportunistic fungal pathogens can cause bloodstream infection and severe sepsis upon entering the blood stream of the host. The early immune response in human blood comprises the elimination of pathogens by antimicrobial peptides and innate immune cells, such as neutrophils or monocytes. Mathematical modeling is a predictive method to examine these complex processes and to quantify the dynamics of pathogen-host interactions. Since model parameters are often not directly accessible from experiment, their estimation is required by calibrating model predictions with experimental data. Depending on the complexity of the mathematical model, parameter estimation can be associated with excessively high computational costs in terms of run time and memory. We apply a strategy for reliable parameter estimation where different modeling approaches with increasing complexity are used that build on one another. This bottom-up modeling approach is applied to an experimental human whole-blood infection assay for Candida albicans. Aiming for the quantification of the relative impact of different routes of the immune response against this human-pathogenic fungus, we start from a non-spatial state-based model (SBM), because this level of model complexity allows estimating a priori unknown transition rates between various system states by the global optimization method simulated annealing. Building on the non-spatial SBM, an agent-based model (ABM) is implemented that incorporates the migration of interacting cells in three-dimensional space. The ABM takes advantage of estimated parameters from the non-spatial SBM, leading to a decreased dimensionality of the parameter space. This space can be scanned using a local optimization approach, i.e., least-squares error estimation based on an adaptive regular grid search, to predict cell migration parameters that are not accessible in experiment. In the future, spatio-temporal simulations of whole-blood samples may enable timely stratification of sepsis patients by distinguishing hyper-inflammatory from paralytic phases in immune dysregulation. PMID:26150807
Lehnert, Teresa; Timme, Sandra; Pollmächer, Johannes; Hünniger, Kerstin; Kurzai, Oliver; Figge, Marc Thilo
2015-01-01
Opportunistic fungal pathogens can cause bloodstream infection and severe sepsis upon entering the blood stream of the host. The early immune response in human blood comprises the elimination of pathogens by antimicrobial peptides and innate immune cells, such as neutrophils or monocytes. Mathematical modeling is a predictive method to examine these complex processes and to quantify the dynamics of pathogen-host interactions. Since model parameters are often not directly accessible from experiment, their estimation is required by calibrating model predictions with experimental data. Depending on the complexity of the mathematical model, parameter estimation can be associated with excessively high computational costs in terms of run time and memory. We apply a strategy for reliable parameter estimation where different modeling approaches with increasing complexity are used that build on one another. This bottom-up modeling approach is applied to an experimental human whole-blood infection assay for Candida albicans. Aiming for the quantification of the relative impact of different routes of the immune response against this human-pathogenic fungus, we start from a non-spatial state-based model (SBM), because this level of model complexity allows estimating a priori unknown transition rates between various system states by the global optimization method simulated annealing. Building on the non-spatial SBM, an agent-based model (ABM) is implemented that incorporates the migration of interacting cells in three-dimensional space. The ABM takes advantage of estimated parameters from the non-spatial SBM, leading to a decreased dimensionality of the parameter space. This space can be scanned using a local optimization approach, i.e., least-squares error estimation based on an adaptive regular grid search, to predict cell migration parameters that are not accessible in experiment. In the future, spatio-temporal simulations of whole-blood samples may enable timely stratification of sepsis patients by distinguishing hyper-inflammatory from paralytic phases in immune dysregulation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belousov, V. I.; Ezhela, V. V.; Kuyanov, Yu. V., E-mail: Yu.Kuyanov@gmail.com
The experience of using the dynamic atlas of the experimental data and mathematical models of their description in the problems of adjusting parametric models of observable values depending on kinematic variables is presented. The functional possibilities of an image of a large number of experimental data and the models describing them are shown by examples of data and models of observable values determined by the amplitudes of elastic scattering of hadrons. The Internet implementation of an interactive tool DaMoScope and its interface with the experimental data and codes of adjusted parametric models with the parameters of the best description ofmore » data are schematically shown. The DaMoScope codes are freely available.« less
The influence of distance between vehicles in platoon on aerodynamic parameters
NASA Astrophysics Data System (ADS)
Gnatowska, Renata; Sosnowski, Marcin
2018-06-01
The paper presents the results of experimental and numerical research focused on the reduction of fuel consumption of vehicles driving one after another in a so-called platoon arrangement. The aerodynamic parameters and safety issues were analyzed in order to determine the optimal distance between the vehicles in traffic conditions. The experimental research delivered the results concerning the drag and was performed for simplified model of two vehicles positioned in wind tunnel equipped with aerodynamic balance. The additional numerical analysis allowed investigating the pressure and velocity fields as well as other aerodynamics parameters of the test case.
NASA Astrophysics Data System (ADS)
Mayotte, Jean-Marc; Grabs, Thomas; Sutliff-Johansson, Stacy; Bishop, Kevin
2017-06-01
This study examined how the inactivation of bacteriophage MS2 in water was affected by ionic strength (IS) and dissolved organic carbon (DOC) using static batch inactivation experiments at 4 °C conducted over a period of 2 months. Experimental conditions were characteristic of an operational managed aquifer recharge (MAR) scheme in Uppsala, Sweden. Experimental data were fit with constant and time-dependent inactivation models using two methods: (1) traditional linear and nonlinear least-squares techniques; and (2) a Monte-Carlo based parameter estimation technique called generalized likelihood uncertainty estimation (GLUE). The least-squares and GLUE methodologies gave very similar estimates of the model parameters and their uncertainty. This demonstrates that GLUE can be used as a viable alternative to traditional least-squares parameter estimation techniques for fitting of virus inactivation models. Results showed a slight increase in constant inactivation rates following an increase in the DOC concentrations, suggesting that the presence of organic carbon enhanced the inactivation of MS2. The experiment with a high IS and a low DOC was the only experiment which showed that MS2 inactivation may have been time-dependent. However, results from the GLUE methodology indicated that models of constant inactivation were able to describe all of the experiments. This suggested that inactivation time-series longer than 2 months were needed in order to provide concrete conclusions regarding the time-dependency of MS2 inactivation at 4 °C under these experimental conditions.
Wang, Tianmiao; Wu, Yao; Liang, Jianhong; Han, Chenhao; Chen, Jiao; Zhao, Qiteng
2015-01-01
Skid-steering mobile robots are widely used because of their simple mechanism and robustness. However, due to the complex wheel-ground interactions and the kinematic constraints, it is a challenge to understand the kinematics and dynamics of such a robotic platform. In this paper, we develop an analysis and experimental kinematic scheme for a skid-steering wheeled vehicle based-on a laser scanner sensor. The kinematics model is established based on the boundedness of the instantaneous centers of rotation (ICR) of treads on the 2D motion plane. The kinematic parameters (the ICR coefficient χ, the path curvature variable λ and robot speed v), including the effect of vehicle dynamics, are introduced to describe the kinematics model. Then, an exact but costly dynamic model is used and the simulation of this model’s stationary response for the vehicle shows a qualitative relationship for the specified parameters χ and λ. Moreover, the parameters of the kinematic model are determined based-on a laser scanner localization experimental analysis method with a skid-steering robotic platform, Pioneer P3-AT. The relationship between the ICR coefficient χ and two physical factors is studied, i.e., the radius of the path curvature λ and the robot speed v. An empirical function-based relationship between the ICR coefficient of the robot and the path parameters is derived. To validate the obtained results, it is empirically demonstrated that the proposed kinematics model significantly improves the dead-reckoning performance of this skid–steering robot. PMID:25919370
Uncertainty in dual permeability model parameters for structured soils.
Arora, B; Mohanty, B P; McGuire, J T
2012-01-01
Successful application of dual permeability models (DPM) to predict contaminant transport is contingent upon measured or inversely estimated soil hydraulic and solute transport parameters. The difficulty in unique identification of parameters for the additional macropore- and matrix-macropore interface regions, and knowledge about requisite experimental data for DPM has not been resolved to date. Therefore, this study quantifies uncertainty in dual permeability model parameters of experimental soil columns with different macropore distributions (single macropore, and low- and high-density multiple macropores). Uncertainty evaluation is conducted using adaptive Markov chain Monte Carlo (AMCMC) and conventional Metropolis-Hastings (MH) algorithms while assuming 10 out of 17 parameters to be uncertain or random. Results indicate that AMCMC resolves parameter correlations and exhibits fast convergence for all DPM parameters while MH displays large posterior correlations for various parameters. This study demonstrates that the choice of parameter sampling algorithms is paramount in obtaining unique DPM parameters when information on covariance structure is lacking, or else additional information on parameter correlations must be supplied to resolve the problem of equifinality of DPM parameters. This study also highlights the placement and significance of matrix-macropore interface in flow experiments of soil columns with different macropore densities. Histograms for certain soil hydraulic parameters display tri-modal characteristics implying that macropores are drained first followed by the interface region and then by pores of the matrix domain in drainage experiments. Results indicate that hydraulic properties and behavior of the matrix-macropore interface is not only a function of saturated hydraulic conductivity of the macroporematrix interface ( K sa ) and macropore tortuosity ( l f ) but also of other parameters of the matrix and macropore domains.
Uncertainty in dual permeability model parameters for structured soils
NASA Astrophysics Data System (ADS)
Arora, B.; Mohanty, B. P.; McGuire, J. T.
2012-01-01
Successful application of dual permeability models (DPM) to predict contaminant transport is contingent upon measured or inversely estimated soil hydraulic and solute transport parameters. The difficulty in unique identification of parameters for the additional macropore- and matrix-macropore interface regions, and knowledge about requisite experimental data for DPM has not been resolved to date. Therefore, this study quantifies uncertainty in dual permeability model parameters of experimental soil columns with different macropore distributions (single macropore, and low- and high-density multiple macropores). Uncertainty evaluation is conducted using adaptive Markov chain Monte Carlo (AMCMC) and conventional Metropolis-Hastings (MH) algorithms while assuming 10 out of 17 parameters to be uncertain or random. Results indicate that AMCMC resolves parameter correlations and exhibits fast convergence for all DPM parameters while MH displays large posterior correlations for various parameters. This study demonstrates that the choice of parameter sampling algorithms is paramount in obtaining unique DPM parameters when information on covariance structure is lacking, or else additional information on parameter correlations must be supplied to resolve the problem of equifinality of DPM parameters. This study also highlights the placement and significance of matrix-macropore interface in flow experiments of soil columns with different macropore densities. Histograms for certain soil hydraulic parameters display tri-modal characteristics implying that macropores are drained first followed by the interface region and then by pores of the matrix domain in drainage experiments. Results indicate that hydraulic properties and behavior of the matrix-macropore interface is not only a function of saturated hydraulic conductivity of the macroporematrix interface (Ksa) and macropore tortuosity (lf) but also of other parameters of the matrix and macropore domains.
NASA Astrophysics Data System (ADS)
Pignon, Baptiste; Sobotka, Vincent; Boyard, Nicolas; Delaunay, Didier
2017-10-01
Two different analytical models were presented to determine cycle parameters of thermoplastics injection process. The aim of these models was to provide quickly a first set of data for mold temperature and cooling time. The first model is specific to amorphous polymers and the second one is dedicated to semi-crystalline polymers taking the crystallization into account. In both cases, the nature of the contact between the polymer and the mold could be considered as perfect or not (thermal contact resistance was considered). Results from models are compared with experimental data obtained with an instrumented mold for an acrylonitrile butadiene styrene (ABS) and a polypropylene (PP). Good agreements were obtained for mold temperature variation and for heat flux. In the case of the PP, the analytical crystallization times were compared with those given by a coupled model between heat transfer and crystallization kinetics.
Modelling and tuning for a time-delayed vibration absorber with friction
NASA Astrophysics Data System (ADS)
Zhang, Xiaoxu; Xu, Jian; Ji, Jinchen
2018-06-01
This paper presents an integrated analytical and experimental study to the modelling and tuning of a time-delayed vibration absorber (TDVA) with friction. In system modelling, this paper firstly applies the method of averaging to obtain the frequency response function (FRF), and then uses the derived FRF to evaluate the fitness of different friction models. After the determination of the system model, this paper employs the obtained FRF to evaluate the vibration absorption performance with respect to tunable parameters. A significant feature of the TDVA with friction is that its stability is dependent on the excitation parameters. To ensure the stability of the time-delayed control, this paper defines a sufficient condition for stability estimation. Experimental measurements show that the dynamic response of the TDVA with friction can be accurately predicted and the time-delayed control can be precisely achieved by using the modelling and tuning technique provided in this paper.
Nicoulaud-Gouin, V; Garcia-Sanchez, L; Giacalone, M; Attard, J C; Martin-Garin, A; Bois, F Y
2016-10-01
This paper addresses the methodological conditions -particularly experimental design and statistical inference- ensuring the identifiability of sorption parameters from breakthrough curves measured during stirred flow-through reactor experiments also known as continuous flow stirred-tank reactor (CSTR) experiments. The equilibrium-kinetic (EK) sorption model was selected as nonequilibrium parameterization embedding the K d approach. Parameter identifiability was studied formally on the equations governing outlet concentrations. It was also studied numerically on 6 simulated CSTR experiments on a soil with known equilibrium-kinetic sorption parameters. EK sorption parameters can not be identified from a single breakthrough curve of a CSTR experiment, because K d,1 and k - were diagnosed collinear. For pairs of CSTR experiments, Bayesian inference allowed to select the correct models of sorption and error among sorption alternatives. Bayesian inference was conducted with SAMCAT software (Sensitivity Analysis and Markov Chain simulations Applied to Transfer models) which launched the simulations through the embedded simulation engine GNU-MCSim, and automated their configuration and post-processing. Experimental designs consisting in varying flow rates between experiments reaching equilibrium at contamination stage were found optimal, because they simultaneously gave accurate sorption parameters and predictions. Bayesian results were comparable to maximum likehood method but they avoided convergence problems, the marginal likelihood allowed to compare all models, and credible interval gave directly the uncertainty of sorption parameters θ. Although these findings are limited to the specific conditions studied here, in particular the considered sorption model, the chosen parameter values and error structure, they help in the conception and analysis of future CSTR experiments with radionuclides whose kinetic behaviour is suspected. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, Hongmei; Wang, Yue; Fatemi, Mostafa; Insana, Michael F.
2017-03-01
Kelvin-Voigt fractional derivative (KVFD) model parameters have been used to describe viscoelastic properties of soft tissues. However, translating model parameters into a concise set of intrinsic mechanical properties related to tissue composition and structure remains challenging. This paper begins by exploring these relationships using a biphasic emulsion materials with known composition. Mechanical properties are measured by analyzing data from two indentation techniques—ramp-stress relaxation and load-unload hysteresis tests. Material composition is predictably correlated with viscoelastic model parameters. Model parameters estimated from the tests reveal that elastic modulus E 0 closely approximates the shear modulus for pure gelatin. Fractional-order parameter α and time constant τ vary monotonically with the volume fraction of the material’s fluid component. α characterizes medium fluidity and the rate of energy dissipation, and τ is a viscous time constant. Numerical simulations suggest that the viscous coefficient η is proportional to the energy lost during quasi-static force-displacement cycles, E A . The slope of E A versus η is determined by α and the applied indentation ramp time T r. Experimental measurements from phantom and ex vivo liver data show close agreement with theoretical predictions of the η -{{E}A} relation. The relative error is less than 20% for emulsions 22% for liver. We find that KVFD model parameters form a concise features space for biphasic medium characterization that described time-varying mechanical properties. The experimental work was carried out at the Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA. Methodological development, including numerical simulation and all data analysis, were carried out at the school of Life Science and Technology, Xi’an JiaoTong University, 710049, China.
Experimental study and simulation of space charge stimulated discharge
NASA Astrophysics Data System (ADS)
Noskov, M. D.; Malinovski, A. S.; Cooke, C. M.; Wright, K. A.; Schwab, A. J.
2002-11-01
The electrical discharge of volume distributed space charge in poly(methylmethacrylate) (PMMA) has been investigated both experimentally and by computer simulation. The experimental space charge was implanted in dielectric samples by exposure to a monoenergetic electron beam of 3 MeV. Electrical breakdown through the implanted space charge region within the sample was initiated by a local electric field enhancement applied to the sample surface. A stochastic-deterministic dynamic model for electrical discharge was developed and used in a computer simulation of these breakdowns. The model employs stochastic rules to describe the physical growth of the discharge channels, and deterministic laws to describe the electric field, the charge, and energy dynamics within the discharge channels and the dielectric. Simulated spatial-temporal and current characteristics of the expanding discharge structure during physical growth are quantitatively compared with the experimental data to confirm the discharge model. It was found that a single fixed set of physically based dielectric parameter values was adequate to simulate the complete family of experimental space charge discharges in PMMA. It is proposed that such a set of parameters also provides a useful means to quantify the breakdown properties of other dielectrics.
CHARMM Drude Polarizable Force Field for Aldopentofuranoses and Methyl-aldopentofuranosides
Jana, Madhurima; MacKerell, Alexander D.
2015-01-01
An empirical all-atom CHARMM polarizable force filed for aldopentofuranoses and methyl-aldopentofuranosides based on the classical Drude oscillator is presented. A single electrostatic model is developed for eight different diastereoisomers of aldopentofuranoses by optimizing the existing electrostatic and bonded parameters as transferred from ethers, alcohols and hexopyranoses to reproduce quantum mechanical (QM) dipole moments, furanose-water interaction energies and conformational energies. Optimization of selected electrostatic and dihedral parameters was performed to generate a model for methyl-aldopentofuranosides. Accuracy of the model was tested by reproducing experimental data for crystal intramolecular geometries and lattice unit cell parameters, aqueous phase densities, and ring pucker and exocyclic rotamer populations as obtained from NMR experiments. In most cases the model is found to reproduce both QM data and experimental observables in an excellent manner, while for the remainder the level of agreement is in the satisfactory regimen. In aqueous phase simulations the monosaccharides have significantly enhanced dipoles as compared to the gas phase. The final model from this study is transferrable for future studies on carbohydrates and can be used with the existing CHARMM Drude polarizable force field for biomolecules. PMID:26018564
Model-based POD study of manual ultrasound inspection and sensitivity analysis using metamodel
NASA Astrophysics Data System (ADS)
Ribay, Guillemette; Artusi, Xavier; Jenson, Frédéric; Reece, Christopher; Lhuillier, Pierre-Emile
2016-02-01
The reliability of NDE can be quantified by using the Probability of Detection (POD) approach. Former studies have shown the potential of the model-assisted POD (MAPOD) approach to replace expensive experimental determination of POD curves. In this paper, we make use of CIVA software to determine POD curves for a manual ultrasonic inspection of a heavy component, for which a whole experimental POD campaign was not available. The influential parameters were determined by expert analysis. The semi-analytical models used in CIVA for wave propagation and beam-defect interaction have been validated in the range of variation of the influential parameters by comparison with finite element modelling (Athena). The POD curves are computed for « hit/miss » and « â versus a » analysis. The verification of Berens hypothesis is evaluated by statistical tools. A sensitivity study is performed to measure the relative influence of parameters on the defect response amplitude variance, using the Sobol sensitivity index. A meta-model is also built to reduce computing cost and enhance the precision of estimated index.
NASA Astrophysics Data System (ADS)
Marchand, Gabriel; Soetens, Jean-Christophe; Jacquemin, Denis; Bopp, Philippe A.
2015-12-01
We demonstrate that different sets of Lennard-Jones parameters proposed for the Na+ ion, in conjunction with the empirical combining rules routinely used in simulation packages, can lead to essentially different equilibrium structures for a deprotonated poly-L-glutamic acid molecule (poly-L-glutamate) dissolved in a 0.3M aqueous NaCl solution. It is, however, difficult to discriminate a priori between these model potentials; when investigating the structure of the Na+-solvation shell in bulk NaCl solution, all parameter sets lead to radial distribution functions and solvation numbers in broad agreement with the available experimental data. We do not find any such dependency of the equilibrium structure on the parameters associated with the Cl- ion. This work does not aim at recommending a particular set of parameters for any particular purpose. Instead, it stresses the model dependence of simulation results for complex systems such as biomolecules in solution and thus the difficulties if simulations are to be used for unbiased predictions, or to discriminate between contradictory experiments. However, this opens the possibility of validating a model specifically in view of analyzing experimental data believed to be reliable.
Carbon dioxide stripping in aquaculture -- part III: model verification
Colt, John; Watten, Barnaby; Pfeiffer, Tim
2012-01-01
Based on conventional mass transfer models developed for oxygen, the use of the non-linear ASCE method, 2-point method, and one parameter linear-regression method were evaluated for carbon dioxide stripping data. For values of KLaCO2 < approximately 1.5/h, the 2-point or ASCE method are a good fit to experimental data, but the fit breaks down at higher values of KLaCO2. How to correct KLaCO2 for gas phase enrichment remains to be determined. The one-parameter linear regression model was used to vary the C*CO2 over the test, but it did not result in a better fit to the experimental data when compared to the ASCE or fixed C*CO2 assumptions.
Evaluating the 239Pu prompt fission neutron spectrum induced by thermal to 30 MeV neutrons
Neudecker, Denise; Talou, Patrick; Kawano, Toshihiko; ...
2016-03-15
We present a new evaluation of the 239Pu prompt fission neutron spectrum (PFNS) induced by thermal to 30 MeV neutrons. Compared to the ENDF/B-VII.1 evaluation, this one includes recently published experimental data as well as an improved and extended model description to predict PFNS. For instance, the pre-equilibrium neutron emission component to the PFNS is considered and the incident energy dependence of model parameters is parametrized more realistically. Experimental and model parameter uncertainties and covariances are estimated in detail. Also, evaluated covariances are provided between all PFNS at different incident neutron energies. In conclusion, selected evaluation results and first benchmarkmore » calculations using this evaluation are briefly discussed.« less
Prediction of breakdown strength of cellulosic insulating materials using artificial neural networks
NASA Astrophysics Data System (ADS)
Singh, Sakshi; Mohsin, M. M.; Masood, Aejaz
In this research work, a few sets of experiments have been performed in high voltage laboratory on various cellulosic insulating materials like diamond-dotted paper, paper phenolic sheets, cotton phenolic sheets, leatheroid, and presspaper, to measure different electrical parameters like breakdown strength, relative permittivity, loss tangent, etc. Considering the dependency of breakdown strength on other physical parameters, different Artificial Neural Network (ANN) models are proposed for the prediction of breakdown strength. The ANN model results are compared with those obtained experimentally and also with the values already predicted from an empirical relation suggested by Swanson and Dall. The reported results indicated that the breakdown strength predicted from the ANN model is in good agreement with the experimental values.
Acoustic energy relations in Mudejar-Gothic churches.
Zamarreño, Teófilo; Girón, Sara; Galindo, Miguel
2007-01-01
Extensive objective energy-based parameters have been measured in 12 Mudejar-Gothic churches in the south of Spain. Measurements took place in unoccupied churches according to the ISO-3382 standard. Monoaural objective measures in the 125-4000 Hz frequency range and in their spatial distributions were obtained. Acoustic parameters: clarity C80, definition D50, sound strength G and center time Ts have been deduced using impulse response analysis through a maximum length sequence measurement system in each church. These parameters spectrally averaged according to the most extended criteria in auditoria in order to consider acoustic quality were studied as a function of source-receiver distance. The experimental results were compared with predictions given by classical and other existing theoretical models proposed for concert halls and churches. An analytical semi-empirical model based on the measured values of the C80 parameter is proposed in this work for these spaces. The good agreement between predicted values and experimental data for definition, sound strength, and center time in the churches analyzed shows that the model can be used for design predictions and other purposes with reasonable accuracy.
Comprehensive overview of the Point-by-Point model of prompt emission in fission
NASA Astrophysics Data System (ADS)
Tudora, A.; Hambsch, F.-J.
2017-08-01
The investigation of prompt emission in fission is very important in understanding the fission process and to improve the quality of evaluated nuclear data required for new applications. In the last decade remarkable efforts were done for both the development of prompt emission models and the experimental investigation of the properties of fission fragments and the prompt neutrons and γ-ray emission. The accurate experimental data concerning the prompt neutron multiplicity as a function of fragment mass and total kinetic energy for 252Cf(SF) and 235 ( n, f) recently measured at JRC-Geel (as well as other various prompt emission data) allow a consistent and very detailed validation of the Point-by-Point (PbP) deterministic model of prompt emission. The PbP model results describe very well a large variety of experimental data starting from the multi-parametric matrices of prompt neutron multiplicity ν (A,TKE) and γ-ray energy E_{γ}(A,TKE) which validate the model itself, passing through different average prompt emission quantities as a function of A ( e.g., ν(A), E_{γ}(A), < ɛ > (A) etc.), as a function of TKE ( e.g., ν (TKE), E_{γ}(TKE)) up to the prompt neutron distribution P (ν) and the total average prompt neutron spectrum. The PbP model does not use free or adjustable parameters. To calculate the multi-parametric matrices it needs only data included in the reference input parameter library RIPL of IAEA. To provide average prompt emission quantities as a function of A, of TKE and total average quantities the multi-parametric matrices are averaged over reliable experimental fragment distributions. The PbP results are also in agreement with the results of the Monte Carlo prompt emission codes FIFRELIN, CGMF and FREYA. The good description of a large variety of experimental data proves the capability of the PbP model to be used in nuclear data evaluations and its reliability to predict prompt emission data for fissioning nuclei and incident energies for which the experimental information is completely missing. The PbP treatment can also provide input parameters of the improved Los Alamos model with non-equal residual temperature distributions recently reported by Madland and Kahler, especially for fissioning nuclei without any experimental information concerning the prompt emission.
NASA Technical Reports Server (NTRS)
Dalling, D. K.; Bailey, B. K.; Pugmire, R. J.
1984-01-01
A proton and carbon-13 nuclear magnetic resonance (NMR) study was conducted of Ashland shale oil refinery products, experimental referee broadened-specification jet fuels, and of related isoprenoid model compounds. Supercritical fluid chromatography techniques using carbon dioxide were developed on a preparative scale, so that samples could be quantitatively separated into saturates and aromatic fractions for study by NMR. An optimized average parameter treatment was developed, and the NMR results were analyzed in terms of the resulting average parameters; formulation of model mixtures was demonstrated. Application of novel spectroscopic techniques to fuel samples was investigated.
Energy levels scheme simulation of divalent cobalt doped bismuth germanate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andreici, Emiliana-Laura, E-mail: andreicilaura@yahoo.com; Petkova, Petya; Avram, Nicolae M.
The aim of this paper is to simulate the energy levels scheme for Bismuth Germanate (BGO) doped with divalent cobalt, in order to give a reliable explanation for spectral experimental data. In the semiempirical crystal field theory we first modeled the Crystal Field Parameters (CFPs) of BGO:Cr{sup 2+} system, in the frame of Exchange Charge Model (ECM), with actually site symmetry of the impurity ions after doping. The values of CFPs depend on the geometry of doped host matrix and by parameter G of ECM. First, we optimized the geometry of undoped BGO host matrix and afterwards, that of dopedmore » BGO with divalent cobalt. The charges effect of ligands and covalence bonding between cobalt cations and oxygen anions, in the cluster approach, also were taken into account. With the obtained values of the CFPs we simulate the energy levels scheme of cobalt ions, by diagonalizing the matrix of the doped crystal Hamiltonian. Obviously, energy levels and estimated Racah parameters B and C were compared with the experimental spectroscopic data and discussed. Comparison of obtained results with experimental data shows quite satisfactory, which justify the model and simulation schemes used for the title system.« less
A Comprehensive Validation Methodology for Sparse Experimental Data
NASA Technical Reports Server (NTRS)
Norman, Ryan B.; Blattnig, Steve R.
2010-01-01
A comprehensive program of verification and validation has been undertaken to assess the applicability of models to space radiation shielding applications and to track progress as models are developed over time. The models are placed under configuration control, and automated validation tests are used so that comparisons can readily be made as models are improved. Though direct comparisons between theoretical results and experimental data are desired for validation purposes, such comparisons are not always possible due to lack of data. In this work, two uncertainty metrics are introduced that are suitable for validating theoretical models against sparse experimental databases. The nuclear physics models, NUCFRG2 and QMSFRG, are compared to an experimental database consisting of over 3600 experimental cross sections to demonstrate the applicability of the metrics. A cumulative uncertainty metric is applied to the question of overall model accuracy, while a metric based on the median uncertainty is used to analyze the models from the perspective of model development by analyzing subsets of the model parameter space.
High fidelity studies of exploding foil initiator bridges, Part 3: ALEGRA MHD simulations
NASA Astrophysics Data System (ADS)
Neal, William; Garasi, Christopher
2017-01-01
Simulations of high voltage detonators, such as Exploding Bridgewire (EBW) and Exploding Foil Initiators (EFI), have historically been simple, often empirical, one-dimensional models capable of predicting parameters such as current, voltage, and in the case of EFIs, flyer velocity. Experimental methods have correspondingly generally been limited to the same parameters. With the advent of complex, first principles magnetohydrodynamic codes such as ALEGRA and ALE-MHD, it is now possible to simulate these components in three dimensions, and predict a much greater range of parameters than before. A significant improvement in experimental capability was therefore required to ensure these simulations could be adequately verified. In this third paper of a three part study, the experimental results presented in part 2 are compared against 3-dimensional MHD simulations. This improved experimental capability, along with advanced simulations, offer an opportunity to gain a greater understanding of the processes behind the functioning of EBW and EFI detonators.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pinilla, Maria Isabel
This report seeks to study and benchmark code predictions against experimental data; determine parameters to match MCNP-simulated detector response functions to experimental stilbene measurements; add stilbene processing capabilities to DRiFT; and improve NEUANCE detector array modeling and analysis using new MCNP6 and DRiFT features.
Metamodel-based inverse method for parameter identification: elastic-plastic damage model
NASA Astrophysics Data System (ADS)
Huang, Changwu; El Hami, Abdelkhalak; Radi, Bouchaïb
2017-04-01
This article proposed a metamodel-based inverse method for material parameter identification and applies it to elastic-plastic damage model parameter identification. An elastic-plastic damage model is presented and implemented in numerical simulation. The metamodel-based inverse method is proposed in order to overcome the disadvantage in computational cost of the inverse method. In the metamodel-based inverse method, a Kriging metamodel is constructed based on the experimental design in order to model the relationship between material parameters and the objective function values in the inverse problem, and then the optimization procedure is executed by the use of a metamodel. The applications of the presented material model and proposed parameter identification method in the standard A 2017-T4 tensile test prove that the presented elastic-plastic damage model is adequate to describe the material's mechanical behaviour and that the proposed metamodel-based inverse method not only enhances the efficiency of parameter identification but also gives reliable results.
Chromatogram simulation by area reproduction.
Boe, Bjarne
2007-01-12
A modified Poisson function has been developed for the simulation of chromatographic peaks. The proposed model is shown to have the property of exactly recreating the experimentally determined peak area. Model parameters are obtained directly from the experimental peak, and overlapping peaks are deconvoluted such that the area sum of overlapping peaks is kept unchanged. The method was applied to real, complex chromatograms.
Behavior of Industrial Steel Rack Connections
NASA Astrophysics Data System (ADS)
Shah, S. N. R.; Ramli Sulong, N. H.; Khan, R.; Jumaat, M. Z.; Shariati, M.
2016-03-01
Beam-to-column connections (BCCs) used in steel pallet racks (SPRs) play a significant role to maintain the stability of rack structures in the down-aisle direction. The variety in the geometry of commercially available beam end connectors hampers the development of a generalized analytic design approach for SPR BCCs. The experimental prediction of flexibility in SPR BCCs is prohibitively expensive and difficult for all types of commercially available beam end connectors. A suitable solution to derive a particular uniform M-θ relationship for each connection type in terms of geometric parameters may be achieved through finite element (FE) modeling. This study first presents a comprehensive description of the experimental investigations that were performed and used as the calibration bases for the numerical study that constituted its main contribution. A three dimensioned (3D) non-linear finite element (FE) model was developed and calibrated against the experimental results. The FE model took into account material nonlinearities, geometrical properties and large displacements. Comparisons between numerical and experimental data for observed failure modes and M-θ relationship showed close agreement. The validated FE model was further extended to perform parametric analysis to identify the effects of various parameters which may affect the overall performance of the connection.
Modeling of anomalous electron mobility in Hall thrusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koo, Justin W.; Boyd, Iain D.
Accurate modeling of the anomalous electron mobility is absolutely critical for successful simulation of Hall thrusters. In this work, existing computational models for the anomalous electron mobility are used to simulate the UM/AFRL P5 Hall thruster (a 5 kW laboratory model) in a two-dimensional axisymmetric hybrid particle-in-cell Monte Carlo collision code. Comparison to experimental results indicates that, while these computational models can be tuned to reproduce the correct thrust or discharge current, it is very difficult to match all integrated performance parameters (thrust, power, discharge current, etc.) simultaneously. Furthermore, multiple configurations of these computational models can produce reasonable integrated performancemore » parameters. A semiempirical electron mobility profile is constructed from a combination of internal experimental data and modeling assumptions. This semiempirical electron mobility profile is used in the code and results in more accurate simulation of both the integrated performance parameters and the mean potential profile of the thruster. Results indicate that the anomalous electron mobility, while absolutely necessary in the near-field region, provides a substantially smaller contribution to the total electron mobility in the high Hall current region near the thruster exit plane.« less
NASA Astrophysics Data System (ADS)
Tasdemir, Halil Ugur; Sayin, Ulku; Türkkan, Ercan; Ozmen, Ayhan
2016-04-01
Gamma irradiated single crystal of Guaifenesin (Glyceryl Guaiacolate), an important expectorant drug, were investigated with Electron Paramagnetic Resonance (EPR) spectroscopy between 123 and 333 K temperature at different orientations in the magnetic field. Considering the chemical structure and the experimental spectra of the gamma irradiated single crystal of guaifenesin sample, we assumed that alkoxy or alkyl-type paramagnetic species may be produced by irradiation. Depending on this assumption, eight possible alkoxy and alkyl-type radicals were modeled and EPR parameters of these modeled radicals were calculated using the B3LYP/6-311++G(d,p)-level of density functional theory (DFT). Theoretically calculated values of alkyl-type modeled radical(R3) are in good agreement with experimentally determined EPR parameters of single crystal. Furthermore, simulation spectra which are obtained by using the theoretical initial values are well matched with the experimental spectra. It was determined that a stable Cα •H2αCβHβCγH2γ (R3) alkyl radical was produced in the host crystal as a result of gamma irradiation.
Coluccelli, Nicola
2010-08-01
Modeling a real laser diode stack based on Zemax ray tracing software that operates in a nonsequential mode is reported. The implementation of the model is presented together with the geometric and optical parameters to be adjusted to calibrate the model and to match the simulated intensity irradiance profiles with the experimental profiles. The calibration of the model is based on a near-field and a far-field measurement. The validation of the model has been accomplished by comparing the simulated and experimental transverse irradiance profiles at different positions along the caustic formed by a lens. Spot sizes and waist location are predicted with a maximum error below 6%.
2009-09-01
physiologic mechanisms underlying experimental observations: a practical example☆ Sven Zenker, Andreas Hoeft Department of Anaesthesiology and...to describe experi - mental data (goodness of fit) and its complexity (number of parameters). Their use in macroscopic physiologic investigations...BSP, and BRS could either be identical or vary across interventions, resulting in models with 4 to 12 parameters. After digitizing the experimental data
2012-09-01
make end of life ( EOL ) and remaining useful life (RUL) estimations. Model-based prognostics approaches perform these tasks with the help of first...in parameters Degradation Modeling Parameter estimation Prediction Thermal / Electrical Stress Experimental Data State Space model RUL EOL ...distribution at given single time point kP , and use this for multi-step predictions to EOL . There are several methods which exits for selecting the sigma
NASA Astrophysics Data System (ADS)
Raghavan, Balaji; Niknezhad, Davood; Bernard, Fabrice; Kamali-Bernard, Siham
2016-09-01
The transport properties of cementitious composites such as concrete are important indicators of their durability, and are known to be heavily influenced by mechanical loading. In the current work, we use meso-scale hygro-mechanical modeling with a morphological 3D two phase mortar-aggregate model, in conjunction with experimentally obtained properties, to investigate the coupling between mechanical loading and damage and the permeability of the composite. The increase in permeability of a cylindrical test specimen at 28% aggregate fraction during a uniaxial displacement-controlled compression test at 85% of the peak load was measured using a gas permeameter. The mortar's mechanical behavior is assumed to follow the well-known compression damaged plasticity (CDP) model with isotropic damage, at varying thresholds, and obtained from different envelope curves. The damaged intrinsic permeability of the mortar evolves according to a logarithmic matching law with progressive loading. We fit the matching law parameters to the experimental result for the test specimen by inverse identification using our meso-scale model. We then subject a series of virtual composite specimens to quasi-static uniaxial compressive loading with varying boundary conditions to obtain the simulated damage and strain evolutions, and use the damage data and the previously identified parameters to determine the evolution of the macroscopic permeability tensor for the specimens, using a network model. We conduct a full parameter study by varying aggregate volume fraction, granulometric distribution, loading/boundary conditions and "matching law" parameters, as well as for different strain-damage thresholds and uniaxial loading envelope curves. Based on this study, we propose Avrami equation-based upper and lower bounds for the evolution of the damaged permeability of the composite.
Henriques, David; Rocha, Miguel; Saez-Rodriguez, Julio; Banga, Julio R.
2015-01-01
Motivation: Systems biology models can be used to test new hypotheses formulated on the basis of previous knowledge or new experimental data, contradictory with a previously existing model. New hypotheses often come in the shape of a set of possible regulatory mechanisms. This search is usually not limited to finding a single regulation link, but rather a combination of links subject to great uncertainty or no information about the kinetic parameters. Results: In this work, we combine a logic-based formalism, to describe all the possible regulatory structures for a given dynamic model of a pathway, with mixed-integer dynamic optimization (MIDO). This framework aims to simultaneously identify the regulatory structure (represented by binary parameters) and the real-valued parameters that are consistent with the available experimental data, resulting in a logic-based differential equation model. The alternative to this would be to perform real-valued parameter estimation for each possible model structure, which is not tractable for models of the size presented in this work. The performance of the method presented here is illustrated with several case studies: a synthetic pathway problem of signaling regulation, a two-component signal transduction pathway in bacterial homeostasis, and a signaling network in liver cancer cells. Supplementary information: Supplementary data are available at Bioinformatics online. Contact: julio@iim.csic.es or saezrodriguez@ebi.ac.uk PMID:26002881
Henriques, David; Rocha, Miguel; Saez-Rodriguez, Julio; Banga, Julio R
2015-09-15
Systems biology models can be used to test new hypotheses formulated on the basis of previous knowledge or new experimental data, contradictory with a previously existing model. New hypotheses often come in the shape of a set of possible regulatory mechanisms. This search is usually not limited to finding a single regulation link, but rather a combination of links subject to great uncertainty or no information about the kinetic parameters. In this work, we combine a logic-based formalism, to describe all the possible regulatory structures for a given dynamic model of a pathway, with mixed-integer dynamic optimization (MIDO). This framework aims to simultaneously identify the regulatory structure (represented by binary parameters) and the real-valued parameters that are consistent with the available experimental data, resulting in a logic-based differential equation model. The alternative to this would be to perform real-valued parameter estimation for each possible model structure, which is not tractable for models of the size presented in this work. The performance of the method presented here is illustrated with several case studies: a synthetic pathway problem of signaling regulation, a two-component signal transduction pathway in bacterial homeostasis, and a signaling network in liver cancer cells. Supplementary data are available at Bioinformatics online. julio@iim.csic.es or saezrodriguez@ebi.ac.uk. © The Author 2015. Published by Oxford University Press.
Yilmaz, A Erdem; Boncukcuoğlu, Recep; Kocakerim, M Muhtar
2007-06-01
In this study, it was investigated parameters affecting energy consumption in boron removal from boron containing wastewaters prepared synthetically, via electrocoagulation method. The solution pH, initial boron concentration, dose of supporting electrolyte, current density and temperature of solution were selected as experimental parameters affecting energy consumption. The obtained experimental results showed that boron removal efficiency reached up to 99% under optimum conditions, in which solution pH was 8.0, current density 6.0 mA/cm(2), initial boron concentration 100mg/L and solution temperature 293 K. The current density was an important parameter affecting energy consumption too. High current density applied to electrocoagulation cell increased energy consumption. Increasing solution temperature caused to decrease energy consumption that high temperature decreased potential applied under constant current density. That increasing initial boron concentration and dose of supporting electrolyte caused to increase specific conductivity of solution decreased energy consumption. As a result, it was seen that energy consumption for boron removal via electrocoagulation method could be minimized at optimum conditions. An empirical model was predicted by statistically. Experimentally obtained values were fitted with values predicted from empirical model being as following; [formula in text]. Unfortunately, the conditions obtained for optimum boron removal were not the conditions obtained for minimum energy consumption. It was determined that support electrolyte must be used for increase boron removal and decrease electrical energy consumption.
Hybrid rocket engine, theoretical model and experiment
NASA Astrophysics Data System (ADS)
Chelaru, Teodor-Viorel; Mingireanu, Florin
2011-06-01
The purpose of this paper is to build a theoretical model for the hybrid rocket engine/motor and to validate it using experimental results. The work approaches the main problems of the hybrid motor: the scalability, the stability/controllability of the operating parameters and the increasing of the solid fuel regression rate. At first, we focus on theoretical models for hybrid rocket motor and compare the results with already available experimental data from various research groups. A primary computation model is presented together with results from a numerical algorithm based on a computational model. We present theoretical predictions for several commercial hybrid rocket motors, having different scales and compare them with experimental measurements of those hybrid rocket motors. Next the paper focuses on tribrid rocket motor concept, which by supplementary liquid fuel injection can improve the thrust controllability. A complementary computation model is also presented to estimate regression rate increase of solid fuel doped with oxidizer. Finally, the stability of the hybrid rocket motor is investigated using Liapunov theory. Stability coefficients obtained are dependent on burning parameters while the stability and command matrixes are identified. The paper presents thoroughly the input data of the model, which ensures the reproducibility of the numerical results by independent researchers.
Parameters estimation for reactive transport: A way to test the validity of a reactive model
NASA Astrophysics Data System (ADS)
Aggarwal, Mohit; Cheikh Anta Ndiaye, Mame; Carrayrou, Jérôme
The chemical parameters used in reactive transport models are not known accurately due to the complexity and the heterogeneous conditions of a real domain. We will present an efficient algorithm in order to estimate the chemical parameters using Monte-Carlo method. Monte-Carlo methods are very robust for the optimisation of the highly non-linear mathematical model describing reactive transport. Reactive transport of tributyltin (TBT) through natural quartz sand at seven different pHs is taken as the test case. Our algorithm will be used to estimate the chemical parameters of the sorption of TBT onto the natural quartz sand. By testing and comparing three models of surface complexation, we show that the proposed adsorption model cannot explain the experimental data.
NASA Astrophysics Data System (ADS)
Vatandoost, Hossein; Norouzi, Mahmood; Masoud Sajjadi Alehashem, Seyed; Smoukov, Stoyan K.
2017-06-01
Tension-compression operation in MR elastomers (MREs) offers both the most compact design and superior stiffness in many vertical load-bearing applications, such as MRE bearing isolators in bridges and buildings, suspension systems and engine mounts in cars, and vibration control equipment. It suffers, however, from lack of good computational models to predict device performance, and as a result shear-mode MREs are widely used in the industry, despite their low stiffness and load-bearing capacity. We start with a comprehensive review of modeling of MREs and their dynamic characteristics, showing previous studies have mostly focused on dynamic behavior of MREs in shear mode, though the MRE strength and MR effect are greatly decreased at high strain amplitudes, due to increasing distance between the magnetic particles. Moreover, the characteristic parameters of the current models assume either frequency, or strain, or magnetic field are constant; hence, new model parameters must be recalculated for new loading conditions. This is an experimentally time consuming and computationally expensive task, and no models capture the full dynamic behavior of the MREs at all loading conditions. In this study, we present an experimental setup to test MREs in a coupled tension-compression mode, as well as a novel phenomenological model which fully predicts the stress-strain material behavior as a function of magnetic flux density, loading frequency and strain. We use a training set of experiments to find the experimentally derived model parameters, from which can predict by interpolation the MRE behavior in a relatively large continuous range of frequency, strain and magnetic field. We also challenge the model to make extrapolating predictions and compare to additional experiments outside the training experimental data set with good agreement. Further development of this model would allow design and control of engineering structures equipped with tension-compression MREs and all the advantages they offer.
Nerurkar, Nandan L; Mauck, Robert L; Elliott, Dawn M
2008-12-01
Integrating theoretical and experimental approaches for annulus fibrosus (AF) functional tissue engineering. Apply a hyperelastic constitutive model to characterize the evolution of engineered AF via scalar model parameters. Validate the model and predict the response of engineered constructs to physiologic loading scenarios. There is need for a tissue engineered replacement for degenerate AF. When evaluating engineered replacements for load-bearing tissues, it is necessary to evaluate mechanical function with respect to the native tissue, including nonlinearity and anisotropy. Aligned nanofibrous poly-epsilon-caprolactone scaffolds with prescribed fiber angles were seeded with bovine AF cells and analyzed over 8 weeks, using experimental (mechanical testing, biochemistry, histology) and theoretical methods (a hyperelastic fiber-reinforced constitutive model). The linear region modulus for phi = 0 degrees constructs increased by approximately 25 MPa, and for phi = 90 degrees by approximately 2 MPa from 1 day to 8 weeks in culture. Infiltration and proliferation of AF cells into the scaffold and abundant deposition of s-GAG and aligned collagen was observed. The constitutive model had excellent fits to experimental data to yield matrix and fiber parameters that increased with time in culture. Correlations were observed between biochemical measures and model parameters. The model was successfully validated and used to simulate time-varying responses of engineered AF under shear and biaxial loading. AF cells seeded on nanofibrous scaffolds elaborated an organized, anisotropic AF-like extracellular matrix, resulting in improved mechanical properties. A hyperelastic fiber-reinforced constitutive model characterized the functional evolution of engineered AF constructs, and was used to simulate physiologically relevant loading configurations. Model predictions demonstrated that fibers resist shear even when the shearing direction does not coincide with the fiber direction. Further, the model suggested that the native AF fiber architecture is uniquely designed to support shear stresses encountered under multiple loading configurations.
Panda, Shasanka Shekhar; Bajpai, Minu; Mallick, Saumyaranjan; Sharma, Mehar C
2014-01-01
The objective of the following study is to determine and to compare the different morphological parameters with duration of obstruction created experimentally in unilateral upper ureters of rats. Unilateral upper ureteric obstruction was created in 60 adult Wistar rats that were reversed after predetermined intervals. Rats were sacrificed and ipsilateral kidneys were subjected for analysis of morphological parameters such as renal height, cranio-caudal diameter, antero-posterior diameter, lateral diameter, volume of the pelvis and average cortical thickness: Renal height. Renal height and cranio-caudal diameter of renal pelvis after ipsilateral upper ureteric obstruction started rising as early as 7 days of creating obstruction and were affected earlier than antero-posterior and lateral diameter and also were reversed earlier than other parameters after reversal of obstruction. Renal cortical thickness and volume of the pelvis were affected after prolonged obstruction (> 3 weeks) and were the late parameters to be reversed after reversal of obstruction. Cranio-caudal diameter and renal height were the early morphological parameters to be affected and reversed after reversal of obstruction in experimentally created ipsilateral upper ureteric obstruction.
NASA Astrophysics Data System (ADS)
Khan, M. M. A.; Romoli, L.; Fiaschi, M.; Dini, G.; Sarri, F.
2011-02-01
This paper presents an experimental design approach to process parameter optimization for the laser welding of martensitic AISI 416 and AISI 440FSe stainless steels in a constrained overlap configuration in which outer shell was 0.55 mm thick. To determine the optimal laser-welding parameters, a set of mathematical models were developed relating welding parameters to each of the weld characteristics. These were validated both statistically and experimentally. The quality criteria set for the weld to determine optimal parameters were the minimization of weld width and the maximization of weld penetration depth, resistance length and shearing force. Laser power and welding speed in the range 855-930 W and 4.50-4.65 m/min, respectively, with a fiber diameter of 300 μm were identified as the optimal set of process parameters. However, the laser power and welding speed can be reduced to 800-840 W and increased to 4.75-5.37 m/min, respectively, to obtain stronger and better welds.
NASA Astrophysics Data System (ADS)
Catinari, Federico; Pierdicca, Alessio; Clementi, Francesco; Lenci, Stefano
2017-11-01
The results of an ambient-vibration based investigation conducted on the "Palazzo del Podesta" in Montelupone (Italy) is presented. The case study was damaged during the 20I6 Italian earthquakes that stroke the central part of the Italy. The assessment procedure includes full-scale ambient vibration testing, modal identification from ambient vibration responses, finite element modeling and dynamic-based identification of the uncertain structural parameters of the model. A very good match between theoretical and experimental modal parameters was reached and the model updating has been performed identifying some structural parameters.
THE DYNAMIC RESPONSE OF THERMOMETER-WELL ASSEMBLIES.
parameter models of the thermometric system were constructed and gave acceptable agreement with the experimental results. These models can be used to predict the dynamic behavior of any similar thermometer system. (Author)
NASA Astrophysics Data System (ADS)
Sellami, Takwa; Jelassi, Sana; Darcherif, Abdel Moumen; Berriri, Hanen; Mimouni, Med Faouzi
2018-04-01
With the advancement of wind turbines towards complex structures, the requirement of trusty structural models has become more apparent. Hence, the vibration characteristics of the wind turbine components, like the blades and the tower, have to be extracted under vibration constraints. Although extracting the modal properties of blades is a simple task, calculating precise modal data for the whole wind turbine coupled to its tower/foundation is still a perplexing task. In this framework, this paper focuses on the investigation of the structural modeling approach of modern commercial micro-turbines. Thus, the structural model a complex designed wind turbine, which is Rutland 504, is established based on both experimental and numerical methods. A three-dimensional (3-D) numerical model of the structure was set up based on the finite volume method (FVM) using the academic finite element analysis software ANSYS. To validate the created model, experimental vibration tests were carried out using the vibration test system of TREVISE platform at ECAM-EPMI. The tests were based on the experimental modal analysis (EMA) technique, which is one of the most efficient techniques for identifying structures parameters. Indeed, the poles and residues of the frequency response functions (FRF), between input and output spectra, were calculated to extract the mode shapes and the natural frequencies of the structure. Based on the obtained modal parameters, the numerical designed model was up-dated.
Finding viable models in SUSY parameter spaces with signal specific discovery potential
NASA Astrophysics Data System (ADS)
Burgess, Thomas; Lindroos, Jan Øye; Lipniacka, Anna; Sandaker, Heidi
2013-08-01
Recent results from ATLAS giving a Higgs mass of 125.5 GeV, further constrain already highly constrained supersymmetric models such as pMSSM or CMSSM/mSUGRA. As a consequence, finding potentially discoverable and non-excluded regions of model parameter space is becoming increasingly difficult. Several groups have invested large effort in studying the consequences of Higgs mass bounds, upper limits on rare B-meson decays, and limits on relic dark matter density on constrained models, aiming at predicting superpartner masses, and establishing likelihood of SUSY models compared to that of the Standard Model vis-á-vis experimental data. In this paper a framework for efficient search for discoverable, non-excluded regions of different SUSY spaces giving specific experimental signature of interest is presented. The method employs an improved Markov Chain Monte Carlo (MCMC) scheme exploiting an iteratively updated likelihood function to guide search for viable models. Existing experimental and theoretical bounds as well as the LHC discovery potential are taken into account. This includes recent bounds on relic dark matter density, the Higgs sector and rare B-mesons decays. A clustering algorithm is applied to classify selected models according to expected phenomenology enabling automated choice of experimental benchmarks and regions to be used for optimizing searches. The aim is to provide experimentalist with a viable tool helping to target experimental signatures to search for, once a class of models of interest is established. As an example a search for viable CMSSM models with τ-lepton signatures observable with the 2012 LHC data set is presented. In the search 105209 unique models were probed. From these, ten reference benchmark points covering different ranges of phenomenological observables at the LHC were selected.
SBRML: a markup language for associating systems biology data with models.
Dada, Joseph O; Spasić, Irena; Paton, Norman W; Mendes, Pedro
2010-04-01
Research in systems biology is carried out through a combination of experiments and models. Several data standards have been adopted for representing models (Systems Biology Markup Language) and various types of relevant experimental data (such as FuGE and those of the Proteomics Standards Initiative). However, until now, there has been no standard way to associate a model and its entities to the corresponding datasets, or vice versa. Such a standard would provide a means to represent computational simulation results as well as to frame experimental data in the context of a particular model. Target applications include model-driven data analysis, parameter estimation, and sharing and archiving model simulations. We propose the Systems Biology Results Markup Language (SBRML), an XML-based language that associates a model with several datasets. Each dataset is represented as a series of values associated with model variables, and their corresponding parameter values. SBRML provides a flexible way of indexing the results to model parameter values, which supports both spreadsheet-like data and multidimensional data cubes. We present and discuss several examples of SBRML usage in applications such as enzyme kinetics, microarray gene expression and various types of simulation results. The XML Schema file for SBRML is available at http://www.comp-sys-bio.org/SBRML under the Academic Free License (AFL) v3.0.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalfaoğlu, Emel, E-mail: emelkalfaoglu@mynet.com; Karabulut, Bünyamin
2016-03-25
Electron paramagnetic resonance (EPR) and optical absorption spectra of Cu{sup 2+} ions in cesium hydrogen oxalate single crystals have been investigated at room temperature. The spin-Hamiltonian parameters (g and A), have been determined. Crystalline field around the Cu{sup 2+} ion is almost axially symmetric. The results show a single paramagnetic site which confirms the triclinic crystal symmetry. Molecular orbital bonding coefficients are studied from the EPR and optical data. Theoretical octahedral field parameter and the tetragonal field parameters have been evaluated from the superposition model. Using these parameters, various bonding parameters are analyzed and the nature of bonding in themore » complex is discussed. The theoretical results are supported by experimental results.« less
Chandrasekaran, Sivapragasam; Sankararajan, Vanitha; Neelakandhan, Nampoothiri; Ram Kumar, Mahalakshmi
2017-11-04
This study, through extensive experiments and mathematical modeling, reveals that other than retention time and wastewater temperature (T w ), atmospheric parameters also play important role in the effective functioning of aquatic macrophyte-based treatment system. Duckweed species Lemna minor is considered in this study. It is observed that the combined effect of atmospheric temperature (T atm ), wind speed (U w ), and relative humidity (RH) can be reflected through one parameter, namely the "apparent temperature" (T a ). A total of eight different models are considered based on the combination of input parameters and the best mathematical model is arrived at which is validated through a new experimental set-up outside the modeling period. The validation results are highly encouraging. Genetic programming (GP)-based models are found to reveal deeper understandings of the wetland process.
Experimental aspect of solid-state nuclear magnetic resonance studies of biomaterials such as bones.
Singh, Chandan; Rai, Ratan Kumar; Sinha, Neeraj
2013-01-01
Solid-state nuclear magnetic resonance (SSNMR) spectroscopy is increasingly becoming a popular technique to probe micro-structural details of biomaterial such as bone with pico-meter resolution. Due to high-resolution structural details probed by SSNMR methods, handling of bone samples and experimental protocol are very crucial aspects of study. We present here first report of the effect of various experimental protocols and handling methods of bone samples on measured SSNMR parameters. Various popular SSNMR experiments were performed on intact cortical bone sample collected from fresh animal, immediately after removal from animal systems, and results were compared with bone samples preserved in different conditions. We find that the best experimental conditions for SSNMR parameters of bones correspond to preservation at -20 °C and in 70% ethanol solution. Various other SSNMR parameters were compared corresponding to different experimental conditions. Our study has helped in finding best experimental protocol for SSNMR studies of bone. This study will be of further help in the application of SSNMR studies on large bone disease related animal model systems for statistically significant results. © 2013 Elsevier Inc. All rights reserved.
Analysis of Xrage and Flag High Explosive Burn Models with PBX 9404 Cylinder Tests
NASA Astrophysics Data System (ADS)
Harrier, Danielle; Fessenden, Julianna; Ramsey, Scott
2016-11-01
High explosives are energetic materials that release their chemical energy in a short interval of time. They are able to generate extreme heat and pressure by a shock driven chemical decomposition reaction, which makes them valuable tools that must be understood. This study investigated the accuracy and performance of two Los Alamos National Laboratory hydrodynamic codes, which are used to determine the behavior of explosives within a variety of systems: xRAGE which utilizes an Eulerian mesh, and FLAG with utilizes a Lagrangian mesh. Various programmed and reactive burn models within both codes were tested, using a copper cylinder expansion test. The test was based off of a recent experimental setup which contained the plastic bonded explosive PBX 9404. Detonation velocity versus time curves for this explosive were obtained from the experimental velocity data collected using Photon Doppler Velocimetry (PDV). The modeled results from each of the burn models tested were then compared to one another and to the experimental results using the Jones-Wilkins-Lee (JWL) equation of state parameters that were determined and adjusted from the experimental tests. This study is important to validate the accuracy of our high explosive burn models and the calibrated EOS parameters, which are important for many research topics in physical sciences.
New comparisons of ISR and RO data with the model IRI-Plas
NASA Astrophysics Data System (ADS)
Maltseva, Olga; Mozhaeva, Natalya; Zhbankov, Gennadii
2012-07-01
Space Weather events lead to strong changes in peak parameters of the ionosphere. These parameters, foF2 and hmF2, define the N(h)-profile, which is known to include bottom side and topside parts. Numerous studies have shown that adaptation of the IRI model to the experimental values of foF2 and hmF2 gave a good agreement between experimental and model N(h)-profiles of the bottom side ionosphere. This is not about the topside N(h)-profile. To improve the situation measurements of the total electron content TEC are involved. This work is devoted to the use of peak parameters with the TEC during Space Weather events for the evaluation of propagation conditions in both the bottom side and the topside ionosphere, based on the model IRI-Plas. To assess how well the model N(h)-profile matches the experimental one, the model IRI-Plas is tested according to the Incoherent Scatter Radars and the Radio Occultation measurements in various parts of the globe and at different levels of solar activity. The experimental N(h)-profiles are compared with profiles for the original model, the model adapted to the foF2 and hmF2, and for a model with full adaptation (including the TEC). The best fit is obtained in the European region, so the SW variations of peak parameters and N(h)-profiles are studied on the example of the European area. The IRI-Plas model allows to estimate the relative contributions of each region (bottom side BOT, topside TOP and plasmaspheric PL parts) in the value of the TEC. As the analysis of two W- and Wp-indexes (Gulyaeva, 2008; Gulyaeva and Stanislawska, 2008) is shown, TEC-storms occur in 2 times more likely than foF2-storms. This testifies that the variations of parts BOT, TOP and PL in the TEC are different. It determines different variations of N(h)-profiles. Results are given for several types of SW-events, in particular, for the strong positive and negative disturbances, when the variations of TEC and foF2 are of the same sign and the corresponding perturbation covers all regions of the ionosphere. Particular attention is paid to variations of peak parameters and N(h)-profiles during weak and moderate disturbances and bursts of TEC in long period of low activity, when the TEC and foF2 variations and variations of different parts of TEC are in the opposite phase.
Mechanical Analog Approach to Parameter Estimation of Lateral Spacecraft Fuel Slosh
NASA Technical Reports Server (NTRS)
Chatman, Yadira; Gangadharan, Sathya; Schlee, Keith; Sudermann, James; Walker, Charles; Ristow, James; Hubert, Carl
2007-01-01
The nutation (wobble) of a spinning spacecraft in the presence of energy dissipation is a well-known problem in dynamics and is of particular concern for space missions. Even with modern computing systems, CFD type simulations are not fast enough to allow for large scale Monte Carlo analyses of spacecraft and launch vehicle dynamic behavior with slosh included. Simplified mechanical analogs for the slosh are preferred during the initial stages of design to reduce computational time and effort to evaluate the Nutation Time Constant (NTC). Analytic determination of the slosh analog parameters has met with mixed success and is made even more difficult by the introduction of propellant management devices such as elastomeric diaphragms. By subjecting full-sized fuel tanks with actual flight fuel loads to motion similar to that experienced in flight and measuring the forces experienced by the tanks, these parameters can be determined experimentally. Currently, the identification of the model parameters is a laborious trial-and-error process in which the hand-derived equations of motion for the mechanical analog are evaluated and their results compared with the experimental results. Of particular interest is the effect of diaphragms and bladders on the slosh dynamics and how best to model these devices. An experimental set-up is designed and built to include a diaphragm in the simulated spacecraft fuel tank subjected to lateral slosh. This research paper focuses on the parameter estimation of a SimMechanics model of the simulated spacecraft propellant tank with and without diaphragms using lateral fuel slosh experiments. Automating the parameter identification process will save time and thus allow earlier identification of potential vehicle problems.
Electromagnetic Detection of a Perfect Carpet Cloak
Shi, Xihang; Gao, Fei; Lin, Xiao; Zhang, Baile
2015-01-01
It has been shown that a spherical invisibility cloak originally proposed by Pendry et al. can be electromagnetically detected by shooting a charged particle through it, whose underlying mechanism stems from the asymmetry of transformation optics applied to motions of photons and charges [PRL 103, 243901 (2009)]. However, the conceptual three-dimensional invisibility cloak that exactly follows specifications of transformation optics is formidably difficult to implement, while the simplified cylindrical cloak that has been experimentally realized is inherently visible. On the other hand, the recent carpet cloak model has acquired remarkable experimental development, including a recently demonstrated full-parameter carpet cloak without any approximation in the required constitutive parameters. In this paper, we numerically investigate the electromagnetic radiation from a charged particle passing through a perfect carpet cloak and propose an experimentally verifiable model to demonstrate symmetry breaking of transformation optics. PMID:25997798
Electromagnetic Detection of a Perfect Carpet Cloak
NASA Astrophysics Data System (ADS)
Shi, Xihang; Gao, Fei; Lin, Xiao; Zhang, Baile
2015-05-01
It has been shown that a spherical invisibility cloak originally proposed by Pendry et al. can be electromagnetically detected by shooting a charged particle through it, whose underlying mechanism stems from the asymmetry of transformation optics applied to motions of photons and charges [PRL 103, 243901 (2009)]. However, the conceptual three-dimensional invisibility cloak that exactly follows specifications of transformation optics is formidably difficult to implement, while the simplified cylindrical cloak that has been experimentally realized is inherently visible. On the other hand, the recent carpet cloak model has acquired remarkable experimental development, including a recently demonstrated full-parameter carpet cloak without any approximation in the required constitutive parameters. In this paper, we numerically investigate the electromagnetic radiation from a charged particle passing through a perfect carpet cloak and propose an experimentally verifiable model to demonstrate symmetry breaking of transformation optics.
Discrete element method based scale-up model for material synthesis using ball milling
NASA Astrophysics Data System (ADS)
Santhanam, Priya Radhi
Mechanical milling is a widely used technique for powder processing in various areas. In this work, a scale-up model for describing this ball milling process is developed. The thesis is a combination of experimental and modeling efforts. Initially, Discrete Element Model (DEM) is used to describe energy transfer from milling tools to the milled powder for shaker, planetary, and attritor mills. The rolling and static friction coefficients are determined experimentally. Computations predict a quasisteady rate of energy dissipation, E d, for each experimental configuration. It is proposed that the milling dose defined as a product of Ed and milling time, t, divided by the mass of milled powder, mp characterizes the milling progress independently of the milling device or milling conditions used. Once the milling dose is determined for one experimental configuration, it can be used to predict the milling time required to prepare the same material in any milling configuration, for which Ed is calculated. The concept is validated experimentally for DEM describing planetary and shaker mills. For attritor, the predicted Ed includes substantial contribution from milling tool interaction events with abnormally high forces (>103 N). The energy in such events is likely dissipated to heat or plastically deform milling tools rather than refine material. Indeed, DEM predictions for the attritor correlate with experiments when such events are ignored in the analysis. With an objective of obtaining real-time indicators of milling progress, power, torque, and rotation speed of the impeller of an attritor mill are measured during preparation of metal matrix composite powders in the subsequent portion of this thesis. Two material systems are selected and comparisons made between in-situ parameters and experimental milling progress indicators. It is established that real-time measurements can certainly be used to describe milling progress. However, they need to be interpreted carefully depending on hardness of brittle component relative to milling media. To improve the DEM model of the attritor mill, it is desired to avoid the removal of unrealistic, high-force events using an approach that would not predict such events in the first place. It is observed that during experiments in attritor, balls may jam causing an increased resistance to the impeller's rotation. The impeller may instantaneously slow down, quickly returning to its pre-set rotation rate. Previous DEM models did not account for such rapid changes in the impeller's rotation. In this work, this relationship between impeller's torque and rotation rate is obtained experimentally and introduced in DEM. As a result, predicted Ed, are shown to correlate well with the experimental data. Finally, a methodology is proposed combining an experiment and its DEM description enabling one to identify the appropriate interaction parameters for powder systems. The experiment uses a miniature vibrating hopper and can be applied to characterize the powder flow for variety of materials. The hopper is designed to hold up to 20,000 particles of 50-mum diameter, which can be directly described in DEM. Based on comparison of discharge rate from experiments and model, all 6 interaction parameters were analyzed and the ideal conditions identified for Zirconia beads. The values of these parameters for powders are generally not the same as those established for macroscopic bodies. In addition, effects of some other experimental parameters such as particle size distribution and amplitude of vibration are also investigated.
Finite Element Vibration Modeling and Experimental Validation for an Aircraft Engine Casing
NASA Astrophysics Data System (ADS)
Rabbitt, Christopher
This thesis presents a procedure for the development and validation of a theoretical vibration model, applies this procedure to a pair of aircraft engine casings, and compares select parameters from experimental testing of those casings to those from a theoretical model using the Modal Assurance Criterion (MAC) and linear regression coefficients. A novel method of determining the optimal MAC between axisymmetric results is developed and employed. It is concluded that the dynamic finite element models developed as part of this research are fully capable of modelling the modal parameters within the frequency range of interest. Confidence intervals calculated in this research for correlation coefficients provide important information regarding the reliability of predictions, and it is recommended that these intervals be calculated for all comparable coefficients. The procedure outlined for aligning mode shapes around an axis of symmetry proved useful, and the results are promising for the development of further optimization techniques.
Modeling biosorption of Cr(VI) onto Ulva compressa L. from aqueous solutions.
Aid, Asma; Amokrane, Samira; Nibou, Djamel; Mekatel, Elhadj; Trari, Mohamed; Hulea, Vasile
2018-01-01
The marine biomass Ulva compressa L. (ECL) was used as a low-cost biosorbent for the removal of Cr(VI) from contaminated aqueous solutions. The operating variables were optimized: pH ∼ 2, initial concentration of 25 mg/L, solid/liquid ratio of 6 g/L and a temperature of 50 °C, leading to an uptake elimination of 96%. A full factorial experimental design technique enabled us to obtain a mathematical model describing the Cr(VI) biosorption and to study the main effects and interactions among operational parameters. The equilibrium isotherm was analyzed by the Langmuir, Freundlich and Dubinin-Radushkevich (D-R) models; it has been found that the adsorption process follows well the Langmuir model. Kinetic studies showed that the pseudo-second order model describes suitably the experimental data. The thermodynamic parameters indicated an endothermic heat and a spontaneity of the Cr(VI) biosorption onto ECL.
Independent-particle models for light negative atomic ions
NASA Technical Reports Server (NTRS)
Ganas, P. S.; Talman, J. D.; Green, A. E. S.
1980-01-01
For the purposes of astrophysical, aeronomical, and laboratory application, a precise independent-particle model for electrons in negative atomic ions of the second and third period is discussed. The optimum-potential model (OPM) of Talman et al. (1979) is first used to generate numerical potentials for eight of these ions. Results for total energies and electron affinities are found to be very close to Hartree-Fock solutions. However, the OPM and HF electron affinities both depart significantly from experimental affinities. For this reason, two analytic potentials are developed whose inner energy levels are very close to the OPM and HF levels but whose last electron eigenvalues are adjusted precisely with the magnitudes of experimental affinities. These models are: (1) a four-parameter analytic characterization of the OPM potential and (2) a two-parameter potential model of the Green, Sellin, Zachor type. The system O(-) or e-O, which is important in upper atmospheric physics is examined in some detail.
Palazoğlu, T K; Gökmen, V
2008-04-01
In this study, a numerical model was developed to simulate frying of potato strips and estimate acrylamide levels in French fries. Heat and mass transfer parameters determined during frying of potato strips and the formation and degradation kinetic parameters of acrylamide obtained with a sugar-asparagine model system were incorporated within the model. The effect of reducing sugar content (0.3 to 2.15 g/100 g dry matter), strip thickness (8.5 x 8.5 mm and 10 x 10 mm), and frying time (3, 4, 5, and 6 min) and temperature (150, 170, and 190 degrees C) on resultant acrylamide level in French fries was investigated both numerically and experimentally. The model appeared to closely estimate the acrylamide contents, and thereby may potentially save considerable time, money, and effort during the stages of process design and optimization.
A New Hybrid Viscoelastic Soft Tissue Model based on Meshless Method for Haptic Surgical Simulation
Bao, Yidong; Wu, Dongmei; Yan, Zhiyuan; Du, Zhijiang
2013-01-01
This paper proposes a hybrid soft tissue model that consists of a multilayer structure and many spheres for surgical simulation system based on meshless. To improve accuracy of the model, tension is added to the three-parameter viscoelastic structure that connects the two spheres. By using haptic device, the three-parameter viscoelastic model (TPM) produces accurate deformationand also has better stress-strain, stress relaxation and creep properties. Stress relaxation and creep formulas have been obtained by mathematical formula derivation. Comparing with the experimental results of the real pig liver which were reported by Evren et al. and Amy et al., the curve lines of stress-strain, stress relaxation and creep of TPM are close to the experimental data of the real liver. Simulated results show that TPM has better real-time, stability and accuracy. PMID:24339837
Online optimal experimental re-design in robotic parallel fed-batch cultivation facilities.
Cruz Bournazou, M N; Barz, T; Nickel, D B; Lopez Cárdenas, D C; Glauche, F; Knepper, A; Neubauer, P
2017-03-01
We present an integrated framework for the online optimal experimental re-design applied to parallel nonlinear dynamic processes that aims to precisely estimate the parameter set of macro kinetic growth models with minimal experimental effort. This provides a systematic solution for rapid validation of a specific model to new strains, mutants, or products. In biosciences, this is especially important as model identification is a long and laborious process which is continuing to limit the use of mathematical modeling in this field. The strength of this approach is demonstrated by fitting a macro-kinetic differential equation model for Escherichia coli fed-batch processes after 6 h of cultivation. The system includes two fully-automated liquid handling robots; one containing eight mini-bioreactors and another used for automated at-line analyses, which allows for the immediate use of the available data in the modeling environment. As a result, the experiment can be continually re-designed while the cultivations are running using the information generated by periodical parameter estimations. The advantages of an online re-computation of the optimal experiment are proven by a 50-fold lower average coefficient of variation on the parameter estimates compared to the sequential method (4.83% instead of 235.86%). The success obtained in such a complex system is a further step towards a more efficient computer aided bioprocess development. Biotechnol. Bioeng. 2017;114: 610-619. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Poggio, D; Walker, M; Nimmo, W; Ma, L; Pourkashanian, M
2016-07-01
This work proposes a novel and rigorous substrate characterisation methodology to be used with ADM1 to simulate the anaerobic digestion of solid organic waste. The proposed method uses data from both direct substrate analysis and the methane production from laboratory scale anaerobic digestion experiments and involves assessment of four substrate fractionation models. The models partition the organic matter into a mixture of particulate and soluble fractions with the decision on the most suitable model being made on quality of fit between experimental and simulated data and the uncertainty of the calibrated parameters. The method was tested using samples of domestic green and food waste and using experimental data from both short batch tests and longer semi-continuous trials. The results showed that in general an increased fractionation model complexity led to better fit but with increased uncertainty. When using batch test data the most suitable model for green waste included one particulate and one soluble fraction, whereas for food waste two particulate fractions were needed. With richer semi-continuous datasets, the parameter estimation resulted in less uncertainty therefore allowing the description of the substrate with a more complex model. The resulting substrate characterisations and fractionation models obtained from batch test data, for both waste samples, were used to validate the method using semi-continuous experimental data and showed good prediction of methane production, biogas composition, total and volatile solids, ammonia and alkalinity. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Evolving Non-Dominated Parameter Sets for Computational Models from Multiple Experiments
NASA Astrophysics Data System (ADS)
Lane, Peter C. R.; Gobet, Fernand
2013-03-01
Creating robust, reproducible and optimal computational models is a key challenge for theorists in many sciences. Psychology and cognitive science face particular challenges as large amounts of data are collected and many models are not amenable to analytical techniques for calculating parameter sets. Particular problems are to locate the full range of acceptable model parameters for a given dataset, and to confirm the consistency of model parameters across different datasets. Resolving these problems will provide a better understanding of the behaviour of computational models, and so support the development of general and robust models. In this article, we address these problems using evolutionary algorithms to develop parameters for computational models against multiple sets of experimental data; in particular, we propose the `speciated non-dominated sorting genetic algorithm' for evolving models in several theories. We discuss the problem of developing a model of categorisation using twenty-nine sets of data and models drawn from four different theories. We find that the evolutionary algorithms generate high quality models, adapted to provide a good fit to all available data.
Locher, Kathrin; Borghardt, Jens M; Frank, Kerstin J; Kloft, Charlotte; Wagner, Karl G
2016-08-01
Biphasic dissolution models are proposed to have good predictive power for the in vivo absorption. The aim of this study was to improve our previously introduced mini-scale dissolution model to mimic in vivo situations more realistically and to increase the robustness of the experimental model. Six dissolved APIs (BCS II) were tested applying the improved mini-scale biphasic dissolution model (miBIdi-pH-II). The influence of experimental model parameters including various excipients, API concentrations, dual paddle and its rotation speed was investigated. The kinetics in the biphasic model was described applying a one- and four-compartment pharmacokinetic (PK) model. The improved biphasic dissolution model was robust related to differing APIs and excipient concentrations. The dual paddle guaranteed homogenous mixing in both phases; the optimal rotation speed was 25 and 75rpm for the aqueous and the octanol phase, respectively. A one-compartment PK model adequately characterised the data of fully dissolved APIs. A four-compartment PK model best quantified dissolution, precipitation, and partitioning also of undissolved amounts due to realistic pH profiles. The improved dissolution model is a powerful tool for investigating the interplay between dissolution, precipitation and partitioning of various poorly soluble APIs (BCS II). In vivo-relevant PK parameters could be estimated applying respective PK models. Copyright © 2016 Elsevier B.V. All rights reserved.
Modeling ramp-hold indentation measurements based on Kelvin-Voigt fractional derivative model
NASA Astrophysics Data System (ADS)
Zhang, Hongmei; zhe Zhang, Qing; Ruan, Litao; Duan, Junbo; Wan, Mingxi; Insana, Michael F.
2018-03-01
Interpretation of experimental data from micro- and nano-scale indentation testing is highly dependent on the constitutive model selected to relate measurements to mechanical properties. The Kelvin-Voigt fractional derivative model (KVFD) offers a compact set of viscoelastic features appropriate for characterizing soft biological materials. This paper provides a set of KVFD solutions for converting indentation testing data acquired for different geometries and scales into viscoelastic properties of soft materials. These solutions, which are mostly in closed-form, apply to ramp-hold relaxation, load-unload and ramp-load creep-testing protocols. We report on applications of these model solutions to macro- and nano-indentation testing of hydrogels, gastric cancer cells and ex vivo breast tissue samples using an atomic force microscope (AFM). We also applied KVFD models to clinical ultrasonic breast data using a compression plate as required for elasticity imaging. Together the results show that KVFD models fit a broad range of experimental data with a correlation coefficient typically R 2 > 0.99. For hydrogel samples, estimation of KVFD model parameters from test data using spherical indentation versus plate compression as well as ramp relaxation versus load-unload compression all agree within one standard deviation. Results from measurements made using macro- and nano-scale indentation agree in trend. For gastric cell and ex vivo breast tissue measurements, KVFD moduli are, respectively, 1/3-1/2 and 1/6 of the elasticity modulus found from the Sneddon model. In vivo breast tissue measurements yield model parameters consistent with literature results. The consistency of results found for a broad range of experimental parameters suggest the KVFD model is a reliable tool for exploring intrinsic features of the cell/tissue microenvironments.
NASA Astrophysics Data System (ADS)
Giner-Sanz, J. J.; Ortega, E. M.; Pérez-Herranz, V.
2018-03-01
The internal resistance of a PEM fuel cell depends on the operation conditions and on the current delivered by the cell. This work's goal is to obtain a semiempirical model able to reproduce the effect of the operation current on the internal resistance of an individual cell of a commercial PEM fuel cell stack; and to perform a statistical analysis in order to study the effect of the operation temperature and the inlet humidities on the parameters of the model. First, the internal resistance of the individual fuel cell operating in different operation conditions was experimentally measured for different DC currents, using the high frequency intercept of the impedance spectra. Then, a semiempirical model based on Springer and co-workers' model was proposed. This model is able to successfully reproduce the experimental trends. Subsequently, the curves of resistance versus DC current obtained for different operation conditions were fitted to the semiempirical model, and an analysis of variance (ANOVA) was performed in order to determine which factors have a statistically significant effect on each model parameter. Finally, a response surface method was applied in order to obtain a regression model.
Interaction model between capsule robot and intestine based on nonlinear viscoelasticity.
Zhang, Cheng; Liu, Hao; Tan, Renjia; Li, Hongyi
2014-03-01
Active capsule endoscope could also be called capsule robot, has been developed from laboratory research to clinical application. However, the system still has defects, such as poor controllability and failing to realize automatic checks. The imperfection of the interaction model between capsule robot and intestine is one of the dominating reasons causing the above problems. A model is hoped to be established for the control method of the capsule robot in this article. It is established based on nonlinear viscoelasticity. The interaction force of the model consists of environmental resistance, viscous resistance and Coulomb friction. The parameters of the model are identified by experimental investigation. Different methods are used in the experiment to obtain different values of the same parameter at different velocities. The model is proved to be valid by experimental verification. The achievement in this article is the attempted perfection of an interaction model. It is hoped that the model can optimize the control method of the capsule robot in the future.
Numerical modeling of the strain of elastic rubber elements
NASA Astrophysics Data System (ADS)
Moskvichev, E. N.; Porokhin, A. V.; Shcherbakov, I. V.
2017-11-01
A comparative analysis of the results of experimental investigation of mechanical behavior of the rubber sample during biaxial compression testing and numerical simulation results obtained by the finite element method was carried out to determine the correctness of the model applied in the engineering calculations of elastic structural elements made of the rubber. The governing equation represents the five-parameter Mooney-Rivlin model with the constants determined from experimental data. The investigation results showed that these constants reliably describe the mechanical behavior of the material under consideration. The divergence of experimental and numerical results does not exceed 15%.
Hewlin, Rodward L; Kizito, John P
2018-03-01
The ultimate goal of the present work is to aid in the development of tools to assist in the treatment of cardiovascular disease. Gaining an understanding of hemodynamic parameters for medical implants allow clinicians to have some patient-specific proposals for intervention planning. In the present work an experimental and digital computational fluid dynamics (CFD) arterial model consisting of a number of major arteries (aorta, carotid bifurcation, cranial, femoral, jejunal, and subclavian arteries) were fabricated to study: (1) the effects of local hemodynamics (flow parameters) on global hemodynamics (2) the effects of transition from bedrest to upright position (postural change) on hemodynamics, and (3) diffusion of dye (medical drug diffusion simulation) in the arterial system via experimental and numerical techniques. The experimental and digital arterial models used in the present study are the first 3-D systems reported in literature to incorporate the major arterial vessels that deliver blood from the heart to the cranial and femoral arteries. These models are also the first reported in literature to be used for flow parameter assessment via medical drug delivery and orthostatic postural change studies. The present work addresses the design of the experimental and digital arterial model in addition to the design of measuring tools used to measure hemodynamic parameters. The experimental and digital arterial model analyzed in the present study was developed from patient specific computed tomography angiography (CTA) scans and simplified geometric data. Segments such as the aorta (ascending and descending) and carotid bifurcation arteries of the experimental and digital arterial model was created from online available patient-specific CTA scan data provided by Charite' Clinical and Research Hospital. The cranial and coronary arteries were simplified arterial geometries developed from dimensional specification data used in previous work. For the patient specific geometries, a MATLAB code was written to upload the CTA scans of each artery, calculate the centroids, and produce surface splines at each discrete cross section along the lumen centerline to create the patient specific arterial geometries. The MATLAB code worked in conjunction with computer aided software (CAD) Solidworks to produce solid models of the patient specific geometries and united them with the simplified geometries to produce the full arterial model (CAD model). The CAD model was also used as a blueprint to fabricate the experimental model which was used for flow visualization via particle imaging velocimetry (PIV) and postural change studies. A custom pulse duplicator (pulsatile pump) was also designed and developed for the present work. The pulse duplicator is capable of producing patient-specific volumetric waveforms for inlet flow to the experimental arterial model. A simple fluid structure interaction (FSI) study was also conducted via optical techniques to establish the magnitude of vessel diameter change due to the pulsatile flow. A medical drug delivery (dye dispersion and tracing) case was simulated via a dye being dispersed into the pulsatile flow stream to measure the transit time of the dye front. Pressure waveforms for diseased cases (hypertension & stenotic cases) were also obtained from the experimental arterial model during postural changes from bedrest (0°) to upright position (90°). The postural changes were simulated via attaching the experimental model to a tile table the can transition from 0° to 90°. The PIV results obtained from the experimental model provided parametric data such as velocity and wall shear stress data. The medical drug delivery simulations (experimental and numerical) studies produce time dependent data which is useful for predicting flow trajectory and transit time of medical drug dispersion. In the case of postural change studies, pressure waveforms were obtained from the common carotid artery and the femoral sections to yield pressure difference data useful for orthostatic hypotension analysis. Flow parametric data such as vorticity (flow reversal), wall shear stress, normal stress, and medical drug transit data was also obtained from the digital arterial model CFD simulations. Although the present work is preliminary work, the experimental and digital models proves to be useful in providing flow parametric data of interest such as: (1) normal stress which is useful for predicting the magnitude of forces which could promote arterial rupture or dislodging of medical implants, (2) wall shear stress which is useful for analyzing the magnitude of drug transport at the arterial wall, (3) vorticity which is useful for predicting the magnitude of flow reversal, and (4) arterial compliance in the case of the experimental model which could be useful in the efforts of developing FSI numerical simulations that incorporates compliance which realistically models the flow in the arterial system.
Modeling noisy resonant system response
NASA Astrophysics Data System (ADS)
Weber, Patrick Thomas; Walrath, David Edwin
2017-02-01
In this paper, a theory-based model replicating empirical acoustic resonant signals is presented and studied to understand sources of noise present in acoustic signals. Statistical properties of empirical signals are quantified and a noise amplitude parameter, which models frequency and amplitude-based noise, is created, defined, and presented. This theory-driven model isolates each phenomenon and allows for parameters to be independently studied. Using seven independent degrees of freedom, this model will accurately reproduce qualitative and quantitative properties measured from laboratory data. Results are presented and demonstrate success in replicating qualitative and quantitative properties of experimental data.
Suits reflectance models for wheat and cotton - Theoretical and experimental tests
NASA Technical Reports Server (NTRS)
Chance, J. E.; Lemaster, E. W.
1977-01-01
Plant canopy reflectance models developed by Suits are tested for cotton and Penjamo winter wheat. Properties of the models are discussed, and the concept of model depth is developed. The models' predicted exchange symmetry for specular irradiance with respect to sun polar angle and observer polar angle agreed with field data for cotton and wheat. Model calculations and experimental data for wheat reflectance vs sun angle disagreed. Specular reflectance from 0.50 to 1.10 micron shows fair agreement between the model and wheat measurements. An Appendix includes the physical and optical parameters for wheat necessary to apply Suits' models.
Electrostatics of cysteine residues in proteins: parameterization and validation of a simple model.
Salsbury, Freddie R; Poole, Leslie B; Fetrow, Jacquelyn S
2012-11-01
One of the most popular and simple models for the calculation of pK(a) s from a protein structure is the semi-macroscopic electrostatic model MEAD. This model requires empirical parameters for each residue to calculate pK(a) s. Analysis of current, widely used empirical parameters for cysteine residues showed that they did not reproduce expected cysteine pK(a) s; thus, we set out to identify parameters consistent with the CHARMM27 force field that capture both the behavior of typical cysteines in proteins and the behavior of cysteines which have perturbed pK(a) s. The new parameters were validated in three ways: (1) calculation across a large set of typical cysteines in proteins (where the calculations are expected to reproduce expected ensemble behavior); (2) calculation across a set of perturbed cysteines in proteins (where the calculations are expected to reproduce the shifted ensemble behavior); and (3) comparison to experimentally determined pK(a) values (where the calculation should reproduce the pK(a) within experimental error). Both the general behavior of cysteines in proteins and the perturbed pK(a) in some proteins can be predicted reasonably well using the newly determined empirical parameters within the MEAD model for protein electrostatics. This study provides the first general analysis of the electrostatics of cysteines in proteins, with specific attention paid to capturing both the behavior of typical cysteines in a protein and the behavior of cysteines whose pK(a) should be shifted, and validation of force field parameters for cysteine residues. Copyright © 2012 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Torabi, Amir; Kolahan, Farhad
2018-07-01
Pulsed laser welding is a powerful technique especially suitable for joining thin sheet metals. In this study, based on experimental data, pulsed laser welding of thin AISI316L austenitic stainless steel sheet has been modeled and optimized. The experimental data required for modeling are gathered as per Central Composite Design matrix in Response Surface Methodology (RSM) with full replication of 31 runs. Ultimate Tensile Strength (UTS) is considered as the main quality measure in laser welding. Furthermore, the important process parameters including peak power, pulse duration, pulse frequency and welding speed are selected as input process parameters. The relation between input parameters and the output response is established via full quadratic response surface regression with confidence level of 95%. The adequacy of the regression model was verified using Analysis of Variance technique results. The main effects of each factor and the interactions effects with other factors were analyzed graphically in contour and surface plot. Next, to maximum joint UTS, the best combinations of parameters levels were specified using RSM. Moreover, the mathematical model is implanted into a Simulated Annealing (SA) optimization algorithm to determine the optimal values of process parameters. The results obtained by both SA and RSM optimization techniques are in good agreement. The optimal parameters settings for peak power of 1800 W, pulse duration of 4.5 ms, frequency of 4.2 Hz and welding speed of 0.5 mm/s would result in a welded joint with 96% of the base metal UTS. Computational results clearly demonstrate that the proposed modeling and optimization procedures perform quite well for pulsed laser welding process.
NASA Astrophysics Data System (ADS)
Cadeville, M. C.; Pierron-Bohnes, V.; Bouzidi, L.; Sanchez, J. M.
1993-01-01
Local and average electronic and magnetic properties of transition metal alloys are strongly correlated to the distribution of atoms on the lattice sites. The ability of some systems to form long range ordered structures at low temperature allows to discuss their properties in term of well identified occupation operators as those related to long range order (LRO) parameters. We show that using theoretical determinations of these LRO parameters through statistical models like the cluster variation method (CVM) developed to simulate the experimental phase diagrams, we are able to reproduce a lot of physical properties. In this paper we focus on two points: (i) a comparison between CVM results and an experimental determination of the LRO parameter by NMR at 59Co in a CoPt3 compound, and (ii) the modelling of the resistivity of ferromagnetic and paramagnetic intermetallic compounds belonging to Co-Pt, Ni-Pt and Fe-Al systems. All experiments were performed on samples in identified thermodynamic states, implying that kinetic effects are thoroughly taken into account.
Development of analysis technique to predict the material behavior of blowing agent
NASA Astrophysics Data System (ADS)
Hwang, Ji Hoon; Lee, Seonggi; Hwang, So Young; Kim, Naksoo
2014-11-01
In order to numerically simulate the foaming behavior of mastic sealer containing the blowing agent, a foaming and driving force model are needed which incorporate the foaming characteristics. Also, the elastic stress model is required to represent the material behavior of co-existing phase of liquid state and the cured polymer. It is important to determine the thermal properties such as thermal conductivity and specific heat because foaming behavior is heavily influenced by temperature change. In this study, three models are proposed to explain the foaming process and material behavior during and after the process. To obtain the material parameters in each model, following experiments and the numerical simulations are performed: thermal test, simple shear test and foaming test. The error functions are defined as differences between the experimental measurements and the numerical simulation results, and then the parameters are determined by minimizing the error functions. To ensure the validity of the obtained parameters, the confirmation simulation for each model is conducted by applying the determined parameters. The cross-verification is performed by measuring the foaming/shrinkage force. The results of cross-verification tended to follow the experimental results. Interestingly, it was possible to estimate the micro-deformation occurring in automobile roof surface by applying the proposed model to oven process analysis. The application of developed analysis technique will contribute to the design with minimized micro-deformation.
Optimizing LX-17 Thermal Decomposition Model Parameters with Evolutionary Algorithms
NASA Astrophysics Data System (ADS)
Moore, Jason; McClelland, Matthew; Tarver, Craig; Hsu, Peter; Springer, H. Keo
2017-06-01
We investigate and model the cook-off behavior of LX-17 because this knowledge is critical to understanding system response in abnormal thermal environments. Thermal decomposition of LX-17 has been explored in conventional ODTX (One-Dimensional Time-to-eXplosion), PODTX (ODTX with pressure-measurement), TGA (thermogravimetric analysis), and DSC (differential scanning calorimetry) experiments using varied temperature profiles. These experimental data are the basis for developing multiple reaction schemes with coupled mechanics in LLNL's multi-physics hydrocode, ALE3D (Arbitrary Lagrangian-Eulerian code in 2D and 3D). We employ evolutionary algorithms to optimize reaction rate parameters on high performance computing clusters. Once experimentally validated, this model will be scalable to a number of applications involving LX-17 and can be used to develop more sophisticated experimental methods. Furthermore, the optimization methodology developed herein should be applicable to other high explosive materials. This work was performed under the auspices of the U.S. DOE by LLNL under contract DE-AC52-07NA27344. LLNS, LLC.
Dual Extended Kalman Filter for the Identification of Time-Varying Human Manual Control Behavior
NASA Technical Reports Server (NTRS)
Popovici, Alexandru; Zaal, Peter M. T.; Pool, Daan M.
2017-01-01
A Dual Extended Kalman Filter was implemented for the identification of time-varying human manual control behavior. Two filters that run concurrently were used, a state filter that estimates the equalization dynamics, and a parameter filter that estimates the neuromuscular parameters and time delay. Time-varying parameters were modeled as a random walk. The filter successfully estimated time-varying human control behavior in both simulated and experimental data. Simple guidelines are proposed for the tuning of the process and measurement covariance matrices and the initial parameter estimates. The tuning was performed on simulation data, and when applied on experimental data, only an increase in measurement process noise power was required in order for the filter to converge and estimate all parameters. A sensitivity analysis to initial parameter estimates showed that the filter is more sensitive to poor initial choices of neuromuscular parameters than equalization parameters, and bad choices for initial parameters can result in divergence, slow convergence, or parameter estimates that do not have a real physical interpretation. The promising results when applied to experimental data, together with its simple tuning and low dimension of the state-space, make the use of the Dual Extended Kalman Filter a viable option for identifying time-varying human control parameters in manual tracking tasks, which could be used in real-time human state monitoring and adaptive human-vehicle haptic interfaces.
NASA Astrophysics Data System (ADS)
Rudrapati, R.; Sahoo, P.; Bandyopadhyay, A.
2016-09-01
The main aim of the present work is to analyse the significance of turning parameters on surface roughness in computer numerically controlled (CNC) turning operation while machining of aluminium alloy material. Spindle speed, feed rate and depth of cut have been considered as machining parameters. Experimental runs have been conducted as per Box-Behnken design method. After experimentation, surface roughness is measured by using stylus profile meter. Factor effects have been studied through analysis of variance. Mathematical modelling has been done by response surface methodology, to made relationships between the input parameters and output response. Finally, process optimization has been made by teaching learning based optimization (TLBO) algorithm. Predicted turning condition has been validated through confirmatory experiment.
Kern, Madalyn D; Ortega Alcaide, Joan; Rentschler, Mark E
2014-11-01
The objective of this work is to validate an experimental method and nondimensional model for characterizing the normal adhesive response between a polyvinyl chloride based synthetic biological tissue substrate and a flat, cylindrical probe with a smooth polydimethylsiloxane (PDMS) surface. The adhesion response is a critical mobility design parameter of a Robotic Capsule Endoscope (RCE) using PDMS treads to provide mobility to travel through the gastrointestinal tract for diagnostic purposes. Three RCE design characteristics were chosen as input parameters for the normal adhesion testing: pre-load, dwell time and separation rate. These parameters relate to the RCE׳s cross sectional dimension, tread length, and tread speed, respectively. An inscribed central composite design (CCD) prescribed 34 different parameter configurations to be tested. The experimental adhesion response curves were nondimensionalized by the maximum stress and total displacement values for each test configuration and a mean nondimensional curve was defined with a maximum relative error of 5.6%. A mathematical model describing the adhesion behavior as a function of the maximum stress and total displacement was developed and verified. A nonlinear regression analysis was done on the maximum stress and total displacement parameters and equations were defined as a function of the RCE design parameters. The nondimensional adhesion model is able to predict the adhesion curve response of any test configuration with a mean R(2) value of 0.995. Eight additional CCD studies were performed to obtain a qualitative understanding of the impact of tread contact area and synthetic material substrate stiffness on the adhesion response. These results suggest that the nondimensionalization technique for analyzing the adhesion data is sufficient for all values of probe radius and substrate stiffness within the bounds tested. This method can now be used for RCE tread design optimization given a set of environmental conditions for device operation. Copyright © 2014 Elsevier Ltd. All rights reserved.
Approximate Bayesian Computation in the estimation of the parameters of the Forbush decrease model
NASA Astrophysics Data System (ADS)
Wawrzynczak, A.; Kopka, P.
2017-12-01
Realistic modeling of the complicated phenomena as Forbush decrease of the galactic cosmic ray intensity is a quite challenging task. One aspect is a numerical solution of the Fokker-Planck equation in five-dimensional space (three spatial variables, the time and particles energy). The second difficulty arises from a lack of detailed knowledge about the spatial and time profiles of the parameters responsible for the creation of the Forbush decrease. Among these parameters, the central role plays a diffusion coefficient. Assessment of the correctness of the proposed model can be done only by comparison of the model output with the experimental observations of the galactic cosmic ray intensity. We apply the Approximate Bayesian Computation (ABC) methodology to match the Forbush decrease model to experimental data. The ABC method is becoming increasing exploited for dynamic complex problems in which the likelihood function is costly to compute. The main idea of all ABC methods is to accept samples as an approximate posterior draw if its associated modeled data are close enough to the observed one. In this paper, we present application of the Sequential Monte Carlo Approximate Bayesian Computation algorithm scanning the space of the diffusion coefficient parameters. The proposed algorithm is adopted to create the model of the Forbush decrease observed by the neutron monitors at the Earth in March 2002. The model of the Forbush decrease is based on the stochastic approach to the solution of the Fokker-Planck equation.
Corradini, M G; Normand, M D; Newcomer, C; Schaffner, D W; Peleg, M
2009-01-01
Theoretically, if an organism's resistance can be characterized by 3 survival parameters, they can be found by solving 3 simultaneous equations that relate the final survival ratio to the lethal agent's intensity. (For 2 resistance parameters, 2 equations will suffice.) In practice, the inevitable experimental scatter would distort the results of such a calculation or render the method unworkable. Averaging the results obtained with more than 3 final survival ratio triplet combinations, determined in four or more treatments, can remove this impediment. This can be confirmed by the ability of a kinetic inactivation model derived from the averaged parameters to predict survival patterns under conditions not employed in their determination, as demonstrated with published isothermal survival data of Clostridium botulinum spores, isobaric data of Escherichia coli under HPP, and Pseudomonas exposed to hydrogen peroxide. Both the method and the underlying assumption that the inactivation followed a Weibull-Log logistic (WeLL) kinetics were confirmed in this way, indicating that when an appropriate survival model is available, it is possible to predict the entire inactivation curves from several experimental final survival ratios alone. Where applicable, the method could simplify the experimental procedure and lower the cost of microbial resistance determinations. In principle, the methodology can be extended to deteriorative chemical reactions if they too can be characterized by 2 or 3 kinetic parameters.
Constraints on supersymmetric dark matter for heavy scalar superpartners
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Peisi; Roglans, Roger A.; Spiegel, Daniel D.
2017-05-01
We study the constraints on neutralino dark matter in minimal low energy supersymmetry models and the case of heavy lepton and quark scalar superpartners. For values of the Higgsino and gaugino mass parameters of the order of the weak scale, direct detection experiments are already putting strong bounds on models in which the dominant interactions between the dark matter candidates and nuclei are governed by Higgs boson exchange processes, particularly for positive values of the Higgsino mass parameter mu. For negative values of mu, there can be destructive interference between the amplitudes associated with the exchange of the standard CP-evenmore » Higgs boson and the exchange of the nonstandard one. This leads to specific regions of parameter space which are consistent with the current experimental constraints and a thermal origin of the observed relic density. In this article, we study the current experimental constraints on these scenarios, as well as the future experimental probes, using a combination of direct and indirect dark matter detection and heavy Higgs and electroweakino searches at hadron colliders« less
2012-01-01
This paper utilizes a statistical approach, the response surface optimization methodology, to determine the optimum conditions for the Acid Black 172 dye removal efficiency from aqueous solution by electrocoagulation. The experimental parameters investigated were initial pH: 4–10; initial dye concentration: 0–600 mg/L; applied current: 0.5-3.5 A and reaction time: 3–15 min. These parameters were changed at five levels according to the central composite design to evaluate their effects on decolorization through analysis of variance. High R2 value of 94.48% shows a high correlation between the experimental and predicted values and expresses that the second-order regression model is acceptable for Acid Black 172 dye removal efficiency. It was also found that some interactions and squares influenced the electrocoagulation performance as well as the selected parameters. Optimum dye removal efficiency of 90.4% was observed experimentally at initial pH of 7, initial dye concentration of 300 mg/L, applied current of 2 A and reaction time of 9.16 min, which is close to model predicted (90%) result. PMID:23369574
Suzuki, Ryo; Ito, Kohta; Lee, Taeyong; Ogihara, Naomichi
2017-12-01
Identifying the viscous properties of the plantar soft tissue is crucial not only for understanding the dynamic interaction of the foot with the ground during locomotion, but also for development of improved footwear products and therapeutic footwear interventions. In the present study, the viscous and hyperelastic material properties of the plantar soft tissue were experimentally identified using a spherical indentation test and an analytical contact model of the spherical indentation test. Force-relaxation curves of the heel pads were obtained from the indentation experiment. The curves were fit to the contact model incorporating a five-element Maxwell model to identify the viscous material parameters. The finite element method with the experimentally identified viscoelastic parameters could successfully reproduce the measured force-relaxation curves, indicating the material parameters were correctly estimated using the proposed method. Although there are some methodological limitations, the proposed framework to identify the viscous material properties may facilitate the development of subject-specific finite element modeling of the foot and other biological materials. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Buczkowski, M.; Fisz, J. J.
2008-07-01
In this paper the possibility of the numerical data modelling in the case of angle- and time-resolved fluorescence spectroscopy is investigated. The asymmetric fluorescence probes are assumed to undergo the restricted rotational diffusion in a hosting medium. This process is described quantitatively by the diffusion tensor and the aligning potential. The evolution of the system is expressed in terms of the Smoluchowski equation with an appropriate time-developing operator. A matrix representation of this operator is calculated, then symmetrized and diagonalized. The resulting propagator is used to generate the synthetic noisy data set that imitates results of experimental measurements. The data set serves as a groundwork to the χ2 optimization, performed by the genetic algorithm followed by the gradient search, in order to recover model parameters, which are diagonal elements of the diffusion tensor, aligning potential expansion coefficients and directions of the electronic dipole moments. This whole procedure properly identifies model parameters, showing that the outlined formalism should be taken in the account in the case of analysing real experimental data.
NASA Astrophysics Data System (ADS)
Rezaei Ashtiani, Hamid Reza; Zarandooz, Roozbeh
2015-09-01
A 2D axisymmetric electro-thermo-mechanical finite element (FE) model is developed to investigate the effect of current intensity, welding time, and electrode tip diameter on temperature distributions and nugget size in resistance spot welding (RSW) process of Inconel 625 superalloy sheets using ABAQUS commercial software package. The coupled electro-thermal analysis and uncoupled thermal-mechanical analysis are used for modeling process. In order to improve accuracy of simulation, material properties including physical, thermal, and mechanical properties have been considered to be temperature dependent. The thickness and diameter of computed weld nuggets are compared with experimental results and good agreement is observed. So, FE model developed in this paper provides prediction of quality and shape of the weld nuggets and temperature distributions with variation of each process parameter, suitably. Utilizing this FE model assists in adjusting RSW parameters, so that expensive experimental process can be avoided. The results show that increasing welding time and current intensity lead to an increase in the nugget size and electrode indentation, whereas increasing electrode tip diameter decreases nugget size and electrode indentation.
Set statistics in conductive bridge random access memory device with Cu/HfO{sub 2}/Pt structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Meiyun; Long, Shibing, E-mail: longshibing@ime.ac.cn; Wang, Guoming
2014-11-10
The switching parameter variation of resistive switching memory is one of the most important challenges in its application. In this letter, we have studied the set statistics of conductive bridge random access memory with a Cu/HfO{sub 2}/Pt structure. The experimental distributions of the set parameters in several off resistance ranges are shown to nicely fit a Weibull model. The Weibull slopes of the set voltage and current increase and decrease logarithmically with off resistance, respectively. This experimental behavior is perfectly captured by a Monte Carlo simulator based on the cell-based set voltage statistics model and the Quantum Point Contact electronmore » transport model. Our work provides indications for the improvement of the switching uniformity.« less
NASA Technical Reports Server (NTRS)
Miller, Adam M.; Edeen, Marybeth; Sirko, Robert J.
1992-01-01
This paper describes the approach and results of an effort to characterize plant growth under various environmental conditions at the Johnson Space Center variable pressure growth chamber. Using a field of applied mathematics and statistics known as design of experiments (DOE), we developed a test plan for varying environmental parameters during a lettuce growth experiment. The test plan was developed using a Box-Behnken approach to DOE. As a result of the experimental runs, we have developed empirical models of both the transpiration process and carbon dioxide assimilation for Waldman's Green lettuce over specified ranges of environmental parameters including carbon dioxide concentration, light intensity, dew-point temperature, and air velocity. This model also predicts transpiration and carbon dioxide assimilation for different ages of the plant canopy.
The analysis of isotherms of radionuclides sorption by inorganic sorbents
NASA Astrophysics Data System (ADS)
Bykova, E. P.; Nedobukh, T. A.
2017-09-01
The isotherm of cesium sorption by an inorganic sorbent based on granulated glauconite obtained in a wide cesium concentrations range was mathematically treated using Langmuir, Freundlich and Redlich-Peterson sorption models. The algorithms of mathematical treatment of experimental data using these models were described; parameters of all isotherms were determined. It was shown that estimating the correctness of various sorption models relies not only on the correlation coefficient values but also on the closeness of the calculated and experimental data. Various types of sorption sites were found as a result of mathematical treatment of the isotherm of cesium sorption. The algorithm was described and calculation of parameters of the isotherm was performed under the assumption that simultaneous sorption on all three types of sorption sites occurs in accordance with Langmuir isotherm.
Uncertainty Modeling for Structural Control Analysis and Synthesis
NASA Technical Reports Server (NTRS)
Campbell, Mark E.; Crawley, Edward F.
1996-01-01
The development of an accurate model of uncertainties for the control of structures that undergo a change in operational environment, based solely on modeling and experimentation in the original environment is studied. The application used throughout this work is the development of an on-orbit uncertainty model based on ground modeling and experimentation. A ground based uncertainty model consisting of mean errors and bounds on critical structural parameters is developed. The uncertainty model is created using multiple data sets to observe all relevant uncertainties in the system. The Discrete Extended Kalman Filter is used as an identification/parameter estimation method for each data set, in addition to providing a covariance matrix which aids in the development of the uncertainty model. Once ground based modal uncertainties have been developed, they are localized to specific degrees of freedom in the form of mass and stiffness uncertainties. Two techniques are presented: a matrix method which develops the mass and stiffness uncertainties in a mathematical manner; and a sensitivity method which assumes a form for the mass and stiffness uncertainties in macroelements and scaling factors. This form allows the derivation of mass and stiffness uncertainties in a more physical manner. The mass and stiffness uncertainties of the ground based system are then mapped onto the on-orbit system, and projected to create an analogous on-orbit uncertainty model in the form of mean errors and bounds on critical parameters. The Middeck Active Control Experiment is introduced as experimental verification for the localization and projection methods developed. In addition, closed loop results from on-orbit operations of the experiment verify the use of the uncertainty model for control analysis and synthesis in space.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doinikov, Alexander A., E-mail: doinikov@bsu.by; Bouakaz, Ayache; Sheeran, Paul S.
2014-10-15
Purpose: Perfluorocarbon (PFC) microdroplets, called phase-change contrast agents (PCCAs), are a promising tool in ultrasound imaging and therapy. Interest in PCCAs is motivated by the fact that they can be triggered to transition from the liquid state to the gas state by an externally applied acoustic pulse. This property opens up new approaches to applications in ultrasound medicine. Insight into the physics of vaporization of PFC droplets is vital for effective use of PCCAs and for anticipating bioeffects. PCCAs composed of volatile PFCs (with low boiling point) exhibit complex dynamic behavior: after vaporization by a short acoustic pulse, a PFCmore » droplet turns into a vapor bubble which undergoes overexpansion and damped radial oscillation until settling to a final diameter. This behavior has not been well described theoretically so far. The purpose of our study is to develop an improved theoretical model that describes the vaporization dynamics of volatile PFC droplets and to validate this model by comparison with in vitro experimental data. Methods: The derivation of the model is based on applying the mathematical methods of fluid dynamics and thermodynamics to the process of the acoustic vaporization of PFC droplets. The used approach corrects shortcomings of the existing models. The validation of the model is carried out by comparing simulated results with in vitro experimental data acquired by ultrahigh speed video microscopy for octafluoropropane (OFP) and decafluorobutane (DFB) microdroplets of different sizes. Results: The developed theory allows one to simulate the growth of a vapor bubble inside a PFC droplet until the liquid PFC is completely converted into vapor, and the subsequent overexpansion and damped oscillations of the vapor bubble, including the influence of an externally applied acoustic pulse. To evaluate quantitatively the difference between simulated and experimental results, the L2-norm errors were calculated for all cases where the simulated and experimental results are compared. These errors were found to be in the ranges of 0.043–0.067 and 0.037–0.088 for OFP and DFB droplets, respectively. These values allow one to consider agreement between the simulated and experimental results as good. This agreement is attained by varying only 2 of 16 model parameters which describe the material properties of gaseous and liquid PFCs and the liquid surrounding the PFC droplet. The fitting parameters are the viscosity and the surface tension of the surrounding liquid. All other model parameters are kept invariable. Conclusions: The good agreement between the theoretical and experimental results suggests that the developed model is able to correctly describe the key physical processes underlying the vaporization dynamics of volatile PFC droplets. The necessity of varying the parameters of the surrounding liquid for fitting the experimental curves can be explained by the fact that the parts of the initial phospholipid shell of PFC droplets remain on the surface of vapor bubbles at the oscillatory stage and their presence affects the bubble dynamics.« less
2011-01-01
In systems biology, experimentally measured parameters are not always available, necessitating the use of computationally based parameter estimation. In order to rely on estimated parameters, it is critical to first determine which parameters can be estimated for a given model and measurement set. This is done with parameter identifiability analysis. A kinetic model of the sucrose accumulation in the sugar cane culm tissue developed by Rohwer et al. was taken as a test case model. What differentiates this approach is the integration of an orthogonal-based local identifiability method into the unscented Kalman filter (UKF), rather than using the more common observability-based method which has inherent limitations. It also introduces a variable step size based on the system uncertainty of the UKF during the sensitivity calculation. This method identified 10 out of 12 parameters as identifiable. These ten parameters were estimated using the UKF, which was run 97 times. Throughout the repetitions the UKF proved to be more consistent than the estimation algorithms used for comparison. PMID:21989173
NASA Astrophysics Data System (ADS)
Béres, Gábor; Weltsch, Zoltán; Lukács, Zsolt; Tisza, Miklós
2018-05-01
Forming limit is a complex concept of limit values related to the onset of local necking in the sheet metal. In cold sheet metal forming, major and minor limit strains are influenced by the sheet thickness, strain path (deformation history) as well as material parameters and microstructure. Forming Limit Curves are plotted in ɛ1 - ɛ2 coordinate system providing the classic strain-based Forming Limit Diagram (FLD). Using the appropriate constitutive model, the limit strains can be changed into the stress-based Forming Limit Diagram (SFLD), irrespective of the strain path. This study is about the effect of the hardening model parameters on defining of limit stress values during Nakazima tests for automotive dual phase (DP) steels. Five limit strain pairs were specified experimentally with the loading of five different sheet geometries, which performed different strain-paths from pure shear (-2ɛ2=ɛ1) up to biaxial stretching (ɛ2=ɛ1). The former works of Hill, Levy-Tyne and Keeler-Brazier made possible some kind of theoretical strain determination, too. This was followed by the stress calculation based on the experimental and theoretical strain data. Since the n exponent in the Nádai expression is varying with the strain at some DP steels, we applied the least-squares method to fit other hardening model parameters (Ludwik, Voce, Hockett-Sherby) to calculate the stress fields belonging to each limit strains. The results showed that each model parameters could produce some discrepancies between the limit stress states in the range of higher equivalent strains than uniaxial stretching. The calculated hardening models were imported to FE code to extend and validate the results by numerical simulations.
NASA Astrophysics Data System (ADS)
Williams, R. T.; Grim, Joel Q.; Li, Qi; Ucer, K. B.; Bizarri, G. A.; Kerisit, S.; Gao, Fei; Bhattacharya, P.; Tupitsyn, E.; Rowe, E.; Buliga, V. M.; Burger, A.
2013-09-01
Models of nonproportional response in scintillators have highlighted the importance of parameters such as branching ratios, carrier thermalization times, diffusion, kinetic order of quenching, associated rate constants, and radius of the electron track. For example, the fraction ηeh of excitations that are free carriers versus excitons was shown by Payne and coworkers to have strong correlation with the shape of electron energy response curves from Compton-coincidence studies. Rate constants for nonlinear quenching are implicit in almost all models of nonproportionality, and some assumption about track radius must invariably be made if one is to relate linear energy deposition dE/dx to volume-based excitation density n (eh/cm3) in terms of which the rates are defined. Diffusion, affecting time-dependent track radius and thus density of excitations, has been implicated as an important factor in nonlinear light yield. Several groups have recently highlighted diffusion of hot electrons in addition to thermalized carriers and excitons in scintillators. However, experimental determination of many of these parameters in the insulating crystals used as scintillators has seemed difficult. Subpicosecond laser techniques including interband z scan light yield, fluence-dependent decay time, and transient optical absorption are now yielding experimental values for some of the missing rates and ratios needed for modeling scintillator response. First principles calculations and Monte Carlo simulations can fill in additional parameters still unavailable from experiment. As a result, quantitative modeling of scintillator electron energy response from independently determined material parameters is becoming possible on an increasingly firmer data base. This paper describes recent laser experiments, calculations, and numerical modeling of scintillator response.
Williams, R. T.; Grim, Joel Q.; Li, Qi; ...
2013-09-26
Models of nonproportional response in scintillators have highlighted the importance of parameters such as branching ratios, carrier thermalization times, diffusion, kinetic order of quenching, associated rate constants, and radius of the electron track. For example, the fraction ηeh of excitations that are free carriers versus excitons was shown by Payne and coworkers to have strong correlation with the shape of electron energy response curves from Compton-coincidence studies. Rate constants for nonlinear quenching are implicit in almost all models of nonproportionality, and some assumption about track radius must invariably be made if one is to relate linear energy deposition dE/dx tomore » volume-based excitation density n (eh/cm 3) in terms of which the rates are defined. Diffusion, affecting time-dependent track radius and thus density of excitations, has been implicated as an important factor in nonlinear light yield. Several groups have recently highlighted diffusion of hot electrons in addition to thermalized carriers and excitons in scintillators. However, experimental determination of many of these parameters in the insulating crystals used as scintillators has seemed difficult. Subpicosecond laser techniques including interband z scan light yield, fluence-dependent decay time, and transient optical absorption are now yielding experimental values for some of the missing rates and ratios needed for modeling scintillator response. First principles calculations and Monte Carlo simulations can fill in additional parameters still unavailable from experiment. As a result, quantitative modeling of scintillator electron energy response from independently determined material parameters is becoming possible on an increasingly firmer data base. This study describes recent laser experiments, calculations, and numerical modeling of scintillator response.« less
NASA Astrophysics Data System (ADS)
Matsunaga, Y.; Sugita, Y.
2018-06-01
A data-driven modeling scheme is proposed for conformational dynamics of biomolecules based on molecular dynamics (MD) simulations and experimental measurements. In this scheme, an initial Markov State Model (MSM) is constructed from MD simulation trajectories, and then, the MSM parameters are refined using experimental measurements through machine learning techniques. The second step can reduce the bias of MD simulation results due to inaccurate force-field parameters. Either time-series trajectories or ensemble-averaged data are available as a training data set in the scheme. Using a coarse-grained model of a dye-labeled polyproline-20, we compare the performance of machine learning estimations from the two types of training data sets. Machine learning from time-series data could provide the equilibrium populations of conformational states as well as their transition probabilities. It estimates hidden conformational states in more robust ways compared to that from ensemble-averaged data although there are limitations in estimating the transition probabilities between minor states. We discuss how to use the machine learning scheme for various experimental measurements including single-molecule time-series trajectories.
Air drying modelling of Mastocarpus stellatus seaweed a source of hybrid carrageenan
NASA Astrophysics Data System (ADS)
Arufe, Santiago; Torres, Maria D.; Chenlo, Francisco; Moreira, Ramon
2018-01-01
Water sorption isotherms from 5 up to 65 °C and air drying kinetics at 35, 45 and 55 °C of Mastocarpus stellatus seaweed were determined. Experimental sorption data were modelled using BET and Oswin models. A four-parameter model, based on Oswin model, was proposed to estimate equilibrium moisture content as function of water activity and temperature simultaneously. Drying experiments showed that water removal rate increased significantly with temperature from 35 to 45 °C, but at higher temperatures drying rate remained constant. Some chemical modifications of the hybrid carrageenans present in the seaweed can be responsible of this unexpected thermal trend. Experimental drying data were modelled using two-parameter Page model (n, k). Page parameter n was constant (1.31 ± 0.10) at tested temperatures, but k varied significantly with drying temperature (from 18.5 ± 0.2 10-3 min-n at 35 °C up to 28.4 ± 0.8 10-3 min-n at 45 and 55 °C). Drying experiments allowed the determination of the critical moisture content of seaweed (0.87 ± 0.06 kg water (kg d.b.)-1). A diffusional model considering slab geometry was employed to determine the effective diffusion coefficient of water during the falling rate period at different temperatures.
Surveying implicit solvent models for estimating small molecule absolute hydration free energies
Knight, Jennifer L.
2011-01-01
Implicit solvent models are powerful tools in accounting for the aqueous environment at a fraction of the computational expense of explicit solvent representations. Here, we compare the ability of common implicit solvent models (TC, OBC, OBC2, GBMV, GBMV2, GBSW, GBSW/MS, GBSW/MS2 and FACTS) to reproduce experimental absolute hydration free energies for a series of 499 small neutral molecules that are modeled using AMBER/GAFF parameters and AM1-BCC charges. Given optimized surface tension coefficients for scaling the surface area term in the nonpolar contribution, most implicit solvent models demonstrate reasonable agreement with extensive explicit solvent simulations (average difference 1.0-1.7 kcal/mol and R2=0.81-0.91) and with experimental hydration free energies (average unsigned errors=1.1-1.4 kcal/mol and R2=0.66-0.81). Chemical classes of compounds are identified that need further optimization of their ligand force field parameters and others that require improvement in the physical parameters of the implicit solvent models themselves. More sophisticated nonpolar models are also likely necessary to more effectively represent the underlying physics of solvation and take the quality of hydration free energies estimated from implicit solvent models to the next level. PMID:21735452
A Boussinesq-scaled, pressure-Poisson water wave model
NASA Astrophysics Data System (ADS)
Donahue, Aaron S.; Zhang, Yao; Kennedy, Andrew B.; Westerink, Joannes J.; Panda, Nishant; Dawson, Clint
2015-02-01
Through the use of Boussinesq scaling we develop and test a model for resolving non-hydrostatic pressure profiles in nonlinear wave systems over varying bathymetry. A Green-Nagdhi type polynomial expansion is used to resolve the pressure profile along the vertical axis, this is then inserted into the pressure-Poisson equation, retaining terms up to a prescribed order and solved using a weighted residual approach. The model shows rapid convergence properties with increasing order of polynomial expansion which can be greatly improved through the application of asymptotic rearrangement. Models of Boussinesq scaling of the fully nonlinear O (μ2) and weakly nonlinear O (μN) are presented, the analytical and numerical properties of O (μ2) and O (μ4) models are discussed. Optimal basis functions in the Green-Nagdhi expansion are determined through manipulation of the free-parameters which arise due to the Boussinesq scaling. The optimal O (μ2) model has dispersion accuracy equivalent to a Padé [2,2] approximation with one extra free-parameter. The optimal O (μ4) model obtains dispersion accuracy equivalent to a Padé [4,4] approximation with two free-parameters which can be used to optimize shoaling or nonlinear properties. In comparison to experimental results the O (μ4) model shows excellent agreement to experimental data.
Ruan, J S; Prasad, P
1995-08-01
A skull-brain finite element model of the human head has been coupled with a multilink rigid body model of the Hybrid III dummy. The experimental coupled model is intended to represent anatomically a 50th percentile human to the extent the dummy and the skull-brain model represent a human. It has been verified by simulating several human cadaver head impact tests as well as dummy head 'impacts" during barrier crashes in an automotive environment. Skull-isostress and brain-isostrain response curves were established based on model calibration of experimental human cadaver tolerance data. The skull-isostress response curve agrees with the JARI Human Head Impact Tolerance Curve for skull fracture. The brain-isostrain response curve predicts a higher G level for concussion than does the JARI concussion curve and the Wayne State Tolerance Curve at the longer time duration range. Barrier crash simulations consist of belted dummies impacting an airbag, a hard and soft steering wheel hub, and no head contact with vehicle interior components. Head impact force, intracranial pressures and strains, skull stress, and head center-of-gravity acceleration were investigated as injury parameters. Head injury criterion (HIC) was also calculated along with these parameters. Preliminary results of the model simulations in those impact conditions are discussed.
Model-Based IN SITU Parameter Estimation of Ultrasonic Guided Waves in AN Isotropic Plate
NASA Astrophysics Data System (ADS)
Hall, James S.; Michaels, Jennifer E.
2010-02-01
Most ultrasonic systems employing guided waves for flaw detection require information such as dispersion curves, transducer locations, and expected propagation loss. Degraded system performance may result if assumed parameter values do not accurately reflect the actual environment. By characterizing the propagating environment in situ at the time of test, potentially erroneous a priori estimates are avoided and performance of ultrasonic guided wave systems can be improved. A four-part model-based algorithm is described in the context of previous work that estimates model parameters whereby an assumed propagation model is used to describe the received signals. This approach builds upon previous work by demonstrating the ability to estimate parameters for the case of single mode propagation. Performance is demonstrated on signals obtained from theoretical dispersion curves, finite element modeling, and experimental data.
[A new method of fabricating photoelastic model by rapid prototyping].
Fan, Li; Huang, Qing-feng; Zhang, Fu-qiang; Xia, Yin-pei
2011-10-01
To explore a novel method of fabricating the photoelastic model using rapid prototyping technique. A mandible model was made by rapid prototyping with computerized three-dimensional reconstruction, then the photoelastic model with teeth was fabricated by traditional impression duplicating and mould casting. The photoelastic model of mandible with teeth, which was fabricated indirectly by rapid prototyping, was very similar to the prototype in geometry and physical parameters. The model was of high optical sensibility and met the experimental requirements. Photoelastic model of mandible with teeth indirectly fabricated by rapid prototyping meets the photoelastic experimental requirements well.
A Parametric Rosetta Energy Function Analysis with LK Peptides on SAM Surfaces.
Lubin, Joseph H; Pacella, Michael S; Gray, Jeffrey J
2018-05-08
Although structures have been determined for many soluble proteins and an increasing number of membrane proteins, experimental structure determination methods are limited for complexes of proteins and solid surfaces. An economical alternative or complement to experimental structure determination is molecular simulation. Rosetta is one software suite that models protein-surface interactions, but Rosetta is normally benchmarked on soluble proteins. For surface interactions, the validity of the energy function is uncertain because it is a combination of independent parameters from energy functions developed separately for solution proteins and mineral surfaces. Here, we assess the performance of the RosettaSurface algorithm and test the accuracy of its energy function by modeling the adsorption of leucine/lysine (LK)-repeat peptides on methyl- and carboxy-terminated self-assembled monolayers (SAMs). We investigated how RosettaSurface predictions for this system compare with the experimental results, which showed that on both surfaces, LK-α peptides folded into helices and LK-β peptides held extended structures. Utilizing this model system, we performed a parametric analysis of Rosetta's Talaris energy function and determined that adjusting solvation parameters offered improved predictive accuracy. Simultaneously increasing lysine carbon hydrophilicity and the hydrophobicity of the surface methyl head groups yielded computational predictions most closely matching the experimental results. De novo models still should be interpreted skeptically unless bolstered in an integrative approach with experimental data.
NASA Astrophysics Data System (ADS)
Wang, Ding; Ding, Pin-bo; Ba, Jing
2018-03-01
In Part I, a dynamic fracture compliance model (DFCM) was derived based on the poroelastic theory. The normal compliance of fractures is frequency-dependent and closely associated with the connectivity of porous media. In this paper, we first compare the DFCM with previous fractured media theories in the literature in a full frequency range. Furthermore, experimental tests are performed on synthetic rock specimens, and the DFCM is compared with the experimental data in the ultrasonic frequency band. Synthetic rock specimens saturated with water have more realistic mineral compositions and pore structures relative to previous works in comparison with natural reservoir rocks. The fracture/pore geometrical and physical parameters can be controlled to replicate approximately those of natural rocks. P- and S-wave anisotropy characteristics with different fracture and pore properties are calculated and numerical results are compared with experimental data. Although the measurement frequency is relatively high, the results of DFCM are appropriate for explaining the experimental data. The characteristic frequency of fluid pressure equilibration calculated based on the specimen parameters is not substantially less than the measurement frequency. In the dynamic fracture model, the wave-induced fluid flow behavior is an important factor for the fracture-wave interaction process, which differs from the models at the high-frequency limits, for instance, Hudson's un-relaxed model.
Particle dispersion in homogeneous turbulence using the one-dimensional turbulence model
Sun, Guangyuan; Lignell, David O.; Hewson, John C.; ...
2014-10-09
Lagrangian particle dispersion is studied using the one-dimensional turbulence (ODT) model in homogeneous decaying turbulence configurations. The ODT model has been widely and successfully applied to a number of reacting and nonreacting flow configurations, but only limited application has been made to multiphase flows. We present a version of the particle implementation and interaction with the stochastic and instantaneous ODT eddy events. The model is characterized by comparison to experimental data of particle dispersion for a range of intrinsic particle time scales and body forces. Particle dispersion, velocity, and integral time scale results are presented. Moreover, the particle implementation introducesmore » a single model parameter β p , and sensitivity to this parameter and behavior of the model are discussed. Good agreement is found with experimental data and the ODT model is able to capture the particle inertial and trajectory crossing effects. Our results serve as a validation case of the multiphase implementations of ODT for extensions to other flow configurations.« less
A physiologically based model for tramadol pharmacokinetics in horses.
Abbiati, Roberto Andrea; Cagnardi, Petra; Ravasio, Giuliano; Villa, Roberto; Manca, Davide
2017-09-21
This work proposes an application of a minimal complexity physiologically based pharmacokinetic model to predict tramadol concentration vs time profiles in horses. Tramadol is an opioid analgesic also used for veterinary treatments. Researchers and medical doctors can profit from the application of mathematical models as supporting tools to optimize the pharmacological treatment of animal species. The proposed model is based on physiology but adopts the minimal compartmental architecture necessary to describe the experimental data. The model features a system of ordinary differential equations, where most of the model parameters are either assigned or individualized for a given horse, using literature data and correlations. Conversely, residual parameters, whose value is unknown, are regressed exploiting experimental data. The model proved capable of simulating pharmacokinetic profiles with accuracy. In addition, it provides further insights on un-observable tramadol data, as for instance tramadol concentration in the liver or hepatic metabolism and renal excretion extent. Copyright © 2017 Elsevier Ltd. All rights reserved.
Accuracy of Reaction Cross Section for Exotic Nuclei in Glauber Model Based on MCMC Diagnostics
NASA Astrophysics Data System (ADS)
Rueter, Keiti; Novikov, Ivan
2017-01-01
Parameters of a nuclear density distribution for an exotic nuclei with halo or skin structures can be determined from the experimentally measured reaction cross-section. In the presented work, to extract parameters such as nuclear size information for a halo and core, we compare experimental data on reaction cross-sections with values obtained using expressions of the Glauber Model. These calculations are performed using a Markov Chain Monte Carlo algorithm. We discuss the accuracy of the Monte Carlo approach and its dependence on k*, the power law turnover point in the discreet power spectrum of the random number sequence and on the lag-1 autocorrelation time of the random number sequence.
Luo, Rutao; Piovoso, Michael J.; Martinez-Picado, Javier; Zurakowski, Ryan
2012-01-01
Mathematical models based on ordinary differential equations (ODE) have had significant impact on understanding HIV disease dynamics and optimizing patient treatment. A model that characterizes the essential disease dynamics can be used for prediction only if the model parameters are identifiable from clinical data. Most previous parameter identification studies for HIV have used sparsely sampled data from the decay phase following the introduction of therapy. In this paper, model parameters are identified from frequently sampled viral-load data taken from ten patients enrolled in the previously published AutoVac HAART interruption study, providing between 69 and 114 viral load measurements from 3–5 phases of viral decay and rebound for each patient. This dataset is considerably larger than those used in previously published parameter estimation studies. Furthermore, the measurements come from two separate experimental conditions, which allows for the direct estimation of drug efficacy and reservoir contribution rates, two parameters that cannot be identified from decay-phase data alone. A Markov-Chain Monte-Carlo method is used to estimate the model parameter values, with initial estimates obtained using nonlinear least-squares methods. The posterior distributions of the parameter estimates are reported and compared for all patients. PMID:22815727
NASA Astrophysics Data System (ADS)
Herrera-Vega, Javier; Montero-Hernández, Samuel; Tachtsidis, Ilias; Treviño-Palacios, Carlos G.; Orihuela-Espina, Felipe
2017-11-01
Accurate estimation of brain haemodynamics parameters such as cerebral blood flow and volume as well as oxygen consumption i.e. metabolic rate of oxygen, with funcional near infrared spectroscopy (fNIRS) requires precise characterization of light propagation through head tissues. An anatomically realistic forward model of the human adult head with unprecedented detailed specification of the 5 scalp sublayers to account for blood irrigation in the connective tissue layer is introduced. The full model consists of 9 layers, accounts for optical properties ranging from 750nm to 950nm and has a voxel size of 0.5mm. The whole model is validated comparing the predicted remitted spectra, using Monte Carlo simulations of radiation propagation with 108 photons, against continuous wave (CW) broadband fNIRS experimental data. As the true oxy- and deoxy-hemoglobin concentrations during acquisition are unknown, a genetic algorithm searched for the vector of parameters that generates a modelled spectrum that optimally fits the experimental spectrum. Differences between experimental and model predicted spectra was quantified using the Root mean square error (RMSE). RMSE was 0.071 +/- 0.004, 0.108 +/- 0.018 and 0.235+/-0.015 at 1, 2 and 3cm interoptode distance respectively. The parameter vector of absolute concentrations of haemoglobin species in scalp and cortex retrieved with the genetic algorithm was within histologically plausible ranges. The new model capability to estimate the contribution of the scalp blood flow shall permit incorporating this information to the regularization of the inverse problem for a cleaner reconstruction of brain hemodynamics.
NASA Astrophysics Data System (ADS)
Zhu, Yuchuan; Yang, Xulei; Wereley, Norman M.
2016-08-01
In this paper, focusing on the application-oriented giant magnetostrictive material (GMM)-based electro-hydrostatic actuator, which features an applied magnetic field at high frequency and high amplitude, and concentrating on the static and dynamic characteristics of a giant magnetostrictive actuator (GMA) considering the prestress effect on the GMM rod and the electrical input dynamics involving the power amplifier and the inductive coil, a methodology for studying the static and dynamic characteristics of a GMA using the hysteresis loop as a tool is developed. A GMA that can display the preforce on the GMM rod in real-time is designed, and a magnetostrictive model dependent on the prestress on a GMM rod instead of the existing quadratic domain rotation model is proposed. Additionally, an electrical input dynamics model to excite GMA is developed according to the simplified circuit diagram, and the corresponding parameters are identified by the experimental data. A dynamic magnetization model with the eddy current effect is deduced according to the Jiles-Atherton model and the Maxwell equations. Next, all of the parameters, including the electrical input characteristics, the dynamic magnetization and the mechanical structure of GMA, are identified by the experimental data from the current response, magnetization response and displacement response, respectively. Finally, a comprehensive comparison between the model results and experimental data is performed, and the results show that the test data agree well with the presented model results. An analysis on the relation between the GMA displacement response and the parameters from the electrical input dynamics, magnetization dynamics and mechanical structural dynamics is performed.
Simple Spreadsheet Models For Interpretation Of Fractured Media Tracer Tests
An analysis of a gas-phase partitioning tracer test conducted through fractured media is discussed within this paper. The analysis employed matching eight simple mathematical models to the experimental data to determine transport parameters. All of the models tested; two porous...
NASA Astrophysics Data System (ADS)
Bouaziz, Nadia; Ben Manaa, Marwa; Ben Lamine, Abdelmottaleb
2018-06-01
In the present work, experimental absorption and desorption isotherms of hydrogen in LaNi3.8Al1.0Mn0.2 metal at two temperatures (T = 433 K, 453 K) have been fitted using a monolayer model with two energies treated by statistical physics formalism by means of the grand canonical ensemble. Six parameters of the model are adjusted, namely the numbers of hydrogen atoms per site nα and nβ, the receptor site densities Nmα and Nmβ, and the energetic parameters Pα and Pβ. The behaviors of these parameters are discussed in relationship with temperature of absorption/desorption process. Then, a dynamic investigation of the simultaneous evolution with pressure of the two α and β phases in the absorption and desorption phenomena using the adjustment parameters. Thanks to the energetic parameters, we calculated the sorption energies which are typically ranged between 276.107 and 310.711 kJ/mol for absorption process and between 277.01 and 310.9 kJ/mol for desorption process comparable to usual chemical bond energies. The calculated thermodynamic parameters such as entropy, Gibbs free energy and internal energy from experimental data showed that the absorption/desorption of hydrogen in LaNi3.8Al1.0Mn0.2 alloy was feasible, spontaneous and exothermic in nature.
System Identification Applied to Dynamic CFD Simulation and Wind Tunnel Data
NASA Technical Reports Server (NTRS)
Murphy, Patrick C.; Klein, Vladislav; Frink, Neal T.; Vicroy, Dan D.
2011-01-01
Demanding aerodynamic modeling requirements for military and civilian aircraft have provided impetus for researchers to improve computational and experimental techniques. Model validation is a key component for these research endeavors so this study is an initial effort to extend conventional time history comparisons by comparing model parameter estimates and their standard errors using system identification methods. An aerodynamic model of an aircraft performing one-degree-of-freedom roll oscillatory motion about its body axes is developed. The model includes linear aerodynamics and deficiency function parameters characterizing an unsteady effect. For estimation of unknown parameters two techniques, harmonic analysis and two-step linear regression, were applied to roll-oscillatory wind tunnel data and to computational fluid dynamics (CFD) simulated data. The model used for this study is a highly swept wing unmanned aerial combat vehicle. Differences in response prediction, parameters estimates, and standard errors are compared and discussed
Estimating non-isothermal bacterial growth in foods from isothermal experimental data.
Corradini, M G; Peleg, M
2005-01-01
To develop a mathematical method to estimate non-isothermal microbial growth curves in foods from experiments performed under isothermal conditions and demonstrate the method's applicability with published growth data. Published isothermal growth curves of Pseudomonas spp. in refrigerated fish at 0-8 degrees C and Escherichia coli 1952 in a nutritional broth at 27.6-36 degrees C were fitted with two different three-parameter 'primary models' and the temperature dependence of their parameters was fitted by ad hoc empirical 'secondary models'. These were used to generate non-isothermal growth curves by solving, numerically, a differential equation derived on the premise that the momentary non-isothermal growth rate is the isothermal rate at the momentary temperature, at a time that corresponds to the momentary growth level of the population. The predicted non-isothermal growth curves were in agreement with the reported experimental ones and, as expected, the quality of the predictions did not depend on the 'primary model' chosen for the calculation. A common type of sigmoid growth curve can be adequately described by three-parameter 'primary models'. At least in the two systems examined, these could be used to predict growth patterns under a variety of continuous and discontinuous non-isothermal temperature profiles. The described mathematical method whenever validated experimentally will enable the simulation of the microbial quality of stored and transported foods under a large variety of existing or contemplated commercial temperature histories.
qPIPSA: Relating enzymatic kinetic parameters and interaction fields
Gabdoulline, Razif R; Stein, Matthias; Wade, Rebecca C
2007-01-01
Background The simulation of metabolic networks in quantitative systems biology requires the assignment of enzymatic kinetic parameters. Experimentally determined values are often not available and therefore computational methods to estimate these parameters are needed. It is possible to use the three-dimensional structure of an enzyme to perform simulations of a reaction and derive kinetic parameters. However, this is computationally demanding and requires detailed knowledge of the enzyme mechanism. We have therefore sought to develop a general, simple and computationally efficient procedure to relate protein structural information to enzymatic kinetic parameters that allows consistency between the kinetic and structural information to be checked and estimation of kinetic constants for structurally and mechanistically similar enzymes. Results We describe qPIPSA: quantitative Protein Interaction Property Similarity Analysis. In this analysis, molecular interaction fields, for example, electrostatic potentials, are computed from the enzyme structures. Differences in molecular interaction fields between enzymes are then related to the ratios of their kinetic parameters. This procedure can be used to estimate unknown kinetic parameters when enzyme structural information is available and kinetic parameters have been measured for related enzymes or were obtained under different conditions. The detailed interaction of the enzyme with substrate or cofactors is not modeled and is assumed to be similar for all the proteins compared. The protein structure modeling protocol employed ensures that differences between models reflect genuine differences between the protein sequences, rather than random fluctuations in protein structure. Conclusion Provided that the experimental conditions and the protein structural models refer to the same protein state or conformation, correlations between interaction fields and kinetic parameters can be established for sets of related enzymes. Outliers may arise due to variation in the importance of different contributions to the kinetic parameters, such as protein stability and conformational changes. The qPIPSA approach can assist in the validation as well as estimation of kinetic parameters, and provide insights into enzyme mechanism. PMID:17919319
OPC modeling by genetic algorithm
NASA Astrophysics Data System (ADS)
Huang, W. C.; Lai, C. M.; Luo, B.; Tsai, C. K.; Tsay, C. S.; Lai, C. W.; Kuo, C. C.; Liu, R. G.; Lin, H. T.; Lin, B. J.
2005-05-01
Optical proximity correction (OPC) is usually used to pre-distort mask layouts to make the printed patterns as close to the desired shapes as possible. For model-based OPC, a lithographic model to predict critical dimensions after lithographic processing is needed. The model is usually obtained via a regression of parameters based on experimental data containing optical proximity effects. When the parameters involve a mix of the continuous (optical and resist models) and the discrete (kernel numbers) sets, the traditional numerical optimization method may have difficulty handling model fitting. In this study, an artificial-intelligent optimization method was used to regress the parameters of the lithographic models for OPC. The implemented phenomenological models were constant-threshold models that combine diffused aerial image models with loading effects. Optical kernels decomposed from Hopkin"s equation were used to calculate aerial images on the wafer. Similarly, the numbers of optical kernels were treated as regression parameters. This way, good regression results were obtained with different sets of optical proximity effect data.
NASA Astrophysics Data System (ADS)
Utama, D. N.; Ani, N.; Iqbal, M. M.
2018-03-01
Optimization is a process for finding parameter (parameters) that is (are) able to deliver an optimal value for an objective function. Seeking an optimal generic model for optimizing is a computer science study that has been being practically conducted by numerous researchers. Generic model is a model that can be technically operated to solve any varieties of optimization problem. By using an object-oriented method, the generic model for optimizing was constructed. Moreover, two types of optimization method, simulated-annealing and hill-climbing, were functioned in constructing the model and compared to find the most optimal one then. The result said that both methods gave the same result for a value of objective function and the hill-climbing based model consumed the shortest running time.
NASA Astrophysics Data System (ADS)
Chung, Kee-Choo; Park, Hwangseo
2016-11-01
The performance of the extended solvent-contact model has been addressed in the SAMPL5 blind prediction challenge for distribution coefficient (LogD) of drug-like molecules with respect to the cyclohexane/water partitioning system. All the atomic parameters defined for 41 atom types in the solvation free energy function were optimized by operating a standard genetic algorithm with respect to water and cyclohexane solvents. In the parameterizations for cyclohexane, the experimental solvation free energy (Δ G sol ) data of 15 molecules for 1-octanol were combined with those of 77 molecules for cyclohexane to construct a training set because Δ G sol values of the former were unavailable for cyclohexane in publicly accessible databases. Using this hybrid training set, we established the LogD prediction model with the correlation coefficient ( R), average error (AE), and root mean square error (RMSE) of 0.55, 1.53, and 3.03, respectively, for the comparison of experimental and computational results for 53 SAMPL5 molecules. The modest accuracy in LogD prediction could be attributed to the incomplete optimization of atomic solvation parameters for cyclohexane. With respect to 31 SAMPL5 molecules containing the atom types for which experimental reference data for Δ G sol were available for both water and cyclohexane, the accuracy in LogD prediction increased remarkably with the R, AE, and RMSE values of 0.82, 0.89, and 1.60, respectively. This significant enhancement in performance stemmed from the better optimization of atomic solvation parameters by limiting the element of training set to the molecules with experimental Δ G sol data for cyclohexane. Due to the simplicity in model building and to low computational cost for parameterizations, the extended solvent-contact model is anticipated to serve as a valuable computational tool for LogD prediction upon the enrichment of experimental Δ G sol data for organic solvents.
Ray, Jaideep; Lefantzi, Sophia; Arunajatesan, Srinivasan; ...
2017-09-07
In this paper, we demonstrate a statistical procedure for learning a high-order eddy viscosity model (EVM) from experimental data and using it to improve the predictive skill of a Reynolds-averaged Navier–Stokes (RANS) simulator. The method is tested in a three-dimensional (3D), transonic jet-in-crossflow (JIC) configuration. The process starts with a cubic eddy viscosity model (CEVM) developed for incompressible flows. It is fitted to limited experimental JIC data using shrinkage regression. The shrinkage process removes all the terms from the model, except an intercept, a linear term, and a quadratic one involving the square of the vorticity. The shrunk eddy viscositymore » model is implemented in an RANS simulator and calibrated, using vorticity measurements, to infer three parameters. The calibration is Bayesian and is solved using a Markov chain Monte Carlo (MCMC) method. A 3D probability density distribution for the inferred parameters is constructed, thus quantifying the uncertainty in the estimate. The phenomenal cost of using a 3D flow simulator inside an MCMC loop is mitigated by using surrogate models (“curve-fits”). A support vector machine classifier (SVMC) is used to impose our prior belief regarding parameter values, specifically to exclude nonphysical parameter combinations. The calibrated model is compared, in terms of its predictive skill, to simulations using uncalibrated linear and CEVMs. Finally, we find that the calibrated model, with one quadratic term, is more accurate than the uncalibrated simulator. The model is also checked at a flow condition at which the model was not calibrated.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ray, Jaideep; Lefantzi, Sophia; Arunajatesan, Srinivasan
In this paper, we demonstrate a statistical procedure for learning a high-order eddy viscosity model (EVM) from experimental data and using it to improve the predictive skill of a Reynolds-averaged Navier–Stokes (RANS) simulator. The method is tested in a three-dimensional (3D), transonic jet-in-crossflow (JIC) configuration. The process starts with a cubic eddy viscosity model (CEVM) developed for incompressible flows. It is fitted to limited experimental JIC data using shrinkage regression. The shrinkage process removes all the terms from the model, except an intercept, a linear term, and a quadratic one involving the square of the vorticity. The shrunk eddy viscositymore » model is implemented in an RANS simulator and calibrated, using vorticity measurements, to infer three parameters. The calibration is Bayesian and is solved using a Markov chain Monte Carlo (MCMC) method. A 3D probability density distribution for the inferred parameters is constructed, thus quantifying the uncertainty in the estimate. The phenomenal cost of using a 3D flow simulator inside an MCMC loop is mitigated by using surrogate models (“curve-fits”). A support vector machine classifier (SVMC) is used to impose our prior belief regarding parameter values, specifically to exclude nonphysical parameter combinations. The calibrated model is compared, in terms of its predictive skill, to simulations using uncalibrated linear and CEVMs. Finally, we find that the calibrated model, with one quadratic term, is more accurate than the uncalibrated simulator. The model is also checked at a flow condition at which the model was not calibrated.« less
NASA Astrophysics Data System (ADS)
Miyake, Yasufumi; Boned, Christian; Baylaucq, Antoine; Bessières, David; Zéberg-Mikkelsen, Claus K.; Galliéro, Guillaume; Ushiki, Hideharu
2007-07-01
In order to study the influence of stereoisomeric effects on the dynamic viscosity, an extensive experimental study of the viscosity of the binary system composed of the two stereoisomeric molecular forms of decalin - cis and trans - has been carried out for five different mixtures at three temperatures (303.15, 323.15 and 343.15) K and six isobars up to 100 MPa with a falling-body viscometer (a total of 90 points). The experimental relative uncertainty is estimated to be 2%. The variations of dynamic viscosity versus composition are discussed with respect to their behavior due to stereoisomerism. Four different models with a physical and theoretical background are studied in order to investigate how they take the stereoisomeric effect into account through their required model parameters. The evaluated models are based on the hard-sphere scheme, the concepts of the free-volume and the friction theory, and a model derived from molecular dynamics. Overall, a satisfactory representation of the viscosity of this binary system is found for the different models within the considered ( T, p) range taken into account their simplicity. All the models are able to distinguish between the two stereoisomeric decalin compounds. Further, based on the analysis of the model parameters performed on the pure compounds, it has been found that the use of simple mixing rules without introducing any binary interaction parameters are sufficient in order to predict the viscosity of cis + trans-decalin mixtures with the same accuracy in comparison with the experimental values as obtained for the pure compounds. In addition to these models, a semi-empirical self-referencing model and the simple mixing laws of Grunberg-Nissan and Katti-Chaudhri are also applied in the representation of the viscosity behavior of these systems.
NASA Astrophysics Data System (ADS)
Wu, Hongjie; Yuan, Shifei; Zhang, Xi; Yin, Chengliang; Ma, Xuerui
2015-08-01
To improve the suitability of lithium-ion battery model under varying scenarios, such as fluctuating temperature and SoC variation, dynamic model with parameters updated realtime should be developed. In this paper, an incremental analysis-based auto regressive exogenous (I-ARX) modeling method is proposed to eliminate the modeling error caused by the OCV effect and improve the accuracy of parameter estimation. Then, its numerical stability, modeling error, and parametric sensitivity are analyzed at different sampling rates (0.02, 0.1, 0.5 and 1 s). To identify the model parameters recursively, a bias-correction recursive least squares (CRLS) algorithm is applied. Finally, the pseudo random binary sequence (PRBS) and urban dynamic driving sequences (UDDSs) profiles are performed to verify the realtime performance and robustness of the newly proposed model and algorithm. Different sampling rates (1 Hz and 10 Hz) and multiple temperature points (5, 25, and 45 °C) are covered in our experiments. The experimental and simulation results indicate that the proposed I-ARX model can present high accuracy and suitability for parameter identification without using open circuit voltage.
Investigations on the sensitivity of the computer code TURBO-2D
NASA Astrophysics Data System (ADS)
Amon, B.
1994-12-01
The two-dimensional computer model TURBO-2D for the calculation of two-phase flow was used to calculate the cold injection of fuel into a model chamber. Investigations of the influence of the input parameter on its sensitivity relative to the obtained results were made. In addition to that calculations were performed and compared using experimental injection pressure data and corresponding averaged injection parameter.
Water Sorption Isotherm of Pea Starch Edible Films and Prediction Models.
Saberi, Bahareh; Vuong, Quan V; Chockchaisawasdee, Suwimol; Golding, John B; Scarlett, Christopher J; Stathopoulos, Costas E
2015-12-24
The moisture sorption isotherm of pea starch films prepared with various glycerol contents as plasticizer was investigated at different storage relative humidities (11%-96% RH) and at 5 ± 1, 15 ± 1, 25 ± 1 and 40 ± 1 °C by using gravimetric method. The results showed that the equilibrium moisture content of all films increased substantially above a w = 0.6. Films plasticized with glycerol, under all temperatures and RH conditions (11%-96%), adsorbed more moisture resulting in higher equilibrium moisture contents. Reduction of the temperature enhanced the equilibrium moisture content and monolayer water of the films. The obtained experimental data were fitted to different models including two-parameter equations (Oswin, Henderson, Brunauer-Emmitt-Teller (BET), Flory-Huggins, and Iglesias-Chirife), three-parameter equations Guggenhiem-Anderson-deBoer (GAB), Ferro-Fontan, and Lewicki) and a four-parameter equation (Peleg). The three-parameter Lewicki model was found to be the best-fitted model for representing the experimental data within the studied temperatures and whole range of relative humidities (11%-98%). Addition of glycerol increased the net isosteric heat of moisture sorption of pea starch film. The results provide important information with estimating of stability and functional characteristics of the films in various environments.
Water Sorption Isotherm of Pea Starch Edible Films and Prediction Models
Saberi, Bahareh; Vuong, Quan V.; Chockchaisawasdee, Suwimol; Golding, John B.; Scarlett, Christopher J.; Stathopoulos, Costas E.
2015-01-01
The moisture sorption isotherm of pea starch films prepared with various glycerol contents as plasticizer was investigated at different storage relative humidities (11%–96% RH) and at 5 ± 1, 15 ± 1, 25 ± 1 and 40 ± 1 °C by using gravimetric method. The results showed that the equilibrium moisture content of all films increased substantially above aw = 0.6. Films plasticized with glycerol, under all temperatures and RH conditions (11%–96%), adsorbed more moisture resulting in higher equilibrium moisture contents. Reduction of the temperature enhanced the equilibrium moisture content and monolayer water of the films. The obtained experimental data were fitted to different models including two-parameter equations (Oswin, Henderson, Brunauer–Emmitt–Teller (BET), Flory–Huggins, and Iglesias–Chirife), three-parameter equations Guggenhiem–Anderson–deBoer (GAB), Ferro–Fontan, and Lewicki) and a four-parameter equation (Peleg). The three-parameter Lewicki model was found to be the best-fitted model for representing the experimental data within the studied temperatures and whole range of relative humidities (11%–98%). Addition of glycerol increased the net isosteric heat of moisture sorption of pea starch film. The results provide important information with estimating of stability and functional characteristics of the films in various environments. PMID:28231096
On the identification of cohesive parameters for printed metal-polymer interfaces
NASA Astrophysics Data System (ADS)
Heinrich, Felix; Langner, Hauke H.; Lammering, Rolf
2017-05-01
The mechanical behavior of printed electronics on fiber reinforced composites is investigated. A methodology based on cohesive zone models is employed, considering interfacial strengths, stiffnesses and critical strain energy release rates. A double cantilever beam test and an end notched flexure test are carried out to experimentally determine critical strain energy release rates under fracture modes I and II. Numerical simulations are performed in Abaqus 6.13 to model both tests. Applying the simulations, an inverse parameter identification is run to determine the full set of cohesive parameters.
Orthotropic elasto-plastic behavior of AS4/APC-2 thermoplastic composite in compression
NASA Technical Reports Server (NTRS)
Sun, C. T.; Rui, Y.
1989-01-01
Uniaxial compression tests were performed on off-axis coupon specimens of unidirectional AS4/APC-2 thermoplastic composite at various temperatures. The elasto-plastic and strength properties of AS4/APC-2 composite were characterized with respect to temperature variation by using a one-parameter orthotropic plasticity model and a one-parameter failure criterion. Experimental results show that the orthotropic plastic behavior can be characterized quite well using the plasticity model, and the matrix-dominant compressive strengths can be predicted very accurately by the one-parameter failure criterion.
Xu, Di; Chai, Meiyun; Dong, Zhujun; Rahman, Md Maksudur; Yu, Xi; Cai, Junmeng
2018-06-04
The kinetic compensation effect in the logistic distributed activation energy model (DAEM) for lignocellulosic biomass pyrolysis was investigated. The sum of square error (SSE) surface tool was used to analyze two theoretically simulated logistic DAEM processes for cellulose and xylan pyrolysis. The logistic DAEM coupled with the pattern search method for parameter estimation was used to analyze the experimental data of cellulose pyrolysis. The results showed that many parameter sets of the logistic DAEM could fit the data at different heating rates very well for both simulated and experimental processes, and a perfect linear relationship between the logarithm of the frequency factor and the mean value of the activation energy distribution was found. The parameters of the logistic DAEM can be estimated by coupling the optimization method and isoconversional kinetic methods. The results would be helpful for chemical kinetic analysis using DAEM. Copyright © 2018 Elsevier Ltd. All rights reserved.
Introduction of Shear-Based Transport Mechanisms in Radial-Axial Hybrid Hall Thruster Simulations
NASA Astrophysics Data System (ADS)
Scharfe, Michelle; Gascon, Nicolas; Scharfe, David; Cappelli, Mark; Fernandez, Eduardo
2007-11-01
Electron diffusion across magnetic field lines in Hall effect thrusters is experimentally observed to be higher than predicted by classical diffusion theory. Motivated by theoretical work for fusion applications and experimental measurements of Hall thrusters, numerical models for the electron transport are implemented in radial-axial hybrid simulations in order to compute the electron mobility using simulated plasma properties and fitting parameters. These models relate the cross-field transport to the imposed magnetic field distribution through shear suppression of turbulence-enhanced transport. While azimuthal waves likely enhance cross field mobility, axial shear in the electron fluid may reduce transport due to a reduction in turbulence amplitudes and modification of phase shifts between fluctuating properties. The sensitivity of the simulation results to the fitting parameters is evaluated and an examination is made of the transportability of these parameters to several Hall thruster devices.
NASA Astrophysics Data System (ADS)
Wang, Xiao; Zhang, Cheng; Li, Pin; Wang, Kai; Hu, Yang; Zhang, Peng; Liu, Huixia
2012-11-01
A central composite rotatable experimental design(CCRD) is conducted to design experiments for laser transmission joining of thermoplastic-Polycarbonate (PC). The artificial neural network was used to establish the relationships between laser transmission joining process parameters (the laser power, velocity, clamp pressure, scanning number) and joint strength and joint seam width. The developed mathematical models are tested by analysis of variance (ANOVA) method to check their adequacy and the effects of process parameters on the responses and the interaction effects of key process parameters on the quality are analyzed and discussed. Finally, the desirability function coupled with genetic algorithm is used to carry out the optimization of the joint strength and joint width. The results show that the predicted results of the optimization are in good agreement with the experimental results, so this study provides an effective method to enhance the joint quality.
NASA Astrophysics Data System (ADS)
Lin, W.; Ren, P.; Zheng, H.; Liu, X.; Huang, M.; Wada, R.; Qu, G.
2018-05-01
The experimental measures of the multiplicity derivatives—the moment parameters, the bimodal parameter, the fluctuation of maximum fragment charge number (normalized variance of Zmax, or NVZ), the Fisher exponent (τ ), and the Zipf law parameter (ξ )—are examined to search for the liquid-gas phase transition in nuclear multifragmention processes within the framework of the statistical multifragmentation model (SMM). The sensitivities of these measures are studied. All these measures predict a critical signature at or near to the critical point both for the primary and secondary fragments. Among these measures, the total multiplicity derivative and the NVZ provide accurate measures for the critical point from the final cold fragments as well as the primary fragments. The present study will provide a guide for future experiments and analyses in the study of the nuclear liquid-gas phase transition.
Mathematical properties and parameter estimation for transit compartment pharmacodynamic models.
Yates, James W T
2008-07-03
One feature of recent research in pharmacodynamic modelling has been the move towards more mechanistically based model structures. However, in all of these models there are common sub-systems, such as feedback loops and time-delays, whose properties and contribution to the model behaviour merit some mathematical analysis. In this paper a common pharmacodynamic model sub-structure is considered: the linear transit compartment. These models have a number of interesting properties as the length of the cascade chain is increased. In the limiting case a pure time-delay is achieved [Milsum, J.H., 1966. Biological Control Systems Analysis. McGraw-Hill Book Company, New York] and the initial behaviour becoming increasingly sensitive to parameter value perturbation. It is also shown that the modelled drug effect is attenuated, though the duration of action is longer. Through this analysis the range of behaviours that such models are capable of reproducing are characterised. The properties of these models and the experimental requirements are discussed in order to highlight how mathematical analysis prior to experimentation can enhance the utility of mathematical modelling.
Kumar, M Senthil; Schwartz, Russell
2010-12-09
Virus capsid assembly has been a key model system for studies of complex self-assembly but it does pose some significant challenges for modeling studies. One important limitation is the difficulty of determining accurate rate parameters. The large size and rapid assembly of typical viruses make it infeasible to directly measure coat protein binding rates or deduce them from the relatively indirect experimental measures available. In this work, we develop a computational strategy to deduce coat-coat binding rate parameters for viral capsid assembly systems by fitting stochastic simulation trajectories to experimental measures of assembly progress. Our method combines quadratic response surface and quasi-gradient descent approximations to deal with the high computational cost of simulations, stochastic noise in simulation trajectories and limitations of the available experimental data. The approach is demonstrated on a light scattering trajectory for a human papillomavirus (HPV) in vitro assembly system, showing that the method can provide rate parameters that produce accurate curve fits and are in good concordance with prior analysis of the data. These fits provide an insight into potential assembly mechanisms of the in vitro system and give a basis for exploring how these mechanisms might vary between in vitro and in vivo assembly conditions.
NASA Astrophysics Data System (ADS)
Senthil Kumar, M.; Schwartz, Russell
2010-12-01
Virus capsid assembly has been a key model system for studies of complex self-assembly but it does pose some significant challenges for modeling studies. One important limitation is the difficulty of determining accurate rate parameters. The large size and rapid assembly of typical viruses make it infeasible to directly measure coat protein binding rates or deduce them from the relatively indirect experimental measures available. In this work, we develop a computational strategy to deduce coat-coat binding rate parameters for viral capsid assembly systems by fitting stochastic simulation trajectories to experimental measures of assembly progress. Our method combines quadratic response surface and quasi-gradient descent approximations to deal with the high computational cost of simulations, stochastic noise in simulation trajectories and limitations of the available experimental data. The approach is demonstrated on a light scattering trajectory for a human papillomavirus (HPV) in vitro assembly system, showing that the method can provide rate parameters that produce accurate curve fits and are in good concordance with prior analysis of the data. These fits provide an insight into potential assembly mechanisms of the in vitro system and give a basis for exploring how these mechanisms might vary between in vitro and in vivo assembly conditions.
Link between alginate reaction front propagation and general reaction diffusion theory.
Braschler, Thomas; Valero, Ana; Colella, Ludovica; Pataky, Kristopher; Brugger, Jürgen; Renaud, Philippe
2011-03-15
We provide a common theoretical framework reuniting specific models for the Ca(2+)-alginate system and general reaction diffusion theory along with experimental validation on a microfluidic chip. As a starting point, we use a set of nonlinear, partial differential equations that are traditionally solved numerically: the Mikkelsen-Elgsaeter model. Applying the traveling-wave hypothesis as a major simplification, we obtain an analytical solution. The solution indicates that the fundamental properties of the alginate reaction front are governed by a single dimensionless parameter λ. For small λ values, a large depletion zone accompanies the reaction front. For large λ values, the alginate reacts before having the time to diffuse significantly. We show that the λ parameter is of general importance beyond the alginate model system, as it can be used to classify known solutions for second-order reaction diffusion schemes, along with the novel solution presented here. For experimental validation, we develop a microchip model system, in which the alginate gel formation can be carried out in a highly controlled, essentially 1D environment. The use of a filter barrier enables us to rapidly renew the CaCl(2) solution, while maintaining flow speeds lower than 1 μm/s for the alginate compartment. This allows one to impose an exactly known bulk CaCl(2) concentration and diffusion resistance. This experimental model system, taken together with the theoretical development, enables the determination of the entire set of physicochemical parameters governing the alginate reaction front in a single experiment.
NASA Astrophysics Data System (ADS)
Magdy, Yehia M.; Altaher, Hossam; ElQada, E.
2018-03-01
In this research, the removal of 2,4 dinitrophenol, 2 nitrophenol and 4 nitrophenol from aqueous solution using char ash from animal bones was investigated using batch technique. Three 2-parameter isotherms (Freundlich, Langmuir, and Temkin) were applied to analyze the experimental data. Both linear and nonlinear regression analyses were performed for these models to estimate the isotherm parameters. Three 3-parameter isotherms (Redlich-Peterson, Sips, Toth) were also tested. Moreover, the kinetic data were tested using pseudo-first order, pseudo-second order, Elovich, Intraparticle diffusion and Boyd methods. Langmuir adsorption isotherm provided the best fit for the experimental data indicating monolayer adsorption. The maximum adsorption capacity was 8.624, 7.55, 7.384 mg/g for 2 nitrophenol, 2,4 dinitrophenol, and 4 nitrophenol, respectively. The experimental data fitted well to pseudo-second order model suggested a chemical nature of the adsorption process. The R 2 values for this model were 0.973 up to 0.999. This result with supported by the Temkin model indicating heat of adsorption to be greater than 10 kJ/mol. The rate controlling step was intraparticle diffusion for 2 nitrophenol, and a combination of intraparticle diffusion and film diffusion for the other two phenols. The pH and temperature of solution were found to have a considerable effect, and the temperature indicated the exothermic nature of the adsorption process. The highest adsorption capacity was obtained at pH 9 and 25 °C.
NASA Technical Reports Server (NTRS)
Palosz, B.; Grzanka, E.; Gierlotka, S.; Stelmakh, S.; Pielaszek, R.; Bismayer, U.; Weber, H.-P.; Palosz, W.
2003-01-01
Two methods of the analysis of powder diffraction patterns of diamond and SiC nanocrystals are presented: (a) examination of changes of the lattice parameters with diffraction vector Q ('apparent lattice parameter', alp) which refers to Bragg scattering, and (b), examination of changes of inter-atomic distances based on the analysis of the atomic Pair Distribution Function, PDF. Application of these methods was studied based on the theoretical diffraction patterns computed for models of nanocrystals having (i) a perfect crystal lattice, and (ii), a core-shell structure, i.e. constituting a two-phase system. The models are defined by the lattice parameter of the grain core, thickness of the surface shell, and the magnitude and distribution of the strain field in the shell. X-ray and neutron experimental diffraction data of nanocrystalline SiC and diamond powders of the grain diameter from 4 nm up to micrometers were used. The effects of the internal pressure and strain at the grain surface on the structure are discussed based on the experimentally determined dependence of the alp values on the Q-vector, and changes of the interatomic distances with the grain size determined experimentally by the atomic Pair Distribution Function (PDF) analysis. The experimental results lend a strong support to the concept of a two-phase, core and the surface shell structure of nanocrystalline diamond and SiC.
Gras, Laure-Lise; Laporte, Sébastien; Viot, Philippe; Mitton, David
2014-10-01
In models developed for impact biomechanics, muscles are usually represented with one-dimensional elements having active and passive properties. The passive properties of muscles are most often obtained from experiments performed on animal muscles, because limited data on human muscle are available. The aim of this study is thus to characterize the passive response of a human muscle in tension. Tensile tests at different strain rates (0.0045, 0.045, and 0.45 s⁻¹) were performed on 10 extensor carpi ulnaris muscles. A model composed of a nonlinear element defined with an exponential law in parallel with one or two Maxwell elements and considering basic geometrical features was proposed. The experimental results were used to identify the parameters of the model. The results for the first- and second-order model were similar. For the first-order model, the mean parameters of the exponential law are as follows: Young's modulus E (6.8 MPa) and curvature parameter α (31.6). The Maxwell element mean values are as follows: viscosity parameter η (1.2 MPa s) and relaxation time τ (0.25 s). Our results provide new data on a human muscle tested in vitro and a simple model with basic geometrical features that represent its behavior in tension under three different strain rates. This approach could be used to assess the behavior of other human muscles. © IMechE 2014.
Model-Based Method for Terrain-Following Display Design
1989-06-15
data into a more compact set of model parameters. These model parameters provide insights into the interpretation of the experimental results as well...2.8 presents the VSD display, and is taken from figure 1.95 of the B-IB Flight Manual , NA-77-400. There are two primary elements in the VSD: 1) the...baseline VSD based on figures such as these from the B-lB Flight Manual , a video tape of an operating VSD in the engineering - 21 - research simulator, and
Hydrogen maser frequency standard computer model for automatic cavity tuning servo simulations
NASA Technical Reports Server (NTRS)
Potter, P. D.; Finnie, C.
1978-01-01
A computer model of the JPL hydrogen maser frequency standard was developed. This model allows frequency stability data to be generated, as a function of various maser parameters, many orders of magnitude faster than these data can be obtained by experimental test. In particular, the maser performance as a function of the various automatic tuning servo parameters may be readily determined. Areas of discussion include noise sources, first-order autotuner loop, second-order autotuner loop, and a comparison of the loops.
Quasi-Linear Parameter Varying Representation of General Aircraft Dynamics Over Non-Trim Region
NASA Technical Reports Server (NTRS)
Shin, Jong-Yeob
2007-01-01
For applying linear parameter varying (LPV) control synthesis and analysis to a nonlinear system, it is required that a nonlinear system be represented in the form of an LPV model. In this paper, a new representation method is developed to construct an LPV model from a nonlinear mathematical model without the restriction that an operating point must be in the neighborhood of equilibrium points. An LPV model constructed by the new method preserves local stabilities of the original nonlinear system at "frozen" scheduling parameters and also represents the original nonlinear dynamics of a system over a non-trim region. An LPV model of the motion of FASER (Free-flying Aircraft for Subscale Experimental Research) is constructed by the new method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Babic, Bakir, E-mail: bakir.babic@measurement.gov.au; Lawn, Malcolm A.; Coleman, Victoria A.
The results of systematic height measurements of polystyrene (PS) nanoparticles using intermittent contact amplitude modulation atomic force microscopy (IC-AM-AFM) are presented. The experimental findings demonstrate that PS nanoparticles deform during AFM imaging, as indicated by a reduction in the measured particle height. This deformation depends on the IC-AM-AFM imaging parameters, material composition, and dimensional properties of the nanoparticles. A model for nanoparticle deformation occurring during IC-AM-AFM imaging is developed as a function of the peak force which can be calculated for a particular set of experimental conditions. The undeformed nanoparticle height can be estimated from the model by extrapolation tomore » zero peak force. A procedure is proposed to quantify and minimise nanoparticle deformation during IC-AM-AFM imaging, based on appropriate adjustments of the experimental control parameters.« less
Numerical model updating technique for structures using firefly algorithm
NASA Astrophysics Data System (ADS)
Sai Kubair, K.; Mohan, S. C.
2018-03-01
Numerical model updating is a technique used for updating the existing experimental models for any structures related to civil, mechanical, automobiles, marine, aerospace engineering, etc. The basic concept behind this technique is updating the numerical models to closely match with experimental data obtained from real or prototype test structures. The present work involves the development of numerical model using MATLAB as a computational tool and with mathematical equations that define the experimental model. Firefly algorithm is used as an optimization tool in this study. In this updating process a response parameter of the structure has to be chosen, which helps to correlate the numerical model developed with the experimental results obtained. The variables for the updating can be either material or geometrical properties of the model or both. In this study, to verify the proposed technique, a cantilever beam is analyzed for its tip deflection and a space frame has been analyzed for its natural frequencies. Both the models are updated with their respective response values obtained from experimental results. The numerical results after updating show that there is a close relationship that can be brought between the experimental and the numerical models.
Evaluation of two models for predicting elemental accumulation by arthropods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Webster, J.R.; Crossley, D.A. Jr.
1978-06-15
Two different models have been proposed for predicting elemental accumulation by arthropods. Parameters of both models can be quantified from radioisotope elimination experiments. Our analysis of the 2 models shows that both predict identical elemental accumulation for a whole organism, though differing in the accumulation in body and gut. We quantified both models with experimental data from /sup 134/Cs and /sup 85/Sr elimination by crickets. Computer simulations of radioisotope accumulation were then compared with actual accumulation experiments. Neither model showed exact fit to the experimental data, though both showed the general pattern of elemental accumulation.
Comparison of results of experimental research with numerical calculations of a model one-sided seal
NASA Astrophysics Data System (ADS)
Joachimiak, Damian; Krzyślak, Piotr
2015-06-01
Paper presents the results of experimental and numerical research of a model segment of a labyrinth seal for a different wear level. The analysis covers the extent of leakage and distribution of static pressure in the seal chambers and the planes upstream and downstream of the segment. The measurement data have been compared with the results of numerical calculations obtained using commercial software. Based on the flow conditions occurring in the area subjected to calculations, the size of the mesh defined by parameter y+ has been analyzed and the selection of the turbulence model has been described. The numerical calculations were based on the measurable thermodynamic parameters in the seal segments of steam turbines. The work contains a comparison of the mass flow and distribution of static pressure in the seal chambers obtained during the measurement and calculated numerically in a model segment of the seal of different level of wear.
NASA Astrophysics Data System (ADS)
Junker, Philipp; Jaeger, Stefanie; Kastner, Oliver; Eggeler, Gunther; Hackl, Klaus
2015-07-01
In this work, we present simulations of shape memory alloys which serve as first examples demonstrating the predicting character of energy-based material models. We begin with a theoretical approach for the derivation of the caloric parts of the Helmholtz free energy. Afterwards, experimental results for DSC measurements are presented. Then, we recall a micromechanical model based on the principle of the minimum of the dissipation potential for the simulation of polycrystalline shape memory alloys. The previously determined caloric parts of the Helmholtz free energy close the set of model parameters without the need of parameter fitting. All quantities are derived directly from experiments. Finally, we compare finite element results for tension tests to experimental data and show that the model identified by thermal measurements can predict mechanically induced phase transformations and thus rationalize global material behavior without any further assumptions.
Thermoplastic matrix composite processing model
NASA Technical Reports Server (NTRS)
Dara, P. H.; Loos, A. C.
1985-01-01
The effects the processing parameters pressure, temperature, and time have on the quality of continuous graphite fiber reinforced thermoplastic matrix composites were quantitatively accessed by defining the extent to which intimate contact and bond formation has occurred at successive ply interfaces. Two models are presented predicting the extents to which the ply interfaces have achieved intimate contact and cohesive strength. The models are based on experimental observation of compression molded laminates and neat resin conditions, respectively. Identified as the mechanism explaining the phenomenon by which the plies bond to themselves is the theory of autohesion (or self diffusion). Theoretical predictions from the Reptation Theory between autohesive strength and contact time are used to explain the effects of the processing parameters on the observed experimental strengths. The application of a time-temperature relationship for autohesive strength predictions is evaluated. A viscoelastic compression molding model of a tow was developed to explain the phenomenon by which the prepreg ply interfaces develop intimate contact.
Magnetic properties of single crystal alpha-benzoin oxime: An EPR study
NASA Astrophysics Data System (ADS)
Sayin, Ulku; Dereli, Ömer; Türkkan, Ercan; Ozmen, Ayhan
2012-02-01
The electron paramagnetic resonance (EPR) spectra of gamma irradiated single crystals of alpha-benzoinoxime (ABO) have been examined between 120 and 440 K. Considering the dependence on temperature and the orientation of the spectra of single crystals in the magnetic field, we identified two different radicals formed in irradiated ABO single crystals. To theoretically determine the types of radicals, the most stable structure of ABO was obtained by molecular mechanic and B3LYP/6-31G(d,p) calculations. Four possible radicals were modeled and EPR parameters were calculated for the modeled radicals using the B3LYP method and the TZVP basis set. Calculated values of two modeled radicals were in strong agreement with experimental EPR parameters determined from the spectra. Additional simulated spectra of the modeled radicals, where calculated hyperfine coupling constants were used as starting points for simulations, were well matched with experimental spectra.
Vries, D; Bertelkamp, C; Schoonenberg Kegel, F; Hofs, B; Dusseldorp, J; Bruins, J H; de Vet, W; van den Akker, B
2017-02-01
A model has been developed that takes into account the main characteristics of (submerged) rapid filtration: the water quality parameters of the influent water, notably pH, iron(II) and manganese(II) concentrations, homogeneous oxidation in the supernatant layer, surface sorption and heterogeneous oxidation kinetics in the filter, and filter media adsorption characteristics. Simplifying assumptions are made to enable validation in practice, while maintaining the main mechanisms involved in iron(II) and manganese(II) removal. Adsorption isotherm data collected from different Dutch treatment sites show that Fe(II)/Mn(II) adsorption may vary substantially between them, but generally increases with higher pH. The model is sensitive to (experimentally) determined adsorption parameters and the heterogeneous oxidation rate. Model results coincide with experimental values when the heterogeneous rate constants are calibrated. Copyright © 2016 Elsevier Ltd. All rights reserved.
Dynamic modeling of lactic acid fermentation metabolism with Lactococcus lactis.
Oh, Euhlim; Lu, Mingshou; Park, Changhun; Park, Changhun; Oh, Han Bin; Lee, Sang Yup; Lee, Jinwon
2011-02-01
A dynamic model of lactic acid fermentation using Lactococcus lactis was constructed, and a metabolic flux analysis (MFA) and metabolic control analysis (MCA) were performed to reveal an intensive metabolic understanding of lactic acid bacteria (LAB). The parameter estimation was conducted with COPASI software to construct a more accurate metabolic model. The experimental data used in the parameter estimation were obtained from an LC-MS/ MS analysis and time-course simulation study. The MFA results were a reasonable explanation of the experimental data. Through the parameter estimation, the metabolic system of lactic acid bacteria can be thoroughly understood through comparisons with the original parameters. The coefficients derived from the MCA indicated that the reaction rate of L-lactate dehydrogenase was activated by fructose 1,6-bisphosphate and pyruvate, and pyruvate appeared to be a stronger activator of L-lactate dehydrogenase than fructose 1,6-bisphosphate. Additionally, pyruvate acted as an inhibitor to pyruvate kinase and the phosphotransferase system. Glucose 6-phosphate and phosphoenolpyruvate showed activation effects on pyruvate kinase. Hexose transporter was the strongest effector on the flux through L-lactate dehydrogenase. The concentration control coefficient (CCC) showed similar results to the flux control coefficient (FCC).
A model for phase noise generation in amplifiers.
Tomlin, T D; Fynn, K; Cantoni, A
2001-11-01
In this paper, a model is presented for predicting the phase modulation (PM) and amplitude modulation (AM) noise in bipolar junction transistor (BJT) amplifiers. The model correctly predicts the dependence of phase noise on the signal frequency (at a particular carrier offset frequency), explains the noise shaping of the phase noise about the signal frequency, and shows the functional dependence on the transistor parameters and the circuit parameters. Experimental studies on common emitter (CE) amplifiers have been used to validate the PM noise model at carrier frequencies between 10 and 100 MHz.
Mg I as a probe of the solar chromosphere - The atomic model
NASA Technical Reports Server (NTRS)
Mauas, Pablo J.; Avrett, Eugene H.; Loeser, Rudolf
1988-01-01
This paper presents a complete atomic model for Mg I line synthesis, where all the atomic parameters are based on recent experimental and theoretical data. It is shown how the computed profiles at 4571 A and 5173 A are influenced by the choice of these parameters and the number of levels included in the model atom. In addition, observed profiles of the 5173 A b2 line and theoretical profiles for comparison (based on a recent atmospheric model for the average quiet sun) are presented.
Time-dependent sorption of two novel fungicides in soils within a regulatory framework.
Gulkowska, Anna; Buerge, Ignaz J; Poiger, Thomas; Kasteel, Roy
2016-12-01
Convincing experimental evidence suggests increased sorption of pesticides on soil over time, which, so far, has not been considered in the regulatory assessment of leaching to groundwater. Recently, Beulke and van Beinum (2012) proposed a guidance on how to conduct, analyse and use time-dependent sorption studies in pesticide registration. The applicability of the recommended experimental set-up and fitting procedure was examined for two fungicides, penflufen and fluxapyroxad, in four soils during a 170 day incubation experiment. The apparent distribution coefficient increased by a factor of 2.5-4.5 for penflufen and by a factor of 2.5-2.8 for fluxapyroxad. The recommended two-site, one-rate sorption model adequately described measurements of total mass and liquid phase concentration in the calcium chloride suspension and the calculated apparent distribution coefficient, passing all prescribed quality criteria for model fit and parameter reliability. The guidance is technically mature regarding the experimental set-up and parameterisation of the sorption model for the two moderately mobile and relatively persistent fungicides under investigation. These parameters can be used for transport modelling in soil, thereby recognising the existence of the experimentally observed, but in the regulatory leaching assessment of pesticides not yet routinely considered phenomenon of time-dependent sorption. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.