Sample records for model performance tests

  1. Results of tests performed on the Acoustic Quiet Flow Facility Three-Dimensional Model Tunnel: Report on the Modified D.S.M.A. Design

    NASA Technical Reports Server (NTRS)

    Barna, P. S.

    1996-01-01

    Numerous tests were performed on the original Acoustic Quiet Flow Facility Three-Dimensional Model Tunnel, scaled down from the full-scale plans. Results of tests performed on the original scale model tunnel were reported in April 1995, which clearly showed that this model was lacking in performance. Subsequently this scale model was modified to attempt to possibly improve the tunnel performance. The modifications included: (a) redesigned diffuser; (b) addition of a collector; (c) addition of a Nozzle-Diffuser; (d) changes in location of vent-air. Tests performed on the modified tunnel showed a marked improvement in performance amounting to a nominal increase of pressure recovery in the diffuser from 34 percent to 54 percent. Results obtained in the tests have wider application. They may also be applied to other tunnels operating with an open test section not necessarily having similar geometry as the model under consideration.

  2. Performance Testing of a Trace Contaminant Control Subassembly for the International Space Station

    NASA Technical Reports Server (NTRS)

    Perry, J. L.; Curtis, R. E.; Alexandre, K. L.; Ruggiero, L. L.; Shtessel, N.

    1998-01-01

    As part of the International Space Station (ISS) Trace Contaminant Control Subassembly (TCCS) development, a performance test has been conducted to provide reference data for flight verification analyses. This test, which used the U.S. Habitation Module (U.S. Hab) TCCS as the test article, was designed to add to the existing database on TCCS performance. Included in this database are results obtained during ISS development testing; testing of functionally similar TCCS prototype units; and bench scale testing of activated charcoal, oxidation catalyst, and granular lithium hydroxide (LiOH). The present database has served as the basis for the development and validation of a computerized TCCS process simulation model. This model serves as the primary means for verifying the ISS TCCS performance. In order to mitigate risk associated with this verification approach, the U.S. Hab TCCS performance test provides an additional set of data which serve to anchor both the process model and previously-obtained development test data to flight hardware performance. The following discussion provides relevant background followed by a summary of the test hardware, objectives, requirements, and facilities. Facility and test article performance during the test is summarized, test results are presented, and the TCCS's performance relative to past test experience is discussed. Performance predictions made with the TCCS process model are compared with the U.S. Hab TCCS test results to demonstrate its validation.

  3. Understanding pretest and posttest reactions to cognitive ability and personality tests.

    PubMed

    Chan, D; Schmitt, N; Sacco, J M; DeShon, R P

    1998-06-01

    To understand the nature of test reactions and their relationship to test performance, the relationships among belief in tests, pretest reactions, test performance, and posttest reactions were modeled for cognitive ability and personality tests. Results from structural equation models that were fitted to responses from 197 undergraduate examinees supported the hypothesized relationships. On the cognitive ability test, pretest reactions affected test performance and mediated the relationship between belief in tests and test performance. Test performance affected posttest reactions even after taking into account the effect of pretest reactions. On the personality test, belief in tests affected pretest and posttest reactions, but the three variables were unrelated to test performance (Conscientiousness scores). Conceptual, methodological, and practical implications of the findings are discussed in the context of research on test reactions and test performance.

  4. Structural, Thermal, and Optical Performance (STOP) Modeling and Results for the James Webb Space Telescope Integrated Science Instrument Module

    NASA Technical Reports Server (NTRS)

    Gracey, Renee; Bartoszyk, Andrew; Cofie, Emmanuel; Comber, Brian; Hartig, George; Howard, Joseph; Sabatke, Derek; Wenzel, Greg; Ohl, Raymond

    2016-01-01

    The James Webb Space Telescope includes the Integrated Science Instrument Module (ISIM) element that contains four science instruments (SI) including a Guider. We performed extensive structural, thermal, and optical performance(STOP) modeling in support of all phases of ISIM development. In this paper, we focus on modeling and results associated with test and verification. ISIMs test program is bound by ground environments, mostly notably the 1g and test chamber thermal environments. This paper describes STOP modeling used to predict ISIM system performance in 0g and at various on-orbit temperature environments. The predictions are used to project results obtained during testing to on-orbit performance.

  5. Linking asphalt binder fatigue to asphalt mixture fatigue performance using viscoelastic continuum damage modeling

    NASA Astrophysics Data System (ADS)

    Safaei, Farinaz; Castorena, Cassie; Kim, Y. Richard

    2016-08-01

    Fatigue cracking is a major form of distress in asphalt pavements. Asphalt binder is the weakest asphalt concrete constituent and, thus, plays a critical role in determining the fatigue resistance of pavements. Therefore, the ability to characterize and model the inherent fatigue performance of an asphalt binder is a necessary first step to design mixtures and pavements that are not susceptible to premature fatigue failure. The simplified viscoelastic continuum damage (S-VECD) model has been used successfully by researchers to predict the damage evolution in asphalt mixtures for various traffic and climatic conditions using limited uniaxial test data. In this study, the S-VECD model, developed for asphalt mixtures, is adapted for asphalt binders tested under cyclic torsion in a dynamic shear rheometer. Derivation of the model framework is presented. The model is verified by producing damage characteristic curves that are both temperature- and loading history-independent based on time sweep tests, given that the effects of plasticity and adhesion loss on the material behavior are minimal. The applicability of the S-VECD model to the accelerated loading that is inherent of the linear amplitude sweep test is demonstrated, which reveals reasonable performance predictions, but with some loss in accuracy compared to time sweep tests due to the confounding effects of nonlinearity imposed by the high strain amplitudes included in the test. The asphalt binder S-VECD model is validated through comparisons to asphalt mixture S-VECD model results derived from cyclic direct tension tests and Accelerated Loading Facility performance tests. The results demonstrate good agreement between the asphalt binder and mixture test results and pavement performance, indicating that the developed model framework is able to capture the asphalt binder's contribution to mixture fatigue and pavement fatigue cracking performance.

  6. Assessment of human epidermal model LabCyte EPI-MODEL for in vitro skin irritation testing according to European Centre for the Validation of Alternative Methods (ECVAM)-validated protocol.

    PubMed

    Katoh, Masakazu; Hamajima, Fumiyasu; Ogasawara, Takahiro; Hata, Ken-Ichiro

    2009-06-01

    A validation study of an in vitro skin irritation testing method using a reconstructed human skin model has been conducted by the European Centre for the Validation of Alternative Methods (ECVAM), and a protocol using EpiSkin (SkinEthic, France) has been approved. The structural and performance criteria of skin models for testing are defined in the ECVAM Performance Standards announced along with the approval. We have performed several evaluations of the new reconstructed human epidermal model LabCyte EPI-MODEL, and confirmed that it is applicable to skin irritation testing as defined in the ECVAM Performance Standards. We selected 19 materials (nine irritants and ten non-irritants) available in Japan as test chemicals among the 20 reference chemicals described in the ECVAM Performance Standard. A test chemical was applied to the surface of the LabCyte EPI-MODEL for 15 min, after which it was completely removed and the model then post-incubated for 42 hr. Cell v iability was measured by MTT assay and skin irritancy of the test chemical evaluated. In addition, interleukin-1 alpha (IL-1alpha) concentration in the culture supernatant after post-incubation was measured to provide a complementary evaluation of skin irritation. Evaluation of the 19 test chemicals resulted in 79% accuracy, 78% sensitivity and 80% specificity, confirming that the in vitro skin irritancy of the LabCyte EPI-MODEL correlates highly with in vivo skin irritation. These results suggest that LabCyte EPI-MODEL is applicable to the skin irritation testing protocol set out in the ECVAM Performance Standards.

  7. Small passenger car transmission test-Chevrolet 200 transmission

    NASA Technical Reports Server (NTRS)

    Bujold, M. P.

    1980-01-01

    The small passenger car transmission was tested to supply electric vehicle manufacturers with technical information regarding the performance of commerically available transmissions which would enable them to design a more energy efficient vehicle. With this information the manufacturers could estimate vehicle driving range as well as speed and torque requirements for specific road load performance characteristics. A 1979 Chevrolet Model 200 automatic transmission was tested per a passenger car automatic transmission test code (SAE J651b) which required drive performance, coast performance, and no load test conditions. The transmission attained maximum efficiencies in the mid-eighty percent range for both drive performance tests and coast performance tests. Torque, speed and efficiency curves map the complete performance characteristics for Chevrolet Model 200 transmission.

  8. Control structural interaction testbed: A model for multiple flexible body verification

    NASA Technical Reports Server (NTRS)

    Chory, M. A.; Cohen, A. L.; Manning, R. A.; Narigon, M. L.; Spector, V. A.

    1993-01-01

    Conventional end-to-end ground tests for verification of control system performance become increasingly complicated with the development of large, multiple flexible body spacecraft structures. The expense of accurately reproducing the on-orbit dynamic environment and the attendant difficulties in reducing and accounting for ground test effects limits the value of these tests. TRW has developed a building block approach whereby a combination of analysis, simulation, and test has replaced end-to-end performance verification by ground test. Tests are performed at the component, subsystem, and system level on engineering testbeds. These tests are aimed at authenticating models to be used in end-to-end performance verification simulations: component and subassembly engineering tests and analyses establish models and critical parameters, unit level engineering and acceptance tests refine models, and subsystem level tests confirm the models' overall behavior. The Precision Control of Agile Spacecraft (PCAS) project has developed a control structural interaction testbed with a multibody flexible structure to investigate new methods of precision control. This testbed is a model for TRW's approach to verifying control system performance. This approach has several advantages: (1) no allocation for test measurement errors is required, increasing flight hardware design allocations; (2) the approach permits greater latitude in investigating off-nominal conditions and parametric sensitivities; and (3) the simulation approach is cost effective, because the investment is in understanding the root behavior of the flight hardware and not in the ground test equipment and environment.

  9. The simplest acquisition protocol is sometimes the best protocol: performing and learning a 1:2 bimanual coordination task.

    PubMed

    Panzer, Stefan; Kennedy, Deanna; Wang, Chaoyi; Shea, Charles H

    2018-02-01

    An experiment was conducted to determine if the performance and learning of a multi-frequency (1:2) coordination pattern between the limbs are enhanced when a model is provided prior to each acquisition trial. Research has indicated very effective performance of a wide variety of bimanual coordination tasks when Lissajous plots with goal templates are provided, but this research has also found that participants become dependent on this information and perform quite poorly when it is withdrawn. The present experiment was designed to test three forms of modeling (Lissajous with template, Lissajous without template, and limb model), but in each situations, the model was presented prior to practice and not available during the performance of the task. This was done to decrease dependency on the model and increase the development of an internal reference of correctness that could be applied on test trials. A control condition was also collected, where a metronome was used to guide the movement. Following less than 7 min of practice, participants in the three modeling conditions performed the first test block very effectively; however, performance of the control condition was quite poor. Note that Test 1 was performed under the same conditions as used during acquisition. Test 2 was conducted with no augmented information provided prior to or during the performance of the task. Only participants in the limb model condition were able to maintain performance on Test 2. The findings suggest that a very simple intuitive display can provide the necessary information to form an effective internal representation of the coordination pattern which can be used guide performance when the augmented display is withdrawn.

  10. A Spectral Evaluation of Models Performances in Mediterranean Oak Woodlands

    NASA Astrophysics Data System (ADS)

    Vargas, R.; Baldocchi, D. D.; Abramowitz, G.; Carrara, A.; Correia, A.; Kobayashi, H.; Papale, D.; Pearson, D.; Pereira, J.; Piao, S.; Rambal, S.; Sonnentag, O.

    2009-12-01

    Ecosystem processes are influenced by climatic trends at multiple temporal scales including diel patterns and other mid-term climatic modes, such as interannual and seasonal variability. Because interactions between biophysical components of ecosystem processes are complex, it is important to test how models perform in frequency (e.g. hours, days, weeks, months, years) and time (i.e. day of the year) domains in addition to traditional tests of annual or monthly sums. Here we present a spectral evaluation using wavelet time series analysis of model performance in seven Mediterranean Oak Woodlands that encompass three deciduous and four evergreen sites. We tested the performance of five models (CABLE, ORCHIDEE, BEPS, Biome-BGC, and JULES) on measured variables of gross primary production (GPP) and evapotranspiration (ET). In general, model performance fails at intermediate periods (e.g. weeks to months) likely because these models do not represent the water pulse dynamics that influence GPP and ET at these Mediterranean systems. To improve the performance of a model it is critical to identify first where and when the model fails. Only by identifying where a model fails we can improve the model performance and use them as prognostic tools and to generate further hypotheses that can be tested by new experiments and measurements.

  11. The Performance of IRT Model Selection Methods with Mixed-Format Tests

    ERIC Educational Resources Information Center

    Whittaker, Tiffany A.; Chang, Wanchen; Dodd, Barbara G.

    2012-01-01

    When tests consist of multiple-choice and constructed-response items, researchers are confronted with the question of which item response theory (IRT) model combination will appropriately represent the data collected from these mixed-format tests. This simulation study examined the performance of six model selection criteria, including the…

  12. Using a Functional Simulation of Crisis Management to Test the C2 Agility Model Parameters on Key Performance Variables

    DTIC Science & Technology

    2013-06-01

    1 18th ICCRTS Using a Functional Simulation of Crisis Management to Test the C2 Agility Model Parameters on Key Performance Variables...AND SUBTITLE Using a Functional Simulation of Crisis Management to Test the C2 Agility Model Parameters on Key Performance Variables 5a. CONTRACT...command in crisis management. C2 Agility Model Agility can be conceptualized at a number of different levels; for instance at the team

  13. A modified F-test for evaluating model performance by including both experimental and simulation uncertainties

    USDA-ARS?s Scientific Manuscript database

    Experimental and simulation uncertainties have not been included in many of the statistics used in assessing agricultural model performance. The objectives of this study were to develop an F-test that can be used to evaluate model performance considering experimental and simulation uncertainties, an...

  14. Predicting Examination Performance Using an Expanded Integrated Hierarchical Model of Test Emotions and Achievement Goals

    ERIC Educational Resources Information Center

    Putwain, Dave; Deveney, Carolyn

    2009-01-01

    The aim of this study was to examine an expanded integrative hierarchical model of test emotions and achievement goal orientations in predicting the examination performance of undergraduate students. Achievement goals were theorised as mediating the relationship between test emotions and performance. 120 undergraduate students completed…

  15. Wind tunnel performance results of an aeroelastically scaled 2/9 model of the PTA flight test prop-fan

    NASA Technical Reports Server (NTRS)

    Stefko, George L.; Rose, Gayle E.; Podboy, Gary G.

    1987-01-01

    High speed wind tunnel aerodynamic performance tests of the SR-7A advanced prop-fan have been completed in support of the Prop-Fan Test Assessment (PTA) flight test program. The test showed that the SR-7A model performed aerodynamically very well. At the cruise design condition, the SR-7A prop fan had a high measured net efficiency of 79.3 percent.

  16. Performance tests.

    PubMed Central

    Wetherell, A

    1996-01-01

    This paper discusses the use of psychological performance tests to assess the effects of environmental stressors. The large number and the variety of performance tests are illustrated, and the differences between performance tests and other psychological tests are described in terms of their design, construction, use, and purpose. The stressor emphasis is on the effects of drugs since that is where most performance tests have found their main application, although other stressors, e.g., fatigue, toxic chemicals, are mentioned where appropriate. Diazepam is used as an example. There is no particular performance emphasis since the tests are intended to have wide applicability. However, vehicle-driving performance is discussed because it has been the subject of a great deal of research and is probably one of the most important areas of application. Performance tests are discussed in terms of the four main underlying models--factor analysis, general information processing, multiple resource and strategy models, and processing-stage models--and in terms of their psychometric properties--sensitivity, reliability, and content, criterion, construct, and face validity. Some test taxonomies are presented. Standardization is also discussed with reference to the reaction time, mathematical processing, memory search, spatial processing, unstable tracking, verbal processing, and dual task tests used in the AGARD STRES battery. Some comments on measurement strengths and appropriate study designs and methods are included. PMID:9182033

  17. 42 CFR § 512.2 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2017-10-01

    ...) HEALTH CARE INFRASTRUCTURE AND MODEL PROGRAMS EPISODE PAYMENT MODEL General Provisions § 512.2... model means the model testing CR incentive payments for CR/ICR service use made in accordance with... performance year means one of the years in which the CR incentive payment model is being tested. Performance...

  18. Gaia challenging performances verification: combination of spacecraft models and test results

    NASA Astrophysics Data System (ADS)

    Ecale, Eric; Faye, Frédéric; Chassat, François

    2016-08-01

    To achieve the ambitious scientific objectives of the Gaia mission, extremely stringent performance requirements have been given to the spacecraft contractor (Airbus Defence and Space). For a set of those key-performance requirements (e.g. end-of-mission parallax, maximum detectable magnitude, maximum sky density or attitude control system stability), this paper describes how they are engineered during the whole spacecraft development process, with a focus on the end-to-end performance verification. As far as possible, performances are usually verified by end-to-end tests onground (i.e. before launch). However, the challenging Gaia requirements are not verifiable by such a strategy, principally because no test facility exists to reproduce the expected flight conditions. The Gaia performance verification strategy is therefore based on a mix between analyses (based on spacecraft models) and tests (used to directly feed the models or to correlate them). Emphasis is placed on how to maximize the test contribution to performance verification while keeping the test feasible within an affordable effort. In particular, the paper highlights the contribution of the Gaia Payload Module Thermal Vacuum test to the performance verification before launch. Eventually, an overview of the in-flight payload calibration and in-flight performance verification is provided.

  19. Model Performance of Water-Current Meters

    USGS Publications Warehouse

    Fulford, J.M.; ,

    2002-01-01

    The measurement of discharge in natural streams requires hydrographers to use accurate water-current meters that have consistent performance among meters of the same model. This paper presents the results of an investigation into the performance of four models of current meters - Price type-AA, Price pygmy, Marsh McBirney 2000 and Swoffer 2100. Tests for consistency and accuracy for six meters of each model are summarized. Variation of meter performance within a model is used as an indicator of consistency, and percent velocity error that is computed from a measured reference velocity is used as an indicator of meter accuracy. Velocities measured by each meter are also compared to the manufacturer's published or advertised accuracy limits. For the meters tested, the Price models werer found to be more accurate and consistent over the range of test velocities compared to the other models. The Marsh McBirney model usually measured within its accuracy specification. The Swoffer meters did not meet the stringent Swoffer accuracy limits for all the velocities tested.

  20. Study on the CO2 electric driven fixed swash plate type compressor for eco-friendly vehicles

    NASA Astrophysics Data System (ADS)

    Nam, Donglim; Kim, Kitae; Lee, Jehie; Kwon, Yunki; Lee, Geonho

    2017-08-01

    The purpose of this study is to experiment and to performance analysis about the electric-driven fixed swash plate compressor using alternate refrigerant(R744). Comprehensive simulation model for an electric driven compressor using CO2 for eco-friendly vehicle is presented. This model consists of compression model and dynamic model. The compression model included valve dynamics, leakage, and heat transfer models. And the dynamic model included frictional loss between piston ring and cylinder wall, frictional loss between shoe and swash plate, frictional loss of bearings, and electric efficiency. Especially, because the efficiency of an electric parts(motor and inverter) in the compressor affects the loss of the compressor, the dynamo test was performed. We made the designed compressor, and tested the performance of the compressor about the variety pressure conditions. Also we compared the performance analysis result and performance test result.

  1. Loss of feed flow, steam generator tube rupture and steam line break thermohydraulic experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mendler, O J; Takeuchi, K; Young, M Y

    1986-10-01

    The Westinghouse Model Boiler No. 2 (MB-2) steam generator test model at the Engineering Test Facility in Tampa, Florida, was reinstrumented and modified for performing a series of tests simulating steam generator accident transients. The transients simulated were: loss of feed flow, steam generator tube rupture, and steam line break events. This document presents a description of (1) the model boiler and the associated test facility, (2) the tests performed, and (3) the analyses of the test results.

  2. SMART empirical approaches for predicting field performance of PV modules from results of reliability tests

    NASA Astrophysics Data System (ADS)

    Hardikar, Kedar Y.; Liu, Bill J. J.; Bheemreddy, Venkata

    2016-09-01

    Gaining an understanding of degradation mechanisms and their characterization are critical in developing relevant accelerated tests to ensure PV module performance warranty over a typical lifetime of 25 years. As newer technologies are adapted for PV, including new PV cell technologies, new packaging materials, and newer product designs, the availability of field data over extended periods of time for product performance assessment cannot be expected within the typical timeframe for business decisions. In this work, to enable product design decisions and product performance assessment for PV modules utilizing newer technologies, Simulation and Mechanism based Accelerated Reliability Testing (SMART) methodology and empirical approaches to predict field performance from accelerated test results are presented. The method is demonstrated for field life assessment of flexible PV modules based on degradation mechanisms observed in two accelerated tests, namely, Damp Heat and Thermal Cycling. The method is based on design of accelerated testing scheme with the intent to develop relevant acceleration factor models. The acceleration factor model is validated by extensive reliability testing under different conditions going beyond the established certification standards. Once the acceleration factor model is validated for the test matrix a modeling scheme is developed to predict field performance from results of accelerated testing for particular failure modes of interest. Further refinement of the model can continue as more field data becomes available. While the demonstration of the method in this work is for thin film flexible PV modules, the framework and methodology can be adapted to other PV products.

  3. CRBR pump water test experience

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cook, M.E.; Huber, K.A.

    1983-01-01

    The hydraulic design features and water testing of the hydraulic scale model and prototype pump of the sodium pumps used in the primary and intermediate sodium loops of the Clinch River Breeder Reactor Plant (CRBRP) are described. The Hydraulic Scale Model tests are performed and the results of these tests are discussed. The Prototype Pump tests are performed and the results of these tests are discussed.

  4. The impact performance of headguards for combat sports.

    PubMed

    McIntosh, Andrew S; Patton, Declan A

    2015-09-01

    To assess the impact energy attenuation performance of a range of headguards for combat sports. Seven headguards worn during combat sport training or competition, including two Association Internationale de Boxe Amateur (AIBA)-approved boxing models, were tested using drop tests. An International Organization for Standardization (ISO) rigid headform was used with a 5.6 kg drop assembly mass. Tests were conducted against a flat rigid anvil both with and without a boxing glove section. The centre forehead and lateral headguard areas were tested. Peak headform acceleration was measured. Tests from a selection of drop heights and repeated tests on the same headguard were conducted. Headguard performance varied by test condition. For the 0.4 m rigid anvil tests, the best model headguard was the thickest producing an average peak headform acceleration over 5 tests of 48 g compared with 456 g for the worst model. The mean peak acceleration for the 0.4, 0.5 and 0.6 frontal and lateral rigid anvil impact tests was between 32% and 40% lower for the Top Ten boxing model compared with the Adidas boxing model. The headguard performance deterioration observed with repeat impact against the flat anvil was reduced for impacts against the glove section. The overall reduction in acceleration for the combination of glove and headguard in comparison to the headguard condition was in the range of 72-93% for 0.6 and 0.8 m drop tests. The impact tests show the benefits of performance testing in identifying differences between headguard models. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  5. The 727 airplane target thrust reverser static performance model test for refanned JT8D engines

    NASA Technical Reports Server (NTRS)

    Chow, C. T. P.; Atkey, E. N.

    1974-01-01

    The results of a scale model static performance test of target thrust reverser configurations for the Pratt and Whitney Aircraft JT8D-100 series engine are presented. The objective of the test was to select a series of suitable candidate reverser configurations for the subsequent airplane model wind tunnel ingestion and flight controls tests. Test results indicate that adequate reverse thrust performance with compatible engine airflow match is achievable for the selected configurations. Tapering of the lips results in loss of performance and only minimal flow directivity. Door pressure surveys were conducted on a selected number of lip and fence configurations to obtain data to support the design of the thrust reverser system.

  6. Herd-of-origin effect on the post-weaning performance of centrally tested Nellore beef cattle.

    PubMed

    de Rezende Neves, Haroldo Henrique; Polin dos Reis, Felipe; Motta Paterno, Flávia; Rocha Guarini, Aline; Carvalheiro, Roberto; da Silva, Lilian Regina; de Oliveira, João Ademir; Aidar de Queiroz, Sandra

    2014-10-01

    The objective of a performance test station is to evaluate the performance of potential breeding bulls earlier in order to decrease the generation interval and increase genetic gain as well. This study evaluates the herd-of-origin influence on end-of-test weight (ETW), average daily weight gain during testing (ADG), average daily weight gain during the adjustment period (ADGadj), rib eye area (REA), marbling (MARB), subcutaneous fat thickness (SFT), conformation (C), early finishing (EF), muscling (M), navel (N) and temperament (T) scores, and scrotal circumference (SC) of Nellore cattle that underwent a performance test. We evaluated 664 animals that participated in the performance tests conducted at the Center for Performance CRV Lagoa between 2007 and 2012. Components of variance for each trait were estimated by an animal model (model 1), using the restricted maximum likelihood method. An alternative animal model (model 2) included, in addition to the fixed effects present in S1, the non-correlated random effect of herd-year (HY). A significant HY effect was observed on ETW, REA, SFT, ADGadj, C, and Cw (p < 0.05). The estimated heritability of all traits decreased when the HY effect was included in the model; also, the bull rank, in deciles, changed significantly for traits ETW, REA, SFT, and C. The adjustment period did not completely remove the environmental effect of herd of origin on ETW, REA, SFT, and C. It is recommended that the herd-of-origin effect should be included in the statistical models used to predict the breeding values of the participants of these performance tests.

  7. 40 CFR 60.2695 - How are the performance test data used?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Emissions Guidelines and Compliance Times for Commercial and Industrial Solid Waste Incineration Units Model Rule-Performance Testing.... [76 FR 15773, Mar. 21, 2011] Model Rule—Initial Compliance Requirements ...

  8. 40 CFR 60.2695 - How are the performance test data used?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Emissions Guidelines and Compliance Times for Commercial and Industrial Solid Waste Incineration Units Model Rule-Performance Testing.... [76 FR 15773, Mar. 21, 2011] Model Rule—Initial Compliance Requirements ...

  9. Achievement Goals and Achievement Emotions: Testing a Model of Their Joint Relations with Academic Performance

    ERIC Educational Resources Information Center

    Pekrun, Reinhard; Elliot, Andrew J.; Maier, Markus A.

    2009-01-01

    The authors propose a theoretical model linking achievement goals and achievement emotions to academic performance. This model was tested in a prospective study with undergraduates (N = 213), using exam-specific assessments of both goals and emotions as predictors of exam performance in an introductory-level psychology course. The findings were…

  10. NASA's Evolutionary Xenon Thruster (NEXT) Prototype Model 1R (PM1R) Ion Thruster and Propellant Management System Wear Test Results

    NASA Technical Reports Server (NTRS)

    VanNoord, Jonathan L.; Soulas, George C.; Sovey, James S.

    2010-01-01

    The results of the NEXT wear test are presented. This test was conducted with a 36-cm ion engine (designated PM1R) and an engineering model propellant management system. The thruster operated with beam extraction for a total of 1680 hr and processed 30.5 kg of xenon during the wear test, which included performance testing and some operation with an engineering model power processing unit. A total of 1312 hr was accumulated at full power, 277 hr at low power, and the remainder was at intermediate throttle levels. Overall ion engine performance, which includes thrust, thruster input power, specific impulse, and thrust efficiency, was steady with no indications of performance degradation. The propellant management system performed without incident during the wear test. The ion engine and propellant management system were also inspected following the test with no indication of anomalous hardware degradation from operation.

  11. Propfan test assessment testbed aircraft stability and control/performance 1/9-scale wind tunnel tests

    NASA Technical Reports Server (NTRS)

    Little, B. H., Jr.; Tomlin, K. H.; Aljabri, A. S.; Mason, C. A.

    1988-01-01

    One-ninth scale wind tunnel model tests of the Propfan Test Assessment (PTA) aircraft were performed in three different NASA facilities. Wing and propfan nacelle static pressures, model forces and moments, and flow field at the propfan plane were measured in these tests. Tests started in June 1985 and were completed in January 1987. These data were needed to assure PTA safety of flight, predict PTA performance, and validate analytical codes that will be used to predict flow fields in which the propfan will operate.

  12. Using HLM to Explore the Effects of Perceptions of Learning Environments and Assessments on Students' Test Performance

    ERIC Educational Resources Information Center

    Chu, Man-Wai; Babenko, Oksana; Cui, Ying; Leighton, Jacqueline P.

    2014-01-01

    The study examines the role that perceptions or impressions of learning environments and assessments play in students' performance on a large-scale standardized test. Hierarchical linear modeling (HLM) was used to test aspects of the Learning Errors and Formative Feedback model to determine how much variation in students' performance was explained…

  13. Lightweight ZERODUR: Validation of Mirror Performance and Mirror Modeling Predictions

    NASA Technical Reports Server (NTRS)

    Hull, Tony; Stahl, H. Philip; Westerhoff, Thomas; Valente, Martin; Brooks, Thomas; Eng, Ron

    2017-01-01

    Upcoming spaceborne missions, both moderate and large in scale, require extreme dimensional stability while relying both upon established lightweight mirror materials, and also upon accurate modeling methods to predict performance under varying boundary conditions. We describe tests, recently performed at NASA's XRCF chambers and laboratories in Huntsville Alabama, during which a 1.2 m diameter, f/1.2988% lightweighted SCHOTT lightweighted ZERODUR(TradeMark) mirror was tested for thermal stability under static loads in steps down to 230K. Test results are compared to model predictions, based upon recently published data on ZERODUR(TradeMark). In addition to monitoring the mirror surface for thermal perturbations in XRCF Thermal Vacuum tests, static load gravity deformations have been measured and compared to model predictions. Also the Modal Response(dynamic disturbance) was measured and compared to model. We will discuss the fabrication approach and optomechanical design of the ZERODUR(TradeMark) mirror substrate by SCHOTT, its optical preparation for test by Arizona Optical Systems (AOS). Summarize the outcome of NASA's XRCF tests and model validations

  14. Lightweight ZERODUR®: Validation of mirror performance and mirror modeling predictions

    NASA Astrophysics Data System (ADS)

    Hull, Anthony B.; Stahl, H. Philip; Westerhoff, Thomas; Valente, Martin; Brooks, Thomas; Eng, Ron

    2017-01-01

    Upcoming spaceborne missions, both moderate and large in scale, require extreme dimensional stability while relying both upon established lightweight mirror materials, and also upon accurate modeling methods to predict performance under varying boundary conditions. We describe tests, recently performed at NASA’s XRCF chambers and laboratories in Huntsville Alabama, during which a 1.2m diameter, f/1.29 88% lightweighted SCHOTT lightweighted ZERODUR® mirror was tested for thermal stability under static loads in steps down to 230K. Test results are compared to model predictions, based upon recently published data on ZERODUR®. In addition to monitoring the mirror surface for thermal perturbations in XRCF Thermal Vacuum tests, static load gravity deformations have been measured and compared to model predictions. Also the Modal Response (dynamic disturbance) was measured and compared to model. We will discuss the fabrication approach and optomechanical design of the ZERODUR® mirror substrate by SCHOTT, its optical preparation for test by Arizona Optical Systems (AOS), and summarize the outcome of NASA’s XRCF tests and model validations.

  15. Analytical design and performance studies of nuclear furnace tests of small nuclear light bulb models

    NASA Technical Reports Server (NTRS)

    Latham, T. S.; Rodgers, R. J.

    1972-01-01

    Analytical studies were continued to identify the design and performance characteristics of a small-scale model of a nuclear light bulb unit cell suitable for testing in a nuclear furnace reactor. Emphasis was placed on calculating performance characteristics based on detailed radiant heat transfer analyses, on designing the test assembly for ease of insertion, connection, and withdrawal at the reactor test cell, and on determining instrumentation and test effluent handling requirements. In addition, a review of candidate test reactors for future nuclear light bulb in-reactor tests was conducted.

  16. Development, Testing, and Validation of a Model-Based Tool to Predict Operator Responses in Unexpected Workload Transitions

    NASA Technical Reports Server (NTRS)

    Sebok, Angelia; Wickens, Christopher; Sargent, Robert

    2015-01-01

    One human factors challenge is predicting operator performance in novel situations. Approaches such as drawing on relevant previous experience, and developing computational models to predict operator performance in complex situations, offer potential methods to address this challenge. A few concerns with modeling operator performance are that models need to realistic, and they need to be tested empirically and validated. In addition, many existing human performance modeling tools are complex and require that an analyst gain significant experience to be able to develop models for meaningful data collection. This paper describes an effort to address these challenges by developing an easy to use model-based tool, using models that were developed from a review of existing human performance literature and targeted experimental studies, and performing an empirical validation of key model predictions.

  17. Prospective Evaluation of the Global Earthquake Activity Rate Model (GEAR1) Earthquake Forecast: Preliminary Results

    NASA Astrophysics Data System (ADS)

    Strader, Anne; Schorlemmer, Danijel; Beutin, Thomas

    2017-04-01

    The Global Earthquake Activity Rate Model (GEAR1) is a hybrid seismicity model, constructed from a loglinear combination of smoothed seismicity from the Global Centroid Moment Tensor (CMT) earthquake catalog and geodetic strain rates (Global Strain Rate Map, version 2.1). For the 2005-2012 retrospective evaluation period, GEAR1 outperformed both parent strain rate and smoothed seismicity forecasts. Since 1. October 2015, GEAR1 has been prospectively evaluated by the Collaboratory for the Study of Earthquake Predictability (CSEP) testing center. Here, we present initial one-year test results of the GEAR1, GSRM and GSRM2.1, as well as localized evaluation of GEAR1 performance. The models were evaluated on the consistency in number (N-test), spatial (S-test) and magnitude (M-test) distribution of forecasted and observed earthquakes, as well as overall data consistency (CL-, L-tests). Performance at target earthquake locations was compared between models using the classical paired T-test and its non-parametric equivalent, the W-test, to determine if one model could be rejected in favor of another at the 0.05 significance level. For the evaluation period from 1. October 2015 to 1. October 2016, the GEAR1, GSRM and GSRM2.1 forecasts pass all CSEP likelihood tests. Comparative test results show statistically significant improvement of GEAR1 performance over both strain rate-based forecasts, both of which can be rejected in favor of GEAR1. Using point process residual analysis, we investigate the spatial distribution of differences in GEAR1, GSRM and GSRM2 model performance, to identify regions where the GEAR1 model should be adjusted, that could not be inferred from CSEP test results. Furthermore, we investigate whether the optimal combination of smoothed seismicity and strain rates remains stable over space and time.

  18. Process consistency in models: The importance of system signatures, expert knowledge, and process complexity

    NASA Astrophysics Data System (ADS)

    Hrachowitz, M.; Fovet, O.; Ruiz, L.; Euser, T.; Gharari, S.; Nijzink, R.; Freer, J.; Savenije, H. H. G.; Gascuel-Odoux, C.

    2014-09-01

    Hydrological models frequently suffer from limited predictive power despite adequate calibration performances. This can indicate insufficient representations of the underlying processes. Thus, ways are sought to increase model consistency while satisfying the contrasting priorities of increased model complexity and limited equifinality. In this study, the value of a systematic use of hydrological signatures and expert knowledge for increasing model consistency was tested. It was found that a simple conceptual model, constrained by four calibration objective functions, was able to adequately reproduce the hydrograph in the calibration period. The model, however, could not reproduce a suite of hydrological signatures, indicating a lack of model consistency. Subsequently, testing 11 models, model complexity was increased in a stepwise way and counter-balanced by "prior constraints," inferred from expert knowledge to ensure a model which behaves well with respect to the modeler's perception of the system. We showed that, in spite of unchanged calibration performance, the most complex model setup exhibited increased performance in the independent test period and skill to better reproduce all tested signatures, indicating a better system representation. The results suggest that a model may be inadequate despite good performance with respect to multiple calibration objectives and that increasing model complexity, if counter-balanced by prior constraints, can significantly increase predictive performance of a model and its skill to reproduce hydrological signatures. The results strongly illustrate the need to balance automated model calibration with a more expert-knowledge-driven strategy of constraining models.

  19. The bidirectional pathways between internalizing and externalizing problems and academic performance from 6 to 18 years.

    PubMed

    Van der Ende, Jan; Verhulst, Frank C; Tiemeier, Henning

    2016-08-01

    Internalizing and externalizing problems are associated with poor academic performance, both concurrently and longitudinally. Important questions are whether problems precede academic performance or vice versa, whether both internalizing and externalizing are associated with academic problems when simultaneously tested, and whether associations and their direction depend on the informant providing information. These questions were addressed in a sample of 816 children who were assessed four times. The children were 6-10 years at baseline and 14-18 years at the last assessment. Parent-reported internalizing and externalizing problems and teacher-reported academic performance were tested in cross-lagged models to examine bidirectional paths between these constructs. These models were compared with cross-lagged models testing paths between teacher-reported internalizing and externalizing problems and parent-reported academic performance. Both final models revealed similar pathways from mostly externalizing problems to academic performance. No paths emerged from internalizing problems to academic performance. Moreover, paths from academic performance to internalizing and externalizing problems were only found when teachers reported on children's problems and not for parent-reported problems. Additional model tests revealed that paths were observed in both childhood and adolescence. Externalizing problems place children at increased risk of poor academic performance and should therefore be the target for interventions.

  20. 40 CFR 600.209-95 - Calculation of fuel economy values for labeling.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) Multiply the city model type fuel economy calculated from the tests performed using gasoline or diesel test... (B) Multiply the city model type fuel economy calculated from the tests performed using alcohol or natural gas test fuel as determined in § 600.207 (b)(5)(ii) by 0.90, rounding the product to the nearest...

  1. Predicting space telerobotic operator training performance from human spatial ability assessment

    NASA Astrophysics Data System (ADS)

    Liu, Andrew M.; Oman, Charles M.; Galvan, Raquel; Natapoff, Alan

    2013-11-01

    Our goal was to determine whether existing tests of spatial ability can predict an astronaut's qualification test performance after robotic training. Because training astronauts to be qualified robotics operators is so long and expensive, NASA is interested in tools that can predict robotics performance before training begins. Currently, the Astronaut Office does not have a validated tool to predict robotics ability as part of its astronaut selection or training process. Commonly used tests of human spatial ability may provide such a tool to predict robotics ability. We tested the spatial ability of 50 active astronauts who had completed at least one robotics training course, then used logistic regression models to analyze the correlation between spatial ability test scores and the astronauts' performance in their evaluation test at the end of the training course. The fit of the logistic function to our data is statistically significant for several spatial tests. However, the prediction performance of the logistic model depends on the criterion threshold assumed. To clarify the critical selection issues, we show how the probability of correct classification vs. misclassification varies as a function of the mental rotation test criterion level. Since the costs of misclassification are low, the logistic models of spatial ability and robotic performance are reliable enough only to be used to customize regular and remedial training. We suggest several changes in tracking performance throughout robotics training that could improve the range and reliability of predictive models.

  2. Rasch-family models are more valuable than score-based approaches for analysing longitudinal patient-reported outcomes with missing data.

    PubMed

    de Bock, Élodie; Hardouin, Jean-Benoit; Blanchin, Myriam; Le Neel, Tanguy; Kubis, Gildas; Bonnaud-Antignac, Angélique; Dantan, Étienne; Sébille, Véronique

    2016-10-01

    The objective was to compare classical test theory and Rasch-family models derived from item response theory for the analysis of longitudinal patient-reported outcomes data with possibly informative intermittent missing items. A simulation study was performed in order to assess and compare the performance of classical test theory and Rasch model in terms of bias, control of the type I error and power of the test of time effect. The type I error was controlled for classical test theory and Rasch model whether data were complete or some items were missing. Both methods were unbiased and displayed similar power with complete data. When items were missing, Rasch model remained unbiased and displayed higher power than classical test theory. Rasch model performed better than the classical test theory approach regarding the analysis of longitudinal patient-reported outcomes with possibly informative intermittent missing items mainly for power. This study highlights the interest of Rasch-based models in clinical research and epidemiology for the analysis of incomplete patient-reported outcomes data. © The Author(s) 2013.

  3. 40 CFR 60.2725 - May I conduct a repeat performance test to establish new operating limits?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Emissions Guidelines and Compliance Times for Commercial and Industrial Solid Waste Incineration Units Model... during any performance test used to demonstrate compliance. Model Rule—Monitoring ...

  4. 40 CFR 60.2725 - May I conduct a repeat performance test to establish new operating limits?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Emissions Guidelines and Compliance Times for Commercial and Industrial Solid Waste Incineration Units Model... during any performance test used to demonstrate compliance. Model Rule—Monitoring ...

  5. Feasibility of Using Neural Network Models to Accelerate the Testing of Mechanical Systems

    NASA Technical Reports Server (NTRS)

    Fusaro, Robert L.

    1998-01-01

    Verification testing is an important aspect of the design process for mechanical mechanisms, and full-scale, full-length life testing is typically used to qualify any new component for use in space. However, as the required life specification is increased, full-length life tests become more costly and lengthen the development time. At the NASA Lewis Research Center, we theorized that neural network systems may be able to model the operation of a mechanical device. If so, the resulting neural network models could simulate long-term mechanical testing with data from a short-term test. This combination of computer modeling and short-term mechanical testing could then be used to verify the reliability of mechanical systems, thereby eliminating the costs associated with long-term testing. Neural network models could also enable designers to predict the performance of mechanisms at the conceptual design stage by entering the critical parameters as input and running the model to predict performance. The purpose of this study was to assess the potential of using neural networks to predict the performance and life of mechanical systems. To do this, we generated a neural network system to model wear obtained from three accelerated testing devices: 1) A pin-on-disk tribometer; 2) A line-contact rub-shoe tribometer; 3) A four-ball tribometer.

  6. Comparison of modeling methods to predict the spatial distribution of deep-sea coral and sponge in the Gulf of Alaska

    NASA Astrophysics Data System (ADS)

    Rooper, Christopher N.; Zimmermann, Mark; Prescott, Megan M.

    2017-08-01

    Deep-sea coral and sponge ecosystems are widespread throughout most of Alaska's marine waters, and are associated with many different species of fishes and invertebrates. These ecosystems are vulnerable to the effects of commercial fishing activities and climate change. We compared four commonly used species distribution models (general linear models, generalized additive models, boosted regression trees and random forest models) and an ensemble model to predict the presence or absence and abundance of six groups of benthic invertebrate taxa in the Gulf of Alaska. All four model types performed adequately on training data for predicting presence and absence, with regression forest models having the best overall performance measured by the area under the receiver-operating-curve (AUC). The models also performed well on the test data for presence and absence with average AUCs ranging from 0.66 to 0.82. For the test data, ensemble models performed the best. For abundance data, there was an obvious demarcation in performance between the two regression-based methods (general linear models and generalized additive models), and the tree-based models. The boosted regression tree and random forest models out-performed the other models by a wide margin on both the training and testing data. However, there was a significant drop-off in performance for all models of invertebrate abundance ( 50%) when moving from the training data to the testing data. Ensemble model performance was between the tree-based and regression-based methods. The maps of predictions from the models for both presence and abundance agreed very well across model types, with an increase in variability in predictions for the abundance data. We conclude that where data conforms well to the modeled distribution (such as the presence-absence data and binomial distribution in this study), the four types of models will provide similar results, although the regression-type models may be more consistent with biological theory. For data with highly zero-inflated distributions and non-normal distributions such as the abundance data from this study, the tree-based methods performed better. Ensemble models that averaged predictions across the four model types, performed better than the GLM or GAM models but slightly poorer than the tree-based methods, suggesting ensemble models might be more robust to overfitting than tree methods, while mitigating some of the disadvantages in predictive performance of regression methods.

  7. HARP model rotor test at the DNW. [Hughes Advanced Rotor Program

    NASA Technical Reports Server (NTRS)

    Dawson, Seth; Jordan, David; Smith, Charles; Ekins, James; Silverthorn, Lou

    1989-01-01

    Data from a test of a dynamically scaled model of the Hughes Advanced Rotor Program (HARP) bearingless model main rotor and 369K tail rotor are reported. The history of the HARP program and its goals are reviewed, and the main and tail rotor models are described. The test facilities and instrumentation are described, and wind tunnel test data are presented on hover, forward flight performance, and blade-vortex interaction. Performance data, acoustic data, and dynamic data from near field/far field and shear layer studies are presented.

  8. 40 CFR 60.3027 - How do I conduct the initial and annual performance test?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 26A of appendix A of this part must be used. (ii) The post-test moisture removal procedure described... performance test? 60.3027 Section 60.3027 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED..., 2004 Model Rule-Performance Testing § 60.3027 How do I conduct the initial and annual performance test...

  9. 40 CFR 60.3027 - How do I conduct the initial and annual performance test?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 26A of appendix A of this part must be used. (ii) The post-test moisture removal procedure described... performance test? 60.3027 Section 60.3027 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED..., 2004 Model Rule-Performance Testing § 60.3027 How do I conduct the initial and annual performance test...

  10. 40 CFR 60.3027 - How do I conduct the initial and annual performance test?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 26A of appendix A of this part must be used. (ii) The post-test moisture removal procedure described... performance test? 60.3027 Section 60.3027 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED..., 2004 Model Rule-Performance Testing § 60.3027 How do I conduct the initial and annual performance test...

  11. 40 CFR 60.3027 - How do I conduct the initial and annual performance test?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 26A of appendix A of this part must be used. (ii) The post-test moisture removal procedure described... performance test? 60.3027 Section 60.3027 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED..., 2004 Model Rule-Performance Testing § 60.3027 How do I conduct the initial and annual performance test...

  12. 40 CFR 60.3027 - How do I conduct the initial and annual performance test?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 26A of appendix A of this part must be used. (ii) The post-test moisture removal procedure described... performance test? 60.3027 Section 60.3027 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED..., 2004 Model Rule-Performance Testing § 60.3027 How do I conduct the initial and annual performance test...

  13. Path Analysis Tests of Theoretical Models of Children's Memory Performance

    ERIC Educational Resources Information Center

    DeMarie, Darlene; Miller, Patricia H.; Ferron, John; Cunningham, Walter R.

    2004-01-01

    Path analysis was used to test theoretical models of relations among variables known to predict differences in children's memory--strategies, capacity, and metamemory. Children in kindergarten to fourth grade (chronological ages 5 to 11) performed different memory tasks. Several strategies (i.e., sorting, clustering, rehearsal, and self-testing)…

  14. Solar array electrical performance assessment for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Smith, Bryan K.; Brisco, Holly

    1993-01-01

    Electrical power for Space Station Freedom will be generated by large Photovoltaic arrays with a beginning of life power requirement of 30.8 kW per array. The solar arrays will operate in a Low Earth Orbit (LEO) over a design life of fifteen years. This paper provides an analysis of the predicted solar array electrical performance over the design life and presents a summary of supporting analysis and test data for the assigned model parameters and performance loss factors. Each model parameter and loss factor is assessed based upon program requirements, component analysis, and test data to date. A description of the LMSC performance model, future test plans, and predicted performance ranges are also given.

  15. Solar array electrical performance assessment for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Smith, Bryan K.; Brisco, Holly

    1993-01-01

    Electrical power for Space Station Freedom will be generated by large photovoltaic arrays with a beginning of life power requirement of 30.8 kW per array. The solar arrays will operate in a Low Earth Orbit (LEO) over a design life of fifteen years. This paper provides an analysis of the predicted solar array electrical performance over the design life and presents a summary of supporting analysis and test data for the assigned model parameters and performance loss factors. Each model parameter and loss factor is assessed based upon program requirements, component analysis and test data to date. A description of the LMSC performance model future test plans and predicted performance ranges are also given.

  16. A wave model test bed study for wave energy resource characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Zhaoqing; Neary, Vincent S.; Wang, Taiping

    This paper presents a test bed study conducted to evaluate best practices in wave modeling to characterize energy resources. The model test bed off the central Oregon Coast was selected because of the high wave energy and available measured data at the site. Two third-generation spectral wave models, SWAN and WWIII, were evaluated. A four-level nested-grid approach—from global to test bed scale—was employed. Model skills were assessed using a set of model performance metrics based on comparing six simulated wave resource parameters to observations from a wave buoy inside the test bed. Both WWIII and SWAN performed well at themore » test bed site and exhibited similar modeling skills. The ST4 package with WWIII, which represents better physics for wave growth and dissipation, out-performed ST2 physics and improved wave power density and significant wave height predictions. However, ST4 physics tended to overpredict the wave energy period. The newly developed ST6 physics did not improve the overall model skill for predicting the six wave resource parameters. Sensitivity analysis using different wave frequencies and direction resolutions indicated the model results were not sensitive to spectral resolutions at the test bed site, likely due to the absence of complex bathymetric and geometric features.« less

  17. Solid rocket booster performance evaluation model. Volume 1: Engineering description

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The space shuttle solid rocket booster performance evaluation model (SRB-II) is made up of analytical and functional simulation techniques linked together so that a single pass through the model will predict the performance of the propulsion elements of a space shuttle solid rocket booster. The available options allow the user to predict static test performance, predict nominal and off nominal flight performance, and reconstruct actual flight and static test performance. Options selected by the user are dependent on the data available. These can include data derived from theoretical analysis, small scale motor test data, large motor test data and motor configuration data. The user has several options for output format that include print, cards, tape and plots. Output includes all major performance parameters (Isp, thrust, flowrate, mass accounting and operating pressures) as a function of time as well as calculated single point performance data. The engineering description of SRB-II discusses the engineering and programming fundamentals used, the function of each module, and the limitations of each module.

  18. A Model of Statistics Performance Based on Achievement Goal Theory.

    ERIC Educational Resources Information Center

    Bandalos, Deborah L.; Finney, Sara J.; Geske, Jenenne A.

    2003-01-01

    Tests a model of statistics performance based on achievement goal theory. Both learning and performance goals affected achievement indirectly through study strategies, self-efficacy, and test anxiety. Implications of these findings for teaching and learning statistics are discussed. (Contains 47 references, 3 tables, 3 figures, and 1 appendix.)…

  19. NEXT Single String Integration Test Results

    NASA Technical Reports Server (NTRS)

    Soulas, George C.; Patterson, Michael J.; Pinero, Luis; Herman, Daniel A.; Snyder, Steven John

    2010-01-01

    As a critical part of NASA's Evolutionary Xenon Thruster (NEXT) test validation process, a single string integration test was performed on the NEXT ion propulsion system. The objectives of this test were to verify that an integrated system of major NEXT ion propulsion system elements meets project requirements, to demonstrate that the integrated system is functional across the entire power processor and xenon propellant management system input ranges, and to demonstrate to potential users that the NEXT propulsion system is ready for transition to flight. Propulsion system elements included in this system integration test were an engineering model ion thruster, an engineering model propellant management system, an engineering model power processor unit, and a digital control interface unit simulator that acted as a test console. Project requirements that were verified during this system integration test included individual element requirements ; integrated system requirements, and fault handling. This paper will present the results of these tests, which include: integrated ion propulsion system demonstrations of performance, functionality and fault handling; a thruster re-performance acceptance test to establish baseline performance: a risk-reduction PMS-thruster integration test: and propellant management system calibration checks.

  20. Item Response Theory Models for Performance Decline during Testing

    ERIC Educational Resources Information Center

    Jin, Kuan-Yu; Wang, Wen-Chung

    2014-01-01

    Sometimes, test-takers may not be able to attempt all items to the best of their ability (with full effort) due to personal factors (e.g., low motivation) or testing conditions (e.g., time limit), resulting in poor performances on certain items, especially those located toward the end of a test. Standard item response theory (IRT) models fail to…

  1. Feasibility of MHD submarine propulsion. Phase II, MHD propulsion: Testing in a two Tesla test facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doss, E.D.; Sikes, W.C.

    1992-09-01

    This report describes the work performed during Phase 1 and Phase 2 of the collaborative research program established between Argonne National Laboratory (ANL) and Newport News Shipbuilding and Dry Dock Company (NNS). Phase I of the program focused on the development of computer models for Magnetohydrodynamic (MHD) propulsion. Phase 2 focused on the experimental validation of the thruster performance models and the identification, through testing, of any phenomena which may impact the attractiveness of this propulsion system for shipboard applications. The report discusses in detail the work performed in Phase 2 of the program. In Phase 2, a two Teslamore » test facility was designed, built, and operated. The facility test loop, its components, and their design are presented. The test matrix and its rationale are discussed. Representative experimental results of the test program are presented, and are compared to computer model predictions. In general, the results of the tests and their comparison with the predictions indicate that thephenomena affecting the performance of MHD seawater thrusters are well understood and can be accurately predicted with the developed thruster computer models.« less

  2. Test anxiety and academic performance in chiropractic students.

    PubMed

    Zhang, Niu; Henderson, Charles N R

    2014-01-01

    Objective : We assessed the level of students' test anxiety, and the relationship between test anxiety and academic performance. Methods : We recruited 166 third-quarter students. The Test Anxiety Inventory (TAI) was administered to all participants. Total scores from written examinations and objective structured clinical examinations (OSCEs) were used as response variables. Results : Multiple regression analysis shows that there was a modest, but statistically significant negative correlation between TAI scores and written exam scores, but not OSCE scores. Worry and emotionality were the best predictive models for written exam scores. Mean total anxiety and emotionality scores for females were significantly higher than those for males, but not worry scores. Conclusion : Moderate-to-high test anxiety was observed in 85% of the chiropractic students examined. However, total test anxiety, as measured by the TAI score, was a very weak predictive model for written exam performance. Multiple regression analysis demonstrated that replacing total anxiety (TAI) with worry and emotionality (TAI subscales) produces a much more effective predictive model of written exam performance. Sex, age, highest current academic degree, and ethnicity contributed little additional predictive power in either regression model. Moreover, TAI scores were not found to be statistically significant predictors of physical exam skill performance, as measured by OSCEs.

  3. Flight assessment of the onboard propulsion system model for the Performance Seeking Control algorithm on an F-15 aircraft

    NASA Technical Reports Server (NTRS)

    Orme, John S.; Schkolnik, Gerard S.

    1995-01-01

    Performance Seeking Control (PSC), an onboard, adaptive, real-time optimization algorithm, relies upon an onboard propulsion system model. Flight results illustrated propulsion system performance improvements as calculated by the model. These improvements were subject to uncertainty arising from modeling error. Thus to quantify uncertainty in the PSC performance improvements, modeling accuracy must be assessed. A flight test approach to verify PSC-predicted increases in thrust (FNP) and absolute levels of fan stall margin is developed and applied to flight test data. Application of the excess thrust technique shows that increases of FNP agree to within 3 percent of full-scale measurements for most conditions. Accuracy to these levels is significant because uncertainty bands may now be applied to the performance improvements provided by PSC. Assessment of PSC fan stall margin modeling accuracy was completed with analysis of in-flight stall tests. Results indicate that the model overestimates the stall margin by between 5 to 10 percent. Because PSC achieves performance gains by using available stall margin, this overestimation may represent performance improvements to be recovered with increased modeling accuracy. Assessment of thrust and stall margin modeling accuracy provides a critical piece for a comprehensive understanding of PSC's capabilities and limitations.

  4. Design and application of electromechanical actuators for deep space missions

    NASA Technical Reports Server (NTRS)

    Haskew, Tim A.; Wander, John

    1993-01-01

    During the period 8/16/92 through 2/15/93, work has been focused on three major topics: (1) screw modeling and testing; (2) motor selection; and (3) health monitoring and fault diagnosis. Detailed theoretical analysis has been performed to specify a full dynamic model for the roller screw. A test stand has been designed for model parameter estimation and screw testing. In addition, the test stand is expected to be used to perform a study on transverse screw loading.

  5. Model-Scale Aerodynamic Performance Testing of Proposed Modifications to the NASA Langley Low Speed Aeroacoustic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Booth, Earl R., Jr.; Coston, Calvin W., Jr.

    2005-01-01

    Tests were performed on a 1/20th-scale model of the Low Speed Aeroacoustic Wind Tunnel to determine the performance effects of insertion of acoustic baffles in the tunnel inlet, replacement of the existing collector with a new collector design in the open jet test section, and addition of flow splitters to the acoustic baffle section downstream of the test section. As expected, the inlet baffles caused a reduction in facility performance. About half of the performance loss was recovered by addition the flow splitters to the downstream baffles. All collectors tested reduced facility performance. However, test chamber recirculation flow was reduced by the new collector designs and shielding of some of the microphones was reduced owing to the smaller size of the new collector. Overall performance loss in the facility is expected to be a 5 percent top flow speed reduction, but the facility will meet OSHA limits for external noise levels and recirculation in the test section will be reduced.

  6. Experimental and analytical studies of advanced air cushion landing systems

    NASA Technical Reports Server (NTRS)

    Lee, E. G. S.; Boghani, A. B.; Captain, K. M.; Rutishauser, H. J.; Farley, H. L.; Fish, R. B.; Jeffcoat, R. L.

    1981-01-01

    Several concepts are developed for air cushion landing systems (ACLS) which have the potential for improving performance characteristics (roll stiffness, heave damping, and trunk flutter), and reducing fabrication cost and complexity. After an initial screening, the following five concepts were evaluated in detail: damped trunk, filled trunk, compartmented trunk, segmented trunk, and roll feedback control. The evaluation was based on tests performed on scale models. An ACLS dynamic simulation developed earlier is updated so that it can be used to predict the performance of full-scale ACLS incorporating these refinements. The simulation was validated through scale-model tests. A full-scale ACLS based on the segmented trunk concept was fabricated and installed on the NASA ACLS test vehicle, where it is used to support advanced system development. A geometrically-scaled model (one third full scale) of the NASA test vehicle was fabricated and tested. This model, evaluated by means of a series of static and dynamic tests, is used to investigate scaling relationships between reduced and full-scale models. The analytical model developed earlier is applied to simulate both the one third scale and the full scale response.

  7. Testing algorithms for a passenger train braking performance model.

    DOT National Transportation Integrated Search

    2011-09-01

    "The Federal Railroad Administrations Office of Research and Development funded a project to establish performance model to develop, analyze, and test positive train control (PTC) braking algorithms for passenger train operations. With a good brak...

  8. Consistency of QSAR models: Correct split of training and test sets, ranking of models and performance parameters.

    PubMed

    Rácz, A; Bajusz, D; Héberger, K

    2015-01-01

    Recent implementations of QSAR modelling software provide the user with numerous models and a wealth of information. In this work, we provide some guidance on how one should interpret the results of QSAR modelling, compare and assess the resulting models, and select the best and most consistent ones. Two QSAR datasets are applied as case studies for the comparison of model performance parameters and model selection methods. We demonstrate the capabilities of sum of ranking differences (SRD) in model selection and ranking, and identify the best performance indicators and models. While the exchange of the original training and (external) test sets does not affect the ranking of performance parameters, it provides improved models in certain cases (despite the lower number of molecules in the training set). Performance parameters for external validation are substantially separated from the other merits in SRD analyses, highlighting their value in data fusion.

  9. QCGAT mixer compound exhaust system design and static big model test report

    NASA Technical Reports Server (NTRS)

    Blackmore, W. L.; Thompson, C. E.

    1978-01-01

    A mixer exhaust system was designed to meet the proposed performance and exhaust jet noise goals for the AiResearch QCGAT engine. Some 0.35 scale models of the various nozzles were fabricated and aerodynamically and acoustically tested. Preliminary optimization, engine cycle matching, model test data and analysis are presented. A final mixer exhaust system is selected for optimum performance for the overall flight regime.

  10. Test Data Analysis of a Spray Bar Zero-Gravity Liquid Hydrogen Vent System for Upper Stages

    NASA Technical Reports Server (NTRS)

    Hedayat, A.; Bailey, J. W.; Hastings, L. J.; Flachbart, R. H.

    2003-01-01

    To support development of a zero-gravity pressure control capability for liquid hydrogen (LH2), a series of thermodynamic venting system (TVS) tests was conducted in 1996 and 1998 using the Marshall Space Flight Center (MSFC) multipurpose hydrogen test bed (MHTB). These tests were performed with ambient heat leaks =20 and 50 W for tank fill levels of 90%, 50%, and 25%. TVS performance testing revealed that the spray bar was highly effective in providing tank pressure control within a 7-kPa band (131-138 Wa), and complete destratification of the liquid and the ullage was achieved with all test conditions. Seven of the MHTB tests were correlated with the TVS performance analytical model. The tests were selected to encompass the range of tank fill levels, ambient heat leaks, operational modes, and ullage pressurants. The TVS model predicted ullage pressure and temperature and bulk liquid saturation pressure and temperature obtained from the TVS model were compared with the test data. During extended self-pressurization periods, following tank lockup, the model predicted faster pressure rise rates than were measured. However, once the system entered the cyclic mixing/venting operational mode, the modeled and measured data were quite similar.

  11. Feasibility of MHD submarine propulsion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doss, E.D.; Sikes, W.C.

    1992-09-01

    This report describes the work performed during Phase 1 and Phase 2 of the collaborative research program established between Argonne National Laboratory (ANL) and Newport News Shipbuilding and Dry Dock Company (NNS). Phase I of the program focused on the development of computer models for Magnetohydrodynamic (MHD) propulsion. Phase 2 focused on the experimental validation of the thruster performance models and the identification, through testing, of any phenomena which may impact the attractiveness of this propulsion system for shipboard applications. The report discusses in detail the work performed in Phase 2 of the program. In Phase 2, a two Teslamore » test facility was designed, built, and operated. The facility test loop, its components, and their design are presented. The test matrix and its rationale are discussed. Representative experimental results of the test program are presented, and are compared to computer model predictions. In general, the results of the tests and their comparison with the predictions indicate that thephenomena affecting the performance of MHD seawater thrusters are well understood and can be accurately predicted with the developed thruster computer models.« less

  12. System and Method for Modeling the Flow Performance Features of an Object

    NASA Technical Reports Server (NTRS)

    Jorgensen, Charles (Inventor); Ross, James (Inventor)

    1997-01-01

    The method and apparatus includes a neural network for generating a model of an object in a wind tunnel from performance data on the object. The network is trained from test input signals (e.g., leading edge flap position, trailing edge flap position, angle of attack, and other geometric configurations, and power settings) and test output signals (e.g., lift, drag, pitching moment, or other performance features). In one embodiment, the neural network training method employs a modified Levenberg-Marquardt optimization technique. The model can be generated 'real time' as wind tunnel testing proceeds. Once trained, the model is used to estimate performance features associated with the aircraft given geometric configuration and/or power setting input. The invention can also be applied in other similar static flow modeling applications in aerodynamics, hydrodynamics, fluid dynamics, and other such disciplines. For example, the static testing of cars, sails, and foils, propellers, keels, rudders, turbines, fins, and the like, in a wind tunnel, water trough, or other flowing medium.

  13. 40 CFR 1037.501 - General testing and modeling provisions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false General testing and modeling...) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW HEAVY-DUTY MOTOR VEHICLES Test and Modeling Procedures § 1037.501 General testing and modeling provisions. This subpart specifies how to perform emission...

  14. Temperature Dependent Modal Test/Analysis Correlation of X-34 Fastrac Composite Rocket Nozzle

    NASA Technical Reports Server (NTRS)

    Brown, Andrew M.; Brunty, Joseph A. (Technical Monitor)

    2001-01-01

    A unique high temperature modal test and model correlation/update program has been performed on the composite nozzle of the FASTRAC engine for the NASA X-34 Reusable Launch Vehicle. The program was required to provide an accurate high temperature model of the nozzle for incorporation into the engine system structural dynamics model for loads calculation; this model is significantly different from the ambient case due to the large decrease in composite stiffness properties due to heating. The high-temperature modal test was performed during a hot-fire test of the nozzle. Previously, a series of high fidelity modal tests and finite element model correlation of the nozzle in a free-free configuration had been performed. This model was then attached to a modal-test verified model of the engine hot-fire test stand and the ambient system mode shapes were identified. A reduced set of accelerometers was then attached to the nozzle, the engine fired full-duration, and the frequency peaks corresponding to the ambient nozzle modes individually isolated and tracked as they decreased during the test. To update the finite-element model of the nozzle to these frequency curves, the percentage differences of the anisotropic composite moduli due to temperature variation from ambient, which had been used in the initial modeling and which were obtained by small sample coupon testing, were multiplied by an iteratively determined constant factor. These new properties were used to create high-temperature nozzle models corresponding to 10 second engine operation increments and tied into the engine system model for loads determination.

  15. Testing the Self-Efficacy-Performance Linkage of Social-Cognitive Theory.

    ERIC Educational Resources Information Center

    Harrison, Allison W.; Rainer, R. Kelly, Jr.; Hochwarter, Wayne A.; Thompson, Kenneth R.

    1997-01-01

    Briefly reviews Albert Bandura's Self-Efficacy Performance Model (ability to perform a task is influenced by an individual's belief in their capability). Tests this model with a sample of 776 university employees and computer-related knowledge and skills. Results supported Bandura's thesis. Includes statistical tables and a discussion of related…

  16. Research notes : solar powered markers not up to challenge.

    DOT National Transportation Integrated Search

    2008-06-01

    ODOT performed preliminary tests on eight different models of solar powered raised pavement markers. These included environmental tests (extreme temperatures, immersion), optical performance tests, and observation tests. Federal Highway Administratio...

  17. Development of Flight-Test Performance Estimation Techniques for Small Unmanned Aerial Systems

    NASA Astrophysics Data System (ADS)

    McCrink, Matthew Henry

    This dissertation provides a flight-testing framework for assessing the performance of fixed-wing, small-scale unmanned aerial systems (sUAS) by leveraging sub-system models of components unique to these vehicles. The development of the sub-system models, and their links to broader impacts on sUAS performance, is the key contribution of this work. The sub-system modeling and analysis focuses on the vehicle's propulsion, navigation and guidance, and airframe components. Quantification of the uncertainty in the vehicle's power available and control states is essential for assessing the validity of both the methods and results obtained from flight-tests. Therefore, detailed propulsion and navigation system analyses are presented to validate the flight testing methodology. Propulsion system analysis required the development of an analytic model of the propeller in order to predict the power available over a range of flight conditions. The model is based on the blade element momentum (BEM) method. Additional corrections are added to the basic model in order to capture the Reynolds-dependent scale effects unique to sUAS. The model was experimentally validated using a ground based testing apparatus. The BEM predictions and experimental analysis allow for a parameterized model relating the electrical power, measurable during flight, to the power available required for vehicle performance analysis. Navigation system details are presented with a specific focus on the sensors used for state estimation, and the resulting uncertainty in vehicle state. Uncertainty quantification is provided by detailed calibration techniques validated using quasi-static and hardware-in-the-loop (HIL) ground based testing. The HIL methods introduced use a soft real-time flight simulator to provide inertial quality data for assessing overall system performance. Using this tool, the uncertainty in vehicle state estimation based on a range of sensors, and vehicle operational environments is presented. The propulsion and navigation system models are used to evaluate flight-testing methods for evaluating fixed-wing sUAS performance. A brief airframe analysis is presented to provide a foundation for assessing the efficacy of the flight-test methods. The flight-testing presented in this work is focused on validating the aircraft drag polar, zero-lift drag coefficient, and span efficiency factor. Three methods are detailed and evaluated for estimating these design parameters. Specific focus is placed on the influence of propulsion and navigation system uncertainty on the resulting performance data. Performance estimates are used in conjunction with the propulsion model to estimate the impact sensor and measurement uncertainty on the endurance and range of a fixed-wing sUAS. Endurance and range results for a simplistic power available model are compared to the Reynolds-dependent model presented in this work. Additional parameter sensitivity analysis related to state estimation uncertainties encountered in flight-testing are presented. Results from these analyses indicate that the sub-system models introduced in this work are of first-order importance, on the order of 5-10% change in range and endurance, in assessing the performance of a fixed-wing sUAS.

  18. Evaluation of annual, global seismicity forecasts, including ensemble models

    NASA Astrophysics Data System (ADS)

    Taroni, Matteo; Zechar, Jeremy; Marzocchi, Warner

    2013-04-01

    In 2009, the Collaboratory for the Study of the Earthquake Predictability (CSEP) initiated a prototype global earthquake forecast experiment. Three models participated in this experiment for 2009, 2010 and 2011—each model forecast the number of earthquakes above magnitude 6 in 1x1 degree cells that span the globe. Here we use likelihood-based metrics to evaluate the consistency of the forecasts with the observed seismicity. We compare model performance with statistical tests and a new method based on the peer-to-peer gambling score. The results of the comparisons are used to build ensemble models that are a weighted combination of the individual models. Notably, in these experiments the ensemble model always performs significantly better than the single best-performing model. Our results indicate the following: i) time-varying forecasts, if not updated after each major shock, may not provide significant advantages with respect to time-invariant models in 1-year forecast experiments; ii) the spatial distribution seems to be the most important feature to characterize the different forecasting performances of the models; iii) the interpretation of consistency tests may be misleading because some good models may be rejected while trivial models may pass consistency tests; iv) a proper ensemble modeling seems to be a valuable procedure to get the best performing model for practical purposes.

  19. Diagnostic methods for CW laser damage testing

    NASA Astrophysics Data System (ADS)

    Stewart, Alan F.; Shah, Rashmi S.

    2004-06-01

    High performance optical coatings are an enabling technology for many applications - navigation systems, telecom, fusion, advanced measurement systems of many types as well as directed energy weapons. The results of recent testing of superior optical coatings conducted at high flux levels will be presented. The diagnostics used in this type of nondestructive testing and the analysis of the data demonstrates the evolution of test methodology. Comparison of performance data under load to the predictions of thermal and optical models shows excellent agreement. These tests serve to anchor the models and validate the performance of the materials and coatings.

  20. A comparison of cognitive performance decreases during acute, progressive fatigue arising from different concurrent stressors.

    PubMed

    Fogt, Donovan L; Kalns, John E; Michael, Darren J

    2010-12-01

    Fatigue is known to impair cognitive performance, but it remains unclear whether concurrent common stressors affect cognitive performance similarly. We used the Stroop Color-Word Conflict Test to assess cognitive performance over 24 hours for four groups: control, sleep-deprived (SD), SD + energy deficit, and SD + energy deficit + fluid restricted. Fatigue levels were quantified using the Profile of Mood States (POMS) survey. Linear mixed-effects (LME) models allowed for testing of group-specific differences in cognitive performance while accounting for subject-level variation. Starting fatigue levels were similar among all groups, while 24-hour fatigue levels differed significantly. For each cognitive performance test, results were modeled separately. The simplest LME model contained a significant fixed-effects term for slope and intercept. Moreover, the simplest LME model used a single slope coefficient to fit data from all four groups, suggesting that loss in cognitive performance over a 24-hour duty cycle with respect to fatigue level is similar regardless of the cause.

  1. Children and adolescents' performance on a medium-length/nonsemantic word-list test.

    PubMed

    Flores-Lázaro, Julio César; Salgado Soruco, María Alejandra; Stepanov, Igor I

    2017-01-01

    Word-list learning tasks are among the most important and frequently used tests for declarative memory evaluation. For example, the California Verbal Learning Test-Children's Version (CVLT-C) and Rey Auditory Verbal Learning Test provide important information about different cognitive-neuropsychological processes. However, the impact of test length (i.e., number of words) and semantic organization (i.e., type of words) on children's and adolescents' memory performance remains to be clarified, especially during this developmental stage. To explore whether a medium-length non-semantically organized test can produce the typical curvilinear performance that semantically organized tests produce, reflecting executive control, we studied and compared the cognitive performance of normal children and adolescents by utilizing mathematical modeling. The model is based on the first-order system transfer function and has been successfully applied to learning curves for the CVLT-C (15 words, semantically organized paradigm). Results indicate that learning nine semantically unrelated words produces typical curvilinear (executive function) performance in children and younger adolescents and that performance could be effectively analyzed with the mathematical model. This indicates that the exponential increase (curvilinear performance) of correctly learned words does not solely depend on semantic and/or length features. This type of test controls semantic and length effects and may represent complementary tools for executive function evaluation in clinical populations in which semantic and/or length processing are affected.

  2. Comparison of two recent models for estimating actual evapotranspiration using only regularly recorded data

    NASA Astrophysics Data System (ADS)

    Ali, M. F.; Mawdsley, J. A.

    1987-09-01

    An advection-aridity model for estimating actual evapotranspiration ET is tested with over 700 days of lysimeter evapotranspiration and meteorological data from barley, turf and rye-grass from three sites in the U.K. The performance of the model is also compared with the API model . It is observed from the test that the advection-aridity model overestimates nonpotential ET and tends to underestimate potential ET, but when tested with potential and nonpotential data together, the tendencies appear to cancel each other. On a daily basis the performance level of this model is found to be of the same order as the API model: correlation coefficients were obtained between the model estimates and lysimeter data of 0.62 and 0.68 respectively. For periods greater than one day, generally the performance of the models are improved. Proposed by Mawdsley and Ali (1979)

  3. Practical Formal Verification of Diagnosability of Large Models via Symbolic Model Checking

    NASA Technical Reports Server (NTRS)

    Cavada, Roberto; Pecheur, Charles

    2003-01-01

    This document reports on the activities carried out during a four-week visit of Roberto Cavada at the NASA Ames Research Center. The main goal was to test the practical applicability of the framework proposed, where a diagnosability problem is reduced to a Symbolic Model Checking problem. Section 2 contains a brief explanation of major techniques currently used in Symbolic Model Checking, and how these techniques can be tuned in order to obtain good performances when using Model Checking tools. Diagnosability is performed on large and structured models of real plants. Section 3 describes how these plants are modeled, and how models can be simplified to improve the performance of Symbolic Model Checkers. Section 4 reports scalability results. Three test cases are briefly presented, and several parameters and techniques have been applied on those test cases in order to produce comparison tables. Furthermore, comparison between several Model Checkers is reported. Section 5 summarizes the application of diagnosability verification to a real application. Several properties have been tested, and results have been highlighted. Finally, section 6 draws some conclusions, and outlines future lines of research.

  4. Modeling the dynamics of recognition memory testing with an integrated model of retrieval and decision making.

    PubMed

    Osth, Adam F; Jansson, Anna; Dennis, Simon; Heathcote, Andrew

    2018-08-01

    A robust finding in recognition memory is that performance declines monotonically across test trials. Despite the prevalence of this decline, there is a lack of consensus on the mechanism responsible. Three hypotheses have been put forward: (1) interference is caused by learning of test items (2) the test items cause a shift in the context representation used to cue memory and (3) participants change their speed-accuracy thresholds through the course of testing. We implemented all three possibilities in a combined model of recognition memory and decision making, which inherits the memory retrieval elements of the Osth and Dennis (2015) model and uses the diffusion decision model (DDM: Ratcliff, 1978) to generate choice and response times. We applied the model to four datasets that represent three challenges, the findings that: (1) the number of test items plays a larger role in determining performance than the number of studied items, (2) performance decreases less for strong items than weak items in pure lists but not in mixed lists, and (3) lexical decision trials interspersed between recognition test trials do not increase the rate at which performance declines. Analysis of the model's parameter estimates suggests that item interference plays a weak role in explaining the effects of recognition testing, while context drift plays a very large role. These results are consistent with prior work showing a weak role for item noise in recognition memory and that retrieval is a strong cause of context change in episodic memory. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Space Launch System Base Heating Test: Sub-Scale Rocket Engine/Motor Design, Development and Performance Analysis

    NASA Technical Reports Server (NTRS)

    Mehta, Manish; Seaford, Mark; Kovarik, Brian; Dufrene, Aaron; Solly, Nathan; Kirchner, Robert; Engel, Carl D.

    2014-01-01

    The Space Launch System (SLS) base heating test is broken down into two test programs: (1) Pathfinder and (2) Main Test. The Pathfinder Test Program focuses on the design, development, hot-fire test and performance analyses of the 2% sub-scale SLS core-stage and booster element propulsion systems. The core-stage propulsion system is composed of four gaseous oxygen/hydrogen RS-25D model engines and the booster element is composed of two aluminum-based model solid rocket motors (SRMs). The first section of the paper discusses the motivation and test facility specifications for the test program. The second section briefly investigates the internal flow path of the design. The third section briefly shows the performance of the model RS-25D engines and SRMs for the conducted short duration hot-fire tests. Good agreement is observed based on design prediction analysis and test data. This program is a challenging research and development effort that has not been attempted in 40+ years for a NASA vehicle.

  6. System-Integrated Finite Element Analysis of a Full-Scale Helicopter Crash Test with Deployable Energy Absorbers

    NASA Technical Reports Server (NTRS)

    Annett, Martin S.; Polanco, Michael A.

    2010-01-01

    A full-scale crash test of an MD-500 helicopter was conducted in December 2009 at NASA Langley's Landing and Impact Research facility (LandIR). The MD-500 helicopter was fitted with a composite honeycomb Deployable Energy Absorber (DEA) and tested under vertical and horizontal impact velocities of 26-ft/sec and 40-ft/sec, respectively. The objectives of the test were to evaluate the performance of the DEA concept under realistic crash conditions and to generate test data for validation of a system integrated finite element model. In preparation for the full-scale crash test, a series of sub-scale and MD-500 mass simulator tests was conducted to evaluate the impact performances of various components, including a new crush tube and the DEA blocks. Parameters defined within the system integrated finite element model were determined from these tests. The objective of this paper is to summarize the finite element models developed and analyses performed, beginning with pre-test predictions and continuing through post-test validation.

  7. LS-DYNA Analysis of a Full-Scale Helicopter Crash Test

    NASA Technical Reports Server (NTRS)

    Annett, Martin S.

    2010-01-01

    A full-scale crash test of an MD-500 helicopter was conducted in December 2009 at NASA Langley's Landing and Impact Research facility (LandIR). The MD-500 helicopter was fitted with a composite honeycomb Deployable Energy Absorber (DEA) and tested under vertical and horizontal impact velocities of 26 ft/sec and 40 ft/sec, respectively. The objectives of the test were to evaluate the performance of the DEA concept under realistic crash conditions and to generate test data for validation of a system integrated LS-DYNA finite element model. In preparation for the full-scale crash test, a series of sub-scale and MD-500 mass simulator tests was conducted to evaluate the impact performances of various components, including a new crush tube and the DEA blocks. Parameters defined within the system integrated finite element model were determined from these tests. The objective of this paper is to summarize the finite element models developed and analyses performed, beginning with pre-test and continuing through post test validation.

  8. Space Shuttle Main Engine Low Pressure Oxidizer Turbo-Pump Inducer Dynamic Environment Characterization through Water Model and Hot-Fire Testing

    NASA Technical Reports Server (NTRS)

    Arellano, Patrick; Patton, Marc; Schwartz, Alan; Stanton, David

    2006-01-01

    The Low Pressure Oxidizer Turbopump (LPOTP) inducer on the Block II configuration Space Shuttle Main Engine (SSME) experienced blade leading edge ripples during hot firing. This undesirable condition led to a minor redesign of the inducer blades. This resulted in the need to evaluate the performance and the dynamic environment of the redesign, relative to the current configuration, as part of the design acceptance process. Sub-scale water model tests of the two inducer configurations were performed, with emphasis on the dynamic environment due to cavitation induced vibrations. Water model tests were performed over a wide range of inlet flow coefficient and pressure conditions, representative of the scaled operating envelope of the Block II SSME, both in flight and in ground hot-fire tests, including all power levels. The water test hardware, facility set-up, type and placement of instrumentation, the scope of the test program, specific test objectives, data evaluation process and water test results that characterize and compare the two SSME LPOTP inducers are discussed. In addition, dynamic characteristics of the two water models were compared to hot fire data from specially instrumented ground tests. In general, good agreement between the water model and hot fire data was found, which confirms the value of water model testing for dynamic characterization of rocket engine turbomachinery.

  9. Engine Performance Test of the 1975 Chrysler - Nissan Model CN633 Diesel Engine

    DOT National Transportation Integrated Search

    1975-09-01

    An engine test of the Chrysler-Nissan Model CN633 diesel engine was performed to determine its steady-state fuel consumption and emissions (HC, CO, NOx) maps. The data acquired are summarized in this report.

  10. Thermal Testing and Model Correlation of the Magnetospheric Multiscale (MMS) Observatories

    NASA Technical Reports Server (NTRS)

    Kim, Jong S.; Teti, Nicholas M.

    2015-01-01

    International Conference on Envronmental Systems (ICES), Seattle WA NCTS 20964-15. The Magnetospheric Multiscale (MMS) mission is a Solar Terrestrial Probes mission comprising four identically instrumented spacecraft that will use Earths magnetosphere as a laboratory tostudy the microphysics of three fundamental plasma processes: magnetic reconnection, energetic particle acceleration, and turbulence. This paper presents the complete thermal balance (TB) test performed on the first of four observatories to go through thermal vacuum (TV) and the minibalance testing that was performed on the subsequent observatories to provide a comparison of all four. The TV and TB tests were conducted in a thermal vacuum chamber at the Naval Research Laboratory (NRL) in Washington, D.C. with the vacuum level higher than 1.3 x 10-4 Pa (10-6 torr)and the surrounding temperature achieving -180 C. Three TB test cases were performed that included hot operational science, cold operational science and a cold survival case. In addition to the three balance cases a two hour eclipse and a four hour eclipse simulation was performed during the TV test to provide additional transient data points that represent the orbit in eclipse (or Earth's shadow) The goal was to perform testing such that the flight orbital environments could be simulated as closely as possible. A thermal model correlation between the thermal analysis and the test results was completed. Over 400 1-Wire temperature sensors, 200 thermocouples and 125 flight thermistor temperature sensors recorded data during TV and TB testing. These temperatureversus time profiles and their agreements with the analytical results obtained using Thermal Desktop and SINDAFLUINT are discussed. The model correlation for the thermal mathematical model (TMM) is conducted based on the numerical analysis results and the test data. The philosophy of model correlation was to correlate the model to within 3 C of the test data using the standard deviation and mean deviation error calculation. Individual temperature error goal is to be within 5 C and the heater power goal is to be within 5 of test data. The results of the model correlation are discussed and the effect of some material and interface parameters on the temperature profiles are presented.

  11. Thermal Testing and Model Correlation of the Magnetospheric Multiscale (MMS) Observatories

    NASA Technical Reports Server (NTRS)

    Kim, Jong S.; Teti, Nicholas M.

    2015-01-01

    The Magnetospheric Multiscale (MMS) mission is a Solar Terrestrial Probes mission comprising four identically instrumented spacecraft that will use Earth's magnetosphere as a laboratory to study the microphysics of three fundamental plasma processes: magnetic reconnection, energetic particle acceleration, and turbulence. This paper presents the complete thermal balance (TB) test performed on the first of four observatories to go through thermal vacuum (TV) and the minibalance testing that was performed on the subsequent observatories to provide a comparison of all four. The TV and TB tests were conducted in a thermal vacuum chamber at the Naval Research Laboratory (NRL) in Washington, D.C. with the vacuum level higher than 1.3 x 10 (sup -4) pascals (10 (sup -6) torr) and the surrounding temperature achieving -180 degrees Centigrade. Three TB test cases were performed that included hot operational science, cold operational science and a cold survival case. In addition to the three balance cases a two hour eclipse and a four hour eclipse simulation was performed during the TV test to provide additional transient data points that represent the orbit in eclipse (or Earth's shadow) The goal was to perform testing such that the flight orbital environments could be simulated as closely as possible. A thermal model correlation between the thermal analysis and the test results was completed. Over 400 1-Wire temperature sensors, 200 thermocouples and 125 flight thermistor temperature sensors recorded data during TV and TB testing. These temperature versus time profiles and their agreements with the analytical results obtained using Thermal Desktop and SINDA/FLUINT are discussed. The model correlation for the thermal mathematical model (TMM) is conducted based on the numerical analysis results and the test data. The philosophy of model correlation was to correlate the model to within 3 degrees Centigrade of the test data using the standard deviation and mean deviation error calculation. Individual temperature error goal is to be within 5 degrees Centigrade and the heater power goal is to be within 5 percent of test data. The results of the model correlation are discussed and the effect of some material and interface parameters on the temperature profiles are presented.

  12. Development and verification of a model for estimating the screening utility in the detection of PCBs in transformer oil.

    PubMed

    Terakado, Shingo; Glass, Thomas R; Sasaki, Kazuhiro; Ohmura, Naoya

    2014-01-01

    A simple new model for estimating the screening performance (false positive and false negative rates) of a given test for a specific sample population is presented. The model is shown to give good results on a test population, and is used to estimate the performance on a sampled population. Using the model developed in conjunction with regulatory requirements and the relative costs of the confirmatory and screening tests allows evaluation of the screening test's utility in terms of cost savings. Testers can use the methods developed to estimate the utility of a screening program using available screening tests with their own sample populations.

  13. 40 CFR 600.208-12 - Calculation of FTP-based and HFET-based fuel economy, CO2 emissions, and carbon-related exhaust...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., and carbon-related exhaust emissions from the tests performed using gasoline or diesel test fuel. (ii... from the tests performed using alcohol or natural gas test fuel. (b) For each model type, as determined... from the tests performed using gasoline or diesel test fuel. (ii) Calculate the city, highway, and...

  14. 40 CFR 600.208-12 - Calculation of FTP-based and HFET-based fuel economy, CO2 emissions, and carbon-related exhaust...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., and carbon-related exhaust emissions from the tests performed using gasoline or diesel test fuel. (ii... from the tests performed using alcohol or natural gas test fuel. (b) For each model type, as determined... from the tests performed using gasoline or diesel test fuel. (ii) Calculate the city, highway, and...

  15. 40 CFR 600.208-12 - Calculation of FTP-based and HFET-based fuel economy, CO2 emissions, and carbon-related exhaust...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., and carbon-related exhaust emissions from the tests performed using gasoline or diesel test fuel. (ii... from the tests performed using alcohol or natural gas test fuel. (b) For each model type, as determined... from the tests performed using gasoline or diesel test fuel. (ii) Calculate the city, highway, and...

  16. Final Report - IHLW PCT, Spinel T1%, Electrical Conductivity, and Viscosity Model Development, VSL-07R1240-4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kruger, Albert A.; Piepel, Gregory F.; Landmesser, S. M.

    2013-11-13

    This report is the last in a series of currently scheduled reports that presents the results from the High Level Waste (HLW) glass formulation development and testing work performed at the Vitreous State Laboratory (VSL) of the Catholic University of America (CUA) and the development of IHLW property-composition models performed jointly by Pacific Northwest National Laboratory (PNNL) and VSL for the River Protection Project-Waste Treatment and Immobilization Plant (RPP-WTP). Specifically, this report presents results of glass testing at VSL and model development at PNNL for Product Consistency Test (PCT), one-percent crystal fraction temperature (T1%), electrical conductivity (EC), and viscosity ofmore » HLW glasses. The models presented in this report may be augmented and additional validation work performed during any future immobilized HLW (IHLW) model development work. Completion of the test objectives is addressed.« less

  17. What Are Error Rates for Classifying Teacher and School Performance Using Value-Added Models?

    ERIC Educational Resources Information Center

    Schochet, Peter Z.; Chiang, Hanley S.

    2013-01-01

    This article addresses likely error rates for measuring teacher and school performance in the upper elementary grades using value-added models applied to student test score gain data. Using a realistic performance measurement system scheme based on hypothesis testing, the authors develop error rate formulas based on ordinary least squares and…

  18. Using Modeling and Simulation to Complement Testing for Increased Understanding of Weapon Subassembly Response.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wong, Michael K.; Davidson, Megan

    As part of Sandia’s nuclear deterrence mission, the B61-12 Life Extension Program (LEP) aims to modernize the aging weapon system. Modernization requires requalification and Sandia is using high performance computing to perform advanced computational simulations to better understand, evaluate, and verify weapon system performance in conjunction with limited physical testing. The Nose Bomb Subassembly (NBSA) of the B61-12 is responsible for producing a fuzing signal upon ground impact. The fuzing signal is dependent upon electromechanical impact sensors producing valid electrical fuzing signals at impact. Computer generated models were used to assess the timing between the impact sensor’s response to themore » deceleration of impact and damage to major components and system subassemblies. The modeling and simulation team worked alongside the physical test team to design a large-scale reverse ballistic test to not only assess system performance, but to also validate their computational models. The reverse ballistic test conducted at Sandia’s sled test facility sent a rocket sled with a representative target into a stationary B61-12 (NBSA) to characterize the nose crush and functional response of NBSA components. Data obtained from data recorders and high-speed photometrics were integrated with previously generated computer models in order to refine and validate the model’s ability to reliably simulate real-world effects. Large-scale tests are impractical to conduct for every single impact scenario. By creating reliable computer models, we can perform simulations that identify trends and produce estimates of outcomes over the entire range of required impact conditions. Sandia’s HPCs enable geometric resolution that was unachievable before, allowing for more fidelity and detail, and creating simulations that can provide insight to support evaluation of requirements and performance margins. As computing resources continue to improve, researchers at Sandia are hoping to improve these simulations so they provide increasingly credible analysis of the system response and performance over the full range of conditions.« less

  19. Computerized Adaptive Performance Evaluation.

    DTIC Science & Technology

    1980-02-01

    based on classical psychological test theory, with the result that the obtained measurements ani statements of achievement or performance have... psychological aspects of the achievement testing environment. Results , C Applications of Item Characteristic Curve Models and Adaptive Testing Strategies ICC...of immediate knowledge of results and adaptive testing on ability test performance (Research Report 76-4). Minneapolis: Department of Psychology

  20. Bivariate random-effects meta-analysis models for diagnostic test accuracy studies using arcsine-based transformations.

    PubMed

    Negeri, Zelalem F; Shaikh, Mateen; Beyene, Joseph

    2018-05-11

    Diagnostic or screening tests are widely used in medical fields to classify patients according to their disease status. Several statistical models for meta-analysis of diagnostic test accuracy studies have been developed to synthesize test sensitivity and specificity of a diagnostic test of interest. Because of the correlation between test sensitivity and specificity, modeling the two measures using a bivariate model is recommended. In this paper, we extend the current standard bivariate linear mixed model (LMM) by proposing two variance-stabilizing transformations: the arcsine square root and the Freeman-Tukey double arcsine transformation. We compared the performance of the proposed methods with the standard method through simulations using several performance measures. The simulation results showed that our proposed methods performed better than the standard LMM in terms of bias, root mean square error, and coverage probability in most of the scenarios, even when data were generated assuming the standard LMM. We also illustrated the methods using two real data sets. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Middle-School Science Students' Scientific Modelling Performances Across Content Areas and Within a Learning Progression

    NASA Astrophysics Data System (ADS)

    Bamberger, Yael M.; Davis, Elizabeth A.

    2013-01-01

    This paper focuses on students' ability to transfer modelling performances across content areas, taking into consideration their improvement of content knowledge as a result of a model-based instruction. Sixty-five sixth grade students of one science teacher in an urban public school in the Midwestern USA engaged in scientific modelling practices that were incorporated into a curriculum focused on the nature of matter. Concept-process models were embedded in the curriculum, as well as emphasis on meta-modelling knowledge and modelling practices. Pre-post test items that required drawing scientific models of smell, evaporation, and friction were analysed. The level of content understanding was coded and scored, as were the following elements of modelling performance: explanation, comparativeness, abstraction, and labelling. Paired t-tests were conducted to analyse differences in students' pre-post tests scores on content knowledge and on each element of the modelling performances. These are described in terms of the amount of transfer. Students significantly improved in their content knowledge for the smell and the evaporation models, but not for the friction model, which was expected as that topic was not taught during the instruction. However, students significantly improved in some of their modelling performances for all the three models. This improvement serves as evidence that the model-based instruction can help students acquire modelling practices that they can apply in a new content area.

  2. Allele-sharing models: LOD scores and accurate linkage tests.

    PubMed

    Kong, A; Cox, N J

    1997-11-01

    Starting with a test statistic for linkage analysis based on allele sharing, we propose an associated one-parameter model. Under general missing-data patterns, this model allows exact calculation of likelihood ratios and LOD scores and has been implemented by a simple modification of existing software. Most important, accurate linkage tests can be performed. Using an example, we show that some previously suggested approaches to handling less than perfectly informative data can be unacceptably conservative. Situations in which this model may not perform well are discussed, and an alternative model that requires additional computations is suggested.

  3. Allele-sharing models: LOD scores and accurate linkage tests.

    PubMed Central

    Kong, A; Cox, N J

    1997-01-01

    Starting with a test statistic for linkage analysis based on allele sharing, we propose an associated one-parameter model. Under general missing-data patterns, this model allows exact calculation of likelihood ratios and LOD scores and has been implemented by a simple modification of existing software. Most important, accurate linkage tests can be performed. Using an example, we show that some previously suggested approaches to handling less than perfectly informative data can be unacceptably conservative. Situations in which this model may not perform well are discussed, and an alternative model that requires additional computations is suggested. PMID:9345087

  4. Robust tracking control of a magnetically suspended rigid body

    NASA Technical Reports Server (NTRS)

    Lim, Kyong B.; Cox, David E.

    1994-01-01

    This study is an application of H-infinity and micro-synthesis for designing robust tracking controllers for the Large Angle Magnetic Suspension Test Facility. The modeling, design, analysis, simulation, and testing of a control law that guarantees tracking performance under external disturbances and model uncertainties is investigated. The type of uncertainties considered and the tracking performance metric used is discussed. This study demonstrates the tradeoff between tracking performance at low frequencies and robustness at high frequencies. Two sets of controllers were designed and tested. The first set emphasized performance over robustness, while the second set traded off performance for robustness. Comparisons of simulation and test results are also included. Current simulation and experimental results indicate that reasonably good robust tracking performance can be attained for this system using multivariable robust control approach.

  5. Dynamic test/analysis correlation using reduced analytical models

    NASA Technical Reports Server (NTRS)

    Mcgowan, Paul E.; Angelucci, A. Filippo; Javeed, Mehzad

    1992-01-01

    Test/analysis correlation is an important aspect of the verification of analysis models which are used to predict on-orbit response characteristics of large space structures. This paper presents results of a study using reduced analysis models for performing dynamic test/analysis correlation. The reduced test-analysis model (TAM) has the same number and orientation of DOF as the test measurements. Two reduction methods, static (Guyan) reduction and the Improved Reduced System (IRS) reduction, are applied to the test/analysis correlation of a laboratory truss structure. Simulated test results and modal test data are used to examine the performance of each method. It is shown that selection of DOF to be retained in the TAM is critical when large structural masses are involved. In addition, the use of modal test results may provide difficulties in TAM accuracy even if a large number of DOF are retained in the TAM.

  6. Alternate methodologies to experimentally investigate shock initiation properties of explosives

    NASA Astrophysics Data System (ADS)

    Svingala, Forrest R.; Lee, Richard J.; Sutherland, Gerrit T.; Benjamin, Richard; Boyle, Vincent; Sickels, William; Thompson, Ronnie; Samuels, Phillip J.; Wrobel, Erik; Cornell, Rodger

    2017-01-01

    Reactive flow models are desired for new explosive formulations early in the development stage. Traditionally, these models are parameterized by carefully-controlled 1-D shock experiments, including gas-gun testing with embedded gauges and wedge testing with explosive plane wave lenses (PWL). These experiments are easy to interpret due to their 1-D nature, but are expensive to perform and cannot be performed at all explosive test facilities. This work investigates alternative methods to probe shock-initiation behavior of new explosives using widely-available pentolite gap test donors and simple time-of-arrival type diagnostics. These experiments can be performed at a low cost at most explosives testing facilities. This allows experimental data to parameterize reactive flow models to be collected much earlier in the development of an explosive formulation. However, the fundamentally 2-D nature of these tests may increase the modeling burden in parameterizing these models and reduce general applicability. Several variations of the so-called modified gap test were investigated and evaluated for suitability as an alternative to established 1-D gas gun and PWL techniques. At least partial agreement with 1-D test methods was observed for the explosives tested, and future work is planned to scope the applicability and limitations of these experimental techniques.

  7. Wind Tunnel and Hover Performance Test Results for Multicopter UAS Vehicles

    NASA Technical Reports Server (NTRS)

    Russell, Carl R.; Jung, Jaewoo; Willink, Gina; Glasner, Brett

    2016-01-01

    There is currently a lack of published data for the performance of multicopter unmanned aircraft system (UAS) vehicles, such as quadcopters and octocopters, often referred to collectively as drones. With the rapidly increasing popularity of multicopter UAS, there is interest in better characterizing the performance of this type of aircraft. By studying the performance of currently available vehicles, it will be possible to develop models for vehicles at this scale that can accurately predict performance and model trajectories. This paper describes a wind tunnel test that was recently performed in the U.S. Army's 7- by 10-ft Wind Tunnel at NASA Ames Research Center. During this wind tunnel entry, five multicopter UAS vehicles were tested to determine forces and moments as well as electrical power as a function of wind speed, rotor speed, and vehicle attitude. The test is described here in detail, and a selection of the key results from the test is presented.

  8. Biases and power for groups comparison on subjective health measurements.

    PubMed

    Hamel, Jean-François; Hardouin, Jean-Benoit; Le Neel, Tanguy; Kubis, Gildas; Roquelaure, Yves; Sébille, Véronique

    2012-01-01

    Subjective health measurements are increasingly used in clinical research, particularly for patient groups comparisons. Two main types of analytical strategies can be used for such data: so-called classical test theory (CTT), relying on observed scores and models coming from Item Response Theory (IRT) relying on a response model relating the items responses to a latent parameter, often called latent trait. Whether IRT or CTT would be the most appropriate method to compare two independent groups of patients on a patient reported outcomes measurement remains unknown and was investigated using simulations. For CTT-based analyses, groups comparison was performed using t-test on the scores. For IRT-based analyses, several methods were compared, according to whether the Rasch model was considered with random effects or with fixed effects, and the group effect was included as a covariate or not. Individual latent traits values were estimated using either a deterministic method or by stochastic approaches. Latent traits were then compared with a t-test. Finally, a two-steps method was performed to compare the latent trait distributions, and a Wald test was performed to test the group effect in the Rasch model including group covariates. The only unbiased IRT-based method was the group covariate Wald's test, performed on the random effects Rasch model. This model displayed the highest observed power, which was similar to the power using the score t-test. These results need to be extended to the case frequently encountered in practice where data are missing and possibly informative.

  9. Example-based learning: effects of model expertise in relation to student expertise.

    PubMed

    Boekhout, Paul; van Gog, Tamara; van de Wiel, Margje W J; Gerards-Last, Dorien; Geraets, Jacques

    2010-12-01

    Worked examples are very effective for novice learners. They typically present a written-out ideal (didactical) solution for learners to study. This study used worked examples of patient history taking in physiotherapy that presented a non-didactical solution (i.e., based on actual performance). The effects of model expertise (i.e., worked example based on advanced, third-year student model or expert physiotherapist model) in relation to students' expertise (i.e., first- or second-year) were investigated. One hundred and thirty-four physiotherapy students (61 first-year and 73 second-year). Design was 2 × 2 factorial with factors 'Student Expertise' (first-year vs. second-year) and 'Model Expertise' (expert vs. advanced student). Within expertise levels, students were randomly assigned to the Expert Example or the Advanced Student Example condition. All students studied two examples (content depending on their assigned condition) and then completed a retention and test task. They rated their invested mental effort after each example and test task. Second-year students invested less mental effort in studying the examples, and in performing the retention and transfer tasks than first-year students. They also performed better on the retention test, but not on the transfer test. In contrast to our hypothesis, there was no interaction between student expertise and model expertise: all students who had studied the Expert examples performed better on the transfer test than students who had studied Advanced Student Examples. This study suggests that when worked examples are based on actual performance, rather than an ideal procedure, expert models are to be preferred over advanced student models.

  10. Evaluation of a low-cost, 3D-printed model for bronchoscopy training.

    PubMed

    Parotto, Matteo; Jiansen, Joshua Qua; AboTaiban, Ahmed; Ioukhova, Svetlana; Agzamov, Alisher; Cooper, Richard; O'Leary, Gerald; Meineri, Massimiliano

    2017-01-01

    Flexible bronchoscopy is a fundamental procedure in anaesthesia and critical care medicine. Although learning this procedure is a complex task, the use of simulation-based training provides significant advantages, such as enhanced patient safety. Access to bronchoscopy simulators may be limited in low-resource settings. We have developed a low-cost 3D-printed bronchoscopy training model. A parametric airway model was obtained from an online medical model repository and fabricated using a low-cost 3D printer. The participating physicians had no prior bronchoscopy experience. Participants received a 30-minute lecture on flexible bronchoscopy and were administered a 15-item pre-test questionnaire on bronchoscopy. Afterwards, participants were instructed to perform a series of predetermined bronchoscopy tasks on the 3D printed simulator on 4 consecutive occasions. The time needed to perform the tasks and the quality of task performance (identification of bronchial anatomy, technique, dexterity, lack of trauma) were recorded. Upon completion of the simulator tests, participants were administered the 15-item questionnaire (post-test) once again. Participant satisfaction data on the perceived usefulness and accuracy of the 3D model were collected. A statistical analysis was performed using the t-test. Data are reported as mean values (± standard deviation). The time needed to complete all tasks was 152.9 ± 71.5 sec on the 1st attempt vs. 98.7 ± 40.3 sec on the 4th attempt (P = 0.03). Likewise, the quality of performance score improved from 8.3 ± 6.7 to 18.2 ± 2.5 (P < 0.0001). The average number of correct answers in the questionnaire was 6.8 ± 1.9 pre-test and 13.3 ± 3.1 post-test (P < 0.0001). Participants reported a high level of satisfaction with the perceived usefulness and accuracy of the model. We developed a 3D-printed model for bronchoscopy training. This model improved trainee performance and may represent a valid, low-cost bronchoscopy training tool.

  11. An International Comparison Using a Diagnostic Testing Model: Turkish Students' Profile of Mathematical Skills on TIMSS-R

    ERIC Educational Resources Information Center

    Dogan, Enis; Tatsuoka, Kikumi

    2008-01-01

    This study illustrates how a diagnostic testing model can be used to make detailed comparisons between student populations participating in international assessments. The performance of Turkish students on the TIMSS-R mathematics test was reanalyzed with a diagnostic testing model called the Rule Space Model. First, mathematical and cognitive…

  12. Correleation of the SAGE III on ISS Thermal Models in Thermal Desktop

    NASA Technical Reports Server (NTRS)

    Amundsen, Ruth M.; Davis, Warren T.; Liles, Kaitlin, A. K.; McLeod, Shawn C.

    2017-01-01

    The Stratospheric Aerosol and Gas Experiment III (SAGE III) instrument is the fifth in a series of instruments developed for monitoring aerosols and gaseous constituents in the stratosphere and troposphere. SAGE III was launched on February 19, 2017 and mounted to the International Space Station (ISS) to begin its three-year mission. A detailed thermal model of the SAGE III payload, which consists of multiple subsystems, has been developed in Thermal Desktop (TD). Correlation of the thermal model is important since the payload will be expected to survive a three-year mission on ISS under varying thermal environments. Three major thermal vacuum (TVAC) tests were completed during the development of the SAGE III Instrument Payload (IP); two subsystem-level tests and a payload-level test. Additionally, a characterization TVAC test was performed in order to verify performance of a system of heater plates that was designed to allow the IP to achieve the required temperatures during payload-level testing; model correlation was performed for this test configuration as well as those including the SAGE III flight hardware. This document presents the methods that were used to correlate the SAGE III models to TVAC at the subsystem and IP level, including the approach for modeling the parts of the payload in the thermal chamber, generating pre-test predictions, and making adjustments to the model to align predictions with temperatures observed during testing. Model correlation quality will be presented and discussed, and lessons learned during the correlation process will be shared.

  13. The Woodcock-Johnson Tests of Cognitive Abilities III's Cognitive Performance Model: Empirical Support for Intermediate Factors within CHC Theory

    ERIC Educational Resources Information Center

    Taub, Gordon E.; McGrew, Kevin S.

    2014-01-01

    The Woodcock-Johnson Tests of Cognitive Ability Third Edition is developed using the Cattell-Horn-Carroll (CHC) measurement-theory test design as the instrument's theoretical blueprint. The instrument provides users with cognitive scores based on the Cognitive Performance Model (CPM); however, the CPM is not a part of CHC theory. Within the…

  14. An Overview of Models of Speaking Performance and Its Implications for the Development of Procedural Framework for Diagnostic Speaking Tests

    ERIC Educational Resources Information Center

    Zhao, Zhongbao

    2013-01-01

    This paper aims at developing a procedural framework for the development and validation of diagnostic speaking tests. The researcher reviews the current available models of speaking performance, analyzes the distinctive features and then points out the implications for the development of a procedural framework for diagnostic speaking tests. On…

  15. The influence of tyre characteristics on measures of rolling performance during cross-country mountain biking.

    PubMed

    Macdermid, Paul William; Fink, Philip W; Stannard, Stephen R

    2015-01-01

    This investigation sets out to assess the effect of five different models of mountain bike tyre on rolling performance over hard-pack mud. Independent characteristics included total weight, volume, tread surface area and tread depth. One male cyclist performed multiple (30) trials of a deceleration field test to assess reliability. Further tests performed on a separate occasion included multiple (15) trials of the deceleration test and six fixed power output hill climb tests for each tyre. The deceleration test proved to be reliable as a means of assessing rolling performance via differences in initial and final speed (coefficient of variation (CV) = 4.52%). Overall differences between tyre performance for both deceleration test (P = 0.014) and hill climb (P = 0.032) were found, enabling significant (P < 0.0001 and P = 0.049) models to be generated, allowing tyre performance prediction based on tyre characteristics. The ideal tyre for rolling and climbing performance on hard-pack surfaces would be to decrease tyre weight by way of reductions in tread surface area and tread depth while keeping volume high.

  16. Polishing, coating and integration of SiC mirrors for space telescopes

    NASA Astrophysics Data System (ADS)

    Rodolfo, Jacques

    2017-11-01

    In the last years, the technology of SiC mirrors took an increasingly significant part in the field of space telescopes. Sagem is involved in the JWST program to manufacture and test the optical components of the NIRSpec instrument. The instrument is made of 3 TMAs and 4 plane mirrors made of SiC. Sagem is in charge of the CVD cladding, the polishing, the coating of the mirrors and the integration and testing of the TMAs. The qualification of the process has been performed through the manufacturing and testing of the qualification model of the FOR TMA. This TMA has shown very good performances both at ambient and during the cryo test. The polishing process has been improved for the manufacturing of the flight model. This improvement has been driven by the BRDF performance of the mirror. This parameter has been deeply analysed and a model has been built to predict the performance of the mirrors. The existing Dittman model have been analysed and found to be optimistic.

  17. Evaluation of Human and Anthropomorphic Test Device Finite Element Models under Spaceflight Loading Conditions

    NASA Technical Reports Server (NTRS)

    Putnam, Jacob P.; Untaroiu, Costin; Somers. Jeffrey

    2014-01-01

    In an effort to develop occupant protection standards for future multipurpose crew vehicles, the National Aeronautics and Space Administration (NASA) has looked to evaluate the test device for human occupant restraint with the modification kit (THOR-K) anthropomorphic test device (ATD) in relevant impact test scenarios. With the allowance and support of the National Highway Traffic Safety Administration, NASA has performed a series of sled impact tests on the latest developed THOR-K ATD. These tests were performed to match test conditions from human volunteer data previously collected by the U.S. Air Force. The objective of this study was to evaluate the THOR-K finite element (FE) model and the Total HUman Model for Safety (THUMS) FE model with respect to the tests performed. These models were evaluated in spinal and frontal impacts against kinematic and kinetic data recorded in ATD and human testing. Methods: The FE simulations were developed based on recorded pretest ATD/human position and sled acceleration pulses measured during testing. Predicted responses by both human and ATD models were compared to test data recorded under the same impact conditions. The kinematic responses of the models were quantitatively evaluated using the ISO-metric curve rating system. In addition, ATD injury criteria and human stress/strain data were calculated to evaluate the risk of injury predicted by the ATD and human model, respectively. Results: Preliminary results show well-correlated response between both FE models and their physical counterparts. In addition, predicted ATD injury criteria and human model stress/strain values are shown to positively relate. Kinematic comparison between human and ATD models indicates promising biofidelic response, although a slightly stiffer response is observed within the ATD. Conclusion: As a compliment to ATD testing, numerical simulation provides efficient means to assess vehicle safety throughout the design process and further improve the design of physical ATDs. The assessment of the THOR-K and THUMS FE models in a spaceflight testing condition is an essential first step to implementing these models in the computational evaluation of spacecraft occupant safety. Promising results suggest future use of these models in the aerospace field.

  18. 40 CFR 60.3035 - May I conduct performance testing less often?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Model Rule-Continuous Compliance Requirements § 60.3035 May I conduct performance testing less often? (a) You can test less often for a given pollutant if you have test data for at least three consecutive...

  19. Hypersonic research engine project. Phase 2: Preliminary report on the performance of the HRE/AIM at Mach 6

    NASA Technical Reports Server (NTRS)

    Sun, Y. H.; Sainio, W. C.

    1975-01-01

    Test results of the Aerothermodynamic Integration Model are presented. A program was initiated to develop a hydrogen-fueled research-oriented scramjet for operation between Mach 3 and 8. The primary objectives were to investigate the internal aerothermodynamic characteristics of the engine, to provide realistic design parameters for future hypersonic engine development as well as to evaluate the ground test facility and testing techniques. The engine was tested at the NASA hypersonic tunnel facility with synthetic air at Mach 5, 6, and 7. The hydrogen fuel was heated up to 1500 R prior to injection to simulate a regeneratively cooled system. The engine and component performance at Mach 6 is reported. Inlet performance compared very well both with theory and with subscale model tests. Combustor efficiencies up to 95 percent were attained at an equivalence ratio of unity. Nozzle performance was lower than expected. The overall engine performance was computed using two different methods. The performance was also compared with test data from other sources.

  20. Third phase of pocket-sized electronic dosimeter testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fox, R.A.; Hooker, C.D.; Hogan, B.T.

    1982-05-01

    The experiences of industrial radiographers have indicated that electronic radiation-warning devices become inoperative when they are used under some types of ambient conditions. This report, as a follow-up to NUREG/CR-0554 and NUREG/CR-1452, documents the nature of tests performed on several additional commercially available models. None of the four models tested passed the tests for ruggedness and severe environmental conditions. However, all models passed most of the requirements of a Health Physics Society draft standard of performance specifications for these devices. The test procedures used in the project and the results obtained are discussed. Conclusions from the tests and recommendations concerningmore » potentially useful modifications to existing devices are presented.« less

  1. The Real World Significance of Performance Prediction

    ERIC Educational Resources Information Center

    Pardos, Zachary A.; Wang, Qing Yang; Trivedi, Shubhendu

    2012-01-01

    In recent years, the educational data mining and user modeling communities have been aggressively introducing models for predicting student performance on external measures such as standardized tests as well as within-tutor performance. While these models have brought statistically reliable improvement to performance prediction, the real world…

  2. Analysing model fit of psychometric process models: An overview, a new test and an application to the diffusion model.

    PubMed

    Ranger, Jochen; Kuhn, Jörg-Tobias; Szardenings, Carsten

    2017-05-01

    Cognitive psychometric models embed cognitive process models into a latent trait framework in order to allow for individual differences. Due to their close relationship to the response process the models allow for profound conclusions about the test takers. However, before such a model can be used its fit has to be checked carefully. In this manuscript we give an overview over existing tests of model fit and show their relation to the generalized moment test of Newey (Econometrica, 53, 1985, 1047) and Tauchen (J. Econometrics, 30, 1985, 415). We also present a new test, the Hausman test of misspecification (Hausman, Econometrica, 46, 1978, 1251). The Hausman test consists of a comparison of two estimates of the same item parameters which should be similar if the model holds. The performance of the Hausman test is evaluated in a simulation study. In this study we illustrate its application to two popular models in cognitive psychometrics, the Q-diffusion model and the D-diffusion model (van der Maas, Molenaar, Maris, Kievit, & Boorsboom, Psychol Rev., 118, 2011, 339; Molenaar, Tuerlinckx, & van der Maas, J. Stat. Softw., 66, 2015, 1). We also compare the performance of the test to four alternative tests of model fit, namely the M 2 test (Molenaar et al., J. Stat. Softw., 66, 2015, 1), the moment test (Ranger et al., Br. J. Math. Stat. Psychol., 2016) and the test for binned time (Ranger & Kuhn, Psychol. Test. Asess. , 56, 2014b, 370). The simulation study indicates that the Hausman test is superior to the latter tests. The test closely adheres to the nominal Type I error rate and has higher power in most simulation conditions. © 2017 The British Psychological Society.

  3. Outer planet probe engineering model structural tests

    NASA Technical Reports Server (NTRS)

    Smittkamp, J. A.; Gustin, W. H.; Griffin, M. W.

    1977-01-01

    A series of proof of concept structural tests was performed on an engineering model of the Outer Planets Atmospheric Entry Probe. The tests consisted of pyrotechnic shock, dynamic and static loadings. The tests partially verified the structural concept.

  4. Model Identification and FE Simulations: Effect of Different Yield Loci and Hardening Laws in Sheet Forming

    NASA Astrophysics Data System (ADS)

    Flores, P.; Duchêne, L.; Lelotte, T.; Bouffioux, C.; El Houdaigui, F.; Van Bael, A.; He, S.; Duflou, J.; Habraken, A. M.

    2005-08-01

    The bi-axial experimental equipment developed by Flores enables to perform Baushinger shear tests and successive or simultaneous simple shear tests and plane-strain tests. Such experiments and classical tensile tests investigate the material behavior in order to identify the yield locus and the hardening models. With tests performed on two steel grades, the methods applied to identify classical yield surfaces such as Hill or Hosford ones as well as isotropic Swift type hardening or kinematic Armstrong-Frederick hardening models are explained. Comparison with the Taylor-Bishop-Hill yield locus is also provided. The effect of both yield locus and hardening model choice will be presented for two applications: Single Point Incremental Forming (SPIF) and a cup deep drawing.

  5. Rise time and response measurements on a LiSOCl2 cell

    NASA Technical Reports Server (NTRS)

    Bastien, Caroline; Lecomte, Eric J.

    1992-01-01

    Dynamic impedance tests were performed on a 180 Ah LiSOCl2 cell in the frame of a short term work contract awarded by Aerospatiale as part of the Hermes Space Plane development work. These tests consisted of rise time and response measurements. The rise time test was performed to show the ability to deliver 4 KW, in the nominal voltage range (75-115 V), within less than 100 microseconds, and after a period at rest of 13 days. The response measurements test consisted of step response and frequency response tests. The frequency response test was performed to characterize the response of the LiSOCl2 cell to a positive or negative load step of 10 A starting from various currents. The test was performed for various depths of discharge and various temperatures. The test results were used to build a mathematical, electrical model of the LiSOCl2 cell which are also presented. The test description, test results, electrical modelization description, and conclusions are presented.

  6. High capacity demonstration of honeycomb panel heat pipes

    NASA Technical Reports Server (NTRS)

    Tanzer, H. J.

    1989-01-01

    The feasibility of performance enhancing the sandwich panel heat pipe was investigated for moderate temperature range heat rejection radiators on future-high-power spacecraft. The hardware development program consisted of performance prediction modeling, fabrication, ground test, and data correlation. Using available sandwich panel materials, a series of subscale test panels were augumented with high-capacity sideflow and temperature control variable conductance features, and test evaluated for correlation with performance prediction codes. Using the correlated prediction model, a 50-kW full size radiator was defined using methanol working fluid and closely spaced sideflows. A new concept called the hybrid radiator individually optimizes heat pipe components. A 2.44-m long hybrid test vehicle demonstrated proof-of-principle performance.

  7. Cyclic Oxidation Testing and Modelling: A NASA Lewis Perspective

    NASA Technical Reports Server (NTRS)

    Smialek, J. L.; Nesbitt, J. A.; Barrett, C. A.; Lowell, C. E.

    2000-01-01

    The Materials Division of the NASA Lewis Research Center has been heavily involved in the cyclic oxidation of high temperature materials for 30 years. Cyclic furnace and burner rig apparati have been developed, refined, and replicated to provide a large scale facility capable of evaluating many materials by a standard technique. Material behavior is characterized by weight change data obtained throughout the test, which has been modelled in a step-wise process of scale growth and spallation. This model and a coupled diffusion model have successfully described cyclic behavior for a number of systems and have provided insights regarding life prediction and variations in the spalling process. Performance ranking and mechanistic studies are discussed primarily for superalloys and coating alloys. Similar cyclic oxidation studies have been performed on steels, intermetallic compounds, thermal barrier coatings, ceramics, and ceramic composites. The most common oxidation test was performed in air at temperatures ranging from 800 deg. to 1600 C, for times up to 10000 h, and for cycle durations of 0.1 to 1000 h. Less controlled, but important, test parameters are the cooling temperature and humidity level. Heating and cooling rates are not likely to affect scale spallation. Broad experience has usually allowed for considerable focus and simplification of these test parameters, while still revealing the principal aspects of material behavior and performance. Extensive testing has been performed to statistically model the compositional effects of experimental alloys and to construct a comprehensive database of complex commercial alloys.

  8. Waterhammer Transient Simulation and Model Anchoring for the Robotic Lunar Lander Propulsion System

    NASA Technical Reports Server (NTRS)

    Stein, William B.; Trinh, Huu P.; Reynolds, Michael E.; Sharp, David J.

    2011-01-01

    Waterhammer transients have the potential to adversely impact propulsion system design if not properly addressed. Waterhammer can potentially lead to system plumbing, and component damage. Multi-thruster propulsion systems also develop constructive/destructive wave interference which becomes difficult to predict without detailed models. Therefore, it is important to sufficiently characterize propulsion system waterhammer in order to develop a robust design with minimal impact to other systems. A risk reduction activity was performed at Marshall Space Flight Center to develop a tool for estimating waterhammer through the use of anchored simulation for the Robotic Lunar Lander (RLL) propulsion system design. Testing was performed to simulate waterhammer surges due to rapid valve closure and consisted of twenty-two series of waterhammer tests, resulting in more than 300 valve actuations. These tests were performed using different valve actuation schemes and three system pressures. Data from the valve characterization tests were used to anchor the models that employed MSCSoftware.EASY5 v.2010 to model transient fluid phenomena by using transient forms of mass and energy conservation. The anchoring process was performed by comparing initial model results to experimental data and then iterating the model input to match the simulation results with the experimental data. The models provide good correlation with experimental results, supporting the use of EASY5 as a tool to model fluid transients and provide a baseline for future RLL system modeling. This paper addresses tasks performed during the waterhammer risk reduction activity for the RLL propulsion system. The problem of waterhammer simulation anchoring as applied to the RLL system is discussed with results from the corresponding experimental valve tests. Important factors for waterhammer mitigation are discussed along with potential design impacts to the RLL propulsion system.

  9. Why Bother to Calibrate? Model Consistency and the Value of Prior Information

    NASA Astrophysics Data System (ADS)

    Hrachowitz, Markus; Fovet, Ophelie; Ruiz, Laurent; Euser, Tanja; Gharari, Shervan; Nijzink, Remko; Savenije, Hubert; Gascuel-Odoux, Chantal

    2015-04-01

    Hydrological models frequently suffer from limited predictive power despite adequate calibration performances. This can indicate insufficient representations of the underlying processes. Thus ways are sought to increase model consistency while satisfying the contrasting priorities of increased model complexity and limited equifinality. In this study the value of a systematic use of hydrological signatures and expert knowledge for increasing model consistency was tested. It was found that a simple conceptual model, constrained by 4 calibration objective functions, was able to adequately reproduce the hydrograph in the calibration period. The model, however, could not reproduce 20 hydrological signatures, indicating a lack of model consistency. Subsequently, testing 11 models, model complexity was increased in a stepwise way and counter-balanced by using prior information about the system to impose "prior constraints", inferred from expert knowledge and to ensure a model which behaves well with respect to the modeller's perception of the system. We showed that, in spite of unchanged calibration performance, the most complex model set-up exhibited increased performance in the independent test period and skill to reproduce all 20 signatures, indicating a better system representation. The results suggest that a model may be inadequate despite good performance with respect to multiple calibration objectives and that increasing model complexity, if efficiently counter-balanced by available prior constraints, can increase predictive performance of a model and its skill to reproduce hydrological signatures. The results strongly illustrate the need to balance automated model calibration with a more expert-knowledge driven strategy of constraining models.

  10. Why Bother and Calibrate? Model Consistency and the Value of Prior Information.

    NASA Astrophysics Data System (ADS)

    Hrachowitz, M.; Fovet, O.; Ruiz, L.; Euser, T.; Gharari, S.; Nijzink, R.; Freer, J. E.; Savenije, H.; Gascuel-Odoux, C.

    2014-12-01

    Hydrological models frequently suffer from limited predictive power despite adequate calibration performances. This can indicate insufficient representations of the underlying processes. Thus ways are sought to increase model consistency while satisfying the contrasting priorities of increased model complexity and limited equifinality. In this study the value of a systematic use of hydrological signatures and expert knowledge for increasing model consistency was tested. It was found that a simple conceptual model, constrained by 4 calibration objective functions, was able to adequately reproduce the hydrograph in the calibration period. The model, however, could not reproduce 20 hydrological signatures, indicating a lack of model consistency. Subsequently, testing 11 models, model complexity was increased in a stepwise way and counter-balanced by using prior information about the system to impose "prior constraints", inferred from expert knowledge and to ensure a model which behaves well with respect to the modeller's perception of the system. We showed that, in spite of unchanged calibration performance, the most complex model set-up exhibited increased performance in the independent test period and skill to reproduce all 20 signatures, indicating a better system representation. The results suggest that a model may be inadequate despite good performance with respect to multiple calibration objectives and that increasing model complexity, if efficiently counter-balanced by available prior constraints, can increase predictive performance of a model and its skill to reproduce hydrological signatures. The results strongly illustrate the need to balance automated model calibration with a more expert-knowledge driven strategy of constraining models.

  11. TOD to TTP calibration

    NASA Astrophysics Data System (ADS)

    Bijl, Piet; Reynolds, Joseph P.; Vos, Wouter K.; Hogervorst, Maarten A.; Fanning, Jonathan D.

    2011-05-01

    The TTP (Targeting Task Performance) metric, developed at NVESD, is the current standard US Army model to predict EO/IR Target Acquisition performance. This model however does not have a corresponding lab or field test to empirically assess the performance of a camera system. The TOD (Triangle Orientation Discrimination) method, developed at TNO in The Netherlands, provides such a measurement. In this study, we make a direct comparison between TOD performance for a range of sensors and the extensive historical US observer performance database built to develop and calibrate the TTP metric. The US perception data were collected doing an identification task by military personnel on a standard 12 target, 12 aspect tactical vehicle image set that was processed through simulated sensors for which the most fundamental sensor parameters such as blur, sampling, spatial and temporal noise were varied. In the present study, we measured TOD sensor performance using exactly the same sensors processing a set of TOD triangle test patterns. The study shows that good overall agreement is obtained when the ratio between target characteristic size and TOD test pattern size at threshold equals 6.3. Note that this number is purely based on empirical data without any intermediate modeling. The calibration of the TOD to the TTP is highly beneficial to the sensor modeling and testing community for a variety of reasons. These include: i) a connection between requirement specification and acceptance testing, and ii) a very efficient method to quickly validate or extend the TTP range prediction model to new systems and tasks.

  12. High subsonic flow tests of a parallel pipe followed by a large area ratio diffuser

    NASA Technical Reports Server (NTRS)

    Barna, P. S.

    1975-01-01

    Experiments were performed on a pilot model duct system in order to explore its aerodynamic characteristics. The model was scaled from a design projected for the high speed operation mode of the Aircraft Noise Reduction Laboratory. The test results show that the model performed satisfactorily and therefore the projected design will most likely meet the specifications.

  13. A 1/10 Scale Model Test of a Fixed Chute Mixer-Ejector Nozzle in Unsuppressed Model. Part 1; Test Overview

    NASA Technical Reports Server (NTRS)

    Wolter, John D.

    2007-01-01

    This paper discusses a test of a nozzle concept for a high-speed commercial aircraft. While a great deal of effort has been expended to und erstand the noise-suppressed, take-off performance of mixer-ejector n ozzles, little has been done to assess their performance in unsuppressed mode at other flight conditions. To address this, a 1/10th scale m odel mixer-ejector nozzle in unsuppressed mode was tested at conditio ns representing transonic acceleration, supersonic cruise, subsonic cruise, and approach. Various configurations were tested to understand the effects of acoustic liners and several geometric parameters, such as throat area, expansion ratio, and nozzle length on nozzle performance. Thrust, flow, and internal pressures were measured. A statistica l model of the peak thrust coefficient results is presented and discussed.

  14. Composite Overwrapped Pressure Vessels (COPV) Stress Rupture Test

    NASA Technical Reports Server (NTRS)

    Russell, Richard; Flynn, Howard; Forth, Scott; Greene, Nathanael; Kezian, Michael; Varanauski, Don; Yoder, Tommy; Woodworth, Warren

    2009-01-01

    One of the major concerns for the aging Space Shuttle fleet is the stress rupture life of composite overwrapped pressure vessels (COPVs). Stress rupture life of a COPV has been defined as the minimum time during which the composite maintains structural integrity considering the combined effects of stress levels and time. To assist in the evaluation of the aging COPVs in the Orbiter fleet an analytical reliability model was developed. The actual data used to construct this model was from testing of COPVs constructed of similar, but not exactly same materials and pressure cycles as used on Orbiter vessels. Since no actual Orbiter COPV stress rupture data exists the Space Shuttle Program decided to run a stress rupture test to compare to model predictions. Due to availability of spares, the testing was unfortunately limited to one 40" vessel. The stress rupture test was performed at maximum operating pressure at an elevated temperature to accelerate aging. The test was performed in two phases. The first phase, 130 F, a moderately accelerated test designed to achieve the midpoint of the model predicted point reliability. The more aggressive second phase, performed at 160 F was designed to determine if the test article will exceed the 95% confidence interval of the model. This paper will discuss the results of this test, it's implications and possible follow-on testing.

  15. Histogram equalization with Bayesian estimation for noise robust speech recognition.

    PubMed

    Suh, Youngjoo; Kim, Hoirin

    2018-02-01

    The histogram equalization approach is an efficient feature normalization technique for noise robust automatic speech recognition. However, it suffers from performance degradation when some fundamental conditions are not satisfied in the test environment. To remedy these limitations of the original histogram equalization methods, class-based histogram equalization approach has been proposed. Although this approach showed substantial performance improvement under noise environments, it still suffers from performance degradation due to the overfitting problem when test data are insufficient. To address this issue, the proposed histogram equalization technique employs the Bayesian estimation method in the test cumulative distribution function estimation. It was reported in a previous study conducted on the Aurora-4 task that the proposed approach provided substantial performance gains in speech recognition systems based on the acoustic modeling of the Gaussian mixture model-hidden Markov model. In this work, the proposed approach was examined in speech recognition systems with deep neural network-hidden Markov model (DNN-HMM), the current mainstream speech recognition approach where it also showed meaningful performance improvement over the conventional maximum likelihood estimation-based method. The fusion of the proposed features with the mel-frequency cepstral coefficients provided additional performance gains in DNN-HMM systems, which otherwise suffer from performance degradation in the clean test condition.

  16. Assessment of the human epidermal model LabCyte EPI-MODEL for In vitro skin corrosion testing according to the OECD test guideline 431.

    PubMed

    Katoh, Masakazu; Hamajima, Fumiyasu; Ogasawara, Takahiro; Hata, Ken-Ichiro

    2010-06-01

    A new OECD test guideline 431 (TG431) for in vitro skin corrosion tests using human reconstructed skin models was adopted by OECD in 2004. TG431 defines the criteria for the general function and performance of applicable skin models. In order to confirm that the new reconstructed human epidermal model, LabCyte EPI-MODEL is applicable for the skin corrosion test according to TG431, the predictability and repeatability of the model for the skin corrosion test was evaluated. The test was performed according to the test protocol described in TG431. Based on the knowledge that LabCyte EPI-MODEL is an epidermal model as well as EpiDerm, we decided to adopt the the Epiderm prediction model of skin corrosion for the LabCyte EPI-MODEL, using twenty test chemicals (10 corrosive chemicals and 10 non-corrosive chemicals) in the 1(st) stage. The prediction model results showed that the distinction of non-corrosion to corrosion corresponded perfectly. Therefore, it was judged that the prediction model of EpiDerm could be applied to the LabCyte EPI-MODEL. In the 2(nd) stage, the repeatability of this test protocol with the LabCyte EPI-MODEL was examined using twelve chemicals (6 corrosive chemicals and 6 non-corrosive chemicals) that are described in TG431, and these results recognized a high repeatability and accurate predictability. It was concluded that LabCyte EPI-MODEL is applicable for the skin corrosive test protocol according to TG431.

  17. 6DOF Testing of the SLS Inertial Navigation Unit

    NASA Technical Reports Server (NTRS)

    Geohagan, Kevin W.; Bernard, William P.; Oliver, T. Emerson; Strickland, Dennis J.; Leggett, Jared O.

    2018-01-01

    The Navigation System on the NASA Space Launch System (SLS) Block 1 vehicle performs initial alignment of the Inertial Navigation System (INS) navigation frame through gyrocompass alignment (GCA). In lieu of direct testing of GCA accuracy in support of requirement verification, the SLS Navigation Team proposed and conducted an engineering test to, among other things, validate the GCA performance and overall behavior of the SLS INS model through comparison with test data. This paper will detail dynamic hardware testing of the SLS INS, conducted by the SLS Navigation Team at Marshall Space Flight Center's 6DOF Table Facility, in support of GCA performance characterization and INS model validation. A 6-DOF motion platform was used to produce 6DOF pad twist and sway dynamics while a simulated SLS flight computer communicated with the INS. Tests conducted include an evaluation of GCA algorithm robustness to increasingly dynamic pad environments, an examination of GCA algorithm stability and accuracy over long durations, and a long-duration static test to gather enough data for Allan Variance analysis. Test setup, execution, and data analysis will be discussed, including analysis performed in support of SLS INS model validation.

  18. 40 CFR 60.2690 - How do I conduct the initial and annual performance test?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Emissions Guidelines and Compliance Times for Commercial and Industrial Solid Waste Incineration Units Model Rule-Performance Testing...

  19. 40 CFR 60.2690 - How do I conduct the initial and annual performance test?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Emissions Guidelines and Compliance Times for Commercial and Industrial Solid Waste Incineration Units Model Rule-Performance Testing...

  20. Influence of Back-Up Bearings and Support Structure Dynamics on the Behavior of Rotors With Active Supports

    NASA Technical Reports Server (NTRS)

    Flowers, George T.

    1996-01-01

    This report presents a synopsis of the research work. Specific accomplishments are itemized below: (1) Experimental facilities have been developed. This includes a magnetic bearing test rig and an auxiliary bearing test rig. In addition, components have been designed, constructed, and tested for use with a rotordynamics test rig located at NASA Lewis Research Center. (2) A study of the rotordynamics of an auxiliary bearing supported T-501 engine model was performed. (3) An experimental/simulation study of auxiliary bearing rotordynamics has been performed. (4) A rotordynamical model for a magnetic bearing supported rotor system, including auxiliary bearing effects has been developed and simulation studies performed.(5) A finite element model for a foil bearing has been developed and studies of a rotor supported by foil bearings have been performed. (6) Two students affiliated with this project have graduated with M.S. degrees.

  1. Modeling of Nonacoustic Combustion Instability in Simulations of Hybrid Motor Tests

    NASA Technical Reports Server (NTRS)

    Rocker, M.

    2000-01-01

    A transient model of a hybrid motor was formulated to study the cause and elimination of nonacoustic combustion instability. The transient model was used to simulate four key tests out of a series of seventeen hybrid motor tests conducted by Thiokol, Rocketdyne, and Martin Marietta at NASA Marshall Space Flight Center (MSFC). These tests were performed under the Hybrid Propulsion Technology for Launch Vehicle Boosters (HPTLVB) program. The first test resulted in stable combustion. The second test resulted in large-amplitude, 6.5-Hz chamber pressure oscillations that gradually damped away by the end of the test. The third test resulted in large-amplitude, 7.5-Hz chamber pressure oscillations that were sustained throughout the test. The seventh test resulted in elimination of combustion instability with the installation of an orifice immediately upstream of the injector. Formulation and implementation of the model are the scope of this presentation. The current model is an independent continuation of modeling presented previously by joint Thiokol-Rocketdyne collaborators Boardman, Hawkins, Wassom. and Claflin. The previous model simulated an unstable independent research and development (IR&D) hybrid motor test performed by Thiokol. There was very good agreement between the model and test data. Like the previous model, the current model was developed using Matrix-x simulation software. However, tests performed at MSFC under the HPTLVB program were actually simulated. ln the current model, the hybrid motor, consisting of the liquid oxygen (lox) injector, the multiport solid fuel grain, and nozzle, was simulated. The lox feedsystem, consisting of the tank, venturi. valve, and feed lines, was also simulated in the model. All components of the hybrid motor and lox feedsystem are treated by a lumped-parameter approach. Agreement between the results of the transient model and actual test data was very good. This agreement between simulated and actual test data indicated that the combustion instability in the hybrid motor was due to two causes: 1. a lox feed system of insufficient stiffness, and 2. a lox injector with an impedance (it pressure drop that was too low to provide damping against the feed system oscillations. Also, it was discovered that testing with a new grain of solid fuel sustained the combustion instability. However, testing with a used grain of solid fuel caused the combustion instability to gradually decay.

  2. Motivational and Cognitive Test-Taking Strategies and Their Influence on Test Performance in Mathematics

    ERIC Educational Resources Information Center

    Peng, Yun; Hong, Eunsook; Mason, Elsa

    2014-01-01

    A structural equation model of relationships among testing-related motivation variables (test value, effort, self-efficacy, and test anxiety), test-taking strategies (test tactics and metacognitive strategies), gender, and math test performance were examined with a sample of 10th graders (N = 438; 182 males and 256 females). In general, motivation…

  3. Comparing the Performance of Approaches for Testing the Homogeneity of Variance Assumption in One-Factor ANOVA Models

    ERIC Educational Resources Information Center

    Wang, Yan; Rodríguez de Gil, Patricia; Chen, Yi-Hsin; Kromrey, Jeffrey D.; Kim, Eun Sook; Pham, Thanh; Nguyen, Diep; Romano, Jeanine L.

    2017-01-01

    Various tests to check the homogeneity of variance assumption have been proposed in the literature, yet there is no consensus as to their robustness when the assumption of normality does not hold. This simulation study evaluated the performance of 14 tests for the homogeneity of variance assumption in one-way ANOVA models in terms of Type I error…

  4. Installation effects on performance of multiple model V/STOL lift fans

    NASA Technical Reports Server (NTRS)

    Diedrich, J. H.; Clough, N.; Lieblein, S.

    1972-01-01

    An experimental program was performed in which the individual performance of multiple VTOL model lift fans was measured. The model tested consisted of three 5.5 in. diameter tip-turbine driven model VTOL lift fans mounted chordwise in a two-dimensional wing to simulate a pod-type array. The performance data provided significant insight into possible thrust variations and losses caused by the presence of cover doors, adjacent fuselage panels, and adjacent fans. The effect of a partial loss of drive air supply (simulated gas generator failure) on fan performance was also investigated. The results of the tests demonstrated that lift fan installation variables and hardware can have a significant effect on the thrust of the individual fans.

  5. Differences in Performance Among Test Statistics for Assessing Phylogenomic Model Adequacy.

    PubMed

    Duchêne, David A; Duchêne, Sebastian; Ho, Simon Y W

    2018-05-18

    Statistical phylogenetic analyses of genomic data depend on models of nucleotide or amino acid substitution. The adequacy of these substitution models can be assessed using a number of test statistics, allowing the model to be rejected when it is found to provide a poor description of the evolutionary process. A potentially valuable use of model-adequacy test statistics is to identify when data sets are likely to produce unreliable phylogenetic estimates, but their differences in performance are rarely explored. We performed a comprehensive simulation study to identify test statistics that are sensitive to some of the most commonly cited sources of phylogenetic estimation error. Our results show that, for many test statistics, traditional thresholds for assessing model adequacy can fail to reject the model when the phylogenetic inferences are inaccurate and imprecise. This is particularly problematic when analysing loci that have few variable informative sites. We propose new thresholds for assessing substitution model adequacy and demonstrate their effectiveness in analyses of three phylogenomic data sets. These thresholds lead to frequent rejection of the model for loci that yield topological inferences that are imprecise and are likely to be inaccurate. We also propose the use of a summary statistic that provides a practical assessment of overall model adequacy. Our approach offers a promising means of enhancing model choice in genome-scale data sets, potentially leading to improvements in the reliability of phylogenomic inference.

  6. A Testing Platform for Validation of Overhead Conductor Aging Models and Understanding Thermal Limits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Irminger, Philip; Starke, Michael R; Dimitrovski, Aleksandar D

    2014-01-01

    Power system equipment manufacturers and researchers continue to experiment with novel overhead electric conductor designs that support better conductor performance and address congestion issues. To address the technology gap in testing these novel designs, Oak Ridge National Laboratory constructed the Powerline Conductor Accelerated Testing (PCAT) facility to evaluate the performance of novel overhead conductors in an accelerated fashion in a field environment. Additionally, PCAT has the capability to test advanced sensors and measurement methods for accessing overhead conductor performance and condition. Equipped with extensive measurement and monitoring devices, PCAT provides a platform to improve/validate conductor computer models and assess themore » performance of novel conductors. The PCAT facility and its testing capabilities are described in this paper.« less

  7. Which is the better forecasting model? A comparison between HAR-RV and multifractality volatility

    NASA Astrophysics Data System (ADS)

    Ma, Feng; Wei, Yu; Huang, Dengshi; Chen, Yixiang

    2014-07-01

    In this paper, by taking the 5-min high frequency data of the Shanghai Composite Index as example, we compare the forecasting performance of HAR-RV and Multifractal volatility, Realized volatility, Realized Bipower Variation and their corresponding short memory model with rolling windows forecasting method and the Model Confidence Set which is proved superior to SPA test. The empirical results show that, for six loss functions, HAR-RV outperforms other models. Moreover, to make the conclusions more precise and robust, we use the MCS test to compare the performance of their logarithms form models, and find that the HAR-log(RV) has a better performance in predicting future volatility. Furthermore, by comparing the two models of HAR-RV and HAR-log(RV), we conclude that, in terms of performance forecasting, the HAR-log(RV) model is the best model among models we have discussed in this paper.

  8. An Occupational Performance Test Validation Program for Fire Fighters at the Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Schonfeld, Brian R.; Doerr, Donald F.; Convertino, Victor A.

    1990-01-01

    We evaluated performance of a modified Combat Task Test (CTT) and of standard fitness tests in 20 male subjects to assess the prediction of occupational performance standards for Kennedy Space Center fire fighters. The CTT consisted of stair-climbing, a chopping simulation, and a victim rescue simulation. Average CTT performance time was 3.61 +/- 0.25 min (SEM) and all CTT tasks required 93% to 97% maximal heart rate. By using scores from the standard fitness tests, a multiple linear regression model was fitted to each parameter: the stairclimb (r(exp 2) = .905, P less than .05), the chopping performance time (r(exp 2) = .582, P less than .05), the victim rescue time (r(exp 2) = .218, P = not significant), and the total performance time (r(exp 2) = .769, P less than .05). Treadmill time was the predominant variable, being the major predictor in two of four models. These results indicated that standardized fitness tests can predict performance on some CTT tasks and that test predictors were amenable to exercise training.

  9. CF6 jet engine performance improvement program. Short core exhaust nozzle performance improvement concept. [specific fuel consumption reduction

    NASA Technical Reports Server (NTRS)

    Fasching, W. A.

    1979-01-01

    The short core exhaust nozzle was evaluated in CF6-50 engine ground tests including performance, acoustic, and endurance tests. The test results verified the performance predictions from scale model tests. The short core exhaust nozzle provides an internal cruise sfc reduction of 0.9 percent without an increase in engine noise. The nozzle hardware successfully completed 1000 flight cycles of endurance testing without any signs of distress.

  10. The model for Fundamentals of Endovascular Surgery (FEVS) successfully defines the competent endovascular surgeon.

    PubMed

    Duran, Cassidy; Estrada, Sean; O'Malley, Marcia; Sheahan, Malachi G; Shames, Murray L; Lee, Jason T; Bismuth, Jean

    2015-12-01

    Fundamental skills testing is now required for certification in general surgery. No model for assessing fundamental endovascular skills exists. Our objective was to develop a model that tests the fundamental endovascular skills and differentiates competent from noncompetent performance. The Fundamentals of Endovascular Surgery model was developed in silicon and virtual-reality versions. Twenty individuals (with a range of experience) performed four tasks on each model in three separate sessions. Tasks on the silicon model were performed under fluoroscopic guidance, and electromagnetic tracking captured motion metrics for catheter tip position. Image processing captured tool tip position and motion on the virtual model. Performance was evaluated using a global rating scale, blinded video assessment of error metrics, and catheter tip movement and position. Motion analysis was based on derivations of speed and position that define proficiency of movement (spectral arc length, duration of submovement, and number of submovements). Performance was significantly different between competent and noncompetent interventionalists for the three performance measures of motion metrics, error metrics, and global rating scale. The mean error metric score was 6.83 for noncompetent individuals and 2.51 for the competent group (P < .0001). Median global rating scores were 2.25 for the noncompetent group and 4.75 for the competent users (P < .0001). The Fundamentals of Endovascular Surgery model successfully differentiates competent and noncompetent performance of fundamental endovascular skills based on a series of objective performance measures. This model could serve as a platform for skills testing for all trainees. Copyright © 2015 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.

  11. Integrated Advance Microwave Sounding Unit-A (AMSU-A). Performance Verification Report: EOS AMSU-A1 and AMSU-A2 Receivers Assemblies

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This test report presents the test data of the EOS AMSU-A Flight Model No.1 (FM-1) receiver subsystem. The tests are performed per the Acceptance Test Procedure for the AMSU-A Reseiver Subsystem, AE-26002/6A. The functional performance tests are conducted either at the component or subsystem level. While the component-level tests are performed over the entire operating temperature range predicted by thermal analysis, the subsystem-level test are conducted at ambient temperature only.

  12. Statistical analysis of target acquisition sensor modeling experiments

    NASA Astrophysics Data System (ADS)

    Deaver, Dawne M.; Moyer, Steve

    2015-05-01

    The U.S. Army RDECOM CERDEC NVESD Modeling and Simulation Division is charged with the development and advancement of military target acquisition models to estimate expected soldier performance when using all types of imaging sensors. Two elements of sensor modeling are (1) laboratory-based psychophysical experiments used to measure task performance and calibrate the various models and (2) field-based experiments used to verify the model estimates for specific sensors. In both types of experiments, it is common practice to control or measure environmental, sensor, and target physical parameters in order to minimize uncertainty of the physics based modeling. Predicting the minimum number of test subjects required to calibrate or validate the model should be, but is not always, done during test planning. The objective of this analysis is to develop guidelines for test planners which recommend the number and types of test samples required to yield a statistically significant result.

  13. On testing models for the pressure-strain correlation of turbulence using direct simulations

    NASA Technical Reports Server (NTRS)

    Speziale, Charles G.; Gatski, Thomas B.; Sarkar, Sutanu

    1992-01-01

    Direct simulations of homogeneous turbulence have, in recent years, come into widespread use for the evaluation of models for the pressure-strain correlation of turbulence. While work in this area has been beneficial, the increasingly common practice of testing the slow and rapid parts of these models separately in uniformly strained turbulent flows is shown in this paper to be unsound. For such flows, the decomposition of models for the total pressure-strain correlation into slow and rapid parts is ambiguous. Consequently, when tested in this manner, misleading conclusions can be drawn about the performance of pressure-strain models. This point is amplified by illustrative calculations of homogeneous shear flow where other pitfalls in the evaluation of models are also uncovered. More meaningful measures for testing the performance of pressure-strain models in uniformly strained turbulent flows are proposed and the implications for turbulence modeling are discussed.

  14. Calibration and Validation of a Finite ELement Model of THor-K Anthropomorphic Test Device for Aerospace Safety Applications

    NASA Technical Reports Server (NTRS)

    Putnam, J. B.; Unataroiu, C. D.; Somers, J. T.

    2014-01-01

    The THOR anthropomorphic test device (ATD) has been developed and continuously improved by the National Highway Traffic Safety Administration to provide automotive manufacturers an advanced tool that can be used to assess the injury risk of vehicle occupants in crash tests. Recently, a series of modifications were completed to improve the biofidelity of THOR ATD [1]. The updated THOR Modification Kit (THOR-K) ATD was employed at Wright-Patterson Air Base in 22 impact tests in three configurations: vertical, lateral, and spinal [2]. Although a computational finite element (FE) model of the THOR had been previously developed [3], updates to the model were needed to incorporate the recent changes in the modification kit. The main goal of this study was to develop and validate a FE model of the THOR-K ATD. The CAD drawings of the THOR-K ATD were reviewed and FE models were developed for the updated parts. For example, the head-skin geometry was found to change significantly, so its model was re-meshed (Fig. 1a). A protocol was developed to calibrate each component identified as key to the kinematic and kinetic response of the THOR-K head/neck ATD FE model (Fig. 1b). The available ATD tests were divided in two groups: a) calibration tests where the unknown material parameters of deformable parts (e.g., head skin, pelvis foam) were optimized to match the data and b) validation tests where the model response was only compared with test data by calculating their score using CORrelation and Analysis (CORA) rating system. Finally, the whole ATD model was validated under horizontal-, vertical-, and lateral-loading conditions against data recorded in the Wright Patterson tests [2]. Overall, the final THOR-K ATD model developed in this study is shown to respond similarly to the ATD in all validation tests. This good performance indicates that the optimization performed during calibration by using the CORA score as objective function is not test specific. Therefore confidence is provided in the ATD model for uses in predicting response in test conditions not performed in this study such those observed in the spacecraft landing. Comparison studies with ATD and human models may also be performed to contribute to future changes in THOR ATD design in an effort to improve its biofidelity, which has been traditionally based on post-mortem human subject testing and designer experience.

  15. Academic motivation, self-concept, engagement, and performance in high school: key processes from a longitudinal perspective.

    PubMed

    Green, Jasmine; Liem, Gregory Arief D; Martin, Andrew J; Colmar, Susan; Marsh, Herbert W; McInerney, Dennis

    2012-10-01

    The study tested three theoretically/conceptually hypothesized longitudinal models of academic processes leading to academic performance. Based on a longitudinal sample of 1866 high-school students across two consecutive years of high school (Time 1 and Time 2), the model with the most superior heuristic value demonstrated: (a) academic motivation and self-concept positively predicted attitudes toward school; (b) attitudes toward school positively predicted class participation and homework completion and negatively predicted absenteeism; and (c) class participation and homework completion positively predicted test performance whilst absenteeism negatively predicted test performance. Taken together, these findings provide support for the relevance of the self-system model and, particularly, the importance of examining the dynamic relationships amongst engagement factors of the model. The study highlights implications for educational and psychological theory, measurement, and intervention. Copyright © 2012 The Foundation for Professionals in Services for Adolescents. Published by Elsevier Ltd. All rights reserved.

  16. Static and Wind Tunnel Aero-Performance Tests of NASA AST Separate Flow Nozzle Noise Reduction Configurations

    NASA Technical Reports Server (NTRS)

    Mikkelsen, Kevin L.; McDonald, Timothy J.; Saiyed, Naseem (Technical Monitor)

    2001-01-01

    This report presents the results of cold flow model tests to determine the static and wind tunnel performance of several NASA AST separate flow nozzle noise reduction configurations. The tests were conducted by Aero Systems Engineering, Inc., for NASA Glenn Research Center. The tests were performed in the Channels 14 and 6 static thrust stands and the Channel 10 transonic wind tunnel at the FluiDyne Aerodynamics Laboratory in Plymouth, Minnesota. Facility checkout tests were made using standard ASME long-radius metering nozzles. These tests demonstrated facility data accuracy at flow conditions similar to the model tests. Channel 14 static tests reported here consisted of 21 ASME nozzle facility checkout tests and 57 static model performance tests (including 22 at no charge). Fan nozzle pressure ratio varied from 1.4 to 2.0, and fan to core total pressure ratio varied from 1.0 to 1.19. Core to fan total temperature ratio was 1.0. Channel 10 wind tunnel tests consisted of 15 tests at Mach number 0.28 and 31 tests at Mach 0.8. The sting was checked out statically in Channel 6 before the wind tunnel tests. In the Channel 6 facility, 12 ASME nozzle data points were taken and 7 model data points were taken. In the wind tunnel, fan nozzle pressure ratio varied from 1.73 to 2.8, and fan to core total pressure ratio varied from 1.0 to 1.19. Core to fan total temperature ratio was 1.0. Test results include thrust coefficients, thrust vector angle, core and fan nozzle discharge coefficients, total pressure and temperature charging station profiles, and boat-tail static pressure distributions in the wind tunnel.

  17. Simulation of an Impact Test of the All-Composite Lear Fan Aircraft

    NASA Technical Reports Server (NTRS)

    Stockwell, Alan E.; Jones, Lisa E. (Technical Monitor)

    2002-01-01

    An MSC.Dytran model of an all-composite Lear Fan aircraft fuselage was developed to simulate an impact test conducted at the NASA Langley Research Center Impact Dynamics Research Facility (IDRF). The test was the second of two Lear Fan impact tests. The purpose of the second test was to evaluate the performance of retrofitted composite energy-absorbing floor beams. A computerized photogrammetric survey was performed to provide airframe geometric coordinates, and over 5000 points were processed and imported into MSC.Patran via an IGES file. MSC.Patran was then used to develop the curves and surfaces and to mesh the finite element model. A model of the energy-absorbing floor beams was developed separately and then integrated into the Lear Fan model. Structural responses of components such as the wings were compared with experimental data or previously published analytical data wherever possible. Comparisons with experimental results were used to guide structural model modifications to improve the simulation performance. This process was based largely on qualitative (video and still camera images and post-test inspections) rather than quantitative results due to the relatively few accelerometers attached to the structure.

  18. Biases and Power for Groups Comparison on Subjective Health Measurements

    PubMed Central

    Hamel, Jean-François; Hardouin, Jean-Benoit; Le Neel, Tanguy; Kubis, Gildas; Roquelaure, Yves; Sébille, Véronique

    2012-01-01

    Subjective health measurements are increasingly used in clinical research, particularly for patient groups comparisons. Two main types of analytical strategies can be used for such data: so-called classical test theory (CTT), relying on observed scores and models coming from Item Response Theory (IRT) relying on a response model relating the items responses to a latent parameter, often called latent trait. Whether IRT or CTT would be the most appropriate method to compare two independent groups of patients on a patient reported outcomes measurement remains unknown and was investigated using simulations. For CTT-based analyses, groups comparison was performed using t-test on the scores. For IRT-based analyses, several methods were compared, according to whether the Rasch model was considered with random effects or with fixed effects, and the group effect was included as a covariate or not. Individual latent traits values were estimated using either a deterministic method or by stochastic approaches. Latent traits were then compared with a t-test. Finally, a two-steps method was performed to compare the latent trait distributions, and a Wald test was performed to test the group effect in the Rasch model including group covariates. The only unbiased IRT-based method was the group covariate Wald’s test, performed on the random effects Rasch model. This model displayed the highest observed power, which was similar to the power using the score t-test. These results need to be extended to the case frequently encountered in practice where data are missing and possibly informative. PMID:23115620

  19. Real-time simulation of a Doubly-Fed Induction Generator based wind power system on eMEGASimRTM Real-Time Digital Simulator

    NASA Astrophysics Data System (ADS)

    Boakye-Boateng, Nasir Abdulai

    The growing demand for wind power integration into the generation mix prompts the need to subject these systems to stringent performance requirements. This study sought to identify the required tools and procedures needed to perform real-time simulation studies of Doubly-Fed Induction Generator (DFIG) based wind generation systems as basis for performing more practical tests of reliability and performance for both grid-connected and islanded wind generation systems. The author focused on developing a platform for wind generation studies and in addition, the author tested the performance of two DFIG models on the platform real-time simulation model; an average SimpowerSystemsRTM DFIG wind turbine, and a detailed DFIG based wind turbine using ARTEMiSRTM components. The platform model implemented here consists of a high voltage transmission system with four integrated wind farm models consisting in total of 65 DFIG based wind turbines and it was developed and tested on OPAL-RT's eMEGASimRTM Real-Time Digital Simulator.

  20. Modeling Local Item Dependence Due to Common Test Format with a Multidimensional Rasch Model

    ERIC Educational Resources Information Center

    Baghaei, Purya; Aryadoust, Vahid

    2015-01-01

    Research shows that test method can exert a significant impact on test takers' performance and thereby contaminate test scores. We argue that common test method can exert the same effect as common stimuli and violate the conditional independence assumption of item response theory models because, in general, subsets of items which have a shared…

  1. Space Storable Rocket Technology (SSRT) basic program

    NASA Technical Reports Server (NTRS)

    Chazen, M. L.; Mueller, T.; Casillas, A. R.; Huang, D.

    1992-01-01

    The Space Storable Rocket Technology Program (SSRT) was conducted to establish a technology for a new class of high performance and long life bipropellant engines using space storable propellants. The results are described. Task 1 evaluated several characteristics for a number of fuels to determine the best space storable fuel for use with LO2. The results indicated that LO2-N2H4 is the best propellant combination and provides the maximum mission/system capability maximum payload into GEO of satellites. Task 2 developed two models, performance and thermal. The performance model indicated the performance goal of specific impulse greater than or = 340 seconds (sigma = 204) could be achieved. The thermal model was developed and anchored to hot fire test data. Task 3 consisted of design, fabrication, and testing of a 200 lbf thrust test engine operating at a chamber pressure of 200 psia using LO2-N2H4. A total of 76 hot fire tests were conducted demonstrating performance greater than 340 (sigma = 204) which is a 25 second specific impulse improvement over the existing highest performance flight apogee type engines.

  2. Characterization of Louisiana asphalt mixtures using simple performance tests and MEPDG.

    DOT National Transportation Integrated Search

    2014-04-01

    The National Cooperative Highway Research Program (NCHRP) Project 9-19, Superpave Support and Performance : Models Management, recommended three Simple Performance Tests (SPTs) to complement the Superpave volumetric : mixture design method. These are...

  3. UAS in the NAS Project: Large-Scale Communication Architecture Simulations with NASA GRC Gen5 Radio Model

    NASA Technical Reports Server (NTRS)

    Kubat, Gregory

    2016-01-01

    This report provides a description and performance characterization of the large-scale, Relay architecture, UAS communications simulation capability developed for the NASA GRC, UAS in the NAS Project. The system uses a validated model of the GRC Gen5 CNPC, Flight-Test Radio model. Contained in the report is a description of the simulation system and its model components, recent changes made to the system to improve performance, descriptions and objectives of sample simulations used for test and verification, and a sampling and observations of results and performance data.

  4. Multi-Fidelity Framework for Modeling Combustion Instability

    DTIC Science & Technology

    2016-07-27

    generated from the reduced-domain dataset. Evaluations of the framework are performed based on simplified test problems for a model rocket combustor showing...generated from the reduced-domain dataset. Evaluations of the framework are performed based on simplified test problems for a model rocket combustor...of Aeronautics and Astronautics and Associate Fellow AIAA. ‡ Professor Emeritus. § Senior Scientist, Rocket Propulsion Division and Senior Member

  5. Fan Noise Source Diagnostic Test: Rotor Alone Aerodynamic Performance Results

    NASA Technical Reports Server (NTRS)

    Hughes, Christopher E.; Jeracki, Robert J.; Woodward, Richard P.; Miller, Christopher J.

    2005-01-01

    The aerodynamic performance of an isolated fan or rotor alone model was measured in the NASA Glenn Research Center 9- by 15- Foot Low Speed Wind Tunnel as part of the Fan Broadband Source Diagnostic Test conducted at NASA Glenn. The Source Diagnostic Test was conducted to identify the noise sources within a wind tunnel scale model of a turbofan engine and quantify their contribution to the overall system noise level. The fan was part of a 1/5th scale model representation of the bypass stage of a current technology turbofan engine. For the rotor alone testing, the fan and nacelle, including the inlet, external cowl, and fixed area fan exit nozzle, were modeled in the test hardware; the internal outlet guide vanes located behind the fan were removed. Without the outlet guide vanes, the velocity at the nozzle exit changes significantly, thereby affecting the fan performance. As part of the investigation, variations in the fan nozzle area were tested in order to match as closely as possible the rotor alone performance with the fan performance obtained with the outlet guide vanes installed. The fan operating performance was determined using fixed pressure/temperature combination rakes and the corrected weight flow. The performance results indicate that a suitable nozzle exit was achieved to be able to closely match the rotor alone and fan/outlet guide vane configuration performance on the sea level operating line. A small shift in the slope of the sea level operating line was measured, which resulted in a slightly higher rotor alone fan pressure ratio at take-off conditions, matched fan performance at cutback conditions, and a slightly lower rotor alone fan pressure ratio at approach conditions. However, the small differences in fan performance at all fan conditions were considered too small to affect the fan acoustic performance.

  6. Comparison of Analytical Predictions and Experimental Results for a Dual Brayton Power System (Discussion on Test Hardware and Computer Model for a Dual Brayton System)

    NASA Technical Reports Server (NTRS)

    Johnson, Paul K.

    2007-01-01

    NASA Glenn Research Center (GRC) contracted Barber-Nichols, Arvada, CO to construct a dual Brayton power conversion system for use as a hardware proof of concept and to validate results from a computational code known as the Closed Cycle System Simulation (CCSS). Initial checkout tests were performed at Barber- Nichols to ready the system for delivery to GRC. This presentation describes the system hardware components and lists the types of checkout tests performed along with a couple issues encountered while conducting the tests. A description of the CCSS model is also presented. The checkout tests did not focus on generating data, therefore, no test data or model analyses are presented.

  7. 6DOF Testing of the SLS Inertial Navigation Unit

    NASA Technical Reports Server (NTRS)

    Geohagan, Kevin; Bernard, Bill; Oliver, T. Emerson; Leggett, Jared; Strickland, Dennis

    2018-01-01

    The Navigation System on the NASA Space Launch System (SLS) Block 1 vehicle performs initial alignment of the Inertial Navigation System (INS) navigation frame through gyrocompass alignment (GCA). Because the navigation architecture for the SLS Block 1 vehicle is a purely inertial system, the accuracy of the achieved orbit relative to mission requirements is very sensitive to initial alignment accuracy. The assessment of this sensitivity and many others via simulation is a part of the SLS Model-Based Design and Model-Based Requirements approach. As a part of the aforementioned, 6DOF Monte Carlo simulation is used in large part to develop and demonstrate verification of program requirements. To facilitate this and the GN&C flight software design process, an SLS-Program-controlled Design Math Model (DMM) of the SLS INS was developed by the SLS Navigation Team. The SLS INS model implements all of the key functions of the hardware-namely, GCA, inertial navigation, and FDIR (Fault Detection, Isolation, and Recovery)-in support of SLS GN&C design requirements verification. Despite the strong sensitivity to initial alignment, GCA accuracy requirements were not verified by test due to program cost and schedule constraints. Instead, the system relies upon assessments performed using the SLS INS model. In order to verify SLS program requirements by analysis, the SLS INS model is verified and validated against flight hardware. In lieu of direct testing of GCA accuracy in support of requirement verification, the SLS Navigation Team proposed and conducted an engineering test to, among other things, validate the GCA performance and overall behavior of the SLS INS model through comparison with test data. This paper will detail dynamic hardware testing of the SLS INS, conducted by the SLS Navigation Team at Marshall Space Flight Center's 6DOF Table Facility, in support of GCA performance characterization and INS model validation. A 6-DOF motion platform was used to produce 6DOF pad twist and sway dynamics while a simulated SLS flight computer communicated with the INS. Tests conducted include an evaluation of GCA algorithm robustness to increasingly dynamic pad environments, an examination of GCA algorithm stability and accuracy over long durations, and a long-duration static test to gather enough data for Allan Variance analysis. Test setup, execution, and data analysis will be discussed, including analysis performed in support of SLS INS model validation.

  8. Phase 2 and 3 wind tunnel tests of the J-97 powered, external augmentor V/STOL model. [at Ames 40 by 80 wind tunnel

    NASA Technical Reports Server (NTRS)

    Garland, D. B.; Harris, J. L.

    1980-01-01

    Static and forward speed tests were made in a 40 multiplied by 80 foot wind tunnel of a large-scale, ejector-powered V/STOL aircraft model. Modifications were made to the model following earlier tests primarily to improve longitudinal acceleration capability during transition from hovering to wingborne flight. A rearward deflection of the fuselage augmentor thrust vector was shown to be beneficial in this regard. Other augmentor modifications were tested, notably the removal of both endplates, which improved acceleration performance at the higher transition speeds. The model tests again demonstrated minimal interference of the fuselage augmentor on aerodynamic lift. A flapped canard surface also showed negligible influence on the performance of the wing and of the fuselage augmentor.

  9. Extraction-Separation Performance and Dynamic Modeling of Orion Test Vehicles with Adams Simulation: 2nd Edition

    NASA Technical Reports Server (NTRS)

    Fraire, Usbaldo, Jr.; Anderson, Keith; Varela, Jose G.; Bernatovich, Michael A.

    2015-01-01

    NASA's Orion Capsule Parachute Assembly System (CPAS) project has advanced into the third generation of its parachute test campaign and requires technically comprehensive modeling capabilities to simulate multi-body dynamics (MBD) of test articles released from a C-17. Safely extracting a 30,000 lbm mated test article from a C-17 and performing stable mid-air separation maneuvers requires an understanding of the interaction between elements in the test configuration and how they are influenced by extraction parachute performance, aircraft dynamics, aerodynamics, separation dynamics, and kinetic energy experienced by the system. During the real-time extraction and deployment sequences, these influences can be highly unsteady and difficult to bound. An avionics logic window based on time, pitch, and pitch rate is used to account for these effects and target a favorable separation state in real time. The Adams simulation has been employed to fine-tune this window, as well as predict and reconstruct the coupled dynamics of the Parachute Test Vehicle (PTV) and Cradle Platform Separation System (CPSS) from aircraft extraction through the mid-air separation event. The test-technique for the extraction of CPAS test articles has evolved with increased complexity and requires new modeling concepts to ensure the test article is delivered to a stable test condition for the programmer phase. Prompted by unexpected dynamics and hardware malfunctions in drop tests, these modeling improvements provide a more accurate loads prediction by incorporating a spring-damper line-model derived from the material properties. The qualification phase of CPAS testing is on the horizon and modeling increasingly complex test-techniques with Adams is vital to successfully qualify the Orion parachute system for human spaceflight.

  10. Revalidation of the NASA Ames 11-by 11-Foot Transonic Wind Tunnel with a Commercial Airplane Model

    NASA Technical Reports Server (NTRS)

    Kmak, Frank J.; Hudgins, M.; Hergert, D.; George, Michael W. (Technical Monitor)

    2001-01-01

    The 11-By 11-Foot Transonic leg of the Unitary Plan Wind Tunnel (UPWT) was modernized to improve tunnel performance, capability, productivity, and reliability. Wind tunnel tests to demonstrate the readiness of the tunnel for a return to production operations included an Integrated Systems Test (IST), calibration tests, and airplane validation tests. One of the two validation tests was a 0.037-scale Boeing 777 model that was previously tested in the 11-By 11-Foot tunnel in 1991. The objective of the validation tests was to compare pre-modernization and post-modernization results from the same airplane model in order to substantiate the operational readiness of the facility. Evaluation of within-test, test-to-test, and tunnel-to-tunnel data repeatability were made to study the effects of the tunnel modifications. Tunnel productivity was also evaluated to determine the readiness of the facility for production operations. The operation of the facility, including model installation, tunnel operations, and the performance of tunnel systems, was observed and facility deficiency findings generated. The data repeatability studies and tunnel-to-tunnel comparisons demonstrated outstanding data repeatability and a high overall level of data quality. Despite some operational and facility problems, the validation test was successful in demonstrating the readiness of the facility to perform production airplane wind tunnel%, tests.

  11. Liquid Oxygen/Liquid Methane Integrated Propulsion System Test Bed

    NASA Technical Reports Server (NTRS)

    Flynn, Howard; Lusby, Brian; Villemarette, Mark

    2011-01-01

    In support of NASA?s Propulsion and Cryogenic Advanced Development (PCAD) project, a liquid oxygen (LO2)/liquid methane (LCH4) Integrated Propulsion System Test Bed (IPSTB) was designed and advanced to the Critical Design Review (CDR) stage at the Johnson Space Center. The IPSTB?s primary objectives are to study LO2/LCH4 propulsion system steady state and transient performance, operational characteristics and to validate fluid and thermal models of a LO2/LCH4 propulsion system for use in future flight design work. Two phase thermal and dynamic fluid flow models of the IPSTB were built to predict the system performance characteristics under a variety of operating modes and to aid in the overall system design work. While at ambient temperature and simulated altitude conditions at the White Sands Test Facility, the IPSTB and its approximately 600 channels of system instrumentation would be operated to perform a variety of integrated main engine and reaction control engine hot fire tests. The pressure, temperature, and flow rate data collected during this testing would then be used to validate the analytical models of the IPSTB?s thermal and dynamic fluid flow performance. An overview of the IPSTB design and analytical model development will be presented.

  12. Simulation of Non-Acoustic Combustion Instability in a Hybrid Rocket Motor

    NASA Technical Reports Server (NTRS)

    Rocker, Marvin

    1999-01-01

    A transient model of a hybrid motor was formulated to study the cause and elimination of non-acoustic combustion instability. The transient model was used to simulate four key tests out of a series of seventeen hybrid motor tests conducted by Thiokol, Rocketdyne and Martin Marietta at NASA/Marshall Space Flight Center (NASAIMSFC). These tests were performed under the Hybrid Propulsion Technology for Launch Vehicle Boosters (HPTLVB) program. The first test resulted in stable combustion. The second test resulted in large-amplitude, 6.5 Hz chamber pressure oscillations that gradually damped away by the end of the test. The third test resulted in large-amplitude, 7.5 Hz chamber pressure oscillations that were sustained throughout the test. The seventh test resulted in the elimination of combustion instability with the installation of an orifice immediately upstream of the injector. The formulation and implementation of the model are the scope of this presentation. The current model is an independent continuation of modeling presented previously by joint Thiokol-Rocketdyne collaborators Boardman, Hawkins, Wassom, and Claflin. The previous model simulated an unstable IR&D hybrid motor test performed by Thiokol. There was very good agreement between the model and the test data. Like the previous model, the current model was developed using Matrix-x simulation software. However, the tests performed at NASA/MSFC under the HPTLVB program were actually simulated. In the current model, the hybrid motor consisting of the liquid oxygen (LOX) injector, the multi-port solid fuel grain and the nozzle was simulated. Also, simulated in the model was the LOX feed system consisting of the tank, venturi, valve and feed lines. All components of the hybrid motor and LOX feed system are treated by a lumped-parameter approach. Agreement between the results of the transient model and the actual test data was very good. This agreement between simulated and actual test data indicated that the combustion instability in the hybrid motor was due to two causes. The first cause was a LOX feed system of insufficient stiffness. The second cause was a LOX injector with an impedance or pressure drop that was too low to provide damping against the feed system oscillations. Also, it was discovered that testing with a new grain of solid fuel sustained the combustion instability. However, testing with a used grain of solid fuel caused the combustion instability to gradually decay.

  13. Simulation of Non-Acoustic Combustion Instability in a Hybrid Rocket Motor

    NASA Technical Reports Server (NTRS)

    Rocker, Marvin

    1999-01-01

    A transient model of a hybrid motor was formulated to study the cause and elimination of non-acoustic combustion instability. The transient model was used to simulate four key tests out of a series of seventeen hybrid motor tests conducted by Thiokol, Rocketdyne and Martin Marietta at NASA/Marshall Space Flight Center (NASA/MSFC). These tests were performed under the Hybrid Propulsion Technology for Launch Vehicle Boosters (HPTLVB) program. The first test resulted in stable combustion. The second test resulted in large-amplitude, 6.5 Hz chamber pressure oscillations that gradually damped away by the end of the test. The third test resulted in large-amplitude, 7.5 Hz chamber pressure oscillations that were sustained throughout the test. The seventh test resulted in the elimination of combustion instability with the installation of an orifice immediately upstream of the injector. The formulation and implementation of the model are the scope of this presentation. The current model is an independent continuation of modeling presented previously by joint Thiokol-Rocketdyne collaborators Boardman, Hawkins, Wassom, and Claflin. The previous model simulated an unstable IR&D hybrid motor test performed by Thiokol. There was very good agreement between the model and the test data. Like the previous model, the current model was developed using Matrix-x simulation software. However, the tests performed at NASA/MSFC under the HPTLVB program were actually simulated. In the current model, the hybrid motor consisting of the liquid oxygen (LOX) injector, the multi-port solid fuel grain and the nozzle was simulated. Also, simulated in the model was the LOX feed system consisting of the tank, venturi, valve and feed lines. All components of the hybrid motor and LOX feed system are treated by a lumped-parameter approach. Agreement between the results of the transient model and the actual test data was very good. This agreement between simulated and actual test data indicated that the combustion instability in the hybrid motor was due to two causes. The first cause was a LOX feed system of insufficient stiffness. The second cause was a LOX injector with an impedance or pressure drop that was too low to provide damping against the feed system oscillations. Also, it was discovered that testing with a new grain of solid fuel sustained the combustion instability. However, testing with a used grain of solid fuel caused the combustion instability to gradually decay.

  14. DKIST enclosure modeling and verification during factory assembly and testing

    NASA Astrophysics Data System (ADS)

    Larrakoetxea, Ibon; McBride, William; Marshall, Heather K.; Murga, Gaizka

    2014-08-01

    The Daniel K. Inouye Solar Telescope (DKIST, formerly the Advanced Technology Solar Telescope, ATST) is unique as, apart from protecting the telescope and its instrumentation from the weather, it holds the entrance aperture stop and is required to position it with millimeter-level accuracy. The compliance of the Enclosure design with the requirements, as of Final Design Review in January 2012, was supported by mathematical models and other analyses which included structural and mechanical analyses (FEA), control models, ventilation analysis (CFD), thermal models, reliability analysis, etc. During the Enclosure Factory Assembly and Testing the compliance with the requirements has been verified using the real hardware and the models created during the design phase have been revisited. The tests performed during shutter mechanism subsystem (crawler test stand) functional and endurance testing (completed summer 2013) and two comprehensive system-level factory acceptance testing campaigns (FAT#1 in December 2013 and FAT#2 in March 2014) included functional and performance tests on all mechanisms, off-normal mode tests, mechanism wobble tests, creation of the Enclosure pointing map, control system tests, and vibration tests. The comparison of the assumptions used during the design phase with the properties measured during the test campaign provides an interesting reference for future projects.

  15. 40 CFR 600.209-12 - Calculation of vehicle-specific 5-cycle fuel economy and CO2 emission values for a model type.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... city and highway fuel economy and CO2 emission values from the tests performed using gasoline or diesel test fuel. (ii) If 5-cycle testing was performed on the alcohol or natural gas test fuel, calculate the city and highway fuel economy and CO2 emission values from the tests performed using alcohol or natural...

  16. 40 CFR 600.209-12 - Calculation of vehicle-specific 5-cycle fuel economy and CO2 emission values for a model type.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... city and highway fuel economy and CO2 emission values from the tests performed using gasoline or diesel test fuel. (ii) If 5-cycle testing was performed on the alcohol or natural gas test fuel, calculate the city and highway fuel economy and CO2 emission values from the tests performed using alcohol or natural...

  17. 40 CFR 600.209-12 - Calculation of vehicle-specific 5-cycle fuel economy and CO2 emission values for a model type.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... city and highway fuel economy and CO2 emission values from the tests performed using gasoline or diesel test fuel. (ii) If 5-cycle testing was performed on the alcohol or natural gas test fuel, calculate the city and highway fuel economy and CO2 emission values from the tests performed using alcohol or natural...

  18. Modelling accelerated degradation data using Wiener diffusion with a time scale transformation.

    PubMed

    Whitmore, G A; Schenkelberg, F

    1997-01-01

    Engineering degradation tests allow industry to assess the potential life span of long-life products that do not fail readily under accelerated conditions in life tests. A general statistical model is presented here for performance degradation of an item of equipment. The degradation process in the model is taken to be a Wiener diffusion process with a time scale transformation. The model incorporates Arrhenius extrapolation for high stress testing. The lifetime of an item is defined as the time until performance deteriorates to a specified failure threshold. The model can be used to predict the lifetime of an item or the extent of degradation of an item at a specified future time. Inference methods for the model parameters, based on accelerated degradation test data, are presented. The model and inference methods are illustrated with a case application involving self-regulating heating cables. The paper also discusses a number of practical issues encountered in applications.

  19. Estuarine modeling: Does a higher grid resolution improve model performance?

    EPA Science Inventory

    Ecological models are useful tools to explore cause effect relationships, test hypothesis and perform management scenarios. A mathematical model, the Gulf of Mexico Dissolved Oxygen Model (GoMDOM), has been developed and applied to the Louisiana continental shelf of the northern ...

  20. Aerothermal performance and damage tolerance of a Rene 41 metallic standoff thermal protection system at Mach 6.7

    NASA Technical Reports Server (NTRS)

    Avery, D. E.

    1984-01-01

    A flight-weight, metallic thermal protection system (TPS) model applicable to Earth-entry and hypersonic-cruise vehicles was subjected to multiple cycles of both radiant and aerothermal heating in order to evaluate its aerothermal performance, structural integrity, and damage tolerance. The TPS was designed for a maximum operating temperature of 2060 R and featured a shingled, corrugation-stiffened corrugated-skin heat shield of Rene 41, a nickel-base alloy. The model was subjected to 10 radiant heating tests and to 3 radiant preheat/aerothermal tests. Under radiant-heating conditions with a maximum surface temperature of 2050 R, the TPS performed as designed and limited the primary structure away from the support ribs to temperatures below 780 R. During the first attempt at aerothermal exposure, a failure in the panel-holder test fixture severely damaged the model. However, two radiant preheat/aerothermal tests were made with the damaged model to test its damage tolerance. During these tests, the damaged area did not enlarge; however, the rapidly increasing structural temperature measuring during these tests indicates that had the damaged area been exposed to aerodynamic heating for the entire trajectory, an aluminum burn-through would have occurred.

  1. 40 CFR 1037.501 - General testing and modeling provisions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 1065 to perform valid tests. (1) For service accumulation, use the test fuel or any commercially... appropriate diesel test fuel is ultra low-sulfur diesel fuel. (3) For gasoline-fueled vehicles, use the...) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW HEAVY-DUTY MOTOR VEHICLES Test and Modeling...

  2. Proton exchange membrane fuel cell model for aging predictions: Simulated equivalent active surface area loss and comparisons with durability tests

    NASA Astrophysics Data System (ADS)

    Robin, C.; Gérard, M.; Quinaud, M.; d'Arbigny, J.; Bultel, Y.

    2016-09-01

    The prediction of Proton Exchange Membrane Fuel Cell (PEMFC) lifetime is one of the major challenges to optimize both material properties and dynamic control of the fuel cell system. In this study, by a multiscale modeling approach, a mechanistic catalyst dissolution model is coupled to a dynamic PEMFC cell model to predict the performance loss of the PEMFC. Results are compared to two 2000-h experimental aging tests. More precisely, an original approach is introduced to estimate the loss of an equivalent active surface area during an aging test. Indeed, when the computed Electrochemical Catalyst Surface Area profile is fitted on the experimental measures from Cyclic Voltammetry, the computed performance loss of the PEMFC is underestimated. To be able to predict the performance loss measured by polarization curves during the aging test, an equivalent active surface area is obtained by a model inversion. This methodology enables to successfully find back the experimental cell voltage decay during time. The model parameters are fitted from the polarization curves so that they include the global degradation. Moreover, the model captures the aging heterogeneities along the surface of the cell observed experimentally. Finally, a second 2000-h durability test in dynamic operating conditions validates the approach.

  3. The Performance of the Linear Logistic Test Model When the Q-Matrix Is Misspecified: A Simulation Study

    ERIC Educational Resources Information Center

    MacDonald, George T.

    2014-01-01

    A simulation study was conducted to explore the performance of the linear logistic test model (LLTM) when the relationships between items and cognitive components were misspecified. Factors manipulated included percent of misspecification (0%, 1%, 5%, 10%, and 15%), form of misspecification (under-specification, balanced misspecification, and…

  4. Aerodynamics of High-Lift Configuration Civil Aircraft Model in JAXA

    NASA Astrophysics Data System (ADS)

    Yokokawa, Yuzuru; Murayama, Mitsuhiro; Ito, Takeshi; Yamamoto, Kazuomi

    This paper presents basic aerodynamics and stall characteristics of the high-lift configuration aircraft model JSM (JAXA Standard Model). During research process of developing high-lift system design method, wind tunnel testing at JAXA 6.5m by 5.5m low-speed wind tunnel and Navier-Stokes computation on unstructured hybrid mesh were performed for a realistic configuration aircraft model equipped with high-lift devices, fuselage, nacelle-pylon, slat tracks and Flap Track Fairings (FTF), which was assumed 100 passenger class modern commercial transport aircraft. The testing and the computation aimed to understand flow physics and then to obtain some guidelines for designing a high performance high-lift system. As a result of the testing, Reynolds number effects within linear region and stall region were observed. Analysis of static pressure distribution and flow visualization gave the knowledge to understand the aerodynamic performance. CFD could capture the whole characteristics of basic aerodynamics and clarify flow mechanism which governs stall characteristics even for complicated geometry and its flow field. This collaborative work between wind tunnel testing and CFD is advantageous for improving or has improved the aerodynamic performance.

  5. The Role of Integrated Modeling in the Design and Verification of the James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Mosier, Gary E.; Howard, Joseph M.; Johnston, John D.; Parrish, Keith A.; Hyde, T. Tupper; McGinnis, Mark A.; Bluth, Marcel; Kim, Kevin; Ha, Kong Q.

    2004-01-01

    The James Web Space Telescope (JWST) is a large, infrared-optimized space telescope scheduled for launch in 2011. System-level verification of critical optical performance requirements will rely on integrated modeling to a considerable degree. In turn, requirements for accuracy of the models are significant. The size of the lightweight observatory structure, coupled with the need to test at cryogenic temperatures, effectively precludes validation of the models and verification of optical performance with a single test in 1-g. Rather, a complex series of steps are planned by which the components of the end-to-end models are validated at various levels of subassembly, and the ultimate verification of optical performance is by analysis using the assembled models. This paper describes the critical optical performance requirements driving the integrated modeling activity, shows how the error budget is used to allocate and track contributions to total performance, and presents examples of integrated modeling methods and results that support the preliminary observatory design. Finally, the concepts for model validation and the role of integrated modeling in the ultimate verification of observatory are described.

  6. The Three Models of Emotional Intelligence and Performance in a Hot and Cool go/no-go Task in Undergraduate Students

    PubMed Central

    Gutiérrez-Cobo, María J.; Cabello, Rosario; Fernández-Berrocal, Pablo

    2017-01-01

    Emotional intelligence (EI), or the ability to perceive, use, understand and regulate emotions, appears to be helpful in the performance of “hot” (i.e., emotionally laden) cognitive tasks when using performance-based ability models, but not when using self-report EI models. The aim of this study is to analyze the relationship between EI (as measured through a performance-based ability test, a self-report mixed test and a self-report ability test) and cognitive control ability during the performance of hot and “cool” (i.e., non-emotionally laden) “go/no-go” tasks. An experimental design was used for this study in which 187 undergraduate students (25% men) with a mean age of 21.93 years (standard deviation [SD] = 3.8) completed the three EI tests of interest (Mayer-Salovey-Caruso Emotional Intelligence Test [MSCEIT], Trait Meta-Mood Scale [TMMS] and Emotional Quotient Inventory–Short Form [EQi:S]) as well as go/no-go tasks using faces and geometric figures as stimuli. The results provide evidence for negative associations between the “managing” branch of EI measured through the performance-based ability test of EI and the cognitive control index of the hot go/no-go task, although similar evidence was not found when using the cool task. Further, the present study failed to observe consistent results when using the self-report EI instruments. These findings are discussed in terms of both the validity and implications of the various EI models. PMID:28275343

  7. The price of performance: a cost and performance analysis of the implementation of cell-free fetal DNA testing for Down syndrome in Ontario, Canada.

    PubMed

    Okun, N; Teitelbaum, M; Huang, T; Dewa, C S; Hoch, J S

    2014-04-01

    To examine the cost and performance implications of introducing cell-free fetal DNA (cffDNA) testing within modeled scenarios in a publicly funded Canadian provincial Down syndrome (DS) prenatal screening program. Two clinical algorithms were created: the first to represent the current screening program and the second to represent one that incorporates cffDNA testing. From these algorithms, eight distinct scenarios were modeled to examine: (1) the current program (no cffDNA), (2) the current program with first trimester screening (FTS) as the nuchal translucency-based primary screen (no cffDNA), (3) a program substituting current screening with primary cffDNA, (4) contingent cffDNA with current FTS performance, (5) contingent cffDNA at a fixed price to result in overall cost neutrality,(6) contingent cffDNA with an improved detection rate (DR) of FTS, (7) contingent cffDNA with higher uptake of FTS, and (8) contingent cffDNA with optimized FTS (higher uptake and improved DR). This modeling study demonstrates that introducing contingent cffDNA testing improves performance by increasing the number of cases of DS detected prenatally, and reducing the number of amniocenteses performed and concomitant iatrogenic pregnancy loss of pregnancies not affected by DS. Costs are modestly increased, although the cost per case of DS detected is decreased with contingent cffDNA testing. Contingent models of cffDNA testing can improve overall screening performance while maintaining the provision of an 11- to 13-week scan. Costs are modestly increased, but cost per prenatally detected case of DS is decreased. © 2013 John Wiley & Sons, Ltd.

  8. Validation of Ten Noninvasive Diagnostic Models for Prediction of Liver Fibrosis in Patients with Chronic Hepatitis B

    PubMed Central

    Cheng, Jieyao; Hou, Jinlin; Ding, Huiguo; Chen, Guofeng; Xie, Qing; Wang, Yuming; Zeng, Minde; Ou, Xiaojuan; Ma, Hong; Jia, Jidong

    2015-01-01

    Background and Aims Noninvasive models have been developed for fibrosis assessment in patients with chronic hepatitis B. However, the sensitivity, specificity and diagnostic accuracy in evaluating liver fibrosis of these methods have not been validated and compared in the same group of patients. The aim of this study was to verify the diagnostic performance and reproducibility of ten reported noninvasive models in a large cohort of Asian CHB patients. Methods The diagnostic performance of ten noninvasive models (HALF index, FibroScan, S index, Zeng model, Youyi model, Hui model, APAG, APRI, FIB-4 and FibroTest) was assessed against the liver histology by ROC curve analysis in CHB patients. The reproducibility of the ten models were evaluated by recalculating the diagnostic values at the given cut-off values defined by the original studies. Results Six models (HALF index, FibroScan, Zeng model, Youyi model, S index and FibroTest) had AUROCs higher than 0.70 in predicting any fibrosis stage and 2 of them had best diagnostic performance with AUROCs to predict F≥2, F≥3 and F4 being 0.83, 0.89 and 0.89 for HALF index, 0.82, 0.87 and 0.87 for FibroScan, respectively. Four models (HALF index, FibroScan, Zeng model and Youyi model) showed good diagnostic values at given cut-offs. Conclusions HALF index, FibroScan, Zeng model, Youyi model, S index and FibroTest show a good diagnostic performance and all of them, except S index and FibroTest, have good reproducibility for evaluating liver fibrosis in CHB patients. Registration Number ChiCTR-DCS-07000039. PMID:26709706

  9. The Empirical Testing of a Musical Performance Assessment Paradigm

    ERIC Educational Resources Information Center

    Russell, Brian E.

    2010-01-01

    The purpose of this study was to test a hypothesized model of aurally perceived performer-controlled musical factors that influence assessments of performance quality. Previous research studies on musical performance constructs, musical achievement, musical expression, and scale construction were examined to identify the factors that influence…

  10. Nuclear code case development of printed-circuit heat exchangers with thermal and mechanical performance testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aakre, Shaun R.; Jentz, Ian W.; Anderson, Mark H.

    The U.S. Department of Energy has agreed to fund a three-year integrated research project to close technical gaps involved with compact heat exchangers to be used in nuclear applications. This paper introduces the goals of the project, the research institutions, and industrial partners working in collaboration to develop a draft Boiler and Pressure Vessel Code Case for this technology. Heat exchanger testing, as well as non-destructive and destructive evaluation, will be performed by researchers across the country to understand the performance of compact heat exchangers. Testing will be performed using coolants and conditions proposed for Gen IV Reactor designs. Preliminarymore » observations of the mechanical failure mechanisms of the heat exchangers using destructive and non-destructive methods is presented. Unit-cell finite element models assembled to help predict the mechanical behavior of these high-temperature components are discussed as well. Performance testing methodology is laid out in this paper along with preliminary modeling results, an introduction to x-ray and neutron inspection techniques, and results from a recent pressurization test of a printed-circuit heat exchanger. The operational and quality assurance knowledge gained from these models and validation tests will be useful to developers of supercritical CO 2 systems, which commonly employ printed-circuit heat exchangers.« less

  11. An analysis of mathematical connection ability based on student learning style on visualization auditory kinesthetic (VAK) learning model with self-assessment

    NASA Astrophysics Data System (ADS)

    Apipah, S.; Kartono; Isnarto

    2018-03-01

    This research aims to analyze the quality of VAK learning with self-assessment toward the ability of mathematical connection performed by students and to analyze students’ mathematical connection ability based on learning styles in VAK learning model with self-assessment. This research applies mixed method type with concurrent embedded design. The subject of this research consists of VIII grade students from State Junior High School 9 Semarang who apply visual learning style, auditory learning style, and kinesthetic learning style. The data of learning style is collected by using questionnaires, the data of mathematical connection ability is collected by performing tests, and the data of self-assessment is collected by using assessment sheets. The quality of learning is qualitatively valued from planning stage, realization stage, and valuation stage. The result of mathematical connection ability test is analyzed quantitatively by mean test, conducting completeness test, mean differentiation test, and mean proportional differentiation test. The result of the research shows that VAK learning model results in well-qualified learning regarded from qualitative and quantitative sides. Students with visual learning style perform the highest mathematical connection ability, students with kinesthetic learning style perform average mathematical connection ability, and students with auditory learning style perform the lowest mathematical connection ability.

  12. Ames Research Center Shear Tests of SLA-561V Heat Shield Material for Mars-Pathfinder

    NASA Technical Reports Server (NTRS)

    Tauber, Michael; Tran, Huy; Henline, William; Cartledge, Alan; Hui, Frank; Tran, Duoc; Zimmerman, Norm

    1996-01-01

    This report describes the results of arc-jet testing at Ames Research Center on behalf of Jet Propulsion Laboratory (JPL) for the development of the Mars-Pathfinder heat shield. The current test series evaluated the performance of the ablating SLA-561V heat shield material under shear conditions. In addition, the effectiveness of several methods of repairing damage to the heat shield were evaluated. A total of 26 tests were performed in March 1994 in the 2 in. X 9 in. arc-heated turbulent Duct Facility, including runs to calibrate the facility to obtain the desired shear stress conditions. A total of eleven models were tested. Three different conditions of shear and heating were used. The non-ablating surface shear stresses and the corresponding, approximate, non-ablating surface heating rates were as follows: Condition 1, 170 N/m(exp 2) and 22 W/cm(exp 2); Condition 2, 240 N/m(exp 2) and 40 W/cm(exp 2); Condition 3, 390 N/m(exp 2) and 51 W/cm(exp 2). The peak shear stress encountered in flight is represented approximately by Condition 1; however, the heating rate was much less than the peak flight value. The peak heating rate that was available in the facility (at Condition 3) was about 30 percent less than the maximum value encountered during flight. Seven standard ablation models were tested, of which three models were instrumented with thermocouples to obtain in-depth temperature profiles and temperature contours. An additional four models contained a variety of repair plugs, gaps, and seams. These models were used to evaluated different repair materials and techniques, and the effect of gaps and construction seams. Mass loss and surface recession measurements were made on all models. The models were visually inspected and photographed before and after each test. The SLA-561 V performed well; even at test Condition 3, the char remained intact. Most of the resins used for repairs and gap fillers performed poorly. However, repair plugs made of SLA-561V performed well. Approximately 70 percent of the thermocouples yielded good data.

  13. Test model designs for advanced refractory ceramic materials

    NASA Technical Reports Server (NTRS)

    Tran, Huy Kim

    1993-01-01

    The next generation of space vehicles will be subjected to severe aerothermal loads and will require an improved thermal protection system (TPS) and other advanced vehicle components. In order to ensure the satisfactory performance system (TPS) and other advanced vehicle materials and components, testing is to be performed in environments similar to space flight. The design and fabrication of the test models should be fairly simple but still accomplish test objectives. In the Advanced Refractory Ceramic Materials test series, the models and model holders will need to withstand the required heat fluxes of 340 to 817 W/sq cm or surface temperatures in the range of 2700 K to 3000 K. The model holders should provide one dimensional (1-D) heat transfer to the samples and the appropriate flow field without compromising the primary test objectives. The optical properties such as the effective emissivity, catalytic efficiency coefficients, thermal properties, and mass loss measurements are also taken into consideration in the design process. Therefore, it is the intent of this paper to demonstrate the design schemes for different models and model holders that would accommodate these test requirements and ensure the safe operation in a typical arc jet facility.

  14. Tests and Techniques for Characterizing and Modeling X-43A Electromechanical Actuators

    NASA Technical Reports Server (NTRS)

    Lin, Yohan; Baumann, Ethan; Bose, David M.; Beck, Roger; Jenney, Gavin

    2008-01-01

    A series of tests were conducted on the electromechanical actuators of the X-43A research vehicle in preparation for the Mach 7 and 10 hypersonic flights. The tests were required to help validate the actuator models in the simulation and acquire a better understanding of the installed system characteristics. Static and dynamic threshold, multichannel crosstalk, command-to-surface timing, free play, voltage regeneration, calibration, frequency response, compliance, hysteretic damping, and aircraft-in-the-loop tests were performed as part of this effort. This report describes the objectives, configurations, and methods for those tests, as well as the techniques used for developing second-order actuator models from the test results. When the first flight attempt failed because of actuator problems with the launch vehicle, further analysis and model enhancements were performed as part of the return-to-flight activities. High-fidelity models are described, along with the modifications that were required to match measurements taken from the research vehicle. Problems involving the implementation of these models into the X-43A simulation are also discussed. This report emphasizes lessons learned from the actuator testing, simulation modeling, and integration efforts for the X-43A hypersonic research vehicle.

  15. Composite Overwrapped Pressure Vessels (COPV) Stress Rupture Test: Part 2. Part 2

    NASA Technical Reports Server (NTRS)

    Russell, Richard; Flynn, Howard; Forth, Scott; Greene, Nathanael; Kezirian, Michael; Varanauski, Don; Leifeste, Mark; Yoder, Tommy; Woodworth, Warren

    2010-01-01

    One of the major concerns for the aging Space Shuttle fleet is the stress rupture life of composite overwrapped pressure vessels (COPVs). Stress rupture life of a COPY has been defined as the minimum time during which the composite maintains structural integrity considering the combined effects of stress levels and time. To assist in the evaluation of the aging COPVs in the Orbiter fleet an analytical reliability model was developed. The actual data used to construct this model was from testing of COPVs constructed of similar, but not exactly same materials and pressure cycles as used on Orbiter vessels. Since no actual Orbiter COPV stress rupture data exists the Space Shuttle Program decided to run a stress rupture test to compare to model predictions. Due to availability of spares, the testing was unfortunately limited to one 40" vessel. The stress rupture test was performed at maximum operating pressure at an elevated temperature to accelerate aging. The test was performed in two phases. The first phase, 130 F, a moderately accelerated test designed to achieve the midpoint of the model predicted point reliability. A more aggressive second phase, performed at 160 F, was designed to determine if the test article will exceed the 95% confidence interval ofthe model. In phase 3, the vessel pressure was increased to above maximum operating pressure while maintaining the phase 2 temperature. After reaching enough effectives hours to reach the 99.99% confidence level of the model phase 4 testing began when the temperature was increased to greater than 170 F. The vessel was maintained at phase 4 conditions until it failed after over 3 million effect hours. This paper will discuss the results of this test, it's implications and possible follow-on testing.

  16. Structural Design Strategies for Improved Small Overlap Crashworthiness Performance.

    PubMed

    Mueller, Becky C; Brethwaite, Andrew S; Zuby, David S; Nolan, Joseph M

    2014-11-01

    In 2012, the Insurance Institute for Highway Safety (IIHS) began a 64 km/h small overlap frontal crash test consumer information test program. Thirteen automakers already have redesigned models to improve test performance. One or more distinct strategies are evident in these redesigns: reinforcement of the occupant compartment, use of energy-absorbing fender structures, and the addition of engagement structures to induce vehicle lateral translation. Each strategy influences vehicle kinematics, posing additional challenges for the restraint systems. The objective of this two-part study was to examine how vehicles were modified to improve small overlap test performance and then to examine how these modifications affect dummy response and restraint system performance. Among eight models tested before and after design changes, occupant compartment intrusion reductions ranged from 6 cm to 45 cm, with the highest reductions observed in models with the largest number of modifications. All redesigns included additional occupant compartment reinforcement, one-third added structures to engage the barrier, and two modified a shotgun load path. Designs with engagement structures produced greater glance-off from the barrier and exhibited lower delta Vs but experienced more lateral outboard motion of the dummy. Designs with heavy reinforcement of the occupant compartment had higher vehicle accelerations and delta V. In three cases, these apparent trade-offs were not well addressed by concurrent changes in restraint systems and resulted in increased injury risk compared with the original tests. Among the 36 models tested after design changes, the extent of design changes correlated to structural performance. Half of the vehicles with the lowest intrusion levels incorporated aspects of all three design strategies. Vehicle kinematics and dummy and restraint system characteristics were similar to those observed in the before/after pairs. Different combinations of structural improvement strategies for improving small overlap test performance were found to be effective in reducing occupant compartment intrusion and improving dummy kinematics in the IIHS small overlap test with modest weight increase.

  17. 40 CFR 85.2203 - Short test standards for 1981 and later model year light-duty vehicles.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Control System Performance Warranty Short Tests § 85.2203 Short test standards for 1981 and later model... 1982 and later model year vehicles at high altitude to which high altitude certification standards of 1... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Short test standards for 1981 and...

  18. 40 CFR 85.2203 - Short test standards for 1981 and later model year light-duty vehicles.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Control System Performance Warranty Short Tests § 85.2203 Short test standards for 1981 and later model... 1982 and later model year vehicles at high altitude to which high altitude certification standards of 1... 40 Protection of Environment 19 2012-07-01 2012-07-01 false Short test standards for 1981 and...

  19. 40 CFR 85.2203 - Short test standards for 1981 and later model year light-duty vehicles.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Control System Performance Warranty Short Tests § 85.2203 Short test standards for 1981 and later model... 1982 and later model year vehicles at high altitude to which high altitude certification standards of 1... 40 Protection of Environment 18 2011-07-01 2011-07-01 false Short test standards for 1981 and...

  20. 40 CFR 85.2204 - Short test standards for 1981 and later model year light-duty trucks.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Control System Performance Warranty Short Tests § 85.2204 Short test standards for 1981 and later model... later model year trucks at high altitude to which high altitude certification standards of 2.0 g/mile HC... 40 Protection of Environment 19 2013-07-01 2013-07-01 false Short test standards for 1981 and...

  1. 40 CFR 85.2204 - Short test standards for 1981 and later model year light-duty trucks.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Control System Performance Warranty Short Tests § 85.2204 Short test standards for 1981 and later model... later model year trucks at high altitude to which high altitude certification standards of 2.0 g/mile HC... 40 Protection of Environment 18 2011-07-01 2011-07-01 false Short test standards for 1981 and...

  2. 40 CFR 85.2204 - Short test standards for 1981 and later model year light-duty trucks.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Control System Performance Warranty Short Tests § 85.2204 Short test standards for 1981 and later model... later model year trucks at high altitude to which high altitude certification standards of 2.0 g/mile HC... 40 Protection of Environment 19 2012-07-01 2012-07-01 false Short test standards for 1981 and...

  3. 40 CFR 85.2203 - Short test standards for 1981 and later model year light-duty vehicles.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Control System Performance Warranty Short Tests § 85.2203 Short test standards for 1981 and later model... 1982 and later model year vehicles at high altitude to which high altitude certification standards of 1... 40 Protection of Environment 19 2013-07-01 2013-07-01 false Short test standards for 1981 and...

  4. 40 CFR 85.2204 - Short test standards for 1981 and later model year light-duty trucks.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Control System Performance Warranty Short Tests § 85.2204 Short test standards for 1981 and later model... later model year trucks at high altitude to which high altitude certification standards of 2.0 g/mile HC... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Short test standards for 1981 and...

  5. Achieving Tier 4 Emissions in Biomass Cookstoves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marchese, Anthony; DeFoort, Morgan; Gao, Xinfeng

    Previous literature on top-lit updraft (TLUD) gasifier cookstoves suggested that these stoves have the potential to be the lowest emitting biomass cookstove. However, the previous literature also demonstrated a high degree of variability in TLUD emissions and performance, and a lack of general understanding of the TLUD combustion process. The objective of this study was to improve understanding of the combustion process in TLUD cookstoves. In a TLUD, biomass is gasified and the resulting producer gas is burned in a secondary flame located just above the fuel bed. The goal of this project is to enable the design of amore » more robust TLUD that consistently meets Tier 4 performance targets through a better understanding of the underlying combustion physics. The project featured a combined modeling, experimental and product design/development effort comprised of four different activities: Development of a model of the gasification process in the biomass fuel bed; Development of a CFD model of the secondary combustion zone; Experiments with a modular TLUD test bed to provide information on how stove design, fuel properties, and operating mode influence performance and provide data needed to validate the fuel bed model; Planar laser-induced fluorescence (PLIF) experiments with a two-dimensional optical test bed to provide insight into the flame dynamics in the secondary combustion zone and data to validate the CFD model; Design, development and field testing of a market ready TLUD prototype. Over 180 tests of 40 different configurations of the modular TLUD test bed were performed to demonstrate how stove design, fuel properties and operating mode influences performance, and the conditions under which Tier 4 emissions are obtainable. Images of OH and acetone PLIF were collected at 10 kHz with the optical test bed. The modeling and experimental results informed the design of a TLUD prototype that met Tier 3 to Tier 4 specifications in emissions and Tier 2 in efficiency. The final prototype was field tested in India.« less

  6. Chinese College Test Takers' Individual Differences and Reading Test Performance: A Structural Equation Modeling Approach.

    PubMed

    Zhang, Limei

    2016-06-01

    This study reports on the relationships between test takers' individual differences and their performance on a reading comprehension test. A total of 518 Chinese college students (252 women and 256 men; M age = 19.26 year, SD = 0.98) answered a questionnaire and sit for a reading comprehension test. The study found that test takers' L2 language proficiency was closely linked to their test performance. Test takers' employment of strategies was significantly and positively associated with their performance on the test. Test takers' motivation was found to be significantly associated with reading test performance. Test anxiety was negatively related to their use of reading strategies and test performance. The results of the study lent support to the threshold hypothesis of language proficiency. The implications for classroom teaching were provided. © The Author(s) 2016.

  7. An Empirical Study of a Solo Performance Assessment Model

    ERIC Educational Resources Information Center

    Russell, Brian E.

    2015-01-01

    The purpose of this study was to test a hypothesized model of solo music performance assessment. Specifically, this study investigates the influence of technique and musical expression on perceptions of overall performance quality. The Aural Musical Performance Quality (AMPQ) measure was created to measure overall performance quality, technique,…

  8. A Model of Metacognition, Achievement Goal Orientation, Learning Style and Self-Efficacy

    ERIC Educational Resources Information Center

    Coutinho, Savia A.; Neuman, George

    2008-01-01

    Structural equation modelling was used to test a model integrating achievement goal orientation, learning style, self-efficacy and metacognition into a single framework that explained and predicted variation in performance. Self-efficacy was the strongest predictor of performance. Metacognition was a weak predictor of performance. Deep processing…

  9. Ice Accretions and Icing Effects for Modern Airfoils

    NASA Technical Reports Server (NTRS)

    Addy, Harold E., Jr.

    2000-01-01

    Icing tests were conducted to document ice shapes formed on three different two-dimensional airfoils and to study the effects of the accreted ice on aerodynamic performance. The models tested were representative of airfoil designs in current use for each of the commercial transport, business jet, and general aviation categories of aircraft. The models were subjected to a range of icing conditions in an icing wind tunnel. The conditions were selected primarily from the Federal Aviation Administration's Federal Aviation Regulations 25 Appendix C atmospheric icing conditions. A few large droplet icing conditions were included. To verify the aerodynamic performance measurements, molds were made of selected ice shapes formed in the icing tunnel. Castings of the ice were made from the molds and placed on a model in a dry, low-turbulence wind tunnel where precision aerodynamic performance measurements were made. Documentation of all the ice shapes and the aerodynamic performance measurements made during the icing tunnel tests is included in this report. Results from the dry, low-turbulence wind tunnel tests are also presented.

  10. Neuropsychological study of FASD in a sample of American Indian children: processing simple versus complex information.

    PubMed

    Aragón, Alfredo S; Kalberg, Wendy O; Buckley, David; Barela-Scott, Lindsey M; Tabachnick, Barbara G; May, Philip A

    2008-12-01

    Although a large body of literature exists on cognitive functioning in alcohol-exposed children, it is unclear if there is a signature neuropsychological profile in children with Fetal Alcohol Spectrum Disorders (FASD). This study assesses cognitive functioning in children with FASD from several American Indian reservations in the Northern Plains States, and it applies a hierarchical model of simple versus complex information processing to further examine cognitive function. We hypothesized that complex tests would discriminate between children with FASD and culturally similar controls, while children with FASD would perform similar to controls on relatively simple tests. Our sample includes 32 control children and 24 children with a form of FASD [fetal alcohol syndrome (FAS) = 10, partial fetal alcohol syndrome (PFAS) = 14]. The test battery measures general cognitive ability, verbal fluency, executive functioning, memory, and fine-motor skills. Many of the neuropsychological tests produced results consistent with a hierarchical model of simple versus complex processing. The complexity of the tests was determined "a priori" based on the number of cognitive processes involved in them. Multidimensional scaling was used to statistically analyze the accuracy of classifying the neurocognitive tests into a simple versus complex dichotomy. Hierarchical logistic regression models were then used to define the contribution made by complex versus simple tests in predicting the significant differences between children with FASD and controls. Complex test items discriminated better than simple test items. The tests that conformed well to the model were the Verbal Fluency, Progressive Planning Test (PPT), the Lhermitte memory tasks, and the Grooved Pegboard Test (GPT). The FASD-grouped children, when compared with controls, demonstrated impaired performance on letter fluency, while their performance was similar on category fluency. On the more complex PPT trials (problems 5 to 8), as well as the Lhermitte logical tasks, the FASD group performed the worst. The differential performance between children with FASD and controls was evident across various neuropsychological measures. The children with FASD performed significantly more poorly on the complex tasks than did the controls. The identification of a neurobehavioral profile in children with prenatal alcohol exposure will help clinicians identify and diagnose children with FASD.

  11. Aeroservoelastic Modeling and Validation of a Thrust-Vectoring F/A-18 Aircraft

    NASA Technical Reports Server (NTRS)

    Brenner, Martin J.

    1996-01-01

    An F/A-18 aircraft was modified to perform flight research at high angles of attack (AOA) using thrust vectoring and advanced control law concepts for agility and performance enhancement and to provide a testbed for the computational fluid dynamics community. Aeroservoelastic (ASE) characteristics had changed considerably from the baseline F/A-18 aircraft because of structural and flight control system amendments, so analyses and flight tests were performed to verify structural stability at high AOA. Detailed actuator models that consider the physical, electrical, and mechanical elements of actuation and its installation on the airframe were employed in the analysis to accurately model the coupled dynamics of the airframe, actuators, and control surfaces. This report describes the ASE modeling procedure, ground test validation, flight test clearance, and test data analysis for the reconfigured F/A-18 aircraft. Multivariable ASE stability margins are calculated from flight data and compared to analytical margins. Because this thrust-vectoring configuration uses exhaust vanes to vector the thrust, the modeling issues are nearly identical for modem multi-axis nozzle configurations. This report correlates analysis results with flight test data and makes observations concerning the application of the linear predictions to thrust-vectoring and high-AOA flight.

  12. Modeling and analysis of chill and fill processes for the cryogenic storage and transfer engineering development unit tank

    NASA Astrophysics Data System (ADS)

    Hedayat, A.; Cartagena, W.; Majumdar, A. K.; LeClair, A. C.

    2016-03-01

    NASA's future missions may require long-term storage and transfer of cryogenic propellants. The Engineering Development Unit (EDU), a NASA in-house effort supported by both Marshall Space Flight Center (MSFC) and Glenn Research Center, is a cryogenic fluid management (CFM) test article that primarily serves as a manufacturing pathfinder and a risk reduction task for a future CFM payload. The EDU test article comprises a flight-like tank, internal components, insulation, and attachment struts. The EDU is designed to perform integrated passive thermal control performance testing with liquid hydrogen (LH2) in a test-like vacuum environment. A series of tests, with LH2 as a testing fluid, was conducted at Test Stand 300 at MSFC during the summer of 2014. The objective of this effort was to develop a thermal/fluid model for evaluating the thermodynamic behavior of the EDU tank during the chill and fill processes. The Generalized Fluid System Simulation Program, an MSFC in-house general-purpose computer program for flow network analysis, was utilized to model and simulate the chill and fill portion of the testing. The model contained the LH2 supply source, feed system, EDU tank, and vent system. The test setup, modeling description, and comparison of model predictions with the test data are presented.

  13. Greased Lightning (GL-10) Performance Flight Research: Flight Data Report

    NASA Technical Reports Server (NTRS)

    McSwain, Robert G.; Glaab, Louis J.; Theodore, Colin R.; Rhew, Ray D. (Editor); North, David D. (Editor)

    2017-01-01

    Modern aircraft design methods have produced acceptable designs for large conventional aircraft performance. With revolutionary electronic propulsion technologies fueled by the growth in the small UAS (Unmanned Aerial Systems) industry, these same prediction models are being applied to new smaller, and experimental design concepts requiring a VTOL (Vertical Take Off and Landing) capability for ODM (On Demand Mobility). A 50% sub-scale GL-10 flight model was built and tested to demonstrate the transition from hover to forward flight utilizing DEP (Distributed Electric Propulsion)[1][2]. In 2016 plans were put in place to conduct performance flight testing on the 50% sub-scale GL-10 flight model to support a NASA project called DELIVER (Design Environment for Novel Vertical Lift Vehicles). DELIVER was investigating the feasibility of including smaller and more experimental aircraft configurations into a NASA design tool called NDARC (NASA Design and Analysis of Rotorcraft)[3]. This report covers the performance flight data collected during flight testing of the GL-10 50% sub-scale flight model conducted at Beaver Dam Airpark, VA. Overall the flight test data provides great insight into how well our existing conceptual design tools predict the performance of small scale experimental DEP concepts. Low fidelity conceptual design tools estimated the (L/D)( sub max)of the GL-10 50% sub-scale flight model to be 16. Experimentally measured (L/D)( sub max) for the GL-10 50% scale flight model was 7.2. The aerodynamic performance predicted versus measured highlights the complexity of wing and nacelle interactions which is not currently accounted for in existing low fidelity tools.

  14. Design and Testing of a Liquid Nitrous Oxide and Ethanol Fueled Rocket Engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Youngblood, Stewart

    A small-scale, bi-propellant, liquid fueled rocket engine and supporting test infrastructure were designed and constructed at the Energetic Materials Research and Testing Center (EMRTC). This facility was used to evaluate liquid nitrous oxide and ethanol as potential rocket propellants. Thrust and pressure measurements along with high-speed digital imaging of the rocket exhaust plume were made. This experimental data was used for validation of a computational model developed of the rocket engine tested. The developed computational model was utilized to analyze rocket engine performance across a range of operating pressures, fuel-oxidizer mixture ratios, and outlet nozzle configurations. A comparative study ofmore » the modeling of a liquid rocket engine was performed using NASA CEA and Cantera, an opensource equilibrium code capable of being interfaced with MATLAB. One goal of this modeling was to demonstrate the ability of Cantera to accurately model the basic chemical equilibrium, thermodynamics, and transport properties for varied fuel and oxidizer operating conditions. Once validated for basic equilibrium, an expanded MATLAB code, referencing Cantera, was advanced beyond CEAs capabilities to predict rocket engine performance as a function of supplied propellant flow rate and rocket engine nozzle dimensions. Cantera was found to comparable favorably to CEA for making equilibrium calculations, supporting its use as an alternative to CEA. The developed rocket engine performs as predicted, demonstrating the developedMATLAB rocket engine model was successful in predicting real world rocket engine performance. Finally, nitrous oxide and ethanol were shown to perform well as rocket propellants, with specific impulses experimentally recorded in the range of 250 to 260 seconds.« less

  15. Improving the performance of streamflow forecasting model using data-preprocessing technique in Dungun River Basin

    NASA Astrophysics Data System (ADS)

    Khai Tiu, Ervin Shan; Huang, Yuk Feng; Ling, Lloyd

    2018-03-01

    An accurate streamflow forecasting model is important for the development of flood mitigation plan as to ensure sustainable development for a river basin. This study adopted Variational Mode Decomposition (VMD) data-preprocessing technique to process and denoise the rainfall data before putting into the Support Vector Machine (SVM) streamflow forecasting model in order to improve the performance of the selected model. Rainfall data and river water level data for the period of 1996-2016 were used for this purpose. Homogeneity tests (Standard Normal Homogeneity Test, the Buishand Range Test, the Pettitt Test and the Von Neumann Ratio Test) and normality tests (Shapiro-Wilk Test, Anderson-Darling Test, Lilliefors Test and Jarque-Bera Test) had been carried out on the rainfall series. Homogenous and non-normally distributed data were found in all the stations, respectively. From the recorded rainfall data, it was observed that Dungun River Basin possessed higher monthly rainfall from November to February, which was during the Northeast Monsoon. Thus, the monthly and seasonal rainfall series of this monsoon would be the main focus for this research as floods usually happen during the Northeast Monsoon period. The predicted water levels from SVM model were assessed with the observed water level using non-parametric statistical tests (Biased Method, Kendall's Tau B Test and Spearman's Rho Test).

  16. Thermal Model Predictions of Advanced Stirling Radioisotope Generator Performance

    NASA Technical Reports Server (NTRS)

    Wang, Xiao-Yen J.; Fabanich, William Anthony; Schmitz, Paul C.

    2014-01-01

    This paper presents recent thermal model results of the Advanced Stirling Radioisotope Generator (ASRG). The three-dimensional (3D) ASRG thermal power model was built using the Thermal Desktop(trademark) thermal analyzer. The model was correlated with ASRG engineering unit test data and ASRG flight unit predictions from Lockheed Martin's (LM's) I-deas(trademark) TMG thermal model. The auxiliary cooling system (ACS) of the ASRG is also included in the ASRG thermal model. The ACS is designed to remove waste heat from the ASRG so that it can be used to heat spacecraft components. The performance of the ACS is reported under nominal conditions and during a Venus flyby scenario. The results for the nominal case are validated with data from Lockheed Martin. Transient thermal analysis results of ASRG for a Venus flyby with a representative trajectory are also presented. In addition, model results of an ASRG mounted on a Cassini-like spacecraft with a sunshade are presented to show a way to mitigate the high temperatures of a Venus flyby. It was predicted that the sunshade can lower the temperature of the ASRG alternator by 20 C for the representative Venus flyby trajectory. The 3D model also was modified to predict generator performance after a single Advanced Stirling Convertor failure. The geometry of the Microtherm HT insulation block on the outboard side was modified to match deformation and shrinkage observed during testing of a prototypic ASRG test fixture by LM. Test conditions and test data were used to correlate the model by adjusting the thermal conductivity of the deformed insulation to match the post-heat-dump steady state temperatures. Results for these conditions showed that the performance of the still-functioning inboard ACS was unaffected.

  17. Modelling of LOCA Tests with the BISON Fuel Performance Code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williamson, Richard L; Pastore, Giovanni; Novascone, Stephen Rhead

    2016-05-01

    BISON is a modern finite-element based, multidimensional nuclear fuel performance code that is under development at Idaho National Laboratory (USA). Recent advances of BISON include the extension of the code to the analysis of LWR fuel rod behaviour during loss-of-coolant accidents (LOCAs). In this work, BISON models for the phenomena relevant to LWR cladding behaviour during LOCAs are described, followed by presentation of code results for the simulation of LOCA tests. Analysed experiments include separate effects tests of cladding ballooning and burst, as well as the Halden IFA-650.2 fuel rod test. Two-dimensional modelling of the experiments is performed, and calculationsmore » are compared to available experimental data. Comparisons include cladding burst pressure and temperature in separate effects tests, as well as the evolution of fuel rod inner pressure during ballooning and time to cladding burst. Furthermore, BISON three-dimensional simulations of separate effects tests are performed, which demonstrate the capability to reproduce the effect of azimuthal temperature variations in the cladding. The work has been carried out in the frame of the collaboration between Idaho National Laboratory and Halden Reactor Project, and the IAEA Coordinated Research Project FUMAC.« less

  18. Modeling the Rapid Boil-Off of a Cryogenic Liquid When Injected into a Low Pressure Cavity

    NASA Technical Reports Server (NTRS)

    Lira, Eric

    2016-01-01

    Many launch vehicle cryogenic applications require the modeling of injecting a cryogenic liquid into a low pressure cavity. The difficulty of such analyses lies in accurately predicting the heat transfer coefficient between the cold liquid and a warm wall in a low pressure environment. The heat transfer coefficient and the behavior of the liquid is highly dependent on the mass flow rate into the cavity, the cavity wall temperature and the cavity volume. Testing was performed to correlate the modeling performed using Thermal Desktop and Sinda Fluint Thermal and Fluids Analysis Software. This presentation shall describe a methodology to model the cryogenic process using Sinda Fluint, a description of the cryogenic test set up, a description of the test procedure and how the model was correlated to match the test results.

  19. Preliminary Tests of a New Low-Cost Photogrammetric System

    NASA Astrophysics Data System (ADS)

    Santise, M.; Thoeni, K.; Roncella, R.; Sloan, S. W.; Giacomini, A.

    2017-11-01

    This paper presents preliminary tests of a new low-cost photogrammetric system for 4D modelling of large scale areas for civil engineering applications. The system consists of five stand-alone units. Each of the units is composed of a Raspberry Pi 2 Model B (RPi2B) single board computer connected to a PiCamera Module V2 (8 MP) and is powered by a 10 W solar panel. The acquisition of the images is performed automatically using Python scripts and the OpenCV library. Images are recorded at different times during the day and automatically uploaded onto a FTP server from where they can be accessed for processing. Preliminary tests and outcomes of the system are discussed in detail. The focus is on the performance assessment of the low-cost sensor and the quality evaluation of the digital surface models generated by the low-cost photogrammetric systems in the field under real test conditions. Two different test cases were set up in order to calibrate the low-cost photogrammetric system and to assess its performance. First comparisons with a TLS model show a good agreement.

  20. Cognitive Models for Integrating Testing and Instruction, Phase II. Methodology Program.

    ERIC Educational Resources Information Center

    Quellmalz, Edys S.; Shaha, Steven

    The potential of a cognitive model task analysis scheme (CMS) that specifies features of test problems shown by research to affect performance is explored. CMS describes the general skill area and the generic task or problem type. It elaborates features of the problem situation and required responses found by research to influence performance.…

  1. Effect of Polya Problem-Solving Model on Senior Secondary School Students' Performance in Current Electricity

    ERIC Educational Resources Information Center

    Olaniyan, Ademola Olatide; Omosewo, Esther O.; Nwankwo, Levi I.

    2015-01-01

    This study was designed to investigate the Effect of Polya Problem-Solving Model on Senior School Students' Performance in Current Electricity. It was a quasi experimental study of non- randomized, non equivalent pre-test post-test control group design. Three research questions were answered and corresponding three research hypotheses were tested…

  2. 40 CFR 51.352 - Basic I/M performance standard.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...% emission test failure rate among pre-1981 model year vehicles. (10) Waiver rate. A 0% waiver rate. (11... 20% emission test failure rate among pre-1981 model year vehicles. (11) Waiver rate. A 0% waiver rate... Requirements § 51.352 Basic I/M performance standard. (a) Basic I/M programs shall be designed and implemented...

  3. 40 CFR 51.352 - Basic I/M performance standard.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...% emission test failure rate among pre-1981 model year vehicles. (10) Waiver rate. A 0% waiver rate. (11... 20% emission test failure rate among pre-1981 model year vehicles. (11) Waiver rate. A 0% waiver rate... Requirements § 51.352 Basic I/M performance standard. (a) Basic I/M programs shall be designed and implemented...

  4. 40 CFR 51.352 - Basic I/M performance standard.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...% emission test failure rate among pre-1981 model year vehicles. (10) Waiver rate. A 0% waiver rate. (11... 20% emission test failure rate among pre-1981 model year vehicles. (11) Waiver rate. A 0% waiver rate... Requirements § 51.352 Basic I/M performance standard. (a) Basic I/M programs shall be designed and implemented...

  5. 40 CFR 51.352 - Basic I/M performance standard.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...% emission test failure rate among pre-1981 model year vehicles. (10) Waiver rate. A 0% waiver rate. (11... 20% emission test failure rate among pre-1981 model year vehicles. (11) Waiver rate. A 0% waiver rate... Requirements § 51.352 Basic I/M performance standard. (a) Basic I/M programs shall be designed and implemented...

  6. 40 CFR 51.352 - Basic I/M performance standard.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...% emission test failure rate among pre-1981 model year vehicles. (10) Waiver rate. A 0% waiver rate. (11... 20% emission test failure rate among pre-1981 model year vehicles. (11) Waiver rate. A 0% waiver rate... Requirements § 51.352 Basic I/M performance standard. (a) Basic I/M programs shall be designed and implemented...

  7. Performance Modeling of Experimental Laser Lightcrafts

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See; Chen, Yen-Sen; Liu, Jiwen; Myrabo, Leik N.; Mead, Franklin B., Jr.; Turner, Jim (Technical Monitor)

    2001-01-01

    A computational plasma aerodynamics model is developed to study the performance of a laser propelled Lightcraft. The computational methodology is based on a time-accurate, three-dimensional, finite-difference, chemically reacting, unstructured grid, pressure-based formulation. The underlying physics are added and tested systematically using a building-block approach. The physics modeled include non-equilibrium thermodynamics, non-equilibrium air-plasma finite-rate kinetics, specular ray tracing, laser beam energy absorption and refraction by plasma, non-equilibrium plasma radiation, and plasma resonance. A series of transient computations are performed at several laser pulse energy levels and the simulated physics are discussed and compared with those of tests and literatures. The predicted coupling coefficients for the Lightcraft compared reasonably well with those of tests conducted on a pendulum apparatus.

  8. Modeling of 1.5 μm range gated imaging for small surface vessel identification

    NASA Astrophysics Data System (ADS)

    Espinola, Richard L.; Steinvall, Ove; Elmquist, Magnus; Karlsson, Kjell

    2010-10-01

    Within the framework of the NATO group (NATO SET-132/RTG-72) on imaging ladars, a test was performed to collect simultaneous multi-mode LADAR signatures of maritime objects entering and leaving San Diego Harbor. Beside ladars, passive sensors were also employed during the test which occurred during April 2009 from Point Loma and the harbor in San Diego. This paper will report on 1.5 μm gated imaging on a number of small civilian surface vessels with the aim to present human perception experimental results and comparisons with sensor performance models developed by US Army RDECOM CERDEC NVESD. We use controlled human perception tests to measure target identification performance and compare the experimental results with model predictions.

  9. What Different Kinds of Stratification Can Reveal about the Generalizability of Data-Mined Skill Assessment Models

    ERIC Educational Resources Information Center

    Sao Pedro, Michael A.; Baker, Ryan S. J. d.; Gobert, Janice D.

    2013-01-01

    When validating assessment models built with data mining, generalization is typically tested at the student-level, where models are tested on new students. This approach, though, may fail to find cases where model performance suffers if other aspects of those cases relevant to prediction are not well represented. We explore this here by testing if…

  10. Adsorbent testing and mathematical modeling of a solid amine regenerative CO2 and H2O removal system

    NASA Technical Reports Server (NTRS)

    Jeng, F. F.; Williamson, R. G.; Quellette, F. A.; Edeen, M. A.; Lin, C. H.

    1991-01-01

    The paper examines the design and the construction details of the test bed built for testing a solid-amine-based Regenerable CO2 Removal System (RCRS) built at the NASA/Johnson Space Center for the extended Orbiter missions. The results of tests are presented, including those for the adsorption breakthrough and the adsorption and desorption of CO2 and H2O vapor. A model for predicting the performance of regenerative CO2 and H2O vapor adsorption of the solid amine system under various operating conditions was developed in parallel with the testing of the test stand, using the coefficient of mass transfer calculated from test results. The results of simulations are shown to predict the adsorption performance of the Extended Duration Orbiter test bed fairly well. For the application to the RCRS at various operating conditions the model has to be modified.

  11. Modeling hurricane evacuation traffic : testing the gravity and intervening opportunity models as models of destination choice in hurricane evacuation.

    DOT National Transportation Integrated Search

    2008-03-01

    The objectives of this study are to test whether the Gravity and Intervening Opportunity Models (IOM) can successfully reproduce aggregate evacuation destination choice observed in evacuation behavior from Hurricane Floyd, compare the performance of ...

  12. A Frequency-Domain Substructure System Identification Algorithm

    NASA Technical Reports Server (NTRS)

    Blades, Eric L.; Craig, Roy R., Jr.

    1996-01-01

    A new frequency-domain system identification algorithm is presented for system identification of substructures, such as payloads to be flown aboard the Space Shuttle. In the vibration test, all interface degrees of freedom where the substructure is connected to the carrier structure are either subjected to active excitation or are supported by a test stand with the reaction forces measured. The measured frequency-response data is used to obtain a linear, viscous-damped model with all interface-degree of freedom entries included. This model can then be used to validate analytical substructure models. This procedure makes it possible to obtain not only the fixed-interface modal data associated with a Craig-Bampton substructure model, but also the data associated with constraint modes. With this proposed algorithm, multiple-boundary-condition tests are not required, and test-stand dynamics is accounted for without requiring a separate modal test or finite element modeling of the test stand. Numerical simulations are used in examining the algorithm's ability to estimate valid reduced-order structural models. The algorithm's performance when frequency-response data covering narrow and broad frequency bandwidths is used as input is explored. Its performance when noise is added to the frequency-response data and the use of different least squares solution techniques are also examined. The identified reduced-order models are also compared for accuracy with other test-analysis models and a formulation for a Craig-Bampton test-analysis model is also presented.

  13. Evaluation of the channelized Hotelling observer with an internal-noise model in a train-test paradigm for cardiac SPECT defect detection.

    PubMed

    Brankov, Jovan G

    2013-10-21

    The channelized Hotelling observer (CHO) has become a widely used approach for evaluating medical image quality, acting as a surrogate for human observers in early-stage research on assessment and optimization of imaging devices and algorithms. The CHO is typically used to measure lesion detectability. Its popularity stems from experiments showing that the CHO's detection performance can correlate well with that of human observers. In some cases, CHO performance overestimates human performance; to counteract this effect, an internal-noise model is introduced, which allows the CHO to be tuned to match human-observer performance. Typically, this tuning is achieved using example data obtained from human observers. We argue that this internal-noise tuning step is essentially a model training exercise; therefore, just as in supervised learning, it is essential to test the CHO with an internal-noise model on a set of data that is distinct from that used to tune (train) the model. Furthermore, we argue that, if the CHO is to provide useful insights about new imaging algorithms or devices, the test data should reflect such potential differences from the training data; it is not sufficient simply to use new noise realizations of the same imaging method. Motivated by these considerations, the novelty of this paper is the use of new model selection criteria to evaluate ten established internal-noise models, utilizing four different channel models, in a train-test approach. Though not the focus of the paper, a new internal-noise model is also proposed that outperformed the ten established models in the cases tested. The results, using cardiac perfusion SPECT data, show that the proposed train-test approach is necessary, as judged by the newly proposed model selection criteria, to avoid spurious conclusions. The results also demonstrate that, in some models, the optimal internal-noise parameter is very sensitive to the choice of training data; therefore, these models are prone to overfitting, and will not likely generalize well to new data. In addition, we present an alternative interpretation of the CHO as a penalized linear regression wherein the penalization term is defined by the internal-noise model.

  14. GROUND-WATER MODEL TESTING: SYSTEMATIC EVALUATION AND TESTING OF CODE FUNCTIONALITY AND PERFORMANCE

    EPA Science Inventory

    Effective use of ground-water simulation codes as management decision tools requires the establishment of their functionality, performance characteristics, and applicability to the problem at hand. This is accomplished through application of a systematic code-testing protocol and...

  15. Considering Horn's Parallel Analysis from a Random Matrix Theory Point of View.

    PubMed

    Saccenti, Edoardo; Timmerman, Marieke E

    2017-03-01

    Horn's parallel analysis is a widely used method for assessing the number of principal components and common factors. We discuss the theoretical foundations of parallel analysis for principal components based on a covariance matrix by making use of arguments from random matrix theory. In particular, we show that (i) for the first component, parallel analysis is an inferential method equivalent to the Tracy-Widom test, (ii) its use to test high-order eigenvalues is equivalent to the use of the joint distribution of the eigenvalues, and thus should be discouraged, and (iii) a formal test for higher-order components can be obtained based on a Tracy-Widom approximation. We illustrate the performance of the two testing procedures using simulated data generated under both a principal component model and a common factors model. For the principal component model, the Tracy-Widom test performs consistently in all conditions, while parallel analysis shows unpredictable behavior for higher-order components. For the common factor model, including major and minor factors, both procedures are heuristic approaches, with variable performance. We conclude that the Tracy-Widom procedure is preferred over parallel analysis for statistically testing the number of principal components based on a covariance matrix.

  16. Hover and forward flight acoustics and performance of a small-scale helicopter rotor system

    NASA Technical Reports Server (NTRS)

    Kitaplioglu, C.; Shinoda, P.

    1985-01-01

    A 2.1-m diam., 1/6-scale model helicopter main rotor was tested in hover in the test section of the NASA Ames 40- by 80- Foot Wind Tunnel. Subsequently, it was tested in forward flight in the Ames 7- by 10-Foot Wind Tunnel. The primary objective of the tests was to obtain performance and noise data on a small-scale rotor at various thrust coefficients, tip Mach numbers, and, in the later case, various advance ratios, for comparisons with similar existing data on full-scale helicopter rotors. This comparison yielded a preliminary evaluation of the scaling of helicopter rotor performance and acoustic radiation in hover and in forward flight. Correlation between model-scale and full-scale performance and acoustics was quite good in hover. In forward flight, however, there were significant differences in both performance and acoustic characteristics. A secondary objective was to contribute to a data base that will permit the estimation of facility effects on acoustic testing.

  17. Development, Analysis and Testing of the High Speed Research Flexible Semispan Model

    NASA Technical Reports Server (NTRS)

    Schuster, David M.; Spain, Charles V.; Turnock, David L.; Rausch, Russ D.; Hamouda, M-Nabil; Vogler, William A.; Stockwell, Alan E.

    1999-01-01

    This report presents the work performed by Lockheed Martin Engineering and Sciences (LMES) in support of the High Speed Research (HSR) Flexible Semispan Model (FSM) wind-tunnel test. The test was conducted in order to assess the aerodynamic and aeroelastic character of a flexible high speed civil transport wing. Data was acquired for the purpose of code validation and trend evaluation for this type of wing. The report describes a number of activities in preparing for and conducting the wind-tunnel test. These included coordination of the design and fabrication, development of analytical models, analysis/hardware correlation, performance of laboratory tests, monitoring of model safety issues, and wind-tunnel data acquisition and reduction. Descriptions and relevant evaluations associated with the pretest data are given in sections 1 through 6, followed by pre- and post-test flutter analysis in section 7, and the results of the aerodynamics/loads test in section 8. Finally, section 9 provides some recommendations based on lessons learned throughout the FSM program.

  18. A Model-Based Anomaly Detection Approach for Analyzing Streaming Aircraft Engine Measurement Data

    NASA Technical Reports Server (NTRS)

    Simon, Donald L.; Rinehart, Aidan W.

    2014-01-01

    This paper presents a model-based anomaly detection architecture designed for analyzing streaming transient aircraft engine measurement data. The technique calculates and monitors residuals between sensed engine outputs and model predicted outputs for anomaly detection purposes. Pivotal to the performance of this technique is the ability to construct a model that accurately reflects the nominal operating performance of the engine. The dynamic model applied in the architecture is a piecewise linear design comprising steady-state trim points and dynamic state space matrices. A simple curve-fitting technique for updating the model trim point information based on steadystate information extracted from available nominal engine measurement data is presented. Results from the application of the model-based approach for processing actual engine test data are shown. These include both nominal fault-free test case data and seeded fault test case data. The results indicate that the updates applied to improve the model trim point information also improve anomaly detection performance. Recommendations for follow-on enhancements to the technique are also presented and discussed.

  19. A Model-Based Anomaly Detection Approach for Analyzing Streaming Aircraft Engine Measurement Data

    NASA Technical Reports Server (NTRS)

    Simon, Donald L.; Rinehart, Aidan Walker

    2015-01-01

    This paper presents a model-based anomaly detection architecture designed for analyzing streaming transient aircraft engine measurement data. The technique calculates and monitors residuals between sensed engine outputs and model predicted outputs for anomaly detection purposes. Pivotal to the performance of this technique is the ability to construct a model that accurately reflects the nominal operating performance of the engine. The dynamic model applied in the architecture is a piecewise linear design comprising steady-state trim points and dynamic state space matrices. A simple curve-fitting technique for updating the model trim point information based on steadystate information extracted from available nominal engine measurement data is presented. Results from the application of the model-based approach for processing actual engine test data are shown. These include both nominal fault-free test case data and seeded fault test case data. The results indicate that the updates applied to improve the model trim point information also improve anomaly detection performance. Recommendations for follow-on enhancements to the technique are also presented and discussed.

  20. Pressure-Distribution Measurements on the Tail Surfaces of a Rotating Model of the Design BFW - M31

    NASA Technical Reports Server (NTRS)

    Kohler, M.; Mautz, W.

    1949-01-01

    In order to obtain insight into the flow conditions on tail surfaces on airplanes during spins, pressure-distribution measurements were performed on a rotating model of the design BFW-M31. For the time being, the tests were made for only one angle of attack (alpha = 60 degrees) and various angles of yaw and rudder angles. The results of these measurements are given; the construction of the model, and the test arrangement used are described. Measurements to be performed later and alterations planned in the test arrangement are pointed out.

  1. Composite panel development at JPL

    NASA Technical Reports Server (NTRS)

    Mcelroy, Paul; Helms, Rich

    1988-01-01

    Parametric computer studies can be use in a cost effective manner to determine optimized composite mirror panel designs. An InterDisciplinary computer Model (IDM) was created to aid in the development of high precision reflector panels for LDR. The materials properties, thermal responses, structural geometries, and radio/optical precision are synergistically analyzed for specific panel designs. Promising panels designs are fabricated and tested so that comparison with panel test results can be used to verify performance prediction models and accommodate design refinement. The iterative approach of computer design and model refinement with performance testing and materials optimization has shown good results for LDR panels.

  2. Enhancing performance of P300-Speller under mental workload by incorporating dual-task data during classifier training.

    PubMed

    Chen, Yuqian; Ke, Yufeng; Meng, Guifang; Jiang, Jin; Qi, Hongzhi; Jiao, Xuejun; Xu, Minpeng; Zhou, Peng; He, Feng; Ming, Dong

    2017-12-01

    As one of the most important brain-computer interface (BCI) paradigms, P300-Speller was shown to be significantly impaired once applied in practical situations due to effects of mental workload. This study aims to provide a new method of building training models to enhance performance of P300-Speller under mental workload. Three experiment conditions based on row-column P300-Speller paradigm were performed including speller-only, 3-back-speller and mental-arithmetic-speller. Data under dual-task conditions were introduced to speller-only data respectively to build new training models. Then performance of classifiers with different models was compared under the same testing condition. The results showed that when tasks of imported training data and testing data were the same, character recognition accuracies and round accuracies of P300-Speller with mixed-data training models significantly improved (FDR, p < 0.005). When they were different, performance significantly improved when tested on mental-arithmetic-speller (FDR, p < 0.05) while the improvement was modest when tested on n-back-speller (FDR, p < 0.1). The analysis of ERPs revealed that ERP difference between training data and testing data was significantly diminished when the dual-task data was introduced to training data (FDR, p < 0.05). The new method of training classifier on mixed data proved to be effective in enhancing performance of P300-Speller under mental workload, confirmed the feasibility to build a universal training model and overcome the effects of mental workload in its practical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Scaled test statistics and robust standard errors for non-normal data in covariance structure analysis: a Monte Carlo study.

    PubMed

    Chou, C P; Bentler, P M; Satorra, A

    1991-11-01

    Research studying robustness of maximum likelihood (ML) statistics in covariance structure analysis has concluded that test statistics and standard errors are biased under severe non-normality. An estimation procedure known as asymptotic distribution free (ADF), making no distributional assumption, has been suggested to avoid these biases. Corrections to the normal theory statistics to yield more adequate performance have also been proposed. This study compares the performance of a scaled test statistic and robust standard errors for two models under several non-normal conditions and also compares these with the results from ML and ADF methods. Both ML and ADF test statistics performed rather well in one model and considerably worse in the other. In general, the scaled test statistic seemed to behave better than the ML test statistic and the ADF statistic performed the worst. The robust and ADF standard errors yielded more appropriate estimates of sampling variability than the ML standard errors, which were usually downward biased, in both models under most of the non-normal conditions. ML test statistics and standard errors were found to be quite robust to the violation of the normality assumption when data had either symmetric and platykurtic distributions, or non-symmetric and zero kurtotic distributions.

  4. Small-scale test program to develop a more efficient swivel nozzle thrust deflector for V/STOL lift/cruise engines

    NASA Technical Reports Server (NTRS)

    Schlundt, D. W.

    1976-01-01

    The installed performance degradation of a swivel nozzle thrust deflector system obtained during increased vectoring angles of a large-scale test program was investigated and improved. Small-scale models were used to generate performance data for analyzing selected swivel nozzle configurations. A single-swivel nozzle design model with five different nozzle configurations and a twin-swivel nozzle design model, scaled to 0.15 size of the large-scale test hardware, were statically tested at low exhaust pressure ratios of 1.4, 1.3, 1.2, and 1.1 and vectored at four nozzle positions from 0 deg cruise through 90 deg vertical used for the VTOL mode.

  5. Development and Evaluation of a Performance Modeling Flight Test Approach Based on Quasi Steady-State Maneuvers

    NASA Technical Reports Server (NTRS)

    Yechout, T. R.; Braman, K. B.

    1984-01-01

    The development, implementation and flight test evaluation of a performance modeling technique which required a limited amount of quasisteady state flight test data to predict the overall one g performance characteristics of an aircraft. The concept definition phase of the program include development of: (1) the relationship for defining aerodynamic characteristics from quasi steady state maneuvers; (2) a simplified in flight thrust and airflow prediction technique; (3) a flight test maneuvering sequence which efficiently provided definition of baseline aerodynamic and engine characteristics including power effects on lift and drag; and (4) the algorithms necessary for cruise and flight trajectory predictions. Implementation of the concept include design of the overall flight test data flow, definition of instrumentation system and ground test requirements, development and verification of all applicable software and consolidation of the overall requirements in a flight test plan.

  6. Explanatory model of emotional-cognitive variables in school mathematics performance: a longitudinal study in primary school.

    PubMed

    Cerda, Gamal; Pérez, Carlos; Navarro, José I; Aguilar, Manuel; Casas, José A; Aragón, Estíbaliz

    2015-01-01

    This study tested a structural model of cognitive-emotional explanatory variables to explain performance in mathematics. The predictor variables assessed were related to students' level of development of early mathematical competencies (EMCs), specifically, relational and numerical competencies, predisposition toward mathematics, and the level of logical intelligence in a population of primary school Chilean students (n = 634). This longitudinal study also included the academic performance of the students during a period of 4 years as a variable. The sampled students were initially assessed by means of an Early Numeracy Test, and, subsequently, they were administered a Likert-type scale to measure their predisposition toward mathematics (EPMAT) and a basic test of logical intelligence. The results of these tests were used to analyse the interaction of all the aforementioned variables by means of a structural equations model. This combined interaction model was able to predict 64.3% of the variability of observed performance. Preschool students' performance in EMCs was a strong predictor for achievement in mathematics for students between 8 and 11 years of age. Therefore, this paper highlights the importance of EMCs and the modulating role of predisposition toward mathematics. Also, this paper discusses the educational role of these findings, as well as possible ways to improve negative predispositions toward mathematical tasks in the school domain.

  7. Advanced Actuation Systems Development. Volume 2

    DTIC Science & Technology

    1989-08-01

    and unloaded performance characteristics of a test specimen produced by General Dynamics Corporation as a feasibility model. The actuation system for...changing the camber of the test specimen is unique and was evaluated with a series of input/output measurements. The testing verified the general ...MAWS General ’rest Procedure........................................6 General Performance Measurements .................................... 10 Test

  8. 40 CFR 600.207-93 - Calculation of fuel economy values for a model type.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... economy data from tests conducted on these vehicle configuration(s) at high altitude to calculate the fuel... city, highway, and combined fuel economy values from the tests performed using gasoline or diesel test fuel. (ii) Calculate the city, highway, and combined fuel economy values from the tests performed using...

  9. Improvements in safety testing of lithium cells

    NASA Astrophysics Data System (ADS)

    Stinebring, R. C.; Krehl, P.

    1985-07-01

    A systematic approach was developed for evaluating the basic safety parameters of high power lithium soluble cathode cells. This approach consists of performing a series of tests on each cell model during the design, prototype and production phases. Abusive testing is performed in a facility where maximum protection is given to test personnel.

  10. Improvements in safety testing of lithium cells

    NASA Technical Reports Server (NTRS)

    Stinebring, R. C.; Krehl, P.

    1985-01-01

    A systematic approach was developed for evaluating the basic safety parameters of high power lithium soluble cathode cells. This approach consists of performing a series of tests on each cell model during the design, prototype and production phases. Abusive testing is performed in a facility where maximum protection is given to test personnel.

  11. Examination of the Factor Structure of a Global Cognitive Function Battery across Race and Time

    PubMed Central

    Barnes, Lisa L.; Yumoto, Futoshi; Capuano, Ana; Wilson, Robert S.; Bennett, David A.; Tractenberg, Rochelle E.

    2016-01-01

    Older African Americans tend to perform more poorly on cognitive function tests than older Whites. One possible explanation for their poorer performance is that the tests used to assess cognition may not reflect the same construct in African Americans and Whites. Therefore, we tested measurement invariance, by race and over time, of a structured 18-test cognitive battery used in three epidemiologic cohort studies of diverse older adults. Multi-group confirmatory factor analyses were carried out with full-information maximum likelihood estimation in all models to capture as much information as was present in the observed data. Four different aspects of the data were fit to each model: comparative fit index (CFI), standardized root mean square residuals (SRMR), root mean square error of approximation (RMSEA), and model χ2. We found that the most constrained model fit the data well (CFI = 0.950; SRMR = 0.051; RMSEA = 0.057 (90% confidence interval: 0.056, 0.059); the model χ2 = 4600.68 on 862 df), supporting the characterization of this model of cognitive test scores as invariant over time and racial group. These results support the conclusion that the cognitive test battery used in the three studies is invariant across race and time and can be used to assess cognition among African Americans and Whites in longitudinal studies. Furthermore, the lower performance of African Americans on these tests is not due to bias in the tests themselves but rather likely reflect differences in social and environmental experiences over the life course. PMID:26563713

  12. V/STOL tilt rotor aircraft study. Volume 10: Performance and stability test of A 1-14.622 Froude scaled Boeing Vertol Model 222 tilt rotor aircraft (Phase 1)

    NASA Technical Reports Server (NTRS)

    Mchugh, F. J.; Eason, W.; Alexander, H. R.; Mutter, H.

    1973-01-01

    Wind tunnel test data obtained from a 1/4.622 Froude scale Boeing Model 222 with a full span, two prop, tilt rotor, powered model in the Boeing V/STOL wind tunnel are reported. Data were taken in transition and cruise flight conditions and include performance, stability and control and blade loads information. The effects of the rotors, tail surfaces and airframe on the performance and stability are isolated as are the effects of the airframe on the rotors.

  13. Exposure to Psychological Aggression at Work and Job Performance: The Mediating Role of Job Attitudes and Personal Health

    PubMed Central

    Schat, Aaron; Frone, Michael R.

    2011-01-01

    Despite the growing literature on workplace aggression and the importance of employee performance at work, few studies have examined the relation between workplace aggression and job performance. The purpose of this study was to investigate the relations between psychological aggression at work and two forms of job performance (task performance and contextual performance) and potential mediators of these relations. Based on Conservation of Resources theory and prior research, a model was developed and tested in which overall job attitudes (i.e., job satisfaction and organizational commitment) and overall personal health (i.e., physical and psychological health) fully mediate the relations between exposure to psychological aggression at work and both task performance and contextual performance. Data were obtained from a national probability sample of US workers (N = 2376) and the model was tested using structural equation modelling. The results supported the hypothesized model, demonstrating that exposure to psychological aggression at work negatively predicted both task performance and contextual performance, and that these relations were explained by decrements in job attitudes and health associated with exposure to psychological aggression at work. PMID:21643471

  14. Exposure to Psychological Aggression at Work and Job Performance: The Mediating Role of Job Attitudes and Personal Health.

    PubMed

    Schat, Aaron; Frone, Michael R

    2011-01-01

    Despite the growing literature on workplace aggression and the importance of employee performance at work, few studies have examined the relation between workplace aggression and job performance. The purpose of this study was to investigate the relations between psychological aggression at work and two forms of job performance (task performance and contextual performance) and potential mediators of these relations. Based on Conservation of Resources theory and prior research, a model was developed and tested in which overall job attitudes (i.e., job satisfaction and organizational commitment) and overall personal health (i.e., physical and psychological health) fully mediate the relations between exposure to psychological aggression at work and both task performance and contextual performance. Data were obtained from a national probability sample of US workers (N = 2376) and the model was tested using structural equation modelling. The results supported the hypothesized model, demonstrating that exposure to psychological aggression at work negatively predicted both task performance and contextual performance, and that these relations were explained by decrements in job attitudes and health associated with exposure to psychological aggression at work.

  15. Testing and validating environmental models

    USGS Publications Warehouse

    Kirchner, J.W.; Hooper, R.P.; Kendall, C.; Neal, C.; Leavesley, G.

    1996-01-01

    Generally accepted standards for testing and validating ecosystem models would benefit both modellers and model users. Universally applicable test procedures are difficult to prescribe, given the diversity of modelling approaches and the many uses for models. However, the generally accepted scientific principles of documentation and disclosure provide a useful framework for devising general standards for model evaluation. Adequately documenting model tests requires explicit performance criteria, and explicit benchmarks against which model performance is compared. A model's validity, reliability, and accuracy can be most meaningfully judged by explicit comparison against the available alternatives. In contrast, current practice is often characterized by vague, subjective claims that model predictions show 'acceptable' agreement with data; such claims provide little basis for choosing among alternative models. Strict model tests (those that invalid models are unlikely to pass) are the only ones capable of convincing rational skeptics that a model is probably valid. However, 'false positive' rates as low as 10% can substantially erode the power of validation tests, making them insufficiently strict to convince rational skeptics. Validation tests are often undermined by excessive parameter calibration and overuse of ad hoc model features. Tests are often also divorced from the conditions under which a model will be used, particularly when it is designed to forecast beyond the range of historical experience. In such situations, data from laboratory and field manipulation experiments can provide particularly effective tests, because one can create experimental conditions quite different from historical data, and because experimental data can provide a more precisely defined 'target' for the model to hit. We present a simple demonstration showing that the two most common methods for comparing model predictions to environmental time series (plotting model time series against data time series, and plotting predicted versus observed values) have little diagnostic power. We propose that it may be more useful to statistically extract the relationships of primary interest from the time series, and test the model directly against them.

  16. FY 1993 report on aluminum-nitrate testing at the ETF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goodman, M.D.D.; Wise, M.D.

    1993-09-30

    This report summarizes the progress of the Aluminum Nitrate Nonhydrate (ANN) testing program at the F/H-Area Effluent Treatment Facility (ETF) for Fiscal Year 1993. Three tests were conducted in the months of February, April, and September. The tests yielded data that validated earlier conclusions that the addition of ANN to non-routine feed has a positive effect on the performance of ETF`s submicron filtration unit. Performance was observed to increase from 30--309%, depending on the season. The data also supports SRTC`s earlier conclusion that an optimal aluminum concentration exists in the range of 30--40 ppm, and concentrations above this range beginmore » to retard filtration performance. A rudimentary mathematical model that would predict Stage 1 flux was also developed during FY93. The model allowed for a more concise comparison of filter test runs, as well as increase the efficiency of the testing program by allowing shorter test runs to be conducted. It is postulated that the model can be further optimized to include aluminum concentration and time of year as independent variables that determine Stage 1 flux. Such a model should unequivocally prove the merits of pretreating ETF`s wastewater with aluminum nitrate. To proceed with the development of the model, further testing is proposed with stringent control of the aluminum concentration in the feed. In order to account for seasonal effects, one test should be conducted each month for Fiscal Year 1994. High Level Waste Engineering requests permission to conduct these test runs according to the following schedule: conduct tests in even numbered months beginning with October with routine influent as it is collected from normal process sewer influents and conduct tests in odd numbered months beginning with November with non-routine feed from H-Retention Basin.« less

  17. Pleiotropy Analysis of Quantitative Traits at Gene Level by Multivariate Functional Linear Models

    PubMed Central

    Wang, Yifan; Liu, Aiyi; Mills, James L.; Boehnke, Michael; Wilson, Alexander F.; Bailey-Wilson, Joan E.; Xiong, Momiao; Wu, Colin O.; Fan, Ruzong

    2015-01-01

    In genetics, pleiotropy describes the genetic effect of a single gene on multiple phenotypic traits. A common approach is to analyze the phenotypic traits separately using univariate analyses and combine the test results through multiple comparisons. This approach may lead to low power. Multivariate functional linear models are developed to connect genetic variant data to multiple quantitative traits adjusting for covariates for a unified analysis. Three types of approximate F-distribution tests based on Pillai–Bartlett trace, Hotelling–Lawley trace, and Wilks’s Lambda are introduced to test for association between multiple quantitative traits and multiple genetic variants in one genetic region. The approximate F-distribution tests provide much more significant results than those of F-tests of univariate analysis and optimal sequence kernel association test (SKAT-O). Extensive simulations were performed to evaluate the false positive rates and power performance of the proposed models and tests. We show that the approximate F-distribution tests control the type I error rates very well. Overall, simultaneous analysis of multiple traits can increase power performance compared to an individual test of each trait. The proposed methods were applied to analyze (1) four lipid traits in eight European cohorts, and (2) three biochemical traits in the Trinity Students Study. The approximate F-distribution tests provide much more significant results than those of F-tests of univariate analysis and SKAT-O for the three biochemical traits. The approximate F-distribution tests of the proposed functional linear models are more sensitive than those of the traditional multivariate linear models that in turn are more sensitive than SKAT-O in the univariate case. The analysis of the four lipid traits and the three biochemical traits detects more association than SKAT-O in the univariate case. PMID:25809955

  18. Pleiotropy analysis of quantitative traits at gene level by multivariate functional linear models.

    PubMed

    Wang, Yifan; Liu, Aiyi; Mills, James L; Boehnke, Michael; Wilson, Alexander F; Bailey-Wilson, Joan E; Xiong, Momiao; Wu, Colin O; Fan, Ruzong

    2015-05-01

    In genetics, pleiotropy describes the genetic effect of a single gene on multiple phenotypic traits. A common approach is to analyze the phenotypic traits separately using univariate analyses and combine the test results through multiple comparisons. This approach may lead to low power. Multivariate functional linear models are developed to connect genetic variant data to multiple quantitative traits adjusting for covariates for a unified analysis. Three types of approximate F-distribution tests based on Pillai-Bartlett trace, Hotelling-Lawley trace, and Wilks's Lambda are introduced to test for association between multiple quantitative traits and multiple genetic variants in one genetic region. The approximate F-distribution tests provide much more significant results than those of F-tests of univariate analysis and optimal sequence kernel association test (SKAT-O). Extensive simulations were performed to evaluate the false positive rates and power performance of the proposed models and tests. We show that the approximate F-distribution tests control the type I error rates very well. Overall, simultaneous analysis of multiple traits can increase power performance compared to an individual test of each trait. The proposed methods were applied to analyze (1) four lipid traits in eight European cohorts, and (2) three biochemical traits in the Trinity Students Study. The approximate F-distribution tests provide much more significant results than those of F-tests of univariate analysis and SKAT-O for the three biochemical traits. The approximate F-distribution tests of the proposed functional linear models are more sensitive than those of the traditional multivariate linear models that in turn are more sensitive than SKAT-O in the univariate case. The analysis of the four lipid traits and the three biochemical traits detects more association than SKAT-O in the univariate case. © 2015 WILEY PERIODICALS, INC.

  19. Diagnostic Performance of Tuberculosis-Specific IgG Antibody Profiles in Patients with Presumptive Tuberculosis from Two Continents.

    PubMed

    Broger, Tobias; Basu Roy, Robindra; Filomena, Angela; Greef, Charles H; Rimmele, Stefanie; Havumaki, Joshua; Danks, David; Schneiderhan-Marra, Nicole; Gray, Christen M; Singh, Mahavir; Rosenkrands, Ida; Andersen, Peter; Husar, Gregory M; Joos, Thomas O; Gennaro, Maria L; Lochhead, Michael J; Denkinger, Claudia M; Perkins, Mark D

    2017-04-01

    Development of rapid diagnostic tests for tuberculosis is a global priority. A whole proteome screen identified Mycobacterium tuberculosis antigens associated with serological responses in tuberculosis patients. We used World Health Organization (WHO) target product profile (TPP) criteria for a detection test and triage test to evaluate these antigens. Consecutive patients presenting to microscopy centers and district hospitals in Peru and to outpatient clinics at a tuberculosis reference center in Vietnam were recruited. We tested blood samples from 755 HIV-uninfected adults with presumptive pulmonary tuberculosis to measure IgG antibody responses to 57 M. tuberculosis antigens using a field-based multiplexed serological assay and a 132-antigen bead-based reference assay. We evaluated single antigen performance and models of all possible 3-antigen combinations and multiantigen combinations. Three-antigen and multiantigen models performed similarly and were superior to single antigens. With specificity set at 90% for a detection test, the best sensitivity of a 3-antigen model was 35% (95% confidence interval [CI], 31-40). With sensitivity set at 85% for a triage test, the specificity of the best 3-antigen model was 34% (95% CI, 29-40). The reference assay also did not meet study targets. Antigen performance differed significantly between the study sites for 7/22 of the best-performing antigens. Although M. tuberculosis antigens were recognized by the IgG response during tuberculosis, no single antigen or multiantigen set performance approached WHO TPP criteria for clinical utility among HIV-uninfected adults with presumed tuberculosis in high-volume, urban settings in tuberculosis-endemic countries. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America.

  20. Development and Validation of a Pressurization System Model for a Crossfeed Subscale Water Test Article

    NASA Technical Reports Server (NTRS)

    Nguyen, Han; Mazurkivich, Pete

    2006-01-01

    A pressurization system model was developed for a crossfeed subscale water test article using the EASY5 modeling software. The model consisted of an integrated tank pressurization and pressurization line model. The tank model was developed using the general purpose library, while the line model was assembled from the gas dynamic library. The pressurization system model was correlated to water test data obtained from nine test runs conducted on the crossfeed subscale test article. The model was first correlated to a representative test run and frozen. The correlated model was then used to predict the tank pressures and compared with the test data for eight other runs. The model prediction showed excellent agreement with the test data, allowing it to be used in a later study to analyze the pressurization system performance of a full-scale bimese vehicle with cryogenic propellants.

  1. Using Multigroup Confirmatory Factor Analysis to Test Measurement Invariance in Raters: A Clinical Skills Examination Application

    ERIC Educational Resources Information Center

    Kahraman, Nilufer; Brown, Crystal B.

    2015-01-01

    Psychometric models based on structural equation modeling framework are commonly used in many multiple-choice test settings to assess measurement invariance of test items across examinee subpopulations. The premise of the current article is that they may also be useful in the context of performance assessment tests to test measurement invariance…

  2. Comparison of Individualized Covert Modeling, Self-Control Desensitization, and Study Skills Training for Alleviation of Test Anxiety.

    ERIC Educational Resources Information Center

    Harris, Gina; Johhson, Suzanne Bennett

    1980-01-01

    Individualized covert modeling and self-control desensitization substantially reduced self-reported test anxiety. However, the individualized covert modeling group was the only treatment group that showed significant improvement in academic performance. (Author)

  3. The Impact of Linking Distinct Achievement Test Scores on the Interpretation of Student Growth in Achievement

    ERIC Educational Resources Information Center

    Airola, Denise Tobin

    2011-01-01

    Changes to state tests impact the ability of State Education Agencies (SEAs) to monitor change in performance over time. The purpose of this study was to evaluate the Standardized Performance Growth Index (PGIz), a proposed statistical model for measuring change in student and school performance, across transitions in tests. The PGIz is a…

  4. Error Rates in Measuring Teacher and School Performance Based on Student Test Score Gains. NCEE 2010-4004

    ERIC Educational Resources Information Center

    Schochet, Peter Z.; Chiang, Hanley S.

    2010-01-01

    This paper addresses likely error rates for measuring teacher and school performance in the upper elementary grades using value-added models applied to student test score gain data. Using realistic performance measurement system schemes based on hypothesis testing, we develop error rate formulas based on OLS and Empirical Bayes estimators.…

  5. Dynamic Modeling, Controls, and Testing for Electrified Aircraft

    NASA Technical Reports Server (NTRS)

    Connolly, Joseph; Stalcup, Erik

    2017-01-01

    Electrified aircraft have the potential to provide significant benefits for efficiency and emissions reductions. To assess these potential benefits, modeling tools are needed to provide rapid evaluation of diverse concepts and to ensure safe operability and peak performance over the mission. The modeling challenge for these vehicles is the ability to show significant benefits over the current highly refined aircraft systems. The STARC-ABL (single-aisle turbo-electric aircraft with an aft boundary layer propulsor) is a new test proposal that builds upon previous N3-X team hybrid designs. This presentation describes the STARC-ABL concept, the NASA Electric Aircraft Testbed (NEAT) which will allow testing of the STARC-ABL powertrain, and the related modeling and simulation efforts to date. Modeling and simulation includes a turbofan simulation, Numeric Propulsion System Simulation (NPSS), which has been integrated with NEAT; and a power systems and control model for predicting testbed performance and evaluating control schemes. Model predictions provide good comparisons with testbed data for an NPSS-integrated test of the single-string configuration of NEAT.

  6. The Effects of a Flipped Classroom Model of Instruction on Students' Performance and Attitudes towards Chemistry

    ERIC Educational Resources Information Center

    Olakanmi, Eunice Eyitayo

    2017-01-01

    This study establishes the effects of a flipped classroom model of instruction on academic performance and attitudes of 66 first-year secondary school students towards chemistry. A pre-test and post-test experimental design was employed to assign students randomly into either the experimental or control group. In order to assess the suitability of…

  7. A Better Leveled Playing Field for Assessing Satisfactory Job Performance of Superintendents on the Basis of High-Stakes Testing Outcomes

    ERIC Educational Resources Information Center

    Young, I. Phillip; Cox, Edward P.; Buckman, David G.

    2014-01-01

    To assess satisfactory job performance of superintendents on the basis of school districts' high-stakes testing outcomes, existing teacher models were reviewed and critiqued as potential options for retrofit. For these models, specific problems were identified relative to the choice of referent groups. An alternate referent group (statewide…

  8. 40 CFR 600.209-08 - Calculation of vehicle-specific 5-cycle fuel economy values for a model type.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... intended for sale at high altitude, the Administrator may use fuel economy data from tests conducted on... from the tests performed using gasoline or diesel test fuel. (ii) If 5-cycle testing was performed on the alcohol or natural gas test fuel, calculate the city and highway fuel economy values from the...

  9. 40 CFR 600.209-08 - Calculation of vehicle-specific 5-cycle fuel economy values for a model type.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... intended for sale at high altitude, the Administrator may use fuel economy data from tests conducted on... from the tests performed using gasoline or diesel test fuel. (ii) If 5-cycle testing was performed on the alcohol or natural gas test fuel, calculate the city and highway fuel economy values from the...

  10. EMC system test performance on Spacelab

    NASA Astrophysics Data System (ADS)

    Schwan, F.

    1982-07-01

    Electromagnetic compatibility testing of the Spacelab engineering model is discussed. Documentation, test procedures (including data monitoring and test configuration set up) and performance assessment approach are described. Equipment was assembled into selected representative flight configurations. The physical and functional interfaces between the subsystems were demonstrated within the integration and test sequence which culminated in the flyable configuration Long Module plus one Pallet.

  11. Simulating the Impact Response of Three Full-Scale Crash Tests of Cessna 172 Aircraft

    NASA Technical Reports Server (NTRS)

    Jackson, Karen E.; Fasanella, Edwin L.; Littell, Justin D.; Annett, Martin S.; Stimson, Chad M.

    2017-01-01

    During the summer of 2015, a series of three full-scale crash tests were performed at the Landing and Impact Research Facility located at NASA Langley Research Center of Cessna 172 aircraft. The first test (Test 1) represented a flare-to-stall emergency or hard landing onto a rigid surface. The second test (Test 2) represented a controlled-flight- into-terrain (CFIT) with a nose down pitch attitude of the aircraft, which impacted onto soft soil. The third test (Test 3) also represented a CFIT with a nose up pitch attitude of the aircraft, which resulted in a tail strike condition. Test 3 was also conducted onto soft soil. These crash tests were performed for the purpose of evaluating the performance of Emergency Locator Transmitters and to generate impact test data for model calibration. Finite element models were generated and impact analyses were conducted to simulate the three impact conditions using the commercial nonlinear, transient dynamic finite element code, LS-DYNA®. The objective of this paper is to summarize test-analysis results for the three full-scale crash tests.

  12. Development and application of an acceptance testing model

    NASA Technical Reports Server (NTRS)

    Pendley, Rex D.; Noonan, Caroline H.; Hall, Kenneth R.

    1992-01-01

    The process of acceptance testing large software systems for NASA has been analyzed, and an empirical planning model of the process constructed. This model gives managers accurate predictions of the staffing needed, the productivity of a test team, and the rate at which the system will pass. Applying the model to a new system shows a high level of agreement between the model and actual performance. The model also gives managers an objective measure of process improvement.

  13. Differential effects of scopolamine and amphetamine on microcomputer-based performance tests

    NASA Technical Reports Server (NTRS)

    Kennedy, Robert S.; Odenheimer, Robert C.; Baltzley, Dennis R.; Dunlap, William P.; Wood, Charles D.

    1990-01-01

    The effects of four weekly treatments with scopolamine (1.0 mg) and d-amphetamine (10 mg), separately or in combination, on human performance were investigated in 16 subjects undergoing nine performance tests from a menu of microcomputer-based tests administered after the treatment. It was d-amphetamine treatment that enhanced the results of motor and perceptual speed tests, while scopolamine had no effect on these tests. Two of the five cognitive tests showed reductions with scopolamine. The effects of scopolamine in this and other studies are considered in terms of a model which implies that the magnitude of the performance deficit depends on the performance type and the dosage level of the drug.

  14. Research on target information optics communications transmission characteristic and performance in multi-screens testing system

    NASA Astrophysics Data System (ADS)

    Li, Hanshan

    2016-04-01

    To enhance the stability and reliability of multi-screens testing system, this paper studies multi-screens target optical information transmission link properties and performance in long-distance, sets up the discrete multi-tone modulation transmission model based on geometric model of laser multi-screens testing system and visible light information communication principle; analyzes the electro-optic and photoelectric conversion function of sender and receiver in target optical information communication system; researches target information transmission performance and transfer function of the generalized visible-light communication channel; found optical information communication transmission link light intensity space distribution model and distribution function; derives the SNR model of information transmission communication system. Through the calculation and experiment analysis, the results show that the transmission error rate increases with the increment of transmission rate in a certain channel modulation depth; when selecting the appropriate transmission rate, the bit error rate reach 0.01.

  15. Performance characteristics of a wedge nozzle installed on an F-18 propulsion wind tunnel model

    NASA Technical Reports Server (NTRS)

    Petit, J. E.; Capone, F. J.

    1979-01-01

    The results of two-dimensional wedge non-axisymmetric nozzle (2D-AIN) tests to determine its performance relative to the baseline axisymmetric nozzle using an F-18 jet effects wind tunnel model are presented. Configurations and test conditions simulated forward thrust-minus drag, thrust vectoring/induced lift, and thrust reversing flight conditions from Mach .6 to 1.20 and attack angles up to 10 degrees. Results of the model test program indicate that non-axisymmetric nozzles can be installed on a twin engine fighter aircraft model with equivalent thrust minus drag performance as the baseline axisymmetric nozzles. Thrust vectoring capability of the non-axisymmetric nozzles provided significant jet-induced lift on the nozzle/aftbody and horizontal tail surfaces. Thrust reversing panels deployed from the 2D-AIN centerbody wedge were very effective for static and inflight operation

  16. Predicting Operator Execution Times Using CogTool

    NASA Technical Reports Server (NTRS)

    Santiago-Espada, Yamira; Latorella, Kara A.

    2013-01-01

    Researchers and developers of NextGen systems can use predictive human performance modeling tools as an initial approach to obtain skilled user performance times analytically, before system testing with users. This paper describes the CogTool models for a two pilot crew executing two different types of a datalink clearance acceptance tasks, and on two different simulation platforms. The CogTool time estimates for accepting and executing Required Time of Arrival and Interval Management clearances were compared to empirical data observed in video tapes and registered in simulation files. Results indicate no statistically significant difference between empirical data and the CogTool predictions. A population comparison test found no significant differences between the CogTool estimates and the empirical execution times for any of the four test conditions. We discuss modeling caveats and considerations for applying CogTool to crew performance modeling in advanced cockpit environments.

  17. Predicting nitrogen loading with land-cover composition: how can watershed size affect model performance?

    PubMed

    Zhang, Tao; Yang, Xiaojun

    2013-01-01

    Watershed-wide land-cover proportions can be used to predict the in-stream non-point source pollutant loadings through regression modeling. However, the model performance can vary greatly across different study sites and among various watersheds. Existing literature has shown that this type of regression modeling tends to perform better for large watersheds than for small ones, and that such a performance variation has been largely linked with different interwatershed landscape heterogeneity levels. The purpose of this study is to further examine the previously mentioned empirical observation based on a set of watersheds in the northern part of Georgia (USA) to explore the underlying causes of the variation in model performance. Through the combined use of the neutral landscape modeling approach and a spatially explicit nutrient loading model, we tested whether the regression model performance variation over the watershed groups ranging in size is due to the different watershed landscape heterogeneity levels. We adopted three neutral landscape modeling criteria that were tied with different similarity levels in watershed landscape properties and used the nutrient loading model to estimate the nitrogen loads for these neutral watersheds. Then we compared the regression model performance for the real and neutral landscape scenarios, respectively. We found that watershed size can affect the regression model performance both directly and indirectly. Along with the indirect effect through interwatershed heterogeneity, watershed size can directly affect the model performance over the watersheds varying in size. We also found that the regression model performance can be more significantly affected by other physiographic properties shaping nitrogen delivery effectiveness than the watershed land-cover heterogeneity. This study contrasts with many existing studies because it goes beyond hypothesis formulation based on empirical observations and into hypothesis testing to explore the fundamental mechanism.

  18. The fourth radiation transfer model intercomparison (RAMI-IV): Proficiency testing of canopy reflectance models with ISO-13528

    NASA Astrophysics Data System (ADS)

    Widlowski, J.-L.; Pinty, B.; Lopatka, M.; Atzberger, C.; Buzica, D.; Chelle, M.; Disney, M.; Gastellu-Etchegorry, J.-P.; Gerboles, M.; Gobron, N.; Grau, E.; Huang, H.; Kallel, A.; Kobayashi, H.; Lewis, P. E.; Qin, W.; Schlerf, M.; Stuckens, J.; Xie, D.

    2013-07-01

    The radiation transfer model intercomparison (RAMI) activity aims at assessing the reliability of physics-based radiative transfer (RT) models under controlled experimental conditions. RAMI focuses on computer simulation models that mimic the interactions of radiation with plant canopies. These models are increasingly used in the development of satellite retrieval algorithms for terrestrial essential climate variables (ECVs). Rather than applying ad hoc performance metrics, RAMI-IV makes use of existing ISO standards to enhance the rigor of its protocols evaluating the quality of RT models. ISO-13528 was developed "to determine the performance of individual laboratories for specific tests or measurements." More specifically, it aims to guarantee that measurement results fall within specified tolerance criteria from a known reference. Of particular interest to RAMI is that ISO-13528 provides guidelines for comparisons where the true value of the target quantity is unknown. In those cases, "truth" must be replaced by a reliable "conventional reference value" to enable absolute performance tests. This contribution will show, for the first time, how the ISO-13528 standard developed by the chemical and physical measurement communities can be applied to proficiency testing of computer simulation models. Step by step, the pre-screening of data, the identification of reference solutions, and the choice of proficiency statistics will be discussed and illustrated with simulation results from the RAMI-IV "abstract canopy" scenarios. Detailed performance statistics of the participating RT models will be provided and the role of the accuracy of the reference solutions as well as the choice of the tolerance criteria will be highlighted.

  19. Numerical modeling of a 2K J-T heat exchanger used in Fermilab Vertical Test Stand VTS-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, Prabhat Kumar; Rabehl, Roger

    2014-07-01

    Fermilab Vertical Test Stand-1 (VTS-1) is in operation since 2007 for testing the superconducting RF cavities at 2 K. This test stand has single layer coiled finned tubes heat exchanger before J-T valve. A finite difference based thermal model has been developed in Engineering Equation Solver (EES) to study its thermal performance during filling and refilling to maintain the constant liquid level of test stand. The model is also useful to predict its performance under other various operating conditions and will be useful to design the similar kind of heat exchanger for future needs. Present paper discusses the different operationalmore » modes of this heat exchanger and its thermal characteristics under these operational modes. Results of this model have also been compared with the experimental data gathered from the VTS-1 heat exchanger and they are in good agreement with the present model.« less

  20. Metallic Rotor Sizing and Performance Model for Flywheel Systems

    NASA Technical Reports Server (NTRS)

    Moore, Camille J.; Kraft, Thomas G.

    2012-01-01

    The NASA Glenn Research Center (GRC) is developing flywheel system requirements and designs for terrestrial and spacecraft applications. Several generations of flywheels have been designed and tested at GRC using in-house expertise in motors, magnetic bearings, controls, materials and power electronics. The maturation of a flywheel system from the concept phase to the preliminary design phase is accompanied by maturation of the Integrated Systems Performance model, where estimating relationships are replaced by physics based analytical techniques. The modeling can incorporate results from engineering model testing and emerging detail from the design process.

  1. A Flight Prediction for Performance of the SWAS Solar Array Deployment Mechanism

    NASA Technical Reports Server (NTRS)

    Seniderman, Gary; Daniel, Walter K.

    1999-01-01

    The focus of this paper is a comparison of ground-based solar array deployment tests with the on-orbit deployment. The discussion includes a summary of the mechanisms involved and the correlation of a dynamics model with ground based test results. Some of the unique characteristics of the mechanisms are explained through the analysis of force and angle data acquired from the test deployments. The correlated dynamics model is then used to predict the performance of the system in its flight application.

  2. Acoustic results of the Boeing model 360 whirl tower test

    NASA Astrophysics Data System (ADS)

    Watts, Michael E.; Jordan, David

    1990-09-01

    An evaluation is presented for whirl tower test results of the Model 360 helicopter's advanced, high-performance four-bladed composite rotor system intended to facilitate over-200-knot flight. During these performance measurements, acoustic data were acquired by seven microphones. A comparison of whirl-tower tests with theory indicate that theoretical prediction accuracies vary with both microphone position and the inclusion of ground reflection. Prediction errors varied from 0 to 40 percent of the measured signal-to-peak amplitude.

  3. The BACHD Rat Model of Huntington Disease Shows Signs of Fronto-Striatal Dysfunction in Two Operant Conditioning Tests of Short-Term Memory.

    PubMed

    Clemensson, Erik Karl Håkan; Clemensson, Laura Emily; Riess, Olaf; Nguyen, Huu Phuc

    2017-01-01

    The BACHD rat is a recently developed transgenic animal model of Huntington disease, a progressive neurodegenerative disorder characterized by extensive loss of striatal neurons. Cognitive impairments are common among patients, and characterization of similar deficits in animal models of the disease is therefore of interest. The present study assessed the BACHD rats' performance in the delayed alternation and the delayed non-matching to position test, two Skinner box-based tests of short-term memory function. The transgenic rats showed impaired performance in both tests, indicating general problems with handling basic aspects of the tests, while short-term memory appeared to be intact. Similar phenotypes have been found in rats with fronto-striatal lesions, suggesting that Huntington disease-related neuropathology might be present in the BACHD rats. Further analyses indicated that the performance deficit in the delayed alternation test might be due to impaired inhibitory control, which has also been implicated in Huntington disease patients. The study ultimately suggests that the BACHD rats might suffer from neuropathology and cognitive impairments reminiscent of those of Huntington disease patients.

  4. Performance Modeling of an Experimental Laser Propelled Lightcraft

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See; Chen, Yen-Sen; Liu, Jiwen; Myrabo, Leik N.; Mead, Franklin B., Jr.

    2000-01-01

    A computational plasma aerodynamics model is developed to study the performance of an experimental laser propelled lightcraft. The computational methodology is based on a time-accurate, three-dimensional, finite-difference, chemically reacting, unstructured grid, pressure- based formulation. The underlying physics are added and tested systematically using a building-block approach. The physics modeled include non-equilibn'um thermodynamics, non-equilibrium air-plasma finite-rate kinetics, specular ray tracing, laser beam energy absorption and equi refraction by plasma, non-equilibrium plasma radiation, and plasma resonance. A series of transient computations are performed at several laser pulse energy levels and the simulated physics are discussed and compared with those of tests and literature. The predicted coupling coefficients for the lightcraft compared reasonably well with those of tests conducted on a pendulum apparatus.

  5. Scale model performance test investigation of mixed flow exhaust systems for an energy efficient engine /E3/ propulsion system

    NASA Technical Reports Server (NTRS)

    Kuchar, A. P.; Chamberlin, R.

    1983-01-01

    As part of the NASA Energy Efficient Engine program, scale-model performance tests of a mixed flow exhaust system were conducted. The tests were used to evaluate the performance of exhaust system mixers for high-bypass, mixed-flow turbofan engines. The tests indicated that: (1) mixer penetration has the most significant affect on both mixing effectiveness and mixer pressure loss; (2) mixing/tailpipe length improves mixing effectiveness; (3) gap reduction between the mixer and centerbody increases high mixing effectiveness; (4) mixer cross-sectional shape influences mixing effectiveness; (5) lobe number affects mixing degree; and (6) mixer aerodynamic pressure losses are a function of secondary flows inherent to the lobed mixer concept.

  6. Discrete tyre model application for evaluation of vehicle limit handling performance

    NASA Astrophysics Data System (ADS)

    Siramdasu, Y.; Taheri, S.

    2016-11-01

    The goal of this study is twofold, first, to understand the transient and nonlinear effects of anti-lock braking systems (ABS), road undulations and driving dynamics on lateral performance of tyre and second, to develop objective handling manoeuvres and respective metrics to characterise these effects on vehicle behaviour. For studying the transient and nonlinear handling performance of the vehicle, the variations of relaxation length of tyre and tyre inertial properties play significant roles [Pacejka HB. Tire and vehicle dynamics. 3rd ed. Butterworth-Heinemann; 2012]. To accurately simulate these nonlinear effects during high-frequency vehicle dynamic manoeuvres, requires a high-frequency dynamic tyre model (? Hz). A 6 DOF dynamic tyre model integrated with enveloping model is developed and validated using fixed axle high-speed oblique cleat experimental data. Commercially available vehicle dynamics software CarSim® is used for vehicle simulation. The vehicle model was validated by comparing simulation results with experimental sinusoidal steering tests. The validated tyre model is then integrated with vehicle model and a commercial grade rule-based ABS model to perform various objective simulations. Two test scenarios of ABS braking in turn on a smooth road and accelerating in a turn on uneven and smooth roads are considered. Both test cases reiterated that while the tyre is operating in the nonlinear region of slip or slip angle, any road disturbance or high-frequency brake torque input variations can excite the inertial belt vibrations of the tyre. It is shown that these inertial vibrations can directly affect the developed performance metrics and potentially degrade the handling performance of the vehicle.

  7. Application of Poisson random effect models for highway network screening.

    PubMed

    Jiang, Ximiao; Abdel-Aty, Mohamed; Alamili, Samer

    2014-02-01

    In recent years, Bayesian random effect models that account for the temporal and spatial correlations of crash data became popular in traffic safety research. This study employs random effect Poisson Log-Normal models for crash risk hotspot identification. Both the temporal and spatial correlations of crash data were considered. Potential for Safety Improvement (PSI) were adopted as a measure of the crash risk. Using the fatal and injury crashes that occurred on urban 4-lane divided arterials from 2006 to 2009 in the Central Florida area, the random effect approaches were compared to the traditional Empirical Bayesian (EB) method and the conventional Bayesian Poisson Log-Normal model. A series of method examination tests were conducted to evaluate the performance of different approaches. These tests include the previously developed site consistence test, method consistence test, total rank difference test, and the modified total score test, as well as the newly proposed total safety performance measure difference test. Results show that the Bayesian Poisson model accounting for both temporal and spatial random effects (PTSRE) outperforms the model that with only temporal random effect, and both are superior to the conventional Poisson Log-Normal model (PLN) and the EB model in the fitting of crash data. Additionally, the method evaluation tests indicate that the PTSRE model is significantly superior to the PLN model and the EB model in consistently identifying hotspots during successive time periods. The results suggest that the PTSRE model is a superior alternative for road site crash risk hotspot identification. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Physics-based model for predicting the performance of a miniature wind turbine

    NASA Astrophysics Data System (ADS)

    Xu, F. J.; Hu, J. Z.; Qiu, Y. P.; Yuan, F. G.

    2011-04-01

    A comprehensive physics-based model for predicting the performance of the miniature wind turbine (MWT) for power wireless sensor systems was proposed in this paper. An approximation of the power coefficient of the turbine rotor was made after the turbine rotor performance was measured. Incorporation of the approximation with the equivalent circuit model which was proposed according to the principles of the MWT, the overall system performance of the MWT was predicted. To demonstrate the prediction, the MWT system comprised of a 7.6 cm thorgren plastic propeller as turbine rotor and a DC motor as generator was designed and its performance was tested experimentally. The predicted output voltage, power and system efficiency are matched well with the tested results, which imply that this study holds promise in estimating and optimizing the performance of the MWT.

  9. Modeling and Analysis of Chill and Fill Processes for the EDU Tank

    NASA Technical Reports Server (NTRS)

    Hedayat, A.; Cartagena, W.; Majumdar, A. K.; Leclair, A. C.

    2015-01-01

    NASA's future missions may require long-term storage and transfer of cryogenic propellants. The Engineering Development Unit (EDU), a NASA in-house effort supported by both Marshall Space Flight Center (MSFC) and Glenn Research Center (GRC), is a Cryogenic Fluid Management (CFM) test article that primarily serves as a manufacturing pathfinder and a risk reduction task for a future CFM payload. The EDU test article, comprises a flight like tank, internal components, insulation, and attachment struts. The EDU is designed to perform integrated passive thermal control performance testing with liquid hydrogen in a space-like vacuum environment. A series of tests, with liquid hydrogen as a testing fluid, was conducted at Test Stand 300 at MSFC during summer of 2014. The objective of this effort was to develop a thermal/fluid model for evaluating the thermodynamic behavior of the EDU tank during the chill and fill processes. Generalized Fluid System Simulation Program (GFSSP), an MSFC in-house general-purpose computer program for flow network analysis, was utilized to model and simulate the chill and fill portion of the testing. The model contained the liquid hydrogen supply source, feed system, EDU tank, and vent system. The modeling description and comparison of model predictions with the test data will be presented in the final paper.

  10. Nonparametric estimation and testing of fixed effects panel data models

    PubMed Central

    Henderson, Daniel J.; Carroll, Raymond J.; Li, Qi

    2009-01-01

    In this paper we consider the problem of estimating nonparametric panel data models with fixed effects. We introduce an iterative nonparametric kernel estimator. We also extend the estimation method to the case of a semiparametric partially linear fixed effects model. To determine whether a parametric, semiparametric or nonparametric model is appropriate, we propose test statistics to test between the three alternatives in practice. We further propose a test statistic for testing the null hypothesis of random effects against fixed effects in a nonparametric panel data regression model. Simulations are used to examine the finite sample performance of the proposed estimators and the test statistics. PMID:19444335

  11. Using Biowin, Bayes, and batteries to predict ready biodegradability.

    PubMed

    Boethling, Robert S; Lynch, David G; Jaworska, Joanna S; Tunkel, Jay L; Thom, Gary C; Webb, Simon

    2004-04-01

    Whether or not a given chemical substance is readily biodegradable is an important piece of information in risk screening for both new and existing chemicals. Despite the relatively low cost of Organization for Economic Cooperation and Development tests, data are often unavailable and biodegradability must be estimated. In this paper, we focus on the predictive value of selected Biowin models and model batteries using Bayesian analysis. Posterior probabilities, calculated based on performance with the model training sets using Bayes' theorem, were closely matched by actual performance with an expanded set of 374 premanufacture notice (PMN) substances. Further analysis suggested that a simple battery consisting of Biowin3 (survey ultimate biodegradation model) and Biowin5 (Ministry of International Trade and Industry [MITI] linear model) would have enhanced predictive power in comparison to individual models. Application of the battery to PMN substances showed that performance matched expectation. This approach significantly reduced both false positives for ready biodegradability and the overall misclassification rate. Similar results were obtained for a set of 63 pharmaceuticals using a battery consisting of Biowin3 and Biowin6 (MITI nonlinear model). Biodegradation data for PMNs tested in multiple ready tests or both inherent and ready biodegradation tests yielded additional insights that may be useful in risk screening.

  12. Incorporating Probability Models of Complex Test Structures to Perform Technology Independent FPGA Single Event Upset Analysis

    NASA Technical Reports Server (NTRS)

    Berg, M. D.; Kim, H. S.; Friendlich, M. A.; Perez, C. E.; Seidlick, C. M.; LaBel, K. A.

    2011-01-01

    We present SEU test and analysis of the Microsemi ProASIC3 FPGA. SEU Probability models are incorporated for device evaluation. Included is a comparison to the RTAXS FPGA illustrating the effectiveness of the overall testing methodology.

  13. Waterhammer Modeling for the Ares I Upper Stage Reaction Control System Cold Flow Development Test Article

    NASA Technical Reports Server (NTRS)

    Williams, Jonathan H.

    2010-01-01

    The Upper Stage Reaction Control System provides three-axis attitude control for the Ares I launch vehicle during active Upper Stage flight. The system design must accommodate rapid thruster firing to maintain the proper launch trajectory and thus allow for the possibility to pulse multiple thrusters simultaneously. Rapid thruster valve closure creates an increase in static pressure, known as waterhammer, which propagates throughout the propellant system at pressures exceeding nominal design values. A series of development tests conducted in the fall of 2009 at Marshall Space Flight Center were performed using a water-flow test article to better understand fluid performance characteristics of the Upper Stage Reaction Control System. A subset of the tests examined waterhammer along with the subsequent pressure and frequency response in the flight-representative system and provided data to anchor numerical models. This thesis presents a comparison of waterhammer test results with numerical model and analytical results. An overview of the flight system, test article, modeling and analysis are also provided.

  14. An Explanatory Item Response Theory Approach for a Computer-Based Case Simulation Test

    ERIC Educational Resources Information Center

    Kahraman, Nilüfer

    2014-01-01

    Problem: Practitioners working with multiple-choice tests have long utilized Item Response Theory (IRT) models to evaluate the performance of test items for quality assurance. The use of similar applications for performance tests, however, is often encumbered due to the challenges encountered in working with complicated data sets in which local…

  15. Analytical Prediction of the Seismic Response of a Reinforced Concrete Containment Vessel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James, R.J.; Rashid, Y.R.; Cherry, J.L.

    Under the sponsorship of the Ministry of International Trade and Industry (MITI) of Japan, the Nuclear Power Engineering Corporation (NUPEC) is investigating the seismic behavior of a Reinforced Concrete Containment Vessel (RCCV) through scale-model testing using the high-performance shaking table at the Tadotsu Engineering Laboratory. A series of tests representing design-level seismic ground motions was initially conducted to gather valuable experimental measurements for use in design verification. Additional tests will be conducted with increasing amplifications of the seismic input until a structural failure of the test model occurs. In a cooperative program with NUPEC, the US Nuclear Regulatory Commission (USNRC),more » through Sandia National Laboratories (SNL), is conducting analytical research on the seismic behavior of RCCV structures. As part of this program, pretest analytical predictions of the model tests are being performed. The dynamic time-history analysis utilizes a highly detailed concrete constitutive model applied to a three-dimensional finite element representation of the test structure. This paper describes the details of the analysis model and provides analysis results.« less

  16. Diffusive deposition of aerosols in Phebus containment during FPT-2 test

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kontautas, A.; Urbonavicius, E.

    2012-07-01

    At present the lumped-parameter codes is the main tool to investigate the complex response of the containment of Nuclear Power Plant in case of an accident. Continuous development and validation of the codes is required to perform realistic investigation of the processes that determine the possible source term of radioactive products to the environment. Validation of the codes is based on the comparison of the calculated results with the measurements performed in experimental facilities. The most extensive experimental program to investigate fission product release from the molten fuel, transport through the cooling circuit and deposition in the containment is performedmore » in PHEBUS test facility. Test FPT-2 performed in this facility is considered for analysis of processes taking place in containment. Earlier performed investigations using COCOSYS code showed that the code could be successfully used for analysis of thermal-hydraulic processes and deposition of aerosols, but there was also noticed that diffusive deposition on the vertical walls does not fit well with the measured results. In the CPA module of ASTEC code there is implemented different model for diffusive deposition, therefore the PHEBUS containment model was transferred from COCOSYS code to ASTEC-CPA to investigate the influence of the diffusive deposition modelling. Analysis was performed using PHEBUS containment model of 16 nodes. The calculated thermal-hydraulic parameters are in good agreement with measured results, which gives basis for realistic simulation of aerosol transport and deposition processes. Performed investigations showed that diffusive deposition model has influence on the aerosol deposition distribution on different surfaces in the test facility. (authors)« less

  17. NEXT Ion Thruster Performance Dispersion Analyses

    NASA Technical Reports Server (NTRS)

    Soulas, George C.; Patterson, Michael J.

    2008-01-01

    The NEXT ion thruster is a low specific mass, high performance thruster with a nominal throttling range of 0.5 to 7 kW. Numerous engineering model and one prototype model thrusters have been manufactured and tested. Of significant importance to propulsion system performance is thruster-to-thruster performance dispersions. This type of information can provide a bandwidth of expected performance variations both on a thruster and a component level. Knowledge of these dispersions can be used to more conservatively predict thruster service life capability and thruster performance for mission planning, facilitate future thruster performance comparisons, and verify power processor capabilities are compatible with the thruster design. This study compiles the test results of five engineering model thrusters and one flight-like thruster to determine unit-to-unit dispersions in thruster performance. Component level performance dispersion analyses will include discharge chamber voltages, currents, and losses; accelerator currents, electron backstreaming limits, and perveance limits; and neutralizer keeper and coupling voltages and the spot-to-plume mode transition flow rates. Thruster level performance dispersion analyses will include thrust efficiency.

  18. The psychometric properties of the "Reading the Mind in the Eyes" Test: an item response theory (IRT) analysis.

    PubMed

    Preti, Antonio; Vellante, Marcello; Petretto, Donatella R

    2017-05-01

    The "Reading the Mind in the Eyes" Test (hereafter: Eyes Test) is considered an advanced task of the Theory of Mind aimed at assessing the performance of the participant in perspective-takingthat is, the ability to sense or understand other people's cognitive and emotional states. In this study, the item response theory analysis was applied to the adult version of the Eyes Test. The Italian version of the Eyes Test was administered to 200 undergraduate students of both genders (males = 46%). Modified parallel analysis (MPA) was used to test unidimensionality. Marginal maximum likelihood estimation was used to fit the 1-, 2-, and 3-parameter logistic (PL) model to the data. Differential Item Functioning (DIF) due to gender was explored with five independent methods. MPA provided evidence in favour of unidimensionality. The Rasch model (1-PL) was superior to the other two models in explaining participants' responses to the Eyes Test. There was no robust evidence of gender-related DIF in the Eyes Test, although some differences may exist for some items as a reflection of real differences by group. The study results support a one-factor model of the Eyes Test. Performance on the Eyes Test is defined by the participant's ability in perspective-taking. Researchers should cease using arbitrarily selected subscores in assessing the performance of participants to the Eyes Test. Lack of gender-related DIF favours the use of the Eyes Test in the investigation of gender differences concerning empathy and social cognition.

  19. Modelling of Local Necking and Fracture in Aluminium Alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Achani, D.; Eriksson, M.; Hopperstad, O. S.

    2007-05-17

    Non-linear Finite Element simulations are extensively used in forming and crashworthiness studies of automotive components and structures in which fracture need to be controlled. For thin-walled ductile materials, the fracture-related phenomena that must be properly represented are thinning instability, ductile fracture and through-thickness shear instability. Proper representation of the fracture process relies on the accuracy of constitutive and fracture models and their parameters that need to be calibrated through well defined experiments. The present study focuses on local necking and fracture which is of high industrial importance, and uses a phenomenological criterion for modelling fracture in aluminium alloys. As anmore » accurate description of plastic anisotropy is important, advanced phenomenological constitutive equations based on the yield criterion YLD2000/YLD2003 are used. Uniaxial tensile tests and disc compression tests are performed for identification of the constitutive model parameters. Ductile fracture is described by the Cockcroft-Latham fracture criterion and an in-plane shear tests is performed to identify the fracture parameter. The reason is that in a well designed in-plane shear test no thinning instability should occur and it thus gives more direct information about the phenomenon of ductile fracture. Numerical simulations have been performed using a user-defined material model implemented in the general-purpose non-linear FE code LS-DYNA. The applicability of the model is demonstrated by correlating the predicted and experimental response in the in-plane shear tests and additional plane strain tension tests.« less

  20. Computer-aided-engineering system for modeling and analysis of ECLSS integration testing

    NASA Technical Reports Server (NTRS)

    Sepahban, Sonbol

    1987-01-01

    The accurate modeling and analysis of two-phase fluid networks found in environmental control and life support systems is presently undertaken by computer-aided engineering (CAE) techniques whose generalized fluid dynamics package can solve arbitrary flow networks. The CAE system for integrated test bed modeling and analysis will also furnish interfaces and subsystem/test-article mathematical models. Three-dimensional diagrams of the test bed are generated by the system after performing the requisite simulation and analysis.

  1. Modeling and Analysis of Structural Dynamics for a One-Tenth Scale Model NGST Sunshield

    NASA Technical Reports Server (NTRS)

    Johnston, John; Lienard, Sebastien; Brodeur, Steve (Technical Monitor)

    2001-01-01

    New modeling and analysis techniques have been developed for predicting the dynamic behavior of the Next Generation Space Telescope (NGST) sunshield. The sunshield consists of multiple layers of pretensioned, thin-film membranes supported by deployable booms. Modeling the structural dynamic behavior of the sunshield is a challenging aspect of the problem due to the effects of membrane wrinkling. A finite element model of the sunshield was developed using an approximate engineering approach, the cable network method, to account for membrane wrinkling effects. Ground testing of a one-tenth scale model of the NGST sunshield were carried out to provide data for validating the analytical model. A series of analyses were performed to predict the behavior of the sunshield under the ground test conditions. Modal analyses were performed to predict the frequencies and mode shapes of the test article and transient response analyses were completed to simulate impulse excitation tests. Comparison was made between analytical predictions and test measurements for the dynamic behavior of the sunshield. In general, the results show good agreement with the analytical model correctly predicting the approximate frequency and mode shapes for the significant structural modes.

  2. Transforming Biology Assessment with Machine Learning: Automated Scoring of Written Evolutionary Explanations

    NASA Astrophysics Data System (ADS)

    Nehm, Ross H.; Ha, Minsu; Mayfield, Elijah

    2012-02-01

    This study explored the use of machine learning to automatically evaluate the accuracy of students' written explanations of evolutionary change. Performance of the Summarization Integrated Development Environment (SIDE) program was compared to human expert scoring using a corpus of 2,260 evolutionary explanations written by 565 undergraduate students in response to two different evolution instruments (the EGALT-F and EGALT-P) that contained prompts that differed in various surface features (such as species and traits). We tested human-SIDE scoring correspondence under a series of different training and testing conditions, using Kappa inter-rater agreement values of greater than 0.80 as a performance benchmark. In addition, we examined the effects of response length on scoring success; that is, whether SIDE scoring models functioned with comparable success on short and long responses. We found that SIDE performance was most effective when scoring models were built and tested at the individual item level and that performance degraded when suites of items or entire instruments were used to build and test scoring models. Overall, SIDE was found to be a powerful and cost-effective tool for assessing student knowledge and performance in a complex science domain.

  3. 49 CFR 665.11 - Testing requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... braking performance, Structural Integrity, Fuel Economy, Noise, and Emissions; (c) If the new bus model... testing facility shall develop a test plan for the testing of vehicles at the facility. The test plan...

  4. Enhancing HIV Testing and Treatment among Men Who Have Sex with Men in China: A Pilot Model with Two-Rapid Tests, Single Blood Draw Session, and Intensified Case Management in Six Cities in 2013.

    PubMed

    Zhang, Dapeng; Lu, Hongyan; Zhuang, Minghua; Wu, Guohui; Yan, Hongjing; Xu, Jun; Wei, Xiaoli; Li, Chengmei; Meng, Sining; Fu, Xiaojing; Qi, Jinlei; Wang, Peng; Luo, Mei; Dai, Min; Yip, Ray; Sun, Jiangping; Wu, Zunyou

    2016-01-01

    To explore models to improve HIV testing, linkage to care and treatment among men who have sex with men (MSM) in cooperation with community-based organizations (CBOs) in China. We introduced a new model for HIV testing services targeting MSM in six cities in 2013.These models introduced provision of rapid HIV testing by CBO staff and streamlined processes for HIV screening, confirmation of initial reactive screening results, and linkage to care among diagnosed people. We monitored attrition along each step of the continuum of care from screening to treatment and compared program performance between 2012 and 2013. According to the providers of two rapid tests (HIV screening), four different services delivery models were examined in 2013: Model A = first screen at CDC, second at CDC (Model A = CDC+CDC), Model B = first and second screens at CBOs (Model B = CBO+CBO), Model C = first screen at CBO, second at Hospital (Model C = CBO+Hosp), and Model D = first screen at CBO, second at CDC (Model D = CBO+CDC). Logistic regressions were performed to assess advantages of different screening models of case finding and case management. Compared to 2012, the number of HIV screening tests performed for MSM increased 35.8% in 2013 (72,577 in 2013 vs. 53,455 in 2012). We observed a 5.6% increase in proportion of cases screened reactive receiving HIV confirmatory tests (93.9% in 2013 vs. 89.2% in 2012, χ2 = 48.52, p<0.001) and 65% reduction in loss to CD4 cell count tests (15% in 2013 vs. 43% in 2012, χ2 = 628.85, p<0.001). Regarding linkage to care and treatment, the 2013 pilot showed that the Model D had the highest rate of loss between screening reactive and confirmatory test among the four models, with 18.1% fewer receiving a second screening test and a further 5.9% loss among those receiving HIV confirmatory tests. The Model B and the Model C showed lower losses (0.8% and 1.3%) for newly diagnosed HIV positives receiving CD4 cell count tests, and higher rates of HIV positives referred to designated ART hospitals (88.0% and 93.3%) than the Model A and Model D (4.6% and 5.7% for CD4 cell count test, and 68.9% and 64.4% for referring to designated ART hospitals). The proportion of cases where the screening test was reactive that were commenced on ART was highest in Model C; 52.8% of cases commenced on ART compared to 38.9%, 34.2% and 21.1% in Models A, B and D respectively. Using Model A as a reference group, the multivariate logistic regression results also showed the advantages of Models B, C and D, which increased CD4 cell count test, referral to designated ART hospitals and initiation of ART, when controlling for program city and other factors. This study has demonstrated that involvement of CBOs in HIV rapid testing provision, streamlining testing and care procedures and early hospital case management can improve testing, linkage to, and retention in care and treatment among MSM in China.

  5. Proton Exchange Membrane Fuel Cell Engineering Model Powerplant. Test Report: Benchmark Tests in Three Spatial Orientations

    NASA Technical Reports Server (NTRS)

    Loyselle, Patricia; Prokopius, Kevin

    2011-01-01

    Proton exchange membrane (PEM) fuel cell technology is the leading candidate to replace the aging alkaline fuel cell technology, currently used on the Shuttle, for future space missions. This test effort marks the final phase of a 5-yr development program that began under the Second Generation Reusable Launch Vehicle (RLV) Program, transitioned into the Next Generation Launch Technologies (NGLT) Program, and continued under Constellation Systems in the Exploration Technology Development Program. Initially, the engineering model (EM) powerplant was evaluated with respect to its performance as compared to acceptance tests carried out at the manufacturer. This was to determine the sensitivity of the powerplant performance to changes in test environment. In addition, a series of tests were performed with the powerplant in the original standard orientation. This report details the continuing EM benchmark test results in three spatial orientations as well as extended duration testing in the mission profile test. The results from these tests verify the applicability of PEM fuel cells for future NASA missions. The specifics of these different tests are described in the following sections.

  6. Phase 2 and 3 wind tunnel tests of the J-97 powered, external augmentor V/STOL model. [conducted in Ames 40- by 80-foot wind tunnel

    NASA Technical Reports Server (NTRS)

    Garland, D. B.

    1980-01-01

    Modifications were made to the model to improve longitudinal acceleration capability during transition from hovering to wing borne flight. A rearward deflection of the fuselage augmentor thrust vector is shown to be beneficial in this regard. Other agmentor modifications were tested, notably the removal of both endplates, which improved acceleration performance at the higher transition speeds. The model tests again demonstrated minimal interference of the fuselage augmentor on aerodynamic lift. A flapped canard surface also shows negligible influence on the performance of the wing and of the fuselage augmentor.

  7. Exploratory reconstructability analysis of accident TBI data

    NASA Astrophysics Data System (ADS)

    Zwick, Martin; Carney, Nancy; Nettleton, Rosemary

    2018-02-01

    This paper describes the use of reconstructability analysis to perform a secondary study of traumatic brain injury data from automobile accidents. Neutral searches were done and their results displayed with a hypergraph. Directed searches, using both variable-based and state-based models, were applied to predict performance on two cognitive tests and one neurological test. Very simple state-based models gave large uncertainty reductions for all three DVs and sizeable improvements in percent correct for the two cognitive test DVs which were equally sampled. Conditional probability distributions for these models are easily visualized with simple decision trees. Confounding variables and counter-intuitive findings are also reported.

  8. Personal and situational predictors of test anxiety of students in post-compulsory education.

    PubMed

    Putwain, David W; Woods, Kevin A; Symes, Wendy

    2010-03-01

    Recent models of evaluation anxiety emphasize the importance of personal knowledge and self-regulatory processes in the development of test anxiety, but do not theorize a route for situational influences. To investigate the relationship between test anxiety and personal knowledge beliefs (achievement goals and perceived academic competence), parental pressure/support, and teachers' achievement goals. One-hundred and seventy five students at a sixth-form college following pre-degree courses in Psychology and Sociology. Self-report data were collected for test anxiety, personal achievement goals, academic self-concept, perceived test competence, teachers' achievement goals, and parental pressure/support. Relationships were examined through correlational and regression analyses. The relationship between test anxiety and personal knowledge beliefs differed for the various components of test anxiety. A mastery-avoidance goal was related to worry and tension, and a performance-approach goal to bodily symptoms. Perceived academic competence was related to worry and tension. Parental pressure was associated with stronger worry and test-irrelevant thinking components directly, and with a stronger bodily symptoms component indirectly through a performance-approach goal. Teachers' performance-avoidance goals were related to worry, tension, and bodily symptoms indirectly through personal performance-avoidance goals, and in the case of bodily symptoms additionally through a performance-approach goal. Findings provide partial support for the self-regulatory model of test anxiety suggesting that additional routes are required to account for the role of parental pressure and teachers' performance-avoidance goals and a re-examination of the relationship between test anxiety and achievement goals.

  9. Progress with variable cycle engines

    NASA Technical Reports Server (NTRS)

    Westmoreland, J. S.

    1980-01-01

    The evaluation of components of an advanced propulsion system for a future supersonic cruise vehicle is discussed. These components, a high performance duct burner for thrust augmentation and a low jet noise coannular exhaust nozzle, are part of the variable stream control engine. An experimental test program involving both isolated component and complete engine tests was conducted for the high performance, low emissions duct burner with excellent results. Nozzle model tests were completed which substantiate the inherent jet noise benefit associated with the unique velocity profile possible of a coannular exhaust nozzle system on a variable stream control engine. Additional nozzle model performance tests have established high thrust efficiency levels at takeoff and supersonic cruise for this nozzle system. Large scale testing of these two critical components is conducted using an F100 engine as the testbed for simulating the variable stream control engine.

  10. Modelling and Prediction of Spark-ignition Engine Power Performance Using Incremental Least Squares Support Vector Machines

    NASA Astrophysics Data System (ADS)

    Wong, Pak-kin; Vong, Chi-man; Wong, Hang-cheong; Li, Ke

    2010-05-01

    Modern automotive spark-ignition (SI) power performance usually refers to output power and torque, and they are significantly affected by the setup of control parameters in the engine management system (EMS). EMS calibration is done empirically through tests on the dynamometer (dyno) because no exact mathematical engine model is yet available. With an emerging nonlinear function estimation technique of Least squares support vector machines (LS-SVM), the approximate power performance model of a SI engine can be determined by training the sample data acquired from the dyno. A novel incremental algorithm based on typical LS-SVM is also proposed in this paper, so the power performance models built from the incremental LS-SVM can be updated whenever new training data arrives. With updating the models, the model accuracies can be continuously increased. The predicted results using the estimated models from the incremental LS-SVM are good agreement with the actual test results and with the almost same average accuracy of retraining the models from scratch, but the incremental algorithm can significantly shorten the model construction time when new training data arrives.

  11. Naval Aerospace Medical Research Laboratory. 1993 Command History.

    DTIC Science & Technology

    1994-04-01

    selected student naval aviators score differentially on the test battery and are their scores correlated with flight school performance? 58...Ph.D., attended 3rd Meeting of Accelerated Research Initiative, Nenral Constraints on Cognitive Architecture, Learning Research and Development...Shamma, S.E. and Stanny, R.R,, "Models of Cognitive Performance Assessment Tests," Mathematical Modeling and Scientific Compuiing, Vol. 2, pp. 240-245

  12. The Reformulated Model of Learned Helplessness: An Empirical Test.

    ERIC Educational Resources Information Center

    Rothblum, Esther D.; Green, Leon

    Abramson, Seligman and Teasdale's reformulated model of learned helplessness hypothesized that an attribution of causality intervenes between the perception of noncontingency and the future expectation of future noncontingency. To test this model, relationships between attribution and performance under failure, success, and control conditions were…

  13. NDARC - NASA Design and Analysis of Rotorcraft Validation and Demonstration

    NASA Technical Reports Server (NTRS)

    Johnson, Wayne

    2010-01-01

    Validation and demonstration results from the development of the conceptual design tool NDARC (NASA Design and Analysis of Rotorcraft) are presented. The principal tasks of NDARC are to design a rotorcraft to satisfy specified design conditions and missions, and then analyze the performance of the aircraft for a set of off-design missions and point operating conditions. The aircraft chosen as NDARC development test cases are the UH-60A single main-rotor and tail-rotor helicopter, the CH-47D tandem helicopter, the XH-59A coaxial lift-offset helicopter, and the XV-15 tiltrotor. These aircraft were selected because flight performance data, a weight statement, detailed geometry information, and a correlated comprehensive analysis model are available for each. Validation consists of developing the NDARC models for these aircraft by using geometry and weight information, airframe wind tunnel test data, engine decks, rotor performance tests, and comprehensive analysis results; and then comparing the NDARC results for aircraft and component performance with flight test data. Based on the calibrated models, the capability of the code to size rotorcraft is explored.

  14. Modeling the thermotaxis behavior of C.elegans based on the artificial neural network.

    PubMed

    Li, Mingxu; Deng, Xin; Wang, Jin; Chen, Qiaosong; Tang, Yun

    2016-07-03

    ASBTRACT This research aims at modeling the thermotaxis behavior of C.elegans which is a kind of nematode with full clarified neuronal connections. Firstly, this work establishes the motion model which can perform the undulatory locomotion with turning behavior. Secondly, the thermotaxis behavior is modeled by nonlinear functions and the nonlinear functions are learned by artificial neural network. Once the artificial neural networks have been well trained, they can perform the desired thermotaxis behavior. Last, several testing simulations are carried out to verify the effectiveness of the model for thermotaxis behavior. This work also analyzes the different performances of the model under different environments. The testing results reveal the essence of the thermotaxis of C.elegans to some extent, and theoretically support the research on the navigation of the crawling robots.

  15. A Test and Extension of Lane and Terry’s (2000) Conceptual Model of Mood-Performance Relationships Using a Large Internet Sample

    PubMed Central

    Lane, Andrew M.; Terry, Peter C.; Devonport, Tracey J.; Friesen, Andrew P.; Totterdell, Peter A.

    2017-01-01

    The present study tested and extended Lane and Terry (2000) conceptual model of mood-performance relationships using a large dataset from an online experiment. Methodological and theoretical advances included testing a more balanced model of pleasant and unpleasant emotions, and evaluating relationships among emotion regulation traits, states and beliefs, psychological skills use, perceptions of performance, mental preparation, and effort exerted during competition. Participants (N = 73,588) completed measures of trait emotion regulation, emotion regulation beliefs, regulation efficacy, use of psychological skills, and rated their anger, anxiety, dejection, excitement, energy, and happiness before completing a competitive concentration task. Post-competition, participants completed measures of effort exerted, beliefs about the quality of mental preparation, and subjective performance. Results showed that dejection associated with worse performance with the no-dejection group performing 3.2% better. Dejection associated with higher anxiety and anger scores and lower energy, excitement, and happiness scores. The proposed moderating effect of dejection was supported for the anxiety-performance relationship but not the anger-performance relationship. In the no-dejection group, participants who reported moderate or high anxiety outperformed those reporting low anxiety by about 1.6%. Overall, results showed partial support for Lane and Terry’s model. In terms of extending the model, results showed dejection associated with greater use of suppression, less frequent use of re-appraisal and psychological skills, lower emotion regulation beliefs, and lower emotion regulation efficacy. Further, dejection associated with greater effort during performance, beliefs that pre-competition emotions did not assist goal achievement, and low subjective performance. Future research is required to investigate the role of intense emotions in emotion regulation and performance. PMID:28458641

  16. A Test and Extension of Lane and Terry's (2000) Conceptual Model of Mood-Performance Relationships Using a Large Internet Sample.

    PubMed

    Lane, Andrew M; Terry, Peter C; Devonport, Tracey J; Friesen, Andrew P; Totterdell, Peter A

    2017-01-01

    The present study tested and extended Lane and Terry (2000) conceptual model of mood-performance relationships using a large dataset from an online experiment. Methodological and theoretical advances included testing a more balanced model of pleasant and unpleasant emotions, and evaluating relationships among emotion regulation traits, states and beliefs, psychological skills use, perceptions of performance, mental preparation, and effort exerted during competition. Participants ( N = 73,588) completed measures of trait emotion regulation, emotion regulation beliefs, regulation efficacy, use of psychological skills, and rated their anger, anxiety, dejection, excitement, energy, and happiness before completing a competitive concentration task. Post-competition, participants completed measures of effort exerted, beliefs about the quality of mental preparation, and subjective performance. Results showed that dejection associated with worse performance with the no-dejection group performing 3.2% better. Dejection associated with higher anxiety and anger scores and lower energy, excitement, and happiness scores. The proposed moderating effect of dejection was supported for the anxiety-performance relationship but not the anger-performance relationship. In the no-dejection group, participants who reported moderate or high anxiety outperformed those reporting low anxiety by about 1.6%. Overall, results showed partial support for Lane and Terry's model. In terms of extending the model, results showed dejection associated with greater use of suppression, less frequent use of re-appraisal and psychological skills, lower emotion regulation beliefs, and lower emotion regulation efficacy. Further, dejection associated with greater effort during performance, beliefs that pre-competition emotions did not assist goal achievement, and low subjective performance. Future research is required to investigate the role of intense emotions in emotion regulation and performance.

  17. Varying execution discipline to increase performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, P.L.; Maccabe, A.B.

    1993-12-22

    This research investigates the relationship between execution discipline and performance. The hypothesis has two parts: 1. Different execution disciplines exhibit different performance for different computations, and 2. These differences can be effectively predicted by heuristics. A machine model is developed that can vary its execution discipline. That is, the model can execute a given program using either the control-driven, data-driven or demand-driven execution discipline. This model is referred to as a ``variable-execution-discipline`` machine. The instruction set for the model is the Program Dependence Web (PDW). The first part of the hypothesis will be tested by simulating the execution of themore » machine model on a suite of computations, based on the Livermore Fortran Kernel (LFK) Test (a.k.a. the Livermore Loops), using all three execution disciplines. Heuristics are developed to predict relative performance. These heuristics predict (a) the execution time under each discipline for one iteration of each loop and (b) the number of iterations taken by that loop; then the heuristics use those predictions to develop a prediction for the execution of the entire loop. Similar calculations are performed for branch statements. The second part of the hypothesis will be tested by comparing the results of the simulated execution with the predictions produced by the heuristics. If the hypothesis is supported, then the door is open for the development of machines that can vary execution discipline to increase performance.« less

  18. Exploring the relationships among performance-based functional ability, self-rated disability, perceived instrumental support, and depression: a structural equation model analysis.

    PubMed

    Weil, Joyce; Hutchinson, Susan R; Traxler, Karen

    2014-11-01

    Data from the Women's Health and Aging Study were used to test a model of factors explaining depressive symptomology. The primary purpose of the study was to explore the association between performance-based measures of functional ability and depression and to examine the role of self-rated physical difficulties and perceived instrumental support in mediating the relationship between performance-based functioning and depression. The inclusion of performance-based measures allows for the testing of functional ability as a clinical precursor to disability and depression: a critical, but rarely examined, association in the disablement process. Structural equation modeling supported the overall fit of the model and found an indirect relationship between performance-based functioning and depression, with perceived physical difficulties serving as a significant mediator. Our results highlight the complementary nature of performance-based and self-rated measures and the importance of including perception of self-rated physical difficulties when examining depression in older persons. © The Author(s) 2014.

  19. Performance evaluation of Space Shuttle SRB parachutes from air drop and scaled model wind tunnel tests. [Solid Rocket Booster recovery system

    NASA Technical Reports Server (NTRS)

    Moog, R. D.; Bacchus, D. L.; Utreja, L. R.

    1979-01-01

    The aerodynamic performance characteristics have been determined for the Space Shuttle Solid Rocket Booster drogue, main, and pilot parachutes. The performance evaluation on the 20-degree conical ribbon parachutes is based primarily on air drop tests of full scale prototype parachutes. In addition, parametric wind tunnel tests were performed and used in parachute configuration development and preliminary performance assessments. The wind tunnel test data are compared to the drop test results and both sets of data are used to determine the predicted performance of the Solid Rocket Booster flight parachutes. Data from other drop tests of large ribbon parachutes are also compared with the Solid Rocket Booster parachute performance characteristics. Parameters assessed include full open terminal drag coefficients, reefed drag area, opening characteristics, clustering effects, and forebody interference.

  20. The Cattell-Horn-Carroll Model of Cognition for Clinical Assessment

    ERIC Educational Resources Information Center

    Jewsbury, Paul A.; Bowden, Stephen C.; Duff, Kevin

    2017-01-01

    The Cattell-Horn-Carroll (CHC) model is a comprehensive model of the major dimensions of individual differences that underlie performance on cognitive tests. Studies evaluating the generality of the CHC model across test batteries, age, gender, and culture were reviewed and found to be overwhelmingly supportive. However, less research is available…

  1. Wavelet regression model in forecasting crude oil price

    NASA Astrophysics Data System (ADS)

    Hamid, Mohd Helmie; Shabri, Ani

    2017-05-01

    This study presents the performance of wavelet multiple linear regression (WMLR) technique in daily crude oil forecasting. WMLR model was developed by integrating the discrete wavelet transform (DWT) and multiple linear regression (MLR) model. The original time series was decomposed to sub-time series with different scales by wavelet theory. Correlation analysis was conducted to assist in the selection of optimal decomposed components as inputs for the WMLR model. The daily WTI crude oil price series has been used in this study to test the prediction capability of the proposed model. The forecasting performance of WMLR model were also compared with regular multiple linear regression (MLR), Autoregressive Moving Average (ARIMA) and Generalized Autoregressive Conditional Heteroscedasticity (GARCH) using root mean square errors (RMSE) and mean absolute errors (MAE). Based on the experimental results, it appears that the WMLR model performs better than the other forecasting technique tested in this study.

  2. Developing and upgrading of solar system thermal energy storage simulation models. Technical progress report, March 1, 1979-February 29, 1980

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuhn, J K; von Fuchs, G F; Zob, A P

    1980-05-01

    Two water tank component simulation models have been selected and upgraded. These models are called the CSU Model and the Extended SOLSYS Model. The models have been standardized and links have been provided for operation in the TRNSYS simulation program. The models are described in analytical terms as well as in computer code. Specific water tank tests were performed for the purpose of model validation. Agreement between model data and test data is excellent. A description of the limitations has also been included. Streamlining results and criteria for the reduction of computer time have also been shown for both watermore » tank computer models. Computer codes for the models and instructions for operating these models in TRNSYS have also been included, making the models readily available for DOE and industry use. Rock bed component simulation models have been reviewed and a model selected and upgraded. This model is a logical extension of the Mumma-Marvin model. Specific rock bed tests have been performed for the purpose of validation. Data have been reviewed for consistency. Details of the test results concerned with rock characteristics and pressure drop through the bed have been explored and are reported.« less

  3. Forecasting Daily Volume and Acuity of Patients in the Emergency Department.

    PubMed

    Calegari, Rafael; Fogliatto, Flavio S; Lucini, Filipe R; Neyeloff, Jeruza; Kuchenbecker, Ricardo S; Schaan, Beatriz D

    2016-01-01

    This study aimed at analyzing the performance of four forecasting models in predicting the demand for medical care in terms of daily visits in an emergency department (ED) that handles high complexity cases, testing the influence of climatic and calendrical factors on demand behavior. We tested different mathematical models to forecast ED daily visits at Hospital de Clínicas de Porto Alegre (HCPA), which is a tertiary care teaching hospital located in Southern Brazil. Model accuracy was evaluated using mean absolute percentage error (MAPE), considering forecasting horizons of 1, 7, 14, 21, and 30 days. The demand time series was stratified according to patient classification using the Manchester Triage System's (MTS) criteria. Models tested were the simple seasonal exponential smoothing (SS), seasonal multiplicative Holt-Winters (SMHW), seasonal autoregressive integrated moving average (SARIMA), and multivariate autoregressive integrated moving average (MSARIMA). Performance of models varied according to patient classification, such that SS was the best choice when all types of patients were jointly considered, and SARIMA was the most accurate for modeling demands of very urgent (VU) and urgent (U) patients. The MSARIMA models taking into account climatic factors did not improve the performance of the SARIMA models, independent of patient classification.

  4. Forecasting Daily Volume and Acuity of Patients in the Emergency Department

    PubMed Central

    Fogliatto, Flavio S.; Neyeloff, Jeruza; Kuchenbecker, Ricardo S.; Schaan, Beatriz D.

    2016-01-01

    This study aimed at analyzing the performance of four forecasting models in predicting the demand for medical care in terms of daily visits in an emergency department (ED) that handles high complexity cases, testing the influence of climatic and calendrical factors on demand behavior. We tested different mathematical models to forecast ED daily visits at Hospital de Clínicas de Porto Alegre (HCPA), which is a tertiary care teaching hospital located in Southern Brazil. Model accuracy was evaluated using mean absolute percentage error (MAPE), considering forecasting horizons of 1, 7, 14, 21, and 30 days. The demand time series was stratified according to patient classification using the Manchester Triage System's (MTS) criteria. Models tested were the simple seasonal exponential smoothing (SS), seasonal multiplicative Holt-Winters (SMHW), seasonal autoregressive integrated moving average (SARIMA), and multivariate autoregressive integrated moving average (MSARIMA). Performance of models varied according to patient classification, such that SS was the best choice when all types of patients were jointly considered, and SARIMA was the most accurate for modeling demands of very urgent (VU) and urgent (U) patients. The MSARIMA models taking into account climatic factors did not improve the performance of the SARIMA models, independent of patient classification. PMID:27725842

  5. Shuttle active thermal control system development testing. Volume 3: Modular radiator system test data correlation with thermal model

    NASA Technical Reports Server (NTRS)

    Phillips, M. A.

    1973-01-01

    Results are presented of an analysis which compares the performance predictions of a thermal model of a multi-panel modular radiator system with thermal vacuum test data. Comparisons between measured and predicted individual panel outlet temperatures and pressure drops and system outlet temperatures have been made over the full range of heat loads, environments and plumbing arrangements expected for the shuttle radiators. Both two sided and one sided radiation have been included. The model predictions show excellent agreement with the test data for the maximum design conditions of high load and hot environment. Predictions under minimum design conditions of low load-cold environments indicate good agreement with the measured data, but evaluation of low load predictions should consider the possibility of parallel flow instabilities due to main system freezing. Performance predictions under intermediate conditions in which the majority of the flow is not in either the main or prime system are adequate although model improvements in this area may be desired. The primary modeling objective of providing an analytical technique for performance predictions of a multi-panel radiator system under the design conditions has been met.

  6. Evaluation of Troxler model 3411 nuclear gage.

    DOT National Transportation Integrated Search

    1978-01-01

    The performance of the Troxler Electronics Laboratory Model 3411 nuclear gage was evaluated through laboratory tests on the Department's density and moisture standards and field tests on various soils, base courses, and bituminous concrete overlays t...

  7. Modeling the adenosine system as a modulator of cognitive performance and sleep patterns during sleep restriction and recovery.

    PubMed

    Phillips, Andrew J K; Klerman, Elizabeth B; Butler, James P

    2017-10-01

    Sleep loss causes profound cognitive impairments and increases the concentrations of adenosine and adenosine A1 receptors in specific regions of the brain. Time courses for performance impairment and recovery differ between acute and chronic sleep loss, but the physiological basis for these time courses is unknown. Adenosine has been implicated in pathways that generate sleepiness and cognitive impairments, but existing mathematical models of sleep and cognitive performance do not explicitly include adenosine. Here, we developed a novel receptor-ligand model of the adenosine system to test the hypothesis that changes in both adenosine and A1 receptor concentrations can capture changes in cognitive performance during acute sleep deprivation (one prolonged wake episode), chronic sleep restriction (multiple nights with insufficient sleep), and subsequent recovery. Parameter values were estimated using biochemical data and reaction time performance on the psychomotor vigilance test (PVT). The model closely fit group-average PVT data during acute sleep deprivation, chronic sleep restriction, and recovery. We tested the model's ability to reproduce timing and duration of sleep in a separate experiment where individuals were permitted to sleep for up to 14 hours per day for 28 days. The model accurately reproduced these data, and also correctly predicted the possible emergence of a split sleep pattern (two distinct sleep episodes) under these experimental conditions. Our findings provide a physiologically plausible explanation for observed changes in cognitive performance and sleep during sleep loss and recovery, as well as a new approach for predicting sleep and cognitive performance under planned schedules.

  8. An Engineering Model of Human Balance Control-Part I: Biomechanical Model.

    PubMed

    Barton, Joseph E; Roy, Anindo; Sorkin, John D; Rogers, Mark W; Macko, Richard

    2016-01-01

    We developed a balance measurement tool (the balanced reach test (BRT)) to assess standing balance while reaching and pointing to a target moving in three-dimensional space according to a sum-of-sines function. We also developed a three-dimensional, 13-segment biomechanical model to analyze performance in this task. Using kinematic and ground reaction force (GRF) data from the BRT, we performed an inverse dynamics analysis to compute the forces and torques applied at each of the joints during the course of a 90 s test. We also performed spectral analyses of each joint's force activations. We found that the joints act in a different but highly coordinated manner to accomplish the tracking task-with individual joints responding congruently to different portions of the target disk's frequency spectrum. The test and the model also identified clear differences between a young healthy subject (YHS), an older high fall risk (HFR) subject before participating in a balance training intervention; and in the older subject's performance after training (which improved to the point that his performance approached that of the young subject). This is the first phase of an effort to model the balance control system with sufficient physiological detail and complexity to accurately simulate the multisegmental control of balance during functional reach across the spectra of aging, medical, and neurological conditions that affect performance. Such a model would provide insight into the function and interaction of the biomechanical and neurophysiological elements making up this system; and system adaptations to changes in these elements' performance and capabilities.

  9. An Engineering Model of Human Balance Control—Part I: Biomechanical Model

    PubMed Central

    Barton, Joseph E.; Roy, Anindo; Sorkin, John D.; Rogers, Mark W.; Macko, Richard

    2016-01-01

    We developed a balance measurement tool (the balanced reach test (BRT)) to assess standing balance while reaching and pointing to a target moving in three-dimensional space according to a sum-of-sines function. We also developed a three-dimensional, 13-segment biomechanical model to analyze performance in this task. Using kinematic and ground reaction force (GRF) data from the BRT, we performed an inverse dynamics analysis to compute the forces and torques applied at each of the joints during the course of a 90 s test. We also performed spectral analyses of each joint's force activations. We found that the joints act in a different but highly coordinated manner to accomplish the tracking task—with individual joints responding congruently to different portions of the target disk's frequency spectrum. The test and the model also identified clear differences between a young healthy subject (YHS), an older high fall risk (HFR) subject before participating in a balance training intervention; and in the older subject's performance after training (which improved to the point that his performance approached that of the young subject). This is the first phase of an effort to model the balance control system with sufficient physiological detail and complexity to accurately simulate the multisegmental control of balance during functional reach across the spectra of aging, medical, and neurological conditions that affect performance. Such a model would provide insight into the function and interaction of the biomechanical and neurophysiological elements making up this system; and system adaptations to changes in these elements' performance and capabilities. PMID:26328608

  10. Phase 1 Validation Testing and Simulation for the WEC-Sim Open Source Code

    NASA Astrophysics Data System (ADS)

    Ruehl, K.; Michelen, C.; Gunawan, B.; Bosma, B.; Simmons, A.; Lomonaco, P.

    2015-12-01

    WEC-Sim is an open source code to model wave energy converters performance in operational waves, developed by Sandia and NREL and funded by the US DOE. The code is a time-domain modeling tool developed in MATLAB/SIMULINK using the multibody dynamics solver SimMechanics, and solves the WEC's governing equations of motion using the Cummins time-domain impulse response formulation in 6 degrees of freedom. The WEC-Sim code has undergone verification through code-to-code comparisons; however validation of the code has been limited to publicly available experimental data sets. While these data sets provide preliminary code validation, the experimental tests were not explicitly designed for code validation, and as a result are limited in their ability to validate the full functionality of the WEC-Sim code. Therefore, dedicated physical model tests for WEC-Sim validation have been performed. This presentation provides an overview of the WEC-Sim validation experimental wave tank tests performed at the Oregon State University's Directional Wave Basin at Hinsdale Wave Research Laboratory. Phase 1 of experimental testing was focused on device characterization and completed in Fall 2015. Phase 2 is focused on WEC performance and scheduled for Winter 2015/2016. These experimental tests were designed explicitly to validate the performance of WEC-Sim code, and its new feature additions. Upon completion, the WEC-Sim validation data set will be made publicly available to the wave energy community. For the physical model test, a controllable model of a floating wave energy converter has been designed and constructed. The instrumentation includes state-of-the-art devices to measure pressure fields, motions in 6 DOF, multi-axial load cells, torque transducers, position transducers, and encoders. The model also incorporates a fully programmable Power-Take-Off system which can be used to generate or absorb wave energy. Numerical simulations of the experiments using WEC-Sim will be presented. These simulations highlight the code features included in the latest release of WEC-Sim (v1.2), including: wave directionality, nonlinear hydrostatics and hydrodynamics, user-defined wave elevation time-series, state space radiation, and WEC-Sim compatibility with BEMIO (open source AQWA/WAMI/NEMOH coefficient parser).

  11. How to pass a sensor acceptance test: using the gap between acceptance criteria and operational performance

    NASA Astrophysics Data System (ADS)

    Bijl, Piet

    2016-10-01

    When acquiring a new imaging system and operational task performance is a critical factor for success, it is necessary to specify minimum acceptance requirements that need to be met using a sensor performance model and/or performance tests. Currently, there exist a variety of models and test from different origin (defense, security, road safety, optometry) and they all do different predictions. This study reviews a number of frequently used methods and shows the effects that small changes in procedure or threshold criteria can have on the outcome of a test. For example, a system may meet the acceptance requirements but not satisfy the needs for the operational task, or the choice of test may determine the rank order of candidate sensors. The goal of the paper is to make people aware of the pitfalls associated with the acquisition process, by i) illustrating potential tricks to have a system accepted that is actually not suited for the operational task, and ii) providing tips to avoid this unwanted situation.

  12. Explanatory model of emotional-cognitive variables in school mathematics performance: a longitudinal study in primary school

    PubMed Central

    Cerda, Gamal; Pérez, Carlos; Navarro, José I.; Aguilar, Manuel; Casas, José A.; Aragón, Estíbaliz

    2015-01-01

    This study tested a structural model of cognitive-emotional explanatory variables to explain performance in mathematics. The predictor variables assessed were related to students’ level of development of early mathematical competencies (EMCs), specifically, relational and numerical competencies, predisposition toward mathematics, and the level of logical intelligence in a population of primary school Chilean students (n = 634). This longitudinal study also included the academic performance of the students during a period of 4 years as a variable. The sampled students were initially assessed by means of an Early Numeracy Test, and, subsequently, they were administered a Likert-type scale to measure their predisposition toward mathematics (EPMAT) and a basic test of logical intelligence. The results of these tests were used to analyse the interaction of all the aforementioned variables by means of a structural equations model. This combined interaction model was able to predict 64.3% of the variability of observed performance. Preschool students’ performance in EMCs was a strong predictor for achievement in mathematics for students between 8 and 11 years of age. Therefore, this paper highlights the importance of EMCs and the modulating role of predisposition toward mathematics. Also, this paper discusses the educational role of these findings, as well as possible ways to improve negative predispositions toward mathematical tasks in the school domain. PMID:26441739

  13. Aerothermal Ground Testing of Flexible Thermal Protection Systems for Hypersonic Inflatable Aerodynamic Decelerators

    NASA Technical Reports Server (NTRS)

    Bruce, Walter E., III; Mesick, Nathaniel J.; Ferlemann, Paul G.; Siemers, Paul M., III; DelCorso, Joseph A.; Hughes, Stephen J.; Tobin, Steven A.; Kardell, Matthew P.

    2012-01-01

    Flexible TPS development involves ground testing and analysis necessary to characterize performance of the FTPS candidates prior to flight testing. This paper provides an overview of the analysis and ground testing efforts performed over the last year at the NASA Langley Research Center and in the Boeing Large-Core Arc Tunnel (LCAT). In the LCAT test series, material layups were subjected to aerothermal loads commensurate with peak re-entry conditions enveloping a range of HIAD mission trajectories. The FTPS layups were tested over a heat flux range from 20 to 50 W/cm with associated surface pressures of 3 to 8 kPa. To support the testing effort a significant redesign of the existing shear (wedge) model holder from previous testing efforts was undertaken to develop a new test technique for supporting and evaluating the FTPS in the high-temperature, arc jet flow. Since the FTPS test samples typically experience a geometry change during testing, computational fluid dynamic (CFD) models of the arc jet flow field and test model were developed to support the testing effort. The CFD results were used to help determine the test conditions experienced by the test samples as the surface geometry changes. This paper includes an overview of the Boeing LCAT facility, the general approach for testing FTPS, CFD analysis methodology and results, model holder design and test methodology, and selected thermal results of several FTPS layups.

  14. Modeling Heavy/Medium-Duty Fuel Consumption Based on Drive Cycle Properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Lijuan; Duran, Adam; Gonder, Jeffrey

    This paper presents multiple methods for predicting heavy/medium-duty vehicle fuel consumption based on driving cycle information. A polynomial model, a black box artificial neural net model, a polynomial neural network model, and a multivariate adaptive regression splines (MARS) model were developed and verified using data collected from chassis testing performed on a parcel delivery diesel truck operating over the Heavy Heavy-Duty Diesel Truck (HHDDT), City Suburban Heavy Vehicle Cycle (CSHVC), New York Composite Cycle (NYCC), and hydraulic hybrid vehicle (HHV) drive cycles. Each model was trained using one of four drive cycles as a training cycle and the other threemore » as testing cycles. By comparing the training and testing results, a representative training cycle was chosen and used to further tune each method. HHDDT as the training cycle gave the best predictive results, because HHDDT contains a variety of drive characteristics, such as high speed, acceleration, idling, and deceleration. Among the four model approaches, MARS gave the best predictive performance, with an average absolute percent error of -1.84% over the four chassis dynamometer drive cycles. To further evaluate the accuracy of the predictive models, the approaches were first applied to real-world data. MARS outperformed the other three approaches, providing an average absolute percent error of -2.2% of four real-world road segments. The MARS model performance was then compared to HHDDT, CSHVC, NYCC, and HHV drive cycles with the performance from Future Automotive System Technology Simulator (FASTSim). The results indicated that the MARS method achieved a comparative predictive performance with FASTSim.« less

  15. A high power ion thruster for deep space missions

    NASA Astrophysics Data System (ADS)

    Polk, James E.; Goebel, Dan M.; Snyder, John S.; Schneider, Analyn C.; Johnson, Lee K.; Sengupta, Anita

    2012-07-01

    The Nuclear Electric Xenon Ion System ion thruster was developed for potential outer planet robotic missions using nuclear electric propulsion (NEP). This engine was designed to operate at power levels ranging from 13 to 28 kW at specific impulses of 6000-8500 s and for burn times of up to 10 years. State-of-the-art performance and life assessment tools were used to design the thruster, which featured 57-cm-diameter carbon-carbon composite grids operating at voltages of 3.5-6.5 kV. Preliminary validation of the thruster performance was accomplished with a laboratory model thruster, while in parallel, a flight-like development model (DM) thruster was completed and two DM thrusters fabricated. The first thruster completed full performance testing and a 2000-h wear test. The second successfully completed vibration tests at the full protoflight levels defined for this NEP program and then passed performance validation testing. The thruster design, performance, and the experimental validation of the design tools are discussed in this paper.

  16. A high power ion thruster for deep space missions.

    PubMed

    Polk, James E; Goebel, Dan M; Snyder, John S; Schneider, Analyn C; Johnson, Lee K; Sengupta, Anita

    2012-07-01

    The Nuclear Electric Xenon Ion System ion thruster was developed for potential outer planet robotic missions using nuclear electric propulsion (NEP). This engine was designed to operate at power levels ranging from 13 to 28 kW at specific impulses of 6000-8500 s and for burn times of up to 10 years. State-of-the-art performance and life assessment tools were used to design the thruster, which featured 57-cm-diameter carbon-carbon composite grids operating at voltages of 3.5-6.5 kV. Preliminary validation of the thruster performance was accomplished with a laboratory model thruster, while in parallel, a flight-like development model (DM) thruster was completed and two DM thrusters fabricated. The first thruster completed full performance testing and a 2000-h wear test. The second successfully completed vibration tests at the full protoflight levels defined for this NEP program and then passed performance validation testing. The thruster design, performance, and the experimental validation of the design tools are discussed in this paper.

  17. Modeling and Performance Considerations for Automated Fault Isolation in Complex Systems

    NASA Technical Reports Server (NTRS)

    Ferrell, Bob; Oostdyk, Rebecca

    2010-01-01

    The purpose of this paper is to document the modeling considerations and performance metrics that were examined in the development of a large-scale Fault Detection, Isolation and Recovery (FDIR) system. The FDIR system is envisioned to perform health management functions for both a launch vehicle and the ground systems that support the vehicle during checkout and launch countdown by using suite of complimentary software tools that alert operators to anomalies and failures in real-time. The FDIR team members developed a set of operational requirements for the models that would be used for fault isolation and worked closely with the vendor of the software tools selected for fault isolation to ensure that the software was able to meet the requirements. Once the requirements were established, example models of sufficient complexity were used to test the performance of the software. The results of the performance testing demonstrated the need for enhancements to the software in order to meet the demands of the full-scale ground and vehicle FDIR system. The paper highlights the importance of the development of operational requirements and preliminary performance testing as a strategy for identifying deficiencies in highly scalable systems and rectifying those deficiencies before they imperil the success of the project

  18. Mars Science Laboratory Rover System Thermal Test

    NASA Technical Reports Server (NTRS)

    Novak, Keith S.; Kempenaar, Joshua E.; Liu, Yuanming; Bhandari, Pradeep; Dudik, Brenda A.

    2012-01-01

    On November 26, 2011, NASA launched a large (900 kg) rover as part of the Mars Science Laboratory (MSL) mission to Mars. The MSL rover is scheduled to land on Mars on August 5, 2012. Prior to launch, the Rover was successfully operated in simulated mission extreme environments during a 16-day long Rover System Thermal Test (STT). This paper describes the MSL Rover STT, test planning, test execution, test results, thermal model correlation and flight predictions. The rover was tested in the JPL 25-Foot Diameter Space Simulator Facility at the Jet Propulsion Laboratory (JPL). The Rover operated in simulated Cruise (vacuum) and Mars Surface environments (8 Torr nitrogen gas) with mission extreme hot and cold boundary conditions. A Xenon lamp solar simulator was used to impose simulated solar loads on the rover during a bounding hot case and during a simulated Mars diurnal test case. All thermal hardware was exercised and performed nominally. The Rover Heat Rejection System, a liquid-phase fluid loop used to transport heat in and out of the electronics boxes inside the rover chassis, performed better than predicted. Steady state and transient data were collected to allow correlation of analytical thermal models. These thermal models were subsequently used to predict rover thermal performance for the MSL Gale Crater landing site. Models predict that critical hardware temperatures will be maintained within allowable flight limits over the entire 669 Sol surface mission.

  19. 40 CFR 600.208-08 - Calculation of FTP-based and HFET-based fuel economy values for a model type.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... tests conducted on these vehicle configuration(s) at high altitude to calculate the fuel economy for the... combined fuel economy values from the tests performed using gasoline or diesel test fuel. (ii) Calculate the city, highway, and combined fuel economy values from the tests performed using alcohol or natural...

  20. 40 CFR 600.208-12 - Calculation of FTP-based and HFET-based fuel economy and carbon-related exhaust emission values...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... emission data from tests conducted on these vehicle configuration(s) at high altitude to calculate the fuel... values from the tests performed using alcohol or natural gas test fuel. (b) For each model type, as..., highway, and combined fuel economy and carbon-related exhaust emission values from the tests performed...

  1. 40 CFR 600.208-08 - Calculation of FTP-based and HFET-based fuel economy values for a model type.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... tests conducted on these vehicle configuration(s) at high altitude to calculate the fuel economy for the... combined fuel economy values from the tests performed using gasoline or diesel test fuel. (ii) Calculate the city, highway, and combined fuel economy values from the tests performed using alcohol or natural...

  2. Measuring Misinformation in Repeat Trial Pick 1 of 2 Tests.

    ERIC Educational Resources Information Center

    Henderson, Pamela W.; Buchanan, Bruce

    1992-01-01

    An extension is described to a product-testing model to account for misinformation among subjects that would lead them to perform incorrectly on "pick one of two" tests. The model is applied to a data set of 367 subjects picking 1 of 2 colas. Misinformation does exist. (SLD)

  3. Investigating the Relationship between Test-Taker Background Characteristics and Test Performance in a Heterogeneous English-as-a-Second-Language (ESL) Test Population: A Factor Analytic Approach. Research Report. ETS RR-15-25

    ERIC Educational Resources Information Center

    Manna, Venessa F.; Yoo, Hanwook

    2015-01-01

    This study examined the heterogeneity in the English-as-a-second-language (ESL) test population by modeling the relationship between test-taker background characteristics and test performance as measured by the "TOEFL iBT"® using a confirmatory factor analysis (CFA) with covariate approach. The background characteristics studied…

  4. Shuttle passenger couch. [design and performance of engineering model

    NASA Technical Reports Server (NTRS)

    Rosener, A. A.; Stephenson, M. L.

    1974-01-01

    Conceptual design and fabrication of a full scale shuttle passenger couch engineering model are reported. The model was utilized to verify anthropometric dimensions, reach dimensions, ingress/egress, couch operation, storage space, restraint locations, and crew acceptability. These data were then incorported in the design of the passenger couch verification model that underwent performance tests.

  5. Virtual Shaker Testing: Simulation Technology Improves Vibration Test Performance

    NASA Technical Reports Server (NTRS)

    Ricci, Stefano; Peeters, Bart; Fetter, Rebecca; Boland, Doug; Debille, Jan

    2008-01-01

    In the field of vibration testing, the interaction between the structure being tested and the instrumentation hardware used to perform the test is a critical issue. This is particularly true when testing massive structures (e.g. satellites), because due to physical design and manufacturing limits, the dynamics of the testing facility often couples with the test specimen one in the frequency range of interest. A further issue in this field is the standard use of a closed loop real-time vibration control scheme, which could potentially shift poles and change damping of the aforementioned coupled system. Virtual shaker testing is a novel approach to deal with these issues. It means performing a simulation which closely represents the real vibration test on the specific facility by taking into account all parameters which might impact the dynamic behavior of the specimen. In this paper, such a virtual shaker testing approach is developed. It consists of the following components: (1) Either a physical-based or an equation-based coupled electro-mechanical lumped parameter shaker model is created. The model parameters are obtained from manufacturer's specifications or by carrying out some dedicated experiments; (2) Existing real-time vibration control algorithm are ported to the virtual simulation environment; and (3) A structural model of the test object is created and after defining proper interface conditions structural modes are computed by means of the well-established Craig-Bampton CMS technique. At this stage, a virtual shaker test has been run, by coupling the three described models (shaker, control loop, structure) in a co-simulation routine. Numerical results have eventually been correlated with experimental ones in order to assess the robustness of the proposed methodology.

  6. International Space Station Model Correlation Analysis

    NASA Technical Reports Server (NTRS)

    Laible, Michael R.; Fitzpatrick, Kristin; Hodge, Jennifer; Grygier, Michael

    2018-01-01

    This paper summarizes the on-orbit structural dynamic data and the related modal analysis, model validation and correlation performed for the International Space Station (ISS) configuration ISS Stage ULF7, 2015 Dedicated Thruster Firing (DTF). The objective of this analysis is to validate and correlate the analytical models used to calculate the ISS internal dynamic loads and compare the 2015 DTF with previous tests. During the ISS configurations under consideration, on-orbit dynamic measurements were collected using the three main ISS instrumentation systems; Internal Wireless Instrumentation System (IWIS), External Wireless Instrumentation System (EWIS) and the Structural Dynamic Measurement System (SDMS). The measurements were recorded during several nominal on-orbit DTF tests on August 18, 2015. Experimental modal analyses were performed on the measured data to extract modal parameters including frequency, damping, and mode shape information. Correlation and comparisons between test and analytical frequencies and mode shapes were performed to assess the accuracy of the analytical models for the configurations under consideration. These mode shapes were also compared to earlier tests. Based on the frequency comparisons, the accuracy of the mathematical models is assessed and model refinement recommendations are given. In particular, results of the first fundamental mode will be discussed, nonlinear results will be shown, and accelerometer placement will be assessed.

  7. Recent Advances in the LEWICE Icing Model

    NASA Technical Reports Server (NTRS)

    Wright, William B.; Addy, Gene; Struk, Peter; Bartkus, Tadas

    2015-01-01

    This paper will describe two recent modifications to the Glenn ICE software. First, a capability for modeling ice crystals and mixed phase icing has been modified based on recent experimental data. Modifications have been made to the ice particle bouncing and erosion model. This capability has been added as part of a larger effort to model ice crystal ingestion in aircraft engines. Comparisons have been made to ice crystal ice accretions performed in the NRC Research Altitude Test Facility (RATFac). Second, modifications were made to the run back model based on data and observations from thermal scaling tests performed in the NRC Altitude Icing Tunnel.

  8. A Structural Model of Self-Concept, Autonomous Motivation and Academic Performance in Cross-Cultural Perspective

    ERIC Educational Resources Information Center

    Ahmed, Wondimu; Bruinsma, Marjon

    2006-01-01

    The purpose of this study was to propose and test a motivational model of performance by integrating constructs from self-concept and self-determination theories and to explore cultural group differences in the model. To this end, self-report measures of global self-esteem, academic self-concept, academic motivation and academic performance were…

  9. Topex Microwave Radiometer thermal control - Post-system-test modifications and on-orbit performance

    NASA Technical Reports Server (NTRS)

    Lin, Edward I.

    1993-01-01

    The Topex Microwave Radiometer has had an excellent thermal performance since launch. The instrument, however, went through a hardware modification right before launch to correct for a thermal design inadequacy that was uncovered during the spacecraft thermal vacuum test. This paper reports on how the initially obscure problem was tracked down, and how the thermal models were revised, validated, and utilized to investigate the solution options and guide the hardware modification decisions. Details related to test data interpretation, analytical uncertainties, and model-prediction vs. test-data correlation, are documented. Instrument/spacecraft interface issues, where the problem originated and where in general pitfalls abound, are dealt with specifically. Finally, on-orbit thermal performance data are presented, which exhibit good agreement with flight predictions, and lessons learned are discussed.

  10. Simulation-Based Training for Colonoscopy

    PubMed Central

    Preisler, Louise; Svendsen, Morten Bo Søndergaard; Nerup, Nikolaj; Svendsen, Lars Bo; Konge, Lars

    2015-01-01

    Abstract The aim of this study was to create simulation-based tests with credible pass/fail standards for 2 different fidelities of colonoscopy models. Only competent practitioners should perform colonoscopy. Reliable and valid simulation-based tests could be used to establish basic competency in colonoscopy before practicing on patients. Twenty-five physicians (10 consultants with endoscopic experience and 15 fellows with very little endoscopic experience) were tested on 2 different simulator models: a virtual-reality simulator and a physical model. Tests were repeated twice on each simulator model. Metrics with discriminatory ability were identified for both modalities and reliability was determined. The contrasting-groups method was used to create pass/fail standards and the consequences of these were explored. The consultants significantly performed faster and scored higher than the fellows on both the models (P < 0.001). Reliability analysis showed Cronbach α = 0.80 and 0.87 for the virtual-reality and the physical model, respectively. The established pass/fail standards failed one of the consultants (virtual-reality simulator) and allowed one fellow to pass (physical model). The 2 tested simulations-based modalities provided reliable and valid assessments of competence in colonoscopy and credible pass/fail standards were established for both the tests. We propose to use these standards in simulation-based training programs before proceeding to supervised training on patients. PMID:25634177

  11. A statistical model for predicting muscle performance

    NASA Astrophysics Data System (ADS)

    Byerly, Diane Leslie De Caix

    The objective of these studies was to develop a capability for predicting muscle performance and fatigue to be utilized for both space- and ground-based applications. To develop this predictive model, healthy test subjects performed a defined, repetitive dynamic exercise to failure using a Lordex spinal machine. Throughout the exercise, surface electromyography (SEMG) data were collected from the erector spinae using a Mega Electronics ME3000 muscle tester and surface electrodes placed on both sides of the back muscle. These data were analyzed using a 5th order Autoregressive (AR) model and statistical regression analysis. It was determined that an AR derived parameter, the mean average magnitude of AR poles, significantly correlated with the maximum number of repetitions (designated Rmax) that a test subject was able to perform. Using the mean average magnitude of AR poles, a test subject's performance to failure could be predicted as early as the sixth repetition of the exercise. This predictive model has the potential to provide a basis for improving post-space flight recovery, monitoring muscle atrophy in astronauts and assessing the effectiveness of countermeasures, monitoring astronaut performance and fatigue during Extravehicular Activity (EVA) operations, providing pre-flight assessment of the ability of an EVA crewmember to perform a given task, improving the design of training protocols and simulations for strenuous International Space Station assembly EVA, and enabling EVA work task sequences to be planned enhancing astronaut performance and safety. Potential ground-based, medical applications of the predictive model include monitoring muscle deterioration and performance resulting from illness, establishing safety guidelines in the industry for repetitive tasks, monitoring the stages of rehabilitation for muscle-related injuries sustained in sports and accidents, and enhancing athletic performance through improved training protocols while reducing injury.

  12. End-of-Test Performance and Wear Characterization of NASA's Evolutionary Xenon Thruster (NEXT) Long-Duration Test

    NASA Technical Reports Server (NTRS)

    Shastry, Rohit; Herman, Daniel A.; Soulas, George C.; Patterson, Michael J.

    2014-01-01

    The NASA's Evolutionary Xenon Thruster (NEXT) program is developing the next-generation solar electric ion propulsion system with significant enhancements beyond the state-of-the-art NASA Solar Electric Propulsion Technology Application Readiness (NSTAR) ion propulsion system to provide future NASA science missions with enhanced capabilities. A Long-Duration Test (LDT) was initiated in June 2005 to validate the thruster service life modeling and to quantify the thruster propellant throughput capability. Testing was recently completed in February 2014, with the thruster accumulating 51,184 hours of operation, processing 918 kg of xenon propellant, and delivering 35.5 MN-s of total impulse.As part of the test termination procedure, a comprehensive performance characterization was performed across the entire NEXT throttle table. This was performed prior to planned repairs of numerous diagnostics that had become inoperable over the course of the test. After completion of these diagnostic repairs in November 2013, a comprehensive end-of-test performance and wear characterization was performed on the test article prior to exposure to atmosphere. These data have confirmed steady thruster performance with minimal degradation as well as mitigation of numerous life limiting mechanisms encountered in the NSTAR design. Component erosion rates compare favorably to pretest predictions based on semi-empirical models used for the thruster service life assessment. Additional data relating to ion beam density profiles, facility backsputter rates, facility backpressure effects on thruster telemetry, and modulation of the neutralizer keeper current are presented as part of the end-of-test characterization. Presently the test article for the NEXT LDT has been exposed to atmosphere and placed within a clean room environment, with post-test disassembly and inspection underway.

  13. Computer modeling of heat pipe performance

    NASA Technical Reports Server (NTRS)

    Peterson, G. P.

    1983-01-01

    A parametric study of the defining equations which govern the steady state operational characteristics of the Grumman monogroove dual passage heat pipe is presented. These defining equations are combined to develop a mathematical model which describes and predicts the operational and performance capabilities of a specific heat pipe given the necessary physical characteristics and working fluid. Included is a brief review of the current literature, a discussion of the governing equations, and a description of both the mathematical and computer model. Final results of preliminary test runs of the model are presented and compared with experimental tests on actual prototypes.

  14. Dual-Routine HCV/HIV Testing: Seroprevalence and Linkage to Care in Four Community Health Centers in Philadelphia, Pennsylvania.

    PubMed

    Coyle, Catelyn; Kwakwa, Helena

    2016-01-01

    Despite common risk factors, screening for hepatitis C virus (HCV) and HIV at the same time as part of routine medical care (dual-routine HCV/HIV testing) is not commonly implemented in the United States. This study examined improvements in feasibility of implementation, screening increase, and linkage to care when a dual-routine HCV/HIV testing model was integrated into routine primary care. National Nursing Centers Consortium implemented a dual-routine HCV/HIV testing model at four community health centers in Philadelphia, Pennsylvania, on September 1, 2013. Routine HCV and opt-out HIV testing replaced the routine HCV and opt-in HIV testing model through medical assistant-led, laboratory-based testing and electronic medical record modification to prompt, track, report, and facilitate reimbursement for tests performed on uninsured individuals. This study examined testing, seropositivity, and linkage-to-care comparison data for the nine months before (December 1, 2012-August 31, 2013) and after (September 1, 2013-May 31, 2014) implementation of the dual-routine HCV/HIV testing model. A total of 1,526 HCV and 1,731 HIV tests were performed before, and 1,888 HCV and 3,890 HIV tests were performed after dual-routine testing implementation, resulting in a 23.7% increase in HCV tests and a 124.7% increase in HIV tests. A total of 70 currently HCV-infected and four new HIV-seropositive patients vs. 101 HCV-infected and 13 new HIV-seropositive patients were identified during these two periods, representing increases of 44.3% for HCV antibody-positive and RNA-positive tests and 225.0% for HIV-positive tests. Linkage to care increased from 27 currently infected HCV--positive and one HIV-positive patient pre-dual-routine testing to 39 HCV--positive and nine HIV-positive patients post-dual-routine testing. The dual-routine HCV/HIV testing model shows that integrating dual-routine testing in a primary care setting is possible and leads to increased HCV and HIV screening, enhanced seropositivity diagnosis, and improved linkage to care.

  15. Dual-Routine HCV/HIV Testing: Seroprevalence and Linkage to Care in Four Community Health Centers in Philadelphia, Pennsylvania

    PubMed Central

    Kwakwa, Helena

    2016-01-01

    Objective Despite common risk factors, screening for hepatitis C virus (HCV) and HIV at the same time as part of routine medical care (dual-routine HCV/HIV testing) is not commonly implemented in the United States. This study examined improvements in feasibility of implementation, screening increase, and linkage to care when a dual-routine HCV/HIV testing model was integrated into routine primary care. Methods National Nursing Centers Consortium implemented a dual-routine HCV/HIV testing model at four community health centers in Philadelphia, Pennsylvania, on September 1, 2013. Routine HCV and opt-out HIV testing replaced the routine HCV and opt-in HIV testing model through medical assistant-led, laboratory-based testing and electronic medical record modification to prompt, track, report, and facilitate reimbursement for tests performed on uninsured individuals. This study examined testing, seropositivity, and linkage-to-care comparison data for the nine months before (December 1, 2012–August 31, 2013) and after (September 1, 2013–May 31, 2014) implementation of the dual-routine HCV/HIV testing model. Results A total of 1,526 HCV and 1,731 HIV tests were performed before, and 1,888 HCV and 3,890 HIV tests were performed after dual-routine testing implementation, resulting in a 23.7% increase in HCV tests and a 124.7% increase in HIV tests. A total of 70 currently HCV-infected and four new HIV-seropositive patients vs. 101 HCV-infected and 13 new HIV-seropositive patients were identified during these two periods, representing increases of 44.3% for HCV antibody-positive and RNA-positive tests and 225.0% for HIV-positive tests. Linkage to care increased from 27 currently infected HCV--positive and one HIV-positive patient pre-dual-routine testing to 39 HCV--positive and nine HIV-positive patients post-dual-routine testing. Conclusion The dual-routine HCV/HIV testing model shows that integrating dual-routine testing in a primary care setting is possible and leads to increased HCV and HIV screening, enhanced seropositivity diagnosis, and improved linkage to care. PMID:26862229

  16. Model surgery with a passive robot arm for orthognathic surgery planning.

    PubMed

    Theodossy, Tamer; Bamber, Mohammad Anwar

    2003-11-01

    The aims of the study were to assess the degree of accuracy of model surgery performed manually using the Eastman technique and to compare it with model surgery performed with the aid of a robot arm. Twenty-one patients undergoing orthognathic surgery gave consent for this study. They were divided into 2 groups based on the model surgery technique used. Group A (52%) had model surgery performed manually, whereas group B (48%) had their model surgery performed using the robot arm. Patients' maxillary casts were measured before and after model surgery, and results were compared with those for the original treatment plan in horizontal (x-axis), vertical (y-axis), and transverse (z-axis) planes. Statistical analysis using Mann-Whitney U test for x- and y-axis and independent sample t test for z-axis have shown significant differences between both groups in x-axis (P =.024) and y-axis (P =.01) but not in z-axis (P =.776). Model surgery performed with the aid of a robot arm is significantly more accurate in anteroposterior and vertical planes than is manual model surgery. Robot arm has an important role to play in orthognathic surgery planning and in determining the biometrics of orthognathic surgical change at the model surgery stage.

  17. Time series model for forecasting the number of new admission inpatients.

    PubMed

    Zhou, Lingling; Zhao, Ping; Wu, Dongdong; Cheng, Cheng; Huang, Hao

    2018-06-15

    Hospital crowding is a rising problem, effective predicting and detecting managment can helpful to reduce crowding. Our team has successfully proposed a hybrid model combining both the autoregressive integrated moving average (ARIMA) and the nonlinear autoregressive neural network (NARNN) models in the schistosomiasis and hand, foot, and mouth disease forecasting study. In this paper, our aim is to explore the application of the hybrid ARIMA-NARNN model to track the trends of the new admission inpatients, which provides a methodological basis for reducing crowding. We used the single seasonal ARIMA (SARIMA), NARNN and the hybrid SARIMA-NARNN model to fit and forecast the monthly and daily number of new admission inpatients. The root mean square error (RMSE), mean absolute error (MAE) and mean absolute percentage error (MAPE) were used to compare the forecasting performance among the three models. The modeling time range of monthly data included was from January 2010 to June 2016, July to October 2016 as the corresponding testing data set. The daily modeling data set was from January 4 to September 4, 2016, while the testing time range included was from September 5 to October 2, 2016. For the monthly data, the modeling RMSE and the testing RMSE, MAE and MAPE of SARIMA-NARNN model were less than those obtained from the single SARIMA or NARNN model, but the MAE and MAPE of modeling performance of SARIMA-NARNN model did not improve. For the daily data, all RMSE, MAE and MAPE of NARNN model were the lowest both in modeling stage and testing stage. Hybrid model does not necessarily outperform its constituents' performances. It is worth attempting to explore the reliable model to forecast the number of new admission inpatients from different data.

  18. Comparison of Analytical Predictions and Experimental Results for a Dual Brayton Power System

    NASA Technical Reports Server (NTRS)

    Johnson, Paul

    2007-01-01

    NASA Glenn Research Center (GRC) contracted Barber- Nichols, Arvada, CO to construct a dual Brayton power conversion system for use as a hardware proof of concept and to validate results from a computational code known as the Closed Cycle System Simulation (CCSS). Initial checkout tests were performed at Barber- Nichols to ready the system for delivery to GRC. This presentation describes the system hardware components and lists the types of checkout tests performed along with a couple issues encountered while conducting the tests. A description of the CCSS model is also presented. The checkout tests did not focus on generating data, therefore, no test data or model analyses are presented.

  19. A Low-Cost Simulation Model for R-Wave Synchronized Atrial Pacing in Pediatric Patients with Postoperative Junctional Ectopic Tachycardia

    PubMed Central

    Michel, Miriam; Egender, Friedemann; Heßling, Vera; Dähnert, Ingo; Gebauer, Roman

    2016-01-01

    Background Postoperative junctional ectopic tachycardia (JET) occurs frequently after pediatric cardiac surgery. R-wave synchronized atrial (AVT) pacing is used to re-establish atrioventricular synchrony. AVT pacing is complex, with technical pitfalls. We sought to establish and to test a low-cost simulation model suitable for training and analysis in AVT pacing. Methods A simulation model was developed based on a JET simulator, a simulation doll, a cardiac monitor, and a pacemaker. A computer program simulated electrocardiograms. Ten experienced pediatric cardiologists tested the model. Their performance was analyzed using a testing protocol with 10 working steps. Results Four testers found the simulation model realistic; 6 found it very realistic. Nine claimed that the trial had improved their skills. All testers considered the model useful in teaching AVT pacing. The simulation test identified 5 working steps in which major mistakes in performance test may impede safe and effective AVT pacing and thus permitted specific training. The components of the model (exclusive monitor and pacemaker) cost less than $50. Assembly and training-session expenses were trivial. Conclusions A realistic, low-cost simulation model of AVT pacing is described. The model is suitable for teaching and analyzing AVT pacing technique. PMID:26943363

  20. Remote control circuit breaker evaluation testing. [for space shuttles

    NASA Technical Reports Server (NTRS)

    Bemko, L. M.

    1974-01-01

    Engineering evaluation tests were performed on several models/types of remote control circuit breakers marketed in an attempt to gain some insight into their potential suitability for use on the space shuttle vehicle. Tests included the measurement of several electrical and operational performance parameters under laboratory ambient, space simulation, acceleration and vibration environmental conditions.

  1. Cold flow testing of the Space Shuttle Main Engine alternate turbopump development high pressure fuel turbine model

    NASA Technical Reports Server (NTRS)

    Gaddis, Stephen W.; Hudson, Susan T.; Johnson, P. D.

    1992-01-01

    NASA's Marshall Space Flight Center has established a cold airflow turbine test program to experimentally determine the performance of liquid rocket engine turbopump drive turbines. Testing of the SSME alternate turbopump development (ATD) fuel turbine was conducted for back-to-back comparisons with the baseline SSME fuel turbine results obtained in the first quarter of 1991. Turbine performance, Reynolds number effects, and turbine diagnostics, such as stage reactions and exit swirl angles, were investigated at the turbine design point and at off-design conditions. The test data showed that the ATD fuel turbine test article was approximately 1.4 percent higher in efficiency and flowed 5.3 percent more than the baseline fuel turbine test article. This paper describes the method and results used to validate the ATD fuel turbine aerodynamic design. The results are being used to determine the ATD high pressure fuel turbopump (HPFTP) turbine performance over its operating range, anchor the SSME ATD steady-state performance model, and validate various prediction and design analyses.

  2. Parametric study of closed wet cooling tower thermal performance

    NASA Astrophysics Data System (ADS)

    Qasim, S. M.; Hayder, M. J.

    2017-08-01

    The present study involves experimental and theoretical analysis to evaluate the thermal performance of modified Closed Wet Cooling Tower (CWCT). The experimental study includes: design, manufacture and testing prototype of a modified counter flow forced draft CWCT. The modification based on addition packing to the conventional CWCT. A series of experiments was carried out at different operational parameters. In view of energy analysis, the thermal performance parameters of the tower are: cooling range, tower approach, cooling capacity, thermal efficiency, heat and mass transfer coefficients. The theoretical study included develops Artificial Neural Network (ANN) models to predicting various thermal performance parameters of the tower. Utilizing experimental data for training and testing, the models simulated by multi-layer back propagation algorithm for varying all operational parameters stated in experimental test.

  3. Performance testing and analysis results of AMTEC cells for space applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borkowski, C.A.; Barkan, A.; Hendricks, T.J.

    1998-01-01

    Testing and analysis has shown that AMTEC (Alkali Metal Thermal to Electric Conversion) (Weber, 1974) cells can reach the performance (power) levels required by a variety of space applications. The performance of an AMTEC cell is highly dependent on the thermal environment to which it is subjected. A guard heater assembly has been designed, fabricated, and used to expose individual AMTEC cells to various thermal environments. The design and operation of the guard heater assembly will be discussed. Performance test results of an AMTEC cell operated under guard heated conditions to simulate an adiabatic cell wall thermal environment are presented.more » Experimental data and analytic model results are compared to illustrate validation of the model. {copyright} {ital 1998 American Institute of Physics.}« less

  4. Magnetic Measurements of the First Nb 3Sn Model Quadrupole (MQXFS) for the High-Luminosity LHC

    DOE PAGES

    DiMarco, J.; Ambrosio, G.; Chlachidze, G.; ...

    2016-12-12

    The US LHC Accelerator Research Program (LARP) and CERN are developing high-gradient Nb 3Sn magnets for the High Luminosity LHC interaction regions. Magnetic measurements of the first 1.5 m long, 150 mm aperture model quadrupole, MQXFS1, were performed during magnet assembly at LBNL, as well as during cryogenic testing at Fermilab’s Vertical Magnet Test Facility. This paper reports on the results of these magnetic characterization measurements, as well as on the performance of new probes developed for the tests.

  5. Crash Testing and Simulation of a Cessna 172 Aircraft: Pitch Down Impact Onto Soft Soil

    NASA Technical Reports Server (NTRS)

    Fasanella, Edwin L.; Jackson, Karen E.

    2016-01-01

    During the summer of 2015, NASA Langley Research Center conducted three full-scale crash tests of Cessna 172 (C-172) aircraft at the NASA Langley Landing and Impact Research (LandIR) Facility. The first test represented a flare-to-stall emergency or hard landing onto a rigid surface. The second test, which is the focus of this paper, represented a controlled-flight-into-terrain (CFIT) with a nose-down pitch attitude of the aircraft, which impacted onto soft soil. The third test, also conducted onto soil, represented a CFIT with a nose-up pitch attitude of the aircraft, which resulted in a tail strike condition. These three crash tests were performed for the purpose of evaluating the performance of Emergency Locator Transmitters (ELTs) and to generate impact test data for model validation. LS-DYNA finite element models were generated to simulate the three test conditions. This paper describes the model development and presents test-analysis comparisons of acceleration and velocity time-histories, as well as a comparison of the time sequence of events for Test 2 onto soft soil.

  6. Examining the Effects of Field Dependence-Independence on Learners' Problem-Solving Performance and Interaction with a Computer Modeling Tool: Implications for the Design of Joint Cognitive Systems

    ERIC Educational Resources Information Center

    Angeli, Charoula

    2013-01-01

    An investigation was carried out to examine the effects of cognitive style on learners' performance and interaction during complex problem solving with a computer modeling tool. One hundred and nineteen undergraduates volunteered to participate in the study. Participants were first administered a test, and based on their test scores they were…

  7. The development and testing of a skin tear risk assessment tool.

    PubMed

    Newall, Nelly; Lewin, Gill F; Bulsara, Max K; Carville, Keryln J; Leslie, Gavin D; Roberts, Pam A

    2017-02-01

    The aim of the present study is to develop a reliable and valid skin tear risk assessment tool. The six characteristics identified in a previous case control study as constituting the best risk model for skin tear development were used to construct a risk assessment tool. The ability of the tool to predict skin tear development was then tested in a prospective study. Between August 2012 and September 2013, 1466 tertiary hospital patients were assessed at admission and followed up for 10 days to see if they developed a skin tear. The predictive validity of the tool was assessed using receiver operating characteristic (ROC) analysis. When the tool was found not to have performed as well as hoped, secondary analyses were performed to determine whether a potentially better performing risk model could be identified. The tool was found to have high sensitivity but low specificity and therefore have inadequate predictive validity. Secondary analysis of the combined data from this and the previous case control study identified an alternative better performing risk model. The tool developed and tested in this study was found to have inadequate predictive validity. The predictive validity of an alternative, more parsimonious model now needs to be tested. © 2015 Medicalhelplines.com Inc and John Wiley & Sons Ltd.

  8. Modeling and analysis of wet friction clutch engagement dynamics

    NASA Astrophysics Data System (ADS)

    Iqbal, Shoaib; Al-Bender, Farid; Ompusunggu, Agusmian P.; Pluymers, Bert; Desmet, Wim

    2015-08-01

    In recent years, there has been a significant increase in the usage of wet-friction clutches. Presently researchers across the globe are involved in improving the performance and lifetime of clutches through testing and simulation. To understand the clutch vibrational and dynamical behavior, an SAE#2 test setup mathematical model based on extended reset-integrator friction model is developed in this paper. In order to take into account the different phases of fluid lubrication during engagement cycle, the model includes the experimentally determined Stribeck function. In addition the model considers the viscous effect and the delay in the actuation pressure signal. The model is validated with the experiments performed on the SAE#2 test setup in both time and frequency domains. By analyzing the set of experimental results, we confirmed that the amplitude of shudder vibration is independent of the amplitude of applied contact pressure fluctuation.

  9. ICCD: interactive continuous collision detection between deformable models using connectivity-based culling.

    PubMed

    Tang, Min; Curtis, Sean; Yoon, Sung-Eui; Manocha, Dinesh

    2009-01-01

    We present an interactive algorithm for continuous collision detection between deformable models. We introduce multiple techniques to improve the culling efficiency and the overall performance of continuous collision detection. First, we present a novel formulation for continuous normal cones and use these normal cones to efficiently cull large regions of the mesh as part of self-collision tests. Second, we introduce the concept of "procedural representative triangles" to remove all redundant elementary tests between nonadjacent triangles. Finally, we exploit the mesh connectivity and introduce the concept of "orphan sets" to eliminate redundant elementary tests between adjacent triangle primitives. In practice, we can reduce the number of elementary tests by two orders of magnitude. These culling techniques have been combined with bounding volume hierarchies and can result in one order of magnitude performance improvement as compared to prior collision detection algorithms for deformable models. We highlight the performance of our algorithm on several benchmarks, including cloth simulations, N-body simulations, and breaking objects.

  10. Comparison of Test and Finite Element Analysis for Two Full-Scale Helicopter Crash Tests

    NASA Technical Reports Server (NTRS)

    Annett, Martin S.; Horta,Lucas G.

    2011-01-01

    Finite element analyses have been performed for two full-scale crash tests of an MD-500 helicopter. The first crash test was conducted to evaluate the performance of a composite deployable energy absorber under combined flight loads. In the second crash test, the energy absorber was removed to establish the baseline loads. The use of an energy absorbing device reduced the impact acceleration levels by a factor of three. Accelerations and kinematic data collected from the crash tests were compared to analytical results. Details of the full-scale crash tests and development of the system-integrated finite element model are briefly described along with direct comparisons of acceleration magnitudes and durations for the first full-scale crash test. Because load levels were significantly different between tests, models developed for the purposes of predicting the overall system response with external energy absorbers were not adequate under more severe conditions seen in the second crash test. Relative error comparisons were inadequate to guide model calibration. A newly developed model calibration approach that includes uncertainty estimation, parameter sensitivity, impact shape orthogonality, and numerical optimization was used for the second full-scale crash test. The calibrated parameter set reduced 2-norm prediction error by 51% but did not improve impact shape orthogonality.

  11. Planetary Suit Hip Bearing Model for Predicting Design vs. Performance

    NASA Technical Reports Server (NTRS)

    Cowley, Matthew S.; Margerum, Sarah; Harvil, Lauren; Rajulu, Sudhakar

    2011-01-01

    Designing a planetary suit is very complex and often requires difficult trade-offs between performance, cost, mass, and system complexity. In order to verifying that new suit designs meet requirements, full prototypes must eventually be built and tested with human subjects. Using computer models early in the design phase of new hardware development can be advantageous, allowing virtual prototyping to take place. Having easily modifiable models of the suit hard sections may reduce the time it takes to make changes to the hardware designs and then to understand their impact on suit and human performance. A virtual design environment gives designers the ability to think outside the box and exhaust design possibilities before building and testing physical prototypes with human subjects. Reductions in prototyping and testing may eventually reduce development costs. This study is an attempt to develop computer models of the hard components of the suit with known physical characteristics, supplemented with human subject performance data. Objectives: The primary objective was to develop an articulating solid model of the Mark III hip bearings to be used for evaluating suit design performance of the hip joint. Methods: Solid models of a planetary prototype (Mark III) suit s hip bearings and brief section were reverse-engineered from the prototype. The performance of the models was then compared by evaluating the mobility performance differences between the nominal hardware configuration and hardware modifications. This was accomplished by gathering data from specific suited tasks. Subjects performed maximum flexion and abduction tasks while in a nominal suit bearing configuration and in three off-nominal configurations. Performance data for the hip were recorded using state-of-the-art motion capture technology. Results: The results demonstrate that solid models of planetary suit hard segments for use as a performance design tool is feasible. From a general trend perspective, the suited performance trends were comparable between the model and the suited subjects. With the three off-nominal bearing configurations compared to the nominal bearing configurations, human subjects showed decreases in hip flexion of 64%, 6%, and 13% and in hip abduction of 59%, 2%, and 20%. Likewise the solid model showed decreases in hip flexion of 58%, 1%, and 25% and in hip abduction of 56%, 0%, and 30%, under the same condition changes from the nominal configuration. Differences seen between the model predictions and the human subject performance data could be attributed to the model lacking dynamic elements and performing kinematic analysis only, the level of fit of the subjects with the suit, the levels of the subject s suit experience.

  12. Performance Evaluation Test of the Orbit Screen Model 68A and the Komplet Model 48-25 Rock Crusher

    DTIC Science & Technology

    2008-08-01

    two representatives from the Government of Ecuador, Ms . Viviana Anabela Meza Cevallos, from the Demining Center of Ecuador, and Lieutenant Jose Luis...Mines ( MRMs ) Antipersonnel Simulants............................ 8 4 Orbit Screen Model 68 Testing...Mock Mine .............................................................................................................. 7 Figure 8: MRM Simulant, Type

  13. A Structural Equation Model of Expertise in College Physics

    ERIC Educational Resources Information Center

    Taasoobshirazi, Gita; Carr, Martha

    2009-01-01

    A model of expertise in physics was tested on a sample of 374 college students in 2 different level physics courses. Structural equation modeling was used to test hypothesized relationships among variables linked to expert performance in physics including strategy use, pictorial representation, categorization skills, and motivation, and these…

  14. Validation and Simulation of Ares I Scale Model Acoustic Test - 3 - Modeling and Evaluating the Effect of Rainbird Water Deluge Inclusion

    NASA Technical Reports Server (NTRS)

    Strutzenberg, Louise L.; Putman, Gabriel C.

    2011-01-01

    The Ares I Scale Model Acoustics Test (ASMAT) is a series of live-fire tests of scaled rocket motors meant to simulate the conditions of the Ares I launch configuration. These tests have provided a well documented set of high fidelity measurements useful for validation including data taken over a range of test conditions and containing phenomena like Ignition Over-Pressure and water suppression of acoustics. Building on dry simulations of the ASMAT tests with the vehicle at 5 ft. elevation (100 ft. real vehicle elevation), wet simulations of the ASMAT test setup have been performed using the Loci/CHEM computational fluid dynamics software to explore the effect of rainbird water suppression inclusion on the launch platform deck. Two-phase water simulation has been performed using an energy and mass coupled lagrangian particle system module where liquid phase emissions are segregated into clouds of virtual particles and gas phase mass transfer is accomplished through simple Weber number controlled breakup and boiling models. Comparisons have been performed to the dry 5 ft. elevation cases, using configurations with and without launch mounts. These cases have been used to explore the interaction between rainbird spray patterns and launch mount geometry and evaluate the acoustic sound pressure level knockdown achieved through above-deck rainbird deluge inclusion. This comparison has been anchored with validation from live-fire test data which showed a reduction in rainbird effectiveness with the presence of a launch mount.

  15. Finite Element Simulation of Three Full-Scale Crash Tests for Cessna 172 Aircraft

    NASA Technical Reports Server (NTRS)

    Mason, Brian H.; Warren, Jerry E., Jr.

    2017-01-01

    The NASA Emergency Locator Transmitter Survivability and Reliability (ELT-SAR) project was initiated in 2013 to assess the crash performance standards for the next generation of emergency locator transmitter (ELT) systems. Three Cessna 172 aircraft were acquired to perform crash testing at NASA Langley Research Center's Landing and Impact Research Facility. Full-scale crash tests were conducted in the summer of 2015 and each test article was subjected to severe, but survivable, impact conditions including a flare-to-stall during emergency landing, and two controlled-flight-into-terrain scenarios. Full-scale finite element analyses were performed using a commercial explicit solver, ABAQUS. The first test simulated impacting a concrete surface represented analytically by a rigid plane. Tests 2 and 3 simulated impacting a dirt surface represented analytically by an Eulerian grid of brick elements using a Mohr-Coulomb material model. The objective of this paper is to summarize the test and analysis results for the three full-scale crash tests. Simulation models of the airframe which correlate well with the tests are needed for future studies of alternate ELT mounting configurations.

  16. Acoustic Noise Test Report for the U.S. Department of Energy 1.5-Megawatt Wind Turbine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roadman, Jason; Huskey, Arlinda

    2015-07-01

    A series of tests were conducted to characterize the baseline properties and performance of the U.S. Department of Energy (DOE) 1.5-megawatt wind turbine (DOE 1.5) to enable research model development and quantify the effects of future turbine research modifications. The DOE 1.5 is built on the platform of GE's 1.5-MW SLE commercial wind turbine model. It was installed in a nonstandard configuration at the NWTC with the objective of supporting DOE Wind Program research initiatives such as A2e. Therefore, the test results may not represent the performance capabilities of other GE 1.5-MW SLE turbines. The acoustic noise test documented inmore » this report is one of a series of tests carried out to establish a performance baseline for the DOE 1.5 in the NWTC inflow environment.« less

  17. Study of skin model and geometry effects on thermal performance of thermal protective fabrics

    NASA Astrophysics Data System (ADS)

    Zhu, Fanglong; Ma, Suqin; Zhang, Weiyuan

    2008-05-01

    Thermal protective clothing has steadily improved over the years as new materials and improved designs have reached the market. A significant method that has brought these improvements to the fire service is the NFPA 1971 standard on structural fire fighters’ protective clothing. However, this testing often neglects the effects of cylindrical geometry on heat transmission in flame resistant fabrics. This paper deals with methods to develop cylindrical geometry testing apparatus incorporating novel skin bioheat transfer model to test flame resistant fabrics used in firefighting. Results show that fabrics which shrink during the test can have reduced thermal protective performance compared with the qualities measured with a planar geometry tester. Results of temperature differences between skin simulant sensors of planar and cylindrical tester are also compared. This test method provides a new technique to accurately and precisely characterize the thermal performance of thermal protective fabrics.

  18. Cold flow testing of the Space Shuttle Main Engine high pressure fuel turbine model

    NASA Technical Reports Server (NTRS)

    Hudson, Susan T.; Gaddis, Stephen W.; Johnson, P. D.; Boynton, James L.

    1991-01-01

    In order to experimentally determine the performance of the Space Shuttle Main Engine (SSME) High Pressure Fuel Turbopump (HPFTP) turbine, a 'cold' air flow turbine test program was established at NASA's Marshall Space Flight Center. As part of this test program, a baseline test of Rocketdyne's HPFTP turbine has been completed. The turbine performance and turbine diagnostics such as airfoil surface static pressure distributions, static pressure drops through the turbine, and exit swirl angles were investigated at the turbine design point, over its operating range, and at extreme off-design points. The data was compared to pretest predictions with good results. The test data has been used to improve meanline prediction codes and is now being used to validate various three-dimensional codes. The data will also be scaled to engine conditions and used to improve the SSME steady-state performance model.

  19. Extraction of model performance from wall data in a 2-dimensional transonic flexible walled test section

    NASA Technical Reports Server (NTRS)

    Goodyer, M. J.

    1982-01-01

    Data obtained from the boundary of a test section provides information on the model contained within it. A method for extracting some of this data in two dimensional testing is described. Examples of model data are included on lift, pitching moment and wake displacement thickness. A FORTRAN listing is also described, having a form suitable for incorporation into the software package used in the running of such a test section.

  20. Goodness of fit of probability distributions for sightings as species approach extinction.

    PubMed

    Vogel, Richard M; Hosking, Jonathan R M; Elphick, Chris S; Roberts, David L; Reed, J Michael

    2009-04-01

    Estimating the probability that a species is extinct and the timing of extinctions is useful in biological fields ranging from paleoecology to conservation biology. Various statistical methods have been introduced to infer the time of extinction and extinction probability from a series of individual sightings. There is little evidence, however, as to which of these models provide adequate fit to actual sighting records. We use L-moment diagrams and probability plot correlation coefficient (PPCC) hypothesis tests to evaluate the goodness of fit of various probabilistic models to sighting data collected for a set of North American and Hawaiian bird populations that have either gone extinct, or are suspected of having gone extinct, during the past 150 years. For our data, the uniform, truncated exponential, and generalized Pareto models performed moderately well, but the Weibull model performed poorly. Of the acceptable models, the uniform distribution performed best based on PPCC goodness of fit comparisons and sequential Bonferroni-type tests. Further analyses using field significance tests suggest that although the uniform distribution is the best of those considered, additional work remains to evaluate the truncated exponential model more fully. The methods we present here provide a framework for evaluating subsequent models.

  1. Progress in sensor performance testing, modeling and range prediction using the TOD method: an overview

    NASA Astrophysics Data System (ADS)

    Bijl, Piet; Hogervorst, Maarten A.; Toet, Alexander

    2017-05-01

    The Triangle Orientation Discrimination (TOD) methodology includes i) a widely applicable, accurate end-to-end EO/IR sensor test, ii) an image-based sensor system model and iii) a Target Acquisition (TA) range model. The method has been extensively validated against TA field performance for a wide variety of well- and under-sampled imagers, systems with advanced image processing techniques such as dynamic super resolution and local adaptive contrast enhancement, and sensors showing smear or noise drift, for both static and dynamic test stimuli and as a function of target contrast. Recently, significant progress has been made in various directions. Dedicated visual and NIR test charts for lab and field testing are available and thermal test benches are on the market. Automated sensor testing using an objective synthetic human observer is within reach. Both an analytical and an image-based TOD model have recently been developed and are being implemented in the European Target Acquisition model ECOMOS and in the EOSTAR TDA. Further, the methodology is being applied for design optimization of high-end security camera systems. Finally, results from a recent perception study suggest that DRI ranges for real targets can be predicted by replacing the relevant distinctive target features by TOD test patterns of the same characteristic size and contrast, enabling a new TA modeling approach. This paper provides an overview.

  2. Solving large mixed linear models using preconditioned conjugate gradient iteration.

    PubMed

    Strandén, I; Lidauer, M

    1999-12-01

    Continuous evaluation of dairy cattle with a random regression test-day model requires a fast solving method and algorithm. A new computing technique feasible in Jacobi and conjugate gradient based iterative methods using iteration on data is presented. In the new computing technique, the calculations in multiplication of a vector by a matrix were recorded to three steps instead of the commonly used two steps. The three-step method was implemented in a general mixed linear model program that used preconditioned conjugate gradient iteration. Performance of this program in comparison to other general solving programs was assessed via estimation of breeding values using univariate, multivariate, and random regression test-day models. Central processing unit time per iteration with the new three-step technique was, at best, one-third that needed with the old technique. Performance was best with the test-day model, which was the largest and most complex model used. The new program did well in comparison to other general software. Programs keeping the mixed model equations in random access memory required at least 20 and 435% more time to solve the univariate and multivariate animal models, respectively. Computations of the second best iteration on data took approximately three and five times longer for the animal and test-day models, respectively, than did the new program. Good performance was due to fast computing time per iteration and quick convergence to the final solutions. Use of preconditioned conjugate gradient based methods in solving large breeding value problems is supported by our findings.

  3. Goodness-of-fit tests for open capture-recapture models

    USGS Publications Warehouse

    Pollock, K.H.; Hines, J.E.; Nichols, J.D.

    1985-01-01

    General goodness-of-fit tests for the Jolly-Seber model are proposed. These tests are based on conditional arguments using minimal sufficient statistics. The tests are shown to be of simple hypergeometric form so that a series of independent contingency table chi-square tests can be performed. The relationship of these tests to other proposed tests is discussed. This is followed by a simulation study of the power of the tests to detect departures from the assumptions of the Jolly-Seber model. Some meadow vole capture-recapture data are used to illustrate the testing procedure which has been implemented in a computer program available from the authors.

  4. Speech Perception With Combined Electric-Acoustic Stimulation: A Simulation and Model Comparison.

    PubMed

    Rader, Tobias; Adel, Youssef; Fastl, Hugo; Baumann, Uwe

    2015-01-01

    The aim of this study is to simulate speech perception with combined electric-acoustic stimulation (EAS), verify the advantage of combined stimulation in normal-hearing (NH) subjects, and then compare it with cochlear implant (CI) and EAS user results from the authors' previous study. Furthermore, an automatic speech recognition (ASR) system was built to examine the impact of low-frequency information and is proposed as an applied model to study different hypotheses of the combined-stimulation advantage. Signal-detection-theory (SDT) models were applied to assess predictions of subject performance without the need to assume any synergistic effects. Speech perception was tested using a closed-set matrix test (Oldenburg sentence test), and its speech material was processed to simulate CI and EAS hearing. A total of 43 NH subjects and a customized ASR system were tested. CI hearing was simulated by an aurally adequate signal spectrum analysis and representation, the part-tone-time-pattern, which was vocoded at 12 center frequencies according to the MED-EL DUET speech processor. Residual acoustic hearing was simulated by low-pass (LP)-filtered speech with cutoff frequencies 200 and 500 Hz for NH subjects and in the range from 100 to 500 Hz for the ASR system. Speech reception thresholds were determined in amplitude-modulated noise and in pseudocontinuous noise. Previously proposed SDT models were lastly applied to predict NH subject performance with EAS simulations. NH subjects tested with EAS simulations demonstrated the combined-stimulation advantage. Increasing the LP cutoff frequency from 200 to 500 Hz significantly improved speech reception thresholds in both noise conditions. In continuous noise, CI and EAS users showed generally better performance than NH subjects tested with simulations. In modulated noise, performance was comparable except for the EAS at cutoff frequency 500 Hz where NH subject performance was superior. The ASR system showed similar behavior to NH subjects despite a positive signal-to-noise ratio shift for both noise conditions, while demonstrating the synergistic effect for cutoff frequencies ≥300 Hz. One SDT model largely predicted the combined-stimulation results in continuous noise, while falling short of predicting performance observed in modulated noise. The presented simulation was able to demonstrate the combined-stimulation advantage for NH subjects as observed in EAS users. Only NH subjects tested with EAS simulations were able to take advantage of the gap listening effect, while CI and EAS user performance was consistently degraded in modulated noise compared with performance in continuous noise. The application of ASR systems seems feasible to assess the impact of different signal processing strategies on speech perception with CI and EAS simulations. In continuous noise, SDT models were largely able to predict the performance gain without assuming any synergistic effects, but model amendments are required to explain the gap listening effect in modulated noise.

  5. An alternative method for centrifugal compressor loading factor modelling

    NASA Astrophysics Data System (ADS)

    Galerkin, Y.; Drozdov, A.; Rekstin, A.; Soldatova, K.

    2017-08-01

    The loading factor at design point is calculated by one or other empirical formula in classical design methods. Performance modelling as a whole is out of consideration. Test data of compressor stages demonstrates that loading factor versus flow coefficient at the impeller exit has a linear character independent of compressibility. Known Universal Modelling Method exploits this fact. Two points define the function - loading factor at design point and at zero flow rate. The proper formulae include empirical coefficients. A good modelling result is possible if the choice of coefficients is based on experience and close analogs. Earlier Y. Galerkin and K. Soldatova had proposed to define loading factor performance by the angle of its inclination to the ordinate axis and by the loading factor at zero flow rate. Simple and definite equations with four geometry parameters were proposed for loading factor performance calculated for inviscid flow. The authors of this publication have studied the test performance of thirteen stages of different types. The equations are proposed with universal empirical coefficients. The calculation error lies in the range of plus to minus 1,5%. The alternative model of a loading factor performance modelling is included in new versions of the Universal Modelling Method.

  6. Characterizing Decision-Analysis Performances of Risk Prediction Models Using ADAPT Curves.

    PubMed

    Lee, Wen-Chung; Wu, Yun-Chun

    2016-01-01

    The area under the receiver operating characteristic curve is a widely used index to characterize the performance of diagnostic tests and prediction models. However, the index does not explicitly acknowledge the utilities of risk predictions. Moreover, for most clinical settings, what counts is whether a prediction model can guide therapeutic decisions in a way that improves patient outcomes, rather than to simply update probabilities.Based on decision theory, the authors propose an alternative index, the "average deviation about the probability threshold" (ADAPT).An ADAPT curve (a plot of ADAPT value against the probability threshold) neatly characterizes the decision-analysis performances of a risk prediction model.Several prediction models can be compared for their ADAPT values at a chosen probability threshold, for a range of plausible threshold values, or for the whole ADAPT curves. This should greatly facilitate the selection of diagnostic tests and prediction models.

  7. Prioritization of in silico models and molecular descriptors for the assessment of ready biodegradability.

    PubMed

    Fernández, Alberto; Rallo, Robert; Giralt, Francesc

    2015-10-01

    Ready biodegradability is a key property for evaluating the long-term effects of chemicals on the environment and human health. As such, it is used as a screening test for the assessment of persistent, bioaccumulative and toxic substances. Regulators encourage the use of non-testing methods, such as in silico models, to save money and time. A dataset of 757 chemicals was collected to assess the performance of four freely available in silico models that predict ready biodegradability. They were applied to develop a new consensus method that prioritizes the use of each individual model according to its performance on chemical subsets driven by the presence or absence of different molecular descriptors. This consensus method was capable of almost eliminating unpredictable chemicals, while the performance of combined models was substantially improved with respect to that of the individual models. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. [Genetic-statistical analysis of environmental and genetic influences on the outcome of the juvenile and breeding performance tests for behaviour traits in Hovawart dogs].

    PubMed

    Boenigk, Katharina; Hamann, Henning; Distl, Ottmar

    2006-01-01

    The objective of the present study was to evaluate the importance of genetic and environmental sources of variation for results of behaviour tests recorded at juvenile and breeding performance tests in the Hovawart dog. For these analyses behaviour test results of 1882 (juvenile evaluation), respectively 929 dogs (breeding performance test) born in 1995 to 2000 had been used. Variance component estimation was performed for the traits appearance, play instinct, hunting affinity, group of people, shoot, acoustical and optical influences and temperament using multivariate linear animal models and Residual Maximum Likelihood (REML). The models included test-year-season, sex, litter size, age and inbreeding coefficient of the animal as fixed effects. Additive genetic effects of the animal, permanent environmental effect of the litter and the effect of the kennel were considered as random factors. The sex of the dog was significant for appearance, play instinct, hunting affinity, acoustical and optical influences of juvenile evaluation and for the traits temperament, play instinct, hunting affinity, acoustical and one of the optical influences of breeding performance test. The age of the dog at test significantly influenced the traits play instinct, hunting affinity and acoustical influences of juvenile evaluation and optical influences and hunting affinity of breeding performance test. All traits with exception of hunting affinity and group of people were significantly affected by the test-year-season. The inbreeding coefficient was significant for appearance of juvenile evaluation and play affinity of breeding performance test. The effect litter size did not influence any of the traits significantly. The estimated heritabilities for the behaviour traits of juvenile and breeding performance test ranged from h2 = 0.01 to h2 = 0.13, respectively h2 = 0.01 to h2 = 0.14, with standard errors of up to 0.03. The additive genetic correlations between most of the traits were moderately to highly positive (r(g) = 0.20 to r(g) = 1.0, respectively r(g) = 0.29 to r(g) = 1.0). Negative additive genetic correlations were only found for a few traits of juvenile (r(g) = -0.02 to r(g) = -0.58) and breeding performance test (r(g) = -0.28 to r(g) = -0.83). Progress in breeding for the behaviour traits investigated here may only be meaningful when information from all relatives is used in an animal model instead of selection based on the phenotype of the single animal.

  9. Airloads and Wake Geometry Calculations for an Isolated Tiltrotor Model in a Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Johnson, Wayne

    2003-01-01

    Th tiltrotor aircraft configuration has the potential to revolutionize air transportation by providing an economical combination of vertical take-off and landing capability with efficient, high-speed cruise flight. To achieve this potential it is necessary to have validated analytical tools that will support future tiltrotor aircraft development. These analytical tools must calculate tiltrotor aeromechanical behavior, including performance, structural loads, vibration, and aeroelastic stability, with an accuracy established by correlation with measured tiltrotor data. For many years such correlation has been performed for helicopter rotors (rotors designed for edgewise flight), but correlation activities for tiltrotors have been limited, in part by the absence of appropriate measured data. The recent test of the Tilt Rotor Aeroacoustic Model (TRAM) with a single, U4-scale V-22 rotor in the German-Dutch Wind Tunnel (DNW) now provides an extensive set of aeroacoustic, performance, and structural loads data. This paper will present calculations of airloads, wake geometry, and performance, including correlation with TRAM DNW measurements. The calculations were obtained using CAMRAD II, which is a modern rotorcraft comprehensive analysis, with advanced models intended for application to tiltrotor aircraft as well as helicopters. Comprehensive analyses have received extensive correlation with performance and loads measurements on helicopter rotors. The proposed paper is part of an initial effort to perform an equally extensive correlation with tiltrotor data. The correlation will establish the level of predictive capability achievable with current technology; identify the limitations of the current aerodynamic, wake, and structural models of tiltrotors; and lead to recommendations for research to extend tiltrotor aeromechanics analysis capability. The purpose of the Tilt Rotor Aeroacoustic Model (TRAM) experimental project is to provide data necessary to validate tiltrotor performance and aeroacoustic prediction methodologies and to investigate and demonstrate advanced civil tiltrotor technologies. The TRAM project is a key part of the NASA Short Haul Civil Tiltrotor (SHCT) project. The SHCT project is an element of the Aviation Systems Capacity Initiative within NASA. In April-May 1998 the TRAM was tested in the isolated rotor configuration at the Large Low-speed Facility of the German-Dutch Wind Tunnels (DNW). A preparatory test was conducted in December 1997. These tests were the first comprehensive aeroacoustic test for a tiltrotor, including not only noise and performance data, but airload and wake measurements as well. The TRAM can also be tested in a fill-span configuration, incorporating both rotors Lnd a fuselage model. The wind tunnel installation of the TRAM isolated rotor is shown. The rotor tested in the DNW was a 1/4-scale (9.5 ft diameter) model of the right-hand V-22 proprotor. The rotor and nacelle assembly was attached to an acoustically-treated, isolated rotor test stand through a mechanical pivot (the nacelle conversion axis). The TRAM was analyzed using the rotorcraft comprehensive analysis CAMRAD II. CAMRAD II is an aeromechanical analysis of helicopters and rotorcraft that incorporates a combination of advanced technologies, including multibody dynamics, nonlinear finite elements, and rotorcraft aerodynamics. The trim task finds the equilibrium solution (constant or periodic) for a steady state operating condition, in this case a rotor operating in a wind tunnel. For wind tunnel operation, the thrust and flapping are trimmed to target values. The aerodynamic model includes a wake analysis to calculate the rotor nonuniform induced-velocities, using a free wake geometry. The paper will present the results of CAMRAD II calculations compared to the TRAM DNW measurements for hover performance, helicopter mode performance, and helicopter mode airloads. An example of the hover performance results, comparing both mearements and calculations for the JVX (large scale) and TRAM (small scale) rotors, is shown. An example of the helicopter mode performance, showing the influence of the aerodynamic model (particularly the stall delay model) on the calculated power, induced power, and profile power is also shown. An example of the helicopter mode airloads, showing the influence of various wake and aerodynamic models on the calculations, is shown. Good correlation with measured airloads is obtained using the multiple-trailer wake model. The paper will present additional results, and describe and discuss the aerodynamic behavior in detail.

  10. Results of steel containment vessel model test

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luk, V.K.; Ludwigsen, J.S.; Hessheimer, M.F.

    A series of static overpressurization tests of scale models of nuclear containment structures is being conducted by Sandia National Laboratories for the Nuclear Power Engineering Corporation of Japan and the US Nuclear Regulatory Commission. Two tests are being conducted: (1) a test of a model of a steel containment vessel (SCV) and (2) a test of a model of a prestressed concrete containment vessel (PCCV). This paper summarizes the conduct of the high pressure pneumatic test of the SCV model and the results of that test. Results of this test are summarized and are compared with pretest predictions performed bymore » the sponsoring organizations and others who participated in a blind pretest prediction effort. Questions raised by this comparison are identified and plans for posttest analysis are discussed.« less

  11. Summary of model VTOL lift fan tests conducted at NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Diedrich, J. H.

    1975-01-01

    The purpose of the tests was to obtain overall performance and influencing factors as well as detailed measurements of the internal flow characteristics. The first experiment consisted of crossflow tests of a 15-inch diameter fan installed in a two-dimensional wing. Tests were run with and without exit louvers over a range of tunnel speeds, fan speeds, and wing angle of attack. The wing was used for a study of installation effects on lift fan performance. The model tested consisted of three 5.5-inch diameter tip-turbine driven model VTOL lift fans mounted chord-wise in the two-dimensional wing to simulate a pod-type array. Several inlet and exit cover door configurations and an adjacent fuselage panel were tested. For the third program, a pod was attached to the wing, and an investigation was conducted of the effect of design tip speed on the aerodynamic performance and noise of a 15-inch diameter lift fan-in-pod under static and crossflow conditions. Three single VTOL lift fan stages were designed for the same overall total pressure ratio but at three different rotor tip speeds.

  12. Validating the ACE Model for Evaluating Student Performance Using a Teaching-Learning Process Based on Computational Modeling Systems

    ERIC Educational Resources Information Center

    Louzada, Alexandre Neves; Elia, Marcos da Fonseca; Sampaio, Fábio Ferrentini; Vidal, Andre Luiz Pestana

    2014-01-01

    The aim of this work is to adapt and test, in a Brazilian public school, the ACE model proposed by Borkulo for evaluating student performance as a teaching-learning process based on computational modeling systems. The ACE model is based on different types of reasoning involving three dimensions. In addition to adapting the model and introducing…

  13. Analysis and test of a 16-foot radial rib reflector developmental model

    NASA Technical Reports Server (NTRS)

    Birchenough, Shawn A.

    1989-01-01

    Analytical and experimental modal tests were performed to determine the vibrational characteristics of a 16-foot diameter radial rib reflector model. Single rib analyses and experimental tests provided preliminary information relating to the reflector. A finite element model predicted mode shapes and frequencies of the reflector. The analyses correlated well with the experimental tests, verifying the modeling method used. The results indicate that five related, characteristic mode shapes form a group. The frequencies of the modes are determined by the relative phase of the radial ribs.

  14. A forecast experiment of earthquake activity in Japan under Collaboratory for the Study of Earthquake Predictability (CSEP)

    NASA Astrophysics Data System (ADS)

    Hirata, N.; Yokoi, S.; Nanjo, K. Z.; Tsuruoka, H.

    2012-04-01

    One major focus of the current Japanese earthquake prediction research program (2009-2013), which is now integrated with the research program for prediction of volcanic eruptions, is to move toward creating testable earthquake forecast models. For this purpose we started an experiment of forecasting earthquake activity in Japan under the framework of the Collaboratory for the Study of Earthquake Predictability (CSEP) through an international collaboration. We established the CSEP Testing Centre, an infrastructure to encourage researchers to develop testable models for Japan, and to conduct verifiable prospective tests of their model performance. We started the 1st earthquake forecast testing experiment in Japan within the CSEP framework. We use the earthquake catalogue maintained and provided by the Japan Meteorological Agency (JMA). The experiment consists of 12 categories, with 4 testing classes with different time spans (1 day, 3 months, 1 year, and 3 years) and 3 testing regions called "All Japan," "Mainland," and "Kanto." A total of 105 models were submitted, and are currently under the CSEP official suite of tests for evaluating the performance of forecasts. The experiments were completed for 92 rounds for 1-day, 6 rounds for 3-month, and 3 rounds for 1-year classes. For 1-day testing class all models passed all the CSEP's evaluation tests at more than 90% rounds. The results of the 3-month testing class also gave us new knowledge concerning statistical forecasting models. All models showed a good performance for magnitude forecasting. On the other hand, observation is hardly consistent in space distribution with most models when many earthquakes occurred at a spot. Now we prepare the 3-D forecasting experiment with a depth range of 0 to 100 km in Kanto region. The testing center is improving an evaluation system for 1-day class experiment to finish forecasting and testing results within one day. The special issue of 1st part titled Earthquake Forecast Testing Experiment in Japan was published on the Earth, Planets and Space Vol. 63, No.3, 2011 on March, 2011. The 2nd part of this issue, which is now on line, will be published soon. An outline of the experiment and activities of the Japanese Testing Center are published on our WEB site; http://wwweic.eri.u-tokyo.ac.jp/ZISINyosoku/wiki.en/wiki.cgi

  15. Accurate reaction-diffusion operator splitting on tetrahedral meshes for parallel stochastic molecular simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hepburn, I.; De Schutter, E., E-mail: erik@oist.jp; Theoretical Neurobiology & Neuroengineering, University of Antwerp, Antwerp 2610

    Spatial stochastic molecular simulations in biology are limited by the intense computation required to track molecules in space either in a discrete time or discrete space framework, which has led to the development of parallel methods that can take advantage of the power of modern supercomputers in recent years. We systematically test suggested components of stochastic reaction-diffusion operator splitting in the literature and discuss their effects on accuracy. We introduce an operator splitting implementation for irregular meshes that enhances accuracy with minimal performance cost. We test a range of models in small-scale MPI simulations from simple diffusion models to realisticmore » biological models and find that multi-dimensional geometry partitioning is an important consideration for optimum performance. We demonstrate performance gains of 1-3 orders of magnitude in the parallel implementation, with peak performance strongly dependent on model specification.« less

  16. A comprehensive method for preliminary design optimization of axial gas turbine stages. II - Code verification

    NASA Technical Reports Server (NTRS)

    Jenkins, R. M.

    1983-01-01

    The present effort represents an extension of previous work wherein a calculation model for performing rapid pitchline optimization of axial gas turbine geometry, including blade profiles, is developed. The model requires no specification of geometric constraints. Output includes aerodynamic performance (adiabatic efficiency), hub-tip flow-path geometry, blade chords, and estimates of blade shape. Presented herein is a verification of the aerodynamic performance portion of the model, whereby detailed turbine test-rig data, including rig geometry, is input to the model to determine whether tested performance can be predicted. An array of seven (7) NASA single-stage axial gas turbine configurations is investigated, ranging in size from 0.6 kg/s to 63.8 kg/s mass flow and in specific work output from 153 J/g to 558 J/g at design (hot) conditions; stage loading factor ranges from 1.15 to 4.66.

  17. Personality and job performance: test of the mediating effects of motivation among sales representatives.

    PubMed

    Barrick, Murray R; Stewart, Greg L; Piotrowski, Mike

    2002-02-01

    Research shows consistent relations between personality and job performance. In this study the authors develop and test a model of job performance that examines the mediating effects of cognitive-motivational work orientations on the relationships between personality traits and performance in a sales job (N = 164). Covariance structural analyses revealed proximal motivational variables to be influential mechanisms through which distal personality traits affect job performance. Specifically, striving for status and accomplishment mediate the effects of Extraversion and Conscientiousness on ratings of sales performance. Although Agreeableness was related to striving for communion, neither Agreeableness nor communion striving was related to success in this sales job. The importance of the proposed motivational orientations model is discussed.

  18. 40 CFR Table 8 to Subpart Bbbb of... - Model Rule-Requirements for Stack Tests

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... at full load. 2. Metals Cadmium Method 1 Method 29 a Compliance testing must be performed while the... be performed while the municipal waste combustion unit is operating at full load. Mercury Method 1...

  19. Evaluation of model-based versus non-parametric monaural noise-reduction approaches for hearing aids.

    PubMed

    Harlander, Niklas; Rosenkranz, Tobias; Hohmann, Volker

    2012-08-01

    Single channel noise reduction has been well investigated and seems to have reached its limits in terms of speech intelligibility improvement, however, the quality of such schemes can still be advanced. This study tests to what extent novel model-based processing schemes might improve performance in particular for non-stationary noise conditions. Two prototype model-based algorithms, a speech-model-based, and a auditory-model-based algorithm were compared to a state-of-the-art non-parametric minimum statistics algorithm. A speech intelligibility test, preference rating, and listening effort scaling were performed. Additionally, three objective quality measures for the signal, background, and overall distortions were applied. For a better comparison of all algorithms, particular attention was given to the usage of the similar Wiener-based gain rule. The perceptual investigation was performed with fourteen hearing-impaired subjects. The results revealed that the non-parametric algorithm and the auditory model-based algorithm did not affect speech intelligibility, whereas the speech-model-based algorithm slightly decreased intelligibility. In terms of subjective quality, both model-based algorithms perform better than the unprocessed condition and the reference in particular for highly non-stationary noise environments. Data support the hypothesis that model-based algorithms are promising for improving performance in non-stationary noise conditions.

  20. An updated geospatial liquefaction model for global application

    USGS Publications Warehouse

    Zhu, Jing; Baise, Laurie G.; Thompson, Eric M.

    2017-01-01

    We present an updated geospatial approach to estimation of earthquake-induced liquefaction from globally available geospatial proxies. Our previous iteration of the geospatial liquefaction model was based on mapped liquefaction surface effects from four earthquakes in Christchurch, New Zealand, and Kobe, Japan, paired with geospatial explanatory variables including slope-derived VS30, compound topographic index, and magnitude-adjusted peak ground acceleration from ShakeMap. The updated geospatial liquefaction model presented herein improves the performance and the generality of the model. The updates include (1) expanding the liquefaction database to 27 earthquake events across 6 countries, (2) addressing the sampling of nonliquefaction for incomplete liquefaction inventories, (3) testing interaction effects between explanatory variables, and (4) overall improving model performance. While we test 14 geospatial proxies for soil density and soil saturation, the most promising geospatial parameters are slope-derived VS30, modeled water table depth, distance to coast, distance to river, distance to closest water body, and precipitation. We found that peak ground velocity (PGV) performs better than peak ground acceleration (PGA) as the shaking intensity parameter. We present two models which offer improved performance over prior models. We evaluate model performance using the area under the curve under the Receiver Operating Characteristic (ROC) curve (AUC) and the Brier score. The best-performing model in a coastal setting uses distance to coast but is problematic for regions away from the coast. The second best model, using PGV, VS30, water table depth, distance to closest water body, and precipitation, performs better in noncoastal regions and thus is the model we recommend for global implementation.

  1. A baroclinic quasigeostrophic open ocean model

    NASA Technical Reports Server (NTRS)

    Miller, R. N.; Robinson, A. R.; Haidvogel, D. B.

    1983-01-01

    A baroclinic quasigeostrophic open ocean model is presented, calibrated by a series of test problems, and demonstrated to be feasible and efficient for application to realistic mid-oceanic mesoscale eddy flow regimes. Two methods of treating the depth dependence of the flow, a finite difference method and a collocation method, are tested and intercompared. Sample Rossby wave calculations with and without advection are performed with constant stratification and two levels of nonlinearity, one weaker than and one typical of real ocean flows. Using exact analytical solutions for comparison, the accuracy and efficiency of the model is tabulated as a function of the computational parameters and stability limits set; typically, errors were controlled between 1 percent and 10 percent RMS after two wave periods. Further Rossby wave tests with realistic stratification and wave parameters chosen to mimic real ocean conditions were performed to determine computational parameters for use with real and simulated data. Finally, a prototype calculation with quasiturbulent simulated data was performed successfully, which demonstrates the practicality of the model for scientific use.

  2. Evaluation of a human bio-engineered skin equivalent for drug permeation studies.

    PubMed

    Asbill, C; Kim, N; El-Kattan, A; Creek, K; Wertz, P; Michniak, B

    2000-09-01

    To test the barrier function of a bio-engineered human skin (BHS) using three model drugs (caffeine, hydrocortisone, and tamoxifen) in vitro. To investigate the lipid composition and microscopic structure of the BHS. The human skin substitute was composed of both epidermal and dermal layers, the latter having a bovine collagen matrix. The permeability of the BHS to three model drugs was compared to that obtained in other percutaneous testing models (human cadaver skin, hairless mouse skin, and EpiDerm). Lipid analysis of the BHS was performed by high performance thin layered chromatography. Histological evaluation of the BHS was performed using routine H&E staining. The BHS mimicked human skin in terms of lipid composition, gross ultrastructure, and the formation of a stratum corneum. However, the permeability of the BHS to caffeine, hydrocortisone, and tamoxifen was 3-4 fold higher than that of human cadaver skin. In summary, the results indicate that the BHS may be an acceptable in vitro model for drug permeability testing.

  3. Model-Based Thermal System Design Optimization for the James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Cataldo, Giuseppe; Niedner, Malcolm B.; Fixsen, Dale J.; Moseley, Samuel H.

    2017-01-01

    Spacecraft thermal model validation is normally performed by comparing model predictions with thermal test data and reducing their discrepancies to meet the mission requirements. Based on thermal engineering expertise, the model input parameters are adjusted to tune the model output response to the test data. The end result is not guaranteed to be the best solution in terms of reduced discrepancy and the process requires months to complete. A model-based methodology was developed to perform the validation process in a fully automated fashion and provide mathematical bases to the search for the optimal parameter set that minimizes the discrepancies between model and data. The methodology was successfully applied to several thermal subsystems of the James Webb Space Telescope (JWST). Global or quasiglobal optimal solutions were found and the total execution time of the model validation process was reduced to about two weeks. The model sensitivities to the parameters, which are required to solve the optimization problem, can be calculated automatically before the test begins and provide a library for sensitivity studies. This methodology represents a crucial commodity when testing complex, large-scale systems under time and budget constraints. Here, results for the JWST Core thermal system will be presented in detail.

  4. Model-based thermal system design optimization for the James Webb Space Telescope

    NASA Astrophysics Data System (ADS)

    Cataldo, Giuseppe; Niedner, Malcolm B.; Fixsen, Dale J.; Moseley, Samuel H.

    2017-10-01

    Spacecraft thermal model validation is normally performed by comparing model predictions with thermal test data and reducing their discrepancies to meet the mission requirements. Based on thermal engineering expertise, the model input parameters are adjusted to tune the model output response to the test data. The end result is not guaranteed to be the best solution in terms of reduced discrepancy and the process requires months to complete. A model-based methodology was developed to perform the validation process in a fully automated fashion and provide mathematical bases to the search for the optimal parameter set that minimizes the discrepancies between model and data. The methodology was successfully applied to several thermal subsystems of the James Webb Space Telescope (JWST). Global or quasiglobal optimal solutions were found and the total execution time of the model validation process was reduced to about two weeks. The model sensitivities to the parameters, which are required to solve the optimization problem, can be calculated automatically before the test begins and provide a library for sensitivity studies. This methodology represents a crucial commodity when testing complex, large-scale systems under time and budget constraints. Here, results for the JWST Core thermal system will be presented in detail.

  5. Analysis, testing and verification of the behavior of composite pavements under Florida conditions using a heavy vehicle simulator

    NASA Astrophysics Data System (ADS)

    Tapia Gutierrez, Patricio Enrique

    Whitetopping (WT) is a rehabilitation method to resurface deteriorated asphalt pavements. While some of these composite pavements have performed very well carrying heavy load, other have shown poor performance with early cracking. With the objective of analyzing the applicability of WT pavements under Florida conditions, a total of nine full-scale WT test sections were constructed and tested using a Heavy Vehicle Simulator (HVS) in the APT facility at the FDOT Material Research Park. The test sections were instrumented to monitor both strain and temperature. A 3-D finite element model was developed to analyze the WT test sections. The model was calibrated and verified using measured FWD deflections and HVS load-induced strains from the test sections. The model was then used to evaluate the potential performance of these test sections under critical temperature-load condition in Florida. Six of the WT pavement test sections had a bonded concrete-asphalt interface by milling, cleaning and spraying with water the asphalt surface. This method produced excellent bonding at the interface, with shear strength of 195 to 220 psi. Three of the test sections were intended to have an unbonded concrete-asphalt interface by applying a debonding agent in the asphalt surface. However, shear strengths between 119 and 135 psi and a careful analysis of the strain and the temperature data indicated a partial bond condition. The computer model was able to satisfactorily model the behavior of the composite pavement by mainly considering material properties from standard laboratory tests and calibrating the spring elements used to model the interface. Reasonable matches between the measured and the calculated strains were achieved when a temperature-dependent AC elastic modulus was included in the analytical model. The expected numbers of repetitions of the 24-kip single axle loads at critical thermal condition were computed for the nine test sections based on maximum tensile stresses and fatigue theory. The results showed that 4" slabs can be used for heavy loads only for low-volume traffic. To withstand the critical load without fear of fatigue failure, 6" slabs and 8" slabs would be needed for joint spacings of 4' and 6', respectively.

  6. Validation of the 5th and 95th Percentile Hybrid III Anthropomorphic Test Device Finite Element Model

    NASA Technical Reports Server (NTRS)

    Lawrence, C.; Somers, J. T.; Baldwin, M. A.; Wells, J. A.; Newby, N.; Currie, N. J.

    2014-01-01

    NASA spacecraft design requirements for occupant protection are a combination of the Brinkley criteria and injury metrics extracted from anthropomorphic test devices (ATD's). For the ATD injury metrics, the requirements specify the use of the 5th percentile female Hybrid III and the 95th percentile male Hybrid III. Furthermore, each of these ATD's is required to be fitted with an articulating pelvis and a straight spine. The articulating pelvis is necessary for the ATD to fit into spacecraft seats, while the straight spine is required as injury metrics for vertical accelerations are better defined for this configuration. The requirements require that physical testing be performed with both ATD's to demonstrate compliance. Before compliance testing can be conducted, extensive modeling and simulation are required to determine appropriate test conditions, simulate conditions not feasible for testing, and assess design features to better ensure compliance testing is successful. While finite element (FE) models are currently available for many of the physical ATD's, currently there are no complete models for either the 5th percentile female or the 95th percentile male Hybrid III with a straight spine and articulating pelvis. The purpose of this work is to assess the accuracy of the existing Livermore Software Technology Corporation's FE models of the 5th and 95th percentile ATD's. To perform this assessment, a series of tests will be performed at Wright Patterson Air Force Research Lab using their horizontal impact accelerator sled test facility. The ATD's will be placed in the Orion seat with a modified-advanced-crew-escape-system (MACES) pressure suit and helmet, and driven with loadings similar to what is expected for the actual Orion vehicle during landing, launch abort, and chute deployment. Test data will be compared to analytical predictions and modelling uncertainty factors will be determined for each injury metric. Additionally, the test data will be used to further improve the FE model, particularly in the areas of the ATD neck components, harness, and suit and helmet effects.

  7. A test of inflated zeros for Poisson regression models.

    PubMed

    He, Hua; Zhang, Hui; Ye, Peng; Tang, Wan

    2017-01-01

    Excessive zeros are common in practice and may cause overdispersion and invalidate inference when fitting Poisson regression models. There is a large body of literature on zero-inflated Poisson models. However, methods for testing whether there are excessive zeros are less well developed. The Vuong test comparing a Poisson and a zero-inflated Poisson model is commonly applied in practice. However, the type I error of the test often deviates seriously from the nominal level, rendering serious doubts on the validity of the test in such applications. In this paper, we develop a new approach for testing inflated zeros under the Poisson model. Unlike the Vuong test for inflated zeros, our method does not require a zero-inflated Poisson model to perform the test. Simulation studies show that when compared with the Vuong test our approach not only better at controlling type I error rate, but also yield more power.

  8. Mathematical Models of Elementary Mathematics Learning and Performance. Final Report.

    ERIC Educational Resources Information Center

    Suppes, Patrick

    This project was concerned with the development of mathematical models of elementary mathematics learning and performance. Probabilistic finite automata and register machines with a finite number of registers were developed as models and extensively tested with data arising from the elementary-mathematics strand curriculum developed by the…

  9. Evaluation of Performance of Laboratories and Manufacturers Within the Framework of the IFCC model for Quality Targets of HbA1c.

    PubMed

    Weykamp, Cas; Siebelder, Carla

    2017-11-01

    HbA1c is a key parameter in diabetes management. For years the test has been used exclusively for monitoring of long-term diabetic control. However, due to improvement of the performance, HbA1c is considered more and more for diagnosis and screening. With this new application, quality demands further increase. A task force of the International Federation of Clinical Chemistry and Laboratory Medicine developed a model to set and evaluate quality targets for HbA1c. The model is based on the concept of total error and takes into account the major sources of analytical errors in the medical laboratory: bias and imprecision. Performance criteria are derived from sigma-metrics and biological variation. This review shows 2 examples of the application of the model: at the level of single laboratories, and at the level of a group of laboratories. In the first example data of 125 individual laboratories of a recent external quality assessment program in the Netherlands are evaluated. Differences between laboratories as well as their relation to method principles are shown. The second example uses recent and 3-year-old data of the proficiency test of the College of American Pathologists. The differences in performance between 26 manufacturer-related groups of laboratories are shown. Over time these differences are quite consistent although some manufacturers improved substantially either by better standardization or by replacing a test. The IFCC model serves all who are involved in HbA1c testing in the ongoing process of better performance and better patient care.

  10. Effects of aquatic exercises in a rat model of brainstem demyelination with ethidium bromide on the beam walking test.

    PubMed

    Nassar, Cíntia Cristina Souza; Bondan, Eduardo Fernandes; Alouche, Sandra Regina

    2009-09-01

    Multiple sclerosis is a demyelinating disease of the central nervous system associated with varied levels of disability. The impact of early physiotherapeutic interventions in the disease progression is unknown. We used an experimental model of demyelination with the gliotoxic agent ethidium bromide and early aquatic exercises to evaluate the motor performance of the animals. We quantified the number of footsteps and errors during the beam walking test. The demyelinated animals walked fewer steps with a greater number of errors than the control group. The demyelinated animals that performed aquatic exercises presented a better motor performance than those that did not exercise. Therefore aquatic exercising was beneficial to the motor performance of rats in this experimental model of demyelination.

  11. Physical phenomena in mercury ion thrusters

    NASA Technical Reports Server (NTRS)

    Wilbur, P. J.

    1979-01-01

    Experimental tests results demonstrating that reductions in screen grid thickness enhance the performance of ion thruster grids are presented. Shaping of the screen hole cross section is shown on the other hand not to affect performance substantially. The effect of the magnetic field in the vicinity of the hollow cathode on cathode performance is studied and test results are presented that show reductions in keeper voltages of a few volts can be realized by judicious applications of fields on the order of 100 gauss. The plasma downstream of a SERT 2 thruster operating without high voltage is studied. A model describing electron escape from the thruster under these conditions is discussed. A model defining the performance of the baffle aperture of an ion thruster is refined and experimental verification of the model is undertaken.

  12. Simulation and performance of brushless dc motor actuators

    NASA Astrophysics Data System (ADS)

    Gerba, A., Jr.

    1985-12-01

    The simulation model for a Brushless D.C. Motor and the associated commutation power conditioner transistor model are presented. The necessary conditions for maximum power output while operating at steady-state speed and sinusoidally distributed air-gap flux are developed. Comparison of simulated model with the measured performance of a typical motor are done both on time response waveforms and on average performance characteristics. These preliminary results indicate good agreement. Plans for model improvement and testing of a motor-driven positioning device for model evaluation are outlined.

  13. Physical factors underlying the association between lower walking performance and falls in older people: a structural equation model.

    PubMed

    Shimada, Hiroyuki; Tiedemann, Anne; Lord, Stephen R; Suzukawa, Megumi; Makizako, Hyuma; Kobayashi, Kumiko; Suzuki, Takao

    2011-01-01

    The purpose of this study was to determine the interrelationships between lower limb muscle performance, balance, gait and falls in older people using structural equation modeling. Study participants were two hundred and thirteen people aged 65 years and older (mean age, 80.0 ± 7.1 years), who used day-care services in Japan. The outcome measures were the history of falls three months retrospectively and physical risk factors for falling, including performance in the chair stand test (CST), one-leg standing test (OLS), tandem walk test, 6m walking time, and the timed up-and-go (TUG) test. Thirty-nine (18.3%) of the 213 participants had fallen at least one or more times during the preceding 3 months. The fall group had significantly slower 6m walking speed and took significantly longer to undertake the TUG test than the non-fall group. In a structural equation model, performance in the CST contributed significantly to gait function, and low gait function was significantly and directly associated with falls in older people. This suggests that task-specific strength exercise as well as general mobility retraining should be important components of exercise programs designed to reduce falls in older people. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  14. Nonparametric predictive inference for combining diagnostic tests with parametric copula

    NASA Astrophysics Data System (ADS)

    Muhammad, Noryanti; Coolen, F. P. A.; Coolen-Maturi, T.

    2017-09-01

    Measuring the accuracy of diagnostic tests is crucial in many application areas including medicine and health care. The Receiver Operating Characteristic (ROC) curve is a popular statistical tool for describing the performance of diagnostic tests. The area under the ROC curve (AUC) is often used as a measure of the overall performance of the diagnostic test. In this paper, we interest in developing strategies for combining test results in order to increase the diagnostic accuracy. We introduce nonparametric predictive inference (NPI) for combining two diagnostic test results with considering dependence structure using parametric copula. NPI is a frequentist statistical framework for inference on a future observation based on past data observations. NPI uses lower and upper probabilities to quantify uncertainty and is based on only a few modelling assumptions. While copula is a well-known statistical concept for modelling dependence of random variables. A copula is a joint distribution function whose marginals are all uniformly distributed and it can be used to model the dependence separately from the marginal distributions. In this research, we estimate the copula density using a parametric method which is maximum likelihood estimator (MLE). We investigate the performance of this proposed method via data sets from the literature and discuss results to show how our method performs for different family of copulas. Finally, we briefly outline related challenges and opportunities for future research.

  15. Computerized Maze Navigation and On-Road Performance by Drivers With Dementia

    PubMed Central

    Ott, Brian R.; Festa, Elena K.; Amick, Melissa M.; Grace, Janet; Davis, Jennifer D.; Heindel, William C.

    2012-01-01

    This study examined the ability of computerized maze test performance to predict the road test performance of cognitively impaired and normal older drivers. The authors examined 133 older drivers, including 65 with probable Alzheimer disease, 23 with possible Alzheimer disease, and 45 control subjects without cognitive impairment. Subjects completed 5 computerized maze tasks employing a touch screen and pointer as well as a battery of standard neuropsychological tests. Parameters measured for mazes included errors, planning time, drawing time, and total time. Within 2 weeks, subjects were examined by a professional driving instructor on a standardized road test modeled after the Washington University Road Test. Road test total score was significantly correlated with total time across the 5 mazes. This maze score was significant for both Alzheimer disease subjects and control subjects. One maze in particular, requiring less than 2 minutes to complete, was highly correlated with driving performance. For the standard neuropsychological tests, highest correlations were seen with Trail Making A (TrailsA) and the Hopkins Verbal Learning Tests Trial 1 (HVLT1). Multiple regression models for road test score using stepwise subtraction of maze and neuropsychological test variables revealed significant independent contributions for total maze time, HVLT1, and TrailsA for the entire group; total maze time and HVLT1 for Alzheimer disease subjects; and TrailsA for normal subjects. As a visual analog of driving, a brief computerized test of maze navigation time compares well to standard neuropsychological tests of psychomotor speed, scanning, attention, and working memory as a predictor of driving performance by persons with early Alzheimer disease and normal elders. Measurement of maze task performance appears to be useful in the assessment of older drivers at risk for hazardous driving. PMID:18287166

  16. Does rational selection of training and test sets improve the outcome of QSAR modeling?

    PubMed

    Martin, Todd M; Harten, Paul; Young, Douglas M; Muratov, Eugene N; Golbraikh, Alexander; Zhu, Hao; Tropsha, Alexander

    2012-10-22

    Prior to using a quantitative structure activity relationship (QSAR) model for external predictions, its predictive power should be established and validated. In the absence of a true external data set, the best way to validate the predictive ability of a model is to perform its statistical external validation. In statistical external validation, the overall data set is divided into training and test sets. Commonly, this splitting is performed using random division. Rational splitting methods can divide data sets into training and test sets in an intelligent fashion. The purpose of this study was to determine whether rational division methods lead to more predictive models compared to random division. A special data splitting procedure was used to facilitate the comparison between random and rational division methods. For each toxicity end point, the overall data set was divided into a modeling set (80% of the overall set) and an external evaluation set (20% of the overall set) using random division. The modeling set was then subdivided into a training set (80% of the modeling set) and a test set (20% of the modeling set) using rational division methods and by using random division. The Kennard-Stone, minimal test set dissimilarity, and sphere exclusion algorithms were used as the rational division methods. The hierarchical clustering, random forest, and k-nearest neighbor (kNN) methods were used to develop QSAR models based on the training sets. For kNN QSAR, multiple training and test sets were generated, and multiple QSAR models were built. The results of this study indicate that models based on rational division methods generate better statistical results for the test sets than models based on random division, but the predictive power of both types of models are comparable.

  17. Predicting the Consequences of Workload Management Strategies with Human Performance Modeling

    NASA Technical Reports Server (NTRS)

    Mitchell, Diane Kuhl; Samma, Charneta

    2011-01-01

    Human performance modelers at the US Army Research Laboratory have developed an approach for establishing Soldier high workload that can be used for analyses of proposed system designs. Their technique includes three key components. To implement the approach in an experiment, the researcher would create two experimental conditions: a baseline and a design alternative. Next they would identify a scenario in which the test participants perform all their representative concurrent interactions with the system. This scenario should include any events that would trigger a different set of goals for the human operators. They would collect workload values during both the control and alternative design condition to see if the alternative increased workload and decreased performance. They have successfully implemented this approach for military vehicle. designs using the human performance modeling tool, IMPRINT. Although ARL researches use IMPRINT to implement their approach, it can be applied to any workload analysis. Researchers using other modeling and simulations tools or conducting experiments or field tests can use the same approach.

  18. ILS Glide Slope Performance Prediction. Volume B

    DTIC Science & Technology

    1974-09-01

    figures are identical in both volumes. 󈧔. Abottec A mathematical model for predicting the performance of ILS glide slope arrays in the presence of...irregularities on the performance of ILS Glide Slope antenna systems, a mathematical -electromagnetic scattering computer model has been developed. This work was...Antenna ........... 4-4 9. Test Case Results ..................................... r-3 ix PART I. IEO -j 1.INTRODUCTION IA mathematical model has been

  19. Virtual DRI dataset development

    NASA Astrophysics Data System (ADS)

    Hixson, Jonathan G.; Teaney, Brian P.; May, Christopher; Maurer, Tana; Nelson, Michael B.; Pham, Justin R.

    2017-05-01

    The U.S. Army RDECOM CERDEC NVESD MSD's target acquisition models have been used for many years by the military analysis community for sensor design, trade studies, and field performance prediction. This paper analyzes the results of perception tests performed to compare the results of a field DRI (Detection, Recognition, and Identification Test) performed in 2009 to current Soldier performance viewing the same imagery in a laboratory environment and simulated imagery of the same data set. The purpose of the experiment is to build a robust data set for use in the virtual prototyping of infrared sensors. This data set will provide a strong foundation relating, model predictions, field DRI results and simulated imagery.

  20. Low and high speed propellers for general aviation: Performance potential and recent wind tunnel test results

    NASA Technical Reports Server (NTRS)

    Jeracki, R. J.; Mitchell, G. A.

    1981-01-01

    The performance of lower speed, 5 foot diameter model general aviation propellers, was tested in the Lewis wind tunnel. Performance was evaluated for various levels of airfoil technology and activity factor. The difference was associated with inadequate modeling of blade and spinner losses for propellers round shank blade designs. Suggested concepts for improvement are: (1) advanced blade shapes (airfoils and sweep); (2) tip devices (proplets); (3) integrated propeller/nacelles; and (4) composites. Several advanced aerodynamic concepts were evaluated in the Lewis wind tunnel. Results show that high propeller performance can be obtained to at least Mach 0.8.

  1. An Experimental Study on the Shear Hysteresis and Energy Dissipation of the Steel Frame with a Trapezoidal-Corrugated Steel Plate

    PubMed Central

    Shon, Sudeok; Yoo, Mina; Lee, Seungjae

    2017-01-01

    The steel frame reinforced with steel shear wall is a lateral load resisting system and has higher strength and shear performance than the concrete shear wall system. Especially, using corrugated steel plates in these shear wall systems improves out-of-plane stiffness and flexibility in the deformation along the corrugation. In this paper, a cyclic loading test of this steel frame reinforced with trapezoidal-corrugated steel plate was performed to evaluate the structural performance. The hysteresis behavior and the energy dissipation capacity of the steel frame were also compared according to the corrugated direction of the plate. For the test, one simple frame model without the wall and two frame models reinforced with the plate are considered and designed. The test results showed that the model reinforced with the corrugated steel plate had a greater accumulated energy dissipation capacity than the experimental result of the non-reinforced model. Furthermore, the energy dissipation curves of two reinforced frame models, which have different corrugated directions, produced similar results. PMID:28772624

  2. An Experimental Study on the Shear Hysteresis and Energy Dissipation of the Steel Frame with a Trapezoidal-Corrugated Steel Plate.

    PubMed

    Shon, Sudeok; Yoo, Mina; Lee, Seungjae

    2017-03-06

    The steel frame reinforced with steel shear wall is a lateral load resisting system and has higher strength and shear performance than the concrete shear wall system. Especially, using corrugated steel plates in these shear wall systems improves out-of-plane stiffness and flexibility in the deformation along the corrugation. In this paper, a cyclic loading test of this steel frame reinforced with trapezoidal-corrugated steel plate was performed to evaluate the structural performance. The hysteresis behavior and the energy dissipation capacity of the steel frame were also compared according to the corrugated direction of the plate. For the test, one simple frame model without the wall and two frame models reinforced with the plate are considered and designed. The test results showed that the model reinforced with the corrugated steel plate had a greater accumulated energy dissipation capacity than the experimental result of the non-reinforced model. Furthermore, the energy dissipation curves of two reinforced frame models, which have different corrugated directions, produced similar results.

  3. Characterizing and modeling the free recovery and constrained recovery behavior of a polyurethane shape memory polymer

    NASA Astrophysics Data System (ADS)

    Volk, Brent L.; Lagoudas, Dimitris C.; Maitland, Duncan J.

    2011-09-01

    In this work, tensile tests and one-dimensional constitutive modeling were performed on a high recovery force polyurethane shape memory polymer that is being considered for biomedical applications. The tensile tests investigated the free recovery (zero load) response as well as the constrained displacement recovery (stress recovery) response at extension values up to 25%, and two consecutive cycles were performed during each test. The material was observed to recover 100% of the applied deformation when heated at zero load in the second thermomechanical cycle, and a stress recovery of 1.5-4.2 MPa was observed for the constrained displacement recovery experiments. After the experiments were performed, the Chen and Lagoudas model was used to simulate and predict the experimental results. The material properties used in the constitutive model—namely the coefficients of thermal expansion, shear moduli, and frozen volume fraction—were calibrated from a single 10% extension free recovery experiment. The model was then used to predict the material response for the remaining free recovery and constrained displacement recovery experiments. The model predictions match well with the experimental data.

  4. Time-Dependent Testing Evaluation and Modeling for Rubber Stopper Seal Performance.

    PubMed

    Zeng, Qingyu; Zhao, Xia

    2018-01-01

    Sufficient rubber stopper sealing performance throughout the entire sealed product life cycle is essential for maintaining container closure integrity in the parenteral packaging industry. However, prior publications have lacked systematic considerations for the time-dependent influence on sealing performance that results from the viscoelastic characteristics of the rubber stoppers. In this paper, we report results of an effort to study these effects by applying both compression stress relaxation testing and residual seal force testing for time-dependent experimental data collection. These experiments were followed by modeling fit calculations based on the Maxwell-Wiechert theory modified with the Kohlrausch-Williams-Watts stretched exponential function, resulting in a nonlinear, time-dependent sealing force model. By employing both testing evaluations and modeling calculations, an in-depth understanding of the time-dependent effects on rubber stopper sealing force was developed. Both testing and modeling data show good consistency, demonstrating that the sealing force decays exponentially over time and eventually levels off because of the viscoelastic nature of the rubber stoppers. The nonlinearity of stress relaxation derives from the viscoelastic characteristics of the rubber stoppers coupled with the large stopper compression deformation into restrained geometry conditions. The modeling fit with capability to handle actual testing data can be employed as a tool to calculate the compression stress relaxation and residual seal force throughout the entire sealed product life cycle. In addition to being time-dependent, stress relaxation is also experimentally shown to be temperature-dependent. The present work provides a new, integrated methodology framework and some fresh insights to the parenteral packaging industry for practically and proactively considering, designing, setting up, controlling, and managing stopper sealing performance throughout the entire sealed product life cycle. LAY ABSTRACT: Historical publications in the parenteral packaging industry have lacked systematic considerations for the time-dependent influence on the sealing performance that results from effects of viscoelastic characteristic of the rubber stoppers. This study applied compression stress relaxation testing and residual seal force testing for time-dependent experimental data collection. These experiments were followed by modeling fit calculations based on the Maxwell-Wiechert theory modified with the Kohlrausch-Williams-Watts stretched exponential function, resulting in a nonlinear, time-dependent sealing force model. Experimental and modeling data show good consistency, demonstrating that sealing force decays exponentially over time and eventually levels off. The nonlinearity of stress relaxation derives from the viscoelastic characteristics of the rubber stoppers coupled with the large stopper compression deformation into restrained geometry conditions. In addition to being time-dependent stress relaxation, it is also experimentally shown to be temperature-dependent. The present work provides a new, integrated methodology framework and some fresh insights to the industry for practically and proactively considering, designing, setting up, controlling, and managing of the stopper sealing performance throughout the entire sealed product life cycle. © PDA, Inc. 2018.

  5. FY17 Status Report on Testing Supporting the Inclusion of Grade 91 Steel as an Acceptable Material for Application of the EPP Methodology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Messner, Mark C.; Sham, Sam; Wang, Yanli

    This report summarizes the experiments performed in FY17 on Gr. 91 steels. The testing of Gr. 91 has technical significance because, currently, it is the only approved material for Class A construction that is strongly cyclic softening. Specific FY17 testing includes the following activities for Gr. 91 steel. First, two types of key feature testing have been initiated, including two-bar thermal ratcheting and Simplified Model Testing (SMT). The goal is to qualify the Elastic – Perfectly Plastic (EPP) design methodologies and to support incorporation of these rules for Gr. 91 into the ASME Division 5 Code. The preliminary SMT testmore » results show that Gr. 91 is most damaging when tested with compression hold mode under the SMT creep fatigue testing condition. Two-bar thermal ratcheting test results at a temperature range between 350 to 650o C were compared with the EPP strain limits code case evaluation, and the results show that the EPP strain limits code case is conservative. The material information obtained from these key feature tests can also be used to verify its material model. Second, to provide experimental data in support of the viscoplastic material model development at Argonne National Laboratory, selective tests were performed to evaluate the effect of cyclic softening on strain rate sensitivity and creep rates. The results show the prior cyclic loading history decreases the strain rate sensitivity and increases creep rates. In addition, isothermal cyclic stress-strain curves were generated at six different temperatures, and a nonisothermal thermomechanical testing was also performed to provide data to calibrate the viscoplastic material model.« less

  6. Verification of CFD model of plane jet used for smoke free zone separation in case of fire

    NASA Astrophysics Data System (ADS)

    Krajewski, Grzegorz; Suchy, Przemysław

    2018-01-01

    This paper presents the basic information about the use of air curtains in fire safety, as a barrier for heat and smoke. Mathematical model of an air curtain presented hereallows estimation of velocity of air in various points of space, including the velocity of air from an angled air curtain. Presented equations show how various parameters influence the performance of air curtain. Further, authors present results of their air curtain performance. Authors of that article have done tests in a real scale model. Tests results were used to verify chosen turbulence model and boundary conditions. Results of new studies are presented with regards to the performance of air curtain in case of fire, and final remarks on its design are given.

  7. Bayesian models based on test statistics for multiple hypothesis testing problems.

    PubMed

    Ji, Yuan; Lu, Yiling; Mills, Gordon B

    2008-04-01

    We propose a Bayesian method for the problem of multiple hypothesis testing that is routinely encountered in bioinformatics research, such as the differential gene expression analysis. Our algorithm is based on modeling the distributions of test statistics under both null and alternative hypotheses. We substantially reduce the complexity of the process of defining posterior model probabilities by modeling the test statistics directly instead of modeling the full data. Computationally, we apply a Bayesian FDR approach to control the number of rejections of null hypotheses. To check if our model assumptions for the test statistics are valid for various bioinformatics experiments, we also propose a simple graphical model-assessment tool. Using extensive simulations, we demonstrate the performance of our models and the utility of the model-assessment tool. In the end, we apply the proposed methodology to an siRNA screening and a gene expression experiment.

  8. Analysis of high vacuum systems using SINDA'85

    NASA Technical Reports Server (NTRS)

    Spivey, R. A.; Clanton, S. E.; Moore, J. D.

    1993-01-01

    The theory, algorithms, and test data correlation analysis of a math model developed to predict performance of the Space Station Freedom Vacuum Exhaust System are presented. The theory used to predict the flow characteristics of viscous, transition, and molecular flow is presented in detail. Development of user subroutines which predict the flow characteristics in conjunction with the SINDA'85/FLUINT analysis software are discussed. The resistance-capacitance network approach with application to vacuum system analysis is demonstrated and results from the model are correlated with test data. The model was developed to predict the performance of the Space Station Freedom Vacuum Exhaust System. However, the unique use of the user subroutines developed in this model and written into the SINDA'85/FLUINT thermal analysis model provides a powerful tool that can be used to predict the transient performance of vacuum systems and gas flow in tubes of virtually any geometry. This can be accomplished using a resistance-capacitance (R-C) method very similar to the methods used to perform thermal analyses.

  9. Classifying the Indication for Colonoscopy Procedures: A Comparison of NLP Approaches in a Diverse National Healthcare System.

    PubMed

    Patterson, Olga V; Forbush, Tyler B; Saini, Sameer D; Moser, Stephanie E; DuVall, Scott L

    2015-01-01

    In order to measure the level of utilization of colonoscopy procedures, identifying the primary indication for the procedure is required. Colonoscopies may be utilized not only for screening, but also for diagnostic or therapeutic purposes. To determine whether a colonoscopy was performed for screening, we created a natural language processing system to identify colonoscopy reports in the electronic medical record system and extract indications for the procedure. A rule-based model and three machine-learning models were created using 2,000 manually annotated clinical notes of patients cared for in the Department of Veterans Affairs. Performance of the models was measured and compared. Analysis of the models on a test set of 1,000 documents indicates that the rule-based system performance stays fairly constant as evaluated on training and testing sets. However, the machine learning model without feature selection showed significant decrease in performance. Therefore, rule-based classification system appears to be more robust than a machine-learning system in cases when no feature selection is performed.

  10. Thermal Testing and Analysis of an Efficient High-Temperature Multi-Screen Internal Insulation

    NASA Technical Reports Server (NTRS)

    Weiland, Stefan; Handrick, Karin; Daryabeigi, Kamran

    2007-01-01

    Conventional multi-layer insulations exhibit excellent insulation performance but they are limited to the temperature range to which their components reflective foils and spacer materials are compatible. For high temperature applications, the internal multi-screen insulation IMI has been developed that utilizes unique ceramic material technology to produce reflective screens with high temperature stability. For analytical insulation sizing a parametric material model is developed that includes the main contributors for heat flow which are radiation and conduction. The adaptation of model-parameters based on effective steady-state thermal conductivity measurements performed at NASA Langley Research Center (LaRC) allows for extrapolation to arbitrary stack configurations and temperature ranges beyond the ones that were covered in the conductivity measurements. Experimental validation of the parametric material model was performed during the thermal qualification test of the X-38 Chin-panel, where test results and predictions showed a good agreement.

  11. Flow Channel Influence of a Collision-Based Piezoelectric Jetting Dispenser on Jet Performance

    PubMed Central

    Deng, Guiling; Li, Junhui; Duan, Ji’an

    2018-01-01

    To improve the jet performance of a bi-piezoelectric jet dispenser, mathematical and simulation models were established according to the operating principle. In order to improve the accuracy and reliability of the simulation calculation, a viscosity model of the fluid was fitted to a fifth-order function with shear rate based on rheological test data, and the needle displacement model was fitted to a nine-order function with time based on real-time displacement test data. The results show that jet performance is related to the diameter of the nozzle outlet and the cone angle of the nozzle, and the impacts of the flow channel structure were confirmed. The approach of numerical simulation is confirmed by the testing results of droplet volume. It will provide a reliable simulation platform for mechanical collision-based jet dispensing and a theoretical basis for micro jet valve design and improvement. PMID:29677140

  12. Academically Buoyant Students Are Less Anxious about and Perform Better in High-Stakes Examinations

    ERIC Educational Resources Information Center

    Putwain, David W.; Daly, Anthony L.; Chamberlain, Suzanne; Sadreddini, Shireen

    2015-01-01

    Background: Prior research has shown that test anxiety is negatively related to academic buoyancy, but it is not known whether test anxiety is an antecedent or outcome of academic buoyancy. Furthermore, it is not known whether academic buoyancy is related to performance on high-stakes examinations. Aims: To test a model specifying reciprocal…

  13. Analytical and Experimental Assessment of Seismic Vulnerability of Beam-Column Joints without Transverse Reinforcement in Concrete Buildings

    NASA Astrophysics Data System (ADS)

    Hassan, Wael Mohammed

    Beam-column joints in concrete buildings are key components to ensure structural integrity of building performance under seismic loading. Earthquake reconnaissance has reported the substantial damage that can result from inadequate beam-column joints. In some cases, failure of older-type corner joints appears to have led to building collapse. Since the 1960s, many advances have been made to improve seismic performance of building components, including beam-column joints. New design and detailing approaches are expected to produce new construction that will perform satisfactorily during strong earthquake shaking. Much less attention has been focused on beam-column joints of older construction that may be seismically vulnerable. Concrete buildings constructed prior to developing details for ductility in the 1970s normally lack joint transverse reinforcement. The available literature concerning the performance of such joints is relatively limited, but concerns about performance exist. The current study aimed to improve understanding and assessment of seismic performance of unconfined exterior and corner beam-column joints in existing buildings. An extensive literature survey was performed, leading to development of a database of about a hundred tests. Study of the data enabled identification of the most important parameters and the effect of each parameter on the seismic performance. The available analytical models and guidelines for strength and deformability assessment of unconfined joints were surveyed and evaluated. In particular, The ASCE 41 existing building document proved to be substantially conservative in joint shear strength estimation. Upon identifying deficiencies in these models, two new joint shear strength models, a bond capacity model, and two axial capacity models designed and tailored specifically for unconfined beam-column joints were developed. The proposed models strongly correlated with previous test results. In the laboratory testing phase of the current study, four full-scale corner beam-column joint subassemblies, with slab included, were designed, built, instrumented, tested, and analyzed. The specimens were tested under unidirectional and bidirectional displacement-controlled quasi-static loading that incorporated varying axial loads that simulated overturning seismic moment effects. The axial loads varied between tension and high compression loads reaching about 50% of the column axial capacity. The test parameters were axial load level, loading history, joint aspect ratio, and beam reinforcement ratio. The test results proved that high axial load increases joint shear strength and decreases the deformability of joints failing in pure shear failure mode without beam yielding. On the contrary, high axial load did not affect the strength of joints failing in shear after significant beam yielding; however, it substantially increased their displacement ductility. Joint aspect ratio proved to be instrumental in deciding joint shear strength; that is the deeper the joint the lower the shear strength. Bidirectional loading reduced the apparent strength of the joint in the uniaxial principal axes. However, circular shear strength interaction is an appropriate approximation to predict the biaxial strength. The developed shear strength models predicted successfully the strength of test specimens. Based on the literature database investigation, the shear and axial capacity models developed and the test results of the current study, an analytical finite element component model based on a proposed joint shear stress-rotation backbone constitutive curve was developed to represent the behavior of unconfined beam-column joints in computer numerical simulations of concrete frame buildings. The proposed finite element model included the effect of axial load, mode of joint failure, joint aspect ratio and axial capacity of joint. The proposed backbone curve along with the developed joint element exhibited high accuracy in simulating the test response of the current test specimens as well as previous test joints. Finally, a parametric study was conducted to assess the axial failure vulnerability of unconfined beam-column joints based on the developed shear and axial capacity models. This parametric study compared the axial failure potential of unconfined beam-column joint with that of shear critical columns to provide a preliminary insight into the axial collapse vulnerability of older-type buildings during intense ground shaking.

  14. Price vs. Performance: The Value of Next Generation Fighter Aircraft

    DTIC Science & Technology

    2007-03-01

    forms. Both the semi-log and log-log forms were plagued with heteroskedasticity (according to the Breusch - Pagan /Cook-Weisberg test ). The RDT&E models...from 1949-present were used to construct two models – one based on procurement costs and one based on research, design, test , and evaluation (RDT&E...fighter aircraft hedonic models include several different categories of variables. Aircraft procurement costs and research, design, test , and

  15. Application of the Athlete's Performance Passport for Doping Control: A Case Report.

    PubMed

    Iljukov, Sergei; Bermon, Stephane; Schumacher, Yorck O

    2018-01-01

    The efficient use of testing resources is a key issue in the fight against doping. The longitudinal tracking of sporting performances to identify unusual improvements possibly caused by doping, so-called "athlete's performance passport" (APP) is a new concept to improve targeted anti-doping testing. In fact, unusual performances by an athlete would trigger a more thorough testing program. In the present case report, performance data is modeled using the critical power concept for a group of athletes based on their past performances. By these means, an athlete with unusual deviations from his predicted performances was identified. Subsequent target testing using blood testing and the athlete biological passport resulted in an anti-doping rule violation procedure and suspension of the athlete. This case demonstrates the feasibility of the APP approach where athlete's performance is monitored and might serve as an example for the practical implementation of the method.

  16. Application of the Athlete's Performance Passport for Doping Control: A Case Report

    PubMed Central

    Iljukov, Sergei; Bermon, Stephane; Schumacher, Yorck O.

    2018-01-01

    The efficient use of testing resources is a key issue in the fight against doping. The longitudinal tracking of sporting performances to identify unusual improvements possibly caused by doping, so-called “athlete's performance passport” (APP) is a new concept to improve targeted anti-doping testing. In fact, unusual performances by an athlete would trigger a more thorough testing program. In the present case report, performance data is modeled using the critical power concept for a group of athletes based on their past performances. By these means, an athlete with unusual deviations from his predicted performances was identified. Subsequent target testing using blood testing and the athlete biological passport resulted in an anti-doping rule violation procedure and suspension of the athlete. This case demonstrates the feasibility of the APP approach where athlete's performance is monitored and might serve as an example for the practical implementation of the method. PMID:29651247

  17. Assessment of vaccine testing at three laboratories using the guinea pig model of tuberculosis.

    PubMed

    Grover, Ajay; Troudt, Jolynn; Arnett, Kimberly; Izzo, Linda; Lucas, Megan; Strain, Katie; McFarland, Christine; Hall, Yper; McMurray, David; Williams, Ann; Dobos, Karen; Izzo, Angelo

    2012-01-01

    The guinea pig model of tuberculosis is used extensively in different locations to assess the efficacy of novel tuberculosis vaccines during pre-clinical development. Two key assays are used to measure protection against virulent challenge: a 30 day post-infection assessment of mycobacterial burden and long-term post-infection survival and pathology analysis. To determine the consistency and robustness of the guinea pig model for testing vaccines, a comparative assessment between three sites that are currently involved in testing tuberculosis vaccines from external providers was performed. Each site was asked to test two "subunit" type vaccines in their routine animal model as if testing vaccines from a provider. All sites performed a 30 day study, and one site also performed a long-term survival/pathology study. Despite some differences in experimental approach between the sites, such as the origin of the Mycobacterium tuberculosis strain and the type of aerosol exposure device used to infect the animals and the source of the guinea pigs, the data obtained between sites were consistent in regard to the ability of each "vaccine" tested to reduce the mycobacterial burden. The observations also showed that there was good concurrence between the results of short-term and long-term studies. This validation exercise means that efficacy data can be compared between sites. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Performance Characterization and Vibration Testing of 30-cm Carbon-Carbon Ion Optics

    NASA Technical Reports Server (NTRS)

    Steven Snyder, John; Brophy, John R.

    2004-01-01

    Carbon-based ion optics have the potential to significantly increase the operable life and power ranges of ion thrusters because of reduced erosion rates compared to molybdenum optics. The development of 15-cm and larger diameter grids has encountered many problems, however, not the least of which is the ability to pass vibration testing. JPL has recently developed a new generation of 30-cm carbon-carbon ion optics in order to address these problems and demonstrate the viability of the technology. Perveance, electron backstreaming, and screen grid transparency data are presented for two sets of optics. Vibration testing was successfully performed on two different sets of ion optics with no damage and the results of those tests are compared to models of grid vibrational behavior. It will be shown that the vibration model is a conservative predictor of grid response and can accurately describe test results. There was no change in grid alignment as a result of vibration testing and a slight improvement, if any change at all, in optics performance.

  19. On the self-serving function of an academic wooden leg: test anxiety as a self-handicapping strategy.

    PubMed

    Smith, C W; Snyder, D R; Handelsman, M M

    1982-02-01

    The present study investigated the hypothesis that psychological symptoms may serve a self-protective function by providing an alternative explanation for potential failure in evaluating situations. It was hypothesized that highly test-anxious subjects would report anxiety symptoms in a pattern that reflected strategic presentation of symptoms; more specifically, it was predicted that greater reported anxiety should result when anxiety was a viable explanation for poor performance on an intelligence test and that lower reported anxiety should result when anxiety was not a viable explanation for poor performance. Analysis of state measures of self-reported anxiety supported these predictions. Further analysis indicated that when anxiety was not a viable explanation for poor test performance, high test-anxiety subjects reported reduced effort as an alternative self-protective strategy. These results are discussed in terms of traditional models of symptoms as self-protective strategies, current social psychological models of symptoms, and in reference to recent theory and research about the nature and treatment of test anxiety.

  20. Understanding protocol performance: impact of test performance.

    PubMed

    Turner, Robert G

    2013-01-01

    This is the second of two articles that examine the factors that determine protocol performance. The objective of these articles is to provide a general understanding of protocol performance that can be used to estimate performance, establish limits on performance, decide if a protocol is justified, and ultimately select a protocol. The first article was concerned with protocol criterion and test correlation. It demonstrated the advantages and disadvantages of different criterion when all tests had the same performance. It also examined the impact of increasing test correlation on protocol performance and the characteristics of the different criteria. To examine the impact on protocol performance when individual tests in a protocol have different performance. This is evaluated for different criteria and test correlations. The results of the two articles are combined and summarized. A mathematical model is used to calculate protocol performance for different protocol criteria and test correlations when there are small to large variations in the performance of individual tests in the protocol. The performance of the individual tests that make up a protocol has a significant impact on the performance of the protocol. As expected, the better the performance of the individual tests, the better the performance of the protocol. Many of the characteristics of the different criteria are relatively independent of the variation in the performance of the individual tests. However, increasing test variation degrades some criteria advantages and causes a new disadvantage to appear. This negative impact increases as test variation increases and as more tests are added to the protocol. Best protocol performance is obtained when individual tests are uncorrelated and have the same performance. In general, the greater the variation in the performance of tests in the protocol, the more detrimental this variation is to protocol performance. Since this negative impact is increased as more tests are added to the protocol, greater test variation indicates using fewer tests in the protocol. American Academy of Audiology.

  1. Multileaf collimator performance monitoring and improvement using semiautomated quality control testing and statistical process control.

    PubMed

    Létourneau, Daniel; Wang, An; Amin, Md Nurul; Pearce, Jim; McNiven, Andrea; Keller, Harald; Norrlinger, Bernhard; Jaffray, David A

    2014-12-01

    High-quality radiation therapy using highly conformal dose distributions and image-guided techniques requires optimum machine delivery performance. In this work, a monitoring system for multileaf collimator (MLC) performance, integrating semiautomated MLC quality control (QC) tests and statistical process control tools, was developed. The MLC performance monitoring system was used for almost a year on two commercially available MLC models. Control charts were used to establish MLC performance and assess test frequency required to achieve a given level of performance. MLC-related interlocks and servicing events were recorded during the monitoring period and were investigated as indicators of MLC performance variations. The QC test developed as part of the MLC performance monitoring system uses 2D megavoltage images (acquired using an electronic portal imaging device) of 23 fields to determine the location of the leaves with respect to the radiation isocenter. The precision of the MLC performance monitoring QC test and the MLC itself was assessed by detecting the MLC leaf positions on 127 megavoltage images of a static field. After initial calibration, the MLC performance monitoring QC test was performed 3-4 times/week over a period of 10-11 months to monitor positional accuracy of individual leaves for two different MLC models. Analysis of test results was performed using individuals control charts per leaf with control limits computed based on the measurements as well as two sets of specifications of ± 0.5 and ± 1 mm. Out-of-specification and out-of-control leaves were automatically flagged by the monitoring system and reviewed monthly by physicists. MLC-related interlocks reported by the linear accelerator and servicing events were recorded to help identify potential causes of nonrandom MLC leaf positioning variations. The precision of the MLC performance monitoring QC test and the MLC itself was within ± 0.22 mm for most MLC leaves and the majority of the apparent leaf motion was attributed to beam spot displacements between irradiations. The MLC QC test was performed 193 and 162 times over the monitoring period for the studied units and recalibration had to be repeated up to three times on one of these units. For both units, rate of MLC interlocks was moderately associated with MLC servicing events. The strongest association with the MLC performance was observed between the MLC servicing events and the total number of out-of-control leaves. The average elapsed time for which the number of out-of-specification or out-of-control leaves was within a given performance threshold was computed and used to assess adequacy of MLC test frequency. A MLC performance monitoring system has been developed and implemented to acquire high-quality QC data at high frequency. This is enabled by the relatively short acquisition time for the images and automatic image analysis. The monitoring system was also used to record and track the rate of MLC-related interlocks and servicing events. MLC performances for two commercially available MLC models have been assessed and the results support monthly test frequency for widely accepted ± 1 mm specifications. Higher QC test frequency is however required to maintain tighter specification and in-control behavior.

  2. Model-Based Verification and Validation of Spacecraft Avionics

    NASA Technical Reports Server (NTRS)

    Khan, M. Omair; Sievers, Michael; Standley, Shaun

    2012-01-01

    Verification and Validation (V&V) at JPL is traditionally performed on flight or flight-like hardware running flight software. For some time, the complexity of avionics has increased exponentially while the time allocated for system integration and associated V&V testing has remained fixed. There is an increasing need to perform comprehensive system level V&V using modeling and simulation, and to use scarce hardware testing time to validate models; the norm for thermal and structural V&V for some time. Our approach extends model-based V&V to electronics and software through functional and structural models implemented in SysML. We develop component models of electronics and software that are validated by comparison with test results from actual equipment. The models are then simulated enabling a more complete set of test cases than possible on flight hardware. SysML simulations provide access and control of internal nodes that may not be available in physical systems. This is particularly helpful in testing fault protection behaviors when injecting faults is either not possible or potentially damaging to the hardware. We can also model both hardware and software behaviors in SysML, which allows us to simulate hardware and software interactions. With an integrated model and simulation capability we can evaluate the hardware and software interactions and identify problems sooner. The primary missing piece is validating SysML model correctness against hardware; this experiment demonstrated such an approach is possible.

  3. Travtek Evaluation Modeling Study

    DOT National Transportation Integrated Search

    1996-03-01

    THE FOLLOWING REPORT DESCRIBES A MODELING STUDY THAT WAS PERFORMED TO EXTRAPOLATE, FROM THE TRAVTEK OPERATIONAL TEST DATA, A SET OF SYSTEM WIDE BENEFITS AND PERFORMANCE VALUES FOR A WIDER-SCALE DEPLOYMENT OF A TRAVTEK-LIKE SYSTEM. IN THE FIRST PART O...

  4. Soft sensor for real-time cement fineness estimation.

    PubMed

    Stanišić, Darko; Jorgovanović, Nikola; Popov, Nikola; Čongradac, Velimir

    2015-03-01

    This paper describes the design and implementation of soft sensors to estimate cement fineness. Soft sensors are mathematical models that use available data to provide real-time information on process variables when the information, for whatever reason, is not available by direct measurement. In this application, soft sensors are used to provide information on process variable normally provided by off-line laboratory tests performed at large time intervals. Cement fineness is one of the crucial parameters that define the quality of produced cement. Providing real-time information on cement fineness using soft sensors can overcome limitations and problems that originate from a lack of information between two laboratory tests. The model inputs were selected from candidate process variables using an information theoretic approach. Models based on multi-layer perceptrons were developed, and their ability to estimate cement fineness of laboratory samples was analyzed. Models that had the best performance, and capacity to adopt changes in the cement grinding circuit were selected to implement soft sensors. Soft sensors were tested using data from a continuous cement production to demonstrate their use in real-time fineness estimation. Their performance was highly satisfactory, and the sensors proved to be capable of providing valuable information on cement grinding circuit performance. After successful off-line tests, soft sensors were implemented and installed in the control room of a cement factory. Results on the site confirm results obtained by tests conducted during soft sensor development. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  5. W-8 Acoustic Casing Treatment Test Overview

    NASA Technical Reports Server (NTRS)

    Bozak, Rick; Podboy, Gary; Dougherty, Robert

    2017-01-01

    During February 2017, aerodynamic and acoustic testing was performed on a scale-model high bypass ratio turbofan rotor, R4, in an internal flow component test facility. An overview of the testing completed is presented.

  6. Modeling the adenosine system as a modulator of cognitive performance and sleep patterns during sleep restriction and recovery

    PubMed Central

    Phillips, Andrew J. K.

    2017-01-01

    Sleep loss causes profound cognitive impairments and increases the concentrations of adenosine and adenosine A1 receptors in specific regions of the brain. Time courses for performance impairment and recovery differ between acute and chronic sleep loss, but the physiological basis for these time courses is unknown. Adenosine has been implicated in pathways that generate sleepiness and cognitive impairments, but existing mathematical models of sleep and cognitive performance do not explicitly include adenosine. Here, we developed a novel receptor-ligand model of the adenosine system to test the hypothesis that changes in both adenosine and A1 receptor concentrations can capture changes in cognitive performance during acute sleep deprivation (one prolonged wake episode), chronic sleep restriction (multiple nights with insufficient sleep), and subsequent recovery. Parameter values were estimated using biochemical data and reaction time performance on the psychomotor vigilance test (PVT). The model closely fit group-average PVT data during acute sleep deprivation, chronic sleep restriction, and recovery. We tested the model’s ability to reproduce timing and duration of sleep in a separate experiment where individuals were permitted to sleep for up to 14 hours per day for 28 days. The model accurately reproduced these data, and also correctly predicted the possible emergence of a split sleep pattern (two distinct sleep episodes) under these experimental conditions. Our findings provide a physiologically plausible explanation for observed changes in cognitive performance and sleep during sleep loss and recovery, as well as a new approach for predicting sleep and cognitive performance under planned schedules. PMID:29073206

  7. Air Flow Modeling in the Wind Tunnel of the FHWA Aerodynamics Laboratory at Turner-Fairbank Highway Research Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sitek, M. A.; Lottes, S. A.; Bojanowski, C.

    Computational fluid dynamics (CFD) modeling is widely used in industry for design and in the research community to support, compliment, and extend the scope of experimental studies. Analysis of transportation infrastructure using high performance cluster computing with CFD and structural mechanics software is done at the Transportation Research and Analysis Computing Center (TRACC) at Argonne National Laboratory. These resources, available at TRACC, were used to perform advanced three-dimensional computational simulations of the wind tunnel laboratory at the Turner-Fairbank Highway Research Center (TFHRC). The goals were to verify the CFD model of the laboratory wind tunnel and then to use versionsmore » of the model to provide the capability to (1) perform larger parametric series of tests than can be easily done in the laboratory with available budget and time, (2) to extend testing to wind speeds that cannot be achieved in the laboratory, and (3) to run types of tests that are very difficult or impossible to run in the laboratory. Modern CFD software has many physics models and domain meshing options. Models, including the choice of turbulence and other physics models and settings, the computational mesh, and the solver settings, need to be validated against measurements to verify that the results are sufficiently accurate for use in engineering applications. The wind tunnel model was built and tested, by comparing to experimental measurements, to provide a valuable tool to perform these types of studies in the future as a complement and extension to TFHRC’s experimental capabilities. Wind tunnel testing at TFHRC is conducted in a subsonic open-jet wind tunnel with a 1.83 m (6 foot) by 1.83 m (6 foot) cross section. A three component dual force-balance system is used to measure forces acting on tested models, and a three degree of freedom suspension system is used for dynamic response tests. Pictures of the room are shown in Figure 1-1 to Figure 1-4. A detailed CAD geometry and CFD model of the wind tunnel laboratory at TFHRC was built and tested. Results were compared against experimental wind velocity measurements at a large number of locations around the room. This testing included an assessment of the air flow uniformity provided by the tunnel to the test zone and assessment of room geometry effects, such as influence of the proximity the room walls, the non-symmetrical position of the tunnel in the room, and the influence of the room setup on the air flow in the room. This information is useful both for simplifying the computational model and in deciding whether or not moving, or removing, some of the furniture or other movable objects in the room will change the flow in the test zone.« less

  8. James Webb Space Telescope Deployment Brushless DC Motor Characteristics Analysis

    NASA Technical Reports Server (NTRS)

    Tran, Ahn N.

    2016-01-01

    A DC motor's performance is usually characterized by a series of tests, which are conducted by pass/fail criteria. In most cases, these tests are adequate to address the performance characteristics under environmental and loading effects with some uncertainties and decent power/torque margins. However, if the motor performance requirement is very stringent, a better understanding of the motor characteristics is required. The purpose of this paper is to establish a standard way to extract the torque components of the brushless motor and gear box characteristics of a high gear ratio geared motor from the composite geared motor testing and motor parameter measurement. These torque components include motor magnetic detent torque, Coulomb torque, viscous torque, windage torque, and gear tooth sliding torque. The Aerospace Corp bearing torque model and MPB torque models are used to predict the Coulomb torque of the motor rotor bearings and to model the viscous components. Gear tooth sliding friction torque is derived from the dynamo geared motor test data. With these torque data, the geared motor mechanical efficiency can be estimated and provide the overall performance of the geared motor versus several motor operating parameters such as speed, temperature, applied current, and transmitted power.

  9. Political Skill as Moderator of Personality--Job Performance Relationships in Socioanalytic Theory: Test of the Getting Ahead Motive in Automobile Sales

    ERIC Educational Resources Information Center

    Blickle, Gerhard; Wendel, Stephanie; Ferris, Gerald R.

    2010-01-01

    Based on the socioanalytic perspective of performance prediction ([Hogan, 1991] and [Hogan and Shelton, 1998]), this study tests whether the motive to get ahead produces greater performance when interactively combined with social effectiveness. Specifically, we investigated whether interactions of the five-factor model constructs of extraversion…

  10. Joining the Conversation: Predictors of Success on the United States Medical Licensing Examinations (USMLE)

    ERIC Educational Resources Information Center

    Gohara, Sabry; Shapiro, Joseph I.; Jacob, Adam N.; Khuder, Sadik A.; Gandy, Robyn A.; Metting, Patricia J.; Gold, Jeffrey; Kleshinski, James; and James Kleshinski

    2011-01-01

    The purpose of this study was to evaluate whether models based on pre-admission testing, including performance on the Medical College Admission Test (MCAT), performance on required courses in the medical school curriculum, or a combination of both could accurately predict performance of medical students on the United States Medical Licensing…

  11. Insulin resistance and cognitive test performance in elderly adults: National health and nutrition examination survey (NHANES).

    PubMed

    Sherzai, Ayesha Z; Shaheen, Magda; Yu, Jeffrey J; Talbot, Konrad; Sherzai, Dean

    2018-05-15

    To examine the relationship between homeostatic model of insulin resistance (HOMA-IR) and cognitive test performance among population≥60years in a national database. Higher insulin resistance is associated with lower cognitive test performance score in the population≥60years. We analyzed data from the National Health and Nutrition Examination Survey (NHANES) 1999-2000 and 2001-2002. Cognitive test performance was measured by the Digit Symbol Substitution (DSS) exercise score. The main independent variable was the homeostasis model assessment of insulin resistance (HOMA-IR). We used bivariate analysis and generalized linear model adjusting for age, gender, race, education, body mass index, and systolic and diastolic blood pressures; total cholesterol, low density lipoprotein (LDL), high density lipoprotein (HDL) and triglyceride levels; and physical activity, diabetes mellitus, stroke, and congestive heart failure. STATA 14 was used to analyze the data taking into consideration the design, strata and weight. Of the 1028 participants, 44% were male and 85% were white. The mean age was 70.0±0.28 (SE) years. Their average HOMA-IR was 3.6±0.14 and they had a mean of 49.2±0.8 correct DSS score in the cognitive test. Adjusting for the confounding variables, HOMA-IR was associated with decline in DSS score (B=-0.30, 95% confidence interval=-0.54 and -0.05, p=0.01). The model explained 44% of the variability of the DSS score (R 2 =0.44). Significant predictors of decline in DSS score were age, gender, race, and education (p=0.01). Insulin resistance as measured by HOMA-IR was independently associated with lower cognitive test performance score among elderly participants aged ≥60years. Longitudinal studies are needed to test the mechanism and the causal relationship. Copyright © 2017. Published by Elsevier B.V.

  12. Multitasking TORT under UNICOS: Parallel performance models and measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnett, A.; Azmy, Y.Y.

    1999-09-27

    The existing parallel algorithms in the TORT discrete ordinates code were updated to function in a UNICOS environment. A performance model for the parallel overhead was derived for the existing algorithms. The largest contributors to the parallel overhead were identified and a new algorithm was developed. A parallel overhead model was also derived for the new algorithm. The results of the comparison of parallel performance models were compared to applications of the code to two TORT standard test problems and a large production problem. The parallel performance models agree well with the measured parallel overhead.

  13. Multitasking TORT Under UNICOS: Parallel Performance Models and Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azmy, Y.Y.; Barnett, D.A.

    1999-09-27

    The existing parallel algorithms in the TORT discrete ordinates were updated to function in a UNI-COS environment. A performance model for the parallel overhead was derived for the existing algorithms. The largest contributors to the parallel overhead were identified and a new algorithm was developed. A parallel overhead model was also derived for the new algorithm. The results of the comparison of parallel performance models were compared to applications of the code to two TORT standard test problems and a large production problem. The parallel performance models agree well with the measured parallel overhead.

  14. Analysis and correlation of the test data from an advanced technology rotor system

    NASA Technical Reports Server (NTRS)

    Jepson, D.; Moffitt, R.; Hilzinger, K.; Bissell, J.

    1983-01-01

    Comparisons were made of the performance and blade vibratory loads characteristics for an advanced rotor system as predicted by analysis and as measured in a 1/5 scale model wind tunnel test, a full scale model wind tunnel test and flight test. The accuracy with which the various tools available at the various stages in the design/development process (analysis, model test etc.) could predict final characteristics as measured on the aircraft was determined. The accuracy of the analyses in predicting the effects of systematic tip planform variations investigated in the full scale wind tunnel test was evaluated.

  15. In-silico wear prediction for knee replacements--methodology and corroboration.

    PubMed

    Strickland, M A; Taylor, M

    2009-07-22

    The capability to predict in-vivo wear of knee replacements is a valuable pre-clinical analysis tool for implant designers. Traditionally, time-consuming experimental tests provided the principal means of investigating wear. Today, computational models offer an alternative. However, the validity of these models has not been demonstrated across a range of designs and test conditions, and several different formulas are in contention for estimating wear rates, limiting confidence in the predictive power of these in-silico models. This study collates and retrospectively simulates a wide range of experimental wear tests using fast rigid-body computational models with extant wear prediction algorithms, to assess the performance of current in-silico wear prediction tools. The number of tests corroborated gives a broader, more general assessment of the performance of these wear-prediction tools, and provides better estimates of the wear 'constants' used in computational models. High-speed rigid-body modelling allows a range of alternative algorithms to be evaluated. Whilst most cross-shear (CS)-based models perform comparably, the 'A/A+B' wear model appears to offer the best predictive power amongst existing wear algorithms. However, the range and variability of experimental data leaves considerable uncertainty in the results. More experimental data with reduced variability and more detailed reporting of studies will be necessary to corroborate these models with greater confidence. With simulation times reduced to only a few minutes, these models are ideally suited to large-volume 'design of experiment' or probabilistic studies (which are essential if pre-clinical assessment tools are to begin addressing the degree of variation observed clinically and in explanted components).

  16. A Multi-Institutional Prospective Trial Confirms Noninvasive Blood Test Maintains Predictive Value in African American Men.

    PubMed

    Punnen, Sanoj; Freedland, Stephen J; Polascik, Thomas J; Loeb, Stacy; Risk, Michael C; Savage, Stephen; Mathur, Sharad C; Uchio, Edward; Dong, Yan; Silberstein, Jonathan L

    2018-06-01

    The 4Kscore® test accurately detects aggressive prostate cancer and reduces unnecessary biopsies. However, its performance in African American men has been unknown. We assessed test performance in a cohort of men with a large African American representation. Men referred for prostate biopsy at 8 Veterans Affairs medical centers were prospectively enrolled in the study. All men underwent phlebotomy for 4Kscore test assessment prior to prostate biopsy. The primary outcome was the detection of Grade Group 2 or higher cancer on biopsy. We assessed the discrimination, calibration and clinical usefulness of 4Kscore to predict Grade Group 2 or higher prostate cancer and compared it to a base model consisting of age, digital rectal examination and prostate specific antigen. Additionally, we compared test performance in African American and nonAfrican American men. Of the 366 enrolled men 205 (56%) were African American and 131 (36%) had Grade Group 2 or higher prostate cancer. The 4Kscore test showed better discrimination (AUC 0.81 vs 0.74, p <0.01) and higher clinical usefulness on decision curve analysis than the base model. Test prediction closely approximated the observed risk of Grade Group 2 or higher prostate cancer. There was no difference in test performance in African American and nonAfrican American men (0.80 vs 0.84, p = 0.32), The test outperformed the base model in each group. The 4Kscore test accurately predicts aggressive prostate cancer for biopsy decision making in African American and nonAfrican American men. Copyright © 2018 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  17. Computer program for Stirling engine performance calculations

    NASA Technical Reports Server (NTRS)

    Tew, R. C., Jr.

    1983-01-01

    The thermodynamic characteristics of the Stirling engine were analyzed and modeled on a computer to support its development as a possible alternative to the automobile spark ignition engine. The computer model is documented. The documentation includes a user's manual, symbols list, a test case, comparison of model predictions with test results, and a description of the analytical equations used in the model.

  18. Performance validation of the ANSER control laws for the F-18 HARV

    NASA Technical Reports Server (NTRS)

    Messina, Michael D.

    1995-01-01

    The ANSER control laws were implemented in Ada by NASA Dryden for flight test on the High Alpha Research Vehicle (HARV). The Ada implementation was tested in the hardware-in-the-loop (HIL) simulation, and results were compared to those obtained with the NASA Langley batch Fortran implementation of the control laws which are considered the 'truth model.' This report documents the performance validation test results between these implementations. This report contains the ANSER performance validation test plan, HIL versus batch time-history comparisons, simulation scripts used to generate checkcases, and detailed analysis of discrepancies discovered during testing.

  19. Performance validation of the ANSER Control Laws for the F-18 HARV

    NASA Technical Reports Server (NTRS)

    Messina, Michael D.

    1995-01-01

    The ANSER control laws were implemented in Ada by NASA Dryden for flight test on the High Alpha Research Vehicle (HARV). The Ada implementation was tested in the hardware-in-the-loop (HIL) simulation, and results were compared to those obtained with the NASA Langley batch Fortran implementation of the control laws which are considered the 'truth model'. This report documents the performance validation test results between these implementations. This report contains the ANSER performance validation test plan, HIL versus batch time-history comparisons, simulation scripts used to generate checkcases, and detailed analysis of discrepancies discovered during testing.

  20. Correlation Results for a Mass Loaded Vehicle Panel Test Article Finite Element Models and Modal Survey Tests

    NASA Technical Reports Server (NTRS)

    Maasha, Rumaasha; Towner, Robert L.

    2012-01-01

    High-fidelity Finite Element Models (FEMs) were developed to support a recent test program at Marshall Space Flight Center (MSFC). The FEMs correspond to test articles used for a series of acoustic tests. Modal survey tests were used to validate the FEMs for five acoustic tests (a bare panel and four different mass-loaded panel configurations). An additional modal survey test was performed on the empty test fixture (orthogrid panel mounting fixture, between the reverb and anechoic chambers). Modal survey tests were used to test-validate the dynamic characteristics of FEMs used for acoustic test excitation. Modal survey testing and subsequent model correlation has validated the natural frequencies and mode shapes of the FEMs. The modal survey test results provide a basis for the analysis models used for acoustic loading response test and analysis comparisons

  1. Research in Satellite-Fiber Network Interoperability

    NASA Technical Reports Server (NTRS)

    Edelson, Burt

    1997-01-01

    This four part report evaluated the performance of high data rate transmission links using the ACTS satellite, and to provide a preparatory test framework for two of the space science applications that have been approved for tests and demonstrations as part of the overall ACTS program. The test plan will provide guidance and information necessary to find the optimal values of the transmission parameters and then apply these parameters to specific applications. The first part will focus on the satellite-to-earth link. The second part is a set of tests to study the performance of ATM on the ACTS channel. The third and fourth parts of the test plan will cover the space science applications, Global Climate Modeling and Keck Telescope Acquisition Modeling and Control.

  2. The extension of the thermal-vacuum test optimization program to multiple flights

    NASA Technical Reports Server (NTRS)

    Williams, R. E.; Byrd, J.

    1981-01-01

    The thermal vacuum test optimization model developed to provide an approach to the optimization of a test program based on prediction of flight performance with a single flight option in mind is extended to consider reflight as in space shuttle missions. The concept of 'utility', developed under the name of 'availability', is used to follow performance through the various options encountered when the capabilities of reflight and retrievability of space shuttle are available. Also, a 'lost value' model is modified to produce a measure of the probability of a mission's success, achieving a desired utility using a minimal cost test strategy. The resulting matrix of probabilities and their associated costs provides a means for project management to evaluate various test and reflight strategies.

  3. Predicting University Performance in Psychology: The Role of Previous Performance and Discipline-Specific Knowledge

    ERIC Educational Resources Information Center

    Betts, Lucy R.; Elder, Tracey J.; Hartley, James; Blurton, Anthony

    2008-01-01

    Recent initiatives to enhance retention and widen participation ensure it is crucial to understand the factors that predict students' performance during their undergraduate degree. The present research used Structural Equation Modeling (SEM) to test three separate models that examined the extent to which British Psychology students' A-level entry…

  4. Performance-Based Service Quality Model: An Empirical Study on Japanese Universities

    ERIC Educational Resources Information Center

    Sultan, Parves; Wong, Ho

    2010-01-01

    Purpose: This paper aims to develop and empirically test the performance-based higher education service quality model. Design/methodology/approach: The study develops 67-item instrument for measuring performance-based service quality with a particular focus on the higher education sector. Scale reliability is confirmed using the Cronbach's alpha.…

  5. Preoperative prediction of inpatient recovery of function after total hip arthroplasty using performance-based tests: a prospective cohort study.

    PubMed

    Oosting, Ellen; Hoogeboom, Thomas J; Appelman-de Vries, Suzan A; Swets, Adam; Dronkers, Jaap J; van Meeteren, Nico L U

    2016-01-01

    The aim of this study was to evaluate the value of conventional factors, the Risk Assessment and Predictor Tool (RAPT) and performance-based functional tests as predictors of delayed recovery after total hip arthroplasty (THA). A prospective cohort study in a regional hospital in the Netherlands with 315 patients was attending for THA in 2012. The dependent variable recovery of function was assessed with the Modified Iowa Levels of Assistance scale. Delayed recovery was defined as taking more than 3 days to walk independently. Independent variables were age, sex, BMI, Charnley score, RAPT score and scores for four performance-based tests [2-minute walk test, timed up and go test (TUG), 10-meter walking test (10 mW) and hand grip strength]. Regression analysis with all variables identified older age (>70 years), Charnley score C, slow walking speed (10 mW >10.0 s) and poor functional mobility (TUG >10.5 s) as the best predictors of delayed recovery of function. This model (AUC 0.85, 95% CI 0.79-0.91) performed better than a model with conventional factors and RAPT scores, and significantly better (p = 0.04) than a model with only conventional factors (AUC 0.81, 95% CI 0.74-0.87). The combination of performance-based tests and conventional factors predicted inpatient functional recovery after THA. Two simple functional performance-based tests have a significant added value to a more conventional screening with age and comorbidities to predict recovery of functioning immediately after total hip surgery. Patients over 70 years old, with comorbidities, with a TUG score >10.5 s and a walking speed >1.0 m/s are at risk for delayed recovery of functioning. Those high risk patients need an accurate discharge plan and could benefit from targeted pre- and postoperative therapeutic exercise programs.

  6. Redundancy management of electrohydraulic servoactuators by mathematical model referencing

    NASA Technical Reports Server (NTRS)

    Campbell, R. A.

    1971-01-01

    A description of a mathematical model reference system is presented which provides redundancy management for an electrohydraulic servoactuator. The mathematical model includes a compensation network that calculates reference parameter perturbations induced by external disturbance forces. This is accomplished by using the measured pressure differential data taken from the physical system. This technique was experimentally verified by tests performed using the H-1 engine thrust vector control system for Saturn IB. The results of these tests are included in this report. It was concluded that this technique improves the tracking accuracy of the model reference system to the extent that redundancy management of electrohydraulic servosystems may be performed using this method.

  7. Characterizing and modeling the free recovery and constrained recovery behavior of a polyurethane shape memory polymer

    PubMed Central

    Volk, Brent L; Lagoudas, Dimitris C; Maitland, Duncan J

    2011-01-01

    In this work, tensile tests and one-dimensional constitutive modeling are performed on a high recovery force polyurethane shape memory polymer that is being considered for biomedical applications. The tensile tests investigate the free recovery (zero load) response as well as the constrained displacement recovery (stress recovery) response at extension values up to 25%, and two consecutive cycles are performed during each test. The material is observed to recover 100% of the applied deformation when heated at zero load in the second thermomechanical cycle, and a stress recovery of 1.5 MPa to 4.2 MPa is observed for the constrained displacement recovery experiments. After performing the experiments, the Chen and Lagoudas model is used to simulate and predict the experimental results. The material properties used in the constitutive model – namely the coefficients of thermal expansion, shear moduli, and frozen volume fraction – are calibrated from a single 10% extension free recovery experiment. The model is then used to predict the material response for the remaining free recovery and constrained displacement recovery experiments. The model predictions match well with the experimental data. PMID:22003272

  8. The psychoacoustics of musical articulation

    NASA Astrophysics Data System (ADS)

    Spiegelberg, Scott Charles

    This dissertation develops psychoacoustical definitions of notated articulations, the necessary first step in articulation research. This research can be useful to theorists interested in timbre analysis, the psychology of performance, analysis and performance, the psychology of style differentiation, and performance pedagogy. An explanation of wavelet transforms precedes the development of new techniques for analyzing transient sounds. A history of timbre perception research reveals the inadequacies of current sound segmentation models, resulting in the creation of a new model, the Pitch/Amplitude/Centroid Trajectory (PACT) model of sound segmentation. The new analysis techniques and PACT model are used to analyze recordings of performers playing a melodic fragment in a series of notated articulations. Statistical tests showed that the performers generally agreed on the interpretation of five different articulation groups. A cognitive test of articulation similarity, using musicians and non-musicians as participants, revealed a close correlation between similarity judgments and physical attributes, though additional unknown factors are clearly present. A second psychological test explored the perceptual salience of articulation notation, by asking musically-trained participants to match stimuli to the same notations the performers used. The participants also marked verbal descriptors for each articulation, such as short/long, sharp/dull, loud/soft, harsh/gentle, and normal/extreme. These results were matched against the results of Chapters Five and Six, providing an overall interpretation of the psychoacoustics of articulation.

  9. Variability-aware compact modeling and statistical circuit validation on SRAM test array

    NASA Astrophysics Data System (ADS)

    Qiao, Ying; Spanos, Costas J.

    2016-03-01

    Variability modeling at the compact transistor model level can enable statistically optimized designs in view of limitations imposed by the fabrication technology. In this work we propose a variability-aware compact model characterization methodology based on stepwise parameter selection. Transistor I-V measurements are obtained from bit transistor accessible SRAM test array fabricated using a collaborating foundry's 28nm FDSOI technology. Our in-house customized Monte Carlo simulation bench can incorporate these statistical compact models; and simulation results on SRAM writability performance are very close to measurements in distribution estimation. Our proposed statistical compact model parameter extraction methodology also has the potential of predicting non-Gaussian behavior in statistical circuit performances through mixtures of Gaussian distributions.

  10. Fundamental Properties of Soils for Complex Dynamic Loadings: Dynamic Constitutive Modeling of Sandy Soils.

    DTIC Science & Technology

    1983-04-01

    1.0 INTRODUCTION AND SCOPE 1 2.0 PROGRESS SUMMARY 3 2.1 Soil Element Model Development 3 2.2 U.S. Any Engineer Waterways Experiment Station (WES...LABORATORY BEHAVIOR OF SAND 8 3.1 Introduction 8 3.2 Material Description 8 3.3 Laboratory Tests Performed 9 3.4 Laboratory Test Results 14 4.0 MODELING THE... INTRODUCTION AND SCOPE The subject of this annual report is constitutive modeling of cohesionless soil, for both laboratory standard static test conditions

  11. Impact of high-performance work systems on individual- and branch-level performance: test of a multilevel model of intermediate linkages.

    PubMed

    Aryee, Samuel; Walumbwa, Fred O; Seidu, Emmanuel Y M; Otaye, Lilian E

    2012-03-01

    We proposed and tested a multilevel model, underpinned by empowerment theory, that examines the processes linking high-performance work systems (HPWS) and performance outcomes at the individual and organizational levels of analyses. Data were obtained from 37 branches of 2 banking institutions in Ghana. Results of hierarchical regression analysis revealed that branch-level HPWS relates to empowerment climate. Additionally, results of hierarchical linear modeling that examined the hypothesized cross-level relationships revealed 3 salient findings. First, experienced HPWS and empowerment climate partially mediate the influence of branch-level HPWS on psychological empowerment. Second, psychological empowerment partially mediates the influence of empowerment climate and experienced HPWS on service performance. Third, service orientation moderates the psychological empowerment-service performance relationship such that the relationship is stronger for those high rather than low in service orientation. Last, ordinary least squares regression results revealed that branch-level HPWS influences branch-level market performance through cross-level and individual-level influences on service performance that emerges at the branch level as aggregated service performance.

  12. Choice of regularization in adjoint tomography based on two-dimensional synthetic tests

    NASA Astrophysics Data System (ADS)

    Valentová, Lubica; Gallovič, František; Růžek, Bohuslav; de la Puente, Josep; Moczo, Peter

    2015-08-01

    We present synthetic tests of 2-D adjoint tomography of surface wave traveltimes obtained by the ambient noise cross-correlation analysis across the Czech Republic. The data coverage may be considered perfect for tomography due to the density of the station distribution. Nevertheless, artefacts in the inferred velocity models arising from the data noise may be still observed when weak regularization (Gaussian smoothing of the misfit gradient) or too many iterations are considered. To examine the effect of the regularization and iteration number on the performance of the tomography in more detail we performed extensive synthetic tests. Instead of the typically used (although criticized) checkerboard test, we propose to carry out the tests with two different target models-simple smooth and complex realistic models. The first test reveals the sensitivity of the result on the data noise, while the second helps to analyse the resolving power of the data set. For various noise and Gaussian smoothing levels, we analysed the convergence towards (or divergence from) the target model with increasing number of iterations. Based on the tests we identified the optimal regularization, which we then employed in the inversion of 16 and 20 s Love-wave group traveltimes.

  13. Shuttle antenna radome technology test program. Volume 2: Development of S-band antenna interface design

    NASA Technical Reports Server (NTRS)

    Kuhlman, E. A.; Baranowski, L. C.

    1977-01-01

    The effects of the Thermal Protection Subsystem (TPS) contamination on the space shuttle orbiter S band quad antenna due to multiple mission buildup are discussed. A test fixture was designed, fabricated and exposed to ten cycles of simulated ground and flight environments. Radiation pattern and impedance tests were performed to measure the effects of the contaminates. The degradation in antenna performance was attributed to the silicone waterproofing in the TPS tiles rather than exposure to the contaminating sources used in the test program. Validation of the accuracy of an analytical thermal model is discussed. Thermal vacuum tests with a test fixture and a representative S band quad antenna were conducted to evaluate the predictions of the analytical thermal model for two orbital heating conditions and entry from each orbit. The results show that the accuracy of predicting the test fixture thermal responses is largely dependent on the ability to define the boundary and ambient conditions. When the test conditions were accurately included in the analytical model, the predictions were in excellent agreement with measurements.

  14. Successful completion of a cyclic ground test of a mercury ion auxiliary propulsion system

    NASA Technical Reports Server (NTRS)

    Francisco, David R.; Low, Charles A., Jr.; Power, John L.

    1988-01-01

    An engineering model Ion Auxiliary Propulsion System (IAPS) 8-cm thruster (S/N 905) has completed a life test at NASA Lewis Research Center. The mercury ion thruster successfully completed and exceeded the test goals of 2557 on/off cycles and 7057 hr of operation at full thrust. The final 1200 cycles and 3600 hr of the life test were conducted using an engineering model of the IAPS power electronics unit (PEU) and breadboard digital controller and interface unit (DCIU). This portion of the test is described in this paper with a charted history of thruster operating parameters and off-normal events. Performance and operating characteristics were constant throughout the test with only minor variations. The engineering model power electronics unit operated without malfunction; the flight software in the digital controller and interface unit was exercised and verified. Post-test inspection of the thruster revealed facility enhanced accelerator grid erosion but overall the thruster was in good condition. It was concluded that the thruster performance was not drastically degraded by time or cycles. Additional cyclic testing is currently under consideration.

  15. Successful completion of a cyclic ground test of a mercury Ion Auxiliary Propulsion System

    NASA Technical Reports Server (NTRS)

    Francisco, David R.; Low, Charles A., Jr.; Power, John L.

    1988-01-01

    An engineering model Ion Auxiliary Propulsion System (IAPS) 8-cm thruster (S/N 905) has completed a life test at NASA Lewis Research Center. The mercury ion thruster successfully completed and exceeded the test goals of 2557 on/off cycles and 7057 hr of operation at full thrust. The final 1200 cycles and 3600 hr of the life test were conducted using an engineering model of the IAPS power electronics unit (PEU) and breadboard digital controller and interface unit (DCIU). This portion of the test is described in this paper with a charted history of thruster operating parameters and off-normal events. Performance and operating characteristics were constant throughout the test with only minor variations. The engineering model power electronics unit operated without malfunction; the flight software in the digital controller and interface unit was exercised and verified. Post-test inspection of the thruster revealed facility enhanced accelerator grid erosion but overall the thruster was in good condition. It was concluded that the thruster performance was not drastically degraded by time or cycles. Additional cyclic testing is currently under consideration.

  16. Digital imaging and remote sensing image generator (DIRSIG) as applied to NVESD sensor performance modeling

    NASA Astrophysics Data System (ADS)

    Kolb, Kimberly E.; Choi, Hee-sue S.; Kaur, Balvinder; Olson, Jeffrey T.; Hill, Clayton F.; Hutchinson, James A.

    2016-05-01

    The US Army's Communications Electronics Research, Development and Engineering Center (CERDEC) Night Vision and Electronic Sensors Directorate (referred to as NVESD) is developing a virtual detection, recognition, and identification (DRI) testing methodology using simulated imagery as a means of augmenting the field testing component of sensor performance evaluation, which is expensive, resource intensive, time consuming, and limited to the available target(s) and existing atmospheric visibility and environmental conditions at the time of testing. Existing simulation capabilities such as the Digital Imaging Remote Sensing Image Generator (DIRSIG) and NVESD's Integrated Performance Model Image Generator (NVIPM-IG) can be combined with existing detection algorithms to reduce cost/time, minimize testing risk, and allow virtual/simulated testing using full spectral and thermal object signatures, as well as those collected in the field. NVESD has developed an end-to-end capability to demonstrate the feasibility of this approach. Simple detection algorithms have been used on the degraded images generated by NVIPM-IG to determine the relative performance of the algorithms on both DIRSIG-simulated and collected images. Evaluating the degree to which the algorithm performance agrees between simulated versus field collected imagery is the first step in validating the simulated imagery procedure.

  17. Revel8or: Model Driven Capacity Planning Tool Suite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Liming; Liu, Yan; Bui, Ngoc B.

    2007-05-31

    Designing complex multi-tier applications that must meet strict performance requirements is a challenging software engineering problem. Ideally, the application architect could derive accurate performance predictions early in the project life-cycle, leveraging initial application design-level models and a description of the target software and hardware platforms. To this end, we have developed a capacity planning tool suite for component-based applications, called Revel8tor. The tool adheres to the model driven development paradigm and supports benchmarking and performance prediction for J2EE, .Net and Web services platforms. The suite is composed of three different tools: MDAPerf, MDABench and DSLBench. MDAPerf allows annotation of designmore » diagrams and derives performance analysis models. MDABench allows a customized benchmark application to be modeled in the UML 2.0 Testing Profile and automatically generates a deployable application, with measurement automatically conducted. DSLBench allows the same benchmark modeling and generation to be conducted using a simple performance engineering Domain Specific Language (DSL) in Microsoft Visual Studio. DSLBench integrates with Visual Studio and reuses its load testing infrastructure. Together, the tool suite can assist capacity planning across platforms in an automated fashion.« less

  18. Parametric analysis of ATM solar array.

    NASA Technical Reports Server (NTRS)

    Singh, B. K.; Adkisson, W. B.

    1973-01-01

    The paper discusses the methods used for the calculation of ATM solar array performance characteristics and provides the parametric analysis of solar panels used in SKYLAB. To predict the solar array performance under conditions other than test conditions, a mathematical model has been developed. Four computer programs have been used to convert the solar simulator test data to the parametric curves. The first performs module summations, the second determines average solar cell characteristics which will cause a mathematical model to generate a curve matching the test data, the third is a polynomial fit program which determines the polynomial equations for the solar cell characteristics versus temperature, and the fourth program uses the polynomial coefficients generated by the polynomial curve fit program to generate the parametric data.

  19. Thermal and Fluid Modeling of the CRYogenic Orbital TEstbed (CRYOTE) Ground Test Article (GTA)

    NASA Technical Reports Server (NTRS)

    Piryk, David; Schallhorn, Paul; Walls, Laurie; Stopnitzky, Benny; Rhys, Noah; Wollen, Mark

    2012-01-01

    The purpose of this study was to anchor thermal and fluid system models to data acquired from a ground test article (GTA) for the CRYogenic Orbital TEstbed - CRYOTE. To accomplish this analysis, it was broken into four primary tasks. These included model development, pre-test predictions, testing support at Marshall Space Flight Center (MSFC} and post-test correlations. Information from MSFC facilitated the task of refining and correlating the initial models. The primary goal of the modeling/testing/correlating efforts was to characterize heat loads throughout the ground test article. Significant factors impacting the heat loads included radiative environments, multi-layer insulation (MLI) performance, tank fill levels, tank pressures, and even contact conductance coefficients. This paper demonstrates how analytical thermal/fluid networks were established, and it includes supporting rationale for specific thermal responses seen during testing.

  20. Interactive Schematic Integration Within the Propellant System Modeling Environment

    NASA Technical Reports Server (NTRS)

    Coote, David; Ryan, Harry; Burton, Kenneth; McKinney, Lee; Woodman, Don

    2012-01-01

    Task requirements for rocket propulsion test preparations of the test stand facilities drive the need to model the test facility propellant systems prior to constructing physical modifications. The Propellant System Modeling Environment (PSME) is an initiative designed to enable increased efficiency and expanded capabilities to a broader base of NASA engineers in the use of modeling and simulation (M&S) technologies for rocket propulsion test and launch mission requirements. PSME will enable a wider scope of users to utilize M&S of propulsion test and launch facilities for predictive and post-analysis functionality by offering a clean, easy-to-use, high-performance application environment.

  1. LVQ and backpropagation neural networks applied to NASA SSME data

    NASA Technical Reports Server (NTRS)

    Doniere, Timothy F.; Dhawan, Atam P.

    1993-01-01

    Feedfoward neural networks with backpropagation learning have been used as function approximators for modeling the space shuttle main engine (SSME) sensor signals. The modeling of these sensor signals is aimed at the development of a sensor fault detection system that can be used during ground test firings. The generalization capability of a neural network based function approximator depends on the training vectors which in this application may be derived from a number of SSME ground test-firings. This yields a large number of training vectors. Large training sets can cause the time required to train the network to be very large. Also, the network may not be able to generalize for large training sets. To reduce the size of the training sets, the SSME test-firing data is reduced using the learning vector quantization (LVQ) based technique. Different compression ratios were used to obtain compressed data in training the neural network model. The performance of the neural model trained using reduced sets of training patterns is presented and compared with the performance of the model trained using complete data. The LVQ can also be used as a function approximator. The performance of the LVQ as a function approximator using reduced training sets is presented and compared with the performance of the backpropagation network.

  2. Heat Loss Testing of Schott's 2008 PTR70 Parabolic Trough Receiver

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burkholder, Frank; Kutscher, Chuck

    2009-05-01

    Two Schott 2008 model year PTR70 HCEs were tested on NREL's heat loss test stand from 100 - 500 deg C in 50 deg C increments. Absorber emittance was determined from the laboratory testing so that the performance of the HCEs could be modeled in a parabolic trough collector. Collector/HCE simulation results for many different field operation conditions were used to create heat loss correlationcoefficients for Excelergy and SAM. SAM estimates that the decreased emittance of the 2008 PTR70 will decrease the LCOE for parabolic trough power plants by 0.5 cents/kWh and increase the electricity generated by 5% relative tomore » previous PTR70s. These conclusions assume that the 2008 PTR70 is supplied at the same cost and with the same optical performance as earlier PTR70 models.« less

  3. Viking Mars lander 1975 dynamic test model/orbiter developmental test model forced vibration test

    NASA Technical Reports Server (NTRS)

    Fortenberry, J.; Brownlee, G. R.

    1974-01-01

    The Viking Mars Lander 1975 dynamic test model and orbiter developmental test model were subjected to forced vibration sine tests. Flight acceptance (FA) and type approval (TA) test levels were applied to the spacecraft structure in a longitudinal test configuration using a 133,440-N (30,000-lb) force shaker. Testing in the two lateral axes (X, Y) was performed at lower levels using four 667-N (150-lb) force shakers. Forced vibration qualification (TA) test levels were successfully imposed on the spacecraft at frequencies down to 10 Hz. Measured responses showed the same character as analytical predictions, and correlation was reasonably good. Because of control system test tolerances, orbiter primary structure generally did not reach the design load limits attained in earlier static testing. A post-test examination of critical orbiter structure disclosed no apparent damage to the structure as a result of the test environment.

  4. Explaining high and low performers in complex intervention trials: a new model based on diffusion of innovations theory.

    PubMed

    McMullen, Heather; Griffiths, Chris; Leber, Werner; Greenhalgh, Trisha

    2015-05-31

    Complex intervention trials may require health care organisations to implement new service models. In a recent cluster randomised controlled trial, some participating organisations achieved high recruitment, whereas others found it difficult to assimilate the intervention and were low recruiters. We sought to explain this variation and develop a model to inform organisational participation in future complex intervention trials. The trial included 40 general practices in a London borough with high HIV prevalence. The intervention was offering a rapid HIV test as part of the New Patient Health Check. The primary outcome was mean CD4 cell count at diagnosis. The process evaluation consisted of several hundred hours of ethnographic observation, 21 semi-structured interviews and analysis of routine documents (e.g., patient leaflets, clinical protocols) and trial documents (e.g., inclusion criteria, recruitment statistics). Qualitative data were analysed thematically using--and, where necessary, extending--Greenhalgh et al.'s model of diffusion of innovations. Narrative synthesis was used to prepare case studies of four practices representing maximum variety in clinicians' interest in HIV (assessed by level of serological testing prior to the trial) and performance in the trial (high vs. low recruiters). High-recruiting practices were, in general though not invariably, also innovative practices. They were characterised by strong leadership, good managerial relations, readiness for change, a culture of staff training and available staff time ('slack resources'). Their front-line staff believed that patients might benefit from the rapid HIV test ('relative advantage'), were emotionally comfortable administering it ('compatibility'), skilled in performing it ('task issues') and made creative adaptations to embed the test in local working practices ('reinvention'). Early experience of a positive HIV test ('observability') appeared to reinforce staff commitment to recruiting more participants. Low-performing practices typically had less good managerial relations, significant resource constraints, staff discomfort with the test and no positive results early in the trial. An adaptation of the diffusion of innovations model was an effective analytical tool for retrospectively explaining high and low-performing practices in a complex intervention research trial. Whether the model will work prospectively to predict performance (and hence shape the design of future trials) is unknown. ISRCTN Registry number: ISRCTN63473710. Date assigned: 22 April 2010.

  5. Cable testing for Fermilab's high field magnets using small racetrack coils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feher, S.; Ambrosio, G.; Andreev, N.

    As part of the High Field Magnet program at Fermilab simple magnets have been designed utilizing small racetrack coils based on a sound mechanical structure and bladder technique developed by LBNL. Two of these magnets have been built in order to test Nb{sub 3}Sn cables used in cos-theta dipole models. The powder-in-tube strand based cable exhibited excellent performance. It reached its critical current limit within 14 quenches. Modified jelly roll strand based cable performance was limited by magnetic instabilities at low fields as previously tested dipole models which used similar cable.

  6. A stochastic visco-hyperelastic model of human placenta tissue for finite element crash simulations.

    PubMed

    Hu, Jingwen; Klinich, Kathleen D; Miller, Carl S; Rupp, Jonathan D; Nazmi, Giseli; Pearlman, Mark D; Schneider, Lawrence W

    2011-03-01

    Placental abruption is the most common cause of fetal deaths in motor-vehicle crashes, but studies on the mechanical properties of human placenta are rare. This study presents a new method of developing a stochastic visco-hyperelastic material model of human placenta tissue using a combination of uniaxial tensile testing, specimen-specific finite element (FE) modeling, and stochastic optimization techniques. In our previous study, uniaxial tensile tests of 21 placenta specimens have been performed using a strain rate of 12/s. In this study, additional uniaxial tensile tests were performed using strain rates of 1/s and 0.1/s on 25 placenta specimens. Response corridors for the three loading rates were developed based on the normalized data achieved by test reconstructions of each specimen using specimen-specific FE models. Material parameters of a visco-hyperelastic model and their associated standard deviations were tuned to match both the means and standard deviations of all three response corridors using a stochastic optimization method. The results show a very good agreement between the tested and simulated response corridors, indicating that stochastic analysis can improve estimation of variability in material model parameters. The proposed method can be applied to develop stochastic material models of other biological soft tissues.

  7. Two-IMU FDI performance of the sequential probability ratio test during shuttle entry

    NASA Technical Reports Server (NTRS)

    Rich, T. M.

    1976-01-01

    Performance data for the sequential probability ratio test (SPRT) during shuttle entry are presented. Current modeling constants and failure thresholds are included for the full mission 3B from entry through landing trajectory. Minimum 100 percent detection/isolation failure levels and a discussion of the effects of failure direction are presented. Finally, a limited comparison of failures introduced at trajectory initiation shows that the SPRT algorithm performs slightly worse than the data tracking test.

  8. An Allometric Modelling Approach to Identify the Optimal Body Shape Associated with, and Differences between Brazilian and Peruvian Youth Motor Performance

    PubMed Central

    Silva, Simonete; Bustamante, Alcibíades; Nevill, Alan; Katzmarzyk, Peter T.; Freitas, Duarte; Prista, António; Maia, José

    2016-01-01

    Children from developed and developing countries differ in their body size and shape due to marked differences across their life history caused by social, economic and cultural differences which are also linked to their motor performance (MP). We used allometric models to identify size/shape characteristics associated with MP tests between Brazilian and Peruvian schoolchildren. A total of 4,560 subjects, 2,385 girls and 2,175 boys aged 9–15 years were studied. Height and weight were measured; biological maturation was estimated with the maturity offset technique; MP measures included the 12 minute run (12MR), handgrip strength (HG), standing long jump (SLJ) and the shuttle run speed (SR) tests; physical activity (PA) was assessed using the Baecke questionnaire. A multiplicative allometric model was adopted to adjust for body size differences across countries. Reciprocal ponderal index (RPI) was found to be the most suitable body shape indicator associated with the 12MR, SLJ, HG and SR performance. A positive maturation offset parameter was also associated with a better performance in SLJ, HG and SR tests. Sex differences were found in all motor tests. Brazilian youth showed better scores in MP than their Peruvian peers, even when controlling for their body size differences The current study identified the key body size associated with four body mass-dependent MP tests. Biological maturation and PA were associated with strength and motor performance. Sex differences were found in all motor tests, as well as across countries favoring Brazilian children even when accounting for their body size/shape differences. PMID:26939118

  9. An Allometric Modelling Approach to Identify the Optimal Body Shape Associated with, and Differences between Brazilian and Peruvian Youth Motor Performance.

    PubMed

    Silva, Simonete; Bustamante, Alcibíades; Nevill, Alan; Katzmarzyk, Peter T; Freitas, Duarte; Prista, António; Maia, José

    2016-01-01

    Children from developed and developing countries differ in their body size and shape due to marked differences across their life history caused by social, economic and cultural differences which are also linked to their motor performance (MP). We used allometric models to identify size/shape characteristics associated with MP tests between Brazilian and Peruvian schoolchildren. A total of 4,560 subjects, 2,385 girls and 2,175 boys aged 9-15 years were studied. Height and weight were measured; biological maturation was estimated with the maturity offset technique; MP measures included the 12 minute run (12MR), handgrip strength (HG), standing long jump (SLJ) and the shuttle run speed (SR) tests; physical activity (PA) was assessed using the Baecke questionnaire. A multiplicative allometric model was adopted to adjust for body size differences across countries. Reciprocal ponderal index (RPI) was found to be the most suitable body shape indicator associated with the 12MR, SLJ, HG and SR performance. A positive maturation offset parameter was also associated with a better performance in SLJ, HG and SR tests. Sex differences were found in all motor tests. Brazilian youth showed better scores in MP than their Peruvian peers, even when controlling for their body size differences The current study identified the key body size associated with four body mass-dependent MP tests. Biological maturation and PA were associated with strength and motor performance. Sex differences were found in all motor tests, as well as across countries favoring Brazilian children even when accounting for their body size/shape differences.

  10. Executive decision-making in the domestic sheep.

    PubMed

    Morton, A Jennifer; Avanzo, Laura

    2011-01-31

    Two new large animal models of Huntington's disease (HD) have been developed recently, an old world monkey (macaque) and a sheep. Macaques, with their large brains and complex repertoire of behaviors are the 'gold-standard' laboratory animals for testing cognitive function, but there are many practical and ethical issues that must be resolved before HD macaques can be used for pre-clinical research. By contrast, despite their comparable brain size, sheep do not enjoy a reputation for intelligence, and are not used for pre-clinical cognitive testing. Given that cognitive decline is a major therapeutic target in HD, the feasibility of testing cognitive function in sheep must be explored if they are to be considered seriously as models of HD. Here we tested the ability of sheep to perform tests of executive function (discrimination learning, reversal learning and attentional set-shifting). Significantly, we found that not only could sheep perform discrimination learning and reversals, but they could also perform the intradimensional (ID) and extradimensional (ED) set-shifting tasks that are sensitive tests of cognitive dysfunction in humans. Their performance on the ID/ED shifts mirrored that seen in humans and macaques, with significantly more errors to reach criterion in the ED than the ID shift. Thus, sheep can perform 'executive' cognitive tasks that are an important part of the primate behavioral repertoire, but which have never been shown previously to exist in any other large animal. Sheep have great potential, not only for use as a large animal model of HD, but also for studying cognitive function and the evolution of complex behaviours in normal animals.

  11. Executive Decision-Making in the Domestic Sheep

    PubMed Central

    Morton, A. Jennifer; Avanzo, Laura

    2011-01-01

    Two new large animal models of Huntington's disease (HD) have been developed recently, an old world monkey (macaque) and a sheep. Macaques, with their large brains and complex repertoire of behaviors are the ‘gold-standard’ laboratory animals for testing cognitive function, but there are many practical and ethical issues that must be resolved before HD macaques can be used for pre-clinical research. By contrast, despite their comparable brain size, sheep do not enjoy a reputation for intelligence, and are not used for pre-clinical cognitive testing. Given that cognitive decline is a major therapeutic target in HD, the feasibility of testing cognitive function in sheep must be explored if they are to be considered seriously as models of HD. Here we tested the ability of sheep to perform tests of executive function (discrimination learning, reversal learning and attentional set-shifting). Significantly, we found that not only could sheep perform discrimination learning and reversals, but they could also perform the intradimensional (ID) and extradimensional (ED) set-shifting tasks that are sensitive tests of cognitive dysfunction in humans. Their performance on the ID/ED shifts mirrored that seen in humans and macaques, with significantly more errors to reach criterion in the ED than the ID shift. Thus, sheep can perform ‘executive’ cognitive tasks that are an important part of the primate behavioral repertoire, but which have never been shown previously to exist in any other large animal. Sheep have great potential, not only for use as a large animal model of HD, but also for studying cognitive function and the evolution of complex behaviours in normal animals. PMID:21305061

  12. Combustor Operability and Performance Verification for HIFiRE Flight 2

    NASA Technical Reports Server (NTRS)

    Storch, Andrea M.; Bynum, Michael; Liu, Jiwen; Gruber, Mark

    2011-01-01

    As part of the Hypersonic International Flight Research Experimentation (HIFiRE) Direct-Connect Rig (HDCR) test and analysis activity, three-dimensional computational fluid dynamics (CFD) simulations were performed using two Reynolds-Averaged Navier Stokes solvers. Measurements obtained from ground testing in the NASA Langley Arc-Heated Scramjet Test Facility (AHSTF) were used to specify inflow conditions for the simulations and combustor data from four representative tests were used as benchmarks. Test cases at simulated flight enthalpies of Mach 5.84, 6.5, 7.5, and 8.0 were analyzed. Modeling parameters (e.g., turbulent Schmidt number and compressibility treatment) were tuned such that the CFD results closely matched the experimental results. The tuned modeling parameters were used to establish a standard practice in HIFiRE combustor analysis. Combustor performance and operating mode were examined and were found to meet or exceed the objectives of the HIFiRE Flight 2 experiment. In addition, the calibrated CFD tools were then applied to make predictions of combustor operation and performance for the flight configuration and to aid in understanding the impacts of ground and flight uncertainties on combustor operation.

  13. Generalized functional linear models for gene-based case-control association studies.

    PubMed

    Fan, Ruzong; Wang, Yifan; Mills, James L; Carter, Tonia C; Lobach, Iryna; Wilson, Alexander F; Bailey-Wilson, Joan E; Weeks, Daniel E; Xiong, Momiao

    2014-11-01

    By using functional data analysis techniques, we developed generalized functional linear models for testing association between a dichotomous trait and multiple genetic variants in a genetic region while adjusting for covariates. Both fixed and mixed effect models are developed and compared. Extensive simulations show that Rao's efficient score tests of the fixed effect models are very conservative since they generate lower type I errors than nominal levels, and global tests of the mixed effect models generate accurate type I errors. Furthermore, we found that the Rao's efficient score test statistics of the fixed effect models have higher power than the sequence kernel association test (SKAT) and its optimal unified version (SKAT-O) in most cases when the causal variants are both rare and common. When the causal variants are all rare (i.e., minor allele frequencies less than 0.03), the Rao's efficient score test statistics and the global tests have similar or slightly lower power than SKAT and SKAT-O. In practice, it is not known whether rare variants or common variants in a gene region are disease related. All we can assume is that a combination of rare and common variants influences disease susceptibility. Thus, the improved performance of our models when the causal variants are both rare and common shows that the proposed models can be very useful in dissecting complex traits. We compare the performance of our methods with SKAT and SKAT-O on real neural tube defects and Hirschsprung's disease datasets. The Rao's efficient score test statistics and the global tests are more sensitive than SKAT and SKAT-O in the real data analysis. Our methods can be used in either gene-disease genome-wide/exome-wide association studies or candidate gene analyses. © 2014 WILEY PERIODICALS, INC.

  14. Generalized Functional Linear Models for Gene-based Case-Control Association Studies

    PubMed Central

    Mills, James L.; Carter, Tonia C.; Lobach, Iryna; Wilson, Alexander F.; Bailey-Wilson, Joan E.; Weeks, Daniel E.; Xiong, Momiao

    2014-01-01

    By using functional data analysis techniques, we developed generalized functional linear models for testing association between a dichotomous trait and multiple genetic variants in a genetic region while adjusting for covariates. Both fixed and mixed effect models are developed and compared. Extensive simulations show that Rao's efficient score tests of the fixed effect models are very conservative since they generate lower type I errors than nominal levels, and global tests of the mixed effect models generate accurate type I errors. Furthermore, we found that the Rao's efficient score test statistics of the fixed effect models have higher power than the sequence kernel association test (SKAT) and its optimal unified version (SKAT-O) in most cases when the causal variants are both rare and common. When the causal variants are all rare (i.e., minor allele frequencies less than 0.03), the Rao's efficient score test statistics and the global tests have similar or slightly lower power than SKAT and SKAT-O. In practice, it is not known whether rare variants or common variants in a gene are disease-related. All we can assume is that a combination of rare and common variants influences disease susceptibility. Thus, the improved performance of our models when the causal variants are both rare and common shows that the proposed models can be very useful in dissecting complex traits. We compare the performance of our methods with SKAT and SKAT-O on real neural tube defects and Hirschsprung's disease data sets. The Rao's efficient score test statistics and the global tests are more sensitive than SKAT and SKAT-O in the real data analysis. Our methods can be used in either gene-disease genome-wide/exome-wide association studies or candidate gene analyses. PMID:25203683

  15. ILS Glide Slope Performance Prediction Multipath Scattering

    DOT National Transportation Integrated Search

    1976-12-01

    A mathematical model has been developed which predicts the performance of ILS glide slope systems subject to multipath scattering and the effects of irregular terrain contours. The model is discussed in detail and then applied to a test case for purp...

  16. Female Mathematicians as Role Models for All Students

    ERIC Educational Resources Information Center

    Wiest, Lynda R.

    2009-01-01

    Girls' and women's dispositions, performance, and participation in mathematics have received significant attention in recent decades. Nevertheless, females still perform below males on the mathematics portion of standardized tests, such as the Scholastic Assessment Test (SAT) (Institute of Education Sciences), and they attain fewer mathematics…

  17. Performance evaluation of NCDOT w-beam guardrails under MASH TL-2 conditions.

    DOT National Transportation Integrated Search

    2013-11-01

    This report summarizes the research efforts of using finite element modeling and simulations to evaluate the performance : of W-beam guardrails for different heights under MASH Test Level 2 (TL-2) and Test Level 3 (TL-3) impact conditions. A : litera...

  18. Work-family enrichment and job performance: a constructive replication of affective events theory.

    PubMed

    Carlson, Dawn; Kacmar, K Michele; Zivnuska, Suzanne; Ferguson, Merideth; Whitten, Dwayne

    2011-07-01

    Based on affective events theory (AET), we hypothesize a four-step model of the mediating mechanisms of positive mood and job satisfaction in the relationship between work-family enrichment and job performance. We test this model for both directions of enrichment (work-to-family and family-to-work). We used two samples to test the model using structural equation modeling. Results from Study 1, which included 240 full-time employees, were replicated in Study 2, which included 189 matched subordinate-supervisor dyads. For the work-to-family direction, results from both samples support our conceptual model and indicate mediation of the enrichment-performance relationship for the work-to-family direction of enrichment. For the family-to-work direction, results from the first sample support our conceptual model but results from the second sample do not. Our findings help elucidate mixed findings in the enrichment and job performance literatures and contribute to an understanding of the mechanisms linking these concepts. We conclude with a discussion of the practical and theoretical implications of our findings.

  19. Finite element analysis of constrained total Condylar Knee Prosthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-07-13

    Exactech, Inc., is a prosthetic joint manufacturer based in Gainesville, FL. The company set the goal of developing a highly effective prosthetic articulation, based on scientific principles, not trial and error. They developed an evolutionary design for a total knee arthroplasty system that promised improved performance. They performed static load tests in the laboratory with similar previous designs, but dynamic laboratory testing was both difficult to perform and prohibitively expensive for a small business to undertake. Laboratory testing also cannot measure stress levels in the interior of the prosthesis where failures are known to initiate. To fully optimize their designsmore » for knee arthroplasty revisions, they needed range-of-motion stress/strain data at interior as well as exterior locations within the prosthesis. LLNL developed computer software (especially NIKE3D) specifically designed to perform stress/strain computations (finite element analysis) for complex geometries in large displacement/large deformation conditions. Additionally, LLNL had developed a high fidelity knee model for other analytical purposes. The analysis desired by Exactech could readily be performed using NIKE3D and a modified version of the high fidelity knee that contained the geometry of the condylar knee components. The LLNL high fidelity knee model was a finite element computer model which would not be transferred to Exactech during the course of this CRADA effort. The previously performed laboratory studies by Exactech were beneficial to LLNL in verifying the analytical capabilities of NIKE3D for human anatomical modeling. This, in turn, gave LLNL further entree to perform work-for-others in the prosthetics field. There were two purposes to the CRADA (1) To modify the LLNL High Fidelity Knee Model to accept the geometry of the Exactech Total Knee; and (2) To perform parametric studies of the possible design options in appropriate ranges of motion so that an optimum design could be selected for production. Because of unanticipated delays in the CRADA funding, the knee design had to be finalized before the analysis could be accomplished. Thus, the scope of work was modified by the industrial partner. It was decided that it would be most beneficial to perform FEA that would closely replicate the lab tests that had been done as the basis of the design. Exactech was responsible for transmitting the component geometries to Livermore, as well as providing complete data from the quasi-static laboratory loading tests that were performed on various designs. LLNL was responsible for defining the basic finite element mesh and carrying out the analysis. We performed the initial computer simulation and verified model integrity, using the laboratory data. After performing the parametric studies, the results were reviewed with Exactech. Also, the results were presented at the Orthopedic Research Society meeting in a poster session.« less

  20. Predictive ability of a comprehensive incremental test in mountain bike marathon.

    PubMed

    Ahrend, Marc-Daniel; Schneeweiss, Patrick; Martus, Peter; Niess, Andreas M; Krauss, Inga

    2018-01-01

    Traditional performance tests in mountain bike marathon (XCM) primarily quantify aerobic metabolism and may not describe the relevant capacities in XCM. We aimed to validate a comprehensive test protocol quantifying its intermittent demands. Forty-nine athletes (38.8±9.1 years; 38 male; 11 female) performed a laboratory performance test, including an incremental test, to determine individual anaerobic threshold (IAT), peak power output (PPO) and three maximal efforts (10 s all-out sprint, 1 min maximal effort and 5 min maximal effort). Within 2 weeks, the athletes participated in one of three XCM races (n=15, n=9 and n=25). Correlations between test variables and race times were calculated separately. In addition, multiple regression models of the predictive value of laboratory outcomes were calculated for race 3 and across all races (z-transformed data). All variables were correlated with race times 1, 2 and 3: 10 s all-out sprint (r=-0.72; r=-0.59; r=-0.61), 1 min maximal effort (r=-0.85; r=-0.84; r=-0.82), 5 min maximal effort (r=-0.57; r=-0.85; r=-0.76), PPO (r=-0.77; r=-0.73; r=-0.76) and IAT (r=-0.71; r=-0.67; r=-0.68). The best-fitting multiple regression models for race 3 (r 2 =0.868) and across all races (r 2 =0.757) comprised 1 min maximal effort, IAT and body weight. Aerobic and intermittent variables correlated least strongly with race times. Their use in a multiple regression model confirmed additional explanatory power to predict XCM performance. These findings underline the usefulness of the comprehensive incremental test to predict performance in that sport more precisely.

Top