Sample records for model point forecasts

  1. Gambling scores for earthquake predictions and forecasts

    NASA Astrophysics Data System (ADS)

    Zhuang, Jiancang

    2010-04-01

    This paper presents a new method, namely the gambling score, for scoring the performance earthquake forecasts or predictions. Unlike most other scoring procedures that require a regular scheme of forecast and treat each earthquake equally, regardless their magnitude, this new scoring method compensates the risk that the forecaster has taken. Starting with a certain number of reputation points, once a forecaster makes a prediction or forecast, he is assumed to have betted some points of his reputation. The reference model, which plays the role of the house, determines how many reputation points the forecaster can gain if he succeeds, according to a fair rule, and also takes away the reputation points betted by the forecaster if he loses. This method is also extended to the continuous case of point process models, where the reputation points betted by the forecaster become a continuous mass on the space-time-magnitude range of interest. We also calculate the upper bound of the gambling score when the true model is a renewal process, the stress release model or the ETAS model and when the reference model is the Poisson model.

  2. A new scoring method for evaluating the performance of earthquake forecasts and predictions

    NASA Astrophysics Data System (ADS)

    Zhuang, J.

    2009-12-01

    This study presents a new method, namely the gambling score, for scoring the performance of earthquake forecasts or predictions. Unlike most other scoring procedures that require a regular scheme of forecast and treat each earthquake equally, regardless their magnitude, this new scoring method compensates the risk that the forecaster has taken. A fair scoring scheme should reward the success in a way that is compatible with the risk taken. Suppose that we have the reference model, usually the Poisson model for usual cases or Omori-Utsu formula for the case of forecasting aftershocks, which gives probability p0 that at least 1 event occurs in a given space-time-magnitude window. The forecaster, similar to a gambler, who starts with a certain number of reputation points, bets 1 reputation point on ``Yes'' or ``No'' according to his forecast, or bets nothing if he performs a NA-prediction. If the forecaster bets 1 reputation point of his reputations on ``Yes" and loses, the number of his reputation points is reduced by 1; if his forecasts is successful, he should be rewarded (1-p0)/p0 reputation points. The quantity (1-p0)/p0 is the return (reward/bet) ratio for bets on ``Yes''. In this way, if the reference model is correct, the expected return that he gains from this bet is 0. This rule also applies to probability forecasts. Suppose that p is the occurrence probability of an earthquake given by the forecaster. We can regard the forecaster as splitting 1 reputation point by betting p on ``Yes'' and 1-p on ``No''. In this way, the forecaster's expected pay-off based on the reference model is still 0. From the viewpoints of both the reference model and the forecaster, the rule for rewarding and punishment is fair. This method is also extended to the continuous case of point process models, where the reputation points bet by the forecaster become a continuous mass on the space-time-magnitude range of interest. We also calculate the upper bound of the gambling score when the true model is a renewal process, the stress release model or the ETAS model and when the reference model is the Poisson model.

  3. Applications of the gambling score in evaluating earthquake predictions and forecasts

    NASA Astrophysics Data System (ADS)

    Zhuang, Jiancang; Zechar, Jeremy D.; Jiang, Changsheng; Console, Rodolfo; Murru, Maura; Falcone, Giuseppe

    2010-05-01

    This study presents a new method, namely the gambling score, for scoring the performance earthquake forecasts or predictions. Unlike most other scoring procedures that require a regular scheme of forecast and treat each earthquake equally, regardless their magnitude, this new scoring method compensates the risk that the forecaster has taken. Starting with a certain number of reputation points, once a forecaster makes a prediction or forecast, he is assumed to have betted some points of his reputation. The reference model, which plays the role of the house, determines how many reputation points the forecaster can gain if he succeeds, according to a fair rule, and also takes away the reputation points bet by the forecaster if he loses. This method is also extended to the continuous case of point process models, where the reputation points betted by the forecaster become a continuous mass on the space-time-magnitude range of interest. For discrete predictions, we apply this method to evaluate performance of Shebalin's predictions made by using the Reverse Tracing of Precursors (RTP) algorithm and of the outputs of the predictions from the Annual Consultation Meeting on Earthquake Tendency held by China Earthquake Administration. For the continuous case, we use it to compare the probability forecasts of seismicity in the Abruzzo region before and after the L'aquila earthquake based on the ETAS model and the PPE model.

  4. A travel time forecasting model based on change-point detection method

    NASA Astrophysics Data System (ADS)

    LI, Shupeng; GUANG, Xiaoping; QIAN, Yongsheng; ZENG, Junwei

    2017-06-01

    Travel time parameters obtained from road traffic sensors data play an important role in traffic management practice. A travel time forecasting model is proposed for urban road traffic sensors data based on the method of change-point detection in this paper. The first-order differential operation is used for preprocessing over the actual loop data; a change-point detection algorithm is designed to classify the sequence of large number of travel time data items into several patterns; then a travel time forecasting model is established based on autoregressive integrated moving average (ARIMA) model. By computer simulation, different control parameters are chosen for adaptive change point search for travel time series, which is divided into several sections of similar state.Then linear weight function is used to fit travel time sequence and to forecast travel time. The results show that the model has high accuracy in travel time forecasting.

  5. Forecasting longitudinal changes in oropharyngeal tumor morphology throughout the course of head and neck radiation therapy

    PubMed Central

    Yock, Adam D.; Rao, Arvind; Dong, Lei; Beadle, Beth M.; Garden, Adam S.; Kudchadker, Rajat J.; Court, Laurence E.

    2014-01-01

    Purpose: To create models that forecast longitudinal trends in changing tumor morphology and to evaluate and compare their predictive potential throughout the course of radiation therapy. Methods: Two morphology feature vectors were used to describe 35 gross tumor volumes (GTVs) throughout the course of intensity-modulated radiation therapy for oropharyngeal tumors. The feature vectors comprised the coordinates of the GTV centroids and a description of GTV shape using either interlandmark distances or a spherical harmonic decomposition of these distances. The change in the morphology feature vector observed at 33 time points throughout the course of treatment was described using static, linear, and mean models. Models were adjusted at 0, 1, 2, 3, or 5 different time points (adjustment points) to improve prediction accuracy. The potential of these models to forecast GTV morphology was evaluated using leave-one-out cross-validation, and the accuracy of the models was compared using Wilcoxon signed-rank tests. Results: Adding a single adjustment point to the static model without any adjustment points decreased the median error in forecasting the position of GTV surface landmarks by the largest amount (1.2 mm). Additional adjustment points further decreased the forecast error by about 0.4 mm each. Selection of the linear model decreased the forecast error for both the distance-based and spherical harmonic morphology descriptors (0.2 mm), while the mean model decreased the forecast error for the distance-based descriptor only (0.2 mm). The magnitude and statistical significance of these improvements decreased with each additional adjustment point, and the effect from model selection was not as large as that from adding the initial points. Conclusions: The authors present models that anticipate longitudinal changes in tumor morphology using various models and model adjustment schemes. The accuracy of these models depended on their form, and the utility of these models includes the characterization of patient-specific response with implications for treatment management and research study design. PMID:25086518

  6. Forecasting longitudinal changes in oropharyngeal tumor morphology throughout the course of head and neck radiation therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yock, Adam D.; Kudchadker, Rajat J.; Rao, Arvind

    2014-08-15

    Purpose: To create models that forecast longitudinal trends in changing tumor morphology and to evaluate and compare their predictive potential throughout the course of radiation therapy. Methods: Two morphology feature vectors were used to describe 35 gross tumor volumes (GTVs) throughout the course of intensity-modulated radiation therapy for oropharyngeal tumors. The feature vectors comprised the coordinates of the GTV centroids and a description of GTV shape using either interlandmark distances or a spherical harmonic decomposition of these distances. The change in the morphology feature vector observed at 33 time points throughout the course of treatment was described using static, linear,more » and mean models. Models were adjusted at 0, 1, 2, 3, or 5 different time points (adjustment points) to improve prediction accuracy. The potential of these models to forecast GTV morphology was evaluated using leave-one-out cross-validation, and the accuracy of the models was compared using Wilcoxon signed-rank tests. Results: Adding a single adjustment point to the static model without any adjustment points decreased the median error in forecasting the position of GTV surface landmarks by the largest amount (1.2 mm). Additional adjustment points further decreased the forecast error by about 0.4 mm each. Selection of the linear model decreased the forecast error for both the distance-based and spherical harmonic morphology descriptors (0.2 mm), while the mean model decreased the forecast error for the distance-based descriptor only (0.2 mm). The magnitude and statistical significance of these improvements decreased with each additional adjustment point, and the effect from model selection was not as large as that from adding the initial points. Conclusions: The authors present models that anticipate longitudinal changes in tumor morphology using various models and model adjustment schemes. The accuracy of these models depended on their form, and the utility of these models includes the characterization of patient-specific response with implications for treatment management and research study design.« less

  7. Integrating Wind Profiling Radars and Radiosonde Observations with Model Point Data to Develop a Decision Support Tool to Assess Upper-Level Winds for Space Launch

    NASA Technical Reports Server (NTRS)

    Bauman, William H., III; Flinn, Clay

    2013-01-01

    On the day of launch, the 45th Weather Squadron (45 WS) Launch Weather Officers (LWOs) monitor the upper-level winds for their launch customers. During launch operations, the payload/launch team sometimes asks the LWOs if they expect the upper-level winds to change during the countdown. The LWOs used numerical weather prediction model point forecasts to provide the information, but did not have the capability to quickly retrieve or adequately display the upper-level observations and compare them directly in the same display to the model point forecasts to help them determine which model performed the best. The LWOs requested the Applied Meteorology Unit (AMU) develop a graphical user interface (GUI) that will plot upper-level wind speed and direction observations from the Cape Canaveral Air Force Station (CCAFS) Automated Meteorological Profiling System (AMPS) rawinsondes with point forecast wind profiles from the National Centers for Environmental Prediction (NCEP) North American Mesoscale (NAM), Rapid Refresh (RAP) and Global Forecast System (GFS) models to assess the performance of these models. The AMU suggested adding observations from the NASA 50 MHz wind profiler and one of the US Air Force 915 MHz wind profilers, both located near the Kennedy Space Center (KSC) Shuttle Landing Facility, to supplement the AMPS observations with more frequent upper-level profiles. Figure 1 shows a map of KSC/CCAFS with the locations of the observation sites and the model point forecasts.

  8. Grey-Markov prediction model based on background value optimization and central-point triangular whitenization weight function

    NASA Astrophysics Data System (ADS)

    Ye, Jing; Dang, Yaoguo; Li, Bingjun

    2018-01-01

    Grey-Markov forecasting model is a combination of grey prediction model and Markov chain which show obvious optimization effects for data sequences with characteristics of non-stationary and volatility. However, the state division process in traditional Grey-Markov forecasting model is mostly based on subjective real numbers that immediately affects the accuracy of forecasting values. To seek the solution, this paper introduces the central-point triangular whitenization weight function in state division to calculate possibilities of research values in each state which reflect preference degrees in different states in an objective way. On the other hand, background value optimization is applied in the traditional grey model to generate better fitting data. By this means, the improved Grey-Markov forecasting model is built. Finally, taking the grain production in Henan Province as an example, it verifies this model's validity by comparing with GM(1,1) based on background value optimization and the traditional Grey-Markov forecasting model.

  9. Quantitative precipitation forecasts in the Alps - an assessment from the Forecast Demonstration Project MAP D-PHASE

    NASA Astrophysics Data System (ADS)

    Ament, F.; Weusthoff, T.; Arpagaus, M.; Rotach, M.

    2009-04-01

    The main aim of the WWRP Forecast Demonstration Project MAP D-PHASE is to demonstrate the performance of today's models to forecast heavy precipitation and flood events in the Alpine region. Therefore an end-to-end, real-time forecasting system was installed and operated during the D PHASE Operations Period from June to November 2007. Part of this system are 30 numerical weather prediction models (deterministic as well as ensemble systems) operated by weather services and research institutes, which issue alerts if predicted precipitation accumulations exceed critical thresholds. Additionally to the real-time alerts, all relevant model fields of these simulations are stored in a central data archive. This comprehensive data set allows a detailed assessment of today's quantitative precipitation forecast (QPF) performance in the Alpine region. We will present results of QPF verifications against Swiss radar and rain gauge data both from a qualitative point of view, in terms of alerts, as well as from a quantitative perspective, in terms of precipitation rate. Various influencing factors like lead time, accumulation time, selection of warning thresholds, or bias corrections will be discussed. Additional to traditional verifications of area average precipitation amounts, the performance of the models to predict the correct precipitation statistics without requiring a point-to-point match will be described by using modern Fuzzy verification techniques. Both analyses reveal significant advantages of deep convection resolving models compared to coarser models with parameterized convection. An intercomparison of the model forecasts themselves reveals a remarkably high variability between different models, and makes it worthwhile to evaluate the potential of a multi-model ensemble. Various multi-model ensemble strategies will be tested by combining D-PHASE models to virtual ensemble systems.

  10. MO-C-17A-04: Forecasting Longitudinal Changes in Oropharyngeal Tumor Morphology Throughout the Course of Head and Neck Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yock, A; UT Graduate School of Biomedical Sciences, Houston, TX; Rao, A

    2014-06-15

    Purpose: To generate, evaluate, and compare models that predict longitudinal changes in tumor morphology throughout the course of radiation therapy. Methods: Two morphology feature vectors were used to describe the size, shape, and position of 35 oropharyngeal GTVs at each treatment fraction during intensity-modulated radiation therapy. The feature vectors comprised the coordinates of the GTV centroids and one of two shape descriptors. One shape descriptor was based on radial distances between the GTV centroid and 614 GTV surface landmarks. The other was based on a spherical harmonic decomposition of these distances. Feature vectors over the course of therapy were describedmore » using static, linear, and mean models. The error of these models in forecasting GTV morphology was evaluated with leave-one-out cross-validation, and their accuracy was compared using Wilcoxon signed-rank tests. The effect of adjusting model parameters at 1, 2, 3, or 5 time points (adjustment points) was also evaluated. Results: The addition of a single adjustment point to the static model decreased the median error in forecasting the position of GTV surface landmarks by 1.2 mm (p<0.001). Additional adjustment points further decreased forecast error by about 0.4 mm each. The linear model decreased forecast error compared to the static model for feature vectors based on both shape descriptors (0.2 mm), while the mean model did so only for those based on the inter-landmark distances (0.2 mm). The decrease in forecast error due to adding adjustment points was greater than that due to model selection. Both effects diminished with subsequent adjustment points. Conclusion: Models of tumor morphology that include information from prior patients and/or prior treatment fractions are able to predict the tumor surface at each treatment fraction during radiation therapy. The predicted tumor morphology can be compared with patient anatomy or dose distributions, opening the possibility of anticipatory re-planning. American Legion Auxiliary Fellowship; The University of Texas Graduate School of Biomedical Sciences at Houston.« less

  11. Integrating Wind Profiling Radars and Radiosonde Observations with Model Point Data to Develop a Decision Support Tool to Assess Upper-Level Winds for Space Launch

    NASA Technical Reports Server (NTRS)

    Bauman, William H., III; Flinn, Clay

    2013-01-01

    On the day-of-launch, the 45th Weather Squadron (45 WS) Launch Weather Officers (LWOs) monitor the upper-level winds for their launch customers to include NASA's Launch Services Program and NASA's Ground Systems Development and Operations Program. They currently do not have the capability to display and overlay profiles of upper-level observations and numerical weather prediction model forecasts. The LWOs requested the Applied Meteorology Unit (AMU) develop a tool in the form of a graphical user interface (GUI) that will allow them to plot upper-level wind speed and direction observations from the Kennedy Space Center (KSC) 50 MHz tropospheric wind profiling radar, KSC Shuttle Landing Facility 915 MHz boundary layer wind profiling radar and Cape Canaveral Air Force Station (CCAFS) Automated Meteorological Processing System (AMPS) radiosondes, and then overlay forecast wind profiles from the model point data including the North American Mesoscale (NAM) model, Rapid Refresh (RAP) model and Global Forecast System (GFS) model to assess the performance of these models. The AMU developed an Excel-based tool that provides an objective method for the LWOs to compare the model-forecast upper-level winds to the KSC wind profiling radars and CCAFS AMPS observations to assess the model potential to accurately forecast changes in the upperlevel profile through the launch count. The AMU wrote Excel Visual Basic for Applications (VBA) scripts to automatically retrieve model point data for CCAFS (XMR) from the Iowa State University Archive Data Server (http://mtarchive.qeol.iastate.edu) and the 50 MHz, 915 MHz and AMPS observations from the NASA/KSC Spaceport Weather Data Archive web site (http://trmm.ksc.nasa.gov). The AMU then developed code in Excel VBA to automatically ingest and format the observations and model point data in Excel to ready the data for generating Excel charts for the LWO's. The resulting charts allow the LWOs to independently initialize the three models 0-hour forecasts against the observations to determine which is the best performing model and then overlay the model forecasts on time-matched observations during the launch countdown to further assess the model performance and forecasts. This paper will demonstrate integration of observed and predicted atmospheric conditions into a decision support tool and demonstrate how the GUI is implemented in operations.

  12. Forecast Method of Solar Irradiance with Just-In-Time Modeling

    NASA Astrophysics Data System (ADS)

    Suzuki, Takanobu; Goto, Yusuke; Terazono, Takahiro; Wakao, Shinji; Oozeki, Takashi

    PV power output mainly depends on the solar irradiance which is affected by various meteorological factors. So, it is required to predict solar irradiance in the future for the efficient operation of PV systems. In this paper, we develop a novel approach for solar irradiance forecast, in which we introduce to combine the black-box model (JIT Modeling) with the physical model (GPV data). We investigate the predictive accuracy of solar irradiance over wide controlled-area of each electric power company by utilizing the measured data on the 44 observation points throughout Japan offered by JMA and the 64 points around Kanto by NEDO. Finally, we propose the application forecast method of solar irradiance to the point which is difficulty in compiling the database. And we consider the influence of different GPV default time on solar irradiance prediction.

  13. Forecasting Global Point Rainfall using ECMWF's Ensemble Forecasting System

    NASA Astrophysics Data System (ADS)

    Pillosu, Fatima; Hewson, Timothy; Zsoter, Ervin; Baugh, Calum

    2017-04-01

    ECMWF (the European Centre for Medium range Weather Forecasts), in collaboration with the EFAS (European Flood Awareness System) and GLOFAS (GLObal Flood Awareness System) teams, has developed a new operational system that post-processes grid box rainfall forecasts from its ensemble forecasting system to provide global probabilistic point-rainfall predictions. The project attains a higher forecasting skill by applying an understanding of how different rainfall generation mechanisms lead to different degrees of sub-grid variability in rainfall totals. In turn this approach facilitates identification of cases in which very localized extreme totals are much more likely. This approach aims also to improve the rainfall input required in different hydro-meteorological applications. Flash flood forecasting, in particular in urban areas, is a good example. In flash flood scenarios precipitation is typically characterised by high spatial variability and response times are short. In this case, to move beyond radar based now casting, the classical approach has been to use very high resolution hydro-meteorological models. Of course these models are valuable but they can represent only very limited areas, may not be spatially accurate and may give reasonable results only for limited lead times. On the other hand, our method aims to use a very cost-effective approach to downscale global rainfall forecasts to a point scale. It needs only rainfall totals from standard global reporting stations and forecasts over a relatively short period to train it, and it can give good results even up to day 5. For these reasons we believe that this approach better satisfies user needs around the world. This presentation aims to describe two phases of the project: The first phase, already completed, is the implementation of this new system to provide 6 and 12 hourly point-rainfall accumulation probabilities. To do this we use a limited number of physically relevant global model parameters (i.e. convective precipitation ratio, speed of steering winds, CAPE - Convective Available Potential Energy - and solar radiation), alongside the rainfall forecasts themselves, to define the "weather types" that in turn define the expected sub-grid variability. The calibration and computational strategy intrinsic to the system will be illustrated. The quality of the global point rainfall forecasts is also illustrated by analysing recent case studies in which extreme totals and a greatly elevated flash flood risk could be foreseen some days in advance but especially by a longer-term verification that arises out of retrospective global point rainfall forecasting for 2016. The second phase, currently in development, is focussing on the relationships with other relevant geographical aspects, for instance, orography and coastlines. Preliminary results will be presented. These are promising but need further study to fully understand their impact on the spatial distribution of point rainfall totals.

  14. Optimising seasonal streamflow forecast lead time for operational decision making in Australia

    NASA Astrophysics Data System (ADS)

    Schepen, Andrew; Zhao, Tongtiegang; Wang, Q. J.; Zhou, Senlin; Feikema, Paul

    2016-10-01

    Statistical seasonal forecasts of 3-month streamflow totals are released in Australia by the Bureau of Meteorology and updated on a monthly basis. The forecasts are often released in the second week of the forecast period, due to the onerous forecast production process. The current service relies on models built using data for complete calendar months, meaning the forecast production process cannot begin until the first day of the forecast period. Somehow, the bureau needs to transition to a service that provides forecasts before the beginning of the forecast period; timelier forecast release will become critical as sub-seasonal (monthly) forecasts are developed. Increasing the forecast lead time to one month ahead is not considered a viable option for Australian catchments that typically lack any predictability associated with snowmelt. The bureau's forecasts are built around Bayesian joint probability models that have antecedent streamflow, rainfall and climate indices as predictors. In this study, we adapt the modelling approach so that forecasts have any number of days of lead time. Daily streamflow and sea surface temperatures are used to develop predictors based on 28-day sliding windows. Forecasts are produced for 23 forecast locations with 0-14- and 21-day lead time. The forecasts are assessed in terms of continuous ranked probability score (CRPS) skill score and reliability metrics. CRPS skill scores, on average, reduce monotonically with increase in days of lead time, although both positive and negative differences are observed. Considering only skilful forecast locations, CRPS skill scores at 7-day lead time are reduced on average by 4 percentage points, with differences largely contained within +5 to -15 percentage points. A flexible forecasting system that allows for any number of days of lead time could benefit Australian seasonal streamflow forecast users by allowing more time for forecasts to be disseminated, comprehended and made use of prior to the commencement of a forecast season. The system would allow for forecasts to be updated if necessary.

  15. An Extended Objective Evaluation of the 29-km Eta Model for Weather Support to the United States Space Program

    NASA Technical Reports Server (NTRS)

    Nutter, Paul; Manobianco, John

    1998-01-01

    This report describes the Applied Meteorology Unit's objective verification of the National Centers for Environmental Prediction 29-km eta model during separate warm and cool season periods from May 1996 through January 1998. The verification of surface and upper-air point forecasts was performed at three selected stations important for 45th Weather Squadron, Spaceflight Meteorology Group, and National Weather Service, Melbourne operational weather concerns. The statistical evaluation identified model biases that may result from inadequate parameterization of physical processes. Since model biases are relatively small compared to the random error component, most of the total model error results from day-to-day variability in the forecasts and/or observations. To some extent, these nonsystematic errors reflect the variability in point observations that sample spatial and temporal scales of atmospheric phenomena that cannot be resolved by the model. On average, Meso-Eta point forecasts provide useful guidance for predicting the evolution of the larger scale environment. A more substantial challenge facing model users in real time is the discrimination of nonsystematic errors that tend to inflate the total forecast error. It is important that model users maintain awareness of ongoing model changes. Such changes are likely to modify the basic error characteristics, particularly near the surface.

  16. Probabilistic forecasting for extreme NO2 pollution episodes.

    PubMed

    Aznarte, José L

    2017-10-01

    In this study, we investigate the convenience of quantile regression to predict extreme concentrations of NO 2 . Contrarily to the usual point-forecasting, where a single value is forecast for each horizon, probabilistic forecasting through quantile regression allows for the prediction of the full probability distribution, which in turn allows to build models specifically fit for the tails of this distribution. Using data from the city of Madrid, including NO 2 concentrations as well as meteorological measures, we build models that predict extreme NO 2 concentrations, outperforming point-forecasting alternatives, and we prove that the predictions are accurate, reliable and sharp. Besides, we study the relative importance of the independent variables involved, and show how the important variables for the median quantile are different than those important for the upper quantiles. Furthermore, we present a method to compute the probability of exceedance of thresholds, which is a simple and comprehensible manner to present probabilistic forecasts maximizing their usefulness. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Florida Model Information eXchange System (MIXS).

    DOT National Transportation Integrated Search

    2013-08-01

    Transportation planning largely relies on travel demand forecasting, which estimates the number and type of vehicles that will use a roadway at some point in the future. Forecasting estimates are made by computer models that use a wide variety of dat...

  18. Satellite Altimetry based River Forecasting of Transboundary Flow

    NASA Astrophysics Data System (ADS)

    Hossain, F.; Siddique-E-Akbor, A.; Lee, H.; Shum, C.; Biancamaria, S.

    2012-12-01

    Forecasting of this transboundary flow in downstream nations however remains notoriously difficult due to the lack of basin-wide in-situ hydrologic measurements or its real-time sharing among nations. In addition, human regulation of upstream flow through diversion projects and dams, make hydrologic models less effective for forecasting on their own. Using the Ganges-Brahmaputra (GB) basin as an example, this study assesses the feasibility of using JASON-2 satellite altimetry for forecasting such transboundary flow at locations further inside the downstream nation of Bangladesh by propagating forecasts derived from upstream (Indian) locations through a hydrodynamic river model. The 5-day forecast of river levels at upstream boundary points inside Bangladesh are used to initialize daily simulation of the hydrodynamic river model and yield the 5-day forecast river level further downstream inside Bangladesh. The forecast river levels are then compared with the 5-day-later "now cast" simulation by the river model based on in-situ river level at the upstream boundary points in Bangladesh. Future directions for satellite-based forecasting of flow are also briefly overviewed.round tracks or virtual stations of JASON-2 (J2) altimeter over the GB basin shown in yellow lines. The locations where the track crosses a river and used for deriving forecasting rating curves is shown with a circle and station number (magenta- Brahmaputra basin; blue - Ganges basin). Circles without a station number represent the broader view of sampling by JASON-2 if all the ground tracks on main stem rivers and neighboring tributaries of Ganges and Brahmaputra are considered.

  19. The Comparison of Point Data Models for the Output of WRF Hydro Model in the IDV

    NASA Astrophysics Data System (ADS)

    Ho, Y.; Weber, J.

    2017-12-01

    WRF Hydro netCDF output files contain streamflow, flow depth, longitude, latitude, altitude and stream order values for each forecast point. However, the data are not CF compliant. The total number of forecast points for the US CONUS is approximately 2.7 million and it is a big challenge for any visualization and analysis tool. The IDV point cloud display shows point data as a set of points colored by parameter. This display is very efficient compared to a standard point type display for rendering a large number of points. The one problem we have is that the data I/O can be a bottleneck issue when dealing with a large collection of point input files. In this presentation, we will experiment with different point data models and their APIs to access the same WRF Hydro model output. The results will help us construct a CF compliant netCDF point data format for the community.

  20. A new short-term forecasting model for the total electron content storm time disturbances

    NASA Astrophysics Data System (ADS)

    Tsagouri, Ioanna; Koutroumbas, Konstantinos; Elias, Panagiotis

    2018-06-01

    This paper aims to introduce a new model for the short-term forecast of the vertical Total Electron Content (vTEC). The basic idea of the proposed model lies on the concept of the Solar Wind driven autoregressive model for Ionospheric short-term Forecast (SWIF). In its original version, the model is operationally implemented in the DIAS system (http://dias.space.noa.gr) and provides alerts and warnings for upcoming ionospheric disturbances, as well as single site and regional forecasts of the foF2 critical frequency over Europe up to 24 h in advance. The forecasts are driven by the real time assessment of the solar wind conditions at ACE location. The comparative analysis of the variations in foF2 and vTEC during eleven geomagnetic storm events that occurred in the present solar cycle 24 reveals similarities but also differences in the storm-time response of the two characteristics with respect to the local time and the latitude of the observation point. Since the aforementioned dependences drive the storm-time forecasts of the SWIF model, the results obtained here support the upgrade of the SWIF's modeling technique in forecasting the storm-time vTEC variation from its onset to full development and recovery. According to the proposed approach, the vTEC storm-time response can be forecasted from 1 to 12-13 h before its onset, depending on the local time of the observation point at storm onset at L1. Preliminary results on the assessment of the performance of the proposed model and further considerations on its potential implementation in operational mode are also discussed.

  1. Developing a Markov Model for Forecasting End Strength of Selected Marine Corps Reserve (SMCR) Officers

    DTIC Science & Technology

    2013-03-01

    moving average ( ARIMA ) model because the data is not a times series. The best a manpower planner can do at this point is to make an educated assumption...MARKOV MODEL FOR FORECASTING END STRENGTH OF SELECTED MARINE CORPS RESERVE (SMCR) OFFICERS by Anthony D. Licari March 2013 Thesis Advisor...March 2013 3. REPORT TYPE AND DATES COVERED Master’s Thesis 4. TITLE AND SUBTITLE DEVELOPING A MARKOV MODEL FOR FORECASTING END STRENGTH OF

  2. Post-processing of global model output to forecast point rainfall

    NASA Astrophysics Data System (ADS)

    Hewson, Tim; Pillosu, Fatima

    2016-04-01

    ECMWF (the European Centre for Medium range Weather Forecasts) has recently embarked upon a new project to post-process gridbox rainfall forecasts from its ensemble prediction system, to provide probabilistic forecasts of point rainfall. The new post-processing strategy relies on understanding how different rainfall generation mechanisms lead to different degrees of sub-grid variability in rainfall totals. We use a number of simple global model parameters, such as the convective rainfall fraction, to anticipate the sub-grid variability, and then post-process each ensemble forecast into a pdf (probability density function) for a point-rainfall total. The final forecast will comprise the sum of the different pdfs from all ensemble members. The post-processing is essentially a re-calibration exercise, which needs only rainfall totals from standard global reporting stations (and forecasts) to train it. High density observations are not needed. This presentation will describe results from the initial 'proof of concept' study, which has been remarkably successful. Reference will also be made to other useful outcomes of the work, such as gaining insights into systematic model biases in different synoptic settings. The special case of orographic rainfall will also be discussed. Work ongoing this year will also be described. This involves further investigations of which model parameters can provide predictive skill, and will then move on to development of an operational system for predicting point rainfall across the globe. The main practical benefit of this system will be a greatly improved capacity to predict extreme point rainfall, and thereby provide early warnings, for the whole world, of flash flood potential for lead times that extend beyond day 5. This will be incorporated into the suite of products output by GLOFAS (the GLObal Flood Awareness System) which is hosted at ECMWF. As such this work offers a very cost-effective approach to satisfying user needs right around the world. This field has hitherto relied on using very expensive high-resolution ensembles; by their very nature these can only run over small regions, and only for lead times up to about 2 days.

  3. Combining SVM and flame radiation to forecast BOF end-point

    NASA Astrophysics Data System (ADS)

    Wen, Hongyuan; Zhao, Qi; Xu, Lingfei; Zhou, Munchun; Chen, Yanru

    2009-05-01

    Because of complex reactions in Basic Oxygen Furnace (BOF) for steelmaking, the main end-point control methods of steelmaking have insurmountable difficulties. Aiming at these problems, a support vector machine (SVM) method for forecasting the BOF steelmaking end-point is presented based on flame radiation information. The basis is that the furnace flame is the performance of the carbon oxygen reaction, because the carbon oxygen reaction is the major reaction in the steelmaking furnace. The system can acquire spectrum and image data quickly in the steelmaking adverse environment. The structure of SVM and the multilayer feed-ward neural network are similar, but SVM model could overcome the inherent defects of the latter. The model is trained and forecasted by using SVM and some appropriate variables of light and image characteristic information. The model training process follows the structure risk minimum (SRM) criterion and the design parameter can be adjusted automatically according to the sampled data in the training process. Experimental results indicate that the prediction precision of the SVM model and the executive time both meet the requirements of end-point judgment online.

  4. Stochastic model to forecast ground-level ozone concentration at urban and rural areas.

    PubMed

    Dueñas, C; Fernández, M C; Cañete, S; Carretero, J; Liger, E

    2005-12-01

    Stochastic models that estimate the ground-level ozone concentrations in air at an urban and rural sampling points in South-eastern Spain have been developed. Studies of temporal series of data, spectral analyses of temporal series and ARIMA models have been used. The ARIMA model (1,0,0) x (1,0,1)24 satisfactorily predicts hourly ozone concentrations in the urban area. The ARIMA (2,1,1) x (0,1,1)24 has been developed for the rural area. In both sampling points, predictions of hourly ozone concentrations agree reasonably well with measured values. However, the prediction of hourly ozone concentrations in the rural point appears to be better than that of the urban point. The performance of ARIMA models suggests that this kind of modelling can be suitable for ozone concentrations forecasting.

  5. A Comparison of the Forecast Skills among Three Numerical Models

    NASA Astrophysics Data System (ADS)

    Lu, D.; Reddy, S. R.; White, L. J.

    2003-12-01

    Three numerical weather forecast models, MM5, COAMPS and WRF, operating with a joint effort of NOAA HU-NCAS and Jackson State University (JSU) during summer 2003 have been chosen to study their forecast skills against observations. The models forecast over the same region with the same initialization, boundary condition, forecast length and spatial resolution. AVN global dataset have been ingested as initial conditions. Grib resolution of 27 km is chosen to represent the current mesoscale model. The forecasts with the length of 36h are performed to output the result with 12h interval. The key parameters used to evaluate the forecast skill include 12h accumulated precipitation, sea level pressure, wind, surface temperature and dew point. Precipitation is evaluated statistically using conventional skill scores, Threat Score (TS) and Bias Score (BS), for different threshold values based on 12h rainfall observations whereas other statistical methods such as Mean Error (ME), Mean Absolute Error(MAE) and Root Mean Square Error (RMSE) are applied to other forecast parameters.

  6. Arima model and exponential smoothing method: A comparison

    NASA Astrophysics Data System (ADS)

    Wan Ahmad, Wan Kamarul Ariffin; Ahmad, Sabri

    2013-04-01

    This study shows the comparison between Autoregressive Moving Average (ARIMA) model and Exponential Smoothing Method in making a prediction. The comparison is focused on the ability of both methods in making the forecasts with the different number of data sources and the different length of forecasting period. For this purpose, the data from The Price of Crude Palm Oil (RM/tonne), Exchange Rates of Ringgit Malaysia (RM) in comparison to Great Britain Pound (GBP) and also The Price of SMR 20 Rubber Type (cents/kg) with three different time series are used in the comparison process. Then, forecasting accuracy of each model is measured by examinethe prediction error that producedby using Mean Squared Error (MSE), Mean Absolute Percentage Error (MAPE), and Mean Absolute deviation (MAD). The study shows that the ARIMA model can produce a better prediction for the long-term forecasting with limited data sources, butcannot produce a better prediction for time series with a narrow range of one point to another as in the time series for Exchange Rates. On the contrary, Exponential Smoothing Method can produce a better forecasting for Exchange Rates that has a narrow range of one point to another for its time series, while itcannot produce a better prediction for a longer forecasting period.

  7. Application Study of Comprehensive Forecasting Model Based on Entropy Weighting Method on Trend of PM2.5 Concentration in Guangzhou, China

    PubMed Central

    Liu, Dong-jun; Li, Li

    2015-01-01

    For the issue of haze-fog, PM2.5 is the main influence factor of haze-fog pollution in China. The trend of PM2.5 concentration was analyzed from a qualitative point of view based on mathematical models and simulation in this study. The comprehensive forecasting model (CFM) was developed based on the combination forecasting ideas. Autoregressive Integrated Moving Average Model (ARIMA), Artificial Neural Networks (ANNs) model and Exponential Smoothing Method (ESM) were used to predict the time series data of PM2.5 concentration. The results of the comprehensive forecasting model were obtained by combining the results of three methods based on the weights from the Entropy Weighting Method. The trend of PM2.5 concentration in Guangzhou China was quantitatively forecasted based on the comprehensive forecasting model. The results were compared with those of three single models, and PM2.5 concentration values in the next ten days were predicted. The comprehensive forecasting model balanced the deviation of each single prediction method, and had better applicability. It broadens a new prediction method for the air quality forecasting field. PMID:26110332

  8. Application Study of Comprehensive Forecasting Model Based on Entropy Weighting Method on Trend of PM2.5 Concentration in Guangzhou, China.

    PubMed

    Liu, Dong-jun; Li, Li

    2015-06-23

    For the issue of haze-fog, PM2.5 is the main influence factor of haze-fog pollution in China. The trend of PM2.5 concentration was analyzed from a qualitative point of view based on mathematical models and simulation in this study. The comprehensive forecasting model (CFM) was developed based on the combination forecasting ideas. Autoregressive Integrated Moving Average Model (ARIMA), Artificial Neural Networks (ANNs) model and Exponential Smoothing Method (ESM) were used to predict the time series data of PM2.5 concentration. The results of the comprehensive forecasting model were obtained by combining the results of three methods based on the weights from the Entropy Weighting Method. The trend of PM2.5 concentration in Guangzhou China was quantitatively forecasted based on the comprehensive forecasting model. The results were compared with those of three single models, and PM2.5 concentration values in the next ten days were predicted. The comprehensive forecasting model balanced the deviation of each single prediction method, and had better applicability. It broadens a new prediction method for the air quality forecasting field.

  9. Predictability of Bristol Bay, Alaska, sockeye salmon returns one to four years in the future

    USGS Publications Warehouse

    Adkison, Milo D.; Peterson, R.M.

    2000-01-01

    Historically, forecast error for returns of sockeye salmon Oncorhynchus nerka to Bristol Bay, Alaska, has been large. Using cross-validation forecast error as our criterion, we selected forecast models for each of the nine principal Bristol Bay drainages. Competing forecast models included stock-recruitment relationships, environmental variables, prior returns of siblings, or combinations of these predictors. For most stocks, we found prior returns of siblings to be the best single predictor of returns; however, forecast accuracy was low even when multiple predictors were considered. For a typical drainage, an 80% confidence interval ranged from one half to double the point forecast. These confidence intervals appeared to be appropriately wide.

  10. The Ensemble Space Weather Modeling System (eSWMS): Status, Capabilities and Challenges

    NASA Astrophysics Data System (ADS)

    Fry, C. D.; Eccles, J. V.; Reich, J. P.

    2010-12-01

    Marking a milestone in space weather forecasting, the Space Weather Modeling System (SWMS) successfully completed validation testing in advance of operational testing at Air Force Weather Agency’s primary space weather production center. This is the first coupling of stand-alone, physics-based space weather models that are currently in operations at AFWA supporting the warfighter. Significant development effort went into ensuring the component models were portable and scalable while maintaining consistent results across diverse high performance computing platforms. Coupling was accomplished under the Earth System Modeling Framework (ESMF). The coupled space weather models are the Hakamada-Akasofu-Fry version 2 (HAFv2) solar wind model and GAIM1, the ionospheric forecast component of the Global Assimilation of Ionospheric Measurements (GAIM) model. The SWMS was developed by team members from AFWA, Explorations Physics International, Inc. (EXPI) and Space Environment Corporation (SEC). The successful development of the SWMS provides new capabilities beyond enabling extended lead-time, data-driven ionospheric forecasts. These include ingesting diverse data sets at higher resolution, incorporating denser computational grids at finer time steps, and performing probability-based ensemble forecasts. Work of the SWMS development team now focuses on implementing the ensemble-based probability forecast capability by feeding multiple scenarios of 5 days of solar wind forecasts to the GAIM1 model based on the variation of the input fields to the HAFv2 model. The ensemble SWMS (eSWMS) will provide the most-likely space weather scenario with uncertainty estimates for important forecast fields. The eSWMS will allow DoD mission planners to consider the effects of space weather on their systems with more advance warning than is currently possible. The payoff is enhanced, tailored support to the warfighter with improved capabilities, such as point-to-point HF propagation forecasts, single-frequency GPS error corrections, and high cadence, high-resolution Space Situational Awareness (SSA) products. We present the current status of eSWMS, its capabilities, limitations and path of transition to operational use.

  11. State-space adjustment of radar rainfall and skill score evaluation of stochastic volume forecasts in urban drainage systems.

    PubMed

    Löwe, Roland; Mikkelsen, Peter Steen; Rasmussen, Michael R; Madsen, Henrik

    2013-01-01

    Merging of radar rainfall data with rain gauge measurements is a common approach to overcome problems in deriving rain intensities from radar measurements. We extend an existing approach for adjustment of C-band radar data using state-space models and use the resulting rainfall intensities as input for forecasting outflow from two catchments in the Copenhagen area. Stochastic grey-box models are applied to create the runoff forecasts, providing us with not only a point forecast but also a quantification of the forecast uncertainty. Evaluating the results, we can show that using the adjusted radar data improves runoff forecasts compared with using the original radar data and that rain gauge measurements as forecast input are also outperformed. Combining the data merging approach with short-term rainfall forecasting algorithms may result in further improved runoff forecasts that can be used in real time control.

  12. Nonlinear time series modeling and forecasting the seismic data of the Hindu Kush region

    NASA Astrophysics Data System (ADS)

    Khan, Muhammad Yousaf; Mittnik, Stefan

    2018-01-01

    In this study, we extended the application of linear and nonlinear time models in the field of earthquake seismology and examined the out-of-sample forecast accuracy of linear Autoregressive (AR), Autoregressive Conditional Duration (ACD), Self-Exciting Threshold Autoregressive (SETAR), Threshold Autoregressive (TAR), Logistic Smooth Transition Autoregressive (LSTAR), Additive Autoregressive (AAR), and Artificial Neural Network (ANN) models for seismic data of the Hindu Kush region. We also extended the previous studies by using Vector Autoregressive (VAR) and Threshold Vector Autoregressive (TVAR) models and compared their forecasting accuracy with linear AR model. Unlike previous studies that typically consider the threshold model specifications by using internal threshold variable, we specified these models with external transition variables and compared their out-of-sample forecasting performance with the linear benchmark AR model. The modeling results show that time series models used in the present study are capable of capturing the dynamic structure present in the seismic data. The point forecast results indicate that the AR model generally outperforms the nonlinear models. However, in some cases, threshold models with external threshold variables specification produce more accurate forecasts, indicating that specification of threshold time series models is of crucial importance. For raw seismic data, the ACD model does not show an improved out-of-sample forecasting performance over the linear AR model. The results indicate that the AR model is the best forecasting device to model and forecast the raw seismic data of the Hindu Kush region.

  13. The RAPIDD ebola forecasting challenge: Synthesis and lessons learnt.

    PubMed

    Viboud, Cécile; Sun, Kaiyuan; Gaffey, Robert; Ajelli, Marco; Fumanelli, Laura; Merler, Stefano; Zhang, Qian; Chowell, Gerardo; Simonsen, Lone; Vespignani, Alessandro

    2018-03-01

    Infectious disease forecasting is gaining traction in the public health community; however, limited systematic comparisons of model performance exist. Here we present the results of a synthetic forecasting challenge inspired by the West African Ebola crisis in 2014-2015 and involving 16 international academic teams and US government agencies, and compare the predictive performance of 8 independent modeling approaches. Challenge participants were invited to predict 140 epidemiological targets across 5 different time points of 4 synthetic Ebola outbreaks, each involving different levels of interventions and "fog of war" in outbreak data made available for predictions. Prediction targets included 1-4 week-ahead case incidences, outbreak size, peak timing, and several natural history parameters. With respect to weekly case incidence targets, ensemble predictions based on a Bayesian average of the 8 participating models outperformed any individual model and did substantially better than a null auto-regressive model. There was no relationship between model complexity and prediction accuracy; however, the top performing models for short-term weekly incidence were reactive models with few parameters, fitted to a short and recent part of the outbreak. Individual model outputs and ensemble predictions improved with data accuracy and availability; by the second time point, just before the peak of the epidemic, estimates of final size were within 20% of the target. The 4th challenge scenario - mirroring an uncontrolled Ebola outbreak with substantial data reporting noise - was poorly predicted by all modeling teams. Overall, this synthetic forecasting challenge provided a deep understanding of model performance under controlled data and epidemiological conditions. We recommend such "peace time" forecasting challenges as key elements to improve coordination and inspire collaboration between modeling groups ahead of the next pandemic threat, and to assess model forecasting accuracy for a variety of known and hypothetical pathogens. Published by Elsevier B.V.

  14. Assessing Upper-Level Winds on Day-of-Launch

    NASA Technical Reports Server (NTRS)

    Bauman, William H., III; Wheeler, Mark M.

    2012-01-01

    On the day-or-launch. the 45th Weather Squadron Launch Weather Officers (LWOS) monitor the upper-level winds for their launch customers to include NASA's Launch Services Program (LSP). During launch operations, the payload launch team sometimes asks the LWO if they expect the upper level winds to change during the countdown but the LWOs did not have the capability to quickly retrieve or display the upper-level observations and compare them to the numerical weather prediction model point forecasts. The LWOs requested the Applied Meteorology Unit (AMU) develop a capability in the form of a graphical user interface (GUI) that would allow them to plot upper-level wind speed and direction observations from the Kennedy Space Center Doppler Radar Wind Profilers and Cape Canaveral Air Force Station rawinsondes and then overlay model point forecast profiles on the observation profiles to assess the performance of these models and graphically display them to the launch team. The AMU developed an Excel-based capability for the LWOs to assess the model forecast upper-level winds and compare them to observations. They did so by creating a GUI in Excel that allows the LWOs to first initialize the models by comparing the O-hour model forecasts to the observations and then to display model forecasts in 3-hour intervals from the current time through 12 hours.

  15. Mixture EMOS model for calibrating ensemble forecasts of wind speed.

    PubMed

    Baran, S; Lerch, S

    2016-03-01

    Ensemble model output statistics (EMOS) is a statistical tool for post-processing forecast ensembles of weather variables obtained from multiple runs of numerical weather prediction models in order to produce calibrated predictive probability density functions. The EMOS predictive probability density function is given by a parametric distribution with parameters depending on the ensemble forecasts. We propose an EMOS model for calibrating wind speed forecasts based on weighted mixtures of truncated normal (TN) and log-normal (LN) distributions where model parameters and component weights are estimated by optimizing the values of proper scoring rules over a rolling training period. The new model is tested on wind speed forecasts of the 50 member European Centre for Medium-range Weather Forecasts ensemble, the 11 member Aire Limitée Adaptation dynamique Développement International-Hungary Ensemble Prediction System ensemble of the Hungarian Meteorological Service, and the eight-member University of Washington mesoscale ensemble, and its predictive performance is compared with that of various benchmark EMOS models based on single parametric families and combinations thereof. The results indicate improved calibration of probabilistic and accuracy of point forecasts in comparison with the raw ensemble and climatological forecasts. The mixture EMOS model significantly outperforms the TN and LN EMOS methods; moreover, it provides better calibrated forecasts than the TN-LN combination model and offers an increased flexibility while avoiding covariate selection problems. © 2016 The Authors Environmetrics Published by JohnWiley & Sons Ltd.

  16. Impact of single-point GPS integrated water vapor estimates on short-range WRF model forecasts over southern India

    NASA Astrophysics Data System (ADS)

    Kumar, Prashant; Gopalan, Kaushik; Shukla, Bipasha Paul; Shyam, Abhineet

    2017-11-01

    Specifying physically consistent and accurate initial conditions is one of the major challenges of numerical weather prediction (NWP) models. In this study, ground-based global positioning system (GPS) integrated water vapor (IWV) measurements available from the International Global Navigation Satellite Systems (GNSS) Service (IGS) station in Bangalore, India, are used to assess the impact of GPS data on NWP model forecasts over southern India. Two experiments are performed with and without assimilation of GPS-retrieved IWV observations during the Indian winter monsoon period (November-December, 2012) using a four-dimensional variational (4D-Var) data assimilation method. Assimilation of GPS data improved the model IWV analysis as well as the subsequent forecasts. There is a positive impact of ˜10 % over Bangalore and nearby regions. The Weather Research and Forecasting (WRF) model-predicted 24-h surface temperature forecasts have also improved when compared with observations. Small but significant improvements were found in the rainfall forecasts compared to control experiments.

  17. Effect of high latitude filtering on NWP skill

    NASA Technical Reports Server (NTRS)

    Kalnay, E.; Takacs, L. L.; Hoffman, R. N.

    1984-01-01

    The high latitude filtering techniques commonly employed in global grid point models to eliminate the high frequency waves associated with the convergence of meridians, can introduce serious distortions which ultimately affect the solution at all latitudes. Experiments completed so far with the 4 deg x 5 deg, 9-level GLAS Fourth Order Model indicate that the high latitude filter currently in operation affects only minimally its forecasting skill. In one case, however, the use of pressure gradient filter significantly improved the forecast. Three day forecasts with the pressure gradient and operational filters are compared as are 5-day forecasts with no filter.

  18. Tsunami Forecasting in the Atlantic Basin

    NASA Astrophysics Data System (ADS)

    Knight, W. R.; Whitmore, P.; Sterling, K.; Hale, D. A.; Bahng, B.

    2012-12-01

    The mission of the West Coast and Alaska Tsunami Warning Center (WCATWC) is to provide advance tsunami warning and guidance to coastal communities within its Area-of-Responsibility (AOR). Predictive tsunami models, based on the shallow water wave equations, are an important part of the Center's guidance support. An Atlantic-based counterpart to the long-standing forecasting ability in the Pacific known as the Alaska Tsunami Forecast Model (ATFM) is now developed. The Atlantic forecasting method is based on ATFM version 2 which contains advanced capabilities over the original model; including better handling of the dynamic interactions between grids, inundation over dry land, new forecast model products, an optional non-hydrostatic approach, and the ability to pre-compute larger and more finely gridded regions using parallel computational techniques. The wide and nearly continuous Atlantic shelf region presents a challenge for forecast models. Our solution to this problem has been to develop a single unbroken high resolution sub-mesh (currently 30 arc-seconds), trimmed to the shelf break. This allows for edge wave propagation and for kilometer scale bathymetric feature resolution. Terminating the fine mesh at the 2000m isobath keeps the number of grid points manageable while allowing for a coarse (4 minute) mesh to adequately resolve deep water tsunami dynamics. Higher resolution sub-meshes are then included around coastal forecast points of interest. The WCATWC Atlantic AOR includes eastern U.S. and Canada, the U.S. Gulf of Mexico, Puerto Rico, and the Virgin Islands. Puerto Rico and the Virgin Islands are in very close proximity to well-known tsunami sources. Because travel times are under an hour and response must be immediate, our focus is on pre-computing many tsunami source "scenarios" and compiling those results into a database accessible and calibrated with observations during an event. Seismic source evaluation determines the order of model pre-computation - starting with those sources that carry the highest risk. Model computation zones are confined to regions at risk to save computation time. For example, Atlantic sources have been shown to not propagate into the Gulf of Mexico. Therefore, fine grid computations are not performed in the Gulf for Atlantic sources. Outputs from the Atlantic model include forecast marigrams at selected sites, maximum amplitudes, drawdowns, and currents for all coastal points. The maximum amplitude maps will be supplemented with contoured energy flux maps which show more clearly the effects of bathymetric features on tsunami wave propagation. During an event, forecast marigrams will be compared to observations to adjust the model results. The modified forecasts will then be used to set alert levels between coastal breakpoints, and provided to emergency management.

  19. Operational forecasting of human-biometeorological conditions

    NASA Astrophysics Data System (ADS)

    Giannaros, T. M.; Lagouvardos, K.; Kotroni, V.; Matzarakis, A.

    2018-03-01

    This paper presents the development of an operational forecasting service focusing on human-biometeorological conditions. The service is based on the coupling of numerical weather prediction models with an advanced human-biometeorological model. Human thermal perception and stress forecasts are issued on a daily basis for Greece, in both point and gridded format. A user-friendly presentation approach is adopted for communicating the forecasts to the public via the worldwide web. The development of the presented service highlights the feasibility of replacing standard meteorological parameters and/or indices used in operational weather forecasting activities for assessing the thermal environment. This is of particular significance for providing effective, human-biometeorology-oriented, warnings for both heat waves and cold outbreaks.

  20. Benefits of Sharing Information: Supermodel Ensemble and Applications in South America

    NASA Astrophysics Data System (ADS)

    Dias, P. L.

    2006-05-01

    A model intercomparison program involving a large number of academic and operational institutions has been implemented in South America since 2003, motivated by the SALLJEX Intercomparison Program in 2003 (a research program focused on the identification of the role of the Andes low level jet moisture transport from the Amazon to the Plata basin) and the WMO/THORPEX (www.wmo.int/thorpex) goals to improve predictability through the proper combination of numerical weather forecasts. This program also explores the potential predictability associated with the combination of a large number of possible scenarios in the time scale of a few days to up to 15 days. Five academic institutions and five operational forecasting centers in several countries in South America, 1 academic institution in the USA, and the main global forecasting centers (NCEP, UKMO, ECMWF) agreed to provide numerical products based on operational and experimental models. The metric for model validation is concentrated on the fit of the forecast to surface observations. Meteorological data from airports, synoptic stations operated by national weather services, automatic data platforms maintained by different institutions, the PIRATA buoys etc are all collected through LDM/NCAR or direct transmission. Approximately 40 models outputs are available on a daily basis, twice a day. A simple procedure based on data assimilation principles was quite successful in combining the available forecasts in order to produce temperature, dew point, wind, pressure and precipitation forecasts at station points in S. America. The procedure is based on removing each model bias at the observational point and a weighted average based on the mean square error of the forecasts. The base period for estimating the bias and mean square error is of the order of 15 to 30 days. Products of the intercomparison model program and the optimal statistical combination of the available forecasts are public and available in real time (www.master.iag.usp.br/). Monitoring of the use of the products reveal a growing trend in the last year (reaching about 10.000 accesses per day in recent months). The intercomparison program provides a rich data set for educational products (real time use in Synoptic Meteorology and Numerical Weather Forecasting lectures), operational weather forecasts in national or regional weather centers and for research purposes. During the first phase of the program it was difficult to convince potential participants to share the information in the public homepage. However, as the system evolved, more and more institutions became associated with the program. The general opinion of the participants is that the system provides an unified metric for evaluation, a forum for discussion of the physical origin of the model forecast differences and therefore improvement of the quality of the numerical guidance.

  1. An improved Multimodel Approach for Global Sea Surface Temperature Forecasts

    NASA Astrophysics Data System (ADS)

    Khan, M. Z. K.; Mehrotra, R.; Sharma, A.

    2014-12-01

    The concept of ensemble combinations for formulating improved climate forecasts has gained popularity in recent years. However, many climate models share similar physics or modeling processes, which may lead to similar (or strongly correlated) forecasts. Recent approaches for combining forecasts that take into consideration differences in model accuracy over space and time have either ignored the similarity of forecast among the models or followed a pairwise dynamic combination approach. Here we present a basis for combining model predictions, illustrating the improvements that can be achieved if procedures for factoring in inter-model dependence are utilised. The utility of the approach is demonstrated by combining sea surface temperature (SST) forecasts from five climate models over a period of 1960-2005. The variable of interest, the monthly global sea surface temperature anomalies (SSTA) at a 50´50 latitude-longitude grid, is predicted three months in advance to demonstrate the utility of the proposed algorithm. Results indicate that the proposed approach offers consistent and significant improvements for majority of grid points compared to the case where the dependence among the models is ignored. Therefore, the proposed approach of combining multiple models by taking into account the existing interdependence, provides an attractive alternative to obtain improved climate forecast. In addition, an approach to combine seasonal forecasts from multiple climate models with varying periods of availability is also demonstrated.

  2. Forecasting Global Rainfall for Points Using ECMWF's Global Ensemble and Its Applications in Flood Forecasting

    NASA Astrophysics Data System (ADS)

    Pillosu, F. M.; Hewson, T.; Mazzetti, C.

    2017-12-01

    Prediction of local extreme rainfall has historically been the remit of nowcasting and high resolution limited area modelling, which represent only limited areas, may not be spatially accurate, give reasonable results only for limited lead times (<2 days) and become prohibitively expensive at global scale. ECMWF/EFAS/GLOFAS have developed a novel, cost-effective and physically-based statistical post-processing software ("ecPoint-Rainfall, ecPR", operational in 2017) that uses ECMWF Ensemble (ENS) output to deliver global probabilistic rainfall forecasts for points up to day 10. Firstly, ecPR applies a new notion of "remote calibration", which 1) allows us to replicate a multi-centennial training period using only one year of data, and 2) provides forecasts for anywhere in the world. Secondly, the software applies an understanding of how different rainfall generation mechanisms lead to different degrees of sub-grid variability in rainfall totals, and of where biases in the model can be improved upon. A long-term verification has shown that the post-processed rainfall has better reliability and resolution at every lead time if compared with ENS, and for large totals, ecPR outputs have the same skill at day 5 that the raw ENS has at day 1 (ROC area metric). ecPR could be used as input for hydrological models if its probabilistic output is modified accordingly to the inputs requirements for hydrological models. Indeed, ecPR does not provide information on where the highest total is likely to occur inside the gridbox, nor on the spatial distribution of rainfall values nearby. "Scenario forecasts" could be a solution. They are derived from locating the rainfall peak in sensitive positions (e.g. urban areas), and then redistributing the remaining quantities in the gridbox modifying traditional spatial correlation characterization methodologies (e.g. variogram analysis) in order to take account, for instance, of the type of rainfall forecast (stratiform, convective). Such an approach could be a turning point in the field of medium-range global real-time riverine flood forecasts. This presentation will illustrate for ecPR 1) system calibration, 2) operational implementation, 3) long-term verification, 4) future developments, and 5) early ideas for the application of ecPR outputs in hydrological models.

  3. Purposes and methods of scoring earthquake forecasts

    NASA Astrophysics Data System (ADS)

    Zhuang, J.

    2010-12-01

    There are two kinds of purposes in the studies on earthquake prediction or forecasts: one is to give a systematic estimation of earthquake risks in some particular region and period in order to give advice to governments and enterprises for the use of reducing disasters, the other one is to search for reliable precursors that can be used to improve earthquake prediction or forecasts. For the first case, a complete score is necessary, while for the latter case, a partial score, which can be used to evaluate whether the forecasts or predictions have some advantages than a well know model, is necessary. This study reviews different scoring methods for evaluating the performance of earthquake prediction and forecasts. Especially, the gambling scoring method, which is developed recently, shows its capacity in finding good points in an earthquake prediction algorithm or model that are not in a reference model, even if its overall performance is no better than the reference model.

  4. Comparative Validation of Realtime Solar Wind Forecasting Using the UCSD Heliospheric Tomography Model

    NASA Technical Reports Server (NTRS)

    MacNeice, Peter; Taktakishvili, Alexandra; Jackson, Bernard; Clover, John; Bisi, Mario; Odstrcil, Dusan

    2011-01-01

    The University of California, San Diego 3D Heliospheric Tomography Model reconstructs the evolution of heliospheric structures, and can make forecasts of solar wind density and velocity up to 72 hours in the future. The latest model version, installed and running in realtime at the Community Coordinated Modeling Center(CCMC), analyzes scintillations of meter wavelength radio point sources recorded by the Solar-Terrestrial Environment Laboratory(STELab) together with realtime measurements of solar wind speed and density recorded by the Advanced Composition Explorer(ACE) Solar Wind Electron Proton Alpha Monitor(SWEPAM).The solution is reconstructed using tomographic techniques and a simple kinematic wind model. Since installation, the CCMC has been recording the model forecasts and comparing them with ACE measurements, and with forecasts made using other heliospheric models hosted by the CCMC. We report the preliminary results of this validation work and comparison with alternative models.

  5. Why preferring parametric forecasting to nonparametric methods?

    PubMed

    Jabot, Franck

    2015-05-07

    A recent series of papers by Charles T. Perretti and collaborators have shown that nonparametric forecasting methods can outperform parametric methods in noisy nonlinear systems. Such a situation can arise because of two main reasons: the instability of parametric inference procedures in chaotic systems which can lead to biased parameter estimates, and the discrepancy between the real system dynamics and the modeled one, a problem that Perretti and collaborators call "the true model myth". Should ecologists go on using the demanding parametric machinery when trying to forecast the dynamics of complex ecosystems? Or should they rely on the elegant nonparametric approach that appears so promising? It will be here argued that ecological forecasting based on parametric models presents two key comparative advantages over nonparametric approaches. First, the likelihood of parametric forecasting failure can be diagnosed thanks to simple Bayesian model checking procedures. Second, when parametric forecasting is diagnosed to be reliable, forecasting uncertainty can be estimated on virtual data generated with the fitted to data parametric model. In contrast, nonparametric techniques provide forecasts with unknown reliability. This argumentation is illustrated with the simple theta-logistic model that was previously used by Perretti and collaborators to make their point. It should convince ecologists to stick to standard parametric approaches, until methods have been developed to assess the reliability of nonparametric forecasting. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Marine Point Forecasts

    Science.gov Websites

    with smartphones and other mobile platforms new Marine Point Forecasts are a forecast for a specific maps providing zone/point marine forecasts Mobile, AL Eureka, CA San Francisco, CA Los Angeles, CA San

  7. What If We Had A Magnetograph at Lagrangian L5?

    NASA Technical Reports Server (NTRS)

    Pevtsov, Alexei A.; Bertello, Luca; MacNeice, Peter; Petrie, Gordon

    2016-01-01

    Synoptic Carrington charts of magnetic field are routinely used as an input for modelings of solar wind and other aspects of space weather forecast. However, these maps are constructed using only the observations from the solar hemisphere facing Earth. The evolution of magnetic flux on the "farside" of the Sun, which may affect the topology of coronal field in the "nearside," is largely ignored. It is commonly accepted that placing a magnetograph in Lagrangian L5 point would improve the space weather forecast. However, the quantitative estimates of anticipated improvements have been lacking. We use longitudinal magnetograms from the Synoptic Optical Long-term Investigations of the Sun (SOLIS) to investigate how adding data from L5 point would affect the outcome of two major models used in space weather forecast.

  8. The GISS sounding temperature impact test

    NASA Technical Reports Server (NTRS)

    Halem, M.; Ghil, M.; Atlas, R.; Susskind, J.; Quirk, W. J.

    1978-01-01

    The impact of DST 5 and DST 6 satellite sounding data on mid-range forecasting was studied. The GISS temperature sounding technique, the GISS time-continuous four-dimensional assimilation procedure based on optimal statistical analysis, the GISS forecast model, and the verification techniques developed, including impact on local precipitation forecasts are described. It is found that the impact of sounding data was substantial and beneficial for the winter test period, Jan. 29 - Feb. 21. 1976. Forecasts started from initial state obtained with the aid of satellite data showed a mean improvement of about 4 points in the 48 and 772 hours Sub 1 scores as verified over North America and Europe. This corresponds to an 8 to 12 hour forecast improvement in the forecast range at 48 hours. An automated local precipitation forecast model applied to 128 cities in the United States showed on an average 15% improvement when satellite data was used for numerical forecasts. The improvement was 75% in the midwest.

  9. Spatial Ensemble Postprocessing of Precipitation Forecasts Using High Resolution Analyses

    NASA Astrophysics Data System (ADS)

    Lang, Moritz N.; Schicker, Irene; Kann, Alexander; Wang, Yong

    2017-04-01

    Ensemble prediction systems are designed to account for errors or uncertainties in the initial and boundary conditions, imperfect parameterizations, etc. However, due to sampling errors and underestimation of the model errors, these ensemble forecasts tend to be underdispersive, and to lack both reliability and sharpness. To overcome such limitations, statistical postprocessing methods are commonly applied to these forecasts. In this study, a full-distributional spatial post-processing method is applied to short-range precipitation forecasts over Austria using Standardized Anomaly Model Output Statistics (SAMOS). Following Stauffer et al. (2016), observation and forecast fields are transformed into standardized anomalies by subtracting a site-specific climatological mean and dividing by the climatological standard deviation. Due to the need of fitting only a single regression model for the whole domain, the SAMOS framework provides a computationally inexpensive method to create operationally calibrated probabilistic forecasts for any arbitrary location or for all grid points in the domain simultaneously. Taking advantage of the INCA system (Integrated Nowcasting through Comprehensive Analysis), high resolution analyses are used for the computation of the observed climatology and for model training. The INCA system operationally combines station measurements and remote sensing data into real-time objective analysis fields at 1 km-horizontal resolution and 1 h-temporal resolution. The precipitation forecast used in this study is obtained from a limited area model ensemble prediction system also operated by ZAMG. The so called ALADIN-LAEF provides, by applying a multi-physics approach, a 17-member forecast at a horizontal resolution of 10.9 km and a temporal resolution of 1 hour. The performed SAMOS approach statistically combines the in-house developed high resolution analysis and ensemble prediction system. The station-based validation of 6 hour precipitation sums shows a mean improvement of more than 40% in CRPS when compared to bilinearly interpolated uncalibrated ensemble forecasts. The validation on randomly selected grid points, representing the true height distribution over Austria, still indicates a mean improvement of 35%. The applied statistical model is currently set up for 6-hourly and daily accumulation periods, but will be extended to a temporal resolution of 1-3 hours within a new probabilistic nowcasting system operated by ZAMG.

  10. An Objective Verification of the North American Mesoscale Model for Kennedy Space Center and Cape Canaveral Air Force Station

    NASA Technical Reports Server (NTRS)

    Bauman, William H., III

    2010-01-01

    The 45th Weather Squadron (45 WS) Launch Weather Officers use the 12-km resolution North American Mesoscale (NAM) model (MesoNAM) text and graphical product forecasts extensively to support launch weather operations. However, the actual performance of the model at Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS) has not been measured objectively. In order to have tangible evidence of model performance, the 45 WS tasked the Applied Meteorology Unit to conduct a detailed statistical analysis of model output compared to observed values. The model products are provided to the 45 WS by ACTA, Inc. and include hourly forecasts from 0 to 84 hours based on model initialization times of 00, 06, 12 and 18 UTC. The objective analysis compared the MesoNAM forecast winds, temperature and dew point, as well as the changes in these parameters over time, to the observed values from the sensors in the KSC/CCAFS wind tower network. Objective statistics will give the forecasters knowledge of the model's strength and weaknesses, which will result in improved forecasts for operations.

  11. Performance of the Prognocean Plus system during the El Niño 2015/2016: predictions of sea level anomalies as tools for forecasting El Niño

    NASA Astrophysics Data System (ADS)

    Świerczyńska-Chlaściak, Małgorzata; Niedzielski, Tomasz; Miziński, Bartłomiej

    2017-04-01

    The aim of this paper is to present the performance of the Prognocean Plus system, which produces long-term predictions of sea level anomalies, during the El Niño 2015/2016. The main objective of work is to identify such ocean areas in which long-term forecasts of sea level anomalies during El Niño 2015/2016 reveal a considerable accuracy. At present, the system produces prognoses using four data-based models and their combinations: polynomial-harmonic model, autoregressive model, threshold autoregressive model and multivariate autoregressive model. The system offers weekly forecasts, with lead time up to 12 weeks. Several statistics that describe the efficiency of the available prediction models in four seasons used for estimating Oceanic Niño index (ONI) are calculated. The accuracies/skills of the predicting models were computed in the specific locations in the equatorial Pacific, namely the geometrically-determined central points of all Niño regions. For the said locations, we focused on the forecasts which targeted at the local maximum of sea level, driven by the El Niño 2015/2016. As a result, a series of the "spaghetti" graphs (for each point, season and model) as well as plots presenting the prognostic performance of every model - for all lead times, seasons and locations - were created. It is found that the Prognocean Plus system has a potential to become a new solution which may enhance the diagnostic discussions on the El Niño development. The forecasts produced by the threshold autoregressive model, for lead times of 5-6 weeks and 9 weeks, within the Niño1+2 region for the November-to-January (NDJ) season anticipated the culmination of the El Niño 2015/2016. The longest forecasts (8-12 weeks) were found to be the most accurate in the phase of transition from El Niño to normal conditions (the multivariate autoregressive model, central point of Niño1+2 region, the December-to-February season). The study was conducted to verify the ability and usefulness of sea level anomaly forecasts in predicting phenomena that are controlled by the ocean-atmosphere processes, such as El Niño Southern Oscillation or North Atlantic Oscillation. The results may support further investigations into long-term forecasting of the quantitative indices of these oscillations, solely based on prognoses of sea level change. In particular, comparing the accuracies of prognoses of the North Atlantic Oscillation index remains one of the tasks of the research project no. 2016/21/N/ST10/03231, financed by the National Science Center of Poland.

  12. Design and development of surface rainfall forecast products on GRAPES_MESO model

    NASA Astrophysics Data System (ADS)

    Zhili, Liu

    2016-04-01

    In this paper, we designed and developed the surface rainfall forecast products using medium scale GRAPES_MESO model precipitation forecast products. The horizontal resolution of GRAPES_MESO model is 10km*10km, the number of Grids points is 751*501, vertical levels is 26, the range is 70°E-145.15°E, 15°N-64.35 °N. We divided the basin into 7 major watersheds. Each watersheds was divided into a number of sub regions. There were 95 sub regions in all. Tyson polygon method is adopted in the calculation of surface rainfall. We used 24 hours forecast precipitation data of GRAPES_MESO model to calculate the surface rainfall. According to the site of information and boundary information of the 95 sub regions, the forecast surface rainfall of each sub regions was calculated. We can provide real-time surface rainfall forecast products every day. We used the method of fuzzy evaluation to carry out a preliminary test and verify about the surface rainfall forecast product. Results shows that the fuzzy score of heavy rain, rainstorm and downpour level forecast rainfall were higher, the fuzzy score of light rain level was lower. The forecast effect of heavy rain, rainstorm and downpour level surface rainfall were better. The rate of missing and empty forecast of light rainfall level surface rainfall were higher, so it's fuzzy score were lower.

  13. Forecasting Responses of a Northern Peatland Carbon Cycle to Elevated CO2 and a Gradient of Experimental Warming

    NASA Astrophysics Data System (ADS)

    Jiang, Jiang; Huang, Yuanyuan; Ma, Shuang; Stacy, Mark; Shi, Zheng; Ricciuto, Daniel M.; Hanson, Paul J.; Luo, Yiqi

    2018-03-01

    The ability to forecast ecological carbon cycling is imperative to land management in a world where past carbon fluxes are no longer a clear guide in the Anthropocene. However, carbon-flux forecasting has not been practiced routinely like numerical weather prediction. This study explored (1) the relative contributions of model forcing data and parameters to uncertainty in forecasting flux- versus pool-based carbon cycle variables and (2) the time points when temperature and CO2 treatments may cause statistically detectable differences in those variables. We developed an online forecasting workflow (Ecological Platform for Assimilation of Data (EcoPAD)), which facilitates iterative data-model integration. EcoPAD automates data transfer from sensor networks, data assimilation, and ecological forecasting. We used the Spruce and Peatland Responses Under Changing Experiments data collected from 2011 to 2014 to constrain the parameters in the Terrestrial Ecosystem Model, forecast carbon cycle responses to elevated CO2 and a gradient of warming from 2015 to 2024, and specify uncertainties in the model output. Our results showed that data assimilation substantially reduces forecasting uncertainties. Interestingly, we found that the stochasticity of future external forcing contributed more to the uncertainty of forecasting future dynamics of C flux-related variables than model parameters. However, the parameter uncertainty primarily contributes to the uncertainty in forecasting C pool-related response variables. Given the uncertainties in forecasting carbon fluxes and pools, our analysis showed that statistically different responses of fast-turnover pools to various CO2 and warming treatments were observed sooner than slow-turnover pools. Our study has identified the sources of uncertainties in model prediction and thus leads to improve ecological carbon cycling forecasts in the future.

  14. Forecasting the Emergency Department Patients Flow.

    PubMed

    Afilal, Mohamed; Yalaoui, Farouk; Dugardin, Frédéric; Amodeo, Lionel; Laplanche, David; Blua, Philippe

    2016-07-01

    Emergency department (ED) have become the patient's main point of entrance in modern hospitals causing it frequent overcrowding, thus hospital managers are increasingly paying attention to the ED in order to provide better quality service for patients. One of the key elements for a good management strategy is demand forecasting. In this case, forecasting patients flow, which will help decision makers to optimize human (doctors, nurses…) and material(beds, boxs…) resources allocation. The main interest of this research is forecasting daily attendance at an emergency department. The study was conducted on the Emergency Department of Troyes city hospital center, France, in which we propose a new practical ED patients classification that consolidate the CCMU and GEMSA categories into one category and innovative time-series based models to forecast long and short term daily attendance. The models we developed for this case study shows very good performances (up to 91,24 % for the annual Total flow forecast) and robustness to epidemic periods.

  15. Statistical Correction of Air Temperature Forecasts for City and Road Weather Applications

    NASA Astrophysics Data System (ADS)

    Mahura, Alexander; Petersen, Claus; Sass, Bent; Gilet, Nicolas

    2014-05-01

    The method for statistical correction of air /road surface temperatures forecasts was developed based on analysis of long-term time-series of meteorological observations and forecasts (from HIgh Resolution Limited Area Model & Road Conditions Model; 3 km horizontal resolution). It has been tested for May-Aug 2012 & Oct 2012 - Mar 2013, respectively. The developed method is based mostly on forecasted meteorological parameters with a minimal inclusion of observations (covering only a pre-history period). Although the st iteration correction is based taking into account relevant temperature observations, but the further adjustment of air and road temperature forecasts is based purely on forecasted meteorological parameters. The method is model independent, e.g. it can be applied for temperature correction with other types of models having different horizontal resolutions. It is relatively fast due to application of the singular value decomposition method for matrix solution to find coefficients. Moreover, there is always a possibility for additional improvement due to extra tuning of the temperature forecasts for some locations (stations), and in particular, where for example, the MAEs are generally higher compared with others (see Gilet et al., 2014). For the city weather applications, new operationalized procedure for statistical correction of the air temperature forecasts has been elaborated and implemented for the HIRLAM-SKA model runs at 00, 06, 12, and 18 UTCs covering forecast lengths up to 48 hours. The procedure includes segments for extraction of observations and forecast data, assigning these to forecast lengths, statistical correction of temperature, one-&multi-days statistical evaluation of model performance, decision-making on using corrections by stations, interpolation, visualisation and storage/backup. Pre-operational air temperature correction runs were performed for the mainland Denmark since mid-April 2013 and shown good results. Tests also showed that the CPU time required for the operational procedure is relatively short (less than 15 minutes including a large time spent for interpolation). These also showed that in order to start correction of forecasts there is no need to have a long-term pre-historical data (containing forecasts and observations) and, at least, a couple of weeks will be sufficient when a new observational station is included and added to the forecast point. Note for the road weather application, the operationalization of the statistical correction of the road surface temperature forecasts (for the RWM system daily hourly runs covering forecast length up to 5 hours ahead) for the Danish road network (for about 400 road stations) was also implemented, and it is running in a test mode since Sep 2013. The method can also be applied for correction of the dew point temperature and wind speed (as a part of observations/ forecasts at synoptical stations), where these both meteorological parameters are parts of the proposed system of equations. The evaluation of the method performance for improvement of the wind speed forecasts is planned as well, with considering possibilities for the wind direction improvements (which is more complex due to multi-modal types of such data distribution). The method worked for the entire domain of mainland Denmark (tested for 60 synoptical and 395 road stations), and hence, it can be also applied for any geographical point within this domain, as through interpolation to about 100 cities' locations (for Danish national byvejr forecasts). Moreover, we can assume that the same method can be used in other geographical areas. The evaluation for other domains (with a focus on Greenland and Nordic countries) is planned. In addition, a similar approach might be also tested for statistical correction of concentrations of chemical species, but such approach will require additional elaboration and evaluation.

  16. HexSim: A flexible simulation model for forecasting wildlife responses to multiple interacting stressors

    EPA Science Inventory

    With SERDP funding, we have improved upon a popular life history simulator (PATCH), and in doing so produced a powerful new forecasting tool (HexSim). PATCH, our starting point, was spatially explicit and individual-based, and was useful for evaluating a range of terrestrial lif...

  17. Space Weather Products at the Community Coordinated Modeling Center

    NASA Technical Reports Server (NTRS)

    Hesse, Michael; Kuznetsova, M.; Pulkkinen, A.; Maddox, M.; Rastaetter, L.; Berrios, D.; MacNeice, P.

    2010-01-01

    The Community Coordinated Modeling Center (CCMC) is a US inter-agency activity aiming at research in support of the generation of advanced space weather models. As one of its main functions, the CCMC provides to researchers the use of space science models, even if they are not model owners themselves. The second CCMC activity is to support Space Weather forecasting at national Space Weather Forecasting Centers. This second activity involves model evaluations, model transitions to operations, and the development of space weather forecasting tools. Owing to the pace of development in the science community, new model capabilities emerge frequently. Consequently, space weather products and tools involve not only increased validity, but often entirely new capabilities. This presentation will review the present state of space weather tools as well as point out emerging future capabilities.

  18. Introducing an operational method to forecast long-term regional drought based on the application of artificial intelligence capabilities

    NASA Astrophysics Data System (ADS)

    Kousari, Mohammad Reza; Hosseini, Mitra Esmaeilzadeh; Ahani, Hossein; Hakimelahi, Hemila

    2017-01-01

    An effective forecast of the drought definitely gives lots of advantages in regard to the management of water resources being used in agriculture, industry, and households consumption. To introduce such a model applying simple data inputs, in this study a regional drought forecast method on the basis of artificial intelligence capabilities (artificial neural networks) and Standardized Precipitation Index (SPI in 3, 6, 9, 12, 18, and 24 monthly series) has been presented in Fars Province of Iran. The precipitation data of 41 rain gauge stations were applied for computing SPI values. Besides, weather signals including Multivariate ENSO Index (MEI), North Atlantic Oscillation (NAO), Southern Oscillation Index (SOI), NINO1+2, anomaly NINO1+2, NINO3, anomaly NINO3, NINO4, anomaly NINO4, NINO3.4, and anomaly NINO3.4 were also used as the predictor variables for SPI time series forecast the next 12 months. Frequent testing and validating steps were considered to obtain the best artificial neural networks (ANNs) models. The forecasted values were mapped in verification sector then they were compared with the observed maps at the same dates. Results showed considerable spatial and temporal relationships even among the maps of different SPI time series. Also, the first 6 months forecasted maps showed an average of 73 % agreements with the observed ones. The most important finding and the strong point of this study was the fact that although drought forecast in each station and time series was completely independent, the relationships between spatial and temporal predictions remained. This strong point mainly referred to frequent testing and validating steps in order to explore the best drought forecast models from plenty of produced ANNs models. Finally, wherever the precipitation data are available, the practical application of the presented method is possible.

  19. Real-time forecasting of an epidemic using a discrete time stochastic model: a case study of pandemic influenza (H1N1-2009).

    PubMed

    Nishiura, Hiroshi

    2011-02-16

    Real-time forecasting of epidemics, especially those based on a likelihood-based approach, is understudied. This study aimed to develop a simple method that can be used for the real-time epidemic forecasting. A discrete time stochastic model, accounting for demographic stochasticity and conditional measurement, was developed and applied as a case study to the weekly incidence of pandemic influenza (H1N1-2009) in Japan. By imposing a branching process approximation and by assuming the linear growth of cases within each reporting interval, the epidemic curve is predicted using only two parameters. The uncertainty bounds of the forecasts are computed using chains of conditional offspring distributions. The quality of the forecasts made before the epidemic peak appears largely to depend on obtaining valid parameter estimates. The forecasts of both weekly incidence and final epidemic size greatly improved at and after the epidemic peak with all the observed data points falling within the uncertainty bounds. Real-time forecasting using the discrete time stochastic model with its simple computation of the uncertainty bounds was successful. Because of the simplistic model structure, the proposed model has the potential to additionally account for various types of heterogeneity, time-dependent transmission dynamics and epidemiological details. The impact of such complexities on forecasting should be explored when the data become available as part of the disease surveillance.

  20. Baseline and target values for regional and point PV power forecasts: Toward improved solar forecasting

    DOE PAGES

    Zhang, Jie; Hodge, Bri -Mathias; Lu, Siyuan; ...

    2015-11-10

    Accurate solar photovoltaic (PV) power forecasting allows utilities to reliably utilize solar resources on their systems. However, to truly measure the improvements that any new solar forecasting methods provide, it is important to develop a methodology for determining baseline and target values for the accuracy of solar forecasting at different spatial and temporal scales. This paper aims at developing a framework to derive baseline and target values for a suite of generally applicable, value-based, and custom-designed solar forecasting metrics. The work was informed by close collaboration with utility and independent system operator partners. The baseline values are established based onmore » state-of-the-art numerical weather prediction models and persistence models in combination with a radiative transfer model. The target values are determined based on the reduction in the amount of reserves that must be held to accommodate the uncertainty of PV power output. The proposed reserve-based methodology is a reasonable and practical approach that can be used to assess the economic benefits gained from improvements in accuracy of solar forecasting. Lastly, the financial baseline and targets can be translated back to forecasting accuracy metrics and requirements, which will guide research on solar forecasting improvements toward the areas that are most beneficial to power systems operations.« less

  1. A comparative verification of high resolution precipitation forecasts using model output statistics

    NASA Astrophysics Data System (ADS)

    van der Plas, Emiel; Schmeits, Maurice; Hooijman, Nicolien; Kok, Kees

    2017-04-01

    Verification of localized events such as precipitation has become even more challenging with the advent of high-resolution meso-scale numerical weather prediction (NWP). The realism of a forecast suggests that it should compare well against precipitation radar imagery with similar resolution, both spatially and temporally. Spatial verification methods solve some of the representativity issues that point verification gives rise to. In this study a verification strategy based on model output statistics is applied that aims to address both double penalty and resolution effects that are inherent to comparisons of NWP models with different resolutions. Using predictors based on spatial precipitation patterns around a set of stations, an extended logistic regression (ELR) equation is deduced, leading to a probability forecast distribution of precipitation for each NWP model, analysis and lead time. The ELR equations are derived for predictands based on areal calibrated radar precipitation and SYNOP observations. The aim is to extract maximum information from a series of precipitation forecasts, like a trained forecaster would. The method is applied to the non-hydrostatic model Harmonie (2.5 km resolution), Hirlam (11 km resolution) and the ECMWF model (16 km resolution), overall yielding similar Brier skill scores for the 3 post-processed models, but larger differences for individual lead times. Besides, the Fractions Skill Score is computed using the 3 deterministic forecasts, showing somewhat better skill for the Harmonie model. In other words, despite the realism of Harmonie precipitation forecasts, they only perform similarly or somewhat better than precipitation forecasts from the 2 lower resolution models, at least in the Netherlands.

  2. Multivariate time series modeling of short-term system scale irrigation demand

    NASA Astrophysics Data System (ADS)

    Perera, Kushan C.; Western, Andrew W.; George, Biju; Nawarathna, Bandara

    2015-12-01

    Travel time limits the ability of irrigation system operators to react to short-term irrigation demand fluctuations that result from variations in weather, including very hot periods and rainfall events, as well as the various other pressures and opportunities that farmers face. Short-term system-wide irrigation demand forecasts can assist in system operation. Here we developed a multivariate time series (ARMAX) model to forecast irrigation demands with respect to aggregated service points flows (IDCGi, ASP) and off take regulator flows (IDCGi, OTR) based across 5 command areas, which included area covered under four irrigation channels and the study area. These command area specific ARMAX models forecast 1-5 days ahead daily IDCGi, ASP and IDCGi, OTR using the real time flow data recorded at the service points and the uppermost regulators and observed meteorological data collected from automatic weather stations. The model efficiency and the predictive performance were quantified using the root mean squared error (RMSE), Nash-Sutcliffe model efficiency coefficient (NSE), anomaly correlation coefficient (ACC) and mean square skill score (MSSS). During the evaluation period, NSE for IDCGi, ASP and IDCGi, OTR across 5 command areas were ranged 0.98-0.78. These models were capable of generating skillful forecasts (MSSS ⩾ 0.5 and ACC ⩾ 0.6) of IDCGi, ASP and IDCGi, OTR for all 5 lead days and IDCGi, ASP and IDCGi, OTR forecasts were better than using the long term monthly mean irrigation demand. Overall these predictive performance from the ARMAX time series models were higher than almost all the previous studies we are aware. Further, IDCGi, ASP and IDCGi, OTR forecasts have improved the operators' ability to react for near future irrigation demand fluctuations as the developed ARMAX time series models were self-adaptive to reflect the short-term changes in the irrigation demand with respect to various pressures and opportunities that farmers' face, such as changing water policy, continued development of water markets, drought and changing technology.

  3. Skilful rainfall forecasts from artificial neural networks with long duration series and single-month optimization

    NASA Astrophysics Data System (ADS)

    Abbot, John; Marohasy, Jennifer

    2017-11-01

    General circulation models, which forecast by first modelling actual conditions in the atmosphere and ocean, are used extensively for monthly rainfall forecasting. We show how more skilful monthly and seasonal rainfall forecasts can be achieved through the mining of historical climate data using artificial neural networks (ANNs). This technique is demonstrated for two agricultural regions of Australia: the wheat belt of Western Australia and the sugar growing region of coastal Queensland. The most skilful monthly rainfall forecasts measured in terms of Ideal Point Error (IPE), and a score relative to climatology, are consistently achieved through the use of ANNs optimized for each month individually, and also by choosing to input longer historical series of climate indices. Using the longer series restricts the number of climate indices that can be used.

  4. Bayesian analyses of seasonal runoff forecasts

    NASA Astrophysics Data System (ADS)

    Krzysztofowicz, R.; Reese, S.

    1991-12-01

    Forecasts of seasonal snowmelt runoff volume provide indispensable information for rational decision making by water project operators, irrigation district managers, and farmers in the western United States. Bayesian statistical models and communication frames have been researched in order to enhance the forecast information disseminated to the users, and to characterize forecast skill from the decision maker's point of view. Four products are presented: (i) a Bayesian Processor of Forecasts, which provides a statistical filter for calibrating the forecasts, and a procedure for estimating the posterior probability distribution of the seasonal runoff; (ii) the Bayesian Correlation Score, a new measure of forecast skill, which is related monotonically to the ex ante economic value of forecasts for decision making; (iii) a statistical predictor of monthly cumulative runoffs within the snowmelt season, conditional on the total seasonal runoff forecast; and (iv) a framing of the forecast message that conveys the uncertainty associated with the forecast estimates to the users. All analyses are illustrated with numerical examples of forecasts for six gauging stations from the period 1971 1988.

  5. An Objective Verification of the North American Mesoscale Model for Kennedy Space Center and Cape Canaveral Air Force Station

    NASA Technical Reports Server (NTRS)

    Bauman, William H., III

    2010-01-01

    The 45th Weather Squadron (45 WS) Launch Weather Officers (LWO's) use the 12-km resolution North American Mesoscale (NAM) model (MesoNAM) text and graphical product forecasts extensively to support launch weather operations. However, the actual performance of the model at Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS) has not been measured objectively. In order to have tangible evidence of model performance, the 45 WS tasked the Applied Meteorology Unit (AMU; Bauman et ai, 2004) to conduct a detailed statistical analysis of model output compared to observed values. The model products are provided to the 45 WS by ACTA, Inc. and include hourly forecasts from 0 to 84 hours based on model initialization times of 00, 06, 12 and 18 UTC. The objective analysis compared the MesoNAM forecast winds, temperature (T) and dew pOint (T d), as well as the changes in these parameters over time, to the observed values from the sensors in the KSC/CCAFS wind tower network shown in Table 1. These objective statistics give the forecasters knowledge of the model's strengths and weaknesses, which will result in improved forecasts for operations.

  6. Using phenomenological models for forecasting the 2015 Ebola challenge.

    PubMed

    Pell, Bruce; Kuang, Yang; Viboud, Cecile; Chowell, Gerardo

    2018-03-01

    The rising number of novel pathogens threatening the human population has motivated the application of mathematical modeling for forecasting the trajectory and size of epidemics. We summarize the real-time forecasting results of the logistic equation during the 2015 Ebola challenge focused on predicting synthetic data derived from a detailed individual-based model of Ebola transmission dynamics and control. We also carry out a post-challenge comparison of two simple phenomenological models. In particular, we systematically compare the logistic growth model and a recently introduced generalized Richards model (GRM) that captures a range of early epidemic growth profiles ranging from sub-exponential to exponential growth. Specifically, we assess the performance of each model for estimating the reproduction number, generate short-term forecasts of the epidemic trajectory, and predict the final epidemic size. During the challenge the logistic equation consistently underestimated the final epidemic size, peak timing and the number of cases at peak timing with an average mean absolute percentage error (MAPE) of 0.49, 0.36 and 0.40, respectively. Post-challenge, the GRM which has the flexibility to reproduce a range of epidemic growth profiles ranging from early sub-exponential to exponential growth dynamics outperformed the logistic growth model in ascertaining the final epidemic size as more incidence data was made available, while the logistic model underestimated the final epidemic even with an increasing amount of data of the evolving epidemic. Incidence forecasts provided by the generalized Richards model performed better across all scenarios and time points than the logistic growth model with mean RMS decreasing from 78.00 (logistic) to 60.80 (GRM). Both models provided reasonable predictions of the effective reproduction number, but the GRM slightly outperformed the logistic growth model with a MAPE of 0.08 compared to 0.10, averaged across all scenarios and time points. Our findings further support the consideration of transmission models that incorporate flexible early epidemic growth profiles in the forecasting toolkit. Such models are particularly useful for quickly evaluating a developing infectious disease outbreak using only case incidence time series of the early phase of an infectious disease outbreak. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  7. An improved car-following model from the perspective of driver’s forecast behavior

    NASA Astrophysics Data System (ADS)

    Liu, Da-Wei; Shi, Zhong-Ke; Ai, Wen-Huan

    In this paper, a new car-following model considering effect of the driver’s forecast behavior is proposed based on the full velocity difference model (FVDM). Using the new model, we investigate the starting process of the vehicle motion under a traffic signal and find that the delay time of vehicle motion is reduced. Then the stability condition of the new model is derived and the modified Korteweg-de Vries (mKdV) equation is constructed to describe the traffic behavior near the critical point. Numerical simulation is compatible with the analysis of theory such as density wave, hysteresis loop, which shows that the new model is reasonable. The results show that considering the effect of driver’s forecast behavior can help to enhance the stability of traffic flow.

  8. HexSim: A flexible simulation model for forecasting wildlife responses to multiple interacting stressors - ESRP Meeting

    EPA Science Inventory

    With SERDP funding, we have improved upon a popular life history simulator (PATCH), and indoing so produced a powerful new forecasting tool (HexSim). PATCH, our starting point, was spatially explicit and individual-based, and was useful for evaluating a range of terrestrial life...

  9. Multi-Step Time Series Forecasting with an Ensemble of Varied Length Mixture Models.

    PubMed

    Ouyang, Yicun; Yin, Hujun

    2018-05-01

    Many real-world problems require modeling and forecasting of time series, such as weather temperature, electricity demand, stock prices and foreign exchange (FX) rates. Often, the tasks involve predicting over a long-term period, e.g. several weeks or months. Most existing time series models are inheritably for one-step prediction, that is, predicting one time point ahead. Multi-step or long-term prediction is difficult and challenging due to the lack of information and uncertainty or error accumulation. The main existing approaches, iterative and independent, either use one-step model recursively or treat the multi-step task as an independent model. They generally perform poorly in practical applications. In this paper, as an extension of the self-organizing mixture autoregressive (AR) model, the varied length mixture (VLM) models are proposed to model and forecast time series over multi-steps. The key idea is to preserve the dependencies between the time points within the prediction horizon. Training data are segmented to various lengths corresponding to various forecasting horizons, and the VLM models are trained in a self-organizing fashion on these segments to capture these dependencies in its component AR models of various predicting horizons. The VLM models form a probabilistic mixture of these varied length models. A combination of short and long VLM models and an ensemble of them are proposed to further enhance the prediction performance. The effectiveness of the proposed methods and their marked improvements over the existing methods are demonstrated through a number of experiments on synthetic data, real-world FX rates and weather temperatures.

  10. Using a Software Tool in Forecasting: a Case Study of Sales Forecasting Taking into Account Data Uncertainty

    NASA Astrophysics Data System (ADS)

    Fabianová, Jana; Kačmáry, Peter; Molnár, Vieroslav; Michalik, Peter

    2016-10-01

    Forecasting is one of the logistics activities and a sales forecast is the starting point for the elaboration of business plans. Forecast accuracy affects the business outcomes and ultimately may significantly affect the economic stability of the company. The accuracy of the prediction depends on the suitability of the use of forecasting methods, experience, quality of input data, time period and other factors. The input data are usually not deterministic but they are often of random nature. They are affected by uncertainties of the market environment, and many other factors. Taking into account the input data uncertainty, the forecast error can by reduced. This article deals with the use of the software tool for incorporating data uncertainty into forecasting. Proposals are presented of a forecasting approach and simulation of the impact of uncertain input parameters to the target forecasted value by this case study model. The statistical analysis and risk analysis of the forecast results is carried out including sensitivity analysis and variables impact analysis.

  11. Adaptive Blending of Model and Observations for Automated Short-Range Forecasting: Examples from the Vancouver 2010 Olympic and Paralympic Winter Games

    NASA Astrophysics Data System (ADS)

    Bailey, Monika E.; Isaac, George A.; Gultepe, Ismail; Heckman, Ivan; Reid, Janti

    2014-01-01

    An automated short-range forecasting system, adaptive blending of observations and model (ABOM), was tested in real time during the 2010 Vancouver Olympic and Paralympic Winter Games in British Columbia. Data at 1-min time resolution were available from a newly established, dense network of surface observation stations. Climatological data were not available at these new stations. This, combined with output from new high-resolution numerical models, provided a unique and exciting setting to test nowcasting systems in mountainous terrain during winter weather conditions. The ABOM method blends extrapolations in time of recent local observations with numerical weather predictions (NWP) model predictions to generate short-range point forecasts of surface variables out to 6 h. The relative weights of the model forecast and the observation extrapolation are based on performance over recent history. The average performance of ABOM nowcasts during February and March 2010 was evaluated using standard scores and thresholds important for Olympic events. Significant improvements over the model forecasts alone were obtained for continuous variables such as temperature, relative humidity and wind speed. The small improvements to forecasts of variables such as visibility and ceiling, subject to discontinuous changes, are attributed to the persistence component of ABOM.

  12. Evaluation of the 29-km Eta Model. Part 1; Objective Verification at Three Selected Stations

    NASA Technical Reports Server (NTRS)

    Nutter, Paul A.; Manobianco, John; Merceret, Francis J. (Technical Monitor)

    1998-01-01

    This paper describes an objective verification of the National Centers for Environmental Prediction (NCEP) 29-km eta model from May 1996 through January 1998. The evaluation was designed to assess the model's surface and upper-air point forecast accuracy at three selected locations during separate warm (May - August) and cool (October - January) season periods. In order to enhance sample sizes available for statistical calculations, the objective verification includes two consecutive warm and cool season periods. Systematic model deficiencies comprise the larger portion of the total error in most of the surface forecast variables that were evaluated. The error characteristics for both surface and upper-air forecasts vary widely by parameter, season, and station location. At upper levels, a few characteristic biases are identified. Overall however, the upper-level errors are more nonsystematic in nature and could be explained partly by observational measurement uncertainty. With a few exceptions, the upper-air results also indicate that 24-h model error growth is not statistically significant. In February and August 1997, NCEP implemented upgrades to the eta model's physical parameterizations that were designed to change some of the model's error characteristics near the surface. The results shown in this paper indicate that these upgrades led to identifiable and statistically significant changes in forecast accuracy for selected surface parameters. While some of the changes were expected, others were not consistent with the intent of the model updates and further emphasize the need for ongoing sensitivity studies and localized statistical verification efforts. Objective verification of point forecasts is a stringent measure of model performance, but when used alone, is not enough to quantify the overall value that model guidance may add to the forecast process. Therefore, results from a subjective verification of the meso-eta model over the Florida peninsula are discussed in the companion paper by Manobianco and Nutter. Overall verification results presented here and in part two should establish a reasonable benchmark from which model users and developers may pursue the ongoing eta model verification strategies in the future.

  13. Weather forecasting based on hybrid neural model

    NASA Astrophysics Data System (ADS)

    Saba, Tanzila; Rehman, Amjad; AlGhamdi, Jarallah S.

    2017-11-01

    Making deductions and expectations about climate has been a challenge all through mankind's history. Challenges with exact meteorological directions assist to foresee and handle problems well in time. Different strategies have been investigated using various machine learning techniques in reported forecasting systems. Current research investigates climate as a major challenge for machine information mining and deduction. Accordingly, this paper presents a hybrid neural model (MLP and RBF) to enhance the accuracy of weather forecasting. Proposed hybrid model ensure precise forecasting due to the specialty of climate anticipating frameworks. The study concentrates on the data representing Saudi Arabia weather forecasting. The main input features employed to train individual and hybrid neural networks that include average dew point, minimum temperature, maximum temperature, mean temperature, average relative moistness, precipitation, normal wind speed, high wind speed and average cloudiness. The output layer composed of two neurons to represent rainy and dry weathers. Moreover, trial and error approach is adopted to select an appropriate number of inputs to the hybrid neural network. Correlation coefficient, RMSE and scatter index are the standard yard sticks adopted for forecast accuracy measurement. On individual standing MLP forecasting results are better than RBF, however, the proposed simplified hybrid neural model comes out with better forecasting accuracy as compared to both individual networks. Additionally, results are better than reported in the state of art, using a simple neural structure that reduces training time and complexity.

  14. Short-term load forecasting using neural network for future smart grid application

    NASA Astrophysics Data System (ADS)

    Zennamo, Joseph Anthony, III

    Short-term load forecasting of power system has been a classic problem for a long time. Not merely it has been researched extensively and intensively, but also a variety of forecasting methods has been raised. This thesis outlines some aspects and functions of smart meter. It also presents different policies and current statuses as well as future projects and objectives of SG development in several countries. Then the thesis compares main aspects about latest products of smart meter from different companies. Lastly, three types of prediction models are established in MATLAB to emulate the functions of smart grid in the short-term load forecasting, and then their results are compared and analyzed in terms of accuracy. For this thesis, more variables such as dew point temperature are used in the Neural Network model to achieve more accuracy for better short-term load forecasting results.

  15. Real-time forecasting of an epidemic using a discrete time stochastic model: a case study of pandemic influenza (H1N1-2009)

    PubMed Central

    2011-01-01

    Background Real-time forecasting of epidemics, especially those based on a likelihood-based approach, is understudied. This study aimed to develop a simple method that can be used for the real-time epidemic forecasting. Methods A discrete time stochastic model, accounting for demographic stochasticity and conditional measurement, was developed and applied as a case study to the weekly incidence of pandemic influenza (H1N1-2009) in Japan. By imposing a branching process approximation and by assuming the linear growth of cases within each reporting interval, the epidemic curve is predicted using only two parameters. The uncertainty bounds of the forecasts are computed using chains of conditional offspring distributions. Results The quality of the forecasts made before the epidemic peak appears largely to depend on obtaining valid parameter estimates. The forecasts of both weekly incidence and final epidemic size greatly improved at and after the epidemic peak with all the observed data points falling within the uncertainty bounds. Conclusions Real-time forecasting using the discrete time stochastic model with its simple computation of the uncertainty bounds was successful. Because of the simplistic model structure, the proposed model has the potential to additionally account for various types of heterogeneity, time-dependent transmission dynamics and epidemiological details. The impact of such complexities on forecasting should be explored when the data become available as part of the disease surveillance. PMID:21324153

  16. How is the weather? Forecasting inpatient glycemic control

    PubMed Central

    Saulnier, George E; Castro, Janna C; Cook, Curtiss B; Thompson, Bithika M

    2017-01-01

    Aim: Apply methods of damped trend analysis to forecast inpatient glycemic control. Method: Observed and calculated point-of-care blood glucose data trends were determined over 62 weeks. Mean absolute percent error was used to calculate differences between observed and forecasted values. Comparisons were drawn between model results and linear regression forecasting. Results: The forecasted mean glucose trends observed during the first 24 and 48 weeks of projections compared favorably to the results provided by linear regression forecasting. However, in some scenarios, the damped trend method changed inferences compared with linear regression. In all scenarios, mean absolute percent error values remained below the 10% accepted by demand industries. Conclusion: Results indicate that forecasting methods historically applied within demand industries can project future inpatient glycemic control. Additional study is needed to determine if forecasting is useful in the analyses of other glucometric parameters and, if so, how to apply the techniques to quality improvement. PMID:29134125

  17. Supplier Short Term Load Forecasting Using Support Vector Regression and Exogenous Input

    NASA Astrophysics Data System (ADS)

    Matijaš, Marin; Vukićcević, Milan; Krajcar, Slavko

    2011-09-01

    In power systems, task of load forecasting is important for keeping equilibrium between production and consumption. With liberalization of electricity markets, task of load forecasting changed because each market participant has to forecast their own load. Consumption of end-consumers is stochastic in nature. Due to competition, suppliers are not in a position to transfer their costs to end-consumers; therefore it is essential to keep forecasting error as low as possible. Numerous papers are investigating load forecasting from the perspective of the grid or production planning. We research forecasting models from the perspective of a supplier. In this paper, we investigate different combinations of exogenous input on the simulated supplier loads and show that using points of delivery as a feature for Support Vector Regression leads to lower forecasting error, while adding customer number in different datasets does the opposite.

  18. Forecasting approaches to the Mekong River

    NASA Astrophysics Data System (ADS)

    Plate, E. J.

    2009-04-01

    Hydrologists distinguish between flood forecasts, which are concerned with events of the immediate future, and flood predictions, which are concerned with events that are possible, but whose date of occurrence is not determined. Although in principle both involve the determination of runoff from rainfall, the analytical approaches differ because of different objectives. The differences between the two approaches will be discussed, starting with an analysis of the forecasting process. The Mekong River in south-east Asia is used as an example. Prediction is defined as forecast for a hypothetical event, such as the 100-year flood, which is usually sufficiently specified by its magnitude and its probability of occurrence. It forms the basis for designing flood protection structures and risk management activities. The method for determining these quantities is hydrological modeling combined with extreme value statistics, today usually applied both to rainfall events and to observed river discharges. A rainfall-runoff model converts extreme rainfall events into extreme discharges, which at certain gage points along a river are calibrated against observed discharges. The quality of the model output is assessed against the mean value by means of the Nash-Sutcliffe quality criterion. The result of this procedure is a design hydrograph (or a family of design hydrographs) which are used as inputs into a hydraulic model, which converts the hydrograph into design water levels according to the hydraulic situation of the location. The accuracy of making a prediction in this sense is not particularly high: hydrologists know that the 100-year flood is a statistical quantity which can be estimated only within comparatively wide error bounds, and the hydraulics of a river site, in particular under conditions of heavy sediment loads has many uncertainties. Safety margins, such as additional freeboards are arranged to compensate for the uncertainty of the prediction. Forecasts, on the other hand, have as objective to obtain an accurate hydrograph of the near future. The method by means of which this is done is not as important as the accuracy of the forecast. A mathematical rainfall-runoff model is not necessarily a good forecast model. It has to be very carefully designed, and in many cases statistical models are found to give better results than mathematical models. Forecasters have the advantage of knowing the course of the hydrographs up to the point in time where forecasts have to be made. Therefore, models can be calibrated on line against the hydrograph of the immediate past. To assess the quality of a forecast, the quality criterion should not be based on the mean value, as does the Nash-Sutcliffe criterion, but should be based on the best forecast given the information up to the forecast time. Without any additional information, the best forecast when only the present day value is known is to assume a no-change scenario, i.e. to assume that the present value does not change in the immediate future. For the Mekong there exists a forecasting system which is based on a rainfall-runoff model operated by the Mekong River Commission. This model is found not to be adequate for forecasting for periods longer than one or two days ahead. Improvements are sought through two approaches: a strictly deterministic rainfall-runoff model, and a strictly statistical model based on regression with upstream stations. The two approaches are com-pared, and suggestions are made how to best combine the advantages of both approaches. This requires that due consideration is given to critical hydraulic conditions of the river at and in between the gauging stations. Critical situations occur in two ways: when the river overtops, in which case the rainfall-runoff model is incomplete unless overflow losses are considered, and at the confluence with tributaries. Of particular importance is the role of the large Tonle Sap Lake, which dampens the hydrograph downstream of Phnom Penh. The effect of these components of river hydraulics on forecasting accuracy will be assessed.

  19. A genetic-algorithm-based remnant grey prediction model for energy demand forecasting.

    PubMed

    Hu, Yi-Chung

    2017-01-01

    Energy demand is an important economic index, and demand forecasting has played a significant role in drawing up energy development plans for cities or countries. As the use of large datasets and statistical assumptions is often impractical to forecast energy demand, the GM(1,1) model is commonly used because of its simplicity and ability to characterize an unknown system by using a limited number of data points to construct a time series model. This paper proposes a genetic-algorithm-based remnant GM(1,1) (GARGM(1,1)) with sign estimation to further improve the forecasting accuracy of the original GM(1,1) model. The distinctive feature of GARGM(1,1) is that it simultaneously optimizes the parameter specifications of the original and its residual models by using the GA. The results of experiments pertaining to a real case of energy demand in China showed that the proposed GARGM(1,1) outperforms other remnant GM(1,1) variants.

  20. A genetic-algorithm-based remnant grey prediction model for energy demand forecasting

    PubMed Central

    2017-01-01

    Energy demand is an important economic index, and demand forecasting has played a significant role in drawing up energy development plans for cities or countries. As the use of large datasets and statistical assumptions is often impractical to forecast energy demand, the GM(1,1) model is commonly used because of its simplicity and ability to characterize an unknown system by using a limited number of data points to construct a time series model. This paper proposes a genetic-algorithm-based remnant GM(1,1) (GARGM(1,1)) with sign estimation to further improve the forecasting accuracy of the original GM(1,1) model. The distinctive feature of GARGM(1,1) is that it simultaneously optimizes the parameter specifications of the original and its residual models by using the GA. The results of experiments pertaining to a real case of energy demand in China showed that the proposed GARGM(1,1) outperforms other remnant GM(1,1) variants. PMID:28981548

  1. Marked point process for modelling seismic activity (case study in Sumatra and Java)

    NASA Astrophysics Data System (ADS)

    Pratiwi, Hasih; Sulistya Rini, Lia; Wayan Mangku, I.

    2018-05-01

    Earthquake is a natural phenomenon that is random, irregular in space and time. Until now the forecast of earthquake occurrence at a location is still difficult to be estimated so that the development of earthquake forecast methodology is still carried out both from seismology aspect and stochastic aspect. To explain the random nature phenomena, both in space and time, a point process approach can be used. There are two types of point processes: temporal point process and spatial point process. The temporal point process relates to events observed over time as a sequence of time, whereas the spatial point process describes the location of objects in two or three dimensional spaces. The points on the point process can be labelled with additional information called marks. A marked point process can be considered as a pair (x, m) where x is the point of location and m is the mark attached to the point of that location. This study aims to model marked point process indexed by time on earthquake data in Sumatra Island and Java Island. This model can be used to analyse seismic activity through its intensity function by considering the history process up to time before t. Based on data obtained from U.S. Geological Survey from 1973 to 2017 with magnitude threshold 5, we obtained maximum likelihood estimate for parameters of the intensity function. The estimation of model parameters shows that the seismic activity in Sumatra Island is greater than Java Island.

  2. Communicating uncertainty in hydrological forecasts: mission impossible?

    NASA Astrophysics Data System (ADS)

    Ramos, Maria-Helena; Mathevet, Thibault; Thielen, Jutta; Pappenberger, Florian

    2010-05-01

    Cascading uncertainty in meteo-hydrological modelling chains for forecasting and integrated flood risk assessment is an essential step to improve the quality of hydrological forecasts. Although the best methodology to quantify the total predictive uncertainty in hydrology is still debated, there is a common agreement that one must avoid uncertainty misrepresentation and miscommunication, as well as misinterpretation of information by users. Several recent studies point out that uncertainty, when properly explained and defined, is no longer unwelcome among emergence response organizations, users of flood risk information and the general public. However, efficient communication of uncertain hydro-meteorological forecasts is far from being a resolved issue. This study focuses on the interpretation and communication of uncertain hydrological forecasts based on (uncertain) meteorological forecasts and (uncertain) rainfall-runoff modelling approaches to decision-makers such as operational hydrologists and water managers in charge of flood warning and scenario-based reservoir operation. An overview of the typical flow of uncertainties and risk-based decisions in hydrological forecasting systems is presented. The challenges related to the extraction of meaningful information from probabilistic forecasts and the test of its usefulness in assisting operational flood forecasting are illustrated with the help of two case-studies: 1) a study on the use and communication of probabilistic flood forecasting within the European Flood Alert System; 2) a case-study on the use of probabilistic forecasts by operational forecasters from the hydroelectricity company EDF in France. These examples show that attention must be paid to initiatives that promote or reinforce the active participation of expert forecasters in the forecasting chain. The practice of face-to-face forecast briefings, focusing on sharing how forecasters interpret, describe and perceive the model output forecasted scenarios, is essential. We believe that the efficient communication of uncertainty in hydro-meteorological forecasts is not a mission impossible. Questions remaining unanswered in probabilistic hydrological forecasting should not neutralize the goal of such a mission, and the suspense kept should instead act as a catalyst for overcoming the remaining challenges.

  3. Precipitable water vapour forecasting: a tool for optimizing IR observations at Roque de los Muchachos Observatory

    NASA Astrophysics Data System (ADS)

    Pérez-Jordán, wG; Castro-Almazán, J. A.; Muñoz-Tuñón, C.

    2018-07-01

    We validate the Weather Research and Forecasting (WRF) model for precipitable water vapour (PWV) forecasting as a fully operational tool for optimizing astronomical infrared observations at Roque de los Muchachos Observatory (ORM). For the model validation, we used GNSS-based (Global Navigation Satellite System) data from the PWV monitor located at the ORM. We have run WRF every 24 h for near two months, with a horizon of 48 h (hourly forecasts), from 2016 January 11 to March 04. These runs represent 1296 hourly forecast points. The validation is carried out using different approaches: performance as a function of the forecast range, time horizon accuracy, performance as a function of the PWV value, and performance of the operational WRF time series with 24- and 48-h horizons. Excellent agreement was found between the model forecasts and observations, with R = 0.951 and 0.904 for the 24- and 48-h forecast time series, respectively. The 48-h forecast was further improved by correcting a time lag of 2 h found in the predictions. The final errors, taking into account all the uncertainties involved, are 1.75 mm for the 24-h forecasts and 1.99 mm for 48 h. We found linear trends in both the correlation and root-mean-square error of the residuals (measurements - forecasts) as a function of the forecast range within the horizons analysed (up to 48 h). In summary, the WRF performance is excellent and accurate, thus allowing it to be implemented as an operational tool at the ORM.

  4. Precipitable water vapour forecasting: a tool for optimizing IR observations at Roque de los Muchachos Observatory.

    NASA Astrophysics Data System (ADS)

    Pérez-Jordán, G.; Castro-Almazán, J. A.; Muñoz-Tuñón, C.

    2018-04-01

    We validate the Weather Research and Forecasting (WRF) model for precipitable water vapour (PWV) forecasting as a fully operational tool for optimizing astronomical infrared (IR) observations at Roque de los Muchachos Observatory (ORM). For the model validation we used GNSS-based (Global Navigation Satellite System) data from the PWV monitor located at the ORM. We have run WRF every 24 h for near two months, with a horizon of 48 hours (hourly forecasts), from 2016 January 11 to 2016 March 4. These runs represent 1296 hourly forecast points. The validation is carried out using different approaches: performance as a function of the forecast range, time horizon accuracy, performance as a function of the PWV value, and performance of the operational WRF time series with 24- and 48-hour horizons. Excellent agreement was found between the model forecasts and observations, with R =0.951 and R =0.904 for the 24- and 48-h forecast time series respectively. The 48-h forecast was further improved by correcting a time lag of 2 h found in the predictions. The final errors, taking into account all the uncertainties involved, are 1.75 mm for the 24-h forecasts and 1.99 mm for 48 h. We found linear trends in both the correlation and RMSE of the residuals (measurements - forecasts) as a function of the forecast range within the horizons analysed (up to 48 h). In summary, the WRF performance is excellent and accurate, thus allowing it to be implemented as an operational tool at the ORM.

  5. Integrating Wind Profiling Radars and Radiosonde Observations with Model Point Data to Develop a Decision Support Tool to Assess Upper-level Winds For Space Launch

    NASA Technical Reports Server (NTRS)

    Bauman, William H., III; Flinn, Clay

    2012-01-01

    Launch directors need to know upper-level wind forecasts. We developed an Excel-based GUI to display upper-level winds: (1) Rawinsonde at CCAFS, (2) Wind profilers at KSC, (3) Model point data at CCAFS.

  6. Uncertainty analysis of neural network based flood forecasting models: An ensemble based approach for constructing prediction interval

    NASA Astrophysics Data System (ADS)

    Kasiviswanathan, K.; Sudheer, K.

    2013-05-01

    Artificial neural network (ANN) based hydrologic models have gained lot of attention among water resources engineers and scientists, owing to their potential for accurate prediction of flood flows as compared to conceptual or physics based hydrologic models. The ANN approximates the non-linear functional relationship between the complex hydrologic variables in arriving at the river flow forecast values. Despite a large number of applications, there is still some criticism that ANN's point prediction lacks in reliability since the uncertainty of predictions are not quantified, and it limits its use in practical applications. A major concern in application of traditional uncertainty analysis techniques on neural network framework is its parallel computing architecture with large degrees of freedom, which makes the uncertainty assessment a challenging task. Very limited studies have considered assessment of predictive uncertainty of ANN based hydrologic models. In this study, a novel method is proposed that help construct the prediction interval of ANN flood forecasting model during calibration itself. The method is designed to have two stages of optimization during calibration: at stage 1, the ANN model is trained with genetic algorithm (GA) to obtain optimal set of weights and biases vector, and during stage 2, the optimal variability of ANN parameters (obtained in stage 1) is identified so as to create an ensemble of predictions. During the 2nd stage, the optimization is performed with multiple objectives, (i) minimum residual variance for the ensemble mean, (ii) maximum measured data points to fall within the estimated prediction interval and (iii) minimum width of prediction interval. The method is illustrated using a real world case study of an Indian basin. The method was able to produce an ensemble that has an average prediction interval width of 23.03 m3/s, with 97.17% of the total validation data points (measured) lying within the interval. The derived prediction interval for a selected hydrograph in the validation data set is presented in Fig 1. It is noted that most of the observed flows lie within the constructed prediction interval, and therefore provides information about the uncertainty of the prediction. One specific advantage of the method is that when ensemble mean value is considered as a forecast, the peak flows are predicted with improved accuracy by this method compared to traditional single point forecasted ANNs. Fig. 1 Prediction Interval for selected hydrograph

  7. Initial conditions and ENSO prediction using a coupled ocean-atmosphere model

    NASA Astrophysics Data System (ADS)

    Larow, T. E.; Krishnamurti, T. N.

    1998-01-01

    A coupled ocean-atmosphere initialization scheme using Newtonian relaxation has been developed for the Florida State University coupled ocean-atmosphere global general circulation model. The initialization scheme is used to initialize the coupled model for seasonal forecasting the boreal summers of 1987 and 1988. The atmosphere model is a modified version of the Florida State University global spectral model, resolution T-42. The ocean general circulation model consists of a slightly modified version of the Hamburg's climate group model described in Latif (1987) and Latif et al. (1993). The coupling is synchronous with information exchanged every two model hours. Using ECMWF atmospheric daily analysis and observed monthly mean SSTs, two, 1-year, time-dependent, Newtonian relaxation were performed using the coupled model prior to conducting the seasonal forecasts. The coupled initializations were conducted from 1 June 1986 to 1 June 1987 and from 1 June 1987 to 1 June 1988. Newtonian relaxation was applied to the prognostic atmospheric vorticity, divergence, temperature and dew point depression equations. In the ocean model the relaxation was applied to the surface temperature. Two, 10-member ensemble integrations were conducted to examine the impact of the coupled initialization on the seasonal forecasts. The initial conditions used for the ensembles are the ocean's final state after the initialization and the atmospheric initial conditions are ECMWF analysis. Examination of the SST root mean square error and anomaly correlations between observed and forecasted SSTs in the Niño-3 and Niño-4 regions for the 2 seasonal forecasts, show closer agreement between the initialized forecast than two, 10-member non-initialized ensemble forecasts. The main conclusion here is that a single forecast with the coupled initialization outperforms, in SST anomaly prediction, against each of the control forecasts (members of the ensemble) which do not include such an initialization, indicating possible importance for the inclusion of the atmosphere during the coupled initialization.

  8. Validation of Seasonal Forecast of Indian Summer Monsoon Rainfall

    NASA Astrophysics Data System (ADS)

    Das, Sukanta Kumar; Deb, Sanjib Kumar; Kishtawal, C. M.; Pal, Pradip Kumar

    2015-06-01

    The experimental seasonal forecast of Indian summer monsoon (ISM) rainfall during June through September using Community Atmosphere Model (CAM) version 3 has been carried out at the Space Applications Centre Ahmedabad since 2009. The forecasts, based on a number of ensemble members (ten minimum) of CAM, are generated in several phases and updated on regular basis. On completion of 5 years of experimental seasonal forecasts in operational mode, it is required that the overall validation or correctness of the forecast system is quantified and that the scope is assessed for further improvements of the forecast over time, if any. The ensemble model climatology generated by a set of 20 identical CAM simulations is considered as the model control simulation. The performance of the forecast has been evaluated by assuming the control simulation as the model reference. The forecast improvement factor shows positive improvements, with higher values for the recent forecasted years as compared to the control experiment over the Indian landmass. The Taylor diagram representation of the Pearson correlation coefficient (PCC), standard deviation and centered root mean square difference has been used to demonstrate the best PCC, in the order of 0.74-0.79, recorded for the seasonal forecast made during 2013. Further, the bias score of different phases of experiment revealed the fact that the ISM rainfall forecast is affected by overestimation in predicting the low rain-rate (less than 7 mm/day), but by underestimation in the medium and high rain-rate (higher than 11 mm/day). Overall, the analysis shows significant improvement of the ISM forecast over the last 5 years, viz. 2009-2013, due to several important modifications that have been implemented in the forecast system. The validation exercise has also pointed out a number of shortcomings in the forecast system; these will be addressed in the upcoming years of experiments to improve the quality of the ISM prediction.

  9. Satellite freeze forecast system

    NASA Technical Reports Server (NTRS)

    Martsolf, J. D. (Principal Investigator)

    1983-01-01

    Provisions for back-up operations for the satellite freeze forecast system are discussed including software and hardware maintenance and DS/1000-1V linkage; troubleshooting; and digitized radar usage. The documentation developed; dissemination of data products via television and the IFAS computer network; data base management; predictive models; the installation of and progress towards the operational status of key stations; and digital data acquisition are also considered. The d addition of dew point temperature into the P-model is outlined.

  10. Comparative verification between GEM model and official aviation terminal forecasts

    NASA Technical Reports Server (NTRS)

    Miller, Robert G.

    1988-01-01

    The Generalized Exponential Markov (GEM) model uses the local standard airways observation (SAO) to predict hour-by-hour the following elements: temperature, pressure, dew point depression, first and second cloud-layer height and amount, ceiling, total cloud amount, visibility, wind, and present weather conditions. GEM is superior to persistence at all projections for all elements in a large independent sample. A minute-by-minute GEM forecasting system utilizing the Automated Weather Observation System (AWOS) is under development.

  11. Economic Models for Projecting Industrial Capacity for Defense Production: A Review

    DTIC Science & Technology

    1983-02-01

    macroeconomic forecast to establish the level of civilian final demand; all use the DoD Bridge Table to allocate budget category outlays to industries. Civilian...output table.’ 3. Macroeconomic Assumptions and the Prediction of Final Demand All input-output models require as a starting point a prediction of final... macroeconomic fore- cast of GNP and its components and (2) a methodology to transform these forecast values of consumption, investment, exports, etc. into

  12. Using Analog Ensemble to generate spatially downscaled probabilistic wind power forecasts

    NASA Astrophysics Data System (ADS)

    Delle Monache, L.; Shahriari, M.; Cervone, G.

    2017-12-01

    We use the Analog Ensemble (AnEn) method to generate probabilistic 80-m wind power forecasts. We use data from the NCEP GFS ( 28 km resolution) and NCEP NAM (12 km resolution). We use forecasts data from NAM and GFS, and analysis data from NAM which enables us to: 1) use a lower-resolution model to create higher-resolution forecasts, and 2) use a higher-resolution model to create higher-resolution forecasts. The former essentially increases computing speed and the latter increases forecast accuracy. An aggregated model of the former can be compared against the latter to measure the accuracy of the AnEn spatial downscaling. The AnEn works by taking a deterministic future forecast and comparing it with past forecasts. The model searches for the best matching estimates within the past forecasts and selects the predictand value corresponding to these past forecasts as the ensemble prediction for the future forecast. Our study is based on predicting wind speed and air density at more than 13,000 grid points in the continental US. We run the AnEn model twice: 1) estimating 80-m wind speed by using predictor variables such as temperature, pressure, geopotential height, U-component and V-component of wind, 2) estimating air density by using predictors such as temperature, pressure, and relative humidity. We use the air density values to correct the standard wind power curves for different values of air density. The standard deviation of the ensemble members (i.e. ensemble spread) will be used as the degree of difficulty to predict wind power at different locations. The value of the correlation coefficient between the ensemble spread and the forecast error determines the appropriateness of this measure. This measure is prominent for wind farm developers as building wind farms in regions with higher predictability will reduce the real-time risks of operating in the electricity markets.

  13. A Diagnostics Tool to detect ensemble forecast system anomaly and guide operational decisions

    NASA Astrophysics Data System (ADS)

    Park, G. H.; Srivastava, A.; Shrestha, E.; Thiemann, M.; Day, G. N.; Draijer, S.

    2017-12-01

    The hydrologic community is moving toward using ensemble forecasts to take uncertainty into account during the decision-making process. The New York City Department of Environmental Protection (DEP) implements several types of ensemble forecasts in their decision-making process: ensemble products for a statistical model (Hirsch and enhanced Hirsch); the National Weather Service (NWS) Advanced Hydrologic Prediction Service (AHPS) forecasts based on the classical Ensemble Streamflow Prediction (ESP) technique; and the new NWS Hydrologic Ensemble Forecasting Service (HEFS) forecasts. To remove structural error and apply the forecasts to additional forecast points, the DEP post processes both the AHPS and the HEFS forecasts. These ensemble forecasts provide mass quantities of complex data, and drawing conclusions from these forecasts is time-consuming and difficult. The complexity of these forecasts also makes it difficult to identify system failures resulting from poor data, missing forecasts, and server breakdowns. To address these issues, we developed a diagnostic tool that summarizes ensemble forecasts and provides additional information such as historical forecast statistics, forecast skill, and model forcing statistics. This additional information highlights the key information that enables operators to evaluate the forecast in real-time, dynamically interact with the data, and review additional statistics, if needed, to make better decisions. We used Bokeh, a Python interactive visualization library, and a multi-database management system to create this interactive tool. This tool compiles and stores data into HTML pages that allows operators to readily analyze the data with built-in user interaction features. This paper will present a brief description of the ensemble forecasts, forecast verification results, and the intended applications for the diagnostic tool.

  14. Snowmelt runoff modeling in simulation and forecasting modes with the Martinec-Mango model

    NASA Technical Reports Server (NTRS)

    Shafer, B.; Jones, E. B.; Frick, D. M. (Principal Investigator)

    1982-01-01

    The Martinec-Rango snowmelt runoff model was applied to two watersheds in the Rio Grande basin, Colorado-the South Fork Rio Grande, a drainage encompassing 216 sq mi without reservoirs or diversions and the Rio Grande above Del Norte, a drainage encompassing 1,320 sq mi without major reservoirs. The model was successfully applied to both watersheds when run in a simulation mode for the period 1973-79. This period included both high and low runoff seasons. Central to the adaptation of the model to run in a forecast mode was the need to develop a technique to forecast the shape of the snow cover depletion curves between satellite data points. Four separate approaches were investigated-simple linear estimation, multiple regression, parabolic exponential, and type curve. Only the parabolic exponential and type curve methods were run on the South Fork and Rio Grande watersheds for the 1980 runoff season using satellite snow cover updates when available. Although reasonable forecasts were obtained in certain situations, neither method seemed ready for truly operational forecasts, possibly due to a large amount of estimated climatic data for one or two primary base stations during the 1980 season.

  15. Assimilation and High Resolution Forecasts of Surface and Near Surface Conditions for the 2010 Vancouver Winter Olympic and Paralympic Games

    NASA Astrophysics Data System (ADS)

    Bernier, Natacha B.; Bélair, Stéphane; Bilodeau, Bernard; Tong, Linying

    2014-01-01

    A dynamical model was experimentally implemented to provide high resolution forecasts at points of interests in the 2010 Vancouver Olympics and Paralympics Region. In a first experiment, GEM-Surf, the near surface and land surface modeling system, is driven by operational atmospheric forecasts and used to refine the surface forecasts according to local surface conditions such as elevation and vegetation type. In this simple form, temperature and snow depth forecasts are improved mainly as a result of the better representation of real elevation. In a second experiment, screen level observations and operational atmospheric forecasts are blended to drive a continuous cycle of near surface and land surface hindcasts. Hindcasts of the previous day conditions are then regarded as today's optimized initial conditions. Hence, in this experiment, given observations are available, observation driven hindcasts continuously ensure that daily forecasts are issued from improved initial conditions. GEM-Surf forecasts obtained from improved short-range hindcasts produced using these better conditions result in improved snow depth forecasts. In a third experiment, assimilation of snow depth data is applied to further optimize GEM-Surf's initial conditions, in addition to the use of blended observations and forecasts for forcing. Results show that snow depth and summer temperature forecasts are further improved by the addition of snow depth data assimilation.

  16. A cross impact methodology for the assessment of US telecommunications system with application to fiber optics development: Executive summary

    NASA Technical Reports Server (NTRS)

    Martino, J. P.; Lenz, R. C., Jr.; Chen, K. L.

    1979-01-01

    A cross impact model of the U.S. telecommunications system was developed. For this model, it was necessary to prepare forecasts of the major segments of the telecommunications system, such as satellites, telephone, TV, CATV, radio broadcasting, etc. In addition, forecasts were prepared of the traffic generated by a variety of new or expanded services, such as electronic check clearing and point of sale electronic funds transfer. Finally, the interactions among the forecasts were estimated (the cross impacts). Both the forecasts and the cross impacts were used as inputs to the cross impact model, which could then be used to stimulate the future growth of the entire U.S. telecommunications system. By varying the inputs, technology changes or policy decisions with regard to any segment of the system could be evaluated in the context of the remainder of the system. To illustrate the operation of the model, a specific study was made of the deployment of fiber optics, throughout the telecommunications system.

  17. Evaluation of the 29-km Eta Model for Weather Support to the United States Space Program

    NASA Technical Reports Server (NTRS)

    Manobianco, John; Nutter, Paul

    1997-01-01

    The Applied Meteorology Unit (AMU) conducted a year-long evaluation of NCEP's 29-km mesoscale Eta (meso-eta) weather prediction model in order to identify added value to forecast operations in support of the United States space program. The evaluation was stratified over warm and cool seasons and considered both objective and subjective verification methodologies. Objective verification results generally indicate that meso-eta model point forecasts at selected stations exhibit minimal error growth in terms of RMS errors and are reasonably unbiased. Conversely, results from the subjective verification demonstrate that model forecasts of developing weather events such as thunderstorms, sea breezes, and cold fronts, are not always as accurate as implied by the seasonal error statistics. Sea-breeze case studies reveal that the model generates a dynamically-consistent thermally direct circulation over the Florida peninsula, although at a larger scale than observed. Thunderstorm verification reveals that the meso-eta model is capable of predicting areas of organized convection, particularly during the late afternoon hours but is not capable of forecasting individual thunderstorms. Verification of cold fronts during the cool season reveals that the model is capable of forecasting a majority of cold frontal passages through east central Florida to within +1-h of observed frontal passage.

  18. A GLM Post-processor to Adjust Ensemble Forecast Traces

    NASA Astrophysics Data System (ADS)

    Thiemann, M.; Day, G. N.; Schaake, J. C.; Draijer, S.; Wang, L.

    2011-12-01

    The skill of hydrologic ensemble forecasts has improved in the last years through a better understanding of climate variability, better climate forecasts and new data assimilation techniques. Having been extensively utilized for probabilistic water supply forecasting, interest is developing to utilize these forecasts in operational decision making. Hydrologic ensemble forecast members typically have inherent biases in flow timing and volume caused by (1) structural errors in the models used, (2) systematic errors in the data used to calibrate those models, (3) uncertain initial hydrologic conditions, and (4) uncertainties in the forcing datasets. Furthermore, hydrologic models have often not been developed for operational decision points and ensemble forecasts are thus not always available where needed. A statistical post-processor can be used to address these issues. The post-processor should (1) correct for systematic biases in flow timing and volume, (2) preserve the skill of the available raw forecasts, (3) preserve spatial and temporal correlation as well as the uncertainty in the forecasted flow data, (4) produce adjusted forecast ensembles that represent the variability of the observed hydrograph to be predicted, and (5) preserve individual forecast traces as equally likely. The post-processor should also allow for the translation of available ensemble forecasts to hydrologically similar locations where forecasts are not available. This paper introduces an ensemble post-processor (EPP) developed in support of New York City water supply operations. The EPP employs a general linear model (GLM) to (1) adjust available ensemble forecast traces and (2) create new ensembles for (nearby) locations where only historic flow observations are available. The EPP is calibrated by developing daily and aggregated statistical relationships form historical flow observations and model simulations. These are then used in operation to obtain the conditional probability density function (PDF) of the observations to be predicted, thus jointly adjusting individual ensemble members. These steps are executed in a normalized transformed space ('z'-space) to account for the strong non-linearity in the flow observations involved. A data window centered on each calibration date is used to minimize impacts from sampling errors and data noise. Testing on datasets from California and New York suggests that the EPP can successfully minimize biases in ensemble forecasts, while preserving the raw forecast skill in a 'days to weeks' forecast horizon and reproducing the variability of climatology for 'weeks to years' forecast horizons.

  19. The Schaake shuffle: A method for reconstructing space-time variability in forecasted precipitation and temperature fields

    USGS Publications Warehouse

    Clark, M.R.; Gangopadhyay, S.; Hay, L.; Rajagopalan, B.; Wilby, R.

    2004-01-01

    A number of statistical methods that are used to provide local-scale ensemble forecasts of precipitation and temperature do not contain realistic spatial covariability between neighboring stations or realistic temporal persistence for subsequent forecast lead times. To demonstrate this point, output from a global-scale numerical weather prediction model is used in a stepwise multiple linear regression approach to downscale precipitation and temperature to individual stations located in and around four study basins in the United States. Output from the forecast model is downscaled for lead times up to 14 days. Residuals in the regression equation are modeled stochastically to provide 100 ensemble forecasts. The precipitation and temperature ensembles from this approach have a poor representation of the spatial variability and temporal persistence. The spatial correlations for downscaled output are considerably lower than observed spatial correlations at short forecast lead times (e.g., less than 5 days) when there is high accuracy in the forecasts. At longer forecast lead times, the downscaled spatial correlations are close to zero. Similarly, the observed temporal persistence is only partly present at short forecast lead times. A method is presented for reordering the ensemble output in order to recover the space-time variability in precipitation and temperature fields. In this approach, the ensemble members for a given forecast day are ranked and matched with the rank of precipitation and temperature data from days randomly selected from similar dates in the historical record. The ensembles are then reordered to correspond to the original order of the selection of historical data. Using this approach, the observed intersite correlations, intervariable correlations, and the observed temporal persistence are almost entirely recovered. This reordering methodology also has applications for recovering the space-time variability in modeled streamflow. ?? 2004 American Meteorological Society.

  20. Forecasting the absolute and relative shortage of physicians in Japan using a system dynamics model approach

    PubMed Central

    2013-01-01

    Background In Japan, a shortage of physicians, who serve a key role in healthcare provision, has been pointed out as a major medical issue. The healthcare workforce policy planner should consider future dynamic changes in physician numbers. The purpose of this study was to propose a physician supply forecasting methodology by applying system dynamics modeling to estimate future absolute and relative numbers of physicians. Method We constructed a forecasting model using a system dynamics approach. Forecasting the number of physician was performed for all clinical physician and OB/GYN specialists. Moreover, we conducted evaluation of sufficiency for the number of physicians and sensitivity analysis. Result & conclusion As a result, it was forecast that the number of physicians would increase during 2008–2030 and the shortage would resolve at 2026 for all clinical physicians. However, the shortage would not resolve for the period covered. This suggests a need for measures for reconsidering the allocation system of new entry physicians to resolve maldistribution between medical departments, in addition, for increasing the overall number of clinical physicians. PMID:23981198

  1. Forecasting the absolute and relative shortage of physicians in Japan using a system dynamics model approach.

    PubMed

    Ishikawa, Tomoki; Ohba, Hisateru; Yokooka, Yuki; Nakamura, Kozo; Ogasawara, Katsuhiko

    2013-08-27

    In Japan, a shortage of physicians, who serve a key role in healthcare provision, has been pointed out as a major medical issue. The healthcare workforce policy planner should consider future dynamic changes in physician numbers. The purpose of this study was to propose a physician supply forecasting methodology by applying system dynamics modeling to estimate future absolute and relative numbers of physicians. We constructed a forecasting model using a system dynamics approach. Forecasting the number of physician was performed for all clinical physician and OB/GYN specialists. Moreover, we conducted evaluation of sufficiency for the number of physicians and sensitivity analysis. As a result, it was forecast that the number of physicians would increase during 2008-2030 and the shortage would resolve at 2026 for all clinical physicians. However, the shortage would not resolve for the period covered. This suggests a need for measures for reconsidering the allocation system of new entry physicians to resolve maldistribution between medical departments, in addition, for increasing the overall number of clinical physicians.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mendes, J.; Bessa, R.J.; Keko, H.

    Wind power forecasting (WPF) provides important inputs to power system operators and electricity market participants. It is therefore not surprising that WPF has attracted increasing interest within the electric power industry. In this report, we document our research on improving statistical WPF algorithms for point, uncertainty, and ramp forecasting. Below, we provide a brief introduction to the research presented in the following chapters. For a detailed overview of the state-of-the-art in wind power forecasting, we refer to [1]. Our related work on the application of WPF in operational decisions is documented in [2]. Point forecasts of wind power are highlymore » dependent on the training criteria used in the statistical algorithms that are used to convert weather forecasts and observational data to a power forecast. In Chapter 2, we explore the application of information theoretic learning (ITL) as opposed to the classical minimum square error (MSE) criterion for point forecasting. In contrast to the MSE criterion, ITL criteria do not assume a Gaussian distribution of the forecasting errors. We investigate to what extent ITL criteria yield better results. In addition, we analyze time-adaptive training algorithms and how they enable WPF algorithms to cope with non-stationary data and, thus, to adapt to new situations without requiring additional offline training of the model. We test the new point forecasting algorithms on two wind farms located in the U.S. Midwest. Although there have been advancements in deterministic WPF, a single-valued forecast cannot provide information on the dispersion of observations around the predicted value. We argue that it is essential to generate, together with (or as an alternative to) point forecasts, a representation of the wind power uncertainty. Wind power uncertainty representation can take the form of probabilistic forecasts (e.g., probability density function, quantiles), risk indices (e.g., prediction risk index) or scenarios (with spatial and/or temporal dependence). Statistical approaches to uncertainty forecasting basically consist of estimating the uncertainty based on observed forecasting errors. Quantile regression (QR) is currently a commonly used approach in uncertainty forecasting. In Chapter 3, we propose new statistical approaches to the uncertainty estimation problem by employing kernel density forecast (KDF) methods. We use two estimators in both offline and time-adaptive modes, namely, the Nadaraya-Watson (NW) and Quantilecopula (QC) estimators. We conduct detailed tests of the new approaches using QR as a benchmark. One of the major issues in wind power generation are sudden and large changes of wind power output over a short period of time, namely ramping events. In Chapter 4, we perform a comparative study of existing definitions and methodologies for ramp forecasting. We also introduce a new probabilistic method for ramp event detection. The method starts with a stochastic algorithm that generates wind power scenarios, which are passed through a high-pass filter for ramp detection and estimation of the likelihood of ramp events to happen. The report is organized as follows: Chapter 2 presents the results of the application of ITL training criteria to deterministic WPF; Chapter 3 reports the study on probabilistic WPF, including new contributions to wind power uncertainty forecasting; Chapter 4 presents a new method to predict and visualize ramp events, comparing it with state-of-the-art methodologies; Chapter 5 briefly summarizes the main findings and contributions of this report.« less

  3. Ultra-Short-Term Wind Power Prediction Using a Hybrid Model

    NASA Astrophysics Data System (ADS)

    Mohammed, E.; Wang, S.; Yu, J.

    2017-05-01

    This paper aims to develop and apply a hybrid model of two data analytical methods, multiple linear regressions and least square (MLR&LS), for ultra-short-term wind power prediction (WPP), for example taking, Northeast China electricity demand. The data was obtained from the historical records of wind power from an offshore region, and from a wind farm of the wind power plant in the areas. The WPP achieved in two stages: first, the ratios of wind power were forecasted using the proposed hybrid method, and then the transformation of these ratios of wind power to obtain forecasted values. The hybrid model combines the persistence methods, MLR and LS. The proposed method included two prediction types, multi-point prediction and single-point prediction. WPP is tested by applying different models such as autoregressive moving average (ARMA), autoregressive integrated moving average (ARIMA) and artificial neural network (ANN). By comparing results of the above models, the validity of the proposed hybrid model is confirmed in terms of error and correlation coefficient. Comparison of results confirmed that the proposed method works effectively. Additional, forecasting errors were also computed and compared, to improve understanding of how to depict highly variable WPP and the correlations between actual and predicted wind power.

  4. Nowcasting of Low-Visibility Procedure States with Ordered Logistic Regression at Vienna International Airport

    NASA Astrophysics Data System (ADS)

    Kneringer, Philipp; Dietz, Sebastian; Mayr, Georg J.; Zeileis, Achim

    2017-04-01

    Low-visibility conditions have a large impact on aviation safety and economic efficiency of airports and airlines. To support decision makers, we develop a statistical probabilistic nowcasting tool for the occurrence of capacity-reducing operations related to low visibility. The probabilities of four different low visibility classes are predicted with an ordered logistic regression model based on time series of meteorological point measurements. Potential predictor variables for the statistical models are visibility, humidity, temperature and wind measurements at several measurement sites. A stepwise variable selection method indicates that visibility and humidity measurements are the most important model inputs. The forecasts are tested with a 30 minute forecast interval up to two hours, which is a sufficient time span for tactical planning at Vienna Airport. The ordered logistic regression models outperform persistence and are competitive with human forecasters.

  5. Application of Second-Moment Source Analysis to Three Problems in Earthquake Forecasting

    NASA Astrophysics Data System (ADS)

    Donovan, J.; Jordan, T. H.

    2011-12-01

    Though earthquake forecasting models have often represented seismic sources as space-time points (usually hypocenters), a more complete hazard analysis requires the consideration of finite-source effects, such as rupture extent, orientation, directivity, and stress drop. The most compact source representation that includes these effects is the finite moment tensor (FMT), which approximates the degree-two polynomial moments of the stress glut by its projection onto the seismic (degree-zero) moment tensor. This projection yields a scalar space-time source function whose degree-one moments define the centroid moment tensor (CMT) and whose degree-two moments define the FMT. We apply this finite-source parameterization to three forecasting problems. The first is the question of hypocenter bias: can we reject the null hypothesis that the conditional probability of hypocenter location is uniformly distributed over the rupture area? This hypothesis is currently used to specify rupture sets in the "extended" earthquake forecasts that drive simulation-based hazard models, such as CyberShake. Following McGuire et al. (2002), we test the hypothesis using the distribution of FMT directivity ratios calculated from a global data set of source slip inversions. The second is the question of source identification: given an observed FMT (and its errors), can we identify it with an FMT in the complete rupture set that represents an extended fault-based rupture forecast? Solving this problem will facilitate operational earthquake forecasting, which requires the rapid updating of earthquake triggering and clustering models. Our proposed method uses the second-order uncertainties as a norm on the FMT parameter space to identify the closest member of the hypothetical rupture set and to test whether this closest member is an adequate representation of the observed event. Finally, we address the aftershock excitation problem: given a mainshock, what is the spatial distribution of aftershock probabilities? The FMT representation allows us to generalize the models typically used for this purpose (e.g., marked point process models, such as ETAS), which will again be necessary in operational earthquake forecasting. To quantify aftershock probabilities, we compare mainshock FMTs with the first and second spatial moments of weighted aftershock hypocenters. We will describe applications of these results to the Uniform California Earthquake Rupture Forecast, version 3, which is now under development by the Working Group on California Earthquake Probabilities.

  6. Trends in the predictive performance of raw ensemble weather forecasts

    NASA Astrophysics Data System (ADS)

    Hemri, Stephan; Scheuerer, Michael; Pappenberger, Florian; Bogner, Konrad; Haiden, Thomas

    2015-04-01

    Over the last two decades the paradigm in weather forecasting has shifted from being deterministic to probabilistic. Accordingly, numerical weather prediction (NWP) models have been run increasingly as ensemble forecasting systems. The goal of such ensemble forecasts is to approximate the forecast probability distribution by a finite sample of scenarios. Global ensemble forecast systems, like the European Centre for Medium-Range Weather Forecasts (ECMWF) ensemble, are prone to probabilistic biases, and are therefore not reliable. They particularly tend to be underdispersive for surface weather parameters. Hence, statistical post-processing is required in order to obtain reliable and sharp forecasts. In this study we apply statistical post-processing to ensemble forecasts of near-surface temperature, 24-hour precipitation totals, and near-surface wind speed from the global ECMWF model. Our main objective is to evaluate the evolution of the difference in skill between the raw ensemble and the post-processed forecasts. The ECMWF ensemble is under continuous development, and hence its forecast skill improves over time. Parts of these improvements may be due to a reduction of probabilistic bias. Thus, we first hypothesize that the gain by post-processing decreases over time. Based on ECMWF forecasts from January 2002 to March 2014 and corresponding observations from globally distributed stations we generate post-processed forecasts by ensemble model output statistics (EMOS) for each station and variable. Parameter estimates are obtained by minimizing the Continuous Ranked Probability Score (CRPS) over rolling training periods that consist of the n days preceding the initialization dates. Given the higher average skill in terms of CRPS of the post-processed forecasts for all three variables, we analyze the evolution of the difference in skill between raw ensemble and EMOS forecasts. The fact that the gap in skill remains almost constant over time, especially for near-surface wind speed, suggests that improvements to the atmospheric model have an effect quite different from what calibration by statistical post-processing is doing. That is, they are increasing potential skill. Thus this study indicates that (a) further model development is important even if one is just interested in point forecasts, and (b) statistical post-processing is important because it will keep adding skill in the foreseeable future.

  7. Post-processing of multi-model ensemble river discharge forecasts using censored EMOS

    NASA Astrophysics Data System (ADS)

    Hemri, Stephan; Lisniak, Dmytro; Klein, Bastian

    2014-05-01

    When forecasting water levels and river discharge, ensemble weather forecasts are used as meteorological input to hydrologic process models. As hydrologic models are imperfect and the input ensembles tend to be biased and underdispersed, the output ensemble forecasts for river runoff typically are biased and underdispersed, too. Thus, statistical post-processing is required in order to achieve calibrated and sharp predictions. Standard post-processing methods such as Ensemble Model Output Statistics (EMOS) that have their origins in meteorological forecasting are now increasingly being used in hydrologic applications. Here we consider two sub-catchments of River Rhine, for which the forecasting system of the Federal Institute of Hydrology (BfG) uses runoff data that are censored below predefined thresholds. To address this methodological challenge, we develop a censored EMOS method that is tailored to such data. The censored EMOS forecast distribution can be understood as a mixture of a point mass at the censoring threshold and a continuous part based on a truncated normal distribution. Parameter estimates of the censored EMOS model are obtained by minimizing the Continuous Ranked Probability Score (CRPS) over the training dataset. Model fitting on Box-Cox transformed data allows us to take account of the positive skewness of river discharge distributions. In order to achieve realistic forecast scenarios over an entire range of lead-times, there is a need for multivariate extensions. To this end, we smooth the marginal parameter estimates over lead-times. In order to obtain realistic scenarios of discharge evolution over time, the marginal distributions have to be linked with each other. To this end, the multivariate dependence structure can either be adopted from the raw ensemble like in Ensemble Copula Coupling (ECC), or be estimated from observations in a training period. The censored EMOS model has been applied to multi-model ensemble forecasts issued on a daily basis over a period of three years. For the two catchments considered, this resulted in well calibrated and sharp forecast distributions over all lead-times from 1 to 114 h. Training observations tended to be better indicators for the dependence structure than the raw ensemble.

  8. Theoretical basis for operational ensemble forecasting of coronal mass ejections

    NASA Astrophysics Data System (ADS)

    Pizzo, V. J.; de Koning, C.; Cash, M.; Millward, G.; Biesecker, D. A.; Puga, L.; Codrescu, M.; Odstrcil, D.

    2015-10-01

    We lay out the theoretical underpinnings for the application of the Wang-Sheeley-Arge-Enlil modeling system to ensemble forecasting of coronal mass ejections (CMEs) in an operational environment. In such models, there is no magnetic cloud component, so our results pertain only to CME front properties, such as transit time to Earth. Within this framework, we find no evidence that the propagation is chaotic, and therefore, CME forecasting calls for different tactics than employed for terrestrial weather or hurricane forecasting. We explore a broad range of CME cone inputs and ambient states to flesh out differing CME evolutionary behavior in the various dynamical domains (e.g., large, fast CMEs launched into a slow ambient, and the converse; plus numerous permutations in between). CME propagation in both uniform and highly structured ambient flows is considered to assess how much the solar wind background affects the CME front properties at 1 AU. Graphical and analytic tools pertinent to an ensemble approach are developed to enable uncertainties in forecasting CME impact at Earth to be realistically estimated. We discuss how uncertainties in CME pointing relative to the Sun-Earth line affects the reliability of a forecast and how glancing blows become an issue for CME off-points greater than about the half width of the estimated input CME. While the basic results appear consistent with established impressions of CME behavior, the next step is to use existing records of well-observed CMEs at both Sun and Earth to verify that real events appear to follow the systematic tendencies presented in this study.

  9. A Gaussian Processes Technique for Short-term Load Forecasting with Considerations of Uncertainty

    NASA Astrophysics Data System (ADS)

    Ohmi, Masataro; Mori, Hiroyuki

    In this paper, an efficient method is proposed to deal with short-term load forecasting with the Gaussian Processes. Short-term load forecasting plays a key role to smooth power system operation such as economic load dispatching, unit commitment, etc. Recently, the deregulated and competitive power market increases the degree of uncertainty. As a result, it is more important to obtain better prediction results to save the cost. One of the most important aspects is that power system operator needs the upper and lower bounds of the predicted load to deal with the uncertainty while they require more accurate predicted values. The proposed method is based on the Bayes model in which output is expressed in a distribution rather than a point. To realize the model efficiently, this paper proposes the Gaussian Processes that consists of the Bayes linear model and kernel machine to obtain the distribution of the predicted value. The proposed method is successively applied to real data of daily maximum load forecasting.

  10. A cross impact methodology for the assessment of US telecommunications system with application to fiber optics development, volume 1

    NASA Technical Reports Server (NTRS)

    Martino, J. P.; Lenz, R. C., Jr.; Chen, K. L.; Kahut, P.; Sekely, R.; Weiler, J.

    1979-01-01

    A cross impact model of the U.S. telecommunications system was developed. It was necessary to prepare forecasts of the major segments of the telecommunications system, such as satellites, telephone, TV, CATV, radio broadcasting, etc. In addition, forecasts were prepared of the traffic generated by a variety of new or expanded services, such as electronic check clearing and point of sale electronic funds transfer. Finally, the interactions among the forecasts were estimated (the cross impact). Both the forecasts and the cross impacts were used as inputs to the cross impact model, which could then be used to stimulate the future growth of the entire U.S. telecommunications system. By varying the inputs, technology changes or policy decisions with regard to any segment of the system could be evaluated in the context of the remainder of the system. To illustrate the operation of the model, a specific study was made of the deployment of fiber optics throughout the telecommunications system.

  11. Evaluation of model-based seasonal streamflow and water allocation forecasts for the Elqui Valley, Chile

    NASA Astrophysics Data System (ADS)

    Delorit, Justin; Cristian Gonzalez Ortuya, Edmundo; Block, Paul

    2017-09-01

    In many semi-arid regions, multisectoral demands often stress available water supplies. Such is the case in the Elqui River valley of northern Chile, which draws on a limited-capacity reservoir to allocate 25 000 water rights. Delayed infrastructure investment forces water managers to address demand-based allocation strategies, particularly in dry years, which are realized through reductions in the volume associated with each water right. Skillful season-ahead streamflow forecasts have the potential to inform managers with an indication of future conditions to guide reservoir allocations. This work evaluates season-ahead statistical prediction models of October-January (growing season) streamflow at multiple lead times associated with manager and user decision points, and links predictions with a reservoir allocation tool. Skillful results (streamflow forecasts outperform climatology) are produced for short lead times (1 September: ranked probability skill score (RPSS) of 0.31, categorical hit skill score of 61 %). At longer lead times, climatological skill exceeds forecast skill due to fewer observations of precipitation. However, coupling the 1 September statistical forecast model with a sea surface temperature phase and strength statistical model allows for equally skillful categorical streamflow forecasts to be produced for a 1 May lead, triggered for 60 % of years (1950-2015), suggesting forecasts need not be strictly deterministic to be useful for water rights holders. An early (1 May) categorical indication of expected conditions is reinforced with a deterministic forecast (1 September) as more observations of local variables become available. The reservoir allocation model is skillful at the 1 September lead (categorical hit skill score of 53 %); skill improves to 79 % when categorical allocation prediction certainty exceeds 80 %. This result implies that allocation efficiency may improve when forecasts are integrated into reservoir decision frameworks. The methods applied here advance the understanding of the mechanisms and timing responsible for moisture transport to the Elqui Valley and provide a unique application of streamflow forecasting in the prediction of water right allocations.

  12. A simplified real time method to forecast semi-enclosed basins storm surge

    NASA Astrophysics Data System (ADS)

    Pasquali, D.; Di Risio, M.; De Girolamo, P.

    2015-11-01

    Semi-enclosed basins are often prone to storm surge events. Indeed, their meteorological exposition, the presence of large continental shelf and their shape can lead to strong sea level set-up. A real time system aimed at forecasting storm surge may be of great help to protect human activities (i.e. to forecast flooding due to storm surge events), to manage ports and to safeguard coasts safety. This paper aims at illustrating a simple method able to forecast storm surge events in semi-enclosed basins in real time. The method is based on a mixed approach in which the results obtained by means of a simplified physics based model with low computational costs are corrected by means of statistical techniques. The proposed method is applied to a point of interest located in the Northern part of the Adriatic Sea. The comparison of forecasted levels against observed values shows the satisfactory reliability of the forecasts.

  13. Comparison between stochastic and machine learning methods for hydrological multi-step ahead forecasting: All forecasts are wrong!

    NASA Astrophysics Data System (ADS)

    Papacharalampous, Georgia; Tyralis, Hristos; Koutsoyiannis, Demetris

    2017-04-01

    Machine learning (ML) is considered to be a promising approach to hydrological processes forecasting. We conduct a comparison between several stochastic and ML point estimation methods by performing large-scale computational experiments based on simulations. The purpose is to provide generalized results, while the respective comparisons in the literature are usually based on case studies. The stochastic methods used include simple methods, models from the frequently used families of Autoregressive Moving Average (ARMA), Autoregressive Fractionally Integrated Moving Average (ARFIMA) and Exponential Smoothing models. The ML methods used are Random Forests (RF), Support Vector Machines (SVM) and Neural Networks (NN). The comparison refers to the multi-step ahead forecasting properties of the methods. A total of 20 methods are used, among which 9 are the ML methods. 12 simulation experiments are performed, while each of them uses 2 000 simulated time series of 310 observations. The time series are simulated using stochastic processes from the families of ARMA and ARFIMA models. Each time series is split into a fitting (first 300 observations) and a testing set (last 10 observations). The comparative assessment of the methods is based on 18 metrics, that quantify the methods' performance according to several criteria related to the accurate forecasting of the testing set, the capturing of its variation and the correlation between the testing and forecasted values. The most important outcome of this study is that there is not a uniformly better or worse method. However, there are methods that are regularly better or worse than others with respect to specific metrics. It appears that, although a general ranking of the methods is not possible, their classification based on their similar or contrasting performance in the various metrics is possible to some extent. Another important conclusion is that more sophisticated methods do not necessarily provide better forecasts compared to simpler methods. It is pointed out that the ML methods do not differ dramatically from the stochastic methods, while it is interesting that the NN, RF and SVM algorithms used in this study offer potentially very good performance in terms of accuracy. It should be noted that, although this study focuses on hydrological processes, the results are of general scientific interest. Another important point in this study is the use of several methods and metrics. Using fewer methods and fewer metrics would have led to a very different overall picture, particularly if those fewer metrics corresponded to fewer criteria. For this reason, we consider that the proposed methodology is appropriate for the evaluation of forecasting methods.

  14. Regional early flood warning system: design and implementation

    NASA Astrophysics Data System (ADS)

    Chang, L. C.; Yang, S. N.; Kuo, C. L.; Wang, Y. F.

    2017-12-01

    This study proposes a prototype of the regional early flood inundation warning system in Tainan City, Taiwan. The AI technology is used to forecast multi-step-ahead regional flood inundation maps during storm events. The computing time is only few seconds that leads to real-time regional flood inundation forecasting. A database is built to organize data and information for building real-time forecasting models, maintaining the relations of forecasted points, and displaying forecasted results, while real-time data acquisition is another key task where the model requires immediately accessing rain gauge information to provide forecast services. All programs related database are constructed in Microsoft SQL Server by using Visual C# to extracting real-time hydrological data, managing data, storing the forecasted data and providing the information to the visual map-based display. The regional early flood inundation warning system use the up-to-date Web technologies driven by the database and real-time data acquisition to display the on-line forecasting flood inundation depths in the study area. The friendly interface includes on-line sequentially showing inundation area by Google Map, maximum inundation depth and its location, and providing KMZ file download of the results which can be watched on Google Earth. The developed system can provide all the relevant information and on-line forecast results that helps city authorities to make decisions during typhoon events and make actions to mitigate the losses.

  15. Forecast of Frost Days Based on Monthly Temperatures

    NASA Astrophysics Data System (ADS)

    Castellanos, M. T.; Tarquis, A. M.; Morató, M. C.; Saa-Requejo, A.

    2009-04-01

    Although frost can cause considerable crop damage and mitigation practices against forecasted frost exist, frost forecasting technologies have not changed for many years. The paper reports a new method to forecast the monthly number of frost days (FD) for several meteorological stations at Community of Madrid (Spain) based on successive application of two models. The first one is a stochastic model, autoregressive integrated moving average (ARIMA), that forecasts monthly minimum absolute temperature (tmin) and monthly average of minimum temperature (tminav) following Box-Jenkins methodology. The second model relates these monthly temperatures to minimum daily temperature distribution during one month. Three ARIMA models were identified for the time series analyzed with a stational period correspondent to one year. They present the same stational behavior (moving average differenced model) and different non-stational part: autoregressive model (Model 1), moving average differenced model (Model 2) and autoregressive and moving average model (Model 3). At the same time, the results point out that minimum daily temperature (tdmin), for the meteorological stations studied, followed a normal distribution each month with a very similar standard deviation through years. This standard deviation obtained for each station and each month could be used as a risk index for cold months. The application of Model 1 to predict minimum monthly temperatures showed the best FD forecast. This procedure provides a tool for crop managers and crop insurance companies to asses the risk of frost frequency and intensity, so that they can take steps to mitigate against frost damage and estimated the damage that frost would cost. This research was supported by Comunidad de Madrid Research Project 076/92. The cooperation of the Spanish National Meteorological Institute and the Spanish Ministerio de Agricultura, Pesca y Alimentation (MAPA) is gratefully acknowledged.

  16. Evaluation of Flood Forecast and Warning in Elbe river basin - Impact of Forecaster's Strategy

    NASA Astrophysics Data System (ADS)

    Danhelka, Jan; Vlasak, Tomas

    2010-05-01

    Czech Hydrometeorological Institute (CHMI) is responsible for flood forecasting and warning in the Czech Republic. To meet that issue CHMI operates hydrological forecasting systems and publish flow forecast in selected profiles. Flood forecast and warning is an output of system that links observation (flow and atmosphere), data processing, weather forecast (especially NWP's QPF), hydrological modeling and modeled outputs evaluation and interpretation by forecaster. Forecast users are interested in final output without separating uncertainties of separate steps of described process. Therefore an evaluation of final operational forecasts was done for profiles within Elbe river basin produced by AquaLog forecasting system during period 2002 to 2008. Effects of uncertainties of observation, data processing and especially meteorological forecasts were not accounted separately. Forecast of flood levels exceedance (peak over the threshold) during forecasting period was the main criterion as flow increase forecast is of the highest importance. Other evaluation criteria included peak flow and volume difference. In addition Nash-Sutcliffe was computed separately for each time step (1 to 48 h) of forecasting period to identify its change with the lead time. Textual flood warnings are issued for administrative regions to initiate flood protection actions in danger of flood. Flood warning hit rate was evaluated at regions level and national level. Evaluation found significant differences of model forecast skill between forecasting profiles, particularly less skill was evaluated at small headwater basins due to domination of QPF uncertainty in these basins. The average hit rate was 0.34 (miss rate = 0.33, false alarm rate = 0.32). However its explored spatial difference is likely to be influenced also by different fit of parameters sets (due to different basin characteristics) and importantly by different impact of human factor. Results suggest that the practice of interactive model operation, experience and forecasting strategy differs between responsible forecasting offices. Warning is based on model outputs interpretation by hydrologists-forecaster. Warning hit rate reached 0.60 for threshold set to lowest flood stage of which 0.11 was underestimation of flood degree (miss 0.22, false alarm 0.28). Critical success index of model forecast was 0.34, while the same criteria for warning reached 0.55. We assume that the increase accounts not only to change of scale from single forecasting point to region for warning, but partly also to forecaster's added value. There is no official warning strategy preferred in the Czech Republic (f.e. tolerance towards higher false alarm rate). Therefore forecaster decision and personal strategy is of great importance. Results show quite successful warning for 1st flood level exceedance, over-warning for 2nd flood level, but under-warning for 3rd (highest) flood level. That suggests general forecaster's preference of medium level warning (2nd flood level is legally determined to be the start of the flood and flood protection activities). In conclusion human forecaster's experience and analysis skill increases flood warning performance notably. However society preference should be specifically addressed in the warning strategy definition to support forecaster's decision making.

  17. Serving Real-Time Point Observation Data in netCDF using Climate and Forecasting Discrete Sampling Geometry Conventions

    NASA Astrophysics Data System (ADS)

    Ward-Garrison, C.; May, R.; Davis, E.; Arms, S. C.

    2016-12-01

    NetCDF is a set of software libraries and self-describing, machine-independent data formats that support the creation, access, and sharing of array-oriented scientific data. The Climate and Forecasting (CF) metadata conventions for netCDF foster the ability to work with netCDF files in general and useful ways. These conventions include metadata attributes for physical units, standard names, and spatial coordinate systems. While these conventions have been successful in easing the use of working with netCDF-formatted output from climate and forecast models, their use for point-based observation data has been less so. Unidata has prototyped using the discrete sampling geometry (DSG) CF conventions to serve, using the THREDDS Data Server, the real-time point observation data flowing across the Internet Data Distribution (IDD). These data originate in text format reports for individual stations (e.g. METAR surface data or TEMP upper air data) and are converted and stored in netCDF files in real-time. This work discusses the experiences and challenges of using the current CF DSG conventions for storing such real-time data. We also test how parts of netCDF's extended data model can address these challenges, in order to inform decisions for a future version of CF (CF 2.0) that would take advantage of features of the netCDF enhanced data model.

  18. Page not found

    Science.gov Websites

    ) Kohala (PHKM) South Point (PHWA) Forecasts Activity Planner Hawaii Marine Aviation Fire Weather Local Activity Planner Hawaii Marine Aviation Fire Weather Local Graphics National Graphics Model Output Climate

  19. Probabilistic empirical prediction of seasonal climate: evaluation and potential applications

    NASA Astrophysics Data System (ADS)

    Dieppois, B.; Eden, J.; van Oldenborgh, G. J.

    2017-12-01

    Preparing for episodes with risks of anomalous weather a month to a year ahead is an important challenge for governments, non-governmental organisations, and private companies and is dependent on the availability of reliable forecasts. The majority of operational seasonal forecasts are made using process-based dynamical models, which are complex, computationally challenging and prone to biases. Empirical forecast approaches built on statistical models to represent physical processes offer an alternative to dynamical systems and can provide either a benchmark for comparison or independent supplementary forecasts. Here, we present a new evaluation of an established empirical system used to predict seasonal climate across the globe. Forecasts for surface air temperature, precipitation and sea level pressure are produced by the KNMI Probabilistic Empirical Prediction (K-PREP) system every month and disseminated via the KNMI Climate Explorer (climexp.knmi.nl). K-PREP is based on multiple linear regression and built on physical principles to the fullest extent with predictive information taken from the global CO2-equivalent concentration, large-scale modes of variability in the climate system and regional-scale information. K-PREP seasonal forecasts for the period 1981-2016 will be compared with corresponding dynamically generated forecasts produced by operational forecast systems. While there are many regions of the world where empirical forecast skill is extremely limited, several areas are identified where K-PREP offers comparable skill to dynamical systems. We discuss two key points in the future development and application of the K-PREP system: (a) the potential for K-PREP to provide a more useful basis for reference forecasts than those based on persistence or climatology, and (b) the added value of including K-PREP forecast information in multi-model forecast products, at least for known regions of good skill. We also discuss the potential development of stakeholder-driven applications of the K-PREP system, including empirical forecasts for circumboreal fire activity.

  20. Forecasting infectious disease emergence subject to seasonal forcing.

    PubMed

    Miller, Paige B; O'Dea, Eamon B; Rohani, Pejman; Drake, John M

    2017-09-06

    Despite high vaccination coverage, many childhood infections pose a growing threat to human populations. Accurate disease forecasting would be of tremendous value to public health. Forecasting disease emergence using early warning signals (EWS) is possible in non-seasonal models of infectious diseases. Here, we assessed whether EWS also anticipate disease emergence in seasonal models. We simulated the dynamics of an immunizing infectious pathogen approaching the tipping point to disease endemicity. To explore the effect of seasonality on the reliability of early warning statistics, we varied the amplitude of fluctuations around the average transmission. We proposed and analyzed two new early warning signals based on the wavelet spectrum. We measured the reliability of the early warning signals depending on the strength of their trend preceding the tipping point and then calculated the Area Under the Curve (AUC) statistic. Early warning signals were reliable when disease transmission was subject to seasonal forcing. Wavelet-based early warning signals were as reliable as other conventional early warning signals. We found that removing seasonal trends, prior to analysis, did not improve early warning statistics uniformly. Early warning signals anticipate the onset of critical transitions for infectious diseases which are subject to seasonal forcing. Wavelet-based early warning statistics can also be used to forecast infectious disease.

  1. A physics-based probabilistic forecasting model for rainfall-induced shallow landslides at regional scale

    NASA Astrophysics Data System (ADS)

    Zhang, Shaojie; Zhao, Luqiang; Delgado-Tellez, Ricardo; Bao, Hongjun

    2018-03-01

    Conventional outputs of physics-based landslide forecasting models are presented as deterministic warnings by calculating the safety factor (Fs) of potentially dangerous slopes. However, these models are highly dependent on variables such as cohesion force and internal friction angle which are affected by a high degree of uncertainty especially at a regional scale, resulting in unacceptable uncertainties of Fs. Under such circumstances, the outputs of physical models are more suitable if presented in the form of landslide probability values. In order to develop such models, a method to link the uncertainty of soil parameter values with landslide probability is devised. This paper proposes the use of Monte Carlo methods to quantitatively express uncertainty by assigning random values to physical variables inside a defined interval. The inequality Fs < 1 is tested for each pixel in n simulations which are integrated in a unique parameter. This parameter links the landslide probability to the uncertainties of soil mechanical parameters and is used to create a physics-based probabilistic forecasting model for rainfall-induced shallow landslides. The prediction ability of this model was tested in a case study, in which simulated forecasting of landslide disasters associated with heavy rainfalls on 9 July 2013 in the Wenchuan earthquake region of Sichuan province, China, was performed. The proposed model successfully forecasted landslides in 159 of the 176 disaster points registered by the geo-environmental monitoring station of Sichuan province. Such testing results indicate that the new model can be operated in a highly efficient way and show more reliable results, attributable to its high prediction accuracy. Accordingly, the new model can be potentially packaged into a forecasting system for shallow landslides providing technological support for the mitigation of these disasters at regional scale.

  2. Do quantitative decadal forecasts from GCMs provide decision relevant skill?

    NASA Astrophysics Data System (ADS)

    Suckling, E. B.; Smith, L. A.

    2012-04-01

    It is widely held that only physics-based simulation models can capture the dynamics required to provide decision-relevant probabilistic climate predictions. This fact in itself provides no evidence that predictions from today's GCMs are fit for purpose. Empirical (data-based) models are employed to make probability forecasts on decadal timescales, where it is argued that these 'physics free' forecasts provide a quantitative 'zero skill' target for the evaluation of forecasts based on more complicated models. It is demonstrated that these zero skill models are competitive with GCMs on decadal scales for probability forecasts evaluated over the last 50 years. Complications of statistical interpretation due to the 'hindcast' nature of this experiment, and the likely relevance of arguments that the lack of hindcast skill is irrelevant as the signal will soon 'come out of the noise' are discussed. A lack of decision relevant quantiative skill does not bring the science-based insights of anthropogenic warming into doubt, but it does call for a clear quantification of limits, as a function of lead time, for spatial and temporal scales on which decisions based on such model output are expected to prove maladaptive. Failing to do so may risk the credibility of science in support of policy in the long term. The performance amongst a collection of simulation models is evaluated, having transformed ensembles of point forecasts into probability distributions through the kernel dressing procedure [1], according to a selection of proper skill scores [2] and contrasted with purely data-based empirical models. Data-based models are unlikely to yield realistic forecasts for future climate change if the Earth system moves away from the conditions observed in the past, upon which the models are constructed; in this sense the empirical model defines zero skill. When should a decision relevant simulation model be expected to significantly outperform such empirical models? Probability forecasts up to ten years ahead (decadal forecasts) are considered, both on global and regional spatial scales for surface air temperature. Such decadal forecasts are not only important in terms of providing information on the impacts of near-term climate change, but also from the perspective of climate model validation, as hindcast experiments and a sufficient database of historical observations allow standard forecast verification methods to be used. Simulation models from the ENSEMBLES hindcast experiment [3] are evaluated and contrasted with static forecasts of the observed climatology, persistence forecasts and against simple statistical models, called dynamic climatology (DC). It is argued that DC is a more apropriate benchmark in the case of a non-stationary climate. It is found that the ENSEMBLES models do not demonstrate a significant increase in skill relative to the empirical models even at global scales over any lead time up to a decade ahead. It is suggested that the contsruction and co-evaluation with the data-based models become a regular component of the reporting of large simulation model forecasts. The methodology presented may easily be adapted to other forecasting experiments and is expected to influence the design of future experiments. The inclusion of comparisons with dynamic climatology and other data-based approaches provide important information to both scientists and decision makers on which aspects of state-of-the-art simulation forecasts are likely to be fit for purpose. [1] J. Bröcker and L. A. Smith. From ensemble forecasts to predictive distributions, Tellus A, 60(4), 663-678 (2007). [2] J. Bröcker and L. A. Smith. Scoring probabilistic forecasts: The importance of being proper, Weather and Forecasting, 22, 382-388 (2006). [3] F. J. Doblas-Reyes, A. Weisheimer, T. N. Palmer, J. M. Murphy and D. Smith. Forecast quality asessment of the ENSEMBLES seasonal-to-decadal stream 2 hindcasts, ECMWF Technical Memorandum, 621 (2010).

  3. Intermittent Demand Forecasting in a Tertiary Pediatric Intensive Care Unit.

    PubMed

    Cheng, Chen-Yang; Chiang, Kuo-Liang; Chen, Meng-Yin

    2016-10-01

    Forecasts of the demand for medical supplies both directly and indirectly affect the operating costs and the quality of the care provided by health care institutions. Specifically, overestimating demand induces an inventory surplus, whereas underestimating demand possibly compromises patient safety. Uncertainty in forecasting the consumption of medical supplies generates intermittent demand events. The intermittent demand patterns for medical supplies are generally classified as lumpy, erratic, smooth, and slow-moving demand. This study was conducted with the purpose of advancing a tertiary pediatric intensive care unit's efforts to achieve a high level of accuracy in its forecasting of the demand for medical supplies. On this point, several demand forecasting methods were compared in terms of the forecast accuracy of each. The results confirm that applying Croston's method combined with a single exponential smoothing method yields the most accurate results for forecasting lumpy, erratic, and slow-moving demand, whereas the Simple Moving Average (SMA) method is the most suitable for forecasting smooth demand. In addition, when the classification of demand consumption patterns were combined with the demand forecasting models, the forecasting errors were minimized, indicating that this classification framework can play a role in improving patient safety and reducing inventory management costs in health care institutions.

  4. Topsoil pollution forecasting using artificial neural networks on the example of the abnormally distributed heavy metal at Russian subarctic

    NASA Astrophysics Data System (ADS)

    Tarasov, D. A.; Buevich, A. G.; Sergeev, A. P.; Shichkin, A. V.; Baglaeva, E. M.

    2017-06-01

    Forecasting the soil pollution is a considerable field of study in the light of the general concern of environmental protection issues. Due to the variation of content and spatial heterogeneity of pollutants distribution at urban areas, the conventional spatial interpolation models implemented in many GIS packages mostly cannot provide appreciate interpolation accuracy. Moreover, the problem of prediction the distribution of the element with high variability in the concentration at the study site is particularly difficult. The work presents two neural networks models forecasting a spatial content of the abnormally distributed soil pollutant (Cr) at a particular location of the subarctic Novy Urengoy, Russia. A method of generalized regression neural network (GRNN) was compared to a common multilayer perceptron (MLP) model. The proposed techniques have been built, implemented and tested using ArcGIS and MATLAB. To verify the models performances, 150 scattered input data points (pollutant concentrations) have been selected from 8.5 km2 area and then split into independent training data set (105 points) and validation data set (45 points). The training data set was generated for the interpolation using ordinary kriging while the validation data set was used to test their accuracies. The networks structures have been chosen during a computer simulation based on the minimization of the RMSE. The predictive accuracy of both models was confirmed to be significantly higher than those achieved by the geostatistical approach (kriging). It is shown that MLP could achieve better accuracy than both kriging and even GRNN for interpolating surfaces.

  5. Using Heliospheric Imaging for Storm Forecasting - SMEI CME Observations as a Tool for Operational Forecasting at AFWA

    NASA Astrophysics Data System (ADS)

    Webb, D. F.; Johnston, J. C.; Fry, C. D.; Kuchar, T. A.

    2008-12-01

    Observations of coronal mass ejections (CMEs) from heliospheric imagers such as the Solar Mass Ejection Imager (SMEI) can lead to significant improvements in operational space weather forecasting. We are working with the Air Force Weather Agency (AFWA) to ingest SMEI all-sky imagery with appropriate tools to help forecasters improve their operational space weather forecasts. We describe two approaches: 1) Near- real time analysis of propagating CMEs from SMEI images alone combined with near-Sun observations of CME onsets and, 2) Using these calculations of speed as a mid-course correction to the HAFv2 solar wind model forecasts. HAFv2 became operational at AFWA in late 2006. The objective is to determine a set of practical procedures that the duty forecaster can use to update or correct a solar wind forecast using heliospheric imager data. SMEI observations can be used inclusively to make storm forecasts, as recently discussed in Webb et al. (Space Weather, in press, 2008). We have developed a point-and-click analysis tool for use with SMEI images and are working with AFWA to ensure that timely SMEI images are available for analyses. When a frontside solar eruption occurs, especially if within about 45 deg. of Sun center, a forecaster checks for an associated CME observed by a coronagraph within an appropriate time window. If found, especially if the CME is a halo type, the forecaster checks SMEI observations about a day later, depending on the apparent initial CME speed, for possibly associated CMEs. If one is found, then the leading edge is measured over several successive frames and an elongation-time plot constructed. A minimum of three data points, i.e., over 3-4 orbits or about 6 hours, are necessary for such a plot. Using the solar source location and onset time of the CME from, e.g., SOHO observations, and assuming radial propagation, a distance-time relation is calculated and extrapolated to the 1 AU distance. As shown by Webb et al., the storm onset time is then expected to be about 3 hours after this 1 AU arrival time (AT). The prediction program is updated as more SMEI data become available. Currently when an appropriate solar event occurs, AFWA routinely runs the HAFv2 model to make a forecast of the shock and ejecta arrival times at Earth. SMEI data can be used to improve this prediction. The HAFv2 model can produce synthetic sky maps of predicted CME brightness for comparison with SMEI images. The forecaster uses SMEI imagery to observe and track the CME. The forecaster then measures the CME location and speed using the SMEI imagery and the HAFv2 synthetic sky maps. After comparing the SMEI and HAFv2 results, the forecaster can adjust a key input to HAFv2, such as the initial speed of the disturbance at the Sun or the mid-course speed. The forecaster then iteratively runs HAFv2 until the observed and forecast sky maps match. The final HAFv2 solution becomes the new forecast. When the CME/shock arrives at (or does not reach) Earth, the forecaster verifies the forecast and updates the forecast skill statistics. Eventually, we plan to develop a more automated version of this procedure.

  6. Artificial neural networks applied to forecasting time series.

    PubMed

    Montaño Moreno, Juan J; Palmer Pol, Alfonso; Muñoz Gracia, Pilar

    2011-04-01

    This study offers a description and comparison of the main models of Artificial Neural Networks (ANN) which have proved to be useful in time series forecasting, and also a standard procedure for the practical application of ANN in this type of task. The Multilayer Perceptron (MLP), Radial Base Function (RBF), Generalized Regression Neural Network (GRNN), and Recurrent Neural Network (RNN) models are analyzed. With this aim in mind, we use a time series made up of 244 time points. A comparative study establishes that the error made by the four neural network models analyzed is less than 10%. In accordance with the interpretation criteria of this performance, it can be concluded that the neural network models show a close fit regarding their forecasting capacity. The model with the best performance is the RBF, followed by the RNN and MLP. The GRNN model is the one with the worst performance. Finally, we analyze the advantages and limitations of ANN, the possible solutions to these limitations, and provide an orientation towards future research.

  7. A simple approach to measure transmissibility and forecast incidence.

    PubMed

    Nouvellet, Pierre; Cori, Anne; Garske, Tini; Blake, Isobel M; Dorigatti, Ilaria; Hinsley, Wes; Jombart, Thibaut; Mills, Harriet L; Nedjati-Gilani, Gemma; Van Kerkhove, Maria D; Fraser, Christophe; Donnelly, Christl A; Ferguson, Neil M; Riley, Steven

    2018-03-01

    Outbreaks of novel pathogens such as SARS, pandemic influenza and Ebola require substantial investments in reactive interventions, with consequent implementation plans sometimes revised on a weekly basis. Therefore, short-term forecasts of incidence are often of high priority. In light of the recent Ebola epidemic in West Africa, a forecasting exercise was convened by a network of infectious disease modellers. The challenge was to forecast unseen "future" simulated data for four different scenarios at five different time points. In a similar method to that used during the recent Ebola epidemic, we estimated current levels of transmissibility, over variable time-windows chosen in an ad hoc way. Current estimated transmissibility was then used to forecast near-future incidence. We performed well within the challenge and often produced accurate forecasts. A retrospective analysis showed that our subjective method for deciding on the window of time with which to estimate transmissibility often resulted in the optimal choice. However, when near-future trends deviated substantially from exponential patterns, the accuracy of our forecasts was reduced. This exercise highlights the urgent need for infectious disease modellers to develop more robust descriptions of processes - other than the widespread depletion of susceptible individuals - that produce non-exponential patterns of incidence. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  8. A temporal-spatial postprocessing model for probabilistic run-off forecast. With a case study from Ulla-Førre with five catchments and ten lead times

    NASA Astrophysics Data System (ADS)

    Engeland, K.; Steinsland, I.

    2012-04-01

    This work is driven by the needs of next generation short term optimization methodology for hydro power production. Stochastic optimization are about to be introduced; i.e. optimizing when available resources (water) and utility (prices) are uncertain. In this paper we focus on the available resources, i.e. water, where uncertainty mainly comes from uncertainty in future runoff. When optimizing a water system all catchments and several lead times have to be considered simultaneously. Depending on the system of hydropower reservoirs, it might be a set of headwater catchments, a system of upstream /downstream reservoirs where water used from one catchment /dam arrives in a lower catchment maybe days later, or a combination of both. The aim of this paper is therefore to construct a simultaneous probabilistic forecast for several catchments and lead times, i.e. to provide a predictive distribution for the forecasts. Stochastic optimization methods need samples/ensembles of run-off forecasts as input. Hence, it should also be possible to sample from our probabilistic forecast. A post-processing approach is taken, and an error model based on Box- Cox transformation, power transform and a temporal-spatial copula model is used. It accounts for both between catchment and between lead time dependencies. In operational use it is strait forward to sample run-off ensembles from this models that inherits the catchment and lead time dependencies. The methodology is tested and demonstrated in the Ulla-Førre river system, and simultaneous probabilistic forecasts for five catchments and ten lead times are constructed. The methodology has enough flexibility to model operationally important features in this case study such as hetroscadasety, lead-time varying temporal dependency and lead-time varying inter-catchment dependency. Our model is evaluated using CRPS for marginal predictive distributions and energy score for joint predictive distribution. It is tested against deterministic run-off forecast, climatology forecast and a persistent forecast, and is found to be the better probabilistic forecast for lead time grater then two. From an operational point of view the results are interesting as the between catchment dependency gets stronger with longer lead-times.

  9. Comparative analysis of GPS-derived TEC estimates and foF2 observations during storm conditions towards the expansion of ionospheric forecasting capabilities over Europe

    NASA Astrophysics Data System (ADS)

    Tsagouri, Ioanna; Belehaki, Anna; Elias, Panagiotis

    2017-04-01

    This paper builts the discussion on the comparative analysis of the variations in the peak electron density at F2 layer and the TEC parameter during a significant number of geomagnetic storm events that occurred in the present solar cycle 24. The ionospheric disturbances are determined through the comparison of actual observations of the foF2 critical frequency and GPS-TEC estimates obtained over European locations with the corresponding median estimates, and they are analysed in conjunction to the solar wind conditions at L1 point that are monitored by the ACE spacecraft. The quantification of the storm impact on the TEC parameter in terms of possible limitations introduced by different TEC derivation methods is carefully addressed.The results reveal similarities and differences in the response of the two parameters with respect to the solar wind drivers of the storms, as well as the local time and the latitude of the observation point. The aforementioned dependences drive the storm-time forecasts of the SWIF model (Solar Wind driven autorgressive model for Ionospheric short-term Forecast), which is operationally implemented in the DIAS system (http://dias.space.noa.gr) and extensively tested in performance at several occassions. In its present version, the model provides alerts and warnings for upcoming ionospheric disturbances, as well as single site and regional forecasts of the foF2 characteristic over Europe up to 24 hours ahead based on the assesment of the solar wind conditions at ACE location. In that respect, the results obtained above support the upgrade of the SWIF's modeling technique in forecasting the storm-time TEC variation within an operational environment several hours in advance. Preliminary results on the evaluation of the model's efficiency in TEC prediction are also discussed, giving special attention in the assesment of the capabilities through the TEC-derivation uncertanties for future discussions.

  10. Flood Nowcasting With Linear Catchment Models, Radar and Kalman Filters

    NASA Astrophysics Data System (ADS)

    Pegram, Geoff; Sinclair, Scott

    A pilot study using real time rainfall data as input to a parsimonious linear distributed flood forecasting model is presented. The aim of the study is to deliver an operational system capable of producing flood forecasts, in real time, for the Mgeni and Mlazi catchments near the city of Durban in South Africa. The forecasts can be made at time steps which are of the order of a fraction of the catchment response time. To this end, the model is formulated in Finite Difference form in an equation similar to an Auto Regressive Moving Average (ARMA) model; it is this formulation which provides the required computational efficiency. The ARMA equation is a discretely coincident form of the State-Space equations that govern the response of an arrangement of linear reservoirs. This results in a functional relationship between the reservoir response con- stants and the ARMA coefficients, which guarantees stationarity of the ARMA model. Input to the model is a combined "Best Estimate" spatial rainfall field, derived from a combination of weather RADAR and Satellite rainfield estimates with point rain- fall given by a network of telemetering raingauges. Several strategies are employed to overcome the uncertainties associated with forecasting. Principle among these are the use of optimal (double Kalman) filtering techniques to update the model states and parameters in response to current streamflow observations and the application of short term forecasting techniques to provide future estimates of the rainfield as input to the model.

  11. Value of biologic therapy: a forecasting model in three disease areas.

    PubMed

    Paramore, L Clark; Hunter, Craig A; Luce, Bryan R; Nordyke, Robert J; Halbert, R J

    2010-01-01

    Forecast the return on investment (ROI) for advances in biologic therapies in years 2015 and 2030, based upon impact on disease prevalence, morbidity, and mortality for asthma, diabetes, and colorectal cancer. A deterministic, spreadsheet-based, forecasting model was developed based on trends in demographics and disease epidemiology. 'Return' was defined as reductions in disease burden (prevalence, morbidity, mortality) translated into monetary terms; 'investment' was defined as the incremental costs of biologic therapy advances. Data on disease prevalence, morbidity, mortality, and associated costs were obtained from government survey statistics or published literature. Expected impact of advances in biologic therapies was based on expert opinion. Gains in quality-adjusted life years (QALYs) were valued at $100,000 per QALY. The base case analysis, in which reductions in disease prevalence and mortality predicted by the expert panel are not considered, shows the resulting ROIs remain positive for asthma and diabetes but fall below $1 for colorectal cancer. Analysis involving expert panel predictions indicated positive ROI results for all three diseases at both time points, ranging from $207 for each incremental dollar spent on biologic therapies to treat asthma in 2030, to $4 for each incremental dollar spent on biologic therapies to treat colorectal cancer in 2015. If QALYs are not considered, the resulting ROIs remain positive for all three diseases at both time points. Society may expect substantial returns from investments in innovative biologic therapies. These benefits are most likely to be realized in an environment of appropriate use of new molecules. The potential variance between forecasted (from expert opinion) and actual future health outcomes could be significant. Similarly, the forecasted growth in use of biologic therapies relied upon unvalidated market forecasts.

  12. Sedimentation Solutions for Military Ocean Terminal Sunny Point (MOTSU), North Carolina

    DTIC Science & Technology

    2012-07-01

    quality at MOTSU at the request of US Army Engineer District–Wilmington (USAED-SAW). The objective was achieved through numerical modeling ...literature review, and sediment forecasting. This report documents the results of the numerical modeling study only. Two advantageous approaches for...data .............................................................................................................. 25  4  Model Development

  13. Replacing climatological potential evapotranspiration estimates with dynamic satellite-based observations in operational hydrologic prediction models

    NASA Astrophysics Data System (ADS)

    Franz, K. J.; Bowman, A. L.; Hogue, T. S.; Kim, J.; Spies, R.

    2011-12-01

    In the face of a changing climate, growing populations, and increased human habitation in hydrologically risky locations, both short- and long-range planners increasingly require robust and reliable streamflow forecast information. Current operational forecasting utilizes watershed-scale, conceptual models driven by ground-based (commonly point-scale) observations of precipitation and temperature and climatological potential evapotranspiration (PET) estimates. The PET values are derived from historic pan evaporation observations and remain static from year-to-year. The need for regional dynamic PET values is vital for improved operational forecasting. With the advent of satellite remote sensing and the adoption of a more flexible operational forecast system by the National Weather Service, incorporation of advanced data products is now more feasible than in years past. In this study, we will test a previously developed satellite-derived PET product (UCLA MODIS-PET) in the National Weather Service forecast models and compare the model results to current methods. The UCLA MODIS-PET method is based on the Priestley-Taylor formulation, is driven with MODIS satellite products, and produces a daily, 250m PET estimate. The focus area is eight headwater basins in the upper Midwest U.S. There is a need to develop improved forecasting methods for this region that are able to account for climatic and landscape changes more readily and effectively than current methods. This region is highly flood prone yet sensitive to prolonged dry periods in late summer and early fall, and is characterized by a highly managed landscape, which has drastically altered the natural hydrologic cycle. Our goal is to improve model simulations, and thereby, the initial conditions prior to the start of a forecast through the use of PET values that better reflect actual watershed conditions. The forecast models are being tested in both distributed and lumped mode.

  14. Operational Earthquake Forecasting of Aftershocks for New England

    NASA Astrophysics Data System (ADS)

    Ebel, J.; Fadugba, O. I.

    2015-12-01

    Although the forecasting of mainshocks is not possible, recent research demonstrates that probabilistic forecasts of expected aftershock activity following moderate and strong earthquakes is possible. Previous work has shown that aftershock sequences in intraplate regions behave similarly to those in California, and thus the operational aftershocks forecasting methods that are currently employed in California can be adopted for use in areas of the eastern U.S. such as New England. In our application, immediately after a felt earthquake in New England, a forecast of expected aftershock activity for the next 7 days will be generated based on a generic aftershock activity model. Approximately 24 hours after the mainshock, the parameters of the aftershock model will be updated using the observed aftershock activity observed to that point in time, and a new forecast of expected aftershock activity for the next 7 days will be issued. The forecast will estimate the average number of weak, felt aftershocks and the average expected number of aftershocks based on the aftershock statistics of past New England earthquakes. The forecast also will estimate the probability that an earthquake that is stronger than the mainshock will take place during the next 7 days. The aftershock forecast will specify the expected aftershocks locations as well as the areas over which aftershocks of different magnitudes could be felt. The system will use web pages, email and text messages to distribute the aftershock forecasts. For protracted aftershock sequences, new forecasts will be issued on a regular basis, such as weekly. Initially, the distribution system of the aftershock forecasts will be limited, but later it will be expanded as experience with and confidence in the system grows.

  15. Using the ADAP Learning Algorithm to Forecast the Onset of Diabetes Mellitus

    PubMed Central

    Smith, Jack W.; Everhart, J.E.; Dickson, W.C.; Knowler, W.C.; Johannes, R.S.

    1988-01-01

    Neural networks or connectionist models for parallel processing are not new. However, a resurgence of interest in the past half decade has occurred. In part, this is related to a better understanding of what are now referred to as hidden nodes. These algorithms are considered to be of marked value in pattern recognition problems. Because of that, we tested the ability of an early neural network model, ADAP, to forecast the onset of diabetes mellitus in a high risk population of Pima Indians. The algorithm's performance was analyzed using standard measures for clinical tests: sensitivity, specificity, and a receiver operating characteristic curve. The crossover point for sensitivity and specificity is 0.76. We are currently further examining these methods by comparing the ADAP results with those obtained from logistic regression and linear perceptron models using precisely the same training and forecasting sets. A description of the algorithm is included.

  16. Research and Application of an Air Quality Early Warning System Based on a Modified Least Squares Support Vector Machine and a Cloud Model.

    PubMed

    Wang, Jianzhou; Niu, Tong; Wang, Rui

    2017-03-02

    The worsening atmospheric pollution increases the necessity of air quality early warning systems (EWSs). Despite the fact that a massive amount of investigation about EWS in theory and practicality has been conducted by numerous researchers, studies concerning the quantification of uncertain information and comprehensive evaluation are still lacking, which impedes further development in the area. In this paper, firstly a comprehensive warning system is proposed, which consists of two vital indispensable modules, namely effective forecasting and scientific evaluation, respectively. For the forecasting module, a novel hybrid model combining the theory of data preprocessing and numerical optimization is first developed to implement effective forecasting for air pollutant concentration. Especially, in order to further enhance the accuracy and robustness of the warning system, interval forecasting is implemented to quantify the uncertainties generated by forecasts, which can provide significant risk signals by using point forecasting for decision-makers. For the evaluation module, a cloud model, based on probability and fuzzy set theory, is developed to perform comprehensive evaluations of air quality, which can realize the transformation between qualitative concept and quantitative data. To verify the effectiveness and efficiency of the warning system, extensive simulations based on air pollutants data from Dalian in China were effectively implemented, which illustrate that the warning system is not only remarkably high-performance, but also widely applicable.

  17. Research and Application of an Air Quality Early Warning System Based on a Modified Least Squares Support Vector Machine and a Cloud Model

    PubMed Central

    Wang, Jianzhou; Niu, Tong; Wang, Rui

    2017-01-01

    The worsening atmospheric pollution increases the necessity of air quality early warning systems (EWSs). Despite the fact that a massive amount of investigation about EWS in theory and practicality has been conducted by numerous researchers, studies concerning the quantification of uncertain information and comprehensive evaluation are still lacking, which impedes further development in the area. In this paper, firstly a comprehensive warning system is proposed, which consists of two vital indispensable modules, namely effective forecasting and scientific evaluation, respectively. For the forecasting module, a novel hybrid model combining the theory of data preprocessing and numerical optimization is first developed to implement effective forecasting for air pollutant concentration. Especially, in order to further enhance the accuracy and robustness of the warning system, interval forecasting is implemented to quantify the uncertainties generated by forecasts, which can provide significant risk signals by using point forecasting for decision-makers. For the evaluation module, a cloud model, based on probability and fuzzy set theory, is developed to perform comprehensive evaluations of air quality, which can realize the transformation between qualitative concept and quantitative data. To verify the effectiveness and efficiency of the warning system, extensive simulations based on air pollutants data from Dalian in China were effectively implemented, which illustrate that the warning system is not only remarkably high-performance, but also widely applicable. PMID:28257122

  18. Smoothing strategies combined with ARIMA and neural networks to improve the forecasting of traffic accidents.

    PubMed

    Barba, Lida; Rodríguez, Nibaldo; Montt, Cecilia

    2014-01-01

    Two smoothing strategies combined with autoregressive integrated moving average (ARIMA) and autoregressive neural networks (ANNs) models to improve the forecasting of time series are presented. The strategy of forecasting is implemented using two stages. In the first stage the time series is smoothed using either, 3-point moving average smoothing, or singular value Decomposition of the Hankel matrix (HSVD). In the second stage, an ARIMA model and two ANNs for one-step-ahead time series forecasting are used. The coefficients of the first ANN are estimated through the particle swarm optimization (PSO) learning algorithm, while the coefficients of the second ANN are estimated with the resilient backpropagation (RPROP) learning algorithm. The proposed models are evaluated using a weekly time series of traffic accidents of Valparaíso, Chilean region, from 2003 to 2012. The best result is given by the combination HSVD-ARIMA, with a MAPE of 0:26%, followed by MA-ARIMA with a MAPE of 1:12%; the worst result is given by the MA-ANN based on PSO with a MAPE of 15:51%.

  19. Against all odds -- Probabilistic forecasts and decision making

    NASA Astrophysics Data System (ADS)

    Liechti, Katharina; Zappa, Massimiliano

    2015-04-01

    In the city of Zurich (Switzerland) the setting is such that the damage potential due to flooding of the river Sihl is estimated to about 5 billion US dollars. The flood forecasting system that is used by the administration for decision making runs continuously since 2007. It has a time horizon of max. five days and operates at hourly time steps. The flood forecasting system includes three different model chains. Two of those are run by the deterministic NWP models COSMO-2 and COSMO-7 and one is driven by the probabilistic NWP COSMO-Leps. The model chains are consistent since February 2010, so five full years are available for the evaluation for the system. The system was evaluated continuously and is a very nice example to present the added value that lies in probabilistic forecasts. The forecasts are available on an online-platform to the decision makers. Several graphical representations of the forecasts and forecast-history are available to support decision making and to rate the current situation. The communication between forecasters and decision-makers is quite close. To put it short, an ideal situation. However, an event or better put a non-event in summer 2014 showed that the knowledge about the general superiority of probabilistic forecasts doesn't necessarily mean that the decisions taken in a specific situation will be based on that probabilistic forecast. Some years of experience allow gaining confidence in the system, both for the forecasters and for the decision-makers. Even if from the theoretical point of view the handling during crisis situation is well designed, a first event demonstrated that the dialog with the decision-makers still lacks of exercise during such situations. We argue, that a false alarm is a needed experience to consolidate real-time emergency procedures relying on ensemble predictions. A missed event would probably also fit, but, in our case, we are very happy not to report about this option.

  20. Assessing High-Resolution Weather Research and Forecasting (WRF) Forecasts Using an Object-Based Diagnostic Evaluation

    DTIC Science & Technology

    2014-02-01

    Operational Model Archive and Distribution System ( NOMADS ). The RTMA product was generated using a 2-D variational method to assimilate point weather...observations and satellite-derived measurements (National Weather Service, 2013). The products were downloaded using the NOMADS General Regularly...of the completed WRF run" read Start_Date echo $Start_Date echo " " echo "Enter 2- digit , zulu, observation hour (HH) for remapping" read oHH

  1. Hourly Wind Speed Interval Prediction in Arid Regions

    NASA Astrophysics Data System (ADS)

    Chaouch, M.; Ouarda, T.

    2013-12-01

    The long and extended warm and dry summers, the low rate of rain and humidity are the main factors that explain the increase of electricity consumption in hot arid regions. In such regions, the ventilating and air-conditioning installations, that are typically the most energy-intensive among energy consumption activities, are essential for securing healthy, safe and suitable indoor thermal conditions for building occupants and stored materials. The use of renewable energy resources such as solar and wind represents one of the most relevant solutions to overcome the increase of the electricity demand challenge. In the recent years, wind energy is gaining more importance among the researchers worldwide. Wind energy is intermittent in nature and hence the power system scheduling and dynamic control of wind turbine requires an estimate of wind energy. Accurate forecast of wind speed is a challenging task for the wind energy research field. In fact, due to the large variability of wind speed caused by the unpredictable and dynamic nature of the earth's atmosphere, there are many fluctuations in wind power production. This inherent variability of wind speed is the main cause of the uncertainty observed in wind power generation. Furthermore, producing wind power forecasts might be obtained indirectly by modeling the wind speed series and then transforming the forecasts through a power curve. Wind speed forecasting techniques have received substantial attention recently and several models have been developed. Basically two main approaches have been proposed in the literature: (1) physical models such as Numerical Weather Forecast and (2) statistical models such as Autoregressive integrated moving average (ARIMA) models, Neural Networks. While the initial focus in the literature has been on point forecasts, the need to quantify forecast uncertainty and communicate the risk of extreme ramp events has led to an interest in producing probabilistic forecasts. In short term context, probabilistic forecasts might be more relevant than point forecasts for the planner to build scenarios In this paper, we are interested in estimating predictive intervals of the hourly wind speed measures in few cities in United Arab emirates (UAE). More precisely, given a wind speed time series, our target is to forecast the wind speed at any specific hour during the day and provide in addition an interval with the coverage probability 0

  2. Statistical earthquake focal mechanism forecasts

    NASA Astrophysics Data System (ADS)

    Kagan, Yan Y.; Jackson, David D.

    2014-04-01

    Forecasts of the focal mechanisms of future shallow (depth 0-70 km) earthquakes are important for seismic hazard estimates and Coulomb stress, and other models of earthquake occurrence. Here we report on a high-resolution global forecast of earthquake rate density as a function of location, magnitude and focal mechanism. In previous publications we reported forecasts of 0.5° spatial resolution, covering the latitude range from -75° to +75°, based on the Global Central Moment Tensor earthquake catalogue. In the new forecasts we have improved the spatial resolution to 0.1° and the latitude range from pole to pole. Our focal mechanism estimates require distance-weighted combinations of observed focal mechanisms within 1000 km of each gridpoint. Simultaneously, we calculate an average rotation angle between the forecasted mechanism and all the surrounding mechanisms, using the method of Kagan & Jackson proposed in 1994. This average angle reveals the level of tectonic complexity of a region and indicates the accuracy of the prediction. The procedure becomes problematical where longitude lines are not approximately parallel, and where shallow earthquakes are so sparse that an adequate sample spans very large distances. North or south of 75°, the azimuths of points 1000 km away may vary by about 35°. We solved this problem by calculating focal mechanisms on a plane tangent to the Earth's surface at each forecast point, correcting for the rotation of the longitude lines at the locations of earthquakes included in the averaging. The corrections are negligible between -30° and +30° latitude, but outside that band uncorrected rotations can be significantly off. Improved forecasts at 0.5° and 0.1° resolution are posted at http://eq.ess.ucla.edu/kagan/glob_gcmt_index.html.

  3. Transitioning the Rice Realtime Forecast Models to DSCOVR

    NASA Astrophysics Data System (ADS)

    Bala, R.; Reiff, P. H.

    2016-12-01

    The Rice realtime forecast models of global magnetospheric indices Kp, Dst and AE have been actively running at mms.rice.edu/realtime/forecast.html for nearly a decade now. These neural network models were trained using the ACE archival solar wind data while the near-realtime forecasts are provided using instantaneous upwind solar wind data stream measured at the L1 point through ACE. Additionally, the webpage also provide status of the current space weather condition as an additional resource, updating every ten minutes. Furthermore, the subscribers of our space weather alert system, called `spacalrt', have been receiving email notices based on predefined thresholds. One of the gaps that is currently seen in the Rice neural network models lies in the density dependent models using variants of the solar wind pressure. The anomalous behavior in reporting densities in ACE has been a common issue for some time now. Often such behavior is observed when the solar energetic particle that are associated with solar flares or CMEs are Earth directed. Therefore, it is understood that the subsequent measures of the density reported by ACE will be either very low or, at a minimum, contaminated. Under these circumstances, the density-based Rice models typically underpredict. However, the newly launched DSCOVR satellite will help enhance our prediction models with high-quality data; it has real time space weather data available through the NOAA's Space Weather Prediction Center as of July, 2016. We are in the process of transitioning our forecast operations to include data from DSCOVR while running the original ACE data stream in parallel until it lasts. This paper will compare and contrast the forecasted values from the two satellites. Finally, we will discuss our efforts in providing the forecast products for the Rice space weather website that will be a part of the book on "Machine Learning Techniques for Space Weather" to be published by Elsiever.

  4. Providing the Fire Risk Map in Forest Area Using a Geographically Weighted Regression Model with Gaussin Kernel and Modis Images, a Case Study: Golestan Province

    NASA Astrophysics Data System (ADS)

    Shah-Heydari pour, A.; Pahlavani, P.; Bigdeli, B.

    2017-09-01

    According to the industrialization of cities and the apparent increase in pollutants and greenhouse gases, the importance of forests as the natural lungs of the earth is felt more than ever to clean these pollutants. Annually, a large part of the forests is destroyed due to the lack of timely action during the fire. Knowledge about areas with a high-risk of fire and equipping these areas by constructing access routes and allocating the fire-fighting equipment can help to eliminate the destruction of the forest. In this research, the fire risk of region was forecasted and the risk map of that was provided using MODIS images by applying geographically weighted regression model with Gaussian kernel and ordinary least squares over the effective parameters in forest fire including distance from residential areas, distance from the river, distance from the road, height, slope, aspect, soil type, land use, average temperature, wind speed, and rainfall. After the evaluation, it was found that the geographically weighted regression model with Gaussian kernel forecasted 93.4% of the all fire points properly, however the ordinary least squares method could forecast properly only 66% of the fire points.

  5. Bridge Frost Prediction by Heat and Mass Transfer Methods

    NASA Astrophysics Data System (ADS)

    Greenfield, Tina M.; Takle, Eugene S.

    2006-03-01

    Frost on roadways and bridges can present hazardous conditions to motorists, particularly when it occurs in patches or on bridges when adjacent roadways are clear of frost. To minimize materials costs, vehicle corrosion, and negative environmental impacts, frost-suppression chemicals should be applied only when, where, and in the appropriate amounts needed to maintain roadways in a safe condition for motorists. Accurate forecasts of frost onset times, frost intensity, and frost disappearance (e.g., melting or sublimation) are needed to help roadway maintenance personnel decide when, where, and how much frost-suppression chemical to use. A finite-difference algorithm (BridgeT) has been developed that simulates vertical heat transfer in a bridge based on evolving meteorological conditions at its top and bottom as supplied by a weather forecast model. BridgeT simulates bridge temperatures at numerous points within the bridge (including its upper and lower surface) at each time step of the weather forecast model and calculates volume per unit area (i.e., depth) of deposited, melted, or sublimed frost. This model produces forecasts of bridge surface temperature, frost depth, and bridge condition (i.e., dry, wet, icy/snowy). Bridge frost predictions and bridge surface temperature are compared with observed and measured values to assess BridgeT's skill in forecasting bridge frost and associated conditions.

  6. Ensemble Flow Forecasts for Risk Based Reservoir Operations of Lake Mendocino in Mendocino County, California

    NASA Astrophysics Data System (ADS)

    Delaney, C.; Hartman, R. K.; Mendoza, J.; Evans, K. M.; Evett, S.

    2016-12-01

    Forecast informed reservoir operations (FIRO) is a methodology that incorporates short to mid-range precipitation or flow forecasts to inform the flood operations of reservoirs. Previous research and modeling for flood control reservoirs has shown that FIRO can reduce flood risk and increase water supply for many reservoirs. The risk-based method of FIRO presents a unique approach that incorporates flow forecasts made by NOAA's California-Nevada River Forecast Center (CNRFC) to model and assess risk of meeting or exceeding identified management targets or thresholds. Forecasted risk is evaluated against set risk tolerances to set reservoir flood releases. A water management model was developed for Lake Mendocino, a 116,500 acre-foot reservoir located near Ukiah, California. Lake Mendocino is a dual use reservoir, which is owned and operated for flood control by the United State Army Corps of Engineers and is operated by the Sonoma County Water Agency for water supply. Due to recent changes in the operations of an upstream hydroelectric facility, this reservoir has been plagued with water supply reliability issues since 2007. FIRO is applied to Lake Mendocino by simulating daily hydrologic conditions from 1985 to 2010 in the Upper Russian River from Lake Mendocino to the City of Healdsburg approximately 50 miles downstream. The risk-based method is simulated using a 15-day, 61 member streamflow hindcast by the CNRFC. Model simulation results of risk-based flood operations demonstrate a 23% increase in average end of water year (September 30) storage levels over current operations. Model results show no increase in occurrence of flood damages for points downstream of Lake Mendocino. This investigation demonstrates that FIRO may be a viable flood control operations approach for Lake Mendocino and warrants further investigation through additional modeling and analysis.

  7. Forecasts of 21st Century Snowpack and Implications for Snowmobile and Snowcoach Use in Yellowstone National Park

    PubMed Central

    Tercek, Michael; Rodman, Ann

    2016-01-01

    Climate models project a general decline in western US snowpack throughout the 21st century, but long-term, spatially fine-grained, management-relevant projections of snowpack are not available for Yellowstone National Park. We focus on the implications that future snow declines may have for oversnow vehicle (snowmobile and snowcoach) use because oversnow tourism is critical to the local economy and has been a contentious issue in the park for more than 30 years. Using temperature-indexed snow melt and accumulation equations with temperature and precipitation data from downscaled global climate models, we forecast the number of days that will be suitable for oversnow travel on each Yellowstone road segment during the mid- and late-21st century. The west entrance road was forecast to be the least suitable for oversnow use in the future while the south entrance road was forecast to remain at near historical levels of driveability. The greatest snow losses were forecast for the west entrance road where as little as 29% of the December–March oversnow season was forecast to be driveable by late century. The climatic conditions that allow oversnow vehicle use in Yellowstone are forecast by our methods to deteriorate significantly in the future. At some point it may be prudent to consider plowing the roads that experience the greatest snow losses. PMID:27467778

  8. Using SMAP Data to Investigate the Role of Soil Moisture Variability on Realtime Flood Forecasting

    NASA Astrophysics Data System (ADS)

    Krajewski, W. F.; Jadidoleslam, N.; Mantilla, R.

    2017-12-01

    The Iowa Flood Center has developed a regional high-resolution flood-forecasting model for the state of Iowa that decomposes the landscape into hillslopes of about 0.1 km2. For the model to benefit, through data assimilation, from SMAP observations of soil moisture (SM) at scales of approximately 100 km2, we are testing a framework to connect SMAP-scale observations to the small-scale SM variability calculated by our rainfall-runoff models. As a step in this direction, we performed data analyses of 15-min point SM observations using a network of about 30 TDR instruments spread throughout the state. We developed a stochastic point-scale SM model that captures 1) SM increases due to rainfall inputs, and 2) SM decay during dry periods. We use a power law model to describe soil moisture decay during dry periods, and a single parameter logistic curve to describe precipitation feedback on soil moisture. We find that the parameters of the models behave as time-independent random variables with stationary distributions. Using data-based simulation, we explore differences in the dynamical range of variability of hillslope and SMAP-scale domains. The simulations allow us to predict the runoff field and streamflow hydrographs for the state of Iowa during the three largest flooding periods (2008, 2014, and 2016). We also use the results to determine the reduction in forecast uncertainty from assimilation of unbiased SMAP-scale soil moisture observations.

  9. Air Quality Forecasting through Different Statistical and Artificial Intelligence Techniques

    NASA Astrophysics Data System (ADS)

    Mishra, D.; Goyal, P.

    2014-12-01

    Urban air pollution forecasting has emerged as an acute problem in recent years because there are sever environmental degradation due to increase in harmful air pollutants in the ambient atmosphere. In this study, there are different types of statistical as well as artificial intelligence techniques are used for forecasting and analysis of air pollution over Delhi urban area. These techniques are principle component analysis (PCA), multiple linear regression (MLR) and artificial neural network (ANN) and the forecasting are observed in good agreement with the observed concentrations through Central Pollution Control Board (CPCB) at different locations in Delhi. But such methods suffers from disadvantages like they provide limited accuracy as they are unable to predict the extreme points i.e. the pollution maximum and minimum cut-offs cannot be determined using such approach. Also, such methods are inefficient approach for better output forecasting. But with the advancement in technology and research, an alternative to the above traditional methods has been proposed i.e. the coupling of statistical techniques with artificial Intelligence (AI) can be used for forecasting purposes. The coupling of PCA, ANN and fuzzy logic is used for forecasting of air pollutant over Delhi urban area. The statistical measures e.g., correlation coefficient (R), normalized mean square error (NMSE), fractional bias (FB) and index of agreement (IOA) of the proposed model are observed in better agreement with the all other models. Hence, the coupling of statistical and artificial intelligence can be use for the forecasting of air pollutant over urban area.

  10. Probabilistic Solar Wind Forecasting Using Large Ensembles of Near-Sun Conditions With a Simple One-Dimensional "Upwind" Scheme

    NASA Astrophysics Data System (ADS)

    Owens, Mathew J.; Riley, Pete

    2017-11-01

    Long lead-time space-weather forecasting requires accurate prediction of the near-Earth solar wind. The current state of the art uses a coronal model to extrapolate the observed photospheric magnetic field to the upper corona, where it is related to solar wind speed through empirical relations. These near-Sun solar wind and magnetic field conditions provide the inner boundary condition to three-dimensional numerical magnetohydrodynamic (MHD) models of the heliosphere out to 1 AU. This physics-based approach can capture dynamic processes within the solar wind, which affect the resulting conditions in near-Earth space. However, this deterministic approach lacks a quantification of forecast uncertainty. Here we describe a complementary method to exploit the near-Sun solar wind information produced by coronal models and provide a quantitative estimate of forecast uncertainty. By sampling the near-Sun solar wind speed at a range of latitudes about the sub-Earth point, we produce a large ensemble (N = 576) of time series at the base of the Sun-Earth line. Propagating these conditions to Earth by a three-dimensional MHD model would be computationally prohibitive; thus, a computationally efficient one-dimensional "upwind" scheme is used. The variance in the resulting near-Earth solar wind speed ensemble is shown to provide an accurate measure of the forecast uncertainty. Applying this technique over 1996-2016, the upwind ensemble is found to provide a more "actionable" forecast than a single deterministic forecast; potential economic value is increased for all operational scenarios, but particularly when false alarms are important (i.e., where the cost of taking mitigating action is relatively large).

  11. Probabilistic Solar Wind Forecasting Using Large Ensembles of Near-Sun Conditions With a Simple One-Dimensional "Upwind" Scheme.

    PubMed

    Owens, Mathew J; Riley, Pete

    2017-11-01

    Long lead-time space-weather forecasting requires accurate prediction of the near-Earth solar wind. The current state of the art uses a coronal model to extrapolate the observed photospheric magnetic field to the upper corona, where it is related to solar wind speed through empirical relations. These near-Sun solar wind and magnetic field conditions provide the inner boundary condition to three-dimensional numerical magnetohydrodynamic (MHD) models of the heliosphere out to 1 AU. This physics-based approach can capture dynamic processes within the solar wind, which affect the resulting conditions in near-Earth space. However, this deterministic approach lacks a quantification of forecast uncertainty. Here we describe a complementary method to exploit the near-Sun solar wind information produced by coronal models and provide a quantitative estimate of forecast uncertainty. By sampling the near-Sun solar wind speed at a range of latitudes about the sub-Earth point, we produce a large ensemble (N = 576) of time series at the base of the Sun-Earth line. Propagating these conditions to Earth by a three-dimensional MHD model would be computationally prohibitive; thus, a computationally efficient one-dimensional "upwind" scheme is used. The variance in the resulting near-Earth solar wind speed ensemble is shown to provide an accurate measure of the forecast uncertainty. Applying this technique over 1996-2016, the upwind ensemble is found to provide a more "actionable" forecast than a single deterministic forecast; potential economic value is increased for all operational scenarios, but particularly when false alarms are important (i.e., where the cost of taking mitigating action is relatively large).

  12. Probabilistic Solar Wind Forecasting Using Large Ensembles of Near‐Sun Conditions With a Simple One‐Dimensional “Upwind” Scheme

    PubMed Central

    Riley, Pete

    2017-01-01

    Abstract Long lead‐time space‐weather forecasting requires accurate prediction of the near‐Earth solar wind. The current state of the art uses a coronal model to extrapolate the observed photospheric magnetic field to the upper corona, where it is related to solar wind speed through empirical relations. These near‐Sun solar wind and magnetic field conditions provide the inner boundary condition to three‐dimensional numerical magnetohydrodynamic (MHD) models of the heliosphere out to 1 AU. This physics‐based approach can capture dynamic processes within the solar wind, which affect the resulting conditions in near‐Earth space. However, this deterministic approach lacks a quantification of forecast uncertainty. Here we describe a complementary method to exploit the near‐Sun solar wind information produced by coronal models and provide a quantitative estimate of forecast uncertainty. By sampling the near‐Sun solar wind speed at a range of latitudes about the sub‐Earth point, we produce a large ensemble (N = 576) of time series at the base of the Sun‐Earth line. Propagating these conditions to Earth by a three‐dimensional MHD model would be computationally prohibitive; thus, a computationally efficient one‐dimensional “upwind” scheme is used. The variance in the resulting near‐Earth solar wind speed ensemble is shown to provide an accurate measure of the forecast uncertainty. Applying this technique over 1996–2016, the upwind ensemble is found to provide a more “actionable” forecast than a single deterministic forecast; potential economic value is increased for all operational scenarios, but particularly when false alarms are important (i.e., where the cost of taking mitigating action is relatively large). PMID:29398982

  13. Statistical Analysis of Model Data for Operational Space Launch Weather Support at Kennedy Space Center and Cape Canaveral Air Force Station

    NASA Technical Reports Server (NTRS)

    Bauman, William H., III

    2010-01-01

    The 12-km resolution North American Mesoscale (NAM) model (MesoNAM) is used by the 45th Weather Squadron (45 WS) Launch Weather Officers at Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS) to support space launch weather operations. The 45 WS tasked the Applied Meteorology Unit to conduct an objective statistics-based analysis of MesoNAM output compared to wind tower mesonet observations and then develop a an operational tool to display the results. The National Centers for Environmental Prediction began running the current version of the MesoNAM in mid-August 2006. The period of record for the dataset was 1 September 2006 - 31 January 2010. The AMU evaluated MesoNAM hourly forecasts from 0 to 84 hours based on model initialization times of 00, 06, 12 and 18 UTC. The MesoNAM forecast winds, temperature and dew point were compared to the observed values of these parameters from the sensors in the KSC/CCAFS wind tower network. The data sets were stratified by model initialization time, month and onshore/offshore flow for each wind tower. Statistics computed included bias (mean difference), standard deviation of the bias, root mean square error (RMSE) and a hypothesis test for bias = O. Twelve wind towers located in close proximity to key launch complexes were used for the statistical analysis with the sensors on the towers positioned at varying heights to include 6 ft, 30 ft, 54 ft, 60 ft, 90 ft, 162 ft, 204 ft and 230 ft depending on the launch vehicle and associated weather launch commit criteria being evaluated. These twelve wind towers support activities for the Space Shuttle (launch and landing), Delta IV, Atlas V and Falcon 9 launch vehicles. For all twelve towers, the results indicate a diurnal signal in the bias of temperature (T) and weaker but discernable diurnal signal in the bias of dewpoint temperature (T(sub d)) in the MesoNAM forecasts. Also, the standard deviation of the bias and RMSE of T, T(sub d), wind speed and wind direction indicated the model error increased with the forecast period all four parameters. The hypothesis testing uses statistics to determine the probability that a given hypothesis is true. The goal of using the hypothesis test was to determine if the model bias of any of the parameters assessed throughout the model forecast period was statistically zero. For th is dataset, if this test produced a value >= -1 .96 or <= 1.96 for a data point, then the bias at that point was effectively zero and the model forecast for that point was considered to have no error. A graphical user interface (GUI) was developed so the 45 WS would have an operational tool at their disposal that would be easy to navigate among the multiple stratifications of information to include tower locations, month, model initialization times, sensor heights and onshore/offshore flow. The AMU developed the GUI using HyperText Markup Language (HTML) so the tool could be used in most popular web browsers with computers running different operating systems such as Microsoft Windows and Linux.

  14. Dew point temperature affects ascospore release of allergenic genus Leptosphaeria

    NASA Astrophysics Data System (ADS)

    Sadyś, Magdalena; Kaczmarek, Joanna; Grinn-Gofron, Agnieszka; Rodinkova, Victoria; Prikhodko, Alex; Bilous, Elena; Strzelczak, Agnieszka; Herbert, Robert J.; Jedryczka, Malgorzata

    2018-06-01

    The genus Leptosphaeria contains numerous fungi that cause the symptoms of asthma and also parasitize wild and crop plants. In search of a robust and universal forecast model, the ascospore concentration in air was measured and weather data recorded from 1 March to 31 October between 2006 and 2012. The experiment was conducted in three European countries of the temperate climate, i.e., Ukraine, Poland, and the UK. Out of over 150 forecast models produced using artificial neural networks (ANNs) and multivariate regression trees (MRTs), we selected the best model for each site, as well as for joint two-site combinations. The performance of all computed models was tested against records from 1 year which had not been used for model construction. The statistical analysis of the fungal spore data was supported by a comprehensive study of both climate and land cover within a 30-km radius from the air sampler location. High-performance forecasting models were obtained for individual sites, showing that the local micro-climate plays a decisive role in biology of the fungi. Based on the previous epidemiological studies, we hypothesized that dew point temperature (DPT) would be a critical factor in the models. The impact of DPT was confirmed only by one of the final best neural models, but the MRT analyses, similarly to the Spearman's rank test, indicated the importance of DPT in all but one of the studied cases and in half of them ranked it as a fundamental factor. This work applies artificial neural modeling to predict the Leptosphaeria airborne spore concentration in urban areas for the first time.

  15. Dew point temperature affects ascospore release of allergenic genus Leptosphaeria

    NASA Astrophysics Data System (ADS)

    Sadyś, Magdalena; Kaczmarek, Joanna; Grinn-Gofron, Agnieszka; Rodinkova, Victoria; Prikhodko, Alex; Bilous, Elena; Strzelczak, Agnieszka; Herbert, Robert J.; Jedryczka, Malgorzata

    2018-01-01

    The genus Leptosphaeria contains numerous fungi that cause the symptoms of asthma and also parasitize wild and crop plants. In search of a robust and universal forecast model, the ascospore concentration in air was measured and weather data recorded from 1 March to 31 October between 2006 and 2012. The experiment was conducted in three European countries of the temperate climate, i.e., Ukraine, Poland, and the UK. Out of over 150 forecast models produced using artificial neural networks (ANNs) and multivariate regression trees (MRTs), we selected the best model for each site, as well as for joint two-site combinations. The performance of all computed models was tested against records from 1 year which had not been used for model construction. The statistical analysis of the fungal spore data was supported by a comprehensive study of both climate and land cover within a 30-km radius from the air sampler location. High-performance forecasting models were obtained for individual sites, showing that the local micro-climate plays a decisive role in biology of the fungi. Based on the previous epidemiological studies, we hypothesized that dew point temperature (DPT) would be a critical factor in the models. The impact of DPT was confirmed only by one of the final best neural models, but the MRT analyses, similarly to the Spearman's rank test, indicated the importance of DPT in all but one of the studied cases and in half of them ranked it as a fundamental factor. This work applies artificial neural modeling to predict the Leptosphaeria airborne spore concentration in urban areas for the first time.

  16. Dew point temperature affects ascospore release of allergenic genus Leptosphaeria.

    PubMed

    Sadyś, Magdalena; Kaczmarek, Joanna; Grinn-Gofron, Agnieszka; Rodinkova, Victoria; Prikhodko, Alex; Bilous, Elena; Strzelczak, Agnieszka; Herbert, Robert J; Jedryczka, Malgorzata

    2018-06-01

    The genus Leptosphaeria contains numerous fungi that cause the symptoms of asthma and also parasitize wild and crop plants. In search of a robust and universal forecast model, the ascospore concentration in air was measured and weather data recorded from 1 March to 31 October between 2006 and 2012. The experiment was conducted in three European countries of the temperate climate, i.e., Ukraine, Poland, and the UK. Out of over 150 forecast models produced using artificial neural networks (ANNs) and multivariate regression trees (MRTs), we selected the best model for each site, as well as for joint two-site combinations. The performance of all computed models was tested against records from 1 year which had not been used for model construction. The statistical analysis of the fungal spore data was supported by a comprehensive study of both climate and land cover within a 30-km radius from the air sampler location. High-performance forecasting models were obtained for individual sites, showing that the local micro-climate plays a decisive role in biology of the fungi. Based on the previous epidemiological studies, we hypothesized that dew point temperature (DPT) would be a critical factor in the models. The impact of DPT was confirmed only by one of the final best neural models, but the MRT analyses, similarly to the Spearman's rank test, indicated the importance of DPT in all but one of the studied cases and in half of them ranked it as a fundamental factor. This work applies artificial neural modeling to predict the Leptosphaeria airborne spore concentration in urban areas for the first time.

  17. Evaluation of Mesoscale Model Phenomenological Verification Techniques

    NASA Technical Reports Server (NTRS)

    Lambert, Winifred

    2006-01-01

    Forecasters at the Spaceflight Meteorology Group, 45th Weather Squadron, and National Weather Service in Melbourne, FL use mesoscale numerical weather prediction model output in creating their operational forecasts. These models aid in forecasting weather phenomena that could compromise the safety of launch, landing, and daily ground operations and must produce reasonable weather forecasts in order for their output to be useful in operations. Considering the importance of model forecasts to operations, their accuracy in forecasting critical weather phenomena must be verified to determine their usefulness. The currently-used traditional verification techniques involve an objective point-by-point comparison of model output and observations valid at the same time and location. The resulting statistics can unfairly penalize high-resolution models that make realistic forecasts of a certain phenomena, but are offset from the observations in small time and/or space increments. Manual subjective verification can provide a more valid representation of model performance, but is time-consuming and prone to personal biases. An objective technique that verifies specific meteorological phenomena, much in the way a human would in a subjective evaluation, would likely produce a more realistic assessment of model performance. Such techniques are being developed in the research community. The Applied Meteorology Unit (AMU) was tasked to conduct a literature search to identify phenomenological verification techniques being developed, determine if any are ready to use operationally, and outline the steps needed to implement any operationally-ready techniques into the Advanced Weather Information Processing System (AWIPS). The AMU conducted a search of all literature on the topic of phenomenological-based mesoscale model verification techniques and found 10 different techniques in various stages of development. Six of the techniques were developed to verify precipitation forecasts, one to verify sea breeze forecasts, and three were capable of verifying several phenomena. The AMU also determined the feasibility of transitioning each technique into operations and rated the operational capability of each technique on a subjective 1-10 scale: (1) 1 indicates that the technique is only in the initial stages of development, (2) 2-5 indicates that the technique is still undergoing modifications and is not ready for operations, (3) 6-8 indicates a higher probability of integrating the technique into AWIPS with code modifications, and (4) 9-10 indicates that the technique was created for AWIPS and is ready for implementation. Eight of the techniques were assigned a rating of 5 or below. The other two received ratings of 6 and 7, and none of the techniques a rating of 9-10. At the current time, there are no phenomenological model verification techniques ready for operational use. However, several of the techniques described in this report may become viable techniques in the future and should be monitored for updates in the literature. The desire to use a phenomenological verification technique is widespread in the modeling community, and it is likely that other techniques besides those described herein are being developed, but the work has not yet been published. Therefore, the AMIU recommends that the literature continue to be monitored for updates to the techniques described in this report and for new techniques being developed whose results have not yet been published. 111

  18. Projections of global health outcomes from 2005 to 2060 using the International Futures integrated forecasting model

    PubMed Central

    Hughes, Barry B; Peterson, Cecilia M; Rothman, Dale S; Solórzano, José R; Mathers, Colin D; Dickson, Janet R

    2011-01-01

    Abstract Objective To develop an integrated health forecasting model as part of the International Futures (IFs) modelling system. Methods The IFs model begins with the historical relationships between economic and social development and cause-specific mortality used by the Global Burden of Disease project but builds forecasts from endogenous projections of these drivers by incorporating forward linkages from health outcomes back to inputs like population and economic growth. The hybrid IFs system adds alternative structural formulations for causes not well served by regression models and accounts for changes in proximate health risk factors. Forecasts are made to 2100 but findings are reported to 2060. Findings The base model projects that deaths from communicable diseases (CDs) will decline by 50%, whereas deaths from both non-communicable diseases (NCDs) and injuries will more than double. Considerable cross-national convergence in life expectancy will occur. Climate-induced fluctuations in agricultural yield will cause little excess childhood mortality from CDs, although other climate−health pathways were not explored. An optimistic scenario will produce 39 million fewer deaths in 2060 than a pessimistic one. Our forward linkage model suggests that an optimistic scenario would result in a 20% per cent increase in gross domestic product (GDP) per capita, despite one billion additional people. Southern Asia would experience the greatest relative mortality reduction and the largest resulting benefit in per capita GDP. Conclusion Long-term, integrated health forecasting helps us understand the links between health and other markers of human progress and offers powerful insight into key points of leverage for future improvements. PMID:21734761

  19. Projections of global health outcomes from 2005 to 2060 using the International Futures integrated forecasting model.

    PubMed

    Hughes, Barry B; Kuhn, Randall; Peterson, Cecilia M; Rothman, Dale S; Solórzano, José R; Mathers, Colin D; Dickson, Janet R

    2011-07-01

    To develop an integrated health forecasting model as part of the International Futures (IFs) modelling system. The IFs model begins with the historical relationships between economic and social development and cause-specific mortality used by the Global Burden of Disease project but builds forecasts from endogenous projections of these drivers by incorporating forward linkages from health outcomes back to inputs like population and economic growth. The hybrid IFs system adds alternative structural formulations for causes not well served by regression models and accounts for changes in proximate health risk factors. Forecasts are made to 2100 but findings are reported to 2060. The base model projects that deaths from communicable diseases (CDs) will decline by 50%, whereas deaths from both non-communicable diseases (NCDs) and injuries will more than double. Considerable cross-national convergence in life expectancy will occur. Climate-induced fluctuations in agricultural yield will cause little excess childhood mortality from CDs, although other climate-health pathways were not explored. An optimistic scenario will produce 39 million fewer deaths in 2060 than a pessimistic one. Our forward linkage model suggests that an optimistic scenario would result in a 20% per cent increase in gross domestic product (GDP) per capita, despite one billion additional people. Southern Asia would experience the greatest relative mortality reduction and the largest resulting benefit in per capita GDP. Long-term, integrated health forecasting helps us understand the links between health and other markers of human progress and offers powerful insight into key points of leverage for future improvements.

  20. Testing hypotheses of earthquake occurrence

    NASA Astrophysics Data System (ADS)

    Kagan, Y. Y.; Jackson, D. D.; Schorlemmer, D.; Gerstenberger, M.

    2003-12-01

    We present a relatively straightforward likelihood method for testing those earthquake hypotheses that can be stated as vectors of earthquake rate density in defined bins of area, magnitude, and time. We illustrate the method as it will be applied to the Regional Earthquake Likelihood Models (RELM) project of the Southern California Earthquake Center (SCEC). Several earthquake forecast models are being developed as part of this project, and additional contributed forecasts are welcome. Various models are based on fault geometry and slip rates, seismicity, geodetic strain, and stress interactions. We would test models in pairs, requiring that both forecasts in a pair be defined over the same set of bins. Thus we offer a standard "menu" of bins and ground rules to encourage standardization. One menu category includes five-year forecasts of magnitude 5.0 and larger. Forecasts would be in the form of a vector of yearly earthquake rates on a 0.05 degree grid at the beginning of the test. Focal mechanism forecasts, when available, would be also be archived and used in the tests. The five-year forecast category may be appropriate for testing hypotheses of stress shadows from large earthquakes. Interim progress will be evaluated yearly, but final conclusions would be made on the basis of cumulative five-year performance. The second category includes forecasts of earthquakes above magnitude 4.0 on a 0.05 degree grid, evaluated and renewed daily. Final evaluation would be based on cumulative performance over five years. Other types of forecasts with different magnitude, space, and time sampling are welcome and will be tested against other models with shared characteristics. All earthquakes would be counted, and no attempt made to separate foreshocks, main shocks, and aftershocks. Earthquakes would be considered as point sources located at the hypocenter. For each pair of forecasts, we plan to compute alpha, the probability that the first would be wrongly rejected in favor of the second, and beta, the probability that the second would be wrongly rejected in favor of the first. Computing alpha and beta requires knowing the theoretical distribution of likelihood scores under each hypothesis, which we will estimate by simulations. Each forecast is given equal status; there is no "null hypothesis" which would be accepted by default. Forecasts and test results would be archived and posted on the RELM web site. The same methods can be applied to any region with adequate monitoring and sufficient earthquakes. If fewer than ten events are forecasted, the likelihood tests may not give definitive results. The tests do force certain requirements on the forecast models. Because the tests are based on absolute rates, stress models must be explicit about how stress increments affect past seismicity rates. Aftershocks of triggered events must be accounted for. Furthermore, the tests are sensitive to magnitude, so forecast models must specify the magnitude distribution of triggered events. Models should account for probable errors in magnitude and location by appropriate smoothing of the probabilities, as the tests will be "cold hearted:" near misses won't count.

  1. Selection for the best ETS (error, trend, seasonal) model to forecast weather in the Aceh Besar District

    NASA Astrophysics Data System (ADS)

    Amora Jofipasi, Chesilia; Miftahuddin; Hizir

    2018-05-01

    Weather is a phenomenon that occurs in certain areas that indicate a change in natural activity. Weather can be predicted using data in previous periods over a period. The purpose of this study is to get the best ETS model to predict the weather in Aceh Besar. The ETS model is a time series univariate forecasting method; its use focuses on trend and seasonal components. The data used are air temperature, dew point, sea level pressure, station pressure, visibility, wind speed, and sea surface temperature from January 2006 to December 2016. Based on AIC, AICc and BIC the smallest values obtained the conclusion that the ETS (M, N, A) is used to predict air temperature, and sea surface temperature, ETS (A, N, A) is used to predict dew point, sea level pressure and station pressure, ETS (A, A, N) is used to predict visibility, and ETS (A, N, N) is used to predict wind speed.

  2. Innovative Near Real-Time Data Dissemination Tools Developed by the Space Weather Research Center

    NASA Astrophysics Data System (ADS)

    Mullinix, R.; Maddox, M. M.; Berrios, D.; Kuznetsova, M.; Pulkkinen, A.; Rastaetter, L.; Zheng, Y.

    2012-12-01

    Space weather affects virtually all of NASA's endeavors, from robotic missions to human exploration. Knowledge and prediction of space weather conditions are therefore essential to NASA operations. The diverse nature of currently available space environment measurements and modeling products compels the need for a single access point to such information. The Integrated Space Weather Analysis (iSWA) System provides this single point access along with the capability to collect and catalog a vast range of sources including both observational and model data. NASA Goddard Space Weather Research Center heavily utilizes the iSWA System daily for research, space weather model validation, and forecasting for NASA missions. iSWA provides the capabilities to view and analyze near real-time space weather data from any where in the world. This presentation will describe the technology behind the iSWA system and describe how to use the system for space weather research, forecasting, training, education, and sharing.

  3. An Evaluation of Alternatives for Processing of Administrative Pay Vouchers: A Simulation Approach.

    DTIC Science & Technology

    1982-09-01

    Finance Travel Voucher Q-GERT Productivity Personnel Forecasts Simulation Model 20. ABSTRACT (Continue on reverse side if necessary end Jdentfly by...Finance Office (ACF) has devised a Point System for use in determining the productivity of the ACF Travel Section (ACFTT). This Point System sets values...5 to 5+) to be assigned to incoming travel vouchers based on voucher complexity. This research had set objectives of (1) building an ACFTT model that

  4. Towards the Next Generation of Space Environment Prediction Capabilities.

    NASA Astrophysics Data System (ADS)

    Kuznetsova, M. M.

    2015-12-01

    Since its establishment more than 15 years ago, the Community Coordinated Modeling Center (CCMC, http://ccmc.gsfc.nasa.gov) is serving as an assess point to expanding collection of state-of-the-art space environment models and frameworks as well as a hub for collaborative development of next generation space weather forecasting systems. In partnership with model developers and international research and operational communities the CCMC integrates new data streams and models from diverse sources into end-to-end space weather impacts predictive systems, identifies week links in data-model & model-model coupling and leads community efforts to fill those gaps. The presentation will highlight latest developments, progress in CCMC-led community-wide projects on testing, prototyping, and validation of models, forecasting techniques and procedures and outline ideas on accelerating implementation of new capabilities in space weather operations.

  5. Quantifying the Usefulness of Ensemble-Based Precipitation Forecasts with Respect to Water Use and Yield during a Field Trial

    NASA Astrophysics Data System (ADS)

    Christ, E.; Webster, P. J.; Collins, G.; Byrd, S.

    2014-12-01

    Recent droughts and the continuing water wars between the states of Georgia, Alabama and Florida have made agricultural producers more aware of the importance of managing their irrigation systems more efficiently. Many southeastern states are beginning to consider laws that will require monitoring and regulation of water used for irrigation. Recently, Georgia suspended issuing irrigation permits in some areas of the southwestern portion of the state to try and limit the amount of water being used in irrigation. However, even in southern Georgia, which receives on average between 23 and 33 inches of rain during the growing season, irrigation can significantly impact crop yields. In fact, studies have shown that when fields do not receive rainfall at the most critical stages in the life of cotton, yield for irrigated fields can be up to twice as much as fields for non-irrigated cotton. This leads to the motivation for this study, which is to produce a forecast tool that will enable producers to make more efficient irrigation management decisions. We will use the ECMWF (European Centre for Medium-Range Weather Forecasts) vars EPS (Ensemble Prediction System) model precipitation forecasts for the grid points included in the 1◦ x 1◦ lat/lon square surrounding the point of interest. We will then apply q-to-q bias corrections to the forecasts. Once we have applied the bias corrections, we will use the check-book method of irrigation scheduling to determine the probability of receiving the required amount of rainfall for each week of the growing season. These forecasts will be used during a field trial conducted at the CM Stripling Irrigation Research Park in Camilla, Georgia. This research will compare differences in yield and water use among the standard checkbook method of irrigation, which uses no precipitation forecast knowledge, the weather.com forecast, a dry land plot, and the ensemble-based forecasts mentioned above.

  6. A Dirichlet process model for classifying and forecasting epidemic curves.

    PubMed

    Nsoesie, Elaine O; Leman, Scotland C; Marathe, Madhav V

    2014-01-09

    A forecast can be defined as an endeavor to quantitatively estimate a future event or probabilities assigned to a future occurrence. Forecasting stochastic processes such as epidemics is challenging since there are several biological, behavioral, and environmental factors that influence the number of cases observed at each point during an epidemic. However, accurate forecasts of epidemics would impact timely and effective implementation of public health interventions. In this study, we introduce a Dirichlet process (DP) model for classifying and forecasting influenza epidemic curves. The DP model is a nonparametric Bayesian approach that enables the matching of current influenza activity to simulated and historical patterns, identifies epidemic curves different from those observed in the past and enables prediction of the expected epidemic peak time. The method was validated using simulated influenza epidemics from an individual-based model and the accuracy was compared to that of the tree-based classification technique, Random Forest (RF), which has been shown to achieve high accuracy in the early prediction of epidemic curves using a classification approach. We also applied the method to forecasting influenza outbreaks in the United States from 1997-2013 using influenza-like illness (ILI) data from the Centers for Disease Control and Prevention (CDC). We made the following observations. First, the DP model performed as well as RF in identifying several of the simulated epidemics. Second, the DP model correctly forecasted the peak time several days in advance for most of the simulated epidemics. Third, the accuracy of identifying epidemics different from those already observed improved with additional data, as expected. Fourth, both methods correctly classified epidemics with higher reproduction numbers (R) with a higher accuracy compared to epidemics with lower R values. Lastly, in the classification of seasonal influenza epidemics based on ILI data from the CDC, the methods' performance was comparable. Although RF requires less computational time compared to the DP model, the algorithm is fully supervised implying that epidemic curves different from those previously observed will always be misclassified. In contrast, the DP model can be unsupervised, semi-supervised or fully supervised. Since both methods have their relative merits, an approach that uses both RF and the DP model could be beneficial.

  7. Large Scale Skill in Regional Climate Modeling and the Lateral Boundary Condition Scheme

    NASA Astrophysics Data System (ADS)

    Veljović, K.; Rajković, B.; Mesinger, F.

    2009-04-01

    Several points are made concerning the somewhat controversial issue of regional climate modeling: should a regional climate model (RCM) be expected to maintain the large scale skill of the driver global model that is supplying its lateral boundary condition (LBC)? Given that this is normally desired, is it able to do so without help via the fairly popular large scale nudging? Specifically, without such nudging, will the RCM kinetic energy necessarily decrease with time compared to that of the driver model or analysis data as suggested by a study using the Regional Atmospheric Modeling System (RAMS)? Finally, can the lateral boundary condition scheme make a difference: is the almost universally used but somewhat costly relaxation scheme necessary for a desirable RCM performance? Experiments are made to explore these questions running the Eta model in two versions differing in the lateral boundary scheme used. One of these schemes is the traditional relaxation scheme, and the other the Eta model scheme in which information is used at the outermost boundary only, and not all variables are prescribed at the outflow boundary. Forecast lateral boundary conditions are used, and results are verified against the analyses. Thus, skill of the two RCM forecasts can be and is compared not only against each other but also against that of the driver global forecast. A novel verification method is used in the manner of customary precipitation verification in that forecast spatial wind speed distribution is verified against analyses by calculating bias adjusted equitable threat scores and bias scores for wind speeds greater than chosen wind speed thresholds. In this way, focusing on a high wind speed value in the upper troposphere, verification of large scale features we suggest can be done in a manner that may be more physically meaningful than verifications via spectral decomposition that are a standard RCM verification method. The results we have at this point are somewhat limited in view of the integrations having being done only for 10-day forecasts. Even so, one should note that they are among very few done using forecast as opposed to reanalysis or analysis global driving data. Our results suggest that (1) running the Eta as an RCM no significant loss of large-scale kinetic energy with time seems to be taking place; (2) no disadvantage from using the Eta LBC scheme compared to the relaxation scheme is seen, while enjoying the advantage of the scheme being significantly less demanding than the relaxation given that it needs driver model fields at the outermost domain boundary only; and (3) the Eta RCM skill in forecasting large scales, with no large scale nudging, seems to be just about the same as that of the driver model, or, in the terminology of Castro et al., the Eta RCM does not lose "value of the large scale" which exists in the larger global analyses used for the initial condition and for verification.

  8. MesoNAM Verification Phase II

    NASA Technical Reports Server (NTRS)

    Watson, Leela R.

    2011-01-01

    The 45th Weather Squadron Launch Weather Officers use the 12-km resolution North American Mesoscale model (MesoNAM) forecasts to support launch weather operations. In Phase I, the performance of the model at KSC/CCAFS was measured objectively by conducting a detailed statistical analysis of model output compared to observed values. The objective analysis compared the MesoNAM forecast winds, temperature, and dew point to the observed values from the sensors in the KSC/CCAFS wind tower network. In Phase II, the AMU modified the current tool by adding an additional 15 months of model output to the database and recalculating the verification statistics. The bias, standard deviation of bias, Root Mean Square Error, and Hypothesis test for bias were calculated to verify the performance of the model. The results indicated that the accuracy decreased as the forecast progressed, there was a diurnal signal in temperature with a cool bias during the late night and a warm bias during the afternoon, and there was a diurnal signal in dewpoint temperature with a low bias during the afternoon and a high bias during the late night.

  9. Smoothing Strategies Combined with ARIMA and Neural Networks to Improve the Forecasting of Traffic Accidents

    PubMed Central

    Rodríguez, Nibaldo

    2014-01-01

    Two smoothing strategies combined with autoregressive integrated moving average (ARIMA) and autoregressive neural networks (ANNs) models to improve the forecasting of time series are presented. The strategy of forecasting is implemented using two stages. In the first stage the time series is smoothed using either, 3-point moving average smoothing, or singular value Decomposition of the Hankel matrix (HSVD). In the second stage, an ARIMA model and two ANNs for one-step-ahead time series forecasting are used. The coefficients of the first ANN are estimated through the particle swarm optimization (PSO) learning algorithm, while the coefficients of the second ANN are estimated with the resilient backpropagation (RPROP) learning algorithm. The proposed models are evaluated using a weekly time series of traffic accidents of Valparaíso, Chilean region, from 2003 to 2012. The best result is given by the combination HSVD-ARIMA, with a MAPE of 0 : 26%, followed by MA-ARIMA with a MAPE of 1 : 12%; the worst result is given by the MA-ANN based on PSO with a MAPE of 15 : 51%. PMID:25243200

  10. A Model For Rapid Estimation of Economic Loss

    NASA Astrophysics Data System (ADS)

    Holliday, J. R.; Rundle, J. B.

    2012-12-01

    One of the loftier goals in seismic hazard analysis is the creation of an end-to-end earthquake prediction system: a "rupture to rafters" work flow that takes a prediction of fault rupture, propagates it with a ground shaking model, and outputs a damage or loss profile at a given location. So far, the initial prediction of an earthquake rupture (either as a point source or a fault system) has proven to be the most difficult and least solved step in this chain. However, this may soon change. The Collaboratory for the Study of Earthquake Predictability (CSEP) has amassed a suite of earthquake source models for assorted testing regions worldwide. These models are capable of providing rate-based forecasts for earthquake (point) sources over a range of time horizons. Furthermore, these rate forecasts can be easily refined into probabilistic source forecasts. While it's still difficult to fully assess the "goodness" of each of these models, progress is being made: new evaluation procedures are being devised and earthquake statistics continue to accumulate. The scientific community appears to be heading towards a better understanding of rupture predictability. Ground shaking mechanics are better understood, and many different sophisticated models exists. While these models tend to be computationally expensive and often regionally specific, they do a good job at matching empirical data. It is perhaps time to start addressing the third step in the seismic hazard prediction system. We present a model for rapid economic loss estimation using ground motion (PGA or PGV) and socioeconomic measures as its input. We show that the model can be calibrated on a global scale and applied worldwide. We also suggest how the model can be improved and generalized to non-seismic natural disasters such as hurricane and severe wind storms.

  11. Long-Lead Prediction of the 2015 Fire and Haze Episode in Indonesia

    NASA Astrophysics Data System (ADS)

    Shawki, Dilshad; Field, Robert D.; Tippett, Michael K.; Saharjo, Bambang Hero; Albar, Israr; Atmoko, Dwi; Voulgarakis, Apostolos

    2017-10-01

    We conducted a case study of National Centers for Environmental Prediction Climate Forecast System version 2 seasonal model forecast performance over Indonesia in predicting the dry conditions in 2015 that led to severe fire, in comparison to the non-El Niño dry season conditions of 2016. Forecasts of the Drought Code (DC) component of Indonesia's Fire Danger Rating System were examined across the entire equatorial Asia region and for the primary burning regions within it. Our results show that early warning lead times of high observed DC in September and October 2015 varied considerably for different regions. High DC over Southern Kalimantan and Southern New Guinea were predicted with 180 day lead times, whereas Southern Sumatra had lead times of up to only 60 days, which we attribute to the absence in the forecasts of an eastward decrease in Indian Ocean sea surface temperatures. This case study provides the starting point for longer-term evaluation of seasonal fire danger rating forecasts over Indonesia.

  12. Prospective Evaluation of the Global Earthquake Activity Rate Model (GEAR1) Earthquake Forecast: Preliminary Results

    NASA Astrophysics Data System (ADS)

    Strader, Anne; Schorlemmer, Danijel; Beutin, Thomas

    2017-04-01

    The Global Earthquake Activity Rate Model (GEAR1) is a hybrid seismicity model, constructed from a loglinear combination of smoothed seismicity from the Global Centroid Moment Tensor (CMT) earthquake catalog and geodetic strain rates (Global Strain Rate Map, version 2.1). For the 2005-2012 retrospective evaluation period, GEAR1 outperformed both parent strain rate and smoothed seismicity forecasts. Since 1. October 2015, GEAR1 has been prospectively evaluated by the Collaboratory for the Study of Earthquake Predictability (CSEP) testing center. Here, we present initial one-year test results of the GEAR1, GSRM and GSRM2.1, as well as localized evaluation of GEAR1 performance. The models were evaluated on the consistency in number (N-test), spatial (S-test) and magnitude (M-test) distribution of forecasted and observed earthquakes, as well as overall data consistency (CL-, L-tests). Performance at target earthquake locations was compared between models using the classical paired T-test and its non-parametric equivalent, the W-test, to determine if one model could be rejected in favor of another at the 0.05 significance level. For the evaluation period from 1. October 2015 to 1. October 2016, the GEAR1, GSRM and GSRM2.1 forecasts pass all CSEP likelihood tests. Comparative test results show statistically significant improvement of GEAR1 performance over both strain rate-based forecasts, both of which can be rejected in favor of GEAR1. Using point process residual analysis, we investigate the spatial distribution of differences in GEAR1, GSRM and GSRM2 model performance, to identify regions where the GEAR1 model should be adjusted, that could not be inferred from CSEP test results. Furthermore, we investigate whether the optimal combination of smoothed seismicity and strain rates remains stable over space and time.

  13. Trimming the UCERF2 hazard logic tree

    USGS Publications Warehouse

    Porter, Keith A.; Field, Edward H.; Milner, Kevin

    2012-01-01

    The Uniform California Earthquake Rupture Forecast 2 (UCERF2) is a fully time‐dependent earthquake rupture forecast developed with sponsorship of the California Earthquake Authority (Working Group on California Earthquake Probabilities [WGCEP], 2007; Field et al., 2009). UCERF2 contains 480 logic‐tree branches reflecting choices among nine modeling uncertainties in the earthquake rate model shown in Figure 1. For seismic hazard analysis, it is also necessary to choose a ground‐motion‐prediction equation (GMPE) and set its parameters. Choosing among four next‐generation attenuation (NGA) relationships results in a total of 1920 hazard calculations per site. The present work is motivated by a desire to reduce the computational effort involved in a hazard analysis without understating uncertainty. We set out to assess which branching points of the UCERF2 logic tree contribute most to overall uncertainty, and which might be safely ignored (set to only one branch) without significantly biasing results or affecting some useful measure of uncertainty. The trimmed logic tree will have all of the original choices from the branching points that contribute significantly to uncertainty, but only one arbitrarily selected choice from the branching points that do not.

  14. Seasonal simulations using a coupled ocean-atmosphere model with data assimilation

    NASA Astrophysics Data System (ADS)

    Larow, Timothy Edward

    1997-10-01

    A coupled ocean-atmosphere initialization scheme using Newtonian relaxation has been developed for the Florida State University coupled ocean-atmosphere global general circulation model. The coupled model is used for seasonal predictions of the boreal summers of 1987 and 1988. The atmosphere model is a modified version of the Florida State University global spectral model, resolution triangular truncation 42 waves. The ocean general circulation model consists of a slightly modified version developed by Latif (1987). Coupling is synchronous with exchange of information every two model hours. Using daily analysis from ECMWF and observed monthly mean SSTs from NCEP, two - one year, time dependent, Newtonian relaxation were conducted using the coupled model prior to the seasonal forecasts. Relaxation was selectively applied to the atmospheric vorticity, divergence, temperature, and dew point depression equations, and to the ocean's surface temperature equation. The ocean's initial conditions are from a six year ocean-only simulation which used observed wind stresses and a relaxation towards observed SSTs for forcings. Coupled initialization was conducted from 1 June 1986 to 1 June 1987 for the 1987 boreal forecast and from 1 June 1987 to 1 June 1988 for the 1988 boreal forecast. Examination of annual means of net heat flux, freshwater flux and wind stress obtained by from the initialization show close agreement with Oberhuber (1988) climatology and the Florida State University pseudo wind stress analysis. Sensitivity of the initialization/assimilation scheme was tested by conducting two - ten member ensemble integrations. Each member was integrated for 90 days (June-August) of the respective year. Initial conditions for the ensembles consisted of the same ocean state as used by the initialize forecasts, while the atmospheric initial conditions were from ECMWF analysis centered on 1 June of the respective year. Root mean square error and anomaly correlations between observed and forecasted SSTs in the Nino 3 and Nino 4 regions show greater skill between the initialized forecasts than the ensemble forecasts. It is hypothesized that differences in the specific humidity within the planetary boundary layer are responsible for the large SST errors noted with the ensembles.

  15. Improvement of Storm Forecasts Using Gridded Bayesian Linear Regression for Northeast United States

    NASA Astrophysics Data System (ADS)

    Yang, J.; Astitha, M.; Schwartz, C. S.

    2017-12-01

    Bayesian linear regression (BLR) is a post-processing technique in which regression coefficients are derived and used to correct raw forecasts based on pairs of observation-model values. This study presents the development and application of a gridded Bayesian linear regression (GBLR) as a new post-processing technique to improve numerical weather prediction (NWP) of rain and wind storm forecasts over northeast United States. Ten controlled variables produced from ten ensemble members of the National Center for Atmospheric Research (NCAR) real-time prediction system are used for a GBLR model. In the GBLR framework, leave-one-storm-out cross-validation is utilized to study the performances of the post-processing technique in a database composed of 92 storms. To estimate the regression coefficients of the GBLR, optimization procedures that minimize the systematic and random error of predicted atmospheric variables (wind speed, precipitation, etc.) are implemented for the modeled-observed pairs of training storms. The regression coefficients calculated for meteorological stations of the National Weather Service are interpolated back to the model domain. An analysis of forecast improvements based on error reductions during the storms will demonstrate the value of GBLR approach. This presentation will also illustrate how the variances are optimized for the training partition in GBLR and discuss the verification strategy for grid points where no observations are available. The new post-processing technique is successful in improving wind speed and precipitation storm forecasts using past event-based data and has the potential to be implemented in real-time.

  16. Using Socioeconomic Data to Calibrate Loss Estimates

    NASA Astrophysics Data System (ADS)

    Holliday, J. R.; Rundle, J. B.

    2013-12-01

    One of the loftier goals in seismic hazard analysis is the creation of an end-to-end earthquake prediction system: a "rupture to rafters" work flow that takes a prediction of fault rupture, propagates it with a ground shaking model, and outputs a damage or loss profile at a given location. So far, the initial prediction of an earthquake rupture (either as a point source or a fault system) has proven to be the most difficult and least solved step in this chain. However, this may soon change. The Collaboratory for the Study of Earthquake Predictability (CSEP) has amassed a suite of earthquake source models for assorted testing regions worldwide. These models are capable of providing rate-based forecasts for earthquake (point) sources over a range of time horizons. Furthermore, these rate forecasts can be easily refined into probabilistic source forecasts. While it's still difficult to fully assess the "goodness" of each of these models, progress is being made: new evaluation procedures are being devised and earthquake statistics continue to accumulate. The scientific community appears to be heading towards a better understanding of rupture predictability. Ground shaking mechanics are better understood, and many different sophisticated models exists. While these models tend to be computationally expensive and often regionally specific, they do a good job at matching empirical data. It is perhaps time to start addressing the third step in the seismic hazard prediction system. We present a model for rapid economic loss estimation using ground motion (PGA or PGV) and socioeconomic measures as its input. We show that the model can be calibrated on a global scale and applied worldwide. We also suggest how the model can be improved and generalized to non-seismic natural disasters such as hurricane and severe wind storms.

  17. Impact of CAMEX-4 Data Sets for Hurricane Forecasts using a Global Model

    NASA Technical Reports Server (NTRS)

    Kamineni, Rupa; Krishnamurti, T. N.; Pattnaik, S.; Browell, Edward V.; Ismail, Syed; Ferrare, Richard A.

    2005-01-01

    This study explores the impact on hurricane data assimilation and forecasts from the use of dropsondes and remote-sensed moisture profiles from the airborne Lidar Atmospheric Sensing Experiment (LASE) system. We show that the use of these additional data sets, above those from the conventional world weather watch, has a positive impact on hurricane predictions. The forecast tracks and intensity from the experiments show a marked improvement compared to the control experiment where such data sets were excluded. A study of the moisture budget in these hurricanes showed enhanced evaporation and precipitation over the storm area. This resulted in these data sets making a large impact on the estimate of mass convergence and moisture fluxes, which were much smaller in the control runs. Overall this study points to the importance of high vertical resolution humidity data sets for improved model results. We note that the forecast impact from the moisture profiling data sets for some of the storms is even larger than the impact from the use of dropwindsonde based winds.

  18. Real-time Ensemble Flow Forecasts for a 2017 Mock Operation Test Trial of Forecast Informed Reservoir Operations for Lake Mendocino in Mendocino County, California

    NASA Astrophysics Data System (ADS)

    Delaney, C.; Mendoza, J.; Jasperse, J.; Hartman, R. K.; Whitin, B.; Kalansky, J.

    2017-12-01

    Forecast informed reservoir operations (FIRO) is a methodology that incorporates short to mid-range precipitation and flow forecasts to inform the flood operations of reservoirs. The Ensemble Forecast Operations (EFO) alternative is a probabilistic approach of FIRO that incorporates 15-day ensemble streamflow predictions (ESPs) made by NOAA's California-Nevada River Forecast Center (CNRFC). With the EFO approach, release decisions are made to manage forecasted risk of reaching critical operational thresholds. A water management model was developed for Lake Mendocino, a 111,000 acre-foot reservoir located near Ukiah, California, to conduct a mock operation test trial of the EFO alternative for 2017. Lake Mendocino is a dual use reservoir, which is owned and operated for flood control by the United States Army Corps of Engineers and is operated for water supply by the Sonoma County Water Agency. Due to recent changes in the operations of an upstream hydroelectric facility, this reservoir has suffered from water supply reliability issues since 2007. The operational trial utilized real-time ESPs prepared by the CNRFC and observed flow information to simulate hydrologic conditions in Lake Mendocino and a 50-mile downstream reach of the Russian River to the City of Healdsburg. Results of the EFO trial demonstrate a 6% increase in reservoir storage at the end of trial period (May 10) relative to observed conditions. Additionally, model results show no increase in flows above flood stage for points downstream of Lake Mendocino. Results of this investigation and other studies demonstrate that the EFO alternative may be a viable flood control operations approach for Lake Mendocino and warrants further investigation through additional modeling and analysis.

  19. Improving a stage forecasting Muskingum model by relating local stage and remote discharge

    NASA Astrophysics Data System (ADS)

    Barbetta, S.; Moramarco, T.; Melone, F.; Brocca, L.

    2009-04-01

    Following the parsimonious concept of parameters, simplified models for flood forecasting based only on flood routing have been developed for flood-prone sites located downstream of a gauged station and at a distance allowing an appropriate forecasting lead-time. In this context, the Muskingum model can be a useful tool. However, critical points in hydrological routing are the representation of lateral inflows contribution and the knowledge of stage-discharge relationships. As regards the former, O'Donnell (O'Donnell, T., 1985. A direct three-parameter Muskingum procedure incorporating lateral inflow, Hydrol. Sci. J., 30[4/12], 479-496) proposed a three-parameter Muskingum procedure assuming the lateral inflows proportional to the contribution entering upstream. Using this approach, Franchini and Lamberti (Franchini, M. & Lamberti, P., 1994. A flood routing Muskingum type simulation and forecasting model based on level data alone, Water Resour. Res., 30[7], 2183-2196) presented a simple model Muskingum type to provide forecast water levels at the downstream end by selecting a routing time interval and, hence, a forecasting lead-time allowing to express the forecast stage as a function of only observed quantities. Moramarco et al. (Moramarco, T., Barbetta, S., Melone, F. & Singh, V.P., 2006. A real-time stage Muskingum forecasting model for a site without rating curve, Hydrol. Sci. J., 51[1], 66-82) enhanced the modeling scheme incorporating a procedure for adapting the parameter linked to lateral inflows. This last model, called STAFOM (STAge FOrecasting Model), was also extended to a two connected river branches schematization in order to improve significantly the forecasting lead-time. The STAFOM model provided satisfactory results for most of the analysed flood events observed in different river reaches in the Upper-Middle Tiber River basin in Central Italy. However, the analysis highlighted that the stage forecast should be enhanced when sudden modifications occur in the upstream and downstream hydrographs recorded in real-time. Moramarco et al. (Moramarco, T., Barbetta, S., F. Melone, F. & Singh, V.P., 2005. Relating local stage and remote discharge with significant lateral inflow, J. Hydrol. Engng ASCE, 10[1], 58-69) showed that for any flood condition at ends of a river reach, a direct proportionality between the upstream and downstream mean velocity can be found. This insight was the basis for developing the Rating Curve Model (RCM) that allows to also accommodate significant lateral inflow contributions, permitting, without using a flood routing procedure and without the need of a rating curve at a local site, to relate the local hydraulic conditions with those at a remote gauged section. Therefore, to improve the STAFOM performance mainly for highly varying flood conditions, the model has been here modified by coupling it with a procedure based on the RCM approach. Several flood events occurred along different equipped river reaches of the Upper Tiber River basin have been used as case study. Results showed that the new model, named STAFOM-RCM, apart from to improve the stage forecast accuracy in terms of error on peak stage, Nash-Sutcliffe efficiency coefficient and the coefficient of persistence, allowed to use a larger lead time thus avoiding the two-river branches cascade schematization where fluctuations in stage forecasting occur more frequently.

  20. Increasing the temporal resolution of direct normal solar irradiance forecasted series

    NASA Astrophysics Data System (ADS)

    Fernández-Peruchena, Carlos M.; Gastón, Martin; Schroedter-Homscheidt, Marion; Marco, Isabel Martínez; Casado-Rubio, José L.; García-Moya, José Antonio

    2017-06-01

    A detailed knowledge of the solar resource is a critical point in the design and control of Concentrating Solar Power (CSP) plants. In particular, accurate forecasting of solar irradiance is essential for the efficient operation of solar thermal power plants, the management of energy markets, and the widespread implementation of this technology. Numerical weather prediction (NWP) models are commonly used for solar radiation forecasting. In the ECMWF deterministic forecasting system, all forecast parameters are commercially available worldwide at 3-hourly intervals. Unfortunately, as Direct Normal solar Irradiance (DNI) exhibits a great variability due to the dynamic effects of passing clouds, 3-h time resolution is insufficient for accurate simulations of CSP plants due to their nonlinear response to DNI, governed by various thermal inertias due to their complex response characteristics. DNI series of hourly or sub-hourly frequency resolution are normally used for an accurate modeling and analysis of transient processes in CSP technologies. In this context, the objective of this study is to propose a methodology for generating synthetic DNI time series at 1-h (or higher) temporal resolution from 3-h DNI series. The methodology is based upon patterns as being defined with help of the clear-sky envelope approach together with a forecast of maximum DNI value, and it has been validated with high quality measured DNI data.

  1. An experiment in hurricane track prediction using parallel computing methods

    NASA Technical Reports Server (NTRS)

    Song, Chang G.; Jwo, Jung-Sing; Lakshmivarahan, S.; Dhall, S. K.; Lewis, John M.; Velden, Christopher S.

    1994-01-01

    The barotropic model is used to explore the advantages of parallel processing in deterministic forecasting. We apply this model to the track forecasting of hurricane Elena (1985). In this particular application, solutions to systems of elliptic equations are the essence of the computational mechanics. One set of equations is associated with the decomposition of the wind into irrotational and nondivergent components - this determines the initial nondivergent state. Another set is associated with recovery of the streamfunction from the forecasted vorticity. We demonstrate that direct parallel methods based on accelerated block cyclic reduction (BCR) significantly reduce the computational time required to solve the elliptic equations germane to this decomposition and forecast problem. A 72-h track prediction was made using incremental time steps of 16 min on a network of 3000 grid points nominally separated by 100 km. The prediction took 30 sec on the 8-processor Alliant FX/8 computer. This was a speed-up of 3.7 when compared to the one-processor version. The 72-h prediction of Elena's track was made as the storm moved toward Florida's west coast. Approximately 200 km west of Tampa Bay, Elena executed a dramatic recurvature that ultimately changed its course toward the northwest. Although the barotropic track forecast was unable to capture the hurricane's tight cycloidal looping maneuver, the subsequent northwesterly movement was accurately forecasted as was the location and timing of landfall near Mobile Bay.

  2. High resolution statistical downscaling of the EUROSIP seasonal prediction. Application for southeastern Romania

    NASA Astrophysics Data System (ADS)

    Busuioc, Aristita; Dumitrescu, Alexandru; Dumitrache, Rodica; Iriza, Amalia

    2017-04-01

    Seasonal climate forecasts in Europe are currently issued at the European Centre for Medium-Range Weather Forecasts (ECMWF) in the form of multi-model ensemble predictions available within the "EUROSIP" system. Different statistical techniques to calibrate, downscale and combine the EUROSIP direct model output are used to optimize the quality of the final probabilistic forecasts. In this study, a statistical downscaling model (SDM) based on canonical correlation analysis (CCA) is used to downscale the EUROSIP seasonal forecast at a spatial resolution of 1km x 1km over the Movila farm placed in southeastern Romania. This application is achieved in the framework of the H2020 MOSES project (http://www.moses-project.eu). The combination between monthly standardized values of three climate variables (maximum/minimum temperatures-Tmax/Tmin, total precipitation-Prec) is used as predictand while combinations of various large-scale predictors are tested in terms of their availability as outputs in the seasonal EUROSIP probabilistic forecasting (sea level pressure, temperature at 850 hPa and geopotential height at 500 hPa). The predictors are taken from the ECMWF system considering 15 members of the ensemble, for which the hindcasts since 1991 until present are available. The model was calibrated over the period 1991-2014 and predictions for summers 2015 and 2016 were achieved. The calibration was made for the ensemble average as well as for each ensemble member. The model was developed for each lead time: one month anticipation for June, two months anticipation for July and three months anticipation for August. The main conclusions from these preliminary results are: best predictions (in terms of the anomaly sign) for Tmax (July-2 months anticipation, August-3 months anticipation) for both years (2015, 2016); for Tmin - good predictions only for August (3 months anticipation ) for both years; for precipitation, good predictions for July (2 months anticipation) in 2015 and August (3 months anticipation) in 2016; failed prediction for June (1-month anticipation) for all parameters. To see if the results obtained for 2015 and 2016 summers are in agreement with the general ECMWF model performance in forecast of the three predictors used in the CCA SDM calibration, the mean bias and root mean square errors (RMSE) calculated over the entire period in each grid point, for each ensemble member and ensemble average were computed. The obtained results are confirmed, showing highest ECMWF performance in forecasting of the three predictors for 3 months anticipation (August) and lowest performance for one month anticipation (June). The added value of the CCA SDM in forecasting local Tmax/Tmin and total precipitation was compared to the ECMWF performance using nearest grid point method. Comparisons were performed for the 1991-2014 period, taking into account the forecast made in May for July. An important improvement was found for the CCA SDM predictions in terms of the RMSE value (computed against observations) for Tmax/Tmin and less for precipitation. The tests are in progress for the other summer months (June, July).

  3. Forecast skill of a high-resolution real-time mesoscale model designed for weather support of operations at Kennedy Space Center and Cape Canaveral Air Station

    NASA Technical Reports Server (NTRS)

    Taylor, Gregory E.; Zack, John W.; Manobianco, John

    1994-01-01

    NASA funded Mesoscale Environmental Simulations and Operations (MESO), Inc. to develop a version of the Mesoscale Atmospheric Simulation System (MASS). The model has been modified specifically for short-range forecasting in the vicinity of KSC/CCAS. To accomplish this, the model domain has been limited to increase the number of horizontal grid points (and therefore grid resolution) and the model' s treatment of precipitation, radiation, and surface hydrology physics has been enhanced to predict convection forced by local variations in surface heat, moisture fluxes, and cloud shading. The objective of this paper is to (1) provide an overview of MASS including the real-time initialization and configuration for running the data pre-processor and model, and (2) to summarize the preliminary evaluation of the model's forecasts of temperature, moisture, and wind at selected rawinsonde station locations during February 1994 and July 1994. MASS is a hydrostatic, three-dimensional modeling system which includes schemes to represent planetary boundary layer processes, surface energy and moisture budgets, free atmospheric long and short wave radiation, cloud microphysics, and sub-grid scale moist convection.

  4. A New Objective Technique for Verifying Mesoscale Numerical Weather Prediction Models

    NASA Technical Reports Server (NTRS)

    Case, Jonathan L.; Manobianco, John; Lane, John E.; Immer, Christopher D.

    2003-01-01

    This report presents a new objective technique to verify predictions of the sea-breeze phenomenon over east-central Florida by the Regional Atmospheric Modeling System (RAMS) mesoscale numerical weather prediction (NWP) model. The Contour Error Map (CEM) technique identifies sea-breeze transition times in objectively-analyzed grids of observed and forecast wind, verifies the forecast sea-breeze transition times against the observed times, and computes the mean post-sea breeze wind direction and speed to compare the observed and forecast winds behind the sea-breeze front. The CEM technique is superior to traditional objective verification techniques and previously-used subjective verification methodologies because: It is automated, requiring little manual intervention, It accounts for both spatial and temporal scales and variations, It accurately identifies and verifies the sea-breeze transition times, and It provides verification contour maps and simple statistical parameters for easy interpretation. The CEM uses a parallel lowpass boxcar filter and a high-order bandpass filter to identify the sea-breeze transition times in the observed and model grid points. Once the transition times are identified, CEM fits a Gaussian histogram function to the actual histogram of transition time differences between the model and observations. The fitted parameters of the Gaussian function subsequently explain the timing bias and variance of the timing differences across the valid comparison domain. Once the transition times are all identified at each grid point, the CEM computes the mean wind direction and speed during the remainder of the day for all times and grid points after the sea-breeze transition time. The CEM technique performed quite well when compared to independent meteorological assessments of the sea-breeze transition times and results from a previously published subjective evaluation. The algorithm correctly identified a forecast or observed sea-breeze occurrence or absence 93% of the time during the two- month evaluation period from July and August 2000. Nearly all failures in CEM were the result of complex precipitation features (observed or forecast) that contaminated the wind field, resulting in a false identification of a sea-breeze transition. A qualitative comparison between the CEM timing errors and the subjectively determined observed and forecast transition times indicate that the algorithm performed very well overall. Most discrepancies between the CEM results and the subjective analysis were again caused by observed or forecast areas of precipitation that led to complex wind patterns. The CEM also failed on a day when the observed sea- breeze transition affected only a very small portion of the verification domain. Based on the results of CEM, the RAMS tended to predict the onset and movement of the sea-breeze transition too early and/or quickly. The domain-wide timing biases provided by CEM indicated an early bias on 30 out of 37 days when both an observed and forecast sea breeze occurred over the same portions of the analysis domain. These results are consistent with previous subjective verifications of the RAMS sea breeze predictions. A comparison of the mean post-sea breeze winds indicate that RAMS has a positive wind-speed bias for .all days, which is also consistent with the early bias in the sea-breeze transition time since the higher wind speeds resulted in a faster inland penetration of the sea breeze compared to reality.

  5. Application of Bred Vectors To Data Assimilation

    NASA Astrophysics Data System (ADS)

    Corazza, M.; Kalnay, E.; Patil, Dj

    We introduced a statistic, the BV-dimension, to measure the effective local finite-time dimensionality of the atmosphere. We show that this dimension is often quite low, and suggest that this finding has important implications for data assimilation and the accuracy of weather forecasting (Patil et al, 2001). The original database for this study was the forecasts of the NCEP global ensemble forecasting system. The initial differences between the control forecast and the per- turbed forecasts are called bred vectors. The control and perturbed initial conditions valid at time t=n(t are evolved using the forecast model until time t=(n+1) (t. The differences between the perturbed and the control forecasts are scaled down to their initial amplitude, and constitute the bred vectors valid at (n+1) (t. Their growth rate is typically about 1.5/day. The bred vectors are similar by construction to leading Lya- punov vectors except that they have small but finite amplitude, and they are valid at finite times. The original NCEP ensemble data set has 5 independent bred vectors. We define a local bred vector at each grid point by choosing the 5 by 5 grid points centered at the grid point (a region of about 1100km by 1100km), and using the north-south and east- west velocity components at 500mb pressure level to form a 50 dimensional column vector. Since we have k=5 global bred vectors, we also have k local bred vectors at each grid point. We estimate the effective dimensionality of the subspace spanned by the local bred vectors by performing a singular value decomposition (EOF analysis). The k local bred vector columns form a 50xk matrix M. The singular values s(i) of M measure the extent to which the k column unit vectors making up the matrix M point in the direction of v(i). We define the bred vector dimension as BVDIM={Sum[s(i)]}^2/{Sum[s(i)]^2} For example, if 4 out of the 5 vectors lie along v, and one lies along v, the BV- dimension would be BVDIM[sqrt(4), 1, 0,0,0]=1.8, less than 2 because one direction is more dominant than the other in representing the original data. The results (Patil et al, 2001) show that there are large regions where the bred vectors span a subspace of substantially lower dimension than that of the full space. These low dimensionality regions are dominant in the baroclinic extratropics, typically have a lifetime of 3-7 days, have a well-defined horizontal and vertical structure that spans 1 most of the atmosphere, and tend to move eastward. New results with a large number of ensemble members confirm these results and indicate that the low dimensionality regions are quite robust, and depend only on the verification time (i.e., the underlying flow). Corazza et al (2001) have performed experiments with a data assimilation system based on a quasi-geostrophic model and simulated observations (Morss, 1999, Hamill et al, 2000). A 3D-variational data assimilation scheme for a quasi-geostrophic chan- nel model is used to study the structure of the background error and its relationship to the corresponding bred vectors. The "true" evolution of the model atmosphere is defined by an integration of the model and "rawinsonde observations" are simulated by randomly perturbing the true state at fixed locations. It is found that after 3-5 days the bred vectors develop well organized structures which are very similar for the two different norms considered in this paper (potential vorticity norm and streamfunction norm). The results show that the bred vectors do indeed represent well the characteristics of the data assimilation forecast errors, and that the subspace of bred vectors contains most of the forecast error, except in areas where the forecast errors are small. For example, the angle between the 6hr forecast error and the subspace spanned by 10 bred vectors is less than 10o over 90% of the domain, indicating a pattern correlation of more than 98.5% between the forecast error and its projection onto the bred vector subspace. The presence of low-dimensional regions in the perturbations of the basic flow has important implications for data assimilation. At any given time, there is a difference between the true atmospheric state and the model forecast. Assuming that model er- rors are not the dominant source of errors, in a region of low BV-dimensionality the difference between the true state and the forecast should lie substantially in the low dimensional unstable subspace of the few bred vectors that contribute most strongly to the low BV-dimension. This information should yield a substantial improvement in the forecast: the data assimilation algorithm should correct the model state by moving it closer to the observations along the unstable subspace, since this is where the true state most likely lies. Preliminary experiments have been conducted with the quasi-geostrophic data assim- ilation system testing whether it is possible to add "errors of the day" based on bred vectors to the standard (constant) 3D-Var background error covariance in order to capture these important errors. The results are extremely encouraging, indicating a significant reduction (about 40%) in the analysis errors at a very low computational cost. References: 2 Corazza, M., E. Kalnay, DJ Patil, R. Morss, M Cai, I. Szunyogh, BR Hunt, E Ott and JA Yorke, 2001: Use of the breeding technique to estimate the structure of the analysis "errors of the day". Submitted to Nonlinear Processes in Geophysics. Hamill, T.M., Snyder, C., and Morss, R.E., 2000: A Comparison of Probabilistic Fore- casts from Bred, Singular-Vector and Perturbed Observation Ensembles, Mon. Wea. Rev., 128, 1835­1851. Kalnay, E., and Z. Toth, 1994: Removing growing errors in the analysis cycle. Preprints of the Tenth Conference on Numerical Weather Prediction, Amer. Meteor. Soc., 1994, 212-215. Morss, R. E., 1999: Adaptive observations: Idealized sampling strategies for improv- ing numerical weather prediction. PHD thesis, Massachussetts Institute of technology, 225pp. Patil, D. J. S., B. R. Hunt, E. Kalnay, J. A. Yorke, and E. Ott., 2001: Local Low Dimensionality of Atmospheric Dynamics. Phys. Rev. Lett., 86, 5878. 3

  6. Assessing the Value of Frost Forecasts to Orchardists: A Dynamic Decision-Making Approach.

    NASA Astrophysics Data System (ADS)

    Katz, Richard W.; Murphy, Allan H.; Winkler, Robert L.

    1982-04-01

    The methodology of decision analysis is used to investigate the economic value of frost (i.e., minimum temperature) forecasts to orchardists. First, the fruit-frost situation and previous studies of the value of minimum temperature forecasts in this context are described. Then, after a brief overview of decision analysis, a decision-making model for the fruit-frost problem is presented. The model involves identifying the relevant actions and events (or outcomes), specifying the effect of taking protective action, and describing the relationships among temperature, bud loss, and yield loss. A bivariate normal distribution is used to model the relationship between forecast and observed temperatures, thereby characterizing the quality of different types of information. Since the orchardist wants to minimize expenses (or maximize payoffs) over the entire frost-protection season and since current actions and outcomes at any point in the season are related to both previous and future actions and outcomes, the decision-making problem is inherently dynamic in nature. As a result, a class of dynamic models known as Markov decision processes is considered. A computational technique called dynamic programming is used in conjunction with these models to determine the optimal actions and to estimate the value of meteorological information.Some results concerning the value of frost forecasts to orchardists in the Yakima Valley of central Washington are presented for the cases of red delicious apples, bartlett pears, and elberta peaches. Estimates of the parameter values in the Markov decision process are obtained from relevant physical and economic data. Twenty years of National Weather Service forecast and observed temperatures for the Yakima key station are used to estimate the quality of different types of information, including perfect forecasts, current forecasts, and climatological information. The orchardist's optimal actions over the frost-protection season and the expected expenses associated with the use of such information are determined using a dynamic programming algorithm. The value of meteorological information is defined as the difference between the expected expense for the information of interest and the expected expense for climatological information. Over the entire frost-protection season, the value estimates (in 1977 dollars) for current forecasts were $808 per acre for red delicious apples, $492 per acre for bartlett pears, and $270 per acre for elberta peaches. These amounts account for 66, 63, and 47%, respectively, of the economic value associated with decisions based on perfect forecasts. Varying the quality of the minimum temperature forecasts reveals that the relationship between the accuracy and value of such forecasts is nonlinear and that improvements in current forecasts would not be as significant in terms of economic value as were comparable improvements in the past.Several possible extensions of this study of the value of frost forecasts to orchardists are briefly described. Finally, the application of the dynamic model formulated in this paper to other decision-making problems involving the use of meteorological information is mentioned.

  7. Implementation of 5-layer thermal diffusion scheme in weather research and forecasting model with Intel Many Integrated Cores

    NASA Astrophysics Data System (ADS)

    Huang, Melin; Huang, Bormin; Huang, Allen H.

    2014-10-01

    For weather forecasting and research, the Weather Research and Forecasting (WRF) model has been developed, consisting of several components such as dynamic solvers and physical simulation modules. WRF includes several Land- Surface Models (LSMs). The LSMs use atmospheric information, the radiative and precipitation forcing from the surface layer scheme, the radiation scheme, and the microphysics/convective scheme all together with the land's state variables and land-surface properties, to provide heat and moisture fluxes over land and sea-ice points. The WRF 5-layer thermal diffusion simulation is an LSM based on the MM5 5-layer soil temperature model with an energy budget that includes radiation, sensible, and latent heat flux. The WRF LSMs are very suitable for massively parallel computation as there are no interactions among horizontal grid points. The features, efficient parallelization and vectorization essentials, of Intel Many Integrated Core (MIC) architecture allow us to optimize this WRF 5-layer thermal diffusion scheme. In this work, we present the results of the computing performance on this scheme with Intel MIC architecture. Our results show that the MIC-based optimization improved the performance of the first version of multi-threaded code on Xeon Phi 5110P by a factor of 2.1x. Accordingly, the same CPU-based optimizations improved the performance on Intel Xeon E5- 2603 by a factor of 1.6x as compared to the first version of multi-threaded code.

  8. Remotely-sensed, nocturnal, dew point correlates with malaria transmission in Southern Province, Zambia: a time-series study

    PubMed Central

    2014-01-01

    Background Plasmodium falciparum transmission has decreased significantly in Zambia in the last decade. The malaria transmission is influenced by environmental variables. Incorporation of environmental variables in models of malaria transmission likely improves model fit and predicts probable trends in malaria disease. This work is based on the hypothesis that remotely-sensed environmental factors, including nocturnal dew point, are associated with malaria transmission and sustain foci of transmission during the low transmission season in the Southern Province of Zambia. Methods Thirty-eight rural health centres in Southern Province, Zambia were divided into three zones based on transmission patterns. Correlations between weekly malaria cases and remotely-sensed nocturnal dew point, nocturnal land surface temperature as well as vegetation indices and rainfall were evaluated in time-series analyses from 2012 week 19 to 2013 week 36. Zonal as well as clinic-based, multivariate, autoregressive, integrated, moving average (ARIMAX) models implementing environmental variables were developed to model transmission in 2011 week 19 to 2012 week 18 and forecast transmission in 2013 week 37 to week 41. Results During the dry, low transmission season significantly higher vegetation indices, nocturnal land surface temperature and nocturnal dew point were associated with the areas of higher transmission. Environmental variables improved ARIMAX models. Dew point and normalized differentiated vegetation index were significant predictors and improved all zonal transmission models. In the high-transmission zone, this was also seen for land surface temperature. Clinic models were improved by adding dew point and land surface temperature as well as normalized differentiated vegetation index. The mean average error of prediction for ARIMAX models ranged from 0.7 to 33.5%. Forecasts of malaria incidence were valid for three out of five rural health centres; however, with poor results at the zonal level. Conclusions In this study, the fit of ARIMAX models improves when environmental variables are included. There is a significant association of remotely-sensed nocturnal dew point with malaria transmission. Interestingly, dew point might be one of the factors sustaining malaria transmission in areas of general aridity during the dry season. PMID:24927747

  9. Remotely-sensed, nocturnal, dew point correlates with malaria transmission in Southern Province, Zambia: a time-series study.

    PubMed

    Nygren, David; Stoyanov, Cristina; Lewold, Clemens; Månsson, Fredrik; Miller, John; Kamanga, Aniset; Shiff, Clive J

    2014-06-13

    Plasmodium falciparum transmission has decreased significantly in Zambia in the last decade. The malaria transmission is influenced by environmental variables. Incorporation of environmental variables in models of malaria transmission likely improves model fit and predicts probable trends in malaria disease. This work is based on the hypothesis that remotely-sensed environmental factors, including nocturnal dew point, are associated with malaria transmission and sustain foci of transmission during the low transmission season in the Southern Province of Zambia. Thirty-eight rural health centres in Southern Province, Zambia were divided into three zones based on transmission patterns. Correlations between weekly malaria cases and remotely-sensed nocturnal dew point, nocturnal land surface temperature as well as vegetation indices and rainfall were evaluated in time-series analyses from 2012 week 19 to 2013 week 36. Zonal as well as clinic-based, multivariate, autoregressive, integrated, moving average (ARIMAX) models implementing environmental variables were developed to model transmission in 2011 week 19 to 2012 week 18 and forecast transmission in 2013 week 37 to week 41. During the dry, low transmission season significantly higher vegetation indices, nocturnal land surface temperature and nocturnal dew point were associated with the areas of higher transmission. Environmental variables improved ARIMAX models. Dew point and normalized differentiated vegetation index were significant predictors and improved all zonal transmission models. In the high-transmission zone, this was also seen for land surface temperature. Clinic models were improved by adding dew point and land surface temperature as well as normalized differentiated vegetation index. The mean average error of prediction for ARIMAX models ranged from 0.7 to 33.5%. Forecasts of malaria incidence were valid for three out of five rural health centres; however, with poor results at the zonal level. In this study, the fit of ARIMAX models improves when environmental variables are included. There is a significant association of remotely-sensed nocturnal dew point with malaria transmission. Interestingly, dew point might be one of the factors sustaining malaria transmission in areas of general aridity during the dry season.

  10. A Point System to Forecast Hepatocellular Carcinoma Risk Before and After Treatment Among Persons with Chronic Hepatitis C.

    PubMed

    Xing, Jian; Spradling, Philip R; Moorman, Anne C; Holmberg, Scott D; Teshale, Eyasu H; Rupp, Loralee B; Gordon, Stuart C; Lu, Mei; Boscarino, Joseph A; Schmidt, Mark A; Trinacty, Connie M; Xu, Fujie

    2017-11-01

    Risk of hepatocellular carcinoma (HCC) may be difficult to determine in the clinical setting. Develop a scoring system to forecast HCC risk among patients with chronic hepatitis C. Using data from the Chronic Hepatitis Cohort Study collected during 2005-2014, we derived HCC risk scores for males and females using an extended Cox model with aspartate aminotransferase-to-platelet ratio index (APRI) as a time-dependent variables and mean Kaplan-Meier survival functions from patient data at two study sites, and used data collected at two separate sites for external validation. For model calibration, we used the Greenwood-Nam-D'Agostino goodness-of-fit statistic to examine differences between predicted and observed risk. Of 12,469 patients (1628 with a history of sustained viral response [SVR]), 504 developed HCC; median follow-up was 6 years. Final predictors in the model included age, alcohol abuse, interferon-based treatment response, and APRI. Point values, ranging from -3 to 14 (males) and -3 to 12 (females), were established using hazard ratios of the predictors aligned with 1-, 3-, and 5-year Kaplan-Meier survival probabilities of HCC. Discriminatory capacity was high (c-index 0.82 males and 0.84 females) and external calibration demonstrated no differences between predicted and observed HCC risk for 1-, 3-, and 5-year forecasts among males (all p values >0.97) and for 3- and 5-year risk among females (all p values >0.87). This scoring system, based on age, alcohol abuse history, treatment response, and APRI, can be used to forecast up to a 5-year risk of HCC among hepatitis C patients before and after SVR.

  11. Wind Information Uplink to Aircraft Performing Interval Management Operations

    NASA Technical Reports Server (NTRS)

    Ahmad, Nashat; Barmore, Bryan; Swieringa, Kurt

    2015-01-01

    The accuracy of the wind information used to generate trajectories for aircraft performing Interval Management (IM) operations is critical to the success of an IM operation. There are two main forms of uncertainty in the wind information used by the Flight Deck Interval Management (FIM) equipment. The first is the accuracy of the forecast modeling done by the weather provider. The second is that only a small subset of the forecast data can be uplinked to the aircraft for use by the FIM equipment, resulting in loss of additional information. This study focuses on what subset of forecast data, such as the number and location of the points where the wind is sampled should be made available to uplink to the aircraft.

  12. Using neural networks for prediction of air pollution index in industrial city

    NASA Astrophysics Data System (ADS)

    Rahman, P. A.; Panchenko, A. A.; Safarov, A. M.

    2017-10-01

    This scientific paper is dedicated to the use of artificial neural networks for the ecological prediction of state of the atmospheric air of an industrial city for capability of the operative environmental decisions. In the paper, there is also the described development of two types of prediction models for determining of the air pollution index on the basis of neural networks: a temporal (short-term forecast of the pollutants content in the air for the nearest days) and a spatial (forecast of atmospheric pollution index in any point of city). The stages of development of the neural network models are briefly overviewed and description of their parameters is also given. The assessment of the adequacy of the prediction models, based on the calculation of the correlation coefficient between the output and reference data, is also provided. Moreover, due to the complexity of perception of the «neural network code» of the offered models by the ordinary users, the software implementations allowing practical usage of neural network models are also offered. It is established that the obtained neural network models provide sufficient reliable forecast, which means that they are an effective tool for analyzing and predicting the behavior of dynamics of the air pollution in an industrial city. Thus, this scientific work successfully develops the urgent matter of forecasting of the atmospheric air pollution index in industrial cities based on the use of neural network models.

  13. Observed and forecast flood-inundation mapping application-A pilot study of an eleven-mile reach of the White River, Indianapolis, Indiana

    USGS Publications Warehouse

    Kim, Moon H.; Morlock, Scott E.; Arihood, Leslie D.; Kiesler, James L.

    2011-01-01

    Near-real-time and forecast flood-inundation mapping products resulted from a pilot study for an 11-mile reach of the White River in Indianapolis. The study was done by the U.S. Geological Survey (USGS), Indiana Silver Jackets hazard mitigation taskforce members, the National Weather Service (NWS), the Polis Center, and Indiana University, in cooperation with the City of Indianapolis, the Indianapolis Museum of Art, the Indiana Department of Homeland Security, and the Indiana Department of Natural Resources, Division of Water. The pilot project showed that it is technically feasible to create a flood-inundation map library by means of a two-dimensional hydraulic model, use a map from the library to quickly complete a moderately detailed local flood-loss estimate, and automatically run the hydraulic model during a flood event to provide the maps and flood-damage information through a Web graphical user interface. A library of static digital flood-inundation maps was created by means of a calibrated two-dimensional hydraulic model. Estimated water-surface elevations were developed for a range of river stages referenced to a USGS streamgage and NWS flood forecast point colocated within the study reach. These maps were made available through the Internet in several formats, including geographic information system, Keyhole Markup Language, and Portable Document Format. A flood-loss estimate was completed for part of the study reach by using one of the flood-inundation maps from the static library. The Federal Emergency Management Agency natural disaster-loss estimation program HAZUS-MH, in conjunction with local building information, was used to complete a level 2 analysis of flood-loss estimation. A Service-Oriented Architecture-based dynamic flood-inundation application was developed and was designed to start automatically during a flood, obtain near real-time and forecast data (from the colocated USGS streamgage and NWS flood forecast point within the study reach), run the two-dimensional hydraulic model, and produce flood-inundation maps. The application used local building data and depth-damage curves to estimate flood losses based on the maps, and it served inundation maps and flood-loss estimates through a Web-based graphical user interface.

  14. Incorporating Wind Power Forecast Uncertainties Into Stochastic Unit Commitment Using Neural Network-Based Prediction Intervals.

    PubMed

    Quan, Hao; Srinivasan, Dipti; Khosravi, Abbas

    2015-09-01

    Penetration of renewable energy resources, such as wind and solar power, into power systems significantly increases the uncertainties on system operation, stability, and reliability in smart grids. In this paper, the nonparametric neural network-based prediction intervals (PIs) are implemented for forecast uncertainty quantification. Instead of a single level PI, wind power forecast uncertainties are represented in a list of PIs. These PIs are then decomposed into quantiles of wind power. A new scenario generation method is proposed to handle wind power forecast uncertainties. For each hour, an empirical cumulative distribution function (ECDF) is fitted to these quantile points. The Monte Carlo simulation method is used to generate scenarios from the ECDF. Then the wind power scenarios are incorporated into a stochastic security-constrained unit commitment (SCUC) model. The heuristic genetic algorithm is utilized to solve the stochastic SCUC problem. Five deterministic and four stochastic case studies incorporated with interval forecasts of wind power are implemented. The results of these cases are presented and discussed together. Generation costs, and the scheduled and real-time economic dispatch reserves of different unit commitment strategies are compared. The experimental results show that the stochastic model is more robust than deterministic ones and, thus, decreases the risk in system operations of smart grids.

  15. Perturbed-input-data ensemble modeling of magnetospheric dynamics

    NASA Astrophysics Data System (ADS)

    Morley, S.; Steinberg, J. T.; Haiducek, J. D.; Welling, D. T.; Hassan, E.; Weaver, B. P.

    2017-12-01

    Many models of Earth's magnetospheric dynamics - including global magnetohydrodynamic models, reduced complexity models of substorms and empirical models - are driven by solar wind parameters. To provide consistent coverage of the upstream solar wind these measurements are generally taken near the first Lagrangian point (L1) and algorithmically propagated to the nose of Earth's bow shock. However, the plasma and magnetic field measured near L1 is a point measurement of an inhomogeneous medium, so the individual measurement may not be sufficiently representative of the broader region near L1. The measured plasma may not actually interact with the Earth, and the solar wind structure may evolve between L1 and the bow shock. To quantify uncertainties in simulations, as well as to provide probabilistic forecasts, it is desirable to use perturbed input ensembles of magnetospheric and space weather forecasting models. By using concurrent measurements of the solar wind near L1 and near the Earth, we construct a statistical model of the distributions of solar wind parameters conditioned on their upstream value. So that we can draw random variates from our model we specify the conditional probability distributions using Kernel Density Estimation. We demonstrate the utility of this approach using ensemble runs of selected models that can be used for space weather prediction.

  16. Assimilation of ASCAT near-surface soil moisture into the French SIM hydrological model

    NASA Astrophysics Data System (ADS)

    Draper, C.; Mahfouf, J.-F.; Calvet, J.-C.; Martin, E.; Wagner, W.

    2011-06-01

    The impact of assimilating near-surface soil moisture into the SAFRAN-ISBA-MODCOU (SIM) hydrological model over France is examined. Specifically, the root-zone soil moisture in the ISBA land surface model is constrained over three and a half years, by assimilating the ASCAT-derived surface degree of saturation product, using a Simplified Extended Kalman Filter. In this experiment ISBA is forced with the near-real time SAFRAN analysis, which analyses the variables required to force ISBA from relevant observations available before the real time data cut-off. The assimilation results are tested against ISBA forecasts generated with a higher quality delayed cut-off SAFRAN analysis. Ideally, assimilating the ASCAT data will constrain the ISBA surface state to correct for errors in the near-real time SAFRAN forcing, the most significant of which was a substantial dry bias caused by a dry precipitation bias. The assimilation successfully reduced the mean root-zone soil moisture bias, relative to the delayed cut-off forecasts, by close to 50 % of the open-loop value. The improved soil moisture in the model then led to significant improvements in the forecast hydrological cycle, reducing the drainage, runoff, and evapotranspiration biases (by 17 %, 11 %, and 70 %, respectively). When coupled to the MODCOU hydrogeological model, the ASCAT assimilation also led to improved streamflow forecasts, increasing the mean discharge ratio, relative to the delayed cut off forecasts, from 0.68 to 0.76. These results demonstrate that assimilating near-surface soil moisture observations can effectively constrain the SIM model hydrology, while also confirming the accuracy of the ASCAT surface degree of saturation product. This latter point highlights how assimilation experiments can contribute towards the difficult issue of validating remotely sensed land surface observations over large spatial scales.

  17. The potential impact of scatterometry on oceanography - A wave forecasting case

    NASA Technical Reports Server (NTRS)

    Cane, M. A.; Cardone, V. J.

    1981-01-01

    A series of observing system simulation experiments have been performed in order to assess the potential impact of marine surface wind data on numerical weather prediction. In addition to conventional data, the experiments simulated the time-continuous assimilation of remotely sensed marine surface wind or temperature sounding data. The wind data were fabricated directly for model grid points intercepted by a Seasat-1 scatterometer swath and were assimilated into the lowest active level (945 mb) of the model using a localized successive correction method. It is shown that Seasat wind data can greatly improve numerical weather forecasts due to better definition of specific features. The case of the QE II storm is examined.

  18. Forecasting the use of elderly care: a static micro-simulation model.

    PubMed

    Eggink, Evelien; Woittiez, Isolde; Ras, Michiel

    2016-07-01

    This paper describes a model suitable for forecasting the use of publicly funded long-term elderly care, taking into account both ageing and changes in the health status of the population. In addition, the impact of socioeconomic factors on care use is included in the forecasts. The model is also suitable for the simulation of possible implications of some specific policy measures. The model is a static micro-simulation model, consisting of an explanatory model and a population model. The explanatory model statistically relates care use to individual characteristics. The population model mimics the composition of the population at future points in time. The forecasts of care use are driven by changes in the composition of the population in terms of relevant characteristics instead of dynamics at the individual level. The results show that a further 37 % increase in the use of elderly care (from 7 to 9 % of the Dutch 30-plus population) between 2008 and 2030 can be expected due to a further ageing of the population. However, the use of care is expected to increase less than if it were based on the increasing number of elderly only (+70 %), due to decreasing disability levels and increasing levels of education. As an application of the model, we simulated the effects of restricting access to residential care to elderly people with severe physical disabilities. The result was a lower growth of residential care use (32 % instead of 57 %), but a somewhat faster growth in the use of home care (35 % instead of 32 %).

  19. Real time hydro-metereological hazards monitoring system for the Ravenna municipality

    NASA Astrophysics Data System (ADS)

    Bertoni, W.; Cattarossi, A.; Gonella, M.

    2003-04-01

    The Ravenna municipality (Italy, Emilia Romagna region), through a cooperative agreement with ENI S.p.A’s., AGIP division, is carrying out a research study for the development of a real time monitoring system of hydro-meteorological conditions. The system aims to support the city Crisis Response Unit to provide more efficient support all over the municipal territory that is the largest in Italy with more than 700 km2. The support unit, a GIS computer based application, directly links to a broad range of sources, gathering real time information from a Local Area Model (meteorological data), a Wave Model (sea hydrodynamic circulation), monitoring stations, located partially on the Adriatic sea (AGIP offshore platform, SIMN) and partially over the Ravenna inland (SPDS, SIN). In the first phase, now completed and undergoing testing, this vast and diversified collection of data feeds a number of statistical models with up to 72 hours of forecast capabilities. The GIS application displays actual and forecast sea conditions offshore of Ravenna littorals in addition to actual and forecast flood conditions along the Ravenna Province inland. Model generated data are used for the forecast, which is then calibrated using the measured data. When the predefined warning limits are exceeded, end users are alerted via prerecorded phone messages, SMS, or visually through the direct or remote interaction with the GIS system (remotely accessible via portable computers). In the second stage, the statistical approach will be substituted by a more deterministic approach. A coupled hydrologic-hydraulic model will be used to forecast water stages along rivers and runoff volume along major watersheds. Moreover, already functioning capabilities allows direct control of remote monitoring points (stream and rain gages, etc.) The entire Real Time Monitoring System was developed on a GIS platform. The GEOdatabase, a relational database based on MSDE technology, is the core of the application which revolves around the conceptualization of a Hydro Data Model, a standardized way to store hydraulic based data such as watershed delineation, hydrologic network, monitoring points and time series data. Recent advancement in GIS software technologies and ready to use hydro-meteorological data offer an unprecedented opportunity to customize the GIS application and provide a powerful application to prevent and defeat flood hazards.

  20. Observation Impacts for Longer Forecast Lead-Times

    NASA Astrophysics Data System (ADS)

    Mahajan, R.; Gelaro, R.; Todling, R.

    2013-12-01

    Observation impact on forecasts evaluated using adjoint-based techniques (e.g. Langland and Baker, 2004) are limited by the validity of the assumptions underlying the forecasting model adjoint. Most applications of this approach have focused on deriving observation impacts on short-range forecasts (e.g. 24-hour) in part to stay well within linearization assumptions. The most widely used measure of observation impact relies on the availability of the analysis for verifying the forecasts. As pointed out by Gelaro et al. (2007), and more recently by Todling (2013), this introduces undesirable correlations in the measure that are likely to affect the resulting assessment of the observing system. Stappers and Barkmeijer (2012) introduced a technique that, in principle, allows extending the validity of tangent linear and corresponding adjoint models to longer lead-times, thereby reducing the correlations in the measures used for observation impact assessments. The methodology provides the means to better represent linearized models by making use of Gaussian quadrature relations to handle various underlying non-linear model trajectories. The formulation is exact for particular bi-linear dynamics; it corresponds to an approximation for general-type nonlinearities and must be tested for large atmospheric models. The present work investigates the approach of Stappers and Barkmeijer (2012)in the context of NASA's Goddard Earth Observing System Version 5 (GEOS-5) atmospheric data assimilation system (ADAS). The goal is to calculate observation impacts in the GEOS-5 ADAS for forecast lead-times of at least 48 hours in order to reduce the potential for undesirable correlations that occur at shorter forecast lead times. References [1]Langland, R. H., and N. L. Baker, 2004: Estimation of observation impact using the NRL atmospheric variational data assimilation adjoint system. Tellus, 56A, 189-201. [2] Gelaro, R., Y. Zhu, and R. M. Errico, 2007: Examination of various-order adjoint-based approximations of observation impact. Meteoroloische Zeitschrift, 16, 685-692. [3]Stappers, R. J. J., and J. Barkmeijer, 2012: Optimal linearization trajectories for tangent linear models. Q. J. R. Meteorol. Soc., 138, 170-184. [4] Todling, R. 2013: Comparing two approaches for assessing observation impact. Mon. Wea. Rev., 141, 1484-1505.

  1. Ocean modelling aspects for drift applications

    NASA Astrophysics Data System (ADS)

    Stephane, L.; Pierre, D.

    2010-12-01

    Nowadays, many authorities in charge of rescue-at-sea operations lean on operational oceanography products to outline research perimeters. Moreover, current fields estimated with sophisticated ocean forecasting systems can be used as input data for oil spill/ adrift object fate models. This emphasises the necessity of an accurate sea state forecast, with a mastered level of reliability. This work focuses on several problems inherent to drift modeling, dealing in the first place with the efficiency of the oceanic current field representation. As we want to discriminate the relevance of a particular physical process or modeling option, the idea is to generate series of current fields of different characteristics and then qualify them in term of drift prediction efficiency. Benchmarked drift scenarios were set up from real surface drifters data, collected in the Mediterranean sea and off the coasts of Angola. The time and space scales that we are interested in are about 72 hr forecasts (typical timescale communicated in case of crisis), for distance errors that we hope about a few dozen of km around the forecast (acceptable for reconnaissance by aircrafts) For the ocean prediction, we used some regional oceanic configurations based on the NEMO 2.3 code, nested into Mercator 1/12° operational system. Drift forecasts were computed offline with Mothy (Météo France oil spill modeling system) and Ariane (B. Blanke, 1997), a Lagrangian diagnostic tool. We were particularly interested in the importance of the horizontal resolution, vertical mixing schemes, and any processes that may impact the surface layer. The aim of the study is to ultimately point at the most suitable set of parameters for drift forecast use inside operational oceanic systems. We are also motivated in assessing the relevancy of ensemble forecasts regarding determinist predictions. Several tests showed that mis-described observed trajectories can finally be modelled statistically by using uncertainties over the initial position of the drifting material. Works in the near future will explore that concept with ensemble of currents obtained with different initial conditions, phase shifted boundary forcings or perturbed atmospheric surface forcings.

  2. The Use of Scale-Dependent Precision to Increase Forecast Accuracy in Earth System Modelling

    NASA Astrophysics Data System (ADS)

    Thornes, Tobias; Duben, Peter; Palmer, Tim

    2016-04-01

    At the current pace of development, it may be decades before the 'exa-scale' computers needed to resolve individual convective clouds in weather and climate models become available to forecasters, and such machines will incur very high power demands. But the resolution could be improved today by switching to more efficient, 'inexact' hardware with which variables can be represented in 'reduced precision'. Currently, all numbers in our models are represented as double-precision floating points - each requiring 64 bits of memory - to minimise rounding errors, regardless of spatial scale. Yet observational and modelling constraints mean that values of atmospheric variables are inevitably known less precisely on smaller scales, suggesting that this may be a waste of computer resources. More accurate forecasts might therefore be obtained by taking a scale-selective approach whereby the precision of variables is gradually decreased at smaller spatial scales to optimise the overall efficiency of the model. To study the effect of reducing precision to different levels on multiple spatial scales, we here introduce a new model atmosphere developed by extending the Lorenz '96 idealised system to encompass three tiers of variables - which represent large-, medium- and small-scale features - for the first time. In this chaotic but computationally tractable system, the 'true' state can be defined by explicitly resolving all three tiers. The abilities of low resolution (single-tier) double-precision models and similar-cost high resolution (two-tier) models in mixed-precision to produce accurate forecasts of this 'truth' are compared. The high resolution models outperform the low resolution ones even when small-scale variables are resolved in half-precision (16 bits). This suggests that using scale-dependent levels of precision in more complicated real-world Earth System models could allow forecasts to be made at higher resolution and with improved accuracy. If adopted, this new paradigm would represent a revolution in numerical modelling that could be of great benefit to the world.

  3. Statistical Earthquake Focal Mechanism Forecasts

    NASA Astrophysics Data System (ADS)

    Kagan, Y. Y.; Jackson, D. D.

    2013-12-01

    The new whole Earth focal mechanism forecast, based on the GCMT catalog, has been created. In the present forecast, the sum of normalized seismic moment tensors within 1000 km radius is calculated and the P- and T-axes for the focal mechanism are evaluated on the basis of the sum. Simultaneously we calculate an average rotation angle between the forecasted mechanism and all the surrounding mechanisms. This average angle shows tectonic complexity of a region and indicates the accuracy of the prediction. The method was originally proposed by Kagan and Jackson (1994, JGR). Recent interest by CSEP and GEM has motivated some improvements, particularly to extend the previous forecast to polar and near-polar regions. The major problem in extending the forecast is the focal mechanism calculation on a spherical surface. In the previous forecast as our average focal mechanism was computed, it was assumed that longitude lines are approximately parallel within 1000 km radius. This is largely accurate in the equatorial and near-equatorial areas. However, when one approaches the 75 degree latitude, the longitude lines are no longer parallel: the bearing (azimuthal) difference at points separated by 1000 km reach about 35 degrees. In most situations a forecast point where we calculate an average focal mechanism is surrounded by earthquakes, so a bias should not be strong due to the difference effect cancellation. But if we move into polar regions, the bearing difference could approach 180 degrees. In a modified program focal mechanisms have been projected on a plane tangent to a sphere at a forecast point. New longitude axes which are parallel in the tangent plane are corrected for the bearing difference. A comparison with the old 75S-75N forecast shows that in equatorial regions the forecasted focal mechanisms are almost the same, and the difference in the forecasted focal mechanisms rotation angle is close to zero. However, though the forecasted focal mechanisms are similar, closer to the 75 latitude degree, the difference in the rotation angle is large (around a factor 1.5 in some places). The Gamma-index was calculated for the average focal mechanism moment. A non-zero Index indicates that earthquake focal mechanisms around the forecast point have different orientations. Thus deformation complexity displays itself in the average rotation angle and in the Index. However, sometimes the rotation angle is close to zero, whereas the Index is large, testifying to a large CLVD presence. Both new 0.5x0.5 and 0.1x0.1 degree forecasts are posted at http://eq.ess.ucla.edu/~kagan/glob_gcmt_index.html.

  4. Upper Rio Grande water operations model: A tool for enhanced system management

    Treesearch

    Gail Stockton; D. Michael Roark

    1999-01-01

    The Upper Rio Grande Water Operations Model (URGWOM) under development through a multi-agency effort has demonstrated capability to represent the physical river/reservoir system, to track and account for Rio Grande flows and imported San Juan flows, and to forecast flows at various points in the system. Testing of the Rio Chama portion of the water operations model was...

  5. Near real time wind energy forecasting incorporating wind tunnel modeling

    NASA Astrophysics Data System (ADS)

    Lubitz, William David

    A series of experiments and investigations were carried out to inform the development of a day-ahead wind power forecasting system. An experimental near-real time wind power forecasting system was designed and constructed that operates on a desktop PC and forecasts 12--48 hours in advance. The system uses model output of the Eta regional scale forecast (RSF) to forecast the power production of a wind farm in the Altamont Pass, California, USA from 12 to 48 hours in advance. It is of modular construction and designed to also allow diagnostic forecasting using archived RSF data, thereby allowing different methods of completing each forecasting step to be tested and compared using the same input data. Wind-tunnel investigations of the effect of wind direction and hill geometry on wind speed-up above a hill were conducted. Field data from an Altamont Pass, California site was used to evaluate several speed-up prediction algorithms, both with and without wind direction adjustment. These algorithms were found to be of limited usefulness for the complex terrain case evaluated. Wind-tunnel and numerical simulation-based methods were developed for determining a wind farm power curve (the relation between meteorological conditions at a point in the wind farm and the power production of the wind farm). Both methods, as well as two methods based on fits to historical data, ultimately showed similar levels of accuracy: mean absolute errors predicting power production of 5 to 7 percent of the wind farm power capacity. The downscaling of RSF forecast data to the wind farm was found to be complicated by the presence of complex terrain. Poor results using the geostrophic drag law and regression methods motivated the development of a database search method that is capable of forecasting not only wind speeds but also power production with accuracy better than persistence.

  6. Bias Adjusted Precipitation Threat Scores

    NASA Astrophysics Data System (ADS)

    Mesinger, F.

    2008-04-01

    Among the wide variety of performance measures available for the assessment of skill of deterministic precipitation forecasts, the equitable threat score (ETS) might well be the one used most frequently. It is typically used in conjunction with the bias score. However, apart from its mathematical definition the meaning of the ETS is not clear. It has been pointed out (Mason, 1989; Hamill, 1999) that forecasts with a larger bias tend to have a higher ETS. Even so, the present author has not seen this having been accounted for in any of numerous papers that in recent years have used the ETS along with bias "as a measure of forecast accuracy". A method to adjust the threat score (TS) or the ETS so as to arrive at their values that correspond to unit bias in order to show the model's or forecaster's accuracy in placing precipitation has been proposed earlier by the present author (Mesinger and Brill, the so-called dH/dF method). A serious deficiency however has since been noted with the dH/dF method in that the hypothetical function that it arrives at to interpolate or extrapolate the observed value of hits to unit bias can have values of hits greater than forecast when the forecast area tends to zero. Another method is proposed here based on the assumption that the increase in hits per unit increase in false alarms is proportional to the yet unhit area. This new method removes the deficiency of the dH/dF method. Examples of its performance for 12 months of forecasts by three NCEP operational models are given.

  7. Adaptation of Mesoscale Weather Models to Local Forecasting

    NASA Technical Reports Server (NTRS)

    Manobianco, John T.; Taylor, Gregory E.; Case, Jonathan L.; Dianic, Allan V.; Wheeler, Mark W.; Zack, John W.; Nutter, Paul A.

    2003-01-01

    Methodologies have been developed for (1) configuring mesoscale numerical weather-prediction models for execution on high-performance computer workstations to make short-range weather forecasts for the vicinity of the Kennedy Space Center (KSC) and the Cape Canaveral Air Force Station (CCAFS) and (2) evaluating the performances of the models as configured. These methodologies have been implemented as part of a continuing effort to improve weather forecasting in support of operations of the U.S. space program. The models, methodologies, and results of the evaluations also have potential value for commercial users who could benefit from tailoring their operations and/or marketing strategies based on accurate predictions of local weather. More specifically, the purpose of developing the methodologies for configuring the models to run on computers at KSC and CCAFS is to provide accurate forecasts of winds, temperature, and such specific thunderstorm-related phenomena as lightning and precipitation. The purpose of developing the evaluation methodologies is to maximize the utility of the models by providing users with assessments of the capabilities and limitations of the models. The models used in this effort thus far include the Mesoscale Atmospheric Simulation System (MASS), the Regional Atmospheric Modeling System (RAMS), and the National Centers for Environmental Prediction Eta Model ( Eta for short). The configuration of the MASS and RAMS is designed to run the models at very high spatial resolution and incorporate local data to resolve fine-scale weather features. Model preprocessors were modified to incorporate surface, ship, buoy, and rawinsonde data as well as data from local wind towers, wind profilers, and conventional or Doppler radars. The overall evaluation of the MASS, Eta, and RAMS was designed to assess the utility of these mesoscale models for satisfying the weather-forecasting needs of the U.S. space program. The evaluation methodology includes objective and subjective verification methodologies. Objective (e.g., statistical) verification of point forecasts is a stringent measure of model performance, but when used alone, it is not usually sufficient for quantifying the value of the overall contribution of the model to the weather-forecasting process. This is especially true for mesoscale models with enhanced spatial and temporal resolution that may be capable of predicting meteorologically consistent, though not necessarily accurate, fine-scale weather phenomena. Therefore, subjective (phenomenological) evaluation, focusing on selected case studies and specific weather features, such as sea breezes and precipitation, has been performed to help quantify the added value that cannot be inferred solely from objective evaluation.

  8. A Dirichlet process model for classifying and forecasting epidemic curves

    PubMed Central

    2014-01-01

    Background A forecast can be defined as an endeavor to quantitatively estimate a future event or probabilities assigned to a future occurrence. Forecasting stochastic processes such as epidemics is challenging since there are several biological, behavioral, and environmental factors that influence the number of cases observed at each point during an epidemic. However, accurate forecasts of epidemics would impact timely and effective implementation of public health interventions. In this study, we introduce a Dirichlet process (DP) model for classifying and forecasting influenza epidemic curves. Methods The DP model is a nonparametric Bayesian approach that enables the matching of current influenza activity to simulated and historical patterns, identifies epidemic curves different from those observed in the past and enables prediction of the expected epidemic peak time. The method was validated using simulated influenza epidemics from an individual-based model and the accuracy was compared to that of the tree-based classification technique, Random Forest (RF), which has been shown to achieve high accuracy in the early prediction of epidemic curves using a classification approach. We also applied the method to forecasting influenza outbreaks in the United States from 1997–2013 using influenza-like illness (ILI) data from the Centers for Disease Control and Prevention (CDC). Results We made the following observations. First, the DP model performed as well as RF in identifying several of the simulated epidemics. Second, the DP model correctly forecasted the peak time several days in advance for most of the simulated epidemics. Third, the accuracy of identifying epidemics different from those already observed improved with additional data, as expected. Fourth, both methods correctly classified epidemics with higher reproduction numbers (R) with a higher accuracy compared to epidemics with lower R values. Lastly, in the classification of seasonal influenza epidemics based on ILI data from the CDC, the methods’ performance was comparable. Conclusions Although RF requires less computational time compared to the DP model, the algorithm is fully supervised implying that epidemic curves different from those previously observed will always be misclassified. In contrast, the DP model can be unsupervised, semi-supervised or fully supervised. Since both methods have their relative merits, an approach that uses both RF and the DP model could be beneficial. PMID:24405642

  9. Evaluating the extreme precipitation events using a mesoscale atmopshere model

    NASA Astrophysics Data System (ADS)

    Yucel, I.; Onen, A.

    2012-04-01

    Evidence is showing that global warming or climate change has a direct influence on changes in precipitation and the hydrological cycle. Extreme weather events such as heavy rainfall and flooding are projected to become much more frequent as climate warms. Mesoscale atmospheric models coupled with land surface models provide efficient forecasts for meteorological events in high lead time and therefore they should be used for flood forecasting and warning issues as they provide more continuous monitoring of precipitation over large areas. This study examines the performance of the Weather Research and Forecasting (WRF) model in producing the temporal and spatial characteristics of the number of extreme precipitation events observed in West Black Sea Region of Turkey. Extreme precipitation events usually resulted in flood conditions as an associated hydrologic response of the basin. The performance of the WRF system is further investigated by using the three dimensional variational (3D-VAR) data assimilation scheme within WRF. WRF performance with and without data assimilation at high spatial resolution (4 km) is evaluated by making comparison with gauge precipitation and satellite-estimated rainfall data from Multi Precipitation Estimates (MPE). WRF-derived precipitation showed capabilities in capturing the timing of the precipitation extremes and in some extent spatial distribution and magnitude of the heavy rainfall events. These precipitation characteristics are enhanced with the use of 3D-VAR scheme in WRF system. Data assimilation improved area-averaged precipitation forecasts by 9 percent and at some points there exists quantitative match in precipitation events, which are critical for hydrologic forecast application.

  10. Determining relevant parameters for a statistical tropical cyclone genesis tool based upon global model output

    NASA Astrophysics Data System (ADS)

    Halperin, D.; Hart, R. E.; Fuelberg, H. E.; Cossuth, J.

    2013-12-01

    Predicting tropical cyclone (TC) genesis has been a vexing problem for forecasters. While the literature describes environmental conditions which are necessary for TC genesis, predicting if and when a specific disturbance will organize and become a TC remains a challenge. As recently as 5-10 years ago, global models possessed little if any skill in forecasting TC genesis. However, due to increased resolution and more advanced model parameterizations, we have reached the point where global models can provide useful TC genesis guidance to operational forecasters. A recent study evaluated five global models' ability to predict TC genesis out to four days over the North Atlantic basin (Halperin et al. 2013). The results indicate that the models are indeed able to capture the genesis time and location correctly a fair percentage of the time. The study also uncovered model biases. For example, probability of detection and false alarm rate varies spatially within the basin. Also, as expected, the models' performance decreases with increasing lead time. In order to explain these and other biases, it is useful to analyze the model-indicated genesis events further to determine whether or not there are systematic differences between successful forecasts (hits), false alarms, and miss events. This study will examine composites of a number of physically-relevant environmental parameters (e.g., magnitude of vertical wind shear, aerially averaged mid-level relative humidity) and disturbance-based parameters (e.g., 925 hPa maximum wind speed, vertical alignment of relative vorticity) among each TC genesis event classification (i.e., hit, false alarm, miss). We will use standard statistical tests (e.g., Student's t test, Mann-Whitney-U Test) to calculate whether or not any differences are statistically significant. We also plan to discuss how these composite results apply to a few illustrative case studies. The results may help determine which aspects of the forecast are (in)correct and whether the incorrect aspects can be bias-corrected. This, in turn, may allow us to further enhance probabilistic forecasts of TC genesis.

  11. Structural changes and out-of-sample prediction of realized range-based variance in the stock market

    NASA Astrophysics Data System (ADS)

    Gong, Xu; Lin, Boqiang

    2018-03-01

    This paper aims to examine the effects of structural changes on forecasting the realized range-based variance in the stock market. Considering structural changes in variance in the stock market, we develop the HAR-RRV-SC model on the basis of the HAR-RRV model. Subsequently, the HAR-RRV and HAR-RRV-SC models are used to forecast the realized range-based variance of S&P 500 Index. We find that there are many structural changes in variance in the U.S. stock market, and the period after the financial crisis contains more structural change points than the period before the financial crisis. The out-of-sample results show that the HAR-RRV-SC model significantly outperforms the HAR-BV model when they are employed to forecast the 1-day, 1-week, and 1-month realized range-based variances, which means that structural changes can improve out-of-sample prediction of realized range-based variance. The out-of-sample results remain robust across the alternative rolling fixed-window, the alternative threshold value in ICSS algorithm, and the alternative benchmark models. More importantly, we believe that considering structural changes can help improve the out-of-sample performances of most of other existing HAR-RRV-type models in addition to the models used in this paper.

  12. Climate, weather, space weather: model development in an operational context

    NASA Astrophysics Data System (ADS)

    Folini, Doris

    2018-05-01

    Aspects of operational modeling for climate, weather, and space weather forecasts are contrasted, with a particular focus on the somewhat conflicting demands of "operational stability" versus "dynamic development" of the involved models. Some common key elements are identified, indicating potential for fruitful exchange across communities. Operational model development is compelling, driven by factors that broadly fall into four categories: model skill, basic physics, advances in computer architecture, and new aspects to be covered, from costumer needs over physics to observational data. Evaluation of model skill as part of the operational chain goes beyond an automated skill score. Permanent interaction between "pure research" and "operational forecast" people is beneficial to both sides. This includes joint model development projects, although ultimate responsibility for the operational code remains with the forecast provider. The pace of model development reflects operational lead times. The points are illustrated with selected examples, many of which reflect the author's background and personal contacts, notably with the Swiss Weather Service and the Max Planck Institute for Meteorology, Hamburg, Germany. In view of current and future challenges, large collaborations covering a range of expertise are a must - within and across climate, weather, and space weather. To profit from and cope with the rapid progress of computer architectures, supercompute centers must form part of the team.

  13. Effect of climate variables on cocoa black pod incidence in Sabah using ARIMAX model

    NASA Astrophysics Data System (ADS)

    Ling Sheng Chang, Albert; Ramba, Haya; Mohd. Jaaffar, Ahmad Kamil; Kim Phin, Chong; Chong Mun, Ho

    2016-06-01

    Cocoa black pod disease is one of the major diseases affecting the cocoa production in Malaysia and also around the world. Studies have shown that the climate variables have influenced the cocoa black pod disease incidence and it is important to quantify the black pod disease variation due to the effect of climate variables. Application of time series analysis especially auto-regressive moving average (ARIMA) model has been widely used in economics study and can be used to quantify the effect of climate variables on black pod incidence to forecast the right time to control the incidence. However, ARIMA model does not capture some turning points in cocoa black pod incidence. In order to improve forecasting performance, other explanatory variables such as climate variables should be included into ARIMA model as ARIMAX model. Therefore, this paper is to study the effect of climate variables on the cocoa black pod disease incidence using ARIMAX model. The findings of the study showed ARIMAX model using MA(1) and relative humidity at lag 7 days, RHt - 7 gave better R square value compared to ARIMA model using MA(1) which could be used to forecast the black pod incidence to assist the farmers determine timely application of fungicide spraying and culture practices to control the black pod incidence.

  14. Parametric analysis of parameters for electrical-load forecasting using artificial neural networks

    NASA Astrophysics Data System (ADS)

    Gerber, William J.; Gonzalez, Avelino J.; Georgiopoulos, Michael

    1997-04-01

    Accurate total system electrical load forecasting is a necessary part of resource management for power generation companies. The better the hourly load forecast, the more closely the power generation assets of the company can be configured to minimize the cost. Automating this process is a profitable goal and neural networks should provide an excellent means of doing the automation. However, prior to developing such a system, the optimal set of input parameters must be determined. The approach of this research was to determine what those inputs should be through a parametric study of potentially good inputs. Input parameters tested were ambient temperature, total electrical load, the day of the week, humidity, dew point temperature, daylight savings time, length of daylight, season, forecast light index and forecast wind velocity. For testing, a limited number of temperatures and total electrical loads were used as a basic reference input parameter set. Most parameters showed some forecasting improvement when added individually to the basic parameter set. Significantly, major improvements were exhibited with the day of the week, dew point temperatures, additional temperatures and loads, forecast light index and forecast wind velocity.

  15. Prototype methodology for obtaining cloud seeding guidance from HRRR model data

    NASA Astrophysics Data System (ADS)

    Dawson, N.; Blestrud, D.; Kunkel, M. L.; Waller, B.; Ceratto, J.

    2017-12-01

    Weather model data, along with real time observations, are critical to determine whether atmospheric conditions are prime for super-cooled liquid water during cloud seeding operations. Cloud seeding groups can either use operational forecast models, or run their own model on a computer cluster. A custom weather model provides the most flexibility, but is also expensive. For programs with smaller budgets, openly-available operational forecasting models are the de facto method for obtaining forecast data. The new High-Resolution Rapid Refresh (HRRR) model (3 x 3 km grid size), developed by the Earth System Research Laboratory (ESRL), provides hourly model runs with 18 forecast hours per run. While the model cannot be fine-tuned for a specific area or edited to provide cloud-seeding-specific output, model output is openly available on a near-real-time basis. This presentation focuses on a prototype methodology for using HRRR model data to create maps which aid in near-real-time cloud seeding decision making. The R programming language is utilized to run a script on a Windows® desktop/laptop computer either on a schedule (such as every half hour) or manually. The latest HRRR model run is downloaded from NOAA's Operational Model Archive and Distribution System (NOMADS). A GRIB-filter service, provided by NOMADS, is used to obtain surface and mandatory pressure level data for a subset domain which greatly cuts down on the amount of data transfer. Then, a set of criteria, identified by the Idaho Power Atmospheric Science Group, is used to create guidance maps. These criteria include atmospheric stability (lapse rates), dew point depression, air temperature, and wet bulb temperature. The maps highlight potential areas where super-cooled liquid water may exist, reasons as to why cloud seeding should not be attempted, and wind speed at flight level.

  16. Status of the NASA GMAO Observing System Simulation Experiment

    NASA Technical Reports Server (NTRS)

    Prive, Nikki C.; Errico, Ronald M.

    2014-01-01

    An Observing System Simulation Experiment (OSSE) is a pure modeling study used when actual observations are too expensive or difficult to obtain. OSSEs are valuable tools for determining the potential impact of new observing systems on numerical weather forecasts and for evaluation of data assimilation systems (DAS). An OSSE has been developed at the NASA Global Modeling and Assimilation Office (GMAO, Errico et al 2013). The GMAO OSSE uses a 13-month integration of the European Centre for Medium- Range Weather Forecasts 2005 operational model at T511/L91 resolution for the Nature Run (NR). Synthetic observations have been updated so that they are based on real observations during the summer of 2013. The emulated observation types include AMSU-A, MHS, IASI, AIRS, and HIRS4 radiance data, GPS-RO, and conventional types including aircraft, rawinsonde, profiler, surface, and satellite winds. The synthetic satellite wind observations are colocated with the NR cloud fields, and the rawinsondes are advected during ascent using the NR wind fields. Data counts for the synthetic observations are matched as closely as possible to real data counts, as shown in Figure 2. Errors are added to the synthetic observations to emulate representativeness and instrument errors. The synthetic errors are calibrated so that the statistics of observation innovation and analysis increments in the OSSE are similar to the same statistics for assimilation of real observations, in an iterative method described by Errico et al (2013). The standard deviations of observation minus forecast (xo-H(xb)) are compared for the OSSE and real data in Figure 3. The synthetic errors include both random, uncorrelated errors, and an additional correlated error component for some observational types. Vertically correlated errors are included for conventional sounding data and GPS-RO, and channel correlated errors are introduced to AIRS and IASI (Figure 4). HIRS, AMSU-A, and MHS have a component of horizontally correlated error. The forecast model used by the GMAO OSSE is the Goddard Earth Observing System Model, Version 5 (GEOS-5) with Gridpoint Statistical Interpolation (GSI) DAS. The model version has been updated to v. 5.13.3, corresponding to the current operational model. Forecasts are run on a cube-sphere grid with 180 points along each edge of the cube (approximately 0.5 degree horizontal resolution) with 72 vertical levels. The DAS is cycled at 6-hour intervals, with 240 hour forecasts launched daily at 0000 UTC. Evaluation of the forecasting skill for July and August is currently underway. Prior versions of the GMAO OSSE have been found to have greater forecasting skill than real world forecasts. It is anticipated that similar forecast skill will be found in the updated OSSE.

  17. On the dynamics of the world demographic transition and financial-economic crises forecasts

    NASA Astrophysics Data System (ADS)

    Akaev, A.; Sadovnichy, V.; Korotayev, A.

    2012-05-01

    The article considers dynamic processes involving non-linear power-law behavior in such apparently diverse spheres, as demographic dynamics and dynamics of prices of highly liquid commodities such as oil and gold. All the respective variables exhibit features of explosive growth containing precursors indicating approaching phase transitions/catastrophes/crises. The first part of the article analyzes mathematical models of demographic dynamics that describe various scenarios of demographic development in the post-phase-transition period, including a model that takes the limitedness of the Earth carrying capacity into account. This model points to a critical point in the early 2050s, when the world population, after reaching its maximum value may decrease afterward stabilizing then at a certain stationary level. The article presents an analysis of the influence of the demographic transition (directly connected with the hyperexponential growth of the world population) on the global socioeconomic and geopolitical development. The second part deals with the phenomenon of explosive growth of prices of such highly liquid commodities as oil and gold. It is demonstrated that at present the respective processes could be regarded as precursors of waves of the global financial-economic crisis that will demand the change of the current global economic and political system. It is also shown that the moments of the start of the first and second waves of the current global crisis could have been forecasted with a model of accelerating log-periodic fluctuations superimposed over a power-law trend with a finite singularity developed by Didier Sornette and collaborators. With respect to the oil prices, it is shown that it was possible to forecast the 2008 crisis with a precision up to a month already in 2007. The gold price dynamics was used to calculate the possible time of the start of the second wave of the global crisis (July-August 2011); note that this forecast has turned out to be quite correct.

  18. Past and projected trends of body mass index and weight status in South Australia: 2003 to 2019.

    PubMed

    Hendrie, Gilly A; Ullah, Shahid; Scott, Jane A; Gray, John; Berry, Narelle; Booth, Sue; Carter, Patricia; Cobiac, Lynne; Coveney, John

    2015-12-01

    Functional data analysis (FDA) is a forecasting approach that, to date, has not been applied to obesity, and that may provide more accurate forecasting analysis to manage uncertainty in public health. This paper uses FDA to provide projections of Body Mass Index (BMI), overweight and obesity in an Australian population through to 2019. Data from the South Australian Monitoring and Surveillance System (January 2003 to December 2012, n=51,618 adults) were collected via telephone interview survey. FDA was conducted in four steps: 1) age-gender specific BMIs for each year were smoothed using a weighted regression; 2) the functional principal components decomposition was applied to estimate the basis functions; 3) an exponential smoothing state space model was used for forecasting the coefficient series; and 4) forecast coefficients were combined with the basis function. The forecast models suggest that between 2012 and 2019 average BMI will increase from 27.2 kg/m(2) to 28.0 kg/m(2) in males and 26.4 kg/m(2) to 27.6 kg/m(2) in females. The prevalence of obesity is forecast to increase by 6-7 percentage points by 2019 (to 28.7% in males and 29.2% in females). Projections identify age-gender groups at greatest risk of obesity over time. The novel approach will be useful to facilitate more accurate planning and policy development. © 2015 Public Health Association of Australia.

  19. Risk Based Reservoir Operations Using Ensemble Streamflow Predictions for Lake Mendocino in Mendocino County, California

    NASA Astrophysics Data System (ADS)

    Delaney, C.; Mendoza, J.; Whitin, B.; Hartman, R. K.

    2017-12-01

    Ensemble Forecast Operations (EFO) is a risk based approach of reservoir flood operations that incorporates ensemble streamflow predictions (ESPs) made by NOAA's California-Nevada River Forecast Center (CNRFC). With the EFO approach, each member of an ESP is individually modeled to forecast system conditions and calculate risk of reaching critical operational thresholds. Reservoir release decisions are computed which seek to manage forecasted risk to established risk tolerance levels. A water management model was developed for Lake Mendocino, a 111,000 acre-foot reservoir located near Ukiah, California, to evaluate the viability of the EFO alternative to improve water supply reliability but not increase downstream flood risk. Lake Mendocino is a dual use reservoir, which is owned and operated for flood control by the United States Army Corps of Engineers and is operated for water supply by the Sonoma County Water Agency. Due to recent changes in the operations of an upstream hydroelectric facility, this reservoir has suffered from water supply reliability issues since 2007. The EFO alternative was simulated using a 26-year (1985-2010) ESP hindcast generated by the CNRFC, which approximates flow forecasts for 61 ensemble members for a 15-day horizon. Model simulation results of the EFO alternative demonstrate a 36% increase in median end of water year (September 30) storage levels over existing operations. Additionally, model results show no increase in occurrence of flows above flood stage for points downstream of Lake Mendocino. This investigation demonstrates that the EFO alternative may be a viable approach for managing Lake Mendocino for multiple purposes (water supply, flood mitigation, ecosystems) and warrants further investigation through additional modeling and analysis.

  20. Space Weather Products and Tools Used in Auroral Monitoring and Forecasting at CCMC/SWRC

    NASA Technical Reports Server (NTRS)

    Zheng, Yihua; Rastaetter, Lutz

    2015-01-01

    Key points discussed in this chapter are (1) the importance of aurora research to scientific advances and space weather applications, (2) space weather products at CCMC that are relevant to aurora monitoring and forecasting, and (3) the need for more effort from the whole community to achieve a better and long-lead-time forecast of auroral activity. Aurora, as manifestations of solar wind-magnetosphere-ionosphere coupling that occurs in a region of space that is relatively easy to access for sounding rockets, satellites, and other types of observational platforms, serves as a natural laboratory for studying the underlying physics of the complex system. From a space weather application perspective, auroras can cause surface charging of technological assets passing through the region, result in scintillation effects affecting communication and navigation, and cause radar cluttering that hinders military and civilian applications. Indirectly, an aurora and its currents can induce geomagnetically induced currents (GIC) on the ground, which poses major concerns for the wellbeing and operation of power grids, particularly during periods of intense geomagnetic activity. In addition, accurate auroral forecasting is desired for auroral tourism. In this chapter, we first review some of the existing auroral models and discuss past validation efforts. Such efforts are crucial in transitioning a model(s) from research to operations and for further model improvement and development that also benefits scientific endeavors. Then we will focus on products and tools that are used for auroral monitoring and forecasting at the Space Weather Research Center (SWRC). As part of the CCMC (Community Coordinated Modeling Center), SWRC has been providing space weather services since 2010.

  1. Study on SOC wavelet analysis for LiFePO4 battery

    NASA Astrophysics Data System (ADS)

    Liu, Xuepeng; Zhao, Dongmei

    2017-08-01

    Improving the prediction accuracy of SOC can reduce the complexity of the conservative and control strategy of the strategy such as the scheduling, optimization and planning of LiFePO4 battery system. Based on the analysis of the relationship between the SOC historical data and the external stress factors, the SOC Estimation-Correction Prediction Model based on wavelet analysis is established. Using wavelet neural network prediction model is of high precision to achieve forecast link, external stress measured data is used to update parameters estimation in the model, implement correction link, makes the forecast model can adapt to the LiFePO4 battery under rated condition of charge and discharge the operating point of the variable operation area. The test results show that the method can obtain higher precision prediction model when the input and output of LiFePO4 battery are changed frequently.

  2. Implications of the 26 December 2004 Sumatra-Andaman earthquake on tsunami forecast and assessment models for great subduction-zone earthquakes

    USGS Publications Warehouse

    Geist, Eric L.; Titov, Vasily V.; Arcas, Diego; Pollitz, Fred F.; Bilek, Susan L.

    2007-01-01

    Results from different tsunami forecasting and hazard assessment models are compared with observed tsunami wave heights from the 26 December 2004 Indian Ocean tsunami. Forecast models are based on initial earthquake information and are used to estimate tsunami wave heights during propagation. An empirical forecast relationship based only on seismic moment provides a close estimate to the observed mean regional and maximum local tsunami runup heights for the 2004 Indian Ocean tsunami but underestimates mean regional tsunami heights at azimuths in line with the tsunami beaming pattern (e.g., Sri Lanka, Thailand). Standard forecast models developed from subfault discretization of earthquake rupture, in which deep- ocean sea level observations are used to constrain slip, are also tested. Forecast models of this type use tsunami time-series measurements at points in the deep ocean. As a proxy for the 2004 Indian Ocean tsunami, a transect of deep-ocean tsunami amplitudes recorded by satellite altimetry is used to constrain slip along four subfaults of the M >9 Sumatra–Andaman earthquake. This proxy model performs well in comparison to observed tsunami wave heights, travel times, and inundation patterns at Banda Aceh. Hypothetical tsunami hazard assessments models based on end- member estimates for average slip and rupture length (Mw 9.0–9.3) are compared with tsunami observations. Using average slip (low end member) and rupture length (high end member) (Mw 9.14) consistent with many seismic, geodetic, and tsunami inversions adequately estimates tsunami runup in most regions, except the extreme runup in the western Aceh province. The high slip that occurred in the southern part of the rupture zone linked to runup in this location is a larger fluctuation than expected from standard stochastic slip models. In addition, excess moment release (∼9%) deduced from geodetic studies in comparison to seismic moment estimates may generate additional tsunami energy, if the exponential time constant of slip is less than approximately 1 hr. Overall, there is significant variation in assessed runup heights caused by quantifiable uncertainty in both first-order source parameters (e.g., rupture length, slip-length scaling) and spatiotemporal complexity of earthquake rupture.

  3. Business Planning in the Light of Neuro-fuzzy and Predictive Forecasting

    NASA Astrophysics Data System (ADS)

    Chakrabarti, Prasun; Basu, Jayanta Kumar; Kim, Tai-Hoon

    In this paper we have pointed out gain sensing on forecast based techniques.We have cited an idea of neural based gain forecasting. Testing of sequence of gain pattern is also verifies using statsistical analysis of fuzzy value assignment. The paper also suggests realization of stable gain condition using K-Means clustering of data mining. A new concept of 3D based gain sensing has been pointed out. The paper also reveals what type of trend analysis can be observed for probabilistic gain prediction.

  4. Flood forecasting with DDD-application of a parsimonious hydrological model in operational flood forecasting in Norway

    NASA Astrophysics Data System (ADS)

    Skaugen, Thomas; Haddeland, Ingjerd

    2014-05-01

    A new parameter-parsimonious rainfall-runoff model, DDD (Distance Distribution Dynamics) has been run operationally at the Norwegian Flood Forecasting Service for approximately a year. DDD has been calibrated for, altogether, 104 catchments throughout Norway, and provide runoff forecasts 8 days ahead on a daily temporal resolution driven by precipitation and temperature from the meteorological forecast models AROME (48 hrs) and EC (192 hrs). The current version of DDD differs from the standard model used for flood forecasting in Norway, the HBV model, in its description of the subsurface and runoff dynamics. In DDD, the capacity of the subsurface water reservoir M, is the only parameter to be calibrated whereas the runoff dynamics is completely parameterised from observed characteristics derived from GIS and runoff recession analysis. Water is conveyed through the soils to the river network by waves with celerities determined by the level of saturation in the catchment. The distributions of distances between points in the catchment to the nearest river reach and of the river network give, together with the celerities, distributions of travel times, and, consequently unit hydrographs. DDD has 6 parameters less to calibrate in the runoff module than the HBV model. Experiences using DDD show that especially the timing of flood peaks has improved considerably and in a comparison between DDD and HBV, when assessing timeseries of 64 years for 75 catchments, DDD had a higher hit rate and a lower false alarm rate than HBV. For flood peaks higher than the mean annual flood the median hit rate is 0.45 and 0.41 for the DDD and HBV models respectively. Corresponding number for the false alarm rate is 0.62 and 0.75 For floods over the five year return interval, the median hit rate is 0.29 and 0.28 for the DDD and HBV models, respectively with false alarm rates equal to 0.67 and 0.80. During 2014 the Norwegian flood forecasting service will run DDD operationally at a 3h temporal resolution. Running DDD at a 3h resolution will give a better prediction of flood peaks in small catchments, where the averaging over 24 hrs will lead to a underestimation of high events, and we can better describe the progress floods in larger catchments. Also, at a 3h temporal resolution we make better use of the meteorological forecasts that for long have been provided at a very detailed temporal resolution.

  5. Analysis and forecast experiments incorporating satellite soundings and cloud and water vapor drift wind information

    NASA Technical Reports Server (NTRS)

    Goodman, Brian M.; Diak, George R.; Mills, Graham A.

    1986-01-01

    A system for assimilating conventional meteorological data and satellite-derived data in order to produce four-dimensional gridded data sets of the primary atmospheric variables used for updating limited area forecast models is described. The basic principles of a data assimilation scheme as proposed by Lorenc (1984) are discussed. The design of the system and its incremental assimilation cycles are schematically presented. The assimilation system was tested using radiosonde, buoy, VAS temperature, dew point, gradient wind data, cloud drift, and water vapor motion data. The rms vector errors for the data are analyzed.

  6. Ensemble Forecasting of Coronal Mass Ejections Using the WSA-ENLIL with CONED Model

    NASA Technical Reports Server (NTRS)

    Emmons, D.; Acebal, A.; Pulkkinen, A.; Taktakishvili, A.; MacNeice, P.; Odstricil, D.

    2013-01-01

    The combination of the Wang-Sheeley-Arge (WSA) coronal model, ENLIL heliospherical model version 2.7, and CONED Model version 1.3 (WSA-ENLIL with CONED Model) was employed to form ensemble forecasts for 15 halo coronal mass ejections (halo CMEs). The input parameter distributions were formed from 100 sets of CME cone parameters derived from the CONED Model. The CONED Model used image processing along with the bootstrap approach to automatically calculate cone parameter distributions from SOHO/LASCO imagery based on techniques described by Pulkkinen et al. (2010). The input parameter distributions were used as input to WSA-ENLIL to calculate the temporal evolution of the CMEs, which were analyzed to determine the propagation times to the L1 Lagrangian point and the maximum Kp indices due to the impact of the CMEs on the Earth's magnetosphere. The Newell et al. (2007) Kp index formula was employed to calculate the maximum Kp indices based on the predicted solar wind parameters near Earth assuming two magnetic field orientations: a completely southward magnetic field and a uniformly distributed clock-angle in the Newell et al. (2007) Kp index formula. The forecasts for 5 of the 15 events had accuracy such that the actual propagation time was within the ensemble average plus or minus one standard deviation. Using the completely southward magnetic field assumption, 10 of the 15 events contained the actual maximum Kp index within the range of the ensemble forecast, compared to 9 of the 15 events when using a uniformly distributed clock angle.

  7. Assessment of GNSS-based height data of multiple ships for measuring and forecasting great tsunamis

    NASA Astrophysics Data System (ADS)

    Inazu, Daisuke; Waseda, Takuji; Hibiya, Toshiyuki; Ohta, Yusaku

    2016-12-01

    Ship height positioning by the Global Navigation Satellite System (GNSS) was investigated for measuring and forecasting great tsunamis. We first examined GNSS height-positioning data of a navigating vessel. If we use the kinematic precise point positioning (PPP) method, tsunamis greater than 10-1 m will be detected by ship height positioning. Based on Automatic Identification System (AIS) data, we found that tens of cargo ships and tankers are usually identified to navigate over the Nankai Trough, southwest Japan. We assumed that a future Nankai Trough great earthquake tsunami will be observed by the kinematic PPP height positioning of an AIS-derived ship distribution, and examined the tsunami forecast capability of the offshore tsunami measurements based on the PPP-based ship height. A method to estimate the initial tsunami height distribution using offshore tsunami observations was used for forecasting. Tsunami forecast tests were carried out using simulated tsunami data by the PPP-based ship height of 92 cargo ships/tankers, and by currently operating deep-sea pressure and Global Positioning System (GPS) buoy observations at 71 stations over the Nankai Trough. The forecast capability using the PPP-based height of the 92 ships was shown to be comparable to or better than that using the operating offshore observatories at the 71 stations. We suppose that, immediately after the occurrence of a great earthquake, stations receiving successive ship information (AIS data) along certain areas of the coast would fail to acquire ship data due to strong ground shaking, especially near the epicenter. Such a situation would significantly deteriorate the tsunami-forecast capability using ship data. On the other hand, operational real-time analysis of seismic/geodetic data would be carried out for estimating a tsunamigenic fault model. Incorporating the seismic/geodetic fault model estimation into the tsunami forecast above possibly compensates for the deteriorated forecast capability.

  8. Analysis of recurrent neural networks for short-term energy load forecasting

    NASA Astrophysics Data System (ADS)

    Di Persio, Luca; Honchar, Oleksandr

    2017-11-01

    Short-term forecasts have recently gained an increasing attention because of the rise of competitive electricity markets. In fact, short-terms forecast of possible future loads turn out to be fundamental to build efficient energy management strategies as well as to avoid energy wastage. Such type of challenges are difficult to tackle both from a theoretical and applied point of view. Latter tasks require sophisticated methods to manage multidimensional time series related to stochastic phenomena which are often highly interconnected. In the present work we first review novel approaches to energy load forecasting based on recurrent neural network, focusing our attention on long/short term memory architectures (LSTMs). Such type of artificial neural networks have been widely applied to problems dealing with sequential data such it happens, e.g., in socio-economics settings, for text recognition purposes, concerning video signals, etc., always showing their effectiveness to model complex temporal data. Moreover, we consider different novel variations of basic LSTMs, such as sequence-to-sequence approach and bidirectional LSTMs, aiming at providing effective models for energy load data. Last but not least, we test all the described algorithms on real energy load data showing not only that deep recurrent networks can be successfully applied to energy load forecasting, but also that this approach can be extended to other problems based on time series prediction.

  9. Towards uncertainty estimation for operational forecast products - a multi-model-ensemble approach for the North Sea and the Baltic Sea

    NASA Astrophysics Data System (ADS)

    Golbeck, Inga; Li, Xin; Janssen, Frank

    2014-05-01

    Several independent operational ocean models provide forecasts of the ocean state (e.g. sea level, temperature, salinity and ice cover) in the North Sea and the Baltic Sea on a daily basis. These forecasts are the primary source of information for a variety of information and emergency response systems used e.g. to issue sea level warnings or carry out oil drift forecast. The forecasts are of course highly valuable as such, but often suffer from a lack of information on their uncertainty. With the aim of augmenting the existing operational ocean forecasts in the North Sea and the Baltic Sea by a measure of uncertainty a multi-model-ensemble (MME) system for sea surface temperature (SST), sea surface salinity (SSS) and water transports has been set up in the framework of the MyOcean-2 project. Members of MyOcean-2, the NOOS² and HIROMB/BOOS³ communities provide 48h-forecasts serving as inputs. Different variables are processed separately due to their different physical characteristics. Based on the so far collected daily MME products of SST and SSS, a statistical method, Empirical Orthogonal Function (EOF) analysis is applied to assess their spatial and temporal variability. For sea surface currents, progressive vector diagrams at specific points are consulted to estimate the performance of the circulation models especially in hydrodynamic important areas, e.g. inflow/outflow of the Baltic Sea, Norwegian trench and English Channel. For further versions of the MME system, it is planned to extend the MME to other variables like e.g. sea level, ocean currents or ice cover based on the needs of the model providers and their customers. It is also planned to include in-situ data to augment the uncertainty information and for validation purposes. Additionally, weighting methods will be implemented into the MME system to develop more complex uncertainty measures. The methodology used to create the MME will be outlined and different ensemble products will be presented. In addition, some preliminary results based on the statistical analysis of the uncertainty measures provide first estimates of the regional and temporal performance of the ocean models for each parameter. ²Northwest European Shelf Operational Oceanography System ³High-resolution Operational Model of the Baltic / Baltic Operational Oceanographic System

  10. The Wind Forecast Improvement Project (WFIP). A Public/Private Partnership for Improving Short Term Wind Energy Forecasts and Quantifying the Benefits of Utility Operations -- the Northern Study Area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finley, Cathy

    2014-04-30

    This report contains the results from research aimed at improving short-range (0-6 hour) hub-height wind forecasts in the NOAA weather forecast models through additional data assimilation and model physics improvements for use in wind energy forecasting. Additional meteorological observing platforms including wind profilers, sodars, and surface stations were deployed for this study by NOAA and DOE, and additional meteorological data at or near wind turbine hub height were provided by South Dakota State University and WindLogics/NextEra Energy Resources over a large geographical area in the U.S. Northern Plains for assimilation into NOAA research weather forecast models. The resulting improvements inmore » wind energy forecasts based on the research weather forecast models (with the additional data assimilation and model physics improvements) were examined in many different ways and compared with wind energy forecasts based on the current operational weather forecast models to quantify the forecast improvements important to power grid system operators and wind plant owners/operators participating in energy markets. Two operational weather forecast models (OP_RUC, OP_RAP) and two research weather forecast models (ESRL_RAP, HRRR) were used as the base wind forecasts for generating several different wind power forecasts for the NextEra Energy wind plants in the study area. Power forecasts were generated from the wind forecasts in a variety of ways, from very simple to quite sophisticated, as they might be used by a wide range of both general users and commercial wind energy forecast vendors. The error characteristics of each of these types of forecasts were examined and quantified using bulk error statistics for both the local wind plant and the system aggregate forecasts. The wind power forecast accuracy was also evaluated separately for high-impact wind energy ramp events. The overall bulk error statistics calculated over the first six hours of the forecasts at both the individual wind plant and at the system-wide aggregate level over the one year study period showed that the research weather model-based power forecasts (all types) had lower overall error rates than the current operational weather model-based power forecasts, both at the individual wind plant level and at the system aggregate level. The bulk error statistics of the various model-based power forecasts were also calculated by season and model runtime/forecast hour as power system operations are more sensitive to wind energy forecast errors during certain times of year and certain times of day. The results showed that there were significant differences in seasonal forecast errors between the various model-based power forecasts. The results from the analysis of the various wind power forecast errors by model runtime and forecast hour showed that the forecast errors were largest during the times of day that have increased significance to power system operators (the overnight hours and the morning/evening boundary layer transition periods), but the research weather model-based power forecasts showed improvement over the operational weather model-based power forecasts at these times.« less

  11. Assimilation of ground and satellite snow observations in a distributed hydrologic model to improve water supply forecasts in the Upper Colorado River Basin

    NASA Astrophysics Data System (ADS)

    Micheletty, P. D.; Day, G. N.; Quebbeman, J.; Carney, S.; Park, G. H.

    2016-12-01

    The Upper Colorado River Basin above Lake Powell is a major source of water supply for 25 million people and provides irrigation water for 3.5 million acres. Approximately 85% of the annual runoff is produced from snowmelt. Water supply forecasts of the April-July runoff produced by the National Weather Service (NWS) Colorado Basin River Forecast Center (CBRFC), are critical to basin water management. This project leverages advanced distributed models, datasets, and snow data assimilation techniques to improve operational water supply forecasts made by CBRFC in the Upper Colorado River Basin. The current work will specifically focus on improving water supply forecasts through the implementation of a snow data assimilation process coupled with the Hydrology Laboratory-Research Distributed Hydrologic Model (HL-RDHM). Three types of observations will be used in the snow data assimilation system: satellite Snow Covered Area (MODSCAG), satellite Dust Radiative Forcing in Snow (MODDRFS), and SNOTEL Snow Water Equivalent (SWE). SNOTEL SWE provides the main source of high elevation snowpack information during the snow season, however, these point measurement sites are carefully selected to provide consistent indices of snowpack, and may not be representative of the surrounding watershed. We address this problem by transforming the SWE observations to standardized deviates and interpolating the standardized deviates using a spatial regression model. The interpolation process will also take advantage of the MODIS Snow Covered Area and Grainsize (MODSCAG) product to inform the model on the spatial distribution of snow. The interpolated standardized deviates are back-transformed and used in an Ensemble Kalman Filter (EnKF) to update the model simulated SWE. The MODIS Dust Radiative Forcing in Snow (MODDRFS) product will be used more directly through temporary adjustments to model snowmelt parameters, which should improve melt estimates in areas affected by dust on snow. In order to assess the value of different data sources, reforecasts will be produced for a historical period and performance measures will be computed to assess forecast skill. The existing CBRFC Ensemble Streamflow Prediction (ESP) reforecasts will provide a baseline for comparison to determine the added-value of the data assimilation process.

  12. Evaluation of statistical models for forecast errors from the HBV model

    NASA Astrophysics Data System (ADS)

    Engeland, Kolbjørn; Renard, Benjamin; Steinsland, Ingelin; Kolberg, Sjur

    2010-04-01

    SummaryThree statistical models for the forecast errors for inflow into the Langvatn reservoir in Northern Norway have been constructed and tested according to the agreement between (i) the forecast distribution and the observations and (ii) median values of the forecast distribution and the observations. For the first model observed and forecasted inflows were transformed by the Box-Cox transformation before a first order auto-regressive model was constructed for the forecast errors. The parameters were conditioned on weather classes. In the second model the Normal Quantile Transformation (NQT) was applied on observed and forecasted inflows before a similar first order auto-regressive model was constructed for the forecast errors. For the third model positive and negative errors were modeled separately. The errors were first NQT-transformed before conditioning the mean error values on climate, forecasted inflow and yesterday's error. To test the three models we applied three criterions: we wanted (a) the forecast distribution to be reliable; (b) the forecast intervals to be narrow; (c) the median values of the forecast distribution to be close to the observed values. Models 1 and 2 gave almost identical results. The median values improved the forecast with Nash-Sutcliffe R eff increasing from 0.77 for the original forecast to 0.87 for the corrected forecasts. Models 1 and 2 over-estimated the forecast intervals but gave the narrowest intervals. Their main drawback was that the distributions are less reliable than Model 3. For Model 3 the median values did not fit well since the auto-correlation was not accounted for. Since Model 3 did not benefit from the potential variance reduction that lies in bias estimation and removal it gave on average wider forecasts intervals than the two other models. At the same time Model 3 on average slightly under-estimated the forecast intervals, probably explained by the use of average measures to evaluate the fit.

  13. A first large-scale flood inundation forecasting model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schumann, Guy J-P; Neal, Jeffrey C.; Voisin, Nathalie

    2013-11-04

    At present continental to global scale flood forecasting focusses on predicting at a point discharge, with little attention to the detail and accuracy of local scale inundation predictions. Yet, inundation is actually the variable of interest and all flood impacts are inherently local in nature. This paper proposes a first large scale flood inundation ensemble forecasting model that uses best available data and modeling approaches in data scarce areas and at continental scales. The model was built for the Lower Zambezi River in southeast Africa to demonstrate current flood inundation forecasting capabilities in large data-scarce regions. The inundation model domainmore » has a surface area of approximately 170k km2. ECMWF meteorological data were used to force the VIC (Variable Infiltration Capacity) macro-scale hydrological model which simulated and routed daily flows to the input boundary locations of the 2-D hydrodynamic model. Efficient hydrodynamic modeling over large areas still requires model grid resolutions that are typically larger than the width of many river channels that play a key a role in flood wave propagation. We therefore employed a novel sub-grid channel scheme to describe the river network in detail whilst at the same time representing the floodplain at an appropriate and efficient scale. The modeling system was first calibrated using water levels on the main channel from the ICESat (Ice, Cloud, and land Elevation Satellite) laser altimeter and then applied to predict the February 2007 Mozambique floods. Model evaluation showed that simulated flood edge cells were within a distance of about 1 km (one model resolution) compared to an observed flood edge of the event. Our study highlights that physically plausible parameter values and satisfactory performance can be achieved at spatial scales ranging from tens to several hundreds of thousands of km2 and at model grid resolutions up to several km2. However, initial model test runs in forecast mode revealed that it is crucial to account for basin-wide hydrological response time when assessing lead time performances notwithstanding structural limitations in the hydrological model and possibly large inaccuracies in precipitation data.« less

  14. Multi-model seasonal forecast of Arctic sea-ice: forecast uncertainty at pan-Arctic and regional scales

    NASA Astrophysics Data System (ADS)

    Blanchard-Wrigglesworth, E.; Barthélemy, A.; Chevallier, M.; Cullather, R.; Fučkar, N.; Massonnet, F.; Posey, P.; Wang, W.; Zhang, J.; Ardilouze, C.; Bitz, C. M.; Vernieres, G.; Wallcraft, A.; Wang, M.

    2017-08-01

    Dynamical model forecasts in the Sea Ice Outlook (SIO) of September Arctic sea-ice extent over the last decade have shown lower skill than that found in both idealized model experiments and hindcasts of previous decades. Additionally, it is unclear how different model physics, initial conditions or forecast post-processing (bias correction) techniques contribute to SIO forecast uncertainty. In this work, we have produced a seasonal forecast of 2015 Arctic summer sea ice using SIO dynamical models initialized with identical sea-ice thickness in the central Arctic. Our goals are to calculate the relative contribution of model uncertainty and irreducible error growth to forecast uncertainty and assess the importance of post-processing, and to contrast pan-Arctic forecast uncertainty with regional forecast uncertainty. We find that prior to forecast post-processing, model uncertainty is the main contributor to forecast uncertainty, whereas after forecast post-processing forecast uncertainty is reduced overall, model uncertainty is reduced by an order of magnitude, and irreducible error growth becomes the main contributor to forecast uncertainty. While all models generally agree in their post-processed forecasts of September sea-ice volume and extent, this is not the case for sea-ice concentration. Additionally, forecast uncertainty of sea-ice thickness grows at a much higher rate along Arctic coastlines relative to the central Arctic ocean. Potential ways of offering spatial forecast information based on the timescale over which the forecast signal beats the noise are also explored.

  15. Shared investment projects and forecasting errors: setting framework conditions for coordination and sequencing data quality activities.

    PubMed

    Leitner, Stephan; Brauneis, Alexander; Rausch, Alexandra

    2015-01-01

    In this paper, we investigate the impact of inaccurate forecasting on the coordination of distributed investment decisions. In particular, by setting up a computational multi-agent model of a stylized firm, we investigate the case of investment opportunities that are mutually carried out by organizational departments. The forecasts of concern pertain to the initial amount of money necessary to launch and operate an investment opportunity, to the expected intertemporal distribution of cash flows, and the departments' efficiency in operating the investment opportunity at hand. We propose a budget allocation mechanism for coordinating such distributed decisions The paper provides guidance on how to set framework conditions, in terms of the number of investment opportunities considered in one round of funding and the number of departments operating one investment opportunity, so that the coordination mechanism is highly robust to forecasting errors. Furthermore, we show that-in some setups-a certain extent of misforecasting is desirable from the firm's point of view as it supports the achievement of the corporate objective of value maximization. We then address the question of how to improve forecasting quality in the best possible way, and provide policy advice on how to sequence activities for improving forecasting quality so that the robustness of the coordination mechanism to errors increases in the best possible way. At the same time, we show that wrong decisions regarding the sequencing can lead to a decrease in robustness. Finally, we conduct a comprehensive sensitivity analysis and prove that-in particular for relatively good forecasters-most of our results are robust to changes in setting the parameters of our multi-agent simulation model.

  16. How Strong is the Case for Geostationary Hyperspectral Sounders?

    NASA Astrophysics Data System (ADS)

    Kirk-Davidoff, D. B.; Liu, Z.; Jensen, S.; Housley, E.

    2014-12-01

    The NASA GIFTS program designed and constructed a flight-ready hyperspectral infrared sounder for geostationary orbit. Efforts are now underway to launch a constellation of similar instruments. Salient characteristics included 4 km spatial resolution at nadir and 0.6 cm-1 spectral resolution in two infrared bands. Observing system experiments have demonstrated the success of assimilated hyperspectral infrared radiances from IASI and AIRS in improving weather forecast skill. These results provide circumstantial evidence that additional observations at higher spatial and temporal resolution would likely improve forecast skill further. However, there is only limited work investigating the magnitude of this skill improvement in the literature. Here we present a systematic program to quantify the additional skill of a constellation of geostationary hyperspectral sounders through observing system simulation experiments (OSSEs) using the WRF model and the WRFDA data assimilation system. The OSSEs will focus first on high-impact events, such as the forecast for Typhoon Haiyun, but will also address quotidian synoptic forecast skill. The focus will be on short-term forecast skill (<24 hours lead time), in accord with WRF's mesoscale design, and with the view that high time frequency observations are likely to make the biggest impact on the skill of short-range forecasts. The experiments will use as their starting point the full existing observational suite, so that additionality can be addressed, but will also consider contingencies, such as the loss of particular elements of the existing system, as well as the degree to which a stand-alone system of hyperspectral sounds would be able to successfully initialize a regional forecast model. A variety of settings, tropical and extratropical, marine and continental will be considered.

  17. The eSurge-Venice project: altimeter and scatterometer satellite data to improve the storm surge forecasting in the city of Venice

    NASA Astrophysics Data System (ADS)

    Zecchetto, Stefano; De Biasio, Francesco; Umgiesser, Georg; Bajo, Marco; Vignudelli, Stefano; Papa, Alvise; Donlon, Craig; Bellafiore, Debora

    2013-04-01

    On the framework of the Data User Element (DUE) program, the European Space Agency is funding a project to use altimeter Total Water Level Envelope (TWLE) and scatterometer wind data to improve the storm surge forecasting in the Adriatic Sea and in the city of Venice. The project will: a) Select a number of Storm Surge Events occurred in the Venice lagoon in the period 1999-present day b) Provide the available satellite Earth Observation (EO) data related to the Storm Surge Events, mainly satellite winds and altimeter data, as well as all the available in-situ data and model forecasts c) Provide a demonstration Near Real Time service of EO data products and services in support of operational and experimental forecasting and warning services d) Run a number of re-analysis cases, both for historical and contemporary storm surge events, to demonstrate the usefulness of EO data The re-analysis experiments, based on hindcasts performed by the finite element 2-D oceanographic model SHYFEM (https://sites.google.com/site/shyfem/), will 1. use different forcing wind fields (calibrated and not calibrated with satellite wind data) 2. use Storm Surge Model initial conditions determined from altimeter TWLE data. The experience gained working with scatterometer and Numerical Weather Prediction (NWP) winds in the Adriatic Sea tells us that the bias NWP-Scatt wind is negative and spatially and temporally not uniform. In particular, a well established point is that the bias is higher close to coasts then offshore. Therefore, NWP wind speed calibration will be carried out on each single grid point in the Adriatic Sea domain over the period of a Storm Surge Event, taking into account of existing published methods. Point #2 considers two different methodologies to be used in re-analysis tests. One is based on the use of the TWLE values from altimeter data in the Storm Surge Model (SSM), applying data assimilation methodologies and trying to optimize the initial conditions of the simulation.The second possibility is an indirect exploitation of the TWLE data from altimeter in an ensemble-like framework, obtained by slight variations of the external forcing. In this case the wind data from NWP models will be weakly altered (shifted in phase), the drag coefficient will be modified, and the initial condition of the model slightly shifted in time to account for the uncertainty of these factors. This contribution will illustrate the geophysical context of work and outline the results.

  18. Process-based modeling of species' responses to climate change - a proof of concept using western North American trees

    NASA Astrophysics Data System (ADS)

    Evans, M. E.; Merow, C.; Record, S.; Menlove, J.; Gray, A.; Cundiff, J.; McMahon, S.; Enquist, B. J.

    2013-12-01

    Current attempts to forecast how species' distributions will change in response to climate change suffer under a fundamental trade-off: between modeling many species superficially vs. few species in detail (between correlative vs. mechanistic models). The goals of this talk are two-fold: first, we present a Bayesian multilevel modeling framework, dynamic range modeling (DRM), for building process-based forecasts of many species' distributions at a time, designed to address the trade-off between detail and number of distribution forecasts. In contrast to 'species distribution modeling' or 'niche modeling', which uses only species' occurrence data and environmental data, DRMs draw upon demographic data, abundance data, trait data, occurrence data, and GIS layers of climate in a single framework to account for two processes known to influence range dynamics - demography and dispersal. The vision is to use extensive databases on plant demography, distributions, and traits - in the Botanical Information and Ecology Network, the Forest Inventory and Analysis database (FIA), and the International Tree Ring Data Bank - to develop DRMs for North American trees. Second, we present preliminary results from building the core submodel of a DRM - an integral projection model (IPM) - for a sample of dominant tree species in western North America. IPMs are used to infer demographic niches - i.e., the set of environmental conditions under which population growth rate is positive - and project population dynamics through time. Based on >550,000 data points derived from FIA for nine tree species in western North America, we show IPM-based models of their current and future distributions, and discuss how IPMs can be used to forecast future forest productivity, mortality patterns, and inform efforts at assisted migration.

  19. Linear dynamical modes as new variables for data-driven ENSO forecast

    NASA Astrophysics Data System (ADS)

    Gavrilov, Andrey; Seleznev, Aleksei; Mukhin, Dmitry; Loskutov, Evgeny; Feigin, Alexander; Kurths, Juergen

    2018-05-01

    A new data-driven model for analysis and prediction of spatially distributed time series is proposed. The model is based on a linear dynamical mode (LDM) decomposition of the observed data which is derived from a recently developed nonlinear dimensionality reduction approach. The key point of this approach is its ability to take into account simple dynamical properties of the observed system by means of revealing the system's dominant time scales. The LDMs are used as new variables for empirical construction of a nonlinear stochastic evolution operator. The method is applied to the sea surface temperature anomaly field in the tropical belt where the El Nino Southern Oscillation (ENSO) is the main mode of variability. The advantage of LDMs versus traditionally used empirical orthogonal function decomposition is demonstrated for this data. Specifically, it is shown that the new model has a competitive ENSO forecast skill in comparison with the other existing ENSO models.

  20. Forecasting models for flow and total dissolved solids in Karoun river-Iran

    NASA Astrophysics Data System (ADS)

    Salmani, Mohammad Hassan; Salmani Jajaei, Efat

    2016-04-01

    Water quality is one of the most important factors contributing to a healthy life. From the water quality management point of view, TDS (total dissolved solids) is the most important factor and many water developing plans have been implemented in recognition of this factor. However, these plans have not been perfect and very successful in overcoming the poor water quality problem, so there are a good volume of related studies in the literature. We study TDS and the water flow of the Karoun river in southwest Iran. We collected the necessary time series data from the Harmaleh station located in the river. We present two Univariate Seasonal Autoregressive Integrated Movement Average (ARIMA) models to forecast TDS and water flow in this river. Then, we build up a Transfer Function (TF) model to formulate the TDS as a function of water flow volume. A performance comparison between the Seasonal ARIMA and the TF models are presented.

  1. Quantifying model uncertainty in seasonal Arctic sea-ice forecasts

    NASA Astrophysics Data System (ADS)

    Blanchard-Wrigglesworth, Edward; Barthélemy, Antoine; Chevallier, Matthieu; Cullather, Richard; Fučkar, Neven; Massonnet, François; Posey, Pamela; Wang, Wanqiu; Zhang, Jinlun; Ardilouze, Constantin; Bitz, Cecilia; Vernieres, Guillaume; Wallcraft, Alan; Wang, Muyin

    2017-04-01

    Dynamical model forecasts in the Sea Ice Outlook (SIO) of September Arctic sea-ice extent over the last decade have shown lower skill than that found in both idealized model experiments and hindcasts of previous decades. Additionally, it is unclear how different model physics, initial conditions or post-processing techniques contribute to SIO forecast uncertainty. In this work, we have produced a seasonal forecast of 2015 Arctic summer sea ice using SIO dynamical models initialized with identical sea-ice thickness in the central Arctic. Our goals are to calculate the relative contribution of model uncertainty and irreducible error growth to forecast uncertainty and assess the importance of post-processing, and to contrast pan-Arctic forecast uncertainty with regional forecast uncertainty. We find that prior to forecast post-processing, model uncertainty is the main contributor to forecast uncertainty, whereas after forecast post-processing forecast uncertainty is reduced overall, model uncertainty is reduced by an order of magnitude, and irreducible error growth becomes the main contributor to forecast uncertainty. While all models generally agree in their post-processed forecasts of September sea-ice volume and extent, this is not the case for sea-ice concentration. Additionally, forecast uncertainty of sea-ice thickness grows at a much higher rate along Arctic coastlines relative to the central Arctic ocean. Potential ways of offering spatial forecast information based on the timescale over which the forecast signal beats the noise are also explored.

  2. Optimizing Tsunami Forecast Model Accuracy

    NASA Astrophysics Data System (ADS)

    Whitmore, P.; Nyland, D. L.; Huang, P. Y.

    2015-12-01

    Recent tsunamis provide a means to determine the accuracy that can be expected of real-time tsunami forecast models. Forecast accuracy using two different tsunami forecast models are compared for seven events since 2006 based on both real-time application and optimized, after-the-fact "forecasts". Lessons learned by comparing the forecast accuracy determined during an event to modified applications of the models after-the-fact provide improved methods for real-time forecasting for future events. Variables such as source definition, data assimilation, and model scaling factors are examined to optimize forecast accuracy. Forecast accuracy is also compared for direct forward modeling based on earthquake source parameters versus accuracy obtained by assimilating sea level data into the forecast model. Results show that including assimilated sea level data into the models increases accuracy by approximately 15% for the events examined.

  3. Snowmelt Runoff Model in Japan

    NASA Technical Reports Server (NTRS)

    Ishihara, K.; Nishimura, Y.; Takeda, K.

    1985-01-01

    The preliminary Japanese snowmelt runoff model was modified so that all the input variables arc of the antecedent days and the inflow of the previous day is taken into account. A few LANDSAT images obtained in the past were effectively used to verify and modify the depletion curve induced from the snow water equivalent distribution at maximum stage and the accumulated degree days at one representative point selected in the basin. Together with the depletion curve, the relationship between the basin ide daily snowmelt amount and the air temperature at the point above are exhibited homograph form for the convenience of the model user. The runoff forecasting procedure is summarized.

  4. Evaluation of the Impact of an Innovative Immunization Practice Model Designed to Improve Population Health: Results of the Project IMPACT Immunizations Pilot.

    PubMed

    Bluml, Benjamin M; Brock, Kelly A; Hamstra, Scott; Tonrey, Lisa

    2018-02-01

    The goal of the initiative was to evaluate the impact of an innovative practice model on identification of unmet vaccination needs and vaccination rates. This was accomplished through a prospective, multisite, observational study in 8 community pharmacy practices with adults receiving an influenza vaccine with a documented vaccination forecast review from October 22, 2015 through March 22, 2016. When patients presented for influenza vaccinations, pharmacists utilized immunization information systems (IIS) data at the point of care to identify unmet vaccination needs, educate patients, and improve vaccination rates. The main outcome measures were the number of vaccination forecast reviews, patients educated, unmet vaccination needs identified and resolved, and vaccines administered. Pharmacists reviewed vaccination forecasts generated by clinical decision-support technology based on patient information documented in the IIS for 1080 patients receiving influenza vaccinations. The vaccination forecasts predicted there were 1566 additional vaccinations due at the time patients were receiving the influenza vaccine. Pharmacist assessments identified 36 contraindications and 196 potential duplications, leaving a net of 1334 unmet vaccination needs eligible for vaccination. In all, 447 of the 1334 unmet vaccinations needs were resolved during the 6-month study period, and the remainder of patients received information about their vaccination needs and recommendations to follow up for their vaccinations. Integration of streamlined principle-centered processes of care in immunization practices that allow pharmacists to utilize actionable point-of-care data resulted in identification of unmet vaccination needs, education of patients about their vaccination needs, a 41.4% increase in the number of vaccines administered, and significant improvements in routinely recommended adult vaccination rates.

  5. Modeling of Micro Deval abrasion loss based on some rock properties

    NASA Astrophysics Data System (ADS)

    Capik, Mehmet; Yilmaz, Ali Osman

    2017-10-01

    Aggregate is one of the most widely used construction material. The quality of the aggregate is determined using some testing methods. Among these methods, the Micro Deval Abrasion Loss (MDAL) test is commonly used for the determination of the quality and the abrasion resistance of aggregate. The main objective of this study is to develop models for the prediction of MDAL from rock properties, including uniaxial compressive strength, Brazilian tensile strength, point load index, Schmidt rebound hardness, apparent porosity, void ratio Cerchar abrasivity index and Bohme abrasion test are examined. Additionally, the MDAL is modeled using simple regression analysis and multiple linear regression analysis based on the rock properties. The study shows that the MDAL decreases with the increase of uniaxial compressive strength, Brazilian tensile strength, point load index, Schmidt rebound hardness and Cerchar abrasivity index. It is also concluded that the MDAL increases with the increase of apparent porosity, void ratio and Bohme abrasion test. The modeling results show that the models based on Bohme abrasion test and L type Schmidt rebound hardness give the better forecasting performances for the MDAL. More models, including the uniaxial compressive strength, the apparent porosity and Cerchar abrasivity index, are developed for the rapid estimation of the MDAL of the rocks. The developed models were verified by statistical tests. Additionally, it can be stated that the proposed models can be used as a forecasting for aggregate quality.

  6. A short-term ensemble wind speed forecasting system for wind power applications

    NASA Astrophysics Data System (ADS)

    Baidya Roy, S.; Traiteur, J. J.; Callicutt, D.; Smith, M.

    2011-12-01

    This study develops an adaptive, blended forecasting system to provide accurate wind speed forecasts 1 hour ahead of time for wind power applications. The system consists of an ensemble of 21 forecasts with different configurations of the Weather Research and Forecasting Single Column Model (WRFSCM) and a persistence model. The ensemble is calibrated against observations for a 2 month period (June-July, 2008) at a potential wind farm site in Illinois using the Bayesian Model Averaging (BMA) technique. The forecasting system is evaluated against observations for August 2008 at the same site. The calibrated ensemble forecasts significantly outperform the forecasts from the uncalibrated ensemble while significantly reducing forecast uncertainty under all environmental stability conditions. The system also generates significantly better forecasts than persistence, autoregressive (AR) and autoregressive moving average (ARMA) models during the morning transition and the diurnal convective regimes. This forecasting system is computationally more efficient than traditional numerical weather prediction models and can generate a calibrated forecast, including model runs and calibration, in approximately 1 minute. Currently, hour-ahead wind speed forecasts are almost exclusively produced using statistical models. However, numerical models have several distinct advantages over statistical models including the potential to provide turbulence forecasts. Hence, there is an urgent need to explore the role of numerical models in short-term wind speed forecasting. This work is a step in that direction and is likely to trigger a debate within the wind speed forecasting community.

  7. The NASA MERIT program - Developing new concepts for accurate flight planning

    NASA Technical Reports Server (NTRS)

    Steinberg, R.

    1982-01-01

    It is noted that the rising cost of aviation fuel has necessitated the development of a new approach to upper air forecasting for flight planning. It is shown that the spatial resolution of the present weather forecast models used in fully automated computer flight planning is an important accuracy-limiting factor, and it is proposed that man be put back into the system, although not in the way he has been used in the past. A new approach is proposed which uses the application of man-computer interactive display techniques to upper air forecasting to retain the fine scale features of the atmosphere inherent in the present data base in order to provide a more accurate and cost effective flight plan. It is pointed out that, as a result of NASA research, the hardware required for this approach already exists.

  8. Sensitivity of WRF-chem predictions to dust source function specification in West Asia

    NASA Astrophysics Data System (ADS)

    Nabavi, Seyed Omid; Haimberger, Leopold; Samimi, Cyrus

    2017-02-01

    Dust storms tend to form in sparsely populated areas covered by only few observations. Dust source maps, known as source functions, are used in dust models to allocate a certain potential of dust release to each place. Recent research showed that the well known Ginoux source function (GSF), currently used in Weather Research and Forecasting Model coupled with Chemistry (WRF-chem), exhibits large errors over some regions in West Asia, particularly near the IRAQ/Syrian border. This study aims to improve the specification of this critical part of dust forecasts. A new source function based on multi-year analysis of satellite observations, called West Asia source function (WASF), is therefore proposed to raise the quality of WRF-chem predictions in the region. WASF has been implemented in three dust schemes of WRF-chem. Remotely sensed and ground-based observations have been used to verify the horizontal and vertical extent and location of simulated dust clouds. Results indicate that WRF-chem performance is significantly improved in many areas after the implementation of WASF. The modified runs (long term simulations over the summers 2008-2012, using nudging) have yielded an average increase of Spearman correlation between observed and forecast aerosol optical thickness by 12-16 percent points compared to control runs with standard source functions. They even outperform MACC and DREAM dust simulations over many dust source regions. However, the quality of the forecasts decreased with distance from sources, probably due to deficiencies in the transport and deposition characteristics of the forecast model in these areas.

  9. Forecasting extinction risk with nonstationary matrix models.

    PubMed

    Gotelli, Nicholas J; Ellison, Aaron M

    2006-02-01

    Matrix population growth models are standard tools for forecasting population change and for managing rare species, but they are less useful for predicting extinction risk in the face of changing environmental conditions. Deterministic models provide point estimates of lambda, the finite rate of increase, as well as measures of matrix sensitivity and elasticity. Stationary matrix models can be used to estimate extinction risk in a variable environment, but they assume that the matrix elements are randomly sampled from a stationary (i.e., non-changing) distribution. Here we outline a method for using nonstationary matrix models to construct realistic forecasts of population fluctuation in changing environments. Our method requires three pieces of data: (1) field estimates of transition matrix elements, (2) experimental data on the demographic responses of populations to altered environmental conditions, and (3) forecasting data on environmental drivers. These three pieces of data are combined to generate a series of sequential transition matrices that emulate a pattern of long-term change in environmental drivers. Realistic estimates of population persistence and extinction risk can be derived from stochastic permutations of such a model. We illustrate the steps of this analysis with data from two populations of Sarracenia purpurea growing in northern New England. Sarracenia purpurea is a perennial carnivorous plant that is potentially at risk of local extinction because of increased nitrogen deposition. Long-term monitoring records or models of environmental change can be used to generate time series of driver variables under different scenarios of changing environments. Both manipulative and natural experiments can be used to construct a linking function that describes how matrix parameters change as a function of the environmental driver. This synthetic modeling approach provides quantitative estimates of extinction probability that have an explicit mechanistic basis.

  10. Influence of warning information changes on emergency response

    NASA Astrophysics Data System (ADS)

    Heisterkamp, Tobias; Ulbrich, Uwe; Glade, Thomas; Tetzlaff, Gerd

    2014-05-01

    Mitigation and risk reduction of natural hazards is significantly related to the possibility of predicting the actual event. Some hazards can already be forecasted several days in advance. For these hazards, early warning systems have been developed, installed and improved over the years. The formation of winter storms for example can be recognized up to one week before they pass through Central Europe. This relative long early warning time has the advantage that forecasters can concretise the warnings over time. Therefore, warnings can even be adapted to alternating conditions within the process, the observation or changes in its modelling. Emergency managers are one group of warning recipients in the civil protection sector. They have to prepare or initiate prevention or response measures at a specific point of time, depending on the required lead time of the referring actions. At this point of time already, the forecast and its equivalent warning, has to be assumed as a stage of reality, hence the decision-makers have to come to a conclusion. These decisions are based on spatial and temporal knowledge of the forecasted event and the consequential situation of risk. With incoming warning updates, the detailed status of information is permanently being alternated. Consequently, decisions can be influenced by the development of the warning situation and the inherent tendency before a certain point of time. They can also be adapted to updates later on, according to the changing 'decision reality'. The influence of these dynamic hazard situations on operational planning and response by emergency managers is investigated in case studies on winter storms for Berlin, Germany. Therefore, the issued warnings by the weather service and data of operation of Berlin Fire Brigades are analysed and compared. This presentation shows and discusses first results.

  11. Using simplified Chaos Theory to manage nursing services.

    PubMed

    Haigh, Carol A

    2008-04-01

    The purpose of this study was to evaluate the part simplified chaos theory could play in the management of nursing services. As nursing care becomes more complex, practitioners need to become familiar with business planning and objective time management. There are many time-limited methods that facilitate this type of planning but few that can help practitioners to forecast the end-point outcome of the service they deliver. A growth model was applied to a specialist service to plot service trajectory. Components of chaos theory can play a role in forecasting service outcomes and consequently the impact upon the management of such services. The ability to (1) track the trajectory of a service and (2) manipulate that trajectory by introducing new variables can allow managers to forward plan for service development and to evaluate the effectiveness of a service by plotting its end-point state.

  12. Tailored high-resolution numerical weather forecasts for energy efficient predictive building control

    NASA Astrophysics Data System (ADS)

    Stauch, V. J.; Gwerder, M.; Gyalistras, D.; Oldewurtel, F.; Schubiger, F.; Steiner, P.

    2010-09-01

    The high proportion of the total primary energy consumption by buildings has increased the public interest in the optimisation of buildings' operation and is also driving the development of novel control approaches for the indoor climate. In this context, the use of weather forecasts presents an interesting and - thanks to advances in information and predictive control technologies and the continuous improvement of numerical weather prediction (NWP) models - an increasingly attractive option for improved building control. Within the research project OptiControl (www.opticontrol.ethz.ch) predictive control strategies for a wide range of buildings, heating, ventilation and air conditioning (HVAC) systems, and representative locations in Europe are being investigated with the aid of newly developed modelling and simulation tools. Grid point predictions for radiation, temperature and humidity of the high-resolution limited area NWP model COSMO-7 (see www.cosmo-model.org) and local measurements are used as disturbances and inputs into the building system. The control task considered consists in minimizing energy consumption whilst maintaining occupant comfort. In this presentation, we use the simulation-based OptiControl methodology to investigate the impact of COSMO-7 forecasts on the performance of predictive building control and the resulting energy savings. For this, we have selected building cases that were shown to benefit from a prediction horizon of up to 3 days and therefore, are particularly suitable for the use of numerical weather forecasts. We show that the controller performance is sensitive to the quality of the weather predictions, most importantly of the incident radiation on differently oriented façades. However, radiation is characterised by a high temporal and spatial variability in part caused by small scale and fast changing cloud formation and dissolution processes being only partially represented in the COSMO-7 grid point predictions. On the other hand, buildings are affected by particularly local weather conditions at the building site. To overcome this discrepancy, we make use of local measurements to statistically adapt the COSMO-7 model output to the meteorological conditions at the building. For this, we have developed a general correction algorithm that exploits systematic properties of the COSMO-7 prediction error and explicitly estimates the degree of temporal autocorrelation using online recursive estimation. The resulting corrected predictions are improved especially for the first few hours being the most crucial for the predictive controller and, ultimately for the reduction of primary energy consumption using predictive control. The use of numerical weather forecasts in predictive building automation is one example in a wide field of weather dependent advanced energy saving technologies. Our work particularly highlights the need for the development of specifically tailored weather forecast products by (statistical) postprocessing in order to meet the requirements of specific applications.

  13. Forecasting Epidemics Through Nonparametric Estimation of Time-Dependent Transmission Rates Using the SEIR Model.

    PubMed

    Smirnova, Alexandra; deCamp, Linda; Chowell, Gerardo

    2017-05-02

    Deterministic and stochastic methods relying on early case incidence data for forecasting epidemic outbreaks have received increasing attention during the last few years. In mathematical terms, epidemic forecasting is an ill-posed problem due to instability of parameter identification and limited available data. While previous studies have largely estimated the time-dependent transmission rate by assuming specific functional forms (e.g., exponential decay) that depend on a few parameters, here we introduce a novel approach for the reconstruction of nonparametric time-dependent transmission rates by projecting onto a finite subspace spanned by Legendre polynomials. This approach enables us to effectively forecast future incidence cases, the clear advantage over recovering the transmission rate at finitely many grid points within the interval where the data are currently available. In our approach, we compare three regularization algorithms: variational (Tikhonov's) regularization, truncated singular value decomposition (TSVD), and modified TSVD in order to determine the stabilizing strategy that is most effective in terms of reliability of forecasting from limited data. We illustrate our methodology using simulated data as well as case incidence data for various epidemics including the 1918 influenza pandemic in San Francisco and the 2014-2015 Ebola epidemic in West Africa.

  14. A global flash flood forecasting system

    NASA Astrophysics Data System (ADS)

    Baugh, Calum; Pappenberger, Florian; Wetterhall, Fredrik; Hewson, Tim; Zsoter, Ervin

    2016-04-01

    The sudden and devastating nature of flash flood events means it is imperative to provide early warnings such as those derived from Numerical Weather Prediction (NWP) forecasts. Currently such systems exist on basin, national and continental scales in Europe, North America and Australia but rely on high resolution NWP forecasts or rainfall-radar nowcasting, neither of which have global coverage. To produce global flash flood forecasts this work investigates the possibility of using forecasts from a global NWP system. In particular we: (i) discuss how global NWP can be used for flash flood forecasting and discuss strengths and weaknesses; (ii) demonstrate how a robust evaluation can be performed given the rarity of the event; (iii) highlight the challenges and opportunities in communicating flash flood uncertainty to decision makers; and (iv) explore future developments which would significantly improve global flash flood forecasting. The proposed forecast system uses ensemble surface runoff forecasts from the ECMWF H-TESSEL land surface scheme. A flash flood index is generated using the ERIC (Enhanced Runoff Index based on Climatology) methodology [Raynaud et al., 2014]. This global methodology is applied to a series of flash floods across southern Europe. Results from the system are compared against warnings produced using the higher resolution COSMO-LEPS limited area model. The global system is evaluated by comparing forecasted warning locations against a flash flood database of media reports created in partnership with floodlist.com. To deal with the lack of objectivity in media reports we carefully assess the suitability of different skill scores and apply spatial uncertainty thresholds to the observations. To communicate the uncertainties of the flash flood system output we experiment with a dynamic region-growing algorithm. This automatically clusters regions of similar return period exceedence probabilities, thus presenting the at-risk areas at a spatial resolution appropriate to the NWP system. We then demonstrate how these warning areas could eventually complement existing global systems such as the Global Flood Awareness System (GloFAS), to give warnings of flash floods. This work demonstrates the possibility of creating a global flash flood forecasting system based on forecasts from existing global NWP systems. Future developments, in post-processing for example, will need to address an under-prediction bias, for extreme point rainfall, that is innate to current-generation global models.

  15. Using volcanic tremor for eruption forecasting at White Island volcano (Whakaari), New Zealand

    NASA Astrophysics Data System (ADS)

    Chardot, Lauriane; Jolly, Arthur D.; Kennedy, Ben M.; Fournier, Nicolas; Sherburn, Steven

    2015-09-01

    Eruption forecasting is a challenging task because of the inherent complexity of volcanic systems. Despite remarkable efforts to develop complex models in order to explain volcanic processes prior to eruptions, the material Failure Forecast Method (FFM) is one of the very few techniques that can provide a forecast time for an eruption. However, the method requires testing and automation before being used as a real-time eruption forecasting tool at a volcano. We developed an automatic algorithm to issue forecasts from volcanic tremor increase episodes recorded by Real-time Seismic Amplitude Measurement (RSAM) at one station and optimised this algorithm for the period August 2011-January 2014 which comprises the recent unrest period at White Island volcano (Whakaari), New Zealand. A detailed residual analysis was paramount to select the most appropriate model explaining the RSAM time evolutions. In a hindsight simulation, four out of the five small eruptions reported during this period occurred within a failure window forecast by our optimised algorithm and the probability of an eruption on a day within a failure window was 0.21, which is 37 times higher than the probability of having an eruption on any day during the same period (0.0057). Moreover, the forecasts were issued prior to the eruptions by a few hours which is important from an emergency management point of view. Whereas the RSAM time evolutions preceding these four eruptions have a similar goodness-of-fit with the FFM, their spectral characteristics are different. The duration-amplitude distributions of the precursory tremor episodes support the hypothesis that several processes were likely occurring prior to these eruptions. We propose that slow rock failure and fluid flow processes are plausible candidates for the tremor source of these episodes. This hindsight exercise can be useful for future real-time implementation of the FFM at White Island. A similar methodology could also be tested at other volcanoes even if only a limited network is available.

  16. Integrating Windblown Dust Forecasts with Public Safety and Health Systems

    NASA Astrophysics Data System (ADS)

    Sprigg, W. A.

    2014-12-01

    Experiments in real-time prediction of desert dust emissions and downstream plume concentrations (~ 3.5 km near-surface spatial resolution) succeed to the point of challenging public safety and public health services to beta test a dust storm warning and advisory system in lowering risks of highway and airline accidents and illnesses such as asthma and valley fever. Key beta test components are: high-resolution models of dust emission, entrainment and diffusion, integrated with synoptic weather observations and forecasts; satellite-based detection and monitoring of soil properties on the ground and elevated above; high space and time resolution for health surveillance and transportation advisories.

  17. The air quality forecast in Beijing with Community Multi-scale Air Quality Modeling (CMAQ) System: model evaluation and improvement

    NASA Astrophysics Data System (ADS)

    Wu, Q.

    2013-12-01

    The MM5-SMOKE-CMAQ model system, which is developed by the United States Environmental Protection Agency(U.S. EPA) as the Models-3 system, has been used for the daily air quality forecast in the Beijing Municipal Environmental Monitoring Center(Beijing MEMC), as a part of the Ensemble Air Quality Forecast System for Beijing(EMS-Beijing) since the Olympic Games year 2008. In this study, we collect the daily forecast results of the CMAQ model in the whole year 2010 for the model evaluation. The results show that the model play a good model performance in most days but underestimate obviously in some air pollution episode. A typical air pollution episode from 11st - 20th January 2010 was chosen, which the air pollution index(API) of particulate matter (PM10) observed by Beijing MEMC reaches to 180 while the prediction of PM10-API is about 100. Taking in account all stations in Beijing, including urban and suburban stations, three numerical methods are used for model improvement: firstly, enhance the inner domain with 4km grids, the coverage from only Beijing to the area including its surrounding cities; secondly, update the Beijing stationary area emission inventory, from statistical county-level to village-town level, that would provide more detail spatial informance for area emissions; thirdly, add some industrial points emission in Beijing's surrounding cities, the latter two are both the improvement of emission. As the result, the peak of the nine national standard stations averaged PM10-API, which is simulated by CMAQ as daily hindcast PM10-API, reach to 160 and much near to the observation. The new results show better model performance, which the correlation coefficent is 0.93 in national standard stations average and 0.84 in all stations, the relative error is 15.7% in national standard stations averaged and 27% in all stations. The time series of 9 national standard in Beijing urban The scatter diagram of all stations in Beijing, the red is the forecast and the blue is new result.

  18. Medium-range reference evapotranspiration forecasts for the contiguous United States based on multi-model numerical weather predictions

    NASA Astrophysics Data System (ADS)

    Medina, Hanoi; Tian, Di; Srivastava, Puneet; Pelosi, Anna; Chirico, Giovanni B.

    2018-07-01

    Reference evapotranspiration (ET0) plays a fundamental role in agronomic, forestry, and water resources management. Estimating and forecasting ET0 have long been recognized as a major challenge for researchers and practitioners in these communities. This work explored the potential of multiple leading numerical weather predictions (NWPs) for estimating and forecasting summer ET0 at 101 U.S. Regional Climate Reference Network stations over nine climate regions across the contiguous United States (CONUS). Three leading global NWP model forecasts from THORPEX Interactive Grand Global Ensemble (TIGGE) dataset were used in this study, including the single model ensemble forecasts from the European Centre for Medium-Range Weather Forecasts (EC), the National Centers for Environmental Prediction Global Forecast System (NCEP), and the United Kingdom Meteorological Office forecasts (MO), as well as multi-model ensemble forecasts from the combinations of these NWP models. A regression calibration was employed to bias correct the ET0 forecasts. Impact of individual forecast variables on ET0 forecasts were also evaluated. The results showed that the EC forecasts provided the least error and highest skill and reliability, followed by the MO and NCEP forecasts. The multi-model ensembles constructed from the combination of EC and MO forecasts provided slightly better performance than the single model EC forecasts. The regression process greatly improved ET0 forecast performances, particularly for the regions involving stations near the coast, or with a complex orography. The performance of EC forecasts was only slightly influenced by the size of the ensemble members, particularly at short lead times. Even with less ensemble members, EC still performed better than the other two NWPs. Errors in the radiation forecasts, followed by those in the wind, had the most detrimental effects on the ET0 forecast performances.

  19. Cb-LIKE - Thunderstorm forecasts up to six hours with fuzzy logic

    NASA Astrophysics Data System (ADS)

    Köhler, Martin; Tafferner, Arnold

    2016-04-01

    Thunderstorms with their accompanying effects like heavy rain, hail, or downdrafts cause delays and flight cancellations and therefore high additional cost for airlines and airport operators. A reliable thunderstorm forecast up to several hours could provide more time for decision makers in air traffic for an appropriate reaction on possible storm cells and initiation of adequate counteractions. To provide the required forecasts Cb-LIKE (Cumulonimbus-LIKElihood) has been developed at the DLR (Deutsches Zentrum für Luft- und Raumfahrt) Institute of Atmospheric Physics. The new algorithm is an automated system which designates areas with possible thunderstorm development by using model data of the COSMO-DE weather model, which is driven by the German Meteorological Service (DWD). A newly developed "Best-Member- Selection" method allows the automatic selection of that particular model run of a time-lagged COSMO- DE model ensemble, which matches best the current thunderstorm situation. Thereby the application of the best available data basis for the calculation of the thunderstorm forecasts by Cb-LIKE is ensured. Altogether there are four different modes for the selection of the best member. Four atmospheric parameters (CAPE, vertical wind velocity, radar reflectivity and cloud top temperature) of the model output are used within the algorithm. A newly developed fuzzy logic system enables the subsequent combination of the model parameters and the calculation of a thunderstorm indicator within a value range of 12 up to 88 for each grid point of the model domain for the following six hours in one hour intervals. The higher the indicator value the more the model parameters imply the development of thunderstorms. The quality of the Cb-LIKE thunderstorm forecasts was evaluated by a substantial verification using a neighborhood verification approach and multi-event contingency tables. The verification was performed for the whole summer period of 2012. On the basis of a deterministic object comparison with heavy precipitation cells observed by the radar-based thunderstorm tracking algorithm Rad-TRAM, several verification scores like BIAS, POD, FAR and CSI were calculated to identify possible advantages of the new algorithm. The presentation illustrates in detail the concept of the Cb-LIKE algorithm with regard to the fuzzy logic system and the Best-Member-Selection. Additionally some case studies and the most important results of the verification will be shown. The implementation of the forecasts into the DLR WxFUSION system, an user oriented forecasting system for air traffic, will also be included.

  20. Hawaiian Marine Reports

    Science.gov Websites

    (PHMO) Kohala (PHKM) South Point (PHWA) Forecasts Activity Planner Hawaii Marine Aviation Fire Weather (PHWA) Forecasts Activity Planner Hawaii Marine Aviation Fire Weather Local Graphics National Graphics

  1. The national operational environment model (NOEM)

    NASA Astrophysics Data System (ADS)

    Salerno, John J.; Romano, Brian; Geiler, Warren

    2011-06-01

    The National Operational Environment Model (NOEM) is a strategic analysis/assessment tool that provides insight into the complex state space (as a system) that is today's modern operational environment. The NOEM supports baseline forecasts by generating plausible futures based on the current state. It supports what-if analysis by forecasting ramifications of potential "Blue" actions on the environment. The NOEM also supports sensitivity analysis by identifying possible pressure (leverage) points in support of the Commander that resolves forecasted instabilities, and by ranking sensitivities in a list for each leverage point and response. The NOEM can be used to assist Decision Makers, Analysts and Researchers with understanding the inter-workings of a region or nation state, the consequences of implementing specific policies, and the ability to plug in new operational environment theories/models as they mature. The NOEM is built upon an open-source, license-free set of capabilities, and aims to provide support for pluggable modules that make up a given model. The NOEM currently has an extensive number of modules (e.g. economic, security & social well-being pieces such as critical infrastructure) completed along with a number of tools to exercise them. The focus this year is on modeling the social and behavioral aspects of a populace within their environment, primarily the formation of various interest groups, their beliefs, their requirements, their grievances, their affinities, and the likelihood of a wide range of their actions, depending on their perceived level of security and happiness. As such, several research efforts are currently underway to model human behavior from a group perspective, in the pursuit of eventual integration and balance of populace needs/demands within their respective operational environment and the capacity to meet those demands. In this paper we will provide an overview of the NOEM, the need for and a description of its main components. We will also provide a detailed discussion of the model and sample use cases.

  2. Forecasting risk along a river basin using a probabilistic and deterministic model for environmental risk assessment of effluents through ecotoxicological evaluation and GIS.

    PubMed

    Gutiérrez, Simón; Fernandez, Carlos; Barata, Carlos; Tarazona, José Vicente

    2009-12-20

    This work presents a computer model for Risk Assessment of Basins by Ecotoxicological Evaluation (RABETOX). The model is based on whole effluent toxicity testing and water flows along a specific river basin. It is capable of estimating the risk along a river segment using deterministic and probabilistic approaches. The Henares River Basin was selected as a case study to demonstrate the importance of seasonal hydrological variations in Mediterranean regions. As model inputs, two different ecotoxicity tests (the miniaturized Daphnia magna acute test and the D.magna feeding test) were performed on grab samples from 5 waste water treatment plant effluents. Also used as model inputs were flow data from the past 25 years, water velocity measurements and precise distance measurements using Geographical Information Systems (GIS). The model was implemented into a spreadsheet and the results were interpreted and represented using GIS in order to facilitate risk communication. To better understand the bioassays results, the effluents were screened through SPME-GC/MS analysis. The deterministic model, performed each month during one calendar year, showed a significant seasonal variation of risk while revealing that September represents the worst-case scenario with values up to 950 Risk Units. This classifies the entire area of study for the month of September as "sublethal significant risk for standard species". The probabilistic approach using Monte Carlo analysis was performed on 7 different forecast points distributed along the Henares River. A 0% probability of finding "low risk" was found at all forecast points with a more than 50% probability of finding "potential risk for sensitive species". The values obtained through both the deterministic and probabilistic approximations reveal the presence of certain substances, which might be causing sublethal effects in the aquatic species present in the Henares River.

  3. Comment on "Can assimilation of crowdsourced data in hydrological modelling improve flood prediction?" by Mazzoleni et al. (2017)

    NASA Astrophysics Data System (ADS)

    Viero, Daniele P.

    2018-01-01

    Citizen science and crowdsourcing are gaining increasing attention among hydrologists. In a recent contribution, Mazzoleni et al. (2017) investigated the integration of crowdsourced data (CSD) into hydrological models to improve the accuracy of real-time flood forecasts. The authors used synthetic CSD (i.e. not actually measured), because real CSD were not available at the time of the study. In their work, which is a proof-of-concept study, Mazzoleni et al. (2017) showed that assimilation of CSD improves the overall model performance; the impact of irregular frequency of available CSD, and that of data uncertainty, were also deeply assessed. However, the use of synthetic CSD in conjunction with (semi-)distributed hydrological models deserves further discussion. As a result of equifinality, poor model identifiability, and deficiencies in model structure, internal states of (semi-)distributed models can hardly mimic the actual states of complex systems away from calibration points. Accordingly, the use of synthetic CSD that are drawn from model internal states under best-fit conditions can lead to overestimation of the effectiveness of CSD assimilation in improving flood prediction. Operational flood forecasting, which results in decisions of high societal value, requires robust knowledge of the model behaviour and an in-depth assessment of both model structure and forcing data. Additional guidelines are given that are useful for the a priori evaluation of CSD for real-time flood forecasting and, hopefully, for planning apt design strategies for both model calibration and collection of CSD.

  4. Multi-Year Revenue and Expenditure Forecasting for Small Municipal Governments.

    DTIC Science & Technology

    1981-03-01

    Management Audit Econometric Revenue Forecast Gap and Impact Analysis Deterministic Expenditure Forecast Municipal Forecasting Municipal Budget Formlto...together with a multi-year revenue and expenditure forecasting model for the City of Monterey, California. The Monterey model includes an econometric ...65 5 D. FORECAST BASED ON THE ECONOMETRIC MODEL ------- 67 E. FORECAST BASED ON EXPERT JUDGMENT AND TREND ANALYSIS

  5. Selecting Single Model in Combination Forecasting Based on Cointegration Test and Encompassing Test

    PubMed Central

    Jiang, Chuanjin; Zhang, Jing; Song, Fugen

    2014-01-01

    Combination forecasting takes all characters of each single forecasting method into consideration, and combines them to form a composite, which increases forecasting accuracy. The existing researches on combination forecasting select single model randomly, neglecting the internal characters of the forecasting object. After discussing the function of cointegration test and encompassing test in the selection of single model, supplemented by empirical analysis, the paper gives the single model selection guidance: no more than five suitable single models can be selected from many alternative single models for a certain forecasting target, which increases accuracy and stability. PMID:24892061

  6. Selecting single model in combination forecasting based on cointegration test and encompassing test.

    PubMed

    Jiang, Chuanjin; Zhang, Jing; Song, Fugen

    2014-01-01

    Combination forecasting takes all characters of each single forecasting method into consideration, and combines them to form a composite, which increases forecasting accuracy. The existing researches on combination forecasting select single model randomly, neglecting the internal characters of the forecasting object. After discussing the function of cointegration test and encompassing test in the selection of single model, supplemented by empirical analysis, the paper gives the single model selection guidance: no more than five suitable single models can be selected from many alternative single models for a certain forecasting target, which increases accuracy and stability.

  7. Water balance models in one-month-ahead streamflow forecasting

    USGS Publications Warehouse

    Alley, William M.

    1985-01-01

    Techniques are tested that incorporate information from water balance models in making 1-month-ahead streamflow forecasts in New Jersey. The results are compared to those based on simple autoregressive time series models. The relative performance of the models is dependent on the month of the year in question. The water balance models are most useful for forecasts of April and May flows. For the stations in northern New Jersey, the April and May forecasts were made in order of decreasing reliability using the water-balance-based approaches, using the historical monthly means, and using simple autoregressive models. The water balance models were useful to a lesser extent for forecasts during the fall months. For the rest of the year the improvements in forecasts over those obtained using the simpler autoregressive models were either very small or the simpler models provided better forecasts. When using the water balance models, monthly corrections for bias are found to improve minimum mean-square-error forecasts as well as to improve estimates of the forecast conditional distributions.

  8. IMPACT OF TRMM PRECIPITATION ON CPTEC’S RPSAS ANALYSIS

    NASA Astrophysics Data System (ADS)

    Herdies, D. L.; Bastarz, C. F.; Fernandez, J. P.

    2009-12-01

    In this work a data assimilation study was performed to assess the impact of estimated precipitation from TRMM (Tropical Rainfall Measuring Mission) on the CPTEC (Centro de Previsão de Tempo e Estudos Climáticos at Brasil) RPSAS (Regional Physical-space Statistical Analysis System) analyses and the Eta model forecast over the region of La Plata Basin, during a case o MCC (Mesoscale Convective Complex) occurred between 22th and 23th January 2003. The data assimilation system RPSAS and the mesoscale regional Eta model (both with 20km of spatial resolution) were run together with and without the TRMM precipitation. Is this study the assimilation of precipitation is basically a nudging process and is performed during the first guess stage by the Eta model, like in the NCEP (National Centers for Environmental Predictions) EDAS (Eta Data Assimilation System) precipitation data assimilation. During this process the model adjusts the precipitation by comparing, at which grid point and at which time step, the model precipitation against the TRMM precipitation. Doing this some adjustments are made on the latent heat vertical profile, water vapor mixing ratio and relative humidity, by considering the Betts-Miller-Janjic convective parameterization. On the next step, the RPSAS produces an analysis which covers most of the South America and the adjacent oceans. From this analysis the Eta model produces 6h, 12h, 18h and 24h forecast. Data collected from the SALLJEX (South America Low Level Jet EXperiment) was used to compare the forecasts of the model and the CPTEC 40km Regional Reanalysis was used to compare with the RPSAS analyses. Some preliminary results show that the precipitation assimilation improves the first hours of the forecast (typically 6h). The variables verified were the zonal and meridional wind, geopotential height and the precipitation. The convective precipitation fields were improved, mainly over the 6h forecast. This is an important improvement because the first guess field will serve as an analysis of the next forecast window. Also were noticed that the mean error for those variables was reduced (principally for the zonal wind). This reveals that with an improved first guess field, the model was able to detect the MCC occurred in the north of Argentina, due to the improved representation of the winds fields (direction and intensity), pressure and the surface variables.

  9. Integral assessment of floodplains as a basis for spatially-explicit flood loss forecasts

    NASA Astrophysics Data System (ADS)

    Zischg, Andreas Paul; Mosimann, Markus; Weingartner, Rolf

    2016-04-01

    A key aspect of disaster prevention is flood discharge forecasting which is used for early warning and therefore as a decision support for intervention forces. Hereby, the phase between the issued forecast and the time when the expected flood occurs is crucial for an optimal planning of the intervention. Typically, river discharge forecasts cover the regional level only, i.e. larger catchments. However, it is important to note that these forecasts are not useable directly for specific target groups on local level because these forecasts say nothing about the consequences of the predicted flood in terms of affected areas, number of exposed residents and houses. For this, on one hand simulations of the flooding processes and on the other hand data of vulnerable objects are needed. Furthermore, flood modelling in a high spatial and temporal resolution is required for robust flood loss estimation. This is a resource-intensive task from a computing time point of view. Therefore, in real-time applications flood modelling in 2D is not suited. Thus, forecasting flood losses in the short-term (6h-24h in advance) requires a different approach. Here, we propose a method to downscale the river discharge forecast to a spatially-explicit flood loss forecast. The principal procedure is to generate as many flood scenarios as needed in advance to represent the flooded areas for all possible flood hydrographs, e.g. very high peak discharges of short duration vs. high peak discharges with high volumes. For this, synthetic flood hydrographs were derived from the hydrologic time series. Then, the flooded areas of each scenario were modelled with a 2D flood simulation model. All scenarios were intersected with the dataset of vulnerable objects, in our case residential, agricultural and industrial buildings with information about the number of residents, the object-specific vulnerability, and the monetary value of the objects. This dataset was prepared by a data-mining approach. For each flood scenario, the resulting number of affected residents, houses and therefore the losses are computed. This integral assessment leads to a hydro-economical characterisation of each floodplain. Based on that, a transfer function between discharge forecast and damages can be elaborated. This transfer function describes the relationship between predicted peak discharge, flood volume and the number of exposed houses, residents and the related losses. It also can be used to downscale the regional discharge forecast to a local level loss forecast. In addition, a dynamic map delimiting the probable flooded areas on the basis of the forecasted discharge can be prepared. The predicted losses and the delimited flooded areas provide a complementary information for assessing the need of preventive measures on one hand on the long-term timescale and on the other hand 6h-24h in advance of a predicted flood. To conclude, we can state that the transfer function offers the possibility for an integral assessment of floodplains as a basis for spatially-explicit flood loss forecasts. The procedure has been developed and tested in the alpine and pre-alpine environment of the Aare river catchment upstream of Bern, Switzerland.

  10. Evaluation Of Statistical Models For Forecast Errors From The HBV-Model

    NASA Astrophysics Data System (ADS)

    Engeland, K.; Kolberg, S.; Renard, B.; Stensland, I.

    2009-04-01

    Three statistical models for the forecast errors for inflow to the Langvatn reservoir in Northern Norway have been constructed and tested according to how well the distribution and median values of the forecasts errors fit to the observations. For the first model observed and forecasted inflows were transformed by the Box-Cox transformation before a first order autoregressive model was constructed for the forecast errors. The parameters were conditioned on climatic conditions. In the second model the Normal Quantile Transformation (NQT) was applied on observed and forecasted inflows before a similar first order autoregressive model was constructed for the forecast errors. For the last model positive and negative errors were modeled separately. The errors were first NQT-transformed before a model where the mean values were conditioned on climate, forecasted inflow and yesterday's error. To test the three models we applied three criterions: We wanted a) the median values to be close to the observed values; b) the forecast intervals to be narrow; c) the distribution to be correct. The results showed that it is difficult to obtain a correct model for the forecast errors, and that the main challenge is to account for the auto-correlation in the errors. Model 1 and 2 gave similar results, and the main drawback is that the distributions are not correct. The 95% forecast intervals were well identified, but smaller forecast intervals were over-estimated, and larger intervals were under-estimated. Model 3 gave a distribution that fits better, but the median values do not fit well since the auto-correlation is not properly accounted for. If the 95% forecast interval is of interest, Model 2 is recommended. If the whole distribution is of interest, Model 3 is recommended.

  11. Accuracy of short‐term sea ice drift forecasts using a coupled ice‐ocean model

    PubMed Central

    Zhang, Jinlun

    2015-01-01

    Abstract Arctic sea ice drift forecasts of 6 h–9 days for the summer of 2014 are generated using the Marginal Ice Zone Modeling and Assimilation System (MIZMAS); the model is driven by 6 h atmospheric forecasts from the Climate Forecast System (CFSv2). Forecast ice drift speed is compared to drifting buoys and other observational platforms. Forecast positions are compared with actual positions 24 h–8 days since forecast. Forecast results are further compared to those from the forecasts generated using an ice velocity climatology driven by multiyear integrations of the same model. The results are presented in the context of scheduling the acquisition of high‐resolution images that need to follow buoys or scientific research platforms. RMS errors for ice speed are on the order of 5 km/d for 24–48 h since forecast using the sea ice model compared with 9 km/d using climatology. Predicted buoy position RMS errors are 6.3 km for 24 h and 14 km for 72 h since forecast. Model biases in ice speed and direction can be reduced by adjusting the air drag coefficient and water turning angle, but the adjustments do not affect verification statistics. This suggests that improved atmospheric forecast forcing may further reduce the forecast errors. The model remains skillful for 8 days. Using the forecast model increases the probability of tracking a target drifting in sea ice with a 10 km × 10 km image from 60 to 95% for a 24 h forecast and from 27 to 73% for a 48 h forecast. PMID:27818852

  12. Marine Layer Stratus Study

    NASA Astrophysics Data System (ADS)

    Wells, Leonard A.

    2007-06-01

    The intent of this study is to develop a better understanding of the behavior of late spring through early fall marine layer stratus and fog at Vandenberg Air Force Base, which accounts for a majority of aviation forecasting difficulties. The main objective was to use Leipper (1995) study as a starting point to evaluate synoptic and mesoscale processes involved, and identify specific meteorological parameters that affected the behavior of marine layer stratus and fog. After identifying those parameters, the study evaluates how well the various weather models forecast them. The main conclusion of this study is that weak upper-air dynamic features work with boundary layer motions to influence marine layer behavior. It highlights the importance of correctly forecasting the surface temperature by showing how it ties directly to the wind field. That wind field, modified by the local terrain, establishes the low-level convergence and divergence pattern and the resulting marine layer cloud thicknesses and visibilities.

  13. Effect of Streamflow Forecast Uncertainty on Real-Time Reservoir Operation

    NASA Astrophysics Data System (ADS)

    Zhao, T.; Cai, X.; Yang, D.

    2010-12-01

    Various hydrological forecast products have been applied to real-time reservoir operation, including deterministic streamflow forecast (DSF), DSF-based probabilistic streamflow forecast (DPSF), and ensemble streamflow forecast (ESF), which represent forecast uncertainty in the form of deterministic forecast error, deterministic forecast error-based uncertainty distribution, and ensemble forecast errors, respectively. Compared to previous studies that treat these forecast products as ad hoc inputs for reservoir operation models, this paper attempts to model the uncertainties involved in the various forecast products and explores their effect on real-time reservoir operation decisions. In hydrology, there are various indices reflecting the magnitude of streamflow forecast uncertainty; meanwhile, few models illustrate the forecast uncertainty evolution process. This research introduces Martingale Model of Forecast Evolution (MMFE) from supply chain management and justifies its assumptions for quantifying the evolution of uncertainty in streamflow forecast as time progresses. Based on MMFE, this research simulates the evolution of forecast uncertainty in DSF, DPSF, and ESF, and applies the reservoir operation models (dynamic programming, DP; stochastic dynamic programming, SDP; and standard operation policy, SOP) to assess the effect of different forms of forecast uncertainty on real-time reservoir operation. Through a hypothetical single-objective real-time reservoir operation model, the results illustrate that forecast uncertainty exerts significant effects. Reservoir operation efficiency, as measured by a utility function, decreases as the forecast uncertainty increases. Meanwhile, these effects also depend on the type of forecast product being used. In general, the utility of reservoir operation with ESF is nearly as high as the utility obtained with a perfect forecast; the utilities of DSF and DPSF are similar to each other but not as efficient as ESF. Moreover, streamflow variability and reservoir capacity can change the magnitude of the effects of forecast uncertainty, but not the relative merit of DSF, DPSF, and ESF. Schematic diagram of the increase in forecast uncertainty with forecast lead-time and the dynamic updating property of real-time streamflow forecast

  14. Solar activity simulation and forecast with a flux-transport dynamo

    NASA Astrophysics Data System (ADS)

    Macario-Rojas, Alejandro; Smith, Katharine L.; Roberts, Peter C. E.

    2018-06-01

    We present the assessment of a diffusion-dominated mean field axisymmetric dynamo model in reproducing historical solar activity and forecast for solar cycle 25. Previous studies point to the Sun's polar magnetic field as an important proxy for solar activity prediction. Extended research using this proxy has been impeded by reduced observational data record only available from 1976. However, there is a recognised need for a solar dynamo model with ample verification over various activity scenarios to improve theoretical standards. The present study aims to explore the use of helioseismology data and reconstructed solar polar magnetic field, to foster the development of robust solar activity forecasts. The research is based on observationally inferred differential rotation morphology, as well as observed and reconstructed polar field using artificial neural network methods via the hemispheric sunspot areas record. Results show consistent reproduction of historical solar activity trends with enhanced results by introducing a precursor rise time coefficient. A weak solar cycle 25, with slow rise time and maximum activity -14.4% (±19.5%) with respect to the current cycle 24 is predicted.

  15. Disruption Event Characterization and Forecasting in Tokamaks

    NASA Astrophysics Data System (ADS)

    Berkery, J. W.; Sabbagh, S. A.; Park, Y. S.; Ahn, J. H.; Jiang, Y.; Riquezes, J. D.; Gerhardt, S. P.; Myers, C. E.

    2017-10-01

    The Disruption Event Characterization and Forecasting (DECAF) code, being developed to meet the challenging goal of high reliability disruption prediction in tokamaks, automates data analysis to determine chains of events that lead to disruptions and to forecast their evolution. The relative timing of magnetohydrodynamic modes and other events including plasma vertical displacement, loss of boundary control, proximity to density limits, reduction of safety factor, and mismatch of the measured and desired plasma current are considered. NSTX/-U databases are examined with analysis expanding to DIII-D, KSTAR, and TCV. Characterization of tearing modes has determined mode bifurcation frequency and locking points. In an NSTX database exhibiting unstable resistive wall modes (RWM), the RWM event and loss of boundary control event were found in 100%, and the vertical displacement event in over 90% of cases. A reduced kinetic RWM stability physics model is evaluated to determine the proximity of discharges to marginal stability. The model shows high success as a disruption predictor (greater than 85%) with relatively low false positive rate. Supported by US DOE Contracts DE-FG02-99ER54524, DE-AC02-09CH11466, and DE-SC0016614.

  16. Artificial intelligence based approach to forecast PM2.5 during haze episodes: A case study of Delhi, India

    NASA Astrophysics Data System (ADS)

    Mishra, Dhirendra; Goyal, P.; Upadhyay, Abhishek

    2015-02-01

    Delhi has been listed as the worst performer across the world with respect to the presence of alarmingly high level of haze episodes, exposing the residents here to a host of diseases including respiratory disease, chronic obstructive pulmonary disorder and lung cancer. This study aimed to analyze the haze episodes in a year and to develop the forecasting methodologies for it. The air pollutants, e.g., CO, O3, NO2, SO2, PM2.5 as well as meteorological parameters (pressure, temperature, wind speed, wind direction index, relative humidity, visibility, dew point temperature, etc.) have been used in the present study to analyze the haze episodes in Delhi urban area. The nature of these episodes, their possible causes, and their major features are discussed in terms of fine particulate matter (PM2.5) and relative humidity. The correlation matrix shows that temperature, pressure, wind speed, O3, and dew point temperature are the dominating variables for PM2.5 concentrations in Delhi. The hour-by-hour analysis of past data pattern at different monitoring stations suggest that the haze hours were occurred approximately 48% of the total observed hours in the year, 2012 over Delhi urban area. The haze hour forecasting models in terms of PM2.5 concentrations (more than 50 μg/m3) and relative humidity (less than 90%) have been developed through artificial intelligence based Neuro-Fuzzy (NF) techniques and compared with the other modeling techniques e.g., multiple linear regression (MLR), and artificial neural network (ANN). The haze hour's data for nine months, i.e. from January to September have been chosen for training and remaining three months, i.e., October to December in the year 2012 are chosen for validation of the developed models. The forecasted results are compared with the observed values with different statistical measures, e.g., correlation coefficients (R), normalized mean square error (NMSE), fractional bias (FB) and index of agreement (IOA). The performed analysis has indicated that R has values 0.25 for MLR, 0.53 for ANN, and NF: 0.72, between the observed and predicted PM2.5 concentrations during haze hours invalidation period. The results show that the artificial intelligence implementations have a more reasonable agreement with the observed values. Finally, it can be concluded that the most convincing advantage of artificial intelligence based NF model is capable for better forecasting of haze episodes in Delhi urban area than ANN and MLR models.

  17. Forecasting the need for physicians in the United States: the Health Resources and Services Administration's physician requirements model.

    PubMed Central

    Greenberg, L; Cultice, J M

    1997-01-01

    OBJECTIVE: The Health Resources and Services Administration's Bureau of Health Professions developed a demographic utilization-based model of physician specialty requirements to explore the consequences of a broad range of scenarios pertaining to the nation's health care delivery system on need for physicians. DATA SOURCE/STUDY SETTING: The model uses selected data primarily from the National Center for Health Statistics, the American Medical Association, and the U.S. Bureau of Census. Forecasts are national estimates. STUDY DESIGN: Current (1989) utilization rates for ambulatory and inpatient medical specialty services were obtained for the population according to age, gender, race/ethnicity, and insurance status. These rates are used to estimate specialty-specific total service utilization expressed in patient care minutes for future populations and converted to physician requirements by applying per-physician productivity estimates. DATA COLLECTION/EXTRACTION METHODS: Secondary data were analyzed and put into matrixes for use in the mainframe computer-based model. Several missing data points, e.g., for HMO-enrolled populations, were extrapolated from available data by the project's contractor. PRINCIPAL FINDINGS: The authors contend that the Bureau's demographic utilization model represents improvements over other data-driven methodologies that rely on staffing ratios and similar supply-determined bases for estimating requirements. The model's distinct utility rests in offering national-level physician specialty requirements forecasts. Images Figure 1 PMID:9018213

  18. Real-time determination of the worst tsunami scenario based on Earthquake Early Warning

    NASA Astrophysics Data System (ADS)

    Furuya, Takashi; Koshimura, Shunichi; Hino, Ryota; Ohta, Yusaku; Inoue, Takuya

    2016-04-01

    In recent years, real-time tsunami inundation forecasting has been developed with the advances of dense seismic monitoring, GPS Earth observation, offshore tsunami observation networks, and high-performance computing infrastructure (Koshimura et al., 2014). Several uncertainties are involved in tsunami inundation modeling and it is believed that tsunami generation model is one of the great uncertain sources. Uncertain tsunami source model has risk to underestimate tsunami height, extent of inundation zone, and damage. Tsunami source inversion using observed seismic, geodetic and tsunami data is the most effective to avoid underestimation of tsunami, but needs to expect more time to acquire the observed data and this limitation makes difficult to terminate real-time tsunami inundation forecasting within sufficient time. Not waiting for the precise tsunami observation information, but from disaster management point of view, we aim to determine the worst tsunami source scenario, for the use of real-time tsunami inundation forecasting and mapping, using the seismic information of Earthquake Early Warning (EEW) that can be obtained immediately after the event triggered. After an earthquake occurs, JMA's EEW estimates magnitude and hypocenter. With the constraints of earthquake magnitude, hypocenter and scaling law, we determine possible multi tsunami source scenarios and start searching the worst one by the superposition of pre-computed tsunami Green's functions, i.e. time series of tsunami height at offshore points corresponding to 2-dimensional Gaussian unit source, e.g. Tsushima et al., 2014. Scenario analysis of our method consists of following 2 steps. (1) Searching the worst scenario range by calculating 90 scenarios with various strike and fault-position. From maximum tsunami height of 90 scenarios, we determine a narrower strike range which causes high tsunami height in the area of concern. (2) Calculating 900 scenarios that have different strike, dip, length, width, depth and fault-position. Note that strike is limited with the range obtained from 90 scenarios calculation. From 900 scenarios, we determine the worst tsunami scenarios from disaster management point of view, such as the one with shortest travel time and the highest water level. The method was applied to a hypothetical-earthquake, and verified if it can effectively search the worst tsunami source scenario in real-time, to be used as an input of real-time tsunami inundation forecasting.

  19. Integration of Behind-the-Meter PV Fleet Forecasts into Utility Grid System Operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoff, Thomas Hoff; Kankiewicz, Adam

    Four major research objectives were completed over the course of this study. Three of the objectives were to evaluate three, new, state-of-the-art solar irradiance forecasting models. The fourth objective was to improve the California Independent System Operator’s (ISO) load forecasts by integrating behind-the-meter (BTM) PV forecasts. The three, new, state-of-the-art solar irradiance forecasting models included: the infrared (IR) satellite-based cloud motion vector (CMV) model; the WRF-SolarCA model and variants; and the Optimized Deep Machine Learning (ODML)-training model. The first two forecasting models targeted known weaknesses in current operational solar forecasts. They were benchmarked against existing operational numerical weather prediction (NWP)more » forecasts, visible satellite CMV forecasts, and measured PV plant power production. IR CMV, WRF-SolarCA, and ODML-training forecasting models all improved the forecast to a significant degree. Improvements varied depending on time of day, cloudiness index, and geographic location. The fourth objective was to demonstrate that the California ISO’s load forecasts could be improved by integrating BTM PV forecasts. This objective represented the project’s most exciting and applicable gains. Operational BTM forecasts consisting of 200,000+ individual rooftop PV forecasts were delivered into the California ISO’s real-time automated load forecasting (ALFS) environment. They were then evaluated side-by-side with operational load forecasts with no BTM-treatment. Overall, ALFS-BTM day-ahead (DA) forecasts performed better than baseline ALFS forecasts when compared to actual load data. Specifically, ALFS-BTM DA forecasts were observed to have the largest reduction of error during the afternoon on cloudy days. Shorter term 30 minute-ahead ALFS-BTM forecasts were shown to have less error under all sky conditions, especially during the morning time periods when traditional load forecasts often experience their largest uncertainties. This work culminated in a GO decision being made by the California ISO to include zonal BTM forecasts into its operational load forecasting system. The California ISO’s Manager of Short Term Forecasting, Jim Blatchford, summarized the research performed in this project with the following quote: “The behind-the-meter (BTM) California ISO region forecasting research performed by Clean Power Research and sponsored by the Department of Energy’s SUNRISE program was an opportunity to verify value and demonstrate improved load forecast capability. In 2016, the California ISO will be incorporating the BTM forecast into the Hour Ahead and Day Ahead load models to look for improvements in the overall load forecast accuracy as BTM PV capacity continues to grow.”« less

  20. Forecasting of natural gas consumption with neural network and neuro fuzzy system

    NASA Astrophysics Data System (ADS)

    Kaynar, Oguz; Yilmaz, Isik; Demirkoparan, Ferhan

    2010-05-01

    The prediction of natural gas consumption is crucial for Turkey which follows foreign-dependent policy in point of providing natural gas and whose stock capacity is only 5% of internal total consumption. Prediction accuracy of demand is one of the elements which has an influence on sectored investments and agreements about obtaining natural gas, so on development of sector. In recent years, new techniques, such as artificial neural networks and fuzzy inference systems, have been widely used in natural gas consumption prediction in addition to classical time series analysis. In this study, weekly natural gas consumption of Turkey has been predicted by means of three different approaches. The first one is Autoregressive Integrated Moving Average (ARIMA), which is classical time series analysis method. The second approach is the Artificial Neural Network. Two different ANN models, which are Multi Layer Perceptron (MLP) and Radial Basis Function Network (RBFN), are employed to predict natural gas consumption. The last is Adaptive Neuro Fuzzy Inference System (ANFIS), which combines ANN and Fuzzy Inference System. Different prediction models have been constructed and one model, which has the best forecasting performance, is determined for each method. Then predictions are made by using these models and results are compared. Keywords: ANN, ANFIS, ARIMA, Natural Gas, Forecasting

  1. A two-stage method of quantitative flood risk analysis for reservoir real-time operation using ensemble-based hydrologic forecasts

    NASA Astrophysics Data System (ADS)

    Liu, P.

    2013-12-01

    Quantitative analysis of the risk for reservoir real-time operation is a hard task owing to the difficulty of accurate description of inflow uncertainties. The ensemble-based hydrologic forecasts directly depict the inflows not only the marginal distributions but also their persistence via scenarios. This motivates us to analyze the reservoir real-time operating risk with ensemble-based hydrologic forecasts as inputs. A method is developed by using the forecast horizon point to divide the future time into two stages, the forecast lead-time and the unpredicted time. The risk within the forecast lead-time is computed based on counting the failure number of forecast scenarios, and the risk in the unpredicted time is estimated using reservoir routing with the design floods and the reservoir water levels of forecast horizon point. As a result, a two-stage risk analysis method is set up to quantify the entire flood risks by defining the ratio of the number of scenarios that excessive the critical value to the total number of scenarios. The China's Three Gorges Reservoir (TGR) is selected as a case study, where the parameter and precipitation uncertainties are implemented to produce ensemble-based hydrologic forecasts. The Bayesian inference, Markov Chain Monte Carlo, is used to account for the parameter uncertainty. Two reservoir operation schemes, the real operated and scenario optimization, are evaluated for the flood risks and hydropower profits analysis. With the 2010 flood, it is found that the improvement of the hydrologic forecast accuracy is unnecessary to decrease the reservoir real-time operation risk, and most risks are from the forecast lead-time. It is therefore valuable to decrease the avarice of ensemble-based hydrologic forecasts with less bias for a reservoir operational purpose.

  2. Flexible Modeling of Epidemics with an Empirical Bayes Framework

    PubMed Central

    Brooks, Logan C.; Farrow, David C.; Hyun, Sangwon; Tibshirani, Ryan J.; Rosenfeld, Roni

    2015-01-01

    Seasonal influenza epidemics cause consistent, considerable, widespread loss annually in terms of economic burden, morbidity, and mortality. With access to accurate and reliable forecasts of a current or upcoming influenza epidemic’s behavior, policy makers can design and implement more effective countermeasures. This past year, the Centers for Disease Control and Prevention hosted the “Predict the Influenza Season Challenge”, with the task of predicting key epidemiological measures for the 2013–2014 U.S. influenza season with the help of digital surveillance data. We developed a framework for in-season forecasts of epidemics using a semiparametric Empirical Bayes framework, and applied it to predict the weekly percentage of outpatient doctors visits for influenza-like illness, and the season onset, duration, peak time, and peak height, with and without using Google Flu Trends data. Previous work on epidemic modeling has focused on developing mechanistic models of disease behavior and applying time series tools to explain historical data. However, tailoring these models to certain types of surveillance data can be challenging, and overly complex models with many parameters can compromise forecasting ability. Our approach instead produces possibilities for the epidemic curve of the season of interest using modified versions of data from previous seasons, allowing for reasonable variations in the timing, pace, and intensity of the seasonal epidemics, as well as noise in observations. Since the framework does not make strict domain-specific assumptions, it can easily be applied to some other diseases with seasonal epidemics. This method produces a complete posterior distribution over epidemic curves, rather than, for example, solely point predictions of forecasting targets. We report prospective influenza-like-illness forecasts made for the 2013–2014 U.S. influenza season, and compare the framework’s cross-validated prediction error on historical data to that of a variety of simpler baseline predictors. PMID:26317693

  3. Measuring real-time streamflow using emerging technologies: Radar, hydroacoustics, and the probability concept

    NASA Astrophysics Data System (ADS)

    Fulton, John; Ostrowski, Joseph

    2008-07-01

    SummaryForecasting streamflow during extreme hydrologic events such as floods can be problematic. This is particularly true when flow is unsteady, and river forecasts rely on models that require uniform-flow rating curves to route water from one forecast point to another. As a result, alternative methods for measuring streamflow are needed to properly route flood waves and account for inertial and pressure forces in natural channels dominated by nonuniform-flow conditions such as mild water surface slopes, backwater, tributary inflows, and reservoir operations. The objective of the demonstration was to use emerging technologies to measure instantaneous streamflow in open channels at two existing US Geological Survey streamflow-gaging stations in Pennsylvania. Surface-water and instream-point velocities were measured using hand-held radar and hydroacoustics. Streamflow was computed using the probability concept, which requires velocity data from a single vertical containing the maximum instream velocity. The percent difference in streamflow at the Susquehanna River at Bloomsburg, PA ranged from 0% to 8% with an average difference of 4% and standard deviation of 8.81 m 3/s. The percent difference in streamflow at Chartiers Creek at Carnegie, PA ranged from 0% to 11% with an average difference of 5% and standard deviation of 0.28 m 3/s. New generation equipment is being tested and developed to advance the use of radar-derived surface-water velocity and instantaneous streamflow to facilitate the collection and transmission of real-time streamflow that can be used to parameterize hydraulic routing models.

  4. Measuring real-time streamflow using emerging technologies: Radar, hydroacoustics, and the probability concept

    USGS Publications Warehouse

    Fulton, J.; Ostrowski, J.

    2008-01-01

    Forecasting streamflow during extreme hydrologic events such as floods can be problematic. This is particularly true when flow is unsteady, and river forecasts rely on models that require uniform-flow rating curves to route water from one forecast point to another. As a result, alternative methods for measuring streamflow are needed to properly route flood waves and account for inertial and pressure forces in natural channels dominated by nonuniform-flow conditions such as mild water surface slopes, backwater, tributary inflows, and reservoir operations. The objective of the demonstration was to use emerging technologies to measure instantaneous streamflow in open channels at two existing US Geological Survey streamflow-gaging stations in Pennsylvania. Surface-water and instream-point velocities were measured using hand-held radar and hydroacoustics. Streamflow was computed using the probability concept, which requires velocity data from a single vertical containing the maximum instream velocity. The percent difference in streamflow at the Susquehanna River at Bloomsburg, PA ranged from 0% to 8% with an average difference of 4% and standard deviation of 8.81 m3/s. The percent difference in streamflow at Chartiers Creek at Carnegie, PA ranged from 0% to 11% with an average difference of 5% and standard deviation of 0.28 m3/s. New generation equipment is being tested and developed to advance the use of radar-derived surface-water velocity and instantaneous streamflow to facilitate the collection and transmission of real-time streamflow that can be used to parameterize hydraulic routing models.

  5. A novel visualisation tool for climate services: a case study of temperature extremes and human mortality in Europe

    NASA Astrophysics Data System (ADS)

    Lowe, R.; Ballester, J.; Robine, J.; Herrmann, F. R.; Jupp, T. E.; Stephenson, D.; Rodó, X.

    2013-12-01

    Users of climate information often require probabilistic information on which to base their decisions. However, communicating information contained within a probabilistic forecast presents a challenge. In this paper we demonstrate a novel visualisation technique to display ternary probabilistic forecasts on a map in order to inform decision making. In this method, ternary probabilistic forecasts, which assign probabilities to a set of three outcomes (e.g. low, medium, and high risk), are considered as a point in a triangle of barycentric coordinates. This allows a unique colour to be assigned to each forecast from a continuum of colours defined on the triangle. Colour saturation increases with information gain relative to the reference forecast (i.e. the long term average). This provides additional information to decision makers compared with conventional methods used in seasonal climate forecasting, where one colour is used to represent one forecast category on a forecast map (e.g. red = ';dry'). We use the tool to present climate-related mortality projections across Europe. Temperature and humidity are related to human mortality via location-specific transfer functions, calculated using historical data. Daily mortality data at the NUTS2 level for 16 countries in Europe were obtain from 1998-2005. Transfer functions were calculated for 54 aggregations in Europe, defined using criteria related to population and climatological similarities. Aggregations are restricted to fall within political boundaries to avoid problems related to varying adaptation policies between countries. A statistical model is fit to cold and warm tails to estimate future mortality using forecast temperatures, in a Bayesian probabilistic framework. Using predefined categories of temperature-related mortality risk, we present maps of probabilistic projections for human mortality at seasonal to decadal time scales. We demonstrate the information gained from using this technique compared to more traditional methods to display ternary probabilistic forecasts. This technique allows decision makers to identify areas where the model predicts with certainty area-specific heat waves or cold snaps, in order to effectively target resources to those areas most at risk, for a given season or year. It is hoped that this visualisation tool will facilitate the interpretation of the probabilistic forecasts not only for public health decision makers but also within a multi-sectoral climate service framework.

  6. Validation of community models: 3. Tracing field lines in heliospheric models

    NASA Astrophysics Data System (ADS)

    MacNeice, Peter; Elliott, Brian; Acebal, Ariel

    2011-10-01

    Forecasting hazardous gradual solar energetic particle (SEP) bursts at Earth requires accurately modeling field line connections between Earth and the locations of coronal or interplanetary shocks that accelerate the particles. We test the accuracy of field lines reconstructed using four different models of the ambient coronal and inner heliospheric magnetic field, through which these shocks must propagate, including the coupled Wang-Sheeley-Arge (WSA)/ENLIL model. Evaluating the WSA/ENLIL model performance is important since it is the most sophisticated model currently available to space weather forecasters which can model interplanetary coronal mass ejections and, when coupled with particle acceleration and transport models, will provide a complete model for gradual SEP bursts. Previous studies using a simpler Archimedean spiral approach above 2.5 solar radii have reported poor performance. We test the accuracy of the model field lines connecting Earth to the Sun at the onset times of 15 impulsive SEP bursts, comparing the foot points of these field lines with the locations of surface events believed to be responsible for the SEP bursts. We find the WSA/ENLIL model performance is no better than the simplest spiral model, and the principal source of error is the model's inability to reproduce sufficient low-latitude open flux. This may be due to the model's use of static synoptic magnetograms, which fail to account for transient activity in the low corona, during which reconnection events believed to initiate the SEP acceleration may contribute short-lived open flux at low latitudes. Time-dependent coronal models incorporating these transient events may be needed to significantly improve Earth/Sun field line forecasting.

  7. Probabilistic precipitation nowcasting based on an extrapolation of radar reflectivity and an ensemble approach

    NASA Astrophysics Data System (ADS)

    Sokol, Zbyněk; Mejsnar, Jan; Pop, Lukáš; Bližňák, Vojtěch

    2017-09-01

    A new method for the probabilistic nowcasting of instantaneous rain rates (ENS) based on the ensemble technique and extrapolation along Lagrangian trajectories of current radar reflectivity is presented. Assuming inaccurate forecasts of the trajectories, an ensemble of precipitation forecasts is calculated and used to estimate the probability that rain rates will exceed a given threshold in a given grid point. Although the extrapolation neglects the growth and decay of precipitation, their impact on the probability forecast is taken into account by the calibration of forecasts using the reliability component of the Brier score (BS). ENS forecasts the probability that the rain rates will exceed thresholds of 0.1, 1.0 and 3.0 mm/h in squares of 3 km by 3 km. The lead times were up to 60 min, and the forecast accuracy was measured by the BS. The ENS forecasts were compared with two other methods: combined method (COM) and neighbourhood method (NEI). NEI considered the extrapolated values in the square neighbourhood of 5 by 5 grid points of the point of interest as ensemble members, and the COM ensemble was comprised of united ensemble members of ENS and NEI. The results showed that the calibration technique significantly improves bias of the probability forecasts by including additional uncertainties that correspond to neglected processes during the extrapolation. In addition, the calibration can also be used for finding the limits of maximum lead times for which the forecasting method is useful. We found that ENS is useful for lead times up to 60 min for thresholds of 0.1 and 1 mm/h and approximately 30 to 40 min for a threshold of 3 mm/h. We also found that a reasonable size of the ensemble is 100 members, which provided better scores than ensembles with 10, 25 and 50 members. In terms of the BS, the best results were obtained by ENS and COM, which are comparable. However, ENS is better calibrated and thus preferable.

  8. The quiet revolution: continuous glider monitoring at ocean 'choke' points as a key component of new cross-platform ocean observation systems

    NASA Astrophysics Data System (ADS)

    Heslop, E. E.; Tintore, J.; Ruiz, S.; Allen, J.; López-Jurado, J. L.

    2014-12-01

    A quiet revolution is taking place in ocean observations; in the last decade new multi-platform, integrated ocean observatories have been progressively implemented by forward looking countries with ocean borders of economic and strategic importance. These systems are designed to fill significant gaps in our knowledge of the ocean state and ocean variability, through long-term, science and society-led, ocean monitoring. These ocean observatories are now delivering results, not the headline results of a single issue experiment, but carefully and systematically improving our knowledge of ocean variability, and thereby, increasing model forecast skill and our ability to link physical processes to ecosystem response. Here we present the results from a 3-year quasi-continuous glider monitoring of a key circulation 'choke' point in the Western Mediterranean, undertaken by SOCIB (Balearic Islands Coastal Ocean Observing and Forecasting System). For the first time data from the high frequency glider sampling show variations in the transport volumes of water over timescales of days to weeks, as large as those previously only identifiable as seasonal or eddy driven. Although previous surveys noted high cruise-to-cruise variability, they were insufficient to show that in fact water volumes exchanged through this narrow 'choke' point fluctuate on 'weather' timescales. Using the glider data to leverage an 18-year record of ship missions, we define new seasonal cycles for the exchange of watermasses, challenging generally held assumptions. The pattern of the exchange is further simplified through the characterisation of 5 circulation modes and the defining of a new seasonal cycle for the interplay between mesoscale and basin scale dynamics. Restricted 'choke points' between our ocean basins are critical locations to monitor water transport variability, as they constrain the inter-basin exchange of heat, salt and nutrients. At the Ibiza Channel 'choke' point, the exchange of watermass is known to affect local ecosystems, including the spawning grounds of commercially important fish stocks, at a biodiversity hotspot. This new insight will be vital in improving our ocean model forecast skill and in the development of integrated ocean products for society.

  9. Shared Investment Projects and Forecasting Errors: Setting Framework Conditions for Coordination and Sequencing Data Quality Activities

    PubMed Central

    Leitner, Stephan; Brauneis, Alexander; Rausch, Alexandra

    2015-01-01

    In this paper, we investigate the impact of inaccurate forecasting on the coordination of distributed investment decisions. In particular, by setting up a computational multi-agent model of a stylized firm, we investigate the case of investment opportunities that are mutually carried out by organizational departments. The forecasts of concern pertain to the initial amount of money necessary to launch and operate an investment opportunity, to the expected intertemporal distribution of cash flows, and the departments’ efficiency in operating the investment opportunity at hand. We propose a budget allocation mechanism for coordinating such distributed decisions The paper provides guidance on how to set framework conditions, in terms of the number of investment opportunities considered in one round of funding and the number of departments operating one investment opportunity, so that the coordination mechanism is highly robust to forecasting errors. Furthermore, we show that—in some setups—a certain extent of misforecasting is desirable from the firm’s point of view as it supports the achievement of the corporate objective of value maximization. We then address the question of how to improve forecasting quality in the best possible way, and provide policy advice on how to sequence activities for improving forecasting quality so that the robustness of the coordination mechanism to errors increases in the best possible way. At the same time, we show that wrong decisions regarding the sequencing can lead to a decrease in robustness. Finally, we conduct a comprehensive sensitivity analysis and prove that—in particular for relatively good forecasters—most of our results are robust to changes in setting the parameters of our multi-agent simulation model. PMID:25803736

  10. Forecasting biodiversity in breeding birds using best practices

    PubMed Central

    Taylor, Shawn D.; White, Ethan P.

    2018-01-01

    Biodiversity forecasts are important for conservation, management, and evaluating how well current models characterize natural systems. While the number of forecasts for biodiversity is increasing, there is little information available on how well these forecasts work. Most biodiversity forecasts are not evaluated to determine how well they predict future diversity, fail to account for uncertainty, and do not use time-series data that captures the actual dynamics being studied. We addressed these limitations by using best practices to explore our ability to forecast the species richness of breeding birds in North America. We used hindcasting to evaluate six different modeling approaches for predicting richness. Hindcasts for each method were evaluated annually for a decade at 1,237 sites distributed throughout the continental United States. All models explained more than 50% of the variance in richness, but none of them consistently outperformed a baseline model that predicted constant richness at each site. The best practices implemented in this study directly influenced the forecasts and evaluations. Stacked species distribution models and “naive” forecasts produced poor estimates of uncertainty and accounting for this resulted in these models dropping in the relative performance compared to other models. Accounting for observer effects improved model performance overall, but also changed the rank ordering of models because it did not improve the accuracy of the “naive” model. Considering the forecast horizon revealed that the prediction accuracy decreased across all models as the time horizon of the forecast increased. To facilitate the rapid improvement of biodiversity forecasts, we emphasize the value of specific best practices in making forecasts and evaluating forecasting methods. PMID:29441230

  11. Climatological Observations for Maritime Prediction and Analysis Support Service (COMPASS)

    NASA Astrophysics Data System (ADS)

    OConnor, A.; Kirtman, B. P.; Harrison, S.; Gorman, J.

    2016-02-01

    Current US Navy forecasting systems cannot easily incorporate extended-range forecasts that can improve mission readiness and effectiveness; ensure safety; and reduce cost, labor, and resource requirements. If Navy operational planners had systems that incorporated these forecasts, they could plan missions using more reliable and longer-term weather and climate predictions. Further, using multi-model forecast ensembles instead of single forecasts would produce higher predictive performance. Extended-range multi-model forecast ensembles, such as those available in the North American Multi-Model Ensemble (NMME), are ideal for system integration because of their high skill predictions; however, even higher skill predictions can be produced if forecast model ensembles are combined correctly. While many methods for weighting models exist, the best method in a given environment requires expert knowledge of the models and combination methods.We present an innovative approach that uses machine learning to combine extended-range predictions from multi-model forecast ensembles and generate a probabilistic forecast for any region of the globe up to 12 months in advance. Our machine-learning approach uses 30 years of hindcast predictions to learn patterns of forecast model successes and failures. Each model is assigned a weight for each environmental condition, 100 km2 region, and day given any expected environmental information. These weights are then applied to the respective predictions for the region and time of interest to effectively stitch together a single, coherent probabilistic forecast. Our experimental results demonstrate the benefits of our approach to produce extended-range probabilistic forecasts for regions and time periods of interest that are superior, in terms of skill, to individual NMME forecast models and commonly weighted models. The probabilistic forecast leverages the strengths of three NMME forecast models to predict environmental conditions for an area spanning from San Diego, CA to Honolulu, HI, seven months in-advance. Key findings include: weighted combinations of models are strictly better than individual models; machine-learned combinations are especially better; and forecasts produced using our approach have the highest rank probability skill score most often.

  12. Using FOSM-Based Data Worth Analyses to Design Geophysical Surveys to Reduce Uncertainty in a Regional Groundwater Model Update

    NASA Astrophysics Data System (ADS)

    Smith, B. D.; White, J.; Kress, W. H.; Clark, B. R.; Barlow, J.

    2016-12-01

    Hydrogeophysical surveys have become an integral part of understanding hydrogeological frameworks used in groundwater models. Regional models cover a large area where water well data is, at best, scattered and irregular. Since budgets are finite, priorities must be assigned to select optimal areas for geophysical surveys. For airborne electromagnetic (AEM) geophysical surveys, optimization of mapping depth and line spacing needs to take in account the objectives of the groundwater models. The approach discussed here uses a first-order, second-moment (FOSM) uncertainty analyses which assumes an approximate linear relation between model parameters and observations. This assumption allows FOSM analyses to be applied to estimate the value of increased parameter knowledge to reduce forecast uncertainty. FOSM is used to facilitate optimization of yet-to-be-completed geophysical surveying to reduce model forecast uncertainty. The main objective of geophysical surveying is assumed to estimate values and spatial variation in hydrologic parameters (i.e. hydraulic conductivity) as well as map lower permeability layers that influence the spatial distribution of recharge flux. The proposed data worth analysis was applied to Mississippi Embayment Regional Aquifer Study (MERAS) which is being updated. The objective of MERAS is to assess the ground-water availability (status and trends) of the Mississippi embayment aquifer system. The study area covers portions of eight states including Alabama, Arkansas, Illinois, Kentucky, Louisiana, Mississippi, Missouri, and Tennessee. The active model grid covers approximately 70,000 square miles, and incorporates some 6,000 miles of major rivers and over 100,000 water wells. In the FOSM analysis, a dense network of pilot points was used to capture uncertainty in hydraulic conductivity and recharge. To simulate the effect of AEM flight lines, the prior uncertainty for hydraulic conductivity and recharge pilots along potential flight lines was reduced. The FOSM forecast uncertainty estimates were then recalculated and compared to the base forecast uncertainty estimates. The resulting reduction in forecast uncertainty is a measure of the effect on the model from the AEM survey. Iterations through this process, results in optimization of flight line location.

  13. Toward improving hurricane forecasts using the JPL Tropical Cyclone Information System (TCIS): A framework to address the issues of Big Data

    NASA Astrophysics Data System (ADS)

    Hristova-Veleva, S. M.; Boothe, M.; Gopalakrishnan, S.; Haddad, Z. S.; Knosp, B.; Lambrigtsen, B.; Li, P.; montgomery, M. T.; Niamsuwan, N.; Tallapragada, V. S.; Tanelli, S.; Turk, J.; Vukicevic, T.

    2013-12-01

    Accurate forecasting of extreme weather requires the use of both regional models as well as global General Circulation Models (GCMs). The regional models have higher resolution and more accurate physics - two critical components needed for properly representing the key convective processes. GCMs, on the other hand, have better depiction of the large-scale environment and, thus, are necessary for properly capturing the important scale interactions. But how to evaluate the models, understand their shortcomings and improve them? Satellite observations can provide invaluable information. And this is where the issues of Big Data come: satellite observations are very complex and have large variety while model forecast are very voluminous. We are developing a system - TCIS - that addresses the issues of model evaluation and process understanding with the goal of improving the accuracy of hurricane forecasts. This NASA/ESTO/AIST-funded project aims at bringing satellite/airborne observations and model forecasts into a common system and developing on-line tools for joint analysis. To properly evaluate the models we go beyond the comparison of the geophysical fields. We input the model fields into instrument simulators (NEOS3, CRTM, etc.) and compute synthetic observations for a more direct comparison to the observed parameters. In this presentation we will start by describing the scientific questions. We will then outline our current framework to provide fusion of models and observations. Next, we will illustrate how the system can be used to evaluate several models (HWRF, GFS, ECMWF) by applying a couple of our analysis tools to several hurricanes observed during the 2013 season. Finally, we will outline our future plans. Our goal is to go beyond the image comparison and point-by-point statistics, by focusing instead on understanding multi-parameter correlations and providing robust statistics. By developing on-line analysis tools, our framework will allow for consistent model evaluation, providing results that are much more robust than those produced by case studies - the current paradigm imposed by the Big Data issues (voluminous data and incompatible analysis tools). We believe that this collaborative approach, with contributions of models, observations and analysis approaches used by the research and operational communities, will help untangle the complex interactions that lead to hurricane genesis and rapid intensity changes - two processes that still pose many unanswered questions. The developed framework for evaluation of the global models will also have implications for the improvement of the climate models, which output only a limited amount of information making it difficult to evaluate them. Our TCIS will help by investigating the GCMs under current weather scenarios and with much more detailed model output, making it possible to compare the models to multiple observed parameters to help narrow down the uncertainty in their performance. This knowledge could then be transferred to the climate models to lower the uncertainty in their predictions. The work described here was performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

  14. Forecasting methodologies for Ganoderma spore concentration using combined statistical approaches and model evaluations

    NASA Astrophysics Data System (ADS)

    Sadyś, Magdalena; Skjøth, Carsten Ambelas; Kennedy, Roy

    2016-04-01

    High concentration levels of Ganoderma spp. spores were observed in Worcester, UK, during 2006-2010. These basidiospores are known to cause sensitization due to the allergen content and their small dimensions. This enables them to penetrate the lower part of the respiratory tract in humans. Establishment of a link between occurring symptoms of sensitization to Ganoderma spp. and other basidiospores is challenging due to lack of information regarding spore concentration in the air. Hence, aerobiological monitoring should be conducted, and if possible extended with the construction of forecast models. Daily mean concentration of allergenic Ganoderma spp. spores in the atmosphere of Worcester was measured using 7-day volumetric spore sampler through five consecutive years. The relationships between the presence of spores in the air and the weather parameters were examined. Forecast models were constructed for Ganoderma spp. spores using advanced statistical techniques, i.e. multivariate regression trees and artificial neural networks. Dew point temperature along with maximum temperature was the most important factor influencing the presence of spores in the air of Worcester. Based on these two major factors and several others of lesser importance, thresholds for certain levels of fungal spore concentration, i.e. low (0-49 s m-3), moderate (50-99 s m-3), high (100-149 s m-3) and very high (150 < n s m-3), could be designated. Despite some deviation in results obtained by artificial neural networks, authors have achieved a forecasting model, which was accurate (correlation between observed and predicted values varied from r s = 0.57 to r s = 0.68).

  15. Forecasting methodologies for Ganoderma spore concentration using combined statistical approaches and model evaluations.

    PubMed

    Sadyś, Magdalena; Skjøth, Carsten Ambelas; Kennedy, Roy

    2016-04-01

    High concentration levels of Ganoderma spp. spores were observed in Worcester, UK, during 2006-2010. These basidiospores are known to cause sensitization due to the allergen content and their small dimensions. This enables them to penetrate the lower part of the respiratory tract in humans. Establishment of a link between occurring symptoms of sensitization to Ganoderma spp. and other basidiospores is challenging due to lack of information regarding spore concentration in the air. Hence, aerobiological monitoring should be conducted, and if possible extended with the construction of forecast models. Daily mean concentration of allergenic Ganoderma spp. spores in the atmosphere of Worcester was measured using 7-day volumetric spore sampler through five consecutive years. The relationships between the presence of spores in the air and the weather parameters were examined. Forecast models were constructed for Ganoderma spp. spores using advanced statistical techniques, i.e. multivariate regression trees and artificial neural networks. Dew point temperature along with maximum temperature was the most important factor influencing the presence of spores in the air of Worcester. Based on these two major factors and several others of lesser importance, thresholds for certain levels of fungal spore concentration, i.e. low (0-49 s m(-3)), moderate (50-99 s m(-3)), high (100-149 s m(-3)) and very high (150 < n s m(-3)), could be designated. Despite some deviation in results obtained by artificial neural networks, authors have achieved a forecasting model, which was accurate (correlation between observed and predicted values varied from r s = 0.57 to r s = 0.68).

  16. [Prediction model of meteorological grade of wheat stripe rust in winter-reproductive area, Sichuan Basin, China].

    PubMed

    Guo, Xiang; Wang, Ming Tian; Zhang, Guo Zhi

    2017-12-01

    The winter reproductive areas of Puccinia striiformis var. striiformis in Sichuan Basin are often the places mostly affected by wheat stripe rust. With data on the meteorological condition and stripe rust situation at typical stations in the winter reproductive area in Sichuan Basin from 1999 to 2016, this paper classified the meteorological conditions inducing wheat stripe rust into 5 grades, based on the incidence area ratio of the disease. The meteorological factors which were biologically related to wheat stripe rust were determined through multiple analytical methods, and a meteorological grade model for forecasting wheat stripe rust was created. The result showed that wheat stripe rust in Sichuan Basin was significantly correlated with many meteorological factors, such as the ave-rage (maximum and minimum) temperature, precipitation and its anomaly percentage, relative humidity and its anomaly percentage, average wind speed and sunshine duration. Among these, the average temperature and the anomaly percentage of relative humidity were the determining factors. According to a historical retrospective test, the accuracy of the forecast based on the model was 64% for samples in the county-level test, and 89% for samples in the municipal-level test. In a meteorological grade forecast of wheat stripe rust in the winter reproductive areas in Sichuan Basin in 2017, the prediction was accurate for 62.8% of the samples, with 27.9% error by one grade and only 9.3% error by two or more grades. As a result, the model could deliver satisfactory forecast results, and predicate future wheat stripe rust from a meteorological point of view.

  17. Analysis of mesoscale factors at the onset of deep convection on hailstorm days in Southern France and their relation to the synoptic patterns

    NASA Astrophysics Data System (ADS)

    Sanchez, Jose Luis; Wu, Xueke; Gascón, Estibaliz; López, Laura; Melcón, Pablo; García-Ortega, Eduardo; Berthet, Claude; Dessens, Jean; Merino, Andrés

    2013-04-01

    Storms and the weather phenomena associated to intense precipitation, lightning, strong winds or hail, are among the most common and dangerous weather risks in many European countries. To get a reliable forecast of their occurrence is remaining an open problem. The question is: how is possible to improve the reliability of forecast? Southwestern France is frequently affected by hailstorms, producing severe damages on crops and properties. Considerable efforts were made to improve the forecast of hailfall in this area. First of all, if we want to improve this type of forecast, it is necessary to have a good "ground truth" of the hail days and zones affected by hailfall. Fortunately, ANELFA has deployed thousands of hailpad stations in Southern France. The ANELFA processed the point hailfall data recorded during each hail season at these stations. The focus of this paper presents a methodology to improve the forecast of the occurrence of hailfall according to the synoptic environment and mesoscale factors in the study area. One hundred of hail days were selected, following spatial and severity criteria, occurred in the period 2000-2010. The mesoscale model WRF was applied for all cases to study the synoptic environment of mean geopotential and temperature fields at 500 hPa. Three nested domains have been defined following a two-way nesting strategy, with a horizontal spatial resolution of 36, 12 and 4 km, and 30 vertical terrains— following σ-levels. Then, using the Principal Component Analysis in T-Mode, 4 mesoscale configurations were defined for the fields of convective instability (CI), water vapor flux divergence and wind flow and humidity at low layer (850hPa), and several clusters were classified followed by using the K-means Clustering. Finally, we calculated several characteristic values of four hail forecast parameters: Convective Available Potential Energy (CAPE), Storm Relative Helicity between 0 and 3 km (SRH0-3), Energy-Helicity Index (EHI) and Showalter Index (SI) provided by WRF simulations for each hail grid point, which is very conducive to predicting the occurrence of hail in each one of the mesoscale configurations. This mesoscale analysis and its relation to the synoptic anomalies is discussed and the contribution to improve the numerical model applied to the forecast of hailfall in this area. Acknowledgments: This study was supported by the Plan Nacional de I+D of Spain, through the grants CGL2010-15930, Micrometeo IPT-310000-2010-022 and the Junta de Castilla y León through the grant LE220A11-2

  18. HESS Opinions "On forecast (in)consistency in a hydro-meteorological chain: curse or blessing?"

    NASA Astrophysics Data System (ADS)

    Pappenberger, F.; Cloke, H. L.; Persson, A.; Demeritt, D.

    2011-07-01

    Flood forecasting increasingly relies on numerical weather prediction forecasts to achieve longer lead times. One of the key difficulties that is emerging in constructing a decision framework for these flood forecasts is what to dowhen consecutive forecasts are so different that they lead to different conclusions regarding the issuing of warnings or triggering other action. In this opinion paper we explore some of the issues surrounding such forecast inconsistency (also known as "Jumpiness", "Turning points", "Continuity" or number of "Swings"). In thsi opinion paper we define forecast inconsistency; discuss the reasons why forecasts might be inconsistent; how we should analyse inconsistency; and what we should do about it; how we should communicate it and whether it is a totally undesirable property. The property of consistency is increasingly emerging as a hot topic in many forecasting environments.

  19. Fixed points, stable manifolds, weather regimes, and their predictability.

    PubMed

    Deremble, Bruno; D'Andrea, Fabio; Ghil, Michael

    2009-12-01

    In a simple, one-layer atmospheric model, we study the links between low-frequency variability and the model's fixed points in phase space. The model dynamics is characterized by the coexistence of multiple "weather regimes." To investigate the transitions from one regime to another, we focus on the identification of stable manifolds associated with fixed points. We show that these manifolds act as separatrices between regimes. We track each manifold by making use of two local predictability measures arising from the meteorological applications of nonlinear dynamics, namely, "bred vectors" and singular vectors. These results are then verified in the framework of ensemble forecasts issued from "clouds" (ensembles) of initial states. The divergence of the trajectories allows us to establish the connections between zones of low predictability, the geometry of the stable manifolds, and transitions between regimes.

  20. Software forecasting as it is really done: A study of JPL software engineers

    NASA Technical Reports Server (NTRS)

    Griesel, Martha Ann; Hihn, Jairus M.; Bruno, Kristin J.; Fouser, Thomas J.; Tausworthe, Robert C.

    1993-01-01

    This paper presents a summary of the results to date of a Jet Propulsion Laboratory internally funded research task to study the costing process and parameters used by internally recognized software cost estimating experts. Protocol Analysis and Markov process modeling were used to capture software engineer's forecasting mental models. While there is significant variation between the mental models that were studied, it was nevertheless possible to identify a core set of cost forecasting activities, and it was also found that the mental models cluster around three forecasting techniques. Further partitioning of the mental models revealed clustering of activities, that is very suggestive of a forecasting lifecycle. The different forecasting methods identified were based on the use of multiple-decomposition steps or multiple forecasting steps. The multiple forecasting steps involved either forecasting software size or an additional effort forecast. Virtually no subject used risk reduction steps in combination. The results of the analysis include: the identification of a core set of well defined costing activities, a proposed software forecasting life cycle, and the identification of several basic software forecasting mental models. The paper concludes with a discussion of the implications of the results for current individual and institutional practices.

  1. Counteracting structural errors in ensemble forecast of influenza outbreaks.

    PubMed

    Pei, Sen; Shaman, Jeffrey

    2017-10-13

    For influenza forecasts generated using dynamical models, forecast inaccuracy is partly attributable to the nonlinear growth of error. As a consequence, quantification of the nonlinear error structure in current forecast models is needed so that this growth can be corrected and forecast skill improved. Here, we inspect the error growth of a compartmental influenza model and find that a robust error structure arises naturally from the nonlinear model dynamics. By counteracting these structural errors, diagnosed using error breeding, we develop a new forecast approach that combines dynamical error correction and statistical filtering techniques. In retrospective forecasts of historical influenza outbreaks for 95 US cities from 2003 to 2014, overall forecast accuracy for outbreak peak timing, peak intensity and attack rate, are substantially improved for predicted lead times up to 10 weeks. This error growth correction method can be generalized to improve the forecast accuracy of other infectious disease dynamical models.Inaccuracy of influenza forecasts based on dynamical models is partly due to nonlinear error growth. Here the authors address the error structure of a compartmental influenza model, and develop a new improved forecast approach combining dynamical error correction and statistical filtering techniques.

  2. Observing terrestrial ecosystems and the carbon cycle from space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schimel, David; Pavlick, Ryan; Fisher, Joshua B.

    2015-02-06

    Modeled terrestrial ecosystem and carbon cycle feedbacks contribute substantial uncertainty to projections of future climate. The limitations of current observing networks contribute to this uncertainty. Here we present a current climatology of global model predictions and observations for photosynthesis, biomass, plant diversity and plant functional diversity. Carbon cycle tipping points occur in terrestrial regions where fluxes or stocks are largest, and where biological variability is highest, the tropics and Arctic/Boreal zones. Global observations are predominately in the mid-latitudes and are sparse in high and low latitude ecosystems. Observing and forecasting ecosystem change requires sustained observations of sufficient density in timemore » and space in critical regions. Using data and theory available now, we can develop a strategy to detect and forecast terrestrial carbon cycle-climate interactions, by combining in situ and remote techniques.« less

  3. Adaptive time-variant models for fuzzy-time-series forecasting.

    PubMed

    Wong, Wai-Keung; Bai, Enjian; Chu, Alice Wai-Ching

    2010-12-01

    A fuzzy time series has been applied to the prediction of enrollment, temperature, stock indices, and other domains. Related studies mainly focus on three factors, namely, the partition of discourse, the content of forecasting rules, and the methods of defuzzification, all of which greatly influence the prediction accuracy of forecasting models. These studies use fixed analysis window sizes for forecasting. In this paper, an adaptive time-variant fuzzy-time-series forecasting model (ATVF) is proposed to improve forecasting accuracy. The proposed model automatically adapts the analysis window size of fuzzy time series based on the prediction accuracy in the training phase and uses heuristic rules to generate forecasting values in the testing phase. The performance of the ATVF model is tested using both simulated and actual time series including the enrollments at the University of Alabama, Tuscaloosa, and the Taiwan Stock Exchange Capitalization Weighted Stock Index (TAIEX). The experiment results show that the proposed ATVF model achieves a significant improvement in forecasting accuracy as compared to other fuzzy-time-series forecasting models.

  4. Two approaches to forecast Ebola synthetic epidemics.

    PubMed

    Champredon, David; Li, Michael; Bolker, Benjamin M; Dushoff, Jonathan

    2018-03-01

    We use two modelling approaches to forecast synthetic Ebola epidemics in the context of the RAPIDD Ebola Forecasting Challenge. The first approach is a standard stochastic compartmental model that aims to forecast incidence, hospitalization and deaths among both the general population and health care workers. The second is a model based on the renewal equation with latent variables that forecasts incidence in the whole population only. We describe fitting and forecasting procedures for each model and discuss their advantages and drawbacks. We did not find that one model was consistently better in forecasting than the other. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  5. Streamflow forecasts from WRF precipitation for flood early warning in mountain tropical areas

    NASA Astrophysics Data System (ADS)

    Rogelis, María Carolina; Werner, Micha

    2018-02-01

    Numerical weather prediction (NWP) models are fundamental to extend forecast lead times beyond the concentration time of a watershed. Particularly for flash flood forecasting in tropical mountainous watersheds, forecast precipitation is required to provide timely warnings. This paper aims to assess the potential of NWP for flood early warning purposes, and the possible improvement that bias correction can provide, in a tropical mountainous area. The paper focuses on the comparison of streamflows obtained from the post-processed precipitation forecasts, particularly the comparison of ensemble forecasts and their potential in providing skilful flood forecasts. The Weather Research and Forecasting (WRF) model is used to produce precipitation forecasts that are post-processed and used to drive a hydrologic model. Discharge forecasts obtained from the hydrological model are used to assess the skill of the WRF model. The results show that post-processed WRF precipitation adds value to the flood early warning system when compared to zero-precipitation forecasts, although the precipitation forecast used in this analysis showed little added value when compared to climatology. However, the reduction of biases obtained from the post-processed ensembles show the potential of this method and model to provide usable precipitation forecasts in tropical mountainous watersheds. The need for more detailed evaluation of the WRF model in the study area is highlighted, particularly the identification of the most suitable parameterisation, due to the inability of the model to adequately represent the convective precipitation found in the study area.

  6. A Local Forecast of Land Surface Wetness Conditions, Drought, and St. Louis Encephalitis Virus Transmission Derived from Seasonal Climate Predictions

    NASA Astrophysics Data System (ADS)

    Shaman, J.; Stieglitz, M.; Zebiak, S.; Cane, M.; Day, J. F.

    2002-12-01

    We present an ensemble local hydrologic forecast derived from the seasonal forecasts of the International Research Institute (IRI) for Climate Prediction. Three- month seasonal forecasts were used to resample historical meteorological conditions and generate ensemble forcing datasets for a TOPMODEL-based hydrology model. Eleven retrospective forecasts were run at a Florida and New York site. Forecast skill was assessed for mean area modeled water table depth (WTD), i.e. near surface soil wetness conditions, and compared with WTD simulated with observed data. Hydrology model forecast skill was evident at the Florida site but not at the New York site. At the Florida site, persistence of hydrologic conditions and local skill of the IRI seasonal forecast contributed to the local hydrologic forecast skill. This forecast will permit probabilistic prediction of future hydrologic conditions. At the Florida site, we have also quantified the link between modeled WTD (i.e. drought) and the amplification and transmission of St. Louis Encephalitis virus (SLEV). We derive an empirical relationship between modeled land surface wetness and levels of SLEV transmission associated with human clinical cases. We then combine the seasonal forecasts of local, modeled WTD with this empirical relationship and produce retrospective probabilistic seasonal forecasts of epidemic SLEV transmission in Florida. Epidemic SLEV transmission forecast skill is demonstrated. These findings will permit real-time forecast of drought and resultant SLEV transmission in Florida.

  7. ON THE IMPACT OF SUPER RESOLUTION WSR-88D DOPPLER RADAR DATA ASSIMILATION ON HIGH RESOLUTION NUMERICAL MODEL FORECASTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiswell, S

    2009-01-11

    Assimilation of radar velocity and precipitation fields into high-resolution model simulations can improve precipitation forecasts with decreased 'spin-up' time and improve short-term simulation of boundary layer winds (Benjamin, 2004 & 2007; Xiao, 2008) which is critical to improving plume transport forecasts. Accurate description of wind and turbulence fields is essential to useful atmospheric transport and dispersion results, and any improvement in the accuracy of these fields will make consequence assessment more valuable during both routine operation as well as potential emergency situations. During 2008, the United States National Weather Service (NWS) radars implemented a significant upgrade which increased the real-timemore » level II data resolution to 8 times their previous 'legacy' resolution, from 1 km range gate and 1.0 degree azimuthal resolution to 'super resolution' 250 m range gate and 0.5 degree azimuthal resolution (Fig 1). These radar observations provide reflectivity, velocity and returned power spectra measurements at a range of up to 300 km (460 km for reflectivity) at a frequency of 4-5 minutes and yield up to 13.5 million point observations per level in super-resolution mode. The migration of National Weather Service (NWS) WSR-88D radars to super resolution is expected to improve warning lead times by detecting small scale features sooner with increased reliability; however, current operational mesoscale model domains utilize grid spacing several times larger than the legacy data resolution, and therefore the added resolution of radar data is not fully exploited. The assimilation of super resolution reflectivity and velocity data into high resolution numerical weather model forecasts where grid spacing is comparable to the radar data resolution is investigated here to determine the impact of the improved data resolution on model predictions.« less

  8. Multi-centennial upper-ocean heat content reconstruction using online data assimilation

    NASA Astrophysics Data System (ADS)

    Perkins, W. A.; Hakim, G. J.

    2017-12-01

    The Last Millennium Reanalysis (LMR) provides an advanced paleoclimate ensemble data assimilation framework for multi-variate climate field reconstructions over the Common Era. Although reconstructions in this framework with full Earth system models remain prohibitively expensive, recent work has shown improved ensemble reconstruction validation using computationally inexpensive linear inverse models (LIMs). Here we leverage these techniques in pursuit of a new multi-centennial field reconstruction of upper-ocean heat content (OHC), synthesizing model dynamics with observational constraints from proxy records. OHC is an important indicator of internal climate variability and responds to planetary energy imbalances. Therefore, a consistent extension of the OHC record in time will help inform aspects of low-frequency climate variability. We use the Community Climate System Model version 4 (CCSM4) and Max Planck Institute (MPI) last millennium simulations to derive the LIMs, and the PAGES2K v.2.0 proxy database to perform annually resolved reconstructions of upper-OHC, surface air temperature, and wind stress over the last 500 years. Annual OHC reconstructions and uncertainties for both the global mean and regional basins are compared against observational and reanalysis data. We then investigate differences in dynamical behavior at decadal and longer time scales between the reconstruction and simulations in the last-millennium Coupled Model Intercomparison Project version 5 (CMIP5). Preliminary investigation of 1-year forecast skill for an OHC-only LIM shows largely positive spatial grid point local anomaly correlations (LAC) with a global average LAC of 0.37. Compared to 1-year OHC persistence forecast LAC (global average LAC of 0.30), the LIM outperforms the persistence forecasts in the tropical Indo-Pacific region, the equatorial Atlantic, and in certain regions near the Antarctic Circumpolar Current. In other regions, the forecast correlations are less than the persistence case but still positive overall.

  9. Improving medium-range and seasonal hydroclimate forecasts in the southeast USA

    NASA Astrophysics Data System (ADS)

    Tian, Di

    Accurate hydro-climate forecasts are important for decision making by water managers, agricultural producers, and other stake holders. Numerical weather prediction models and general circulation models may have potential for improving hydro-climate forecasts at different scales. In this study, forecast analogs of the Global Forecast System (GFS) and Global Ensemble Forecast System (GEFS) based on different approaches were evaluated for medium-range reference evapotranspiration (ETo), irrigation scheduling, and urban water demand forecasts in the southeast United States; the Climate Forecast System version 2 (CFSv2) and the North American national multi-model ensemble (NMME) were statistically downscaled for seasonal forecasts of ETo, precipitation (P) and 2-m temperature (T2M) at the regional level. The GFS mean temperature (Tmean), relative humidity, and wind speed (Wind) reforecasts combined with the climatology of Reanalysis 2 solar radiation (Rs) produced higher skill than using the direct GFS output only. Constructed analogs showed slightly higher skill than natural analogs for deterministic forecasts. Both irrigation scheduling driven by the GEFS-based ETo forecasts and GEFS-based ETo forecast skill were generally positive up to one week throughout the year. The GEFS improved ETo forecast skill compared to the GFS. The GEFS-based analog forecasts for the input variables of an operational urban water demand model were skillful when applied in the Tampa Bay area. The modified operational models driven by GEFS analog forecasts showed higher forecast skill than the operational model based on persistence. The results for CFSv2 seasonal forecasts showed maximum temperature (Tmax) and Rs had the greatest influence on ETo. The downscaled Tmax showed the highest predictability, followed by Tmean, Tmin, Rs, and Wind. The CFSv2 model could better predict ETo in cold seasons during El Nino Southern Oscillation (ENSO) events only when the forecast initial condition was in ENSO. Downscaled P and T2M forecasts were produced by directly downscaling the NMME P and T2M output or indirectly using the NMME forecasts of Nino3.4 sea surface temperatures to predict local-scale P and T2M. The indirect method generally showed the highest forecast skill which occurs in cold seasons. The bias-corrected NMME ensemble forecast skill did not outperform the best single model.

  10. Forecasting Container Throughput at the Doraleh Port in Djibouti through Time Series Analysis

    NASA Astrophysics Data System (ADS)

    Mohamed Ismael, Hawa; Vandyck, George Kobina

    The Doraleh Container Terminal (DCT) located in Djibouti has been noted as the most technologically advanced container terminal on the African continent. DCT's strategic location at the crossroads of the main shipping lanes connecting Asia, Africa and Europe put it in a unique position to provide important shipping services to vessels plying that route. This paper aims to forecast container throughput through the Doraleh Container Port in Djibouti by Time Series Analysis. A selection of univariate forecasting models has been used, namely Triple Exponential Smoothing Model, Grey Model and Linear Regression Model. By utilizing the above three models and their combination, the forecast of container throughput through the Doraleh port was realized. A comparison of the different forecasting results of the three models, in addition to the combination forecast is then undertaken, based on commonly used evaluation criteria Mean Absolute Deviation (MAD) and Mean Absolute Percentage Error (MAPE). The study found that the Linear Regression forecasting Model was the best prediction method for forecasting the container throughput, since its forecast error was the least. Based on the regression model, a ten (10) year forecast for container throughput at DCT has been made.

  11. Distributed HUC-based modeling with SUMMA for ensemble streamflow forecasting over large regional domains.

    NASA Astrophysics Data System (ADS)

    Saharia, M.; Wood, A.; Clark, M. P.; Bennett, A.; Nijssen, B.; Clark, E.; Newman, A. J.

    2017-12-01

    Most operational streamflow forecasting systems rely on a forecaster-in-the-loop approach in which some parts of the forecast workflow require an experienced human forecaster. But this approach faces challenges surrounding process reproducibility, hindcasting capability, and extension to large domains. The operational hydrologic community is increasingly moving towards `over-the-loop' (completely automated) large-domain simulations yet recent developments indicate a widespread lack of community knowledge about the strengths and weaknesses of such systems for forecasting. A realistic representation of land surface hydrologic processes is a critical element for improving forecasts, but often comes at the substantial cost of forecast system agility and efficiency. While popular grid-based models support the distributed representation of land surface processes, intermediate-scale Hydrologic Unit Code (HUC)-based modeling could provide a more efficient and process-aligned spatial discretization, reducing the need for tradeoffs between model complexity and critical forecasting requirements such as ensemble methods and comprehensive model calibration. The National Center for Atmospheric Research is collaborating with the University of Washington, the Bureau of Reclamation and the USACE to implement, assess, and demonstrate real-time, over-the-loop distributed streamflow forecasting for several large western US river basins and regions. In this presentation, we present early results from short to medium range hydrologic and streamflow forecasts for the Pacific Northwest (PNW). We employ a real-time 1/16th degree daily ensemble model forcings as well as downscaled Global Ensemble Forecasting System (GEFS) meteorological forecasts. These datasets drive an intermediate-scale configuration of the Structure for Unifying Multiple Modeling Alternatives (SUMMA) model, which represents the PNW using over 11,700 HUCs. The system produces not only streamflow forecasts (using the MizuRoute channel routing tool) but also distributed model states such as soil moisture and snow water equivalent. We also describe challenges in distributed model-based forecasting, including the application and early results of real-time hydrologic data assimilation.

  12. Forecasting Dust Storms Using the CARMA-Dust Model and MM5 Weather Data

    NASA Astrophysics Data System (ADS)

    Barnum, B. H.; Winstead, N. S.; Wesely, J.; Hakola, A.; Colarco, P.; Toon, O. B.; Ginoux, P.; Brooks, G.; Hasselbarth, L. M.; Toth, B.; Sterner, R.

    2002-12-01

    An operational model for the forecast of dust storms in Northern Africa, the Middle East and Southwest Asia has been developed for the United States Air Force Weather Agency (AFWA). The dust forecast model uses the 5th generation Penn State Mesoscale Meteorology Model (MM5), and a modified version of the Colorado Aerosol and Radiation Model for Atmospheres (CARMA). AFWA conducted a 60 day evaluation of the dust model to look at the model's ability to forecast dust storms for short, medium and long range (72 hour) forecast periods. The study used satellite and ground observations of dust storms to verify the model's effectiveness. Each of the main mesoscale forecast theaters was broken down into smaller sub-regions for detailed analysis. The study found the forecast model was able to forecast dust storms in Saharan Africa and the Sahel region with an average Probability of Detection (POD)exceeding 68%, with a 16% False Alarm Rate (FAR). The Southwest Asian theater had average POD's of 61% with FAR's averaging 10%.

  13. Short-term load and wind power forecasting using neural network-based prediction intervals.

    PubMed

    Quan, Hao; Srinivasan, Dipti; Khosravi, Abbas

    2014-02-01

    Electrical power systems are evolving from today's centralized bulk systems to more decentralized systems. Penetrations of renewable energies, such as wind and solar power, significantly increase the level of uncertainty in power systems. Accurate load forecasting becomes more complex, yet more important for management of power systems. Traditional methods for generating point forecasts of load demands cannot properly handle uncertainties in system operations. To quantify potential uncertainties associated with forecasts, this paper implements a neural network (NN)-based method for the construction of prediction intervals (PIs). A newly introduced method, called lower upper bound estimation (LUBE), is applied and extended to develop PIs using NN models. A new problem formulation is proposed, which translates the primary multiobjective problem into a constrained single-objective problem. Compared with the cost function, this new formulation is closer to the primary problem and has fewer parameters. Particle swarm optimization (PSO) integrated with the mutation operator is used to solve the problem. Electrical demands from Singapore and New South Wales (Australia), as well as wind power generation from Capital Wind Farm, are used to validate the PSO-based LUBE method. Comparative results show that the proposed method can construct higher quality PIs for load and wind power generation forecasts in a short time.

  14. Research on light rail electric load forecasting based on ARMA model

    NASA Astrophysics Data System (ADS)

    Huang, Yifan

    2018-04-01

    The article compares a variety of time series models and combines the characteristics of power load forecasting. Then, a light load forecasting model based on ARMA model is established. Based on this model, a light rail system is forecasted. The prediction results show that the accuracy of the model prediction is high.

  15. The value of model averaging and dynamical climate model predictions for improving statistical seasonal streamflow forecasts over Australia

    NASA Astrophysics Data System (ADS)

    Pokhrel, Prafulla; Wang, Q. J.; Robertson, David E.

    2013-10-01

    Seasonal streamflow forecasts are valuable for planning and allocation of water resources. In Australia, the Bureau of Meteorology employs a statistical method to forecast seasonal streamflows. The method uses predictors that are related to catchment wetness at the start of a forecast period and to climate during the forecast period. For the latter, a predictor is selected among a number of lagged climate indices as candidates to give the "best" model in terms of model performance in cross validation. This study investigates two strategies for further improvement in seasonal streamflow forecasts. The first is to combine, through Bayesian model averaging, multiple candidate models with different lagged climate indices as predictors, to take advantage of different predictive strengths of the multiple models. The second strategy is to introduce additional candidate models, using rainfall and sea surface temperature predictions from a global climate model as predictors. This is to take advantage of the direct simulations of various dynamic processes. The results show that combining forecasts from multiple statistical models generally yields more skillful forecasts than using only the best model and appears to moderate the worst forecast errors. The use of rainfall predictions from the dynamical climate model marginally improves the streamflow forecasts when viewed over all the study catchments and seasons, but the use of sea surface temperature predictions provide little additional benefit.

  16. MINERVE flood warning and management project. What is computed, what is required and what is visualized?

    NASA Astrophysics Data System (ADS)

    Garcia Hernandez, J.; Boillat, J.-L.; Schleiss, A.

    2010-09-01

    During last decades several flood events caused important inundations in the Upper Rhone River basin in Switzerland. As a response to such disasters, the MINERVE project aims to improve the security by reducing damages in this basin. The main goal of this project is to predict floods in advance in order to obtain a better flow control during flood peaks taking advantage from the multireservoir system of the existing hydropower schemes. The MINERVE system evaluates the hydro-meteorological situation on the watershed and provides hydrological forecasts with a horizon from three to five days. It exploits flow measurements, data from reservoirs and hydropower plants as well as deterministic (COSMO-7 and COSMO-2) and ensemble (COSMO-LEPS) meteorological forecast from MeteoSwiss. The hydrological model is based on a semi-distributed concept, dividing the watershed in 239 sub-catchments, themselves decomposed in elevation bands in order to describe the temperature-driven processes related to snow and glacier melt. The model is completed by rivers and hydraulic works such as water intakes, reservoirs, turbines and pumps. Once the hydrological forecasts are calculated, a report provides the warning level at selected control points according to time, being a support to decision-making for preventive actions. A Notice, Alert or Alarm is then activated depending on the discharge thresholds defined by the Valais Canton. Preventive operation scenarios are then generated based on observed discharge at control points, meteorological forecasts from MeteoSwiss, hydrological forecasts from MINERVE and retention possibilities in the reservoirs. An update of the situation is done every time new data or new forecasts are provided, keeping last observations and last forecasts in the warning report. The forecasts can also be used for the evaluation of priority decisions concerning the management of hydropower plants for security purposes. Considering future inflows and reservoir levels, turbine and bottom outlet preventive operations can be proposed to the hydropower plants operators in order to store water inflows and to stop turbining during the peak flow. Appropriate operations can thus reduce the peak discharges in the Rhone River and its tributaries, limiting or avoiding damages. Results presentation in a clear and understandable way is an important goal of the project and is considered as one of the main focuses. The MINERVE project is developed in partnership by the Swiss Federal Office for Environment (FOEV), Services of Roads and Water courses as well as Water Power and Energy of the Wallis Canton and Service of Water, Land and Sanitation of the Vaud Canton. The Swiss Weather Service (MeteoSwiss) provides the weather forecasts and hydroelectric companies communicate specific information regarding the hydropower plants. Scientific developments are entrusted to two entities of the Ecole Polytechnique Fédérale de Lausanne (EPFL), the Hydraulic Constructions Laboratory (LCH) and the Ecohydrology Laboratory (ECHO), as well as to the Institute of Geomatics and Analysis of Risk (IGAR) of Lausanne University (UNIL).

  17. Forecasting in foodservice: model development, testing, and evaluation.

    PubMed

    Miller, J L; Thompson, P A; Orabella, M M

    1991-05-01

    This study was designed to develop, test, and evaluate mathematical models appropriate for forecasting menu-item production demand in foodservice. Data were collected from residence and dining hall foodservices at Ohio State University. Objectives of the study were to collect, code, and analyze the data; develop and test models using actual operation data; and compare forecasting results with current methods in use. Customer count was forecast using deseasonalized simple exponential smoothing. Menu-item demand was forecast by multiplying the count forecast by a predicted preference statistic. Forecasting models were evaluated using mean squared error, mean absolute deviation, and mean absolute percentage error techniques. All models were more accurate than current methods. A broad spectrum of forecasting techniques could be used by foodservice managers with access to a personal computer and spread-sheet and database-management software. The findings indicate that mathematical forecasting techniques may be effective in foodservice operations to control costs, increase productivity, and maximize profits.

  18. A Comparison of Forecast Error Generators for Modeling Wind and Load Uncertainty

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Ning; Diao, Ruisheng; Hafen, Ryan P.

    2013-12-18

    This paper presents four algorithms to generate random forecast error time series, including a truncated-normal distribution model, a state-space based Markov model, a seasonal autoregressive moving average (ARMA) model, and a stochastic-optimization based model. The error time series are used to create real-time (RT), hour-ahead (HA), and day-ahead (DA) wind and load forecast time series that statistically match historically observed forecasting data sets, used for variable generation integration studies. A comparison is made using historical DA load forecast and actual load values to generate new sets of DA forecasts with similar stoical forecast error characteristics. This paper discusses and comparesmore » the capabilities of each algorithm to preserve the characteristics of the historical forecast data sets.« less

  19. Modeled Forecasts of Dengue Fever in San Juan, Puerto Rico Using NASA Satellite Enhanced Weather Forecasts

    NASA Astrophysics Data System (ADS)

    Morin, C.; Quattrochi, D. A.; Zavodsky, B.; Case, J.

    2015-12-01

    Dengue fever (DF) is an important mosquito transmitted disease that is strongly influenced by meteorological and environmental conditions. Recent research has focused on forecasting DF case numbers based on meteorological data. However, these forecasting tools have generally relied on empirical models that require long DF time series to train. Additionally, their accuracy has been tested retrospectively, using past meteorological data. Consequently, the operational utility of the forecasts are still in question because the error associated with weather and climate forecasts are not reflected in the results. Using up-to-date weekly dengue case numbers for model parameterization and weather forecast data as meteorological input, we produced weekly forecasts of DF cases in San Juan, Puerto Rico. Each week, the past weeks' case counts were used to re-parameterize a process-based DF model driven with updated weather forecast data to generate forecasts of DF case numbers. Real-time weather forecast data was produced using the Weather Research and Forecasting (WRF) numerical weather prediction (NWP) system enhanced using additional high-resolution NASA satellite data. This methodology was conducted in a weekly iterative process with each DF forecast being evaluated using county-level DF cases reported by the Puerto Rico Department of Health. The one week DF forecasts were accurate especially considering the two sources of model error. First, weather forecasts were sometimes inaccurate and generally produced lower than observed temperatures. Second, the DF model was often overly influenced by the previous weeks DF case numbers, though this phenomenon could be lessened by increasing the number of simulations included in the forecast. Although these results are promising, we would like to develop a methodology to produce longer range forecasts so that public health workers can better prepare for dengue epidemics.

  20. Combining forecast weights: Why and how?

    NASA Astrophysics Data System (ADS)

    Yin, Yip Chee; Kok-Haur, Ng; Hock-Eam, Lim

    2012-09-01

    This paper proposes a procedure called forecast weight averaging which is a specific combination of forecast weights obtained from different methods of constructing forecast weights for the purpose of improving the accuracy of pseudo out of sample forecasting. It is found that under certain specified conditions, forecast weight averaging can lower the mean squared forecast error obtained from model averaging. In addition, we show that in a linear and homoskedastic environment, this superior predictive ability of forecast weight averaging holds true irrespective whether the coefficients are tested by t statistic or z statistic provided the significant level is within the 10% range. By theoretical proofs and simulation study, we have shown that model averaging like, variance model averaging, simple model averaging and standard error model averaging, each produces mean squared forecast error larger than that of forecast weight averaging. Finally, this result also holds true marginally when applied to business and economic empirical data sets, Gross Domestic Product (GDP growth rate), Consumer Price Index (CPI) and Average Lending Rate (ALR) of Malaysia.

  1. Use of wind data in global modelling

    NASA Technical Reports Server (NTRS)

    Pailleux, J.

    1985-01-01

    The European Centre for Medium Range Weather Forecasts (ECMWF) is producing operational global analyses every 6 hours and operational global forecasts every day from the 12Z analysis. How the wind data are used in the ECMWF golbal analysis is described. For each current wind observing system, its ability to provide initial conditions for the forecast model is discussed as well as its weaknesses. An assessment of the impact of each individual system on the quality of the analysis and the forecast is given each time it is possible. Sometimes the deficiencies which are pointed out are related not only to the observing system itself but also to the optimum interpolation (OI) analysis scheme; then some improvements are generally possible through ad hoc modifications of the analysis scheme and especially tunings of the structure functions. Examples are given. The future observing network over the North Atlantic is examined. Several countries, coordinated by WMO, are working to set up an 'Operational WWW System Evaluation' (OWSE), in order to evaluate the operational aspects of the deployment of new systems (ASDAR, ASAP). Most of the new systems are expected to be deployed before January 1987, and in order to make the best use of the available resources during the deployment phase, some network studies are carried out at the present time, by using simulated data for ASDAR and ASAP systems. They are summarized.

  2. JPL Genesis and Rapid Intensification Processes (GRIP) Portal

    NASA Technical Reports Server (NTRS)

    Knosp, Brian W.; Li, P. Peggy; Vu, Quoc A.; Turk, Francis J.; Shen, Tsae-Pyng J.; Hristova-Veleva, Svetla M.; Licata, Stephen J.; Poulsen, William L.

    2012-01-01

    Satellite observations can play a very important role in airborne field campaigns, since they provide a comprehensive description of the environment that is essential for the experiment design, flight planning, and post-experiment scientific data analysis. In the past, it has been difficult to fully utilize data from multiple NASA satellites due to the large data volume, the complexity of accessing NASA s data in near-real-time (NRT), as well as the lack of software tools to interact with multi-sensor information. The JPL GRIP Portal is a Web portal that serves a comprehensive set of NRT observation data sets from NASA and NOAA satellites describing the atmospheric and oceanic environments related to the genesis and intensification of the tropical storms in the North Atlantic Ocean. Together with the model forecast data from four major global atmospheric models, this portal provides a useful tool for the scientists and forecasters in planning and monitoring the NASA GRIP field campaign during the 2010 Atlantic Ocean hurricane season. This portal uses the Google Earth plug-in to visualize various types of data sets, such as 2D maps, wind vectors, streamlines, 3D data sets presented at series of vertical cross-sections or pointwise vertical profiles, and hurricane best tracks and forecast tracks. Additionally, it allows users to overlap multiple data sets, change the opacity of each image layer, generate animations on the fly with selected data sets, and compare the observation data with the model forecast using two independent calendars. The portal also provides the capability to identify the geographic location of any point of interest. In addition to supporting the airborne mission planning, the NRT data and portal will serve as a very rich source of information during the post-field campaign analysis stage of the airborne experiment. By including a diverse set of satellite observations and model forecasts, it provides a good spatial and temporal context for the high-resolution, but limited in space and time, airborne observations.

  3. A Time-Series Water Level Forecasting Model Based on Imputation and Variable Selection Method.

    PubMed

    Yang, Jun-He; Cheng, Ching-Hsue; Chan, Chia-Pan

    2017-01-01

    Reservoirs are important for households and impact the national economy. This paper proposed a time-series forecasting model based on estimating a missing value followed by variable selection to forecast the reservoir's water level. This study collected data from the Taiwan Shimen Reservoir as well as daily atmospheric data from 2008 to 2015. The two datasets are concatenated into an integrated dataset based on ordering of the data as a research dataset. The proposed time-series forecasting model summarily has three foci. First, this study uses five imputation methods to directly delete the missing value. Second, we identified the key variable via factor analysis and then deleted the unimportant variables sequentially via the variable selection method. Finally, the proposed model uses a Random Forest to build the forecasting model of the reservoir's water level. This was done to compare with the listing method under the forecasting error. These experimental results indicate that the Random Forest forecasting model when applied to variable selection with full variables has better forecasting performance than the listing model. In addition, this experiment shows that the proposed variable selection can help determine five forecast methods used here to improve the forecasting capability.

  4. An assessment of a North American Multi-Model Ensemble (NMME) based global drought early warning forecast system

    NASA Astrophysics Data System (ADS)

    Wood, E. F.; Yuan, X.; Sheffield, J.; Pan, M.; Roundy, J.

    2013-12-01

    One of the key recommendations of the WCRP Global Drought Information System (GDIS) workshop is to develop an experimental real-time global monitoring and prediction system. While great advances has been made in global drought monitoring based on satellite observations and model reanalysis data, global drought forecasting has been stranded in part due to the limited skill both in climate forecast models and global hydrologic predictions. Having been working on drought monitoring and forecasting over USA for more than a decade, the Princeton land surface hydrology group is now developing an experimental global drought early warning system that is based on multiple climate forecast models and a calibrated global hydrologic model. In this presentation, we will test its capability in seasonal forecasting of meteorological, agricultural and hydrologic droughts over global major river basins, using precipitation, soil moisture and streamflow forecasts respectively. Based on the joint probability distribution between observations using Princeton's global drought monitoring system and model hindcasts and real-time forecasts from North American Multi-Model Ensemble (NMME) project, we (i) bias correct the monthly precipitation and temperature forecasts from multiple climate forecast models, (ii) downscale them to a daily time scale, and (iii) use them to drive the calibrated VIC model to produce global drought forecasts at a 1-degree resolution. A parallel run using the ESP forecast method, which is based on resampling historical forcings, is also carried out for comparison. Analysis is being conducted over global major river basins, with multiple drought indices that have different time scales and characteristics. The meteorological drought forecast does not have uncertainty from hydrologic models and can be validated directly against observations - making the validation an 'apples-to-apples' comparison. Preliminary results for the evaluation of meteorological drought onset hindcasts indicate that climate models increase drought detectability over ESP by 31%-81%. However, less than 30% of the global drought onsets can be detected by climate models. The missed drought events are associated with weak ENSO signals and lower potential predictability. Due to the high false alarms from climate models, the reliability is more important than sharpness for a skillful probabilistic drought onset forecast. Validations and skill assessments for agricultural and hydrologic drought forecasts are carried out using soil moisture and streamflow output from the VIC land surface model (LSM) forced by a global forcing data set. Given our previous drought forecasting experiences over USA and Africa, validating the hydrologic drought forecasting is a significant challenge for a global drought early warning system.

  5. A Wind Forecasting System for Energy Application

    NASA Astrophysics Data System (ADS)

    Courtney, Jennifer; Lynch, Peter; Sweeney, Conor

    2010-05-01

    Accurate forecasting of available energy is crucial for the efficient management and use of wind power in the national power grid. With energy output critically dependent upon wind strength there is a need to reduce the errors associated wind forecasting. The objective of this research is to get the best possible wind forecasts for the wind energy industry. To achieve this goal, three methods are being applied. First, a mesoscale numerical weather prediction (NWP) model called WRF (Weather Research and Forecasting) is being used to predict wind values over Ireland. Currently, a gird resolution of 10km is used and higher model resolutions are being evaluated to establish whether they are economically viable given the forecast skill improvement they produce. Second, the WRF model is being used in conjunction with ECMWF (European Centre for Medium-Range Weather Forecasts) ensemble forecasts to produce a probabilistic weather forecasting product. Due to the chaotic nature of the atmosphere, a single, deterministic weather forecast can only have limited skill. The ECMWF ensemble methods produce an ensemble of 51 global forecasts, twice a day, by perturbing initial conditions of a 'control' forecast which is the best estimate of the initial state of the atmosphere. This method provides an indication of the reliability of the forecast and a quantitative basis for probabilistic forecasting. The limitation of ensemble forecasting lies in the fact that the perturbed model runs behave differently under different weather patterns and each model run is equally likely to be closest to the observed weather situation. Models have biases, and involve assumptions about physical processes and forcing factors such as underlying topography. Third, Bayesian Model Averaging (BMA) is being applied to the output from the ensemble forecasts in order to statistically post-process the results and achieve a better wind forecasting system. BMA is a promising technique that will offer calibrated probabilistic wind forecasts which will be invaluable in wind energy management. In brief, this method turns the ensemble forecasts into a calibrated predictive probability distribution. Each ensemble member is provided with a 'weight' determined by its relative predictive skill over a training period of around 30 days. Verification of data is carried out using observed wind data from operational wind farms. These are then compared to existing forecasts produced by ECMWF and Met Eireann in relation to skill scores. We are developing decision-making models to show the benefits achieved using the data produced by our wind energy forecasting system. An energy trading model will be developed, based on the rules currently used by the Single Electricity Market Operator for energy trading in Ireland. This trading model will illustrate the potential for financial savings by using the forecast data generated by this research.

  6. A Numerical Simulation (Study) of a Strong West Coast December 2014 Winter Storm

    NASA Astrophysics Data System (ADS)

    Smelser, I.; Xu, L.; Amerault, C. M.; Baker, N. L.; Satterfield, E.; Chua, B.

    2016-12-01

    From December 10 through December 13, 2014, a powerful winter storm swept across the western US coastal states bringing widespread power outages, numerous downed trees and power lines, heavy rains, flooding and even a tornado in the Los Angeles basin. This windstorm was the strongest since October 2009, and was similar to classic wind storms such as the 1962 Columbus Day Storm (Read, 2015).The storm started developing over the Pacific Ocean north of Hawaii on Nov. 30, and formed an atmospheric river that eventually stretched from Hawaii to the west coast. The storm initially hit the Pacific Northwest on Dec. 9th and then split. The highest precipitation amounts started in British Colombia and moved south along the coast. By the Dec. 11th, the highest precipitation amounts were near San Francisco (CA). The peak wind gust (14.4 ms-1) for Monterey (CA) occurred at 1116Z on Dec. 11th while the heaviest 6-hr precipitation (42.9 mm) occurred between 18Z on Dec. 11th to 00Z on Dec. 12th. By Dec. 12th, the storm was centered over Southern California.This storm was poorly forecast by many operational NWP models even 2-3 days in advance (Mass, 2014). The NCEP Global Forecast System (GFS) showed considerably variability between successive model runs, and significant differences existed between Environment Canada, UK Met Office and ECMWF model forecasts. To study this extreme weather event, we used the Navy global (NAVGEM) and mesoscale (COAMPS®) NWP models, and compared the resulting forecasts to observations, satellite imagery and ECMWF (TIGGE) forecasts. NAVGEM, with Hybrid 4DVar, was run with a resolution of 31 km, and generated the boundary conditions for COAMPS® 4DVar and forecasts, that were run with triple-nested grids of 27, 9, and 3 km. The MesoWest data from the University of Utah were used for forecast verification, and to locate the times of highest precipitation and wind speed for different points along the coast. Both the online API and the python module were used to access and pull information from the data base. Overall, both NAVGEM and COAMPS® predicted the storm well. NAVGEM predicted the storm to be slower and more powerful than the analyses. The NAVGEM analysis and corresponding 5-day forecast accumulated 6-hr precipitation (Fig. 1) for Dec. 12th at 00Z agree well with the observed precipitation (4.29 cm) for Monterey (KMRY).

  7. Operational value of ensemble streamflow forecasts for hydropower production: A Canadian case study

    NASA Astrophysics Data System (ADS)

    Boucher, Marie-Amélie; Tremblay, Denis; Luc, Perreault; François, Anctil

    2010-05-01

    Ensemble and probabilistic forecasts have many advantages over deterministic ones, both in meteorology and hydrology (e.g. Krzysztofowicz, 2001). Mainly, they inform the user on the uncertainty linked to the forecast. It has been brought to attention that such additional information could lead to improved decision making (e.g. Wilks and Hamill, 1995; Mylne, 2002; Roulin, 2007), but very few studies concentrate on operational situations involving the use of such forecasts. In addition, many authors have demonstrated that ensemble forecasts outperform deterministic forecasts in terms of performance (e.g. Jaun et al., 2005; Velazquez et al., 2009; Laio and Tamea, 2007). However, such performance is mostly assessed on the basis of numerical scoring rules, which compare the forecasts to the observations, and seldom in terms of management gains. The proposed case study adopts an operational point of view, on the basis that a novel forecasting system has value only if it leads to increase monetary and societal gains (e.g. Murphy, 1994; Laio and Tamea, 2007). More specifically, Environment Canada operational ensemble precipitation forecasts are used to drive the HYDROTEL distributed hydrological model (Fortin et al., 1995), calibrated on the Gatineau watershed located in Québec, Canada. The resulting hydrological ensemble forecasts are then incorporated into Hydro-Québec SOHO stochastic management optimization tool that automatically search for optimal operation decisions for the all reservoirs and hydropower plants located on the basin. The timeline of the study is the fall season of year 2003. This period is especially relevant because of high precipitations that nearly caused a major spill, and forced the preventive evacuation of a portion of the population located near one of the dams. We show that the use of the ensemble forecasts would have reduced the occurrence of spills and flooding, which is of particular importance for dams located in populous area, and increased hydropower production. The ensemble precipitation forecasts extend from March 1st of 2002 to December 31st of 2003. They were obtained using two atmospheric models, SEF (8 members plus the control deterministic forecast) and GEM (8 members). The corresponding deterministic precipitation forecast issued by SEF model is also used within HYDROTEL in order to compare ensemble streamflow forecasts with their deterministic counterparts. Although this study does not incorporate all the sources of uncertainty, precipitation is certainly the most important input for hydrological modeling and conveys a great portion of the total uncertainty. References: Fortin, J.P., Moussa, R., Bocquillon, C. and Villeneuve, J.P. 1995: HYDROTEL, un modèle hydrologique distribué pouvant bénéficier des données fournies par la télédétection et les systèmes d'information géographique, Revue des Sciences de l'Eau, 8(1), 94-124. Jaun, S., Ahrens, B., Walser, A., Ewen, T. and Schaer, C. 2008: A probabilistic view on the August 2005 floods in the upper Rhine catchment, Natural Hazards and Earth System Sciences, 8 (2), 281-291. Krzysztofowicz, R. 2001: The case for probabilistic forecasting in hydrology, Journal of Hydrology, 249, 2-9. Murphy, A.H. 1994: Assessing the economic value of weather forecasts: An overview of methods, results and issues, Meteorological Applications, 1, 69-73. Mylne, K.R. 2002: Decision-Making from probability forecasts based on forecast value, Meteorological Applications, 9, 307-315. Laio, F. and Tamea, S. 2007: Verification tools for probabilistic forecasts of continuous hydrological variables, Hydrology and Earth System Sciences, 11, 1267-1277. Roulin, E. 2007: Skill and relative economic value of medium-range hydrological ensemble predictions, Hydrology and Earth System Sciences, 11, 725-737. Velazquez, J.-A., Petit, T., Lavoie, A., Boucher, M.-A., Turcotte, R., Fortin, V. and Anctil, F. 2009: An evaluation of the Canadian global meteorological ensemble prediction system for short-term hydrological forecasting, Hydrology and Earth System Sciences, 13(11), 2221-2231. Wilks, D.S. and Hamill, T.M. 1995: Potential economic value of ensemble-based surface weather forecasts, Monthly Weather Review, 123(12), 3565-3575.

  8. Time series regression and ARIMAX for forecasting currency flow at Bank Indonesia in Sulawesi region

    NASA Astrophysics Data System (ADS)

    Suharsono, Agus; Suhartono, Masyitha, Aulia; Anuravega, Arum

    2015-12-01

    The purpose of the study is to forecast the outflow and inflow of currency at Indonesian Central Bank or Bank Indonesia (BI) in Sulawesi Region. The currency outflow and inflow data tend to have a trend pattern which is influenced by calendar variation effects. Therefore, this research focuses to apply some forecasting methods that could handle calendar variation effects, i.e. Time Series Regression (TSR) and ARIMAX models, and compare the forecast accuracy with ARIMA model. The best model is selected based on the lowest of Root Mean Squares Errors (RMSE) at out-sample dataset. The results show that ARIMA is the best model for forecasting the currency outflow and inflow at South Sulawesi. Whereas, the best model for forecasting the currency outflow at Central Sulawesi and Southeast Sulawesi, and for forecasting the currency inflow at South Sulawesi and North Sulawesi is TSR. Additionally, ARIMAX is the best model for forecasting the currency outflow at North Sulawesi. Hence, the results show that more complex models do not neccessary yield more accurate forecast than the simpler one.

  9. Development of a drought forecasting model for the Asia-Pacific region using remote sensing and climate data: Focusing on Indonesia

    NASA Astrophysics Data System (ADS)

    Rhee, Jinyoung; Kim, Gayoung; Im, Jungho

    2017-04-01

    Three regions of Indonesia with different rainfall characteristics were chosen to develop drought forecast models based on machine learning. The 6-month Standardized Precipitation Index (SPI6) was selected as the target variable. The models' forecast skill was compared to the skill of long-range climate forecast models in terms of drought accuracy and regression mean absolute error (MAE). Indonesian droughts are known to be related to El Nino Southern Oscillation (ENSO) variability despite of regional differences as well as monsoon, local sea surface temperature (SST), other large-scale atmosphere-ocean interactions such as Indian Ocean Dipole (IOD) and Southern Pacific Convergence Zone (SPCZ), and local factors including topography and elevation. Machine learning models are thus to enhance drought forecast skill by combining local and remote SST and remote sensing information reflecting initial drought conditions to the long-range climate forecast model results. A total of 126 machine learning models were developed for the three regions of West Java (JB), West Sumatra (SB), and Gorontalo (GO) and six long-range climate forecast models of MSC_CanCM3, MSC_CanCM4, NCEP, NASA, PNU, POAMA as well as one climatology model based on remote sensing precipitation data, and 1 to 6-month lead times. When compared the results between the machine learning models and the long-range climate forecast models, West Java and Gorontalo regions showed similar characteristics in terms of drought accuracy. Drought accuracy of the long-range climate forecast models were generally higher than the machine learning models with short lead times but the opposite appeared for longer lead times. For West Sumatra, however, the machine learning models and the long-range climate forecast models showed similar drought accuracy. The machine learning models showed smaller regression errors for all three regions especially with longer lead times. Among the three regions, the machine learning models developed for Gorontalo showed the highest drought accuracy and the lowest regression error. West Java showed higher drought accuracy compared to West Sumatra, while West Sumatra showed lower regression error compared to West Java. The lower error in West Sumatra may be because of the smaller sample size used for training and evaluation for the region. Regional differences of forecast skill are determined by the effect of ENSO and the following forecast skill of the long-range climate forecast models. While shown somewhat high in West Sumatra, relative importance of remote sensing variables was mostly low in most cases. High importance of the variables based on long-range climate forecast models indicates that the forecast skill of the machine learning models are mostly determined by the forecast skill of the climate models.

  10. High resolution modelling and observation of wind-driven surface currents in a semi-enclosed estuary

    NASA Astrophysics Data System (ADS)

    Nash, S.; Hartnett, M.; McKinstry, A.; Ragnoli, E.; Nagle, D.

    2012-04-01

    Hydrodynamic circulation in estuaries is primarily driven by tides, river inflows and surface winds. While tidal and river data can be quite easily obtained for input to hydrodynamic models, sourcing accurate surface wind data is problematic. Firstly, the wind data used in hydrodynamic models is usually measured on land and can be quite different in magnitude and direction from offshore winds. Secondly, surface winds are spatially-varying but due to a lack of data it is common practice to specify a non-varying wind speed and direction across the full extents of a model domain. These problems can lead to inaccuracies in the surface currents computed by three-dimensional hydrodynamic models. In the present research, a wind forecast model is coupled with a three-dimensional numerical model of Galway Bay, a semi-enclosed estuary on the west coast of Ireland, to investigate the effect of surface wind data resolution on model accuracy. High resolution and low resolution wind fields are specified to the model and the computed surface currents are compared with high resolution surface current measurements obtained from two high frequency SeaSonde-type Coastal Ocean Dynamics Applications Radars (CODAR). The wind forecast models used for the research are Harmonie cy361.3, running on 2.5 and 0.5km spatial grids for the low resolution and high resolution models respectively. The low-resolution model runs over an Irish domain on 540x500 grid points with 60 vertical levels and a 60s timestep and is driven by ECMWF boundary conditions. The nested high-resolution model uses 300x300 grid points on 60 vertical levels and a 12s timestep. EFDC (Environmental Fluid Dynamics Code) is used for the hydrodynamic model. The Galway Bay model has ten vertical layers and is resolved spatially and temporally at 150m and 4 sec respectively. The hydrodynamic model is run for selected hindcast dates when wind fields were highly energetic. Spatially- and temporally-varying wind data is provided by offline coupling with the wind forecast models. Modelled surface currents show good correlation with CODAR observed currents and the resolution of the surface wind data is shown to be important for model accuracy.

  11. Joint Utility of Event-Dependent and Environmental Crime Analysis Techniques for Violent Crime Forecasting

    ERIC Educational Resources Information Center

    Caplan, Joel M.; Kennedy, Leslie W.; Piza, Eric L.

    2013-01-01

    Violent crime incidents occurring in Irvington, New Jersey, in 2007 and 2008 are used to assess the joint analytical capabilities of point pattern analysis, hotspot mapping, near-repeat analysis, and risk terrain modeling. One approach to crime analysis suggests that the best way to predict future crime occurrence is to use past behavior, such as…

  12. Scenario studies as a synthetic and integrative research activity for Long-Term Ecological Research

    Treesearch

    Jonathan R. Thompson; Arnim Wiek; Frederick J. Swanson; Stephen R. Carpenter; Nancy Fresco; Teresa Hollingsworth; Thomas A. Spies; David R. Foster

    2012-01-01

    Scenario studies have emerged as a powerful approach for synthesizing diverse forms of research and for articulating and evaluating alternative socioecological futures. Unlike predictive modeling, scenarios do not attempt to forecast the precise or probable state of any variable at a given point in the future. Instead, comparisons among a set of contrasting scenarios...

  13. Identifying causes of Western Pacific ITCZ drift in ECMWF System 4 hindcasts

    NASA Astrophysics Data System (ADS)

    Shonk, Jonathan K. P.; Guilyardi, Eric; Toniazzo, Thomas; Woolnough, Steven J.; Stockdale, Tim

    2018-02-01

    The development of systematic biases in climate models used in operational seasonal forecasting adversely affects the quality of forecasts they produce. In this study, we examine the initial evolution of systematic biases in the ECMWF System 4 forecast model, and isolate aspects of the model simulations that lead to the development of these biases. We focus on the tendency of the simulated intertropical convergence zone in the western equatorial Pacific to drift northwards by between 0.5° and 3° of latitude depending on season. Comparing observations with both fully coupled atmosphere-ocean hindcasts and atmosphere-only hindcasts (driven by observed sea-surface temperatures), we show that the northward drift is caused by a cooling of the sea-surface temperature on the Equator. The cooling is associated with anomalous easterly wind stress and excessive evaporation during the first twenty days of hindcast, both of which occur whether air-sea interactions are permitted or not. The easterly wind bias develops immediately after initialisation throughout the lower troposphere; a westerly bias develops in the upper troposphere after about 10 days of hindcast. At this point, the baroclinic structure of the wind bias suggests coupling with errors in convective heating, although the initial wind bias is barotropic in structure and appears to have an alternative origin.

  14. Sensitivity of a Simulated Derecho Event to Model Initial Conditions

    NASA Astrophysics Data System (ADS)

    Wang, Wei

    2014-05-01

    Since 2003, the MMM division at NCAR has been experimenting cloud-permitting scale weather forecasting using Weather Research and Forecasting (WRF) model. Over the years, we've tested different model physics, and tried different initial and boundary conditions. Not surprisingly, we found that the model's forecasts are more sensitive to the initial conditions than model physics. In 2012 real-time experiment, WRF-DART (Data Assimilation Research Testbed) at 15 km was employed to produce initial conditions for twice-a-day forecast at 3 km. On June 29, this forecast system captured one of the most destructive derecho event on record. In this presentation, we will examine forecast sensitivity to different model initial conditions, and try to understand the important features that may contribute to the success of the forecast.

  15. Hydro-meteorological evaluation of downscaled global ensemble rainfall forecasts

    NASA Astrophysics Data System (ADS)

    Gaborit, Étienne; Anctil, François; Fortin, Vincent; Pelletier, Geneviève

    2013-04-01

    Ensemble rainfall forecasts are of high interest for decision making, as they provide an explicit and dynamic assessment of the uncertainty in the forecast (Ruiz et al. 2009). However, for hydrological forecasting, their low resolution currently limits their use to large watersheds (Maraun et al. 2010). In order to bridge this gap, various implementations of the statistic-stochastic multi-fractal downscaling technique presented by Perica and Foufoula-Georgiou (1996) were compared, bringing Environment Canada's global ensemble rainfall forecasts from a 100 by 70-km resolution down to 6 by 4-km, while increasing each pixel's rainfall variance and preserving its original mean. For comparison purposes, simpler methods were also implemented such as the bi-linear interpolation, which disaggregates global forecasts without modifying their variance. The downscaled meteorological products were evaluated using different scores and diagrams, from both a meteorological and a hydrological view points. The meteorological evaluation was conducted comparing the forecasted rainfall depths against nine days of observed values taken from Québec City rain gauge database. These 9 days present strong precipitation events occurring during the summer of 2009. For the hydrologic evaluation, the hydrological models SWMM5 and (a modified version of) GR4J were implemented on a small 6 km2 urban catchment located in the Québec City region. Ensemble hydrologic forecasts with a time step of 3 hours were then performed over a 3-months period of the summer of 2010 using the original and downscaled ensemble rainfall forecasts. The most important conclusions of this work are that the overall quality of the forecasts was preserved during the disaggregation procedure and that the disaggregated products using this variance-enhancing method were of similar quality than bi-linear interpolation products. However, variance and dispersion of the different members were, of course, much improved for the variance-enhanced products, compared to the bi-linear interpolation, which is a decisive advantage. The disaggregation technique of Perica and Foufoula-Georgiou (1996) hence represents an interesting way of bridging the gap between the meteorological models' resolution and the high degree of spatial precision sometimes required by hydrological models in their precipitation representation. References Maraun, D., Wetterhall, F., Ireson, A. M., Chandler, R. E., Kendon, E. J., Widmann, M., Brienen, S., Rust, H. W., Sauter, T., Themeßl, M., Venema, V. K. C., Chun, K. P., Goodess, C. M., Jones, R. G., Onof, C., Vrac, M., and Thiele-Eich, I. 2010. Precipitation downscaling under climate change: recent developments to bridge the gap between dynamical models and the end user. Reviews of Geophysics, 48 (3): RG3003, [np]. Doi: 10.1029/2009RG000314. Perica, S., and Foufoula-Georgiou, E. 1996. Model for multiscale disaggregation of spatial rainfall based on coupling meteorological and scaling descriptions. Journal Of Geophysical Research, 101(D21): 26347-26361. Ruiz, J., Saulo, C. and Kalnay, E. 2009. Comparison of Methods Used to Generate Probabilistic Quantitative Precipitation Forecasts over South America. Weather and forecasting, 24: 319-336. DOI: 10.1175/2008WAF2007098.1 This work is distributed under the Creative Commons Attribution 3.0 Unported License together with an author copyright. This license does not conflict with the regulations of the Crown Copyright.

  16. Ability of matrix models to explain the past and predict the future of plant populations.

    USGS Publications Warehouse

    McEachern, Kathryn; Crone, Elizabeth E.; Ellis, Martha M.; Morris, William F.; Stanley, Amanda; Bell, Timothy; Bierzychudek, Paulette; Ehrlen, Johan; Kaye, Thomas N.; Knight, Tiffany M.; Lesica, Peter; Oostermeijer, Gerard; Quintana-Ascencio, Pedro F.; Ticktin, Tamara; Valverde, Teresa; Williams, Jennifer I.; Doak, Daniel F.; Ganesan, Rengaian; Thorpe, Andrea S.; Menges, Eric S.

    2013-01-01

    Uncertainty associated with ecological forecasts has long been recognized, but forecast accuracy is rarely quantified. We evaluated how well data on 82 populations of 20 species of plants spanning 3 continents explained and predicted plant population dynamics. We parameterized stage-based matrix models with demographic data from individually marked plants and determined how well these models forecast population sizes observed at least 5 years into the future. Simple demographic models forecasted population dynamics poorly; only 40% of observed population sizes fell within our forecasts' 95% confidence limits. However, these models explained population dynamics during the years in which data were collected; observed changes in population size during the data-collection period were strongly positively correlated with population growth rate. Thus, these models are at least a sound way to quantify population status. Poor forecasts were not associated with the number of individual plants or years of data. We tested whether vital rates were density dependent and found both positive and negative density dependence. However, density dependence was not associated with forecast error. Forecast error was significantly associated with environmental differences between the data collection and forecast periods. To forecast population fates, more detailed models, such as those that project how environments are likely to change and how these changes will affect population dynamics, may be needed. Such detailed models are not always feasible. Thus, it may be wiser to make risk-averse decisions than to expect precise forecasts from models.

  17. Ability of matrix models to explain the past and predict the future of plant populations.

    PubMed

    Crone, Elizabeth E; Ellis, Martha M; Morris, William F; Stanley, Amanda; Bell, Timothy; Bierzychudek, Paulette; Ehrlén, Johan; Kaye, Thomas N; Knight, Tiffany M; Lesica, Peter; Oostermeijer, Gerard; Quintana-Ascencio, Pedro F; Ticktin, Tamara; Valverde, Teresa; Williams, Jennifer L; Doak, Daniel F; Ganesan, Rengaian; McEachern, Kathyrn; Thorpe, Andrea S; Menges, Eric S

    2013-10-01

    Uncertainty associated with ecological forecasts has long been recognized, but forecast accuracy is rarely quantified. We evaluated how well data on 82 populations of 20 species of plants spanning 3 continents explained and predicted plant population dynamics. We parameterized stage-based matrix models with demographic data from individually marked plants and determined how well these models forecast population sizes observed at least 5 years into the future. Simple demographic models forecasted population dynamics poorly; only 40% of observed population sizes fell within our forecasts' 95% confidence limits. However, these models explained population dynamics during the years in which data were collected; observed changes in population size during the data-collection period were strongly positively correlated with population growth rate. Thus, these models are at least a sound way to quantify population status. Poor forecasts were not associated with the number of individual plants or years of data. We tested whether vital rates were density dependent and found both positive and negative density dependence. However, density dependence was not associated with forecast error. Forecast error was significantly associated with environmental differences between the data collection and forecast periods. To forecast population fates, more detailed models, such as those that project how environments are likely to change and how these changes will affect population dynamics, may be needed. Such detailed models are not always feasible. Thus, it may be wiser to make risk-averse decisions than to expect precise forecasts from models. © 2013 Society for Conservation Biology.

  18. Thirty Years of Improving the NCEP Global Forecast System

    NASA Astrophysics Data System (ADS)

    White, G. H.; Manikin, G.; Yang, F.

    2014-12-01

    Current eight day forecasts by the NCEP Global Forecast System are as accurate as five day forecasts 30 years ago. This revolution in weather forecasting reflects increases in computer power, improvements in the assimilation of observations, especially satellite data, improvements in model physics, improvements in observations and international cooperation and competition. One important component has been and is the diagnosis, evaluation and reduction of systematic errors. The effect of proposed improvements in the GFS on systematic errors is one component of the thorough testing of such improvements by the Global Climate and Weather Modeling Branch. Examples of reductions in systematic errors in zonal mean temperatures and winds and other fields will be presented. One challenge in evaluating systematic errors is uncertainty in what reality is. Model initial states can be regarded as the best overall depiction of the atmosphere, but can be misleading in areas of few observations or for fields not well observed such as humidity or precipitation over the oceans. Verification of model physics is particularly difficult. The Environmental Modeling Center emphasizes the evaluation of systematic biases against observations. Recently EMC has placed greater emphasis on synoptic evaluation and on precipitation, 2-meter temperatures and dew points and 10 meter winds. A weekly EMC map discussion reviews the performance of many models over the United States and has helped diagnose and alleviate significant systematic errors in the GFS, including a near surface summertime evening cold wet bias over the eastern US and a multi-week period when the GFS persistently developed bogus tropical storms off Central America. The GFS exhibits a wet bias for light rain and a dry bias for moderate to heavy rain over the continental United States. Significant changes to the GFS are scheduled to be implemented in the fall of 2014. These include higher resolution, improved physics and improvements to the assimilation. These changes significantly improve the tropospheric flow and reduce a tropical upper tropospheric warm bias. One important error remaining is the failure of the GFS to maintain deep convection over Indonesia and in the tropical west Pacific. This and other current systematic errors will be presented.

  19. Application of Satellite information (JASON-2) in improvement of Flood Forecasting and Early Warning Service in Bangladesh

    NASA Astrophysics Data System (ADS)

    Hossain, M. A.; Anderson, E. R.; Bhuiyan, M. A.; Hossain, F.; Shah-Newaz, S. M.

    2014-12-01

    Bangladesh is the lowest riparian of the huge system of the Ganges, Brahmaputra and Meghna (GBM) basins, second to that of Amazan, with 1.75 million sq-km catchment area, only 7% is inside Bangladesh. High inflow from GBM associated with the intense rainfall is the source of flood in Bangladesh. Flood Forecasting and Early Warning (FFEW) is the mandate and responsibility of Bangladesh Water Development Board (BWDB) and Flood Forecasting and Warning Center (FFWC) under BWDB has been carrying out this responsibility since 1972 and operational on 7-days a week during monsoon (May to October). FFEW system started with few hours lead time has been upgraded up to to 5-days with reasonable accuracy. At FFWC numerical Hydrodynamic model is used for generating water level (WL) forecast upto 5-days at 54 points on 29 rivers based on real-time observed WL of 83 and rainfall of 56 stations with boundary estimationa on daily basis. Main challenge of this system is the boundary estimation is the limited upstream data of the transboundary rivers, obstacle for increasing lead-time for FFEW. The satellite based upper catchment data may overcome this limitation. Recent NASA-French joint Satellite mission JASON-2 records Water Elevation (WE) and it may be used within 24 hours. Using JASON-2 recorded WE data of 4 and 3 virtual stations on the Ganges and Brahmaputra rivers , respectively (upper catchment), a new methodology has been developed for increasing lead time of forecast. Correlation between the JASON-2 recorded WE on the virtual stations at the upper catchment and WL of 2 dominating boundary stations at model boundary on the Ganges and Brahmaputra has been derived for generating WL forecast at those 2 boundary stations, which used as input in model. FFWC has started experimental 8-days lead-time WL forecast at 09 stations (5 in Brahmaputra and 4 in Ganges) using generated boundary data and regularly updating the results in the website. The trend of the forecasted WL using JASON-2 data is similar to those upto 5-days forecast generated in the existing system. This is a new approach in FFEW in Bangladesh where boundary estimation becomes possible using JASON-2 observed WE data of the Transboundary rivers. There is scope of further development of this system along with increase of lead time. Reference: www.ffwc.gov.bd

  20. Daily air quality index forecasting with hybrid models: A case in China.

    PubMed

    Zhu, Suling; Lian, Xiuyuan; Liu, Haixia; Hu, Jianming; Wang, Yuanyuan; Che, Jinxing

    2017-12-01

    Air quality is closely related to quality of life. Air pollution forecasting plays a vital role in air pollution warnings and controlling. However, it is difficult to attain accurate forecasts for air pollution indexes because the original data are non-stationary and chaotic. The existing forecasting methods, such as multiple linear models, autoregressive integrated moving average (ARIMA) and support vector regression (SVR), cannot fully capture the information from series of pollution indexes. Therefore, new effective techniques need to be proposed to forecast air pollution indexes. The main purpose of this research is to develop effective forecasting models for regional air quality indexes (AQI) to address the problems above and enhance forecasting accuracy. Therefore, two hybrid models (EMD-SVR-Hybrid and EMD-IMFs-Hybrid) are proposed to forecast AQI data. The main steps of the EMD-SVR-Hybrid model are as follows: the data preprocessing technique EMD (empirical mode decomposition) is utilized to sift the original AQI data to obtain one group of smoother IMFs (intrinsic mode functions) and a noise series, where the IMFs contain the important information (level, fluctuations and others) from the original AQI series. LS-SVR is applied to forecast the sum of the IMFs, and then, S-ARIMA (seasonal ARIMA) is employed to forecast the residual sequence of LS-SVR. In addition, EMD-IMFs-Hybrid first separately forecasts the IMFs via statistical models and sums the forecasting results of the IMFs as EMD-IMFs. Then, S-ARIMA is employed to forecast the residuals of EMD-IMFs. To certify the proposed hybrid model, AQI data from June 2014 to August 2015 collected from Xingtai in China are utilized as a test case to investigate the empirical research. In terms of some of the forecasting assessment measures, the AQI forecasting results of Xingtai show that the two proposed hybrid models are superior to ARIMA, SVR, GRNN, EMD-GRNN, Wavelet-GRNN and Wavelet-SVR. Therefore, the proposed hybrid models can be used as effective and simple tools for air pollution forecasting and warning as well as for management. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. A Novel Wind Speed Forecasting Model for Wind Farms of Northwest China

    NASA Astrophysics Data System (ADS)

    Wang, Jian-Zhou; Wang, Yun

    2017-01-01

    Wind resources are becoming increasingly significant due to their clean and renewable characteristics, and the integration of wind power into existing electricity systems is imminent. To maintain a stable power supply system that takes into account the stochastic nature of wind speed, accurate wind speed forecasting is pivotal. However, no single model can be applied to all cases. Recent studies show that wind speed forecasting errors are approximately 25% to 40% in Chinese wind farms. Presently, hybrid wind speed forecasting models are widely used and have been verified to perform better than conventional single forecasting models, not only in short-term wind speed forecasting but also in long-term forecasting. In this paper, a hybrid forecasting model is developed, the Similar Coefficient Sum (SCS) and Hermite Interpolation are exploited to process the original wind speed data, and the SVM model whose parameters are tuned by an artificial intelligence model is built to make forecast. The results of case studies show that the MAPE value of the hybrid model varies from 22.96% to 28.87 %, and the MAE value varies from 0.47 m/s to 1.30 m/s. Generally, Sign test, Wilcoxon's Signed-Rank test, and Morgan-Granger-Newbold test tell us that the proposed model is different from the compared models.

  2. An Intelligent Decision Support System for Workforce Forecast

    DTIC Science & Technology

    2011-01-01

    ARIMA ) model to forecast the demand for construction skills in Hong Kong. This model was based...Decision Trees ARIMA Rule Based Forecasting Segmentation Forecasting Regression Analysis Simulation Modeling Input-Output Models LP and NLP Markovian...data • When results are needed as a set of easily interpretable rules 4.1.4 ARIMA Auto-regressive, integrated, moving-average ( ARIMA ) models

  3. Modeling timelines for translational science in cancer; the impact of technological maturation

    PubMed Central

    McNamee, Laura M.; Ledley, Fred D.

    2017-01-01

    This work examines translational science in cancer based on theories of innovation that posit a relationship between the maturation of technologies and their capacity to generate successful products. We examined the growth of technologies associated with 138 anticancer drugs using an analytical model that identifies the point of initiation of exponential growth and the point at which growth slows as the technology becomes established. Approval of targeted and biological products corresponded with technological maturation, with first approval averaging 14 years after the established point and 44 years after initiation of associated technologies. The lag in cancer drug approvals after the increases in cancer funding and dramatic scientific advances of the 1970s thus reflects predictable timelines of technology maturation. Analytical models of technological maturation may be used for technological forecasting to guide more efficient translation of scientific discoveries into cures. PMID:28346525

  4. Civil helicopter noise assessment study Boeing-Vertol model 347. [recommendations for reduction of helicopter noise levels

    NASA Technical Reports Server (NTRS)

    Hinterkeuser, E. G.; Sternfeld, H., Jr.

    1974-01-01

    A study was conducted to forecast the noise restrictions which may be imposed on civil transport helicopters in the 1975-1985 time period. Certification and community acceptance criteria were predicted. A 50 passenger tandem rotor helicopter based on the Boeing-Vertol Model 347 was studied to determine the noise reductions required, and the means of achieving them. Some of the important study recommendations are: (1) certification limits should be equivalent to 95 EPNdb at data points located at 500 feet to each side of the touchdown/takeoff point, and 1000 feet from this point directly under the approach and departure flight path. (2) community acceptance should be measured as Equivalent Noise Level (Leq), based on dBA, with separate limits for day and night operations, and (3) in order to comply with the above guidelines, the Model 347 helicopter will require studies and tests leading to several modifications.

  5. Deep Learning Based Solar Flare Forecasting Model. I. Results for Line-of-sight Magnetograms

    NASA Astrophysics Data System (ADS)

    Huang, Xin; Wang, Huaning; Xu, Long; Liu, Jinfu; Li, Rong; Dai, Xinghua

    2018-03-01

    Solar flares originate from the release of the energy stored in the magnetic field of solar active regions, the triggering mechanism for these flares, however, remains unknown. For this reason, the conventional solar flare forecast is essentially based on the statistic relationship between solar flares and measures extracted from observational data. In the current work, the deep learning method is applied to set up the solar flare forecasting model, in which forecasting patterns can be learned from line-of-sight magnetograms of solar active regions. In order to obtain a large amount of observational data to train the forecasting model and test its performance, a data set is created from line-of-sight magnetogarms of active regions observed by SOHO/MDI and SDO/HMI from 1996 April to 2015 October and corresponding soft X-ray solar flares observed by GOES. The testing results of the forecasting model indicate that (1) the forecasting patterns can be automatically reached with the MDI data and they can also be applied to the HMI data; furthermore, these forecasting patterns are robust to the noise in the observational data; (2) the performance of the deep learning forecasting model is not sensitive to the given forecasting periods (6, 12, 24, or 48 hr); (3) the performance of the proposed forecasting model is comparable to that of the state-of-the-art flare forecasting models, even if the duration of the total magnetograms continuously spans 19.5 years. Case analyses demonstrate that the deep learning based solar flare forecasting model pays attention to areas with the magnetic polarity-inversion line or the strong magnetic field in magnetograms of active regions.

  6. The covariability of North American land-atmosphere coupling strength and rainfall characteristics in reanalyses

    NASA Astrophysics Data System (ADS)

    Ferguson, C. R.; Roundy, J. K.; Kim, W.

    2016-12-01

    The GEWEX North American Regional Hydroclimate Project (RHP): Water for the Food Baskets of the World initiative is aimed at: improving understanding of key processes—both natural and anthropogenic—that determine water availability, improving understanding of the independent and collective sensitivity of these processes to local and global change, and the integration of knowledge gained into the next model development cycle for the benefit of improved water availability forecasts. Considering that the agricultural sector accounts for three quarters of water withdrawals and suffers the brunt of drought-related financial damages, a rational RHP focal point is subseasonal-to-seasonal forecast skill. Forecasts on this timescale over the Great Plains food basket have shown particular sensitivity to land initial conditions (i.e., soil moisture, snow cover, and vegetative stress) and the realism of modeled land-atmosphere (L-A) coupling. L-A coupling strength denotes the degree to which the model's land scheme (i.e., soil column memory and surface flux partitioning) affect the atmospheric forecast scheme's daytime evolution of the convective boundary layer, including cloud development and precipitation. Prior studies have connected L-A coupling strength to the phase and amplitude of the diurnal precipitation cycle, as well as the evolution of heatwaves and drought. In this study, we apply three metrics of L-A coupling strength: soil moisture memory, the two-legged coupling metric, and the convective triggering potential-humidity index, to the 161-year NOAA-Cooperative Institute for Research in Environmental Sciences Twentieth Century Reanalysis (20CRV2c). Over the full period, we also analyze warm-season rainfall characteristics and subsequently perform statistical trend and change point analyses on both sets of results. We test the stationarity of both coupling and rainfall characteristics as well as the hypothesis that any detected shifts in coupling strength and afternoon rainfall frequency will coincide. Although the source data has inherent limitations that will be quantified and discussed, the results will be the first of their kind over such a long period of record and will provide key insights for the North American RHP.

  7. Improving inflow forecasting into hydropower reservoirs through a complementary modelling framework

    NASA Astrophysics Data System (ADS)

    Gragne, A. S.; Sharma, A.; Mehrotra, R.; Alfredsen, K.

    2014-10-01

    Accuracy of reservoir inflow forecasts is instrumental for maximizing the value of water resources and benefits gained through hydropower generation. Improving hourly reservoir inflow forecasts over a 24 h lead-time is considered within the day-ahead (Elspot) market of the Nordic exchange market. We present here a new approach for issuing hourly reservoir inflow forecasts that aims to improve on existing forecasting models that are in place operationally, without needing to modify the pre-existing approach, but instead formulating an additive or complementary model that is independent and captures the structure the existing model may be missing. Besides improving forecast skills of operational models, the approach estimates the uncertainty in the complementary model structure and produces probabilistic inflow forecasts that entrain suitable information for reducing uncertainty in the decision-making processes in hydropower systems operation. The procedure presented comprises an error model added on top of an un-alterable constant parameter conceptual model, the models being demonstrated with reference to the 207 km2 Krinsvatn catchment in central Norway. The structure of the error model is established based on attributes of the residual time series from the conceptual model. Deterministic and probabilistic evaluations revealed an overall significant improvement in forecast accuracy for lead-times up to 17 h. Season based evaluations indicated that the improvement in inflow forecasts varies across seasons and inflow forecasts in autumn and spring are less successful with the 95% prediction interval bracketing less than 95% of the observations for lead-times beyond 17 h.

  8. Forecasting daily emergency department visits using calendar variables and ambient temperature readings.

    PubMed

    Marcilio, Izabel; Hajat, Shakoor; Gouveia, Nelson

    2013-08-01

    This study aimed to develop different models to forecast the daily number of patients seeking emergency department (ED) care in a general hospital according to calendar variables and ambient temperature readings and to compare the models in terms of forecasting accuracy. The authors developed and tested six different models of ED patient visits using total daily counts of patient visits to an ED in Sao Paulo, Brazil, from January 1, 2008, to December 31, 2010. The first 33 months of the data set were used to develop the ED patient visits forecasting models (the training set), leaving the last 3 months to measure each model's forecasting accuracy by the mean absolute percentage error (MAPE). Forecasting models were developed using three different time-series analysis methods: generalized linear models (GLM), generalized estimating equations (GEE), and seasonal autoregressive integrated moving average (SARIMA). For each method, models were explored with and without the effect of mean daily temperature as a predictive variable. The daily mean number of ED visits was 389, ranging from 166 to 613. Data showed a weekly seasonal distribution, with highest patient volumes on Mondays and lowest patient volumes on weekends. There was little variation in daily visits by month. GLM and GEE models showed better forecasting accuracy than SARIMA models. For instance, the MAPEs from GLM models and GEE models at the first month of forecasting (October 2012) were 11.5 and 10.8% (models with and without control for the temperature effect, respectively), while the MAPEs from SARIMA models were 12.8 and 11.7%. For all models, controlling for the effect of temperature resulted in worse or similar forecasting ability than models with calendar variables alone, and forecasting accuracy was better for the short-term horizon (7 days in advance) than for the longer term (30 days in advance). This study indicates that time-series models can be developed to provide forecasts of daily ED patient visits, and forecasting ability was dependent on the type of model employed and the length of the time horizon being predicted. In this setting, GLM and GEE models showed better accuracy than SARIMA models. Including information about ambient temperature in the models did not improve forecasting accuracy. Forecasting models based on calendar variables alone did in general detect patterns of daily variability in ED volume and thus could be used for developing an automated system for better planning of personnel resources. © 2013 by the Society for Academic Emergency Medicine.

  9. Extending flood forecasting lead time in a large watershed by coupling WRF QPF with a distributed hydrological model

    NASA Astrophysics Data System (ADS)

    Li, Ji; Chen, Yangbo; Wang, Huanyu; Qin, Jianming; Li, Jie; Chiao, Sen

    2017-03-01

    Long lead time flood forecasting is very important for large watershed flood mitigation as it provides more time for flood warning and emergency responses. The latest numerical weather forecast model could provide 1-15-day quantitative precipitation forecasting products in grid format, and by coupling this product with a distributed hydrological model could produce long lead time watershed flood forecasting products. This paper studied the feasibility of coupling the Liuxihe model with the Weather Research and Forecasting quantitative precipitation forecast (WRF QPF) for large watershed flood forecasting in southern China. The QPF of WRF products has three lead times, including 24, 48 and 72 h, with the grid resolution being 20 km  × 20 km. The Liuxihe model is set up with freely downloaded terrain property; the model parameters were previously optimized with rain gauge observed precipitation, and re-optimized with the WRF QPF. Results show that the WRF QPF has bias with the rain gauge precipitation, and a post-processing method is proposed to post-process the WRF QPF products, which improves the flood forecasting capability. With model parameter re-optimization, the model's performance improves also. This suggests that the model parameters be optimized with QPF, not the rain gauge precipitation. With the increasing of lead time, the accuracy of the WRF QPF decreases, as does the flood forecasting capability. Flood forecasting products produced by coupling the Liuxihe model with the WRF QPF provide a good reference for large watershed flood warning due to its long lead time and rational results.

  10. Towards an Australian ensemble streamflow forecasting system for flood prediction and water management

    NASA Astrophysics Data System (ADS)

    Bennett, J.; David, R. E.; Wang, Q.; Li, M.; Shrestha, D. L.

    2016-12-01

    Flood forecasting in Australia has historically relied on deterministic forecasting models run only when floods are imminent, with considerable forecaster input and interpretation. These now co-existed with a continually available 7-day streamflow forecasting service (also deterministic) aimed at operational water management applications such as environmental flow releases. The 7-day service is not optimised for flood prediction. We describe progress on developing a system for ensemble streamflow forecasting that is suitable for both flood prediction and water management applications. Precipitation uncertainty is handled through post-processing of Numerical Weather Prediction (NWP) output with a Bayesian rainfall post-processor (RPP). The RPP corrects biases, downscales NWP output, and produces reliable ensemble spread. Ensemble precipitation forecasts are used to force a semi-distributed conceptual rainfall-runoff model. Uncertainty in precipitation forecasts is insufficient to reliably describe streamflow forecast uncertainty, particularly at shorter lead-times. We characterise hydrological prediction uncertainty separately with a 4-stage error model. The error model relies on data transformation to ensure residuals are homoscedastic and symmetrically distributed. To ensure streamflow forecasts are accurate and reliable, the residuals are modelled using a mixture-Gaussian distribution with distinct parameters for the rising and falling limbs of the forecast hydrograph. In a case study of the Murray River in south-eastern Australia, we show ensemble predictions of floods generally have lower errors than deterministic forecasting methods. We also discuss some of the challenges in operationalising short-term ensemble streamflow forecasts in Australia, including meeting the needs for accurate predictions across all flow ranges and comparing forecasts generated by event and continuous hydrological models.

  11. Weighting of NMME temperature and precipitation forecasts across Europe

    NASA Astrophysics Data System (ADS)

    Slater, Louise J.; Villarini, Gabriele; Bradley, A. Allen

    2017-09-01

    Multi-model ensemble forecasts are obtained by weighting multiple General Circulation Model (GCM) outputs to heighten forecast skill and reduce uncertainties. The North American Multi-Model Ensemble (NMME) project facilitates the development of such multi-model forecasting schemes by providing publicly-available hindcasts and forecasts online. Here, temperature and precipitation forecasts are enhanced by leveraging the strengths of eight NMME GCMs (CCSM3, CCSM4, CanCM3, CanCM4, CFSv2, GEOS5, GFDL2.1, and FLORb01) across all forecast months and lead times, for four broad climatic European regions: Temperate, Mediterranean, Humid-Continental and Subarctic-Polar. We compare five different approaches to multi-model weighting based on the equally weighted eight single-model ensembles (EW-8), Bayesian updating (BU) of the eight single-model ensembles (BU-8), BU of the 94 model members (BU-94), BU of the principal components of the eight single-model ensembles (BU-PCA-8) and BU of the principal components of the 94 model members (BU-PCA-94). We assess the forecasting skill of these five multi-models and evaluate their ability to predict some of the costliest historical droughts and floods in recent decades. Results indicate that the simplest approach based on EW-8 preserves model skill, but has considerable biases. The BU and BU-PCA approaches reduce the unconditional biases and negative skill in the forecasts considerably, but they can also sometimes diminish the positive skill in the original forecasts. The BU-PCA models tend to produce lower conditional biases than the BU models and have more homogeneous skill than the other multi-models, but with some loss of skill. The use of 94 NMME model members does not present significant benefits over the use of the 8 single model ensembles. These findings may provide valuable insights for the development of skillful, operational multi-model forecasting systems.

  12. Developing a dengue early warning system using time series model: Case study in Tainan, Taiwan

    NASA Astrophysics Data System (ADS)

    Chen, Xiao-Wei; Jan, Chyan-Deng; Wang, Ji-Shang

    2017-04-01

    Dengue fever (DF) is a climate-sensitive disease that has been emerging in southern regions of Taiwan over the past few decades, causing a significant health burden to affected areas. This study aims to propose a predictive model to implement an early warning system so as to enhance dengue surveillance and control in Tainan, Taiwan. The Seasonal Autoregressive Integrated Moving Average (SARIMA) model was used herein to forecast dengue cases. Temporal correlation between dengue incidences and climate variables were examined by Pearson correlation analysis and Cross-correlation tests in order to identify key determinants to be included as predictors. The dengue surveillance data between 2000 and 2009, as well as their respective climate variables were then used as inputs for the model. We validated the model by forecasting the number of dengue cases expected to occur each week between January 1, 2010 and December 31, 2015. In addition, we analyzed historical dengue trends and found that 25 cases occurring in one week was a trigger point that often led to a dengue outbreak. This threshold point was combined with the season-based framework put forth by the World Health Organization to create a more accurate epidemic threshold for a Tainan-specific warning system. A Seasonal ARIMA model with the general form: (1,0,5)(1,1,1)52 is identified as the most appropriate model based on lowest AIC, and was proven significant in the prediction of observed dengue cases. Based on the correlation coefficient, Lag-11 maximum 1-hr rainfall (r=0.319, P<0.05) and Lag-11 minimum temperature (r=0.416, P<0.05) are found to be the most positively correlated climate variables. Comparing the four multivariate models(i.e.1, 4, 9 and 13 weeks ahead), we found that including the climate variables improves the prediction RMSE as high as 3.24%, 10.39%, 17.96%, 21.81% respectively, in contrast to univariate models. Furthermore, the ability of the four multivariate models to determine whether the epidemic threshold would be exceeded in any given week during the forecasting period of 2010-2015 was analyzed using a contingency table. The 4 weeks-ahead approach was the most appropriate for an operational public health response with a 78.7% hit rate and 0.7% false alarm rate. Our findings indicate that SARIMA model is an ideal model for detecting outbreaks as it has high sensitivity and low risk of false alarms. Accurately forecasting future trends will provide valuable time to activate dengue surveillance and control in Tainan, Taiwan. We conclude that this timely dengue early warning system will enable public health services to allocate limited resources more effectively, and public health officials to adjust dengue emergency response plans to their maximum capabilities.

  13. A comparison of GLAS SAT and NMC high resolution NOSAT forecasts from 19 and 11 February 1976

    NASA Technical Reports Server (NTRS)

    Atlas, R.

    1979-01-01

    A subjective comparison of the Goddard Laboratory for Atmospheric Sciences (GLAS) and the National Meteorological Center (NMC) high resolution model forecasts is presented. Two cases where NMC's operational model in 1976 had serious difficulties in forecasting for the United States were examined. For each of the cases, the GLAS model forecasts from initial conditions which included satellite sounding data were compared directly to the NMC higher resolution model forecasts, from initial conditions which excluded the satellite data. The comparison showed that the GLAS satellite forecasts significantly improved upon the current NMC operational model's predictions in both cases.

  14. Estimating indices of range shifts in birds using dynamic models when detection is imperfect

    USGS Publications Warehouse

    Clement, Matthew J.; Hines, James E.; Nichols, James D.; Pardieck, Keith L.; Ziolkowski, David J.

    2016-01-01

    There is intense interest in basic and applied ecology about the effect of global change on current and future species distributions. Projections based on widely used static modeling methods implicitly assume that species are in equilibrium with the environment and that detection during surveys is perfect. We used multiseason correlated detection occupancy models, which avoid these assumptions, to relate climate data to distributional shifts of Louisiana Waterthrush in the North American Breeding Bird Survey (BBS) data. We summarized these shifts with indices of range size and position and compared them to the same indices obtained using more basic modeling approaches. Detection rates during point counts in BBS surveys were low, and models that ignored imperfect detection severely underestimated the proportion of area occupied and slightly overestimated mean latitude. Static models indicated Louisiana Waterthrush distribution was most closely associated with moderate temperatures, while dynamic occupancy models indicated that initial occupancy was associated with diurnal temperature ranges and colonization of sites was associated with moderate precipitation. Overall, the proportion of area occupied and mean latitude changed little during the 1997–2013 study period. Near-term forecasts of species distribution generated by dynamic models were more similar to subsequently observed distributions than forecasts from static models. Occupancy models incorporating a finite mixture model on detection – a new extension to correlated detection occupancy models – were better supported and may reduce bias associated with detection heterogeneity. We argue that replacing phenomenological static models with more mechanistic dynamic models can improve projections of future species distributions. In turn, better projections can improve biodiversity forecasts, management decisions, and understanding of global change biology.

  15. Reliable estimates of predictive uncertainty for an Alpine catchment using a non-parametric methodology

    NASA Astrophysics Data System (ADS)

    Matos, José P.; Schaefli, Bettina; Schleiss, Anton J.

    2017-04-01

    Uncertainty affects hydrological modelling efforts from the very measurements (or forecasts) that serve as inputs to the more or less inaccurate predictions that are produced. Uncertainty is truly inescapable in hydrology and yet, due to the theoretical and technical hurdles associated with its quantification, it is at times still neglected or estimated only qualitatively. In recent years the scientific community has made a significant effort towards quantifying this hydrologic prediction uncertainty. Despite this, most of the developed methodologies can be computationally demanding, are complex from a theoretical point of view, require substantial expertise to be employed, and are constrained by a number of assumptions about the model error distribution. These assumptions limit the reliability of many methods in case of errors that show particular cases of non-normality, heteroscedasticity, or autocorrelation. The present contribution builds on a non-parametric data-driven approach that was developed for uncertainty quantification in operational (real-time) forecasting settings. The approach is based on the concept of Pareto optimality and can be used as a standalone forecasting tool or as a postprocessor. By virtue of its non-parametric nature and a general operating principle, it can be applied directly and with ease to predictions of streamflow, water stage, or even accumulated runoff. Also, it is a methodology capable of coping with high heteroscedasticity and seasonal hydrological regimes (e.g. snowmelt and rainfall driven events in the same catchment). Finally, the training and operation of the model are very fast, making it a tool particularly adapted to operational use. To illustrate its practical use, the uncertainty quantification method is coupled with a process-based hydrological model to produce statistically reliable forecasts for an Alpine catchment located in Switzerland. Results are presented and discussed in terms of their reliability and resolution.

  16. Artificial intelligence approach with the use of artificial neural networks for the creation of a forecasting model of Plasmopara viticola infection.

    PubMed

    Bugliosi, R; Spera, G; La Torre, A; Campoli, L; Scaglione, M

    2006-01-01

    Most of the forecasting models of Plasmopara viticola infections are based upon empiric correlations between meteorological/environmental data and pathogen outbreak. These models generally overestimate the risk of infections and induce to treat the vineyard even if it should be not necessary. In rare cases they underrate the risk of infection leaving the pathogen to breakout. Starting from these considerations we have decided to approach the problem from another point of view utilizing Artificial Intelligence techniques for data elaboration and analysis. Meanwhile the same data have been studied with a more classic approach with statistical tools to verify the impact of a large data collection on the standard data analysis methods. A network of RTUs (Remote Terminal Units) distributed all over the Italian national territory transmits 12 environmental parameters every 15 minutes via radio or via GPRS to a centralized Data Base. Other pedologic data is collected directly from the field and sent via Internet to the centralized data base utilizing Personal Digital Assistants (PDAs) running a specific software. Data is stored after having been preprocessed, to guarantee the quality of the information. The subsequent analysis has been realized mostly with Artificial Neural Networks (ANNs). Collecting and analizing data in this way will probably bring us to the possibility of preventing Plasmospara viticola infection starting from the environmental conditions in this very complex context. The aim of this work is to forecast the infection avoiding the ineffective use of the plant protection products in agriculture. Applying different analysis models we will try to find the best ANN capable of forecasting with an high level of affordability.

  17. Satellite Sounder Data Assimilation for Improving Alaska Region Weather Forecast

    NASA Technical Reports Server (NTRS)

    Zhu, Jiang; Stevens, E.; Zhang, X.; Zavodsky, B. T.; Heinrichs, T.; Broderson, D.

    2014-01-01

    A case study and monthly statistical analysis using sounder data assimilation to improve the Alaska regional weather forecast model are presented. Weather forecast in Alaska faces challenges as well as opportunities. Alaska has a large land with multiple types of topography and coastal area. Weather forecast models must be finely tuned in order to accurately predict weather in Alaska. Being in the high-latitudes provides Alaska greater coverage of polar orbiting satellites for integration into forecasting models than the lower 48. Forecasting marine low stratus clouds is critical to the Alaska aviation and oil industry and is the current focus of the case study. NASA AIRS/CrIS sounder profiles data are used to do data assimilation for the Alaska regional weather forecast model to improve Arctic marine stratus clouds forecast. Choosing physical options for the WRF model is discussed. Preprocess of AIRS/CrIS sounder data for data assimilation is described. Local observation data, satellite data, and global data assimilation data are used to verify and/or evaluate the forecast results by the MET tools Model Evaluation Tools (MET).

  18. Operational hydrological forecasting in Bavaria. Part II: Ensemble forecasting

    NASA Astrophysics Data System (ADS)

    Ehret, U.; Vogelbacher, A.; Moritz, K.; Laurent, S.; Meyer, I.; Haag, I.

    2009-04-01

    In part I of this study, the operational flood forecasting system in Bavaria and an approach to identify and quantify forecast uncertainty was introduced. The approach is split into the calculation of an empirical 'overall error' from archived forecasts and the calculation of an empirical 'model error' based on hydrometeorological forecast tests, where rainfall observations were used instead of forecasts. The 'model error' can especially in upstream catchments where forecast uncertainty is strongly dependent on the current predictability of the atrmosphere be superimposed on the spread of a hydrometeorological ensemble forecast. In Bavaria, two meteorological ensemble prediction systems are currently tested for operational use: the 16-member COSMO-LEPS forecast and a poor man's ensemble composed of DWD GME, DWD Cosmo-EU, NCEP GFS, Aladin-Austria, MeteoSwiss Cosmo-7. The determination of the overall forecast uncertainty is dependent on the catchment characteristics: 1. Upstream catchment with high influence of weather forecast a) A hydrological ensemble forecast is calculated using each of the meteorological forecast members as forcing. b) Corresponding to the characteristics of the meteorological ensemble forecast, each resulting forecast hydrograph can be regarded as equally likely. c) The 'model error' distribution, with parameters dependent on hydrological case and lead time, is added to each forecast timestep of each ensemble member d) For each forecast timestep, the overall (i.e. over all 'model error' distribution of each ensemble member) error distribution is calculated e) From this distribution, the uncertainty range on a desired level (here: the 10% and 90% percentile) is extracted and drawn as forecast envelope. f) As the mean or median of an ensemble forecast does not necessarily exhibit meteorologically sound temporal evolution, a single hydrological forecast termed 'lead forecast' is chosen and shown in addition to the uncertainty bounds. This can be either an intermediate forecast between the extremes of the ensemble spread or a manually selected forecast based on a meteorologists advice. 2. Downstream catchments with low influence of weather forecast In downstream catchments with strong human impact on discharge (e.g. by reservoir operation) and large influence of upstream gauge observation quality on forecast quality, the 'overall error' may in most cases be larger than the combination of the 'model error' and an ensemble spread. Therefore, the overall forecast uncertainty bounds are calculated differently: a) A hydrological ensemble forecast is calculated using each of the meteorological forecast members as forcing. Here, additionally the corresponding inflow hydrograph from all upstream catchments must be used. b) As for an upstream catchment, the uncertainty range is determined by combination of 'model error' and the ensemble member forecasts c) In addition, the 'overall error' is superimposed on the 'lead forecast'. For reasons of consistency, the lead forecast must be based on the same meteorological forecast in the downstream and all upstream catchments. d) From the resulting two uncertainty ranges (one from the ensemble forecast and 'model error', one from the 'lead forecast' and 'overall error'), the envelope is taken as the most prudent uncertainty range. In sum, the uncertainty associated with each forecast run is calculated and communicated to the public in the form of 10% and 90% percentiles. As in part I of this study, the methodology as well as the useful- or uselessness of the resulting uncertainty ranges will be presented and discussed by typical examples.

  19. A probabilistic neural network based approach for predicting the output power of wind turbines

    NASA Astrophysics Data System (ADS)

    Tabatabaei, Sajad

    2017-03-01

    Finding the authentic predicting tools of eliminating the uncertainty of wind speed forecasts is highly required while wind power sources are strongly penetrating. Recently, traditional predicting models of generating point forecasts have no longer been trustee. Thus, the present paper aims at utilising the concept of prediction intervals (PIs) to assess the uncertainty of wind power generation in power systems. Besides, this paper uses a newly introduced non-parametric approach called lower upper bound estimation (LUBE) to build the PIs since the forecasting errors are unable to be modelled properly by applying distribution probability functions. In the present proposed LUBE method, a PI combination-based fuzzy framework is used to overcome the performance instability of neutral networks (NNs) used in LUBE. In comparison to other methods, this formulation more suitably has satisfied the PI coverage and PI normalised average width (PINAW). Since this non-linear problem has a high complexity, a new heuristic-based optimisation algorithm comprising a novel modification is introduced to solve the aforesaid problems. Based on data sets taken from a wind farm in Australia, the feasibility and satisfying performance of the suggested method have been investigated.

  20. Verification of FLYSAFE Clear Air Turbulence (CAT) objects against aircraft turbulence measurements

    NASA Astrophysics Data System (ADS)

    Lunnon, R.; Gill, P.; Reid, L.; Mirza, A.

    2009-09-01

    Prediction of gridded CAT fields The main causes of CAT are (a) Vertical wind shear - low Richardson Number (b) Mountain waves (c) Convection. All three causes contribute roughly equally to CAT occurrences, globally Prediction of shear induced CAT The predictions of shear induced CAT has a longer history than either mountain-wave induced CAT or convectively induced CAT. Both Global Aviation Forecasting Centres are currently using the Ellrod TI1 algorithm (Ellrod and Knapp, 1992). This predictor is the scalar product of deformation [akm1]and vertical wind shear. More sophisticated algorithms can amplify errors in non-linear, differentiated quantities so it is very likely that Ellrod will out-perform other algorithms when verified globally. Prediction of mountain wave CAT The Global Aviation Forecasting Centre in the UK has been generating automated forecasts of mountain wave CAT since the late 1990s, based on the diagnosis of gravity wave drag. Generation of CAT objects In the FLYSAFE project it was decided at an early stage that short range forecasts of meteorological hazards, i.e. icing, Clear Air Turbulence, Cumulonimbus Clouds, should be represented as weather objects, that is, descriptions of individual hazardous volumes of airspace. For CAT, the forecast information on which the weather objects were based was gridded, that comprised a representation of a hazard level for all points in a pre-defined 3-D grid, for a range of forecast times. A "grid-to-objects" capability was generated. This is discussed further in Mirza and Drouin (this conference). Verification of CAT forecasts Verification was performed using digital accelerometer data from aircraft in the British Airways Boeing 747 fleet. A preliminary processing of the aircraft data were performed to generate a truth field on a scale similar to that used to provide gridded forecasts to airlines. This truth field was binary, i.e. each flight segment was characterised as being either "turbulent" or "benign". A gridded forecast field is a continuously changing variable. In contrast, a simple weather object must be characterised by a specific threshold. For a gridded forecast and a binary truth measure it is possible to generate Relative Operating Characteristic (ROC) curves. For weather objects, a single point in the hit-rate/false-alarm-rate space can be generated. If this point is plotted on a ROC curve graph then the skill of the forecast using weather objects can be compared with the skill of the gridded forecast.

  1. New Models for Forecasting Enrollments: Fuzzy Time Series and Neural Network Approaches.

    ERIC Educational Resources Information Center

    Song, Qiang; Chissom, Brad S.

    Since university enrollment forecasting is very important, many different methods and models have been proposed by researchers. Two new methods for enrollment forecasting are introduced: (1) the fuzzy time series model; and (2) the artificial neural networks model. Fuzzy time series has been proposed to deal with forecasting problems within a…

  2. Discover Space Weather and Sun's Superpowers: Using CCMC's innovative tools and applications

    NASA Astrophysics Data System (ADS)

    Mendoza, A. M. M.; Maddox, M. M.; Kuznetsova, M. M.; Chulaki, A.; Rastaetter, L.; Mullinix, R.; Weigand, C.; Boblitt, J.; Taktakishvili, A.; MacNeice, P. J.; Pulkkinen, A. A.; Pembroke, A. D.; Mays, M. L.; Zheng, Y.; Shim, J. S.

    2015-12-01

    Community Coordinated Modeling Center (CCMC) has developed a comprehensive set of tools and applications that are directly applicable to space weather and space science education. These tools, some of which were developed by our student interns, are capable of serving a wide range of student audiences, from middle school to postgraduate research. They include a web-based point of access to sophisticated space physics models and visualizations, and a powerful space weather information dissemination system, available on the web and as a mobile app. In this demonstration, we will use CCMC's innovative tools to engage the audience in real-time space weather analysis and forecasting and will share some of our interns' hands-on experiences while being trained as junior space weather forecasters. The main portals to CCMC's educational material are ccmc.gsfc.nasa.gov and iswa.gsfc.nasa.gov

  3. Wildland Fire Forecasting: Predicting Wildfire Behavior, Growth, and Feedbacks on Weather

    NASA Astrophysics Data System (ADS)

    Coen, J. L.

    2005-12-01

    Recent developments in wildland fire research models have represented more complex of fire behavior. The cost has been to increase the computational requirements. When operational constraints are included, such as the need to produce such forecasts faster than real time, the challenge becomes a balance of how much complexity (with corresponding gains in realism) and accuracy can be achieved in producing the quantities of interest while meeting the specified operational constraints. Current field tools are calculator or Palm-Pilot based algorithms such as BEHAVE and BEHAVE Plus that produce timely estimates of instantaneous fire spread rates, flame length, and fire intensity at a point using readily estimated inputs of fuel model, terrain slope, and atmospheric wind speed at a point. At the cost of requiring a PC and slower calculation, FARSITE represents two-dimensional fire spread and adds capabilities including a parameterized representation of crown fire ignition, This work describes how a coupled atmosphere-fire model previously used as a research tool has been adapted for production of real-time forecasts of fire growth and its interactions with weather over a domain focusing on Colorado during summer 2004. The coupled atmosphere-wildland fire-environment (CAWFE) model composed of a 3-dimensional atmospheric prediction model that has been two-way coupled with an empirical fire spread model. The models are connected in that atmospheric conditions (and fuel conditions influenced by the atmosphere) affect the rate and direction of fire propagation, which releases sensible and latent heat (i.e. thermal and water vapor fluxes) to the atmosphere that in turn alter the winds and atmospheric structure around the fire. Thus, it can represent time and spatially-varying weather and the fire feedbacks on the atmospheric which are at the heart of sudden changes in fire behavior and examples of extreme fire behavior such as blow ups, which are now not predictable with current tools. Thus, although this work shows that is it possible to perform more detailed simulations in real time, fire behavior forecasting remains a challenging problem. This is due to challenges in weather prediction, particularly at fine spatial and temporal scales considered "nowcasting" (0-6 hrs), uncertainties in fire behavior even with known meteorological conditions, limitations in quantitative datasets on fuel properties such as fuel loading, and verification. This work describes efforts to advance these capabilities with input from remote sensing data on fuel characteristics and dynamic steering and object-based verification with remotely sensed fire perimeters.

  4. On an improvement of UV index forecast: UV index diagnosis and forecast for Belsk, Poland, in Spring/Summer 1999

    NASA Astrophysics Data System (ADS)

    Krzyścin, J. W.; Jaroslawski, J.; Sobolewski, P.

    2001-10-01

    A forecast of the UV index for the following day is presented. The standard approach to the UV index modelling is applied, i.e., the clear-sky UV index is multiplied by the UV cloud transmission factor. The input to the clear-sky model (tropospheric ultraviolet and visible-TUV model, Madronich, in: M. Tevini (Ed.), Environmental Effects of Ultraviolet Radiation, Lewis Publisher, Boca Raton, /1993, p. 17) consists of the total ozone forecast (by a regression model using the observed and forecasted meteorological variables taken as the initial values of aviation (AVN) global model and their 24-hour forecasts, respectively) and aerosols optical depth (AOD) forecast (assumed persistence). The cloud transmission factor forecast is inferred from the 24-h AVN model run for the total (Sun/+sky) solar irradiance at noon. The model is validated comparing the UV index forecasts with the observed values, which are derived from the daily pattern of the UV erythemal irradiance taken at Belsk (52°N,21°E), Poland, by means of the UV Biometer Solar model 501A for the period May-September 1999. Eighty-one percent and 92% of all forecasts fall into /+/-1 and /+/-2 index unit range, respectively. Underestimation of UV index occurs only in 15%. Thus, the model gives a high security in Sun protection for the public. It is found that in /~35% of all cases a more accurate forecast of AOD is needed to estimate the daily maximum of clear-sky irradiance with the error not exceeding 5%. The assumption of the persistence of the cloud characteristics appears as an alternative to the 24-h forecast of the cloud transmission factor in the case when the AVN prognoses are not available.

  5. Evaluation of streamflow forecast for the National Water Model of U.S. National Weather Service

    NASA Astrophysics Data System (ADS)

    Rafieeinasab, A.; McCreight, J. L.; Dugger, A. L.; Gochis, D.; Karsten, L. R.; Zhang, Y.; Cosgrove, B.; Liu, Y.

    2016-12-01

    The National Water Model (NWM), an implementation of the community WRF-Hydro modeling system, is an operational hydrologic forecasting model for the contiguous United States. The model forecasts distributed hydrologic states and fluxes, including soil moisture, snowpack, ET, and ponded water. In particular, the NWM provides streamflow forecasts at more than 2.7 million river reaches for three forecast ranges: short (15 hr), medium (10 days), and long (30 days). In this study, we verify short and medium range streamflow forecasts in the context of the verification of their respective quantitative precipitation forecasts/forcing (QPF), the High Resolution Rapid Refresh (HRRR) and the Global Forecast System (GFS). The streamflow evaluation is performed for summer of 2016 at more than 6,000 USGS gauges. Both individual forecasts and forecast lead times are examined. Selected case studies of extreme events aim to provide insight into the quality of the NWM streamflow forecasts. A goal of this comparison is to address how much streamflow bias originates from precipitation forcing bias. To this end, precipitation verification is performed over the contributing areas above (and between assimilated) USGS gauge locations. Precipitation verification is based on the aggregated, blended StageIV/StageII data as the "reference truth". We summarize the skill of the streamflow forecasts, their skill relative to the QPF, and make recommendations for improving NWM forecast skill.

  6. Meteoroid Environment Modeling: The Meteoroid Engineering Model and Shower Forecasting

    NASA Technical Reports Server (NTRS)

    Moorhead, Althea V.

    2017-01-01

    The meteoroid environment is often divided conceptually into meteor showers and the sporadic meteor background. It is commonly but incorrectly assumed that meteoroid impacts primarily occur during meteor showers; instead, the vast majority of hazardous meteoroids belong to the sporadic complex. Unlike meteor showers, which persist for a few hours to a few weeks, sporadic meteoroids impact the Earth's atmosphere and spacecraft throughout the year. The Meteoroid Environment Office (MEO) has produced two environment models to handle these cases: the Meteoroid Engineering Model (MEM) and an annual meteor shower forecast. The sporadic complex, despite its year-round activity, is not isotropic in its directionality. Instead, their apparent points of origin, or radiants, are organized into groups called "sources". The speed, directionality, and size distribution of these sporadic sources are modeled by the Meteoroid Engineering Model (MEM), which is currently in its second major release version (MEMR2) [Moorhead et al., 2015]. MEM provides the meteoroid flux relative to a user-provided spacecraft trajectory; it provides the total flux as well as the flux per angular bin, speed interval, and on specific surfaces (ram, wake, etc.). Because the sporadic complex dominates the meteoroid flux, MEM is the most appropriate model to use in spacecraft design. Although showers make up a small fraction of the meteoroid environment, they can produce significant short-term enhancements of the meteoroid flux. Thus, it can be valuable to consider showers when assessing risks associated with vehicle operations that are brief in duration. To assist with such assessments, the MEO issues an annual forecast that reports meteor shower fluxes as a function of time and compares showers with the time-averaged total meteoroid flux. This permits missions to do quick assessments of the increase in risk posed by meteor showers. Section II describes MEM in more detail and describes our current efforts to improve its characteristics for a future release. Section III describes the annual shower forecast and highlights recent improvements made to its algorithm and inputs.

  7. Using Terrain Analysis and Remote Sensing to Improve Snow Mass Balance and Runoff Prediction

    NASA Astrophysics Data System (ADS)

    Venteris, E. R.; Coleman, A. M.; Wigmosta, M. S.

    2010-12-01

    Approximately 70-80% of the water in the international Columbia River basin is sourced from snowmelt. The demand for this water has competing needs, as it is used for agricultural irrigation, municipal, hydro and nuclear power generation, and environmental in-stream flow requirements. Accurate forecasting of water supply is essential for planning current needs and prediction of future demands due to growth and climate change. A significant limitation on current forecasting is spatial and temporal uncertainty in snowpack characteristics, particularly snow water equivalent. Currently, point measurements of snow mass balance are provided by the NRCS SNOTEL network. Each site consists of a snow mass sensor and meteorology station that monitors snow water equivalent, snow depth, precipitation, and temperature. There are currently 152 sites in the mountains of Oregon and Washington. An important step in improving forecasts is determining how representative each SNOTEL site is of the total mass balance of the watershed through a full accounting of the spatiotemporal variability in snowpack processes. This variation is driven by the interaction between meteorological processes, land cover, and landform. Statistical and geostatistical spatial models relate the state of the snowpack (characterized through SNOTEL, snow course measurements, and multispectral remote sensing) to terrain attributes derived from digital elevation models (elevation, aspect, slope, compound topographic index, topographic shading, etc.) and land cover. Time steps representing the progression of the snow season for several meteorologically distinct water years are investigated to identify and quantify dominant physical processes. The spatially distributed snow balance data can be used directly as model inputs to improve short- and long-range hydrologic forecasts.

  8. Predictive Skill of Meteorological Drought Based on Multi-Model Ensemble Forecasts: A Real-Time Assessment

    NASA Astrophysics Data System (ADS)

    Chen, L. C.; Mo, K. C.; Zhang, Q.; Huang, J.

    2014-12-01

    Drought prediction from monthly to seasonal time scales is of critical importance to disaster mitigation, agricultural planning, and multi-purpose reservoir management. Starting in December 2012, NOAA Climate Prediction Center (CPC) has been providing operational Standardized Precipitation Index (SPI) Outlooks using the North American Multi-Model Ensemble (NMME) forecasts, to support CPC's monthly drought outlooks and briefing activities. The current NMME system consists of six model forecasts from U.S. and Canada modeling centers, including the CFSv2, CM2.1, GEOS-5, CCSM3.0, CanCM3, and CanCM4 models. In this study, we conduct an assessment of the predictive skill of meteorological drought using real-time NMME forecasts for the period from May 2012 to May 2014. The ensemble SPI forecasts are the equally weighted mean of the six model forecasts. Two performance measures, the anomaly correlation coefficient and root-mean-square errors against the observations, are used to evaluate forecast skill.Similar to the assessment based on NMME retrospective forecasts, predictive skill of monthly-mean precipitation (P) forecasts is generally low after the second month and errors vary among models. Although P forecast skill is not large, SPI predictive skill is high and the differences among models are small. The skill mainly comes from the P observations appended to the model forecasts. This factor also contributes to the similarity of SPI prediction among the six models. Still, NMME SPI ensemble forecasts have higher skill than those based on individual models or persistence, and the 6-month SPI forecasts are skillful out to four months. The three major drought events occurred during the 2012-2014 period, the 2012 Central Great Plains drought, the 2013 Upper Midwest flash drought, and 2013-2014 California drought, are used as examples to illustrate the system's strength and limitations. For precipitation-driven drought events, such as the 2012 Central Great Plains drought, NMME SPI forecasts perform well in predicting drought severity and spatial patterns. For fast-developing drought events, such as the 2013 Upper Midwest flash drought, the system failed to capture the onset of the drought.

  9. A data-driven multi-model methodology with deep feature selection for short-term wind forecasting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Cong; Cui, Mingjian; Hodge, Bri-Mathias

    With the growing wind penetration into the power system worldwide, improving wind power forecasting accuracy is becoming increasingly important to ensure continued economic and reliable power system operations. In this paper, a data-driven multi-model wind forecasting methodology is developed with a two-layer ensemble machine learning technique. The first layer is composed of multiple machine learning models that generate individual forecasts. A deep feature selection framework is developed to determine the most suitable inputs to the first layer machine learning models. Then, a blending algorithm is applied in the second layer to create an ensemble of the forecasts produced by firstmore » layer models and generate both deterministic and probabilistic forecasts. This two-layer model seeks to utilize the statistically different characteristics of each machine learning algorithm. A number of machine learning algorithms are selected and compared in both layers. This developed multi-model wind forecasting methodology is compared to several benchmarks. The effectiveness of the proposed methodology is evaluated to provide 1-hour-ahead wind speed forecasting at seven locations of the Surface Radiation network. Numerical results show that comparing to the single-algorithm models, the developed multi-model framework with deep feature selection procedure has improved the forecasting accuracy by up to 30%.« less

  10. Multiple "buy buttons" in the brain: Forecasting chocolate sales at point-of-sale based on functional brain activation using fMRI.

    PubMed

    Kühn, Simone; Strelow, Enrique; Gallinat, Jürgen

    2016-08-01

    We set out to forecast consumer behaviour in a supermarket based on functional magnetic resonance imaging (fMRI). Data was collected while participants viewed six chocolate bar communications and product pictures before and after each communication. Then self-reports liking judgement were collected. fMRI data was extracted from a priori selected brain regions: nucleus accumbens, medial orbitofrontal cortex, amygdala, hippocampus, inferior frontal gyrus, dorsomedial prefrontal cortex assumed to contribute positively and dorsolateral prefrontal cortex and insula were hypothesized to contribute negatively to sales. The resulting values were rank ordered. After our fMRI-based forecast an instore test was conducted in a supermarket on n=63.617 shoppers. Changes in sales were best forecasted by fMRI signal during communication viewing, second best by a comparison of brain signal during product viewing before and after communication and least by explicit liking judgements. The results demonstrate the feasibility of applying neuroimaging methods in a relatively small sample to correctly forecast sales changes at point-of-sale. Copyright © 2016. Published by Elsevier Inc.

  11. Ensemble downscaling in coupled solar wind-magnetosphere modeling for space weather forecasting

    PubMed Central

    Owens, M J; Horbury, T S; Wicks, R T; McGregor, S L; Savani, N P; Xiong, M

    2014-01-01

    Advanced forecasting of space weather requires simulation of the whole Sun-to-Earth system, which necessitates driving magnetospheric models with the outputs from solar wind models. This presents a fundamental difficulty, as the magnetosphere is sensitive to both large-scale solar wind structures, which can be captured by solar wind models, and small-scale solar wind “noise,” which is far below typical solar wind model resolution and results primarily from stochastic processes. Following similar approaches in terrestrial climate modeling, we propose statistical “downscaling” of solar wind model results prior to their use as input to a magnetospheric model. As magnetospheric response can be highly nonlinear, this is preferable to downscaling the results of magnetospheric modeling. To demonstrate the benefit of this approach, we first approximate solar wind model output by smoothing solar wind observations with an 8 h filter, then add small-scale structure back in through the addition of random noise with the observed spectral characteristics. Here we use a very simple parameterization of noise based upon the observed probability distribution functions of solar wind parameters, but more sophisticated methods will be developed in the future. An ensemble of results from the simple downscaling scheme are tested using a model-independent method and shown to add value to the magnetospheric forecast, both improving the best estimate and quantifying the uncertainty. We suggest a number of features desirable in an operational solar wind downscaling scheme. Key Points Solar wind models must be downscaled in order to drive magnetospheric models Ensemble downscaling is more effective than deterministic downscaling The magnetosphere responds nonlinearly to small-scale solar wind fluctuations PMID:26213518

  12. Developing Snow Model Forcing Data From WRF Model Output to Aid in Water Resource Forecasting

    NASA Astrophysics Data System (ADS)

    Havens, S.; Marks, D. G.; Watson, K. A.; Masarik, M.; Flores, A. N.; Kormos, P.; Hedrick, A. R.

    2015-12-01

    Traditional operational modeling tools used by water managers in the west are challenged by more frequently occurring uncharacteristic stream flow patterns caused by climate change. Water managers are now turning to new models based on the physical processes within a watershed to combat the increasing number of events that do not follow the historical patterns. The USDA-ARS has provided near real time snow water equivalent (SWE) maps using iSnobal since WY2012 for the Boise River Basin in southwest Idaho and since WY2013 for the Tuolumne Basin in California that feeds the Hetch Hetchy reservoir. The goal of these projects is to not only provide current snowpack estimates but to use the Weather Research and Forecasting (WRF) model to drive iSnobal in order to produce a forecasted stream flow when coupled to a hydrology model. The first step is to develop methods on how to create snow model forcing data from WRF outputs. Using a reanalysis 1km WRF dataset from WY2009 over the Boise River Basin, WRF model results like surface air temperature, relative humidity, wind, precipitation, cloud cover, and incoming long wave radiation must be downscaled for use in iSnobal. iSnobal results forced with WRF output are validated at point locations throughout the basin, as well as compared with iSnobal results forced with traditional weather station data. The presentation will explore the differences in forcing data derived from WRF outputs and weather stations and how this affects the snowpack distribution.

  13. Rate of recovery from perturbations as a means to forecast future stability of living systems.

    PubMed

    Ghadami, Amin; Gourgou, Eleni; Epureanu, Bogdan I

    2018-06-18

    Anticipating critical transitions in complex ecological and living systems is an important need because it is often difficult to restore a system to its pre-transition state once the transition occurs. Recent studies demonstrate that several indicators based on changes in ecological time series can indicate that the system is approaching an impending transition. An exciting question is, however, whether we can predict more characteristics of the future system stability using measurements taken away from the transition. We address this question by introducing a model-less forecasting method to forecast catastrophic transition of an experimental ecological system. The experiment is based on the dynamics of a yeast population, which is known to exhibit a catastrophic transition as the environment deteriorates. By measuring the system's response to perturbations prior to transition, we forecast the distance to the upcoming transition, the type of the transition (i.e., catastrophic/non-catastrophic) and the future equilibrium points within a range near the transition. Experimental results suggest a strong potential for practical applicability of this approach for ecological systems which are at risk of catastrophic transitions, where there is a pressing need for information about upcoming thresholds.

  14. Next-Day Earthquake Forecasts for California

    NASA Astrophysics Data System (ADS)

    Werner, M. J.; Jackson, D. D.; Kagan, Y. Y.

    2008-12-01

    We implemented a daily forecast of m > 4 earthquakes for California in the format suitable for testing in community-based earthquake predictability experiments: Regional Earthquake Likelihood Models (RELM) and the Collaboratory for the Study of Earthquake Predictability (CSEP). The forecast is based on near-real time earthquake reports from the ANSS catalog above magnitude 2 and will be available online. The model used to generate the forecasts is based on the Epidemic-Type Earthquake Sequence (ETES) model, a stochastic model of clustered and triggered seismicity. Our particular implementation is based on the earlier work of Helmstetter et al. (2006, 2007), but we extended the forecast to all of Cali-fornia, use more data to calibrate the model and its parameters, and made some modifications. Our forecasts will compete against the Short-Term Earthquake Probabilities (STEP) forecasts of Gersten-berger et al. (2005) and other models in the next-day testing class of the CSEP experiment in California. We illustrate our forecasts with examples and discuss preliminary results.

  15. Wind Information Uplink to Aircraft Performing Interval Management Operations

    NASA Technical Reports Server (NTRS)

    Ahmad, Nashat N.; Barmore, Bryan E.; Swieringa, Kurt A.

    2016-01-01

    Interval Management (IM) is an ADS-B-enabled suite of applications that use ground and flight deck capabilities and procedures designed to support the relative spacing of aircraft (Barmore et al., 2004, Murdoch et al. 2009, Barmore 2009, Swieringa et al. 2011; Weitz et al. 2012). Relative spacing refers to managing the position of one aircraft to a time or distance relative to another aircraft, as opposed to a static reference point such as a point over the ground or clock time. This results in improved inter-aircraft spacing precision and is expected to allow aircraft to be spaced closer to the applicable separation standard than current operations. Consequently, if the reduced spacing is used in scheduling, IM can reduce the time interval between the first and last aircraft in an overall arrival flow, resulting in increased throughput. Because IM relies on speed changes to achieve precise spacing, it can reduce costly, low-altitude, vectoring, which increases both efficiency and throughput in capacity-constrained airspace without negatively impacting controller workload and task complexity. This is expected to increase overall system efficiency. The Flight Deck Interval Management (FIM) equipment provides speeds to the flight crew that will deliver them to the achieve-by point at the controller-specified time, i.e., assigned spacing goal, after the target aircraft crosses the achieve-by point (Figure 1.1). Since the IM and target aircraft may not be on the same arrival procedure, the FIM equipment predicts the estimated times of arrival (ETA) for both the IM and target aircraft to the achieve-by point. This involves generating an approximate four-dimensional trajectory for each aircraft. The accuracy of the wind data used to generate those trajectories is critical to the success of the IM operation. There are two main forms of uncertainty in the wind information used by the FIM equipment. The first is the accuracy of the forecast modeling done by the weather provider. This is generally a global environmental prediction obtained from a weather model such as the Rapid Refresh (RAP) from the National Centers for Environmental Prediction (NCEP). The weather forecast data will have errors relative to the actual, or truth, winds that the aircraft will encounter. The second source of uncertainty is that only a small subset of the forecast data can be uplinked to the aircraft for use by the FIM equipment. This results in loss of additional information. The Federal Aviation Administration (FAA) and RTCA are currently developing standards for the communication of wind and atmospheric data to the aircraft for use in NextGen operations. This study examines the impact of various wind forecast sampling methods on IM performance metrics to inform the standards development.

  16. Using Temperature Forecasts to Improve Seasonal Streamflow Forecasts in the Colorado and Rio Grande Basins

    NASA Astrophysics Data System (ADS)

    Lehner, F.; Wood, A.; Llewellyn, D.; Blatchford, D. B.; Goodbody, A. G.; Pappenberger, F.

    2017-12-01

    Recent studies have documented the influence of increasing temperature on streamflow across the American West, including snow-melt driven rivers such as the Colorado or Rio Grande. At the same time, some basins are reporting decreasing skill in seasonal streamflow forecasts, termed water supply forecasts (WSFs), over the recent decade. While the skill in seasonal precipitation forecasts from dynamical models remains low, their skill in predicting seasonal temperature variations could potentially be harvested for WSFs to account for non-stationarity in regional temperatures. Here, we investigate whether WSF skill can be improved by incorporating seasonal temperature forecasts from dynamical forecasting models (from the North American Multi Model Ensemble and the European Centre for Medium-Range Weather Forecast System 4) into traditional statistical forecast models. We find improved streamflow forecast skill relative to traditional WSF approaches in a majority of headwater locations in the Colorado and Rio Grande basins. Incorporation of temperature into WSFs thus provides a promising avenue to increase the robustness of current forecasting techniques in the face of continued regional warming.

  17. An enhanced PM 2.5 air quality forecast model based on nonlinear regression and back-trajectory concentrations

    NASA Astrophysics Data System (ADS)

    Cobourn, W. Geoffrey

    2010-08-01

    An enhanced PM 2.5 air quality forecast model based on nonlinear regression (NLR) and back-trajectory concentrations has been developed for use in the Louisville, Kentucky metropolitan area. The PM 2.5 air quality forecast model is designed for use in the warm season, from May through September, when PM 2.5 air quality is more likely to be critical for human health. The enhanced PM 2.5 model consists of a basic NLR model, developed for use with an automated air quality forecast system, and an additional parameter based on upwind PM 2.5 concentration, called PM24. The PM24 parameter is designed to be determined manually, by synthesizing backward air trajectory and regional air quality information to compute 24-h back-trajectory concentrations. The PM24 parameter may be used by air quality forecasters to adjust the forecast provided by the automated forecast system. In this study of the 2007 and 2008 forecast seasons, the enhanced model performed well using forecasted meteorological data and PM24 as input. The enhanced PM 2.5 model was compared with three alternative models, including the basic NLR model, the basic NLR model with a persistence parameter added, and the NLR model with persistence and PM24. The two models that included PM24 were of comparable accuracy. The two models incorporating back-trajectory concentrations had lower mean absolute errors and higher rates of detecting unhealthy PM2.5 concentrations compared to the other models.

  18. Ensemble Solar Forecasting Statistical Quantification and Sensitivity Analysis: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheung, WanYin; Zhang, Jie; Florita, Anthony

    2015-12-08

    Uncertainties associated with solar forecasts present challenges to maintain grid reliability, especially at high solar penetrations. This study aims to quantify the errors associated with the day-ahead solar forecast parameters and the theoretical solar power output for a 51-kW solar power plant in a utility area in the state of Vermont, U.S. Forecasts were generated by three numerical weather prediction (NWP) models, including the Rapid Refresh, the High Resolution Rapid Refresh, and the North American Model, and a machine-learning ensemble model. A photovoltaic (PV) performance model was adopted to calculate theoretical solar power generation using the forecast parameters (e.g., irradiance,more » cell temperature, and wind speed). Errors of the power outputs were quantified using statistical moments and a suite of metrics, such as the normalized root mean squared error (NRMSE). In addition, the PV model's sensitivity to different forecast parameters was quantified and analyzed. Results showed that the ensemble model yielded forecasts in all parameters with the smallest NRMSE. The NRMSE of solar irradiance forecasts of the ensemble NWP model was reduced by 28.10% compared to the best of the three NWP models. Further, the sensitivity analysis indicated that the errors of the forecasted cell temperature attributed only approximately 0.12% to the NRMSE of the power output as opposed to 7.44% from the forecasted solar irradiance.« less

  19. Forecast first: An argument for groundwater modeling in reverse

    USGS Publications Warehouse

    White, Jeremy

    2017-01-01

    Numerical groundwater models are important compo-nents of groundwater analyses that are used for makingcritical decisions related to the management of ground-water resources. In this support role, models are oftenconstructed to serve a specific purpose that is to provideinsights, through simulation, related to a specific func-tion of a complex aquifer system that cannot be observeddirectly (Anderson et al. 2015).For any given modeling analysis, several modelinput datasets must be prepared. Herein, the datasetsrequired to simulate the historical conditions are referredto as the calibration model, and the datasets requiredto simulate the model’s purpose are referred to as theforecast model. Future groundwater conditions or otherunobserved aspects of the groundwater system may besimulated by the forecast model—the outputs of interestfrom the forecast model represent the purpose of themodeling analysis. Unfortunately, the forecast model,needed to simulate the purpose of the modeling analysis,is seemingly an afterthought—calibration is where themajority of time and effort are expended and calibrationis usually completed before the forecast model is evenconstructed. Herein, I am proposing a new groundwatermodeling workflow, referred to as the “forecast first”workflow, where the forecast model is constructed at anearlier stage in the modeling analysis and the outputsof interest from the forecast model are evaluated duringsubsequent tasks in the workflow.

  20. Robustness of disaggregate oil and gas discovery forecasting models

    USGS Publications Warehouse

    Attanasi, E.D.; Schuenemeyer, J.H.

    1989-01-01

    The trend in forecasting oil and gas discoveries has been to develop and use models that allow forecasts of the size distribution of future discoveries. From such forecasts, exploration and development costs can more readily be computed. Two classes of these forecasting models are the Arps-Roberts type models and the 'creaming method' models. This paper examines the robustness of the forecasts made by these models when the historical data on which the models are based have been subject to economic upheavals or when historical discovery data are aggregated from areas having widely differing economic structures. Model performance is examined in the context of forecasting discoveries for offshore Texas State and Federal areas. The analysis shows how the model forecasts are limited by information contained in the historical discovery data. Because the Arps-Roberts type models require more regularity in discovery sequence than the creaming models, prior information had to be introduced into the Arps-Roberts models to accommodate the influence of economic changes. The creaming methods captured the overall decline in discovery size but did not easily allow introduction of exogenous information to compensate for incomplete historical data. Moreover, the predictive log normal distribution associated with the creaming model methods appears to understate the importance of the potential contribution of small fields. ?? 1989.

  1. Hybrid Forecasting of Daily River Discharges Considering Autoregressive Heteroscedasticity

    NASA Astrophysics Data System (ADS)

    Szolgayová, Elena Peksová; Danačová, Michaela; Komorniková, Magda; Szolgay, Ján

    2017-06-01

    It is widely acknowledged that in the hydrological and meteorological communities, there is a continuing need to improve the quality of quantitative rainfall and river flow forecasts. A hybrid (combined deterministic-stochastic) modelling approach is proposed here that combines the advantages offered by modelling the system dynamics with a deterministic model and a deterministic forecasting error series with a data-driven model in parallel. Since the processes to be modelled are generally nonlinear and the model error series may exhibit nonstationarity and heteroscedasticity, GARCH-type nonlinear time series models are considered here. The fitting, forecasting and simulation performance of such models have to be explored on a case-by-case basis. The goal of this paper is to test and develop an appropriate methodology for model fitting and forecasting applicable for daily river discharge forecast error data from the GARCH family of time series models. We concentrated on verifying whether the use of a GARCH-type model is suitable for modelling and forecasting a hydrological model error time series on the Hron and Morava Rivers in Slovakia. For this purpose we verified the presence of heteroscedasticity in the simulation error series of the KLN multilinear flow routing model; then we fitted the GARCH-type models to the data and compared their fit with that of an ARMA - type model. We produced one-stepahead forecasts from the fitted models and again provided comparisons of the model's performance.

  2. A national-scale seasonal hydrological forecast system: development and evaluation over Britain

    NASA Astrophysics Data System (ADS)

    Bell, Victoria A.; Davies, Helen N.; Kay, Alison L.; Brookshaw, Anca; Scaife, Adam A.

    2017-09-01

    Skilful winter seasonal predictions for the North Atlantic circulation and northern Europe have now been demonstrated and the potential for seasonal hydrological forecasting in the UK is now being explored. One of the techniques being used combines seasonal rainfall forecasts provided by operational weather forecast systems with hydrological modelling tools to provide estimates of seasonal mean river flows up to a few months ahead. The work presented here shows how spatial information contained in a distributed hydrological model typically requiring high-resolution (daily or better) rainfall data can be used to provide an initial condition for a much simpler forecast model tailored to use low-resolution monthly rainfall forecasts. Rainfall forecasts (hindcasts) from the GloSea5 model (1996 to 2009) are used to provide the first assessment of skill in these national-scale flow forecasts. The skill in the combined modelling system is assessed for different seasons and regions of Britain, and compared to what might be achieved using other approaches such as use of an ensemble of historical rainfall in a hydrological model, or a simple flow persistence forecast. The analysis indicates that only limited forecast skill is achievable for Spring and Summer seasonal hydrological forecasts; however, Autumn and Winter flows can be reasonably well forecast using (ensemble mean) rainfall forecasts based on either GloSea5 forecasts or historical rainfall (the preferred type of forecast depends on the region). Flow forecasts using ensemble mean GloSea5 rainfall perform most consistently well across Britain, and provide the most skilful forecasts overall at the 3-month lead time. Much of the skill (64 %) in the 1-month ahead seasonal flow forecasts can be attributed to the hydrological initial condition (particularly in regions with a significant groundwater contribution to flows), whereas for the 3-month ahead lead time, GloSea5 forecasts account for ˜ 70 % of the forecast skill (mostly in areas of high rainfall to the north and west) and only 30 % of the skill arises from hydrological memory (typically groundwater-dominated areas). Given the high spatial heterogeneity in typical patterns of UK rainfall and evaporation, future development of skilful spatially distributed seasonal forecasts could lead to substantial improvements in seasonal flow forecast capability, potentially benefitting practitioners interested in predicting hydrological extremes, not only in the UK but also across Europe.

  3. The Global Precipitation Measurement (GPM) Mission contributions to hydrology and societal applications

    NASA Astrophysics Data System (ADS)

    Kirschbaum, D.; Huffman, G. J.; Skofronick Jackson, G.

    2016-12-01

    Too much or too little rain can serve as a tipping point for triggering catastrophic flooding and landslides or widespread drought. Knowing when, where and how much rain is falling globally is vital to understanding how vulnerable areas may be more or less impacted by these disasters. The Global Precipitation Measurement (GPM) mission provides near real-time precipitation data worldwide that is used by a broad range of end users, from tropical cyclone forecasters to agricultural modelers to researchers evaluating the spread of diseases. The GPM constellation provides merged, multi-satellite data products at three latencies that are critical for research and societal applications around the world. This presentation will outline current capabilities in using accurate and timely information of precipitation to directly benefit society, including examples of end user applications within the tropical cyclone forecasting, disasters response, agricultural forecasting, and disease tracking communities, among others. The presentation will also introduce some of the new visualization and access tools developed by the GPM team.

  4. Day-Ahead Short-Term Forecasting Electricity Load via Approximation

    NASA Astrophysics Data System (ADS)

    Khamitov, R. N.; Gritsay, A. S.; Tyunkov, D. A.; E Sinitsin, G.

    2017-04-01

    The method of short-term forecasting of a power consumption which can be applied to short-term forecasting of power consumption is offered. The offered model is based on sinusoidal function for the description of day and night cycles of power consumption. Function coefficients - the period and amplitude are set up is adaptive, considering dynamics of power consumption with use of an artificial neural network. The presented results are tested on real retrospective data of power supply company. The offered method can be especially useful if there are no opportunities of collection of interval indications of metering devices of consumers, and the power supply company operates with electrical supply points. The offered method can be used by any power supply company upon purchase of the electric power in the wholesale market. For this purpose, it is necessary to receive coefficients of approximation of sinusoidal function and to have retrospective data on power consumption on an interval not less than one year.

  5. Bayesian flood forecasting methods: A review

    NASA Astrophysics Data System (ADS)

    Han, Shasha; Coulibaly, Paulin

    2017-08-01

    Over the past few decades, floods have been seen as one of the most common and largely distributed natural disasters in the world. If floods could be accurately forecasted in advance, then their negative impacts could be greatly minimized. It is widely recognized that quantification and reduction of uncertainty associated with the hydrologic forecast is of great importance for flood estimation and rational decision making. Bayesian forecasting system (BFS) offers an ideal theoretic framework for uncertainty quantification that can be developed for probabilistic flood forecasting via any deterministic hydrologic model. It provides suitable theoretical structure, empirically validated models and reasonable analytic-numerical computation method, and can be developed into various Bayesian forecasting approaches. This paper presents a comprehensive review on Bayesian forecasting approaches applied in flood forecasting from 1999 till now. The review starts with an overview of fundamentals of BFS and recent advances in BFS, followed with BFS application in river stage forecasting and real-time flood forecasting, then move to a critical analysis by evaluating advantages and limitations of Bayesian forecasting methods and other predictive uncertainty assessment approaches in flood forecasting, and finally discusses the future research direction in Bayesian flood forecasting. Results show that the Bayesian flood forecasting approach is an effective and advanced way for flood estimation, it considers all sources of uncertainties and produces a predictive distribution of the river stage, river discharge or runoff, thus gives more accurate and reliable flood forecasts. Some emerging Bayesian forecasting methods (e.g. ensemble Bayesian forecasting system, Bayesian multi-model combination) were shown to overcome limitations of single model or fixed model weight and effectively reduce predictive uncertainty. In recent years, various Bayesian flood forecasting approaches have been developed and widely applied, but there is still room for improvements. Future research in the context of Bayesian flood forecasting should be on assimilation of various sources of newly available information and improvement of predictive performance assessment methods.

  6. Development and application of an atmospheric-hydrologic-hydraulic flood forecasting model driven by TIGGE ensemble forecasts

    NASA Astrophysics Data System (ADS)

    Bao, Hongjun; Zhao, Linna

    2012-02-01

    A coupled atmospheric-hydrologic-hydraulic ensemble flood forecasting model, driven by The Observing System Research and Predictability Experiment (THORPEX) Interactive Grand Global Ensemble (TIGGE) data, has been developed for flood forecasting over the Huaihe River. The incorporation of numerical weather prediction (NWP) information into flood forecasting systems may increase forecast lead time from a few hours to a few days. A single NWP model forecast from a single forecast center, however, is insufficient as it involves considerable non-predictable uncertainties and leads to a high number of false alarms. The availability of global ensemble NWP systems through TIGGE offers a new opportunity for flood forecast. The Xinanjiang model used for hydrological rainfall-runoff modeling and the one-dimensional unsteady flow model applied to channel flood routing are coupled with ensemble weather predictions based on the TIGGE data from the Canadian Meteorological Centre (CMC), the European Centre for Medium-Range Weather Forecasts (ECMWF), the UK Met Office (UKMO), and the US National Centers for Environmental Prediction (NCEP). The developed ensemble flood forecasting model is applied to flood forecasting of the 2007 flood season as a test case. The test case is chosen over the upper reaches of the Huaihe River above Lutaizi station with flood diversion and retarding areas. The input flood discharge hydrograph from the main channel to the flood diversion area is estimated with the fixed split ratio of the main channel discharge. The flood flow inside the flood retarding area is calculated as a reservoir with the water balance method. The Muskingum method is used for flood routing in the flood diversion area. A probabilistic discharge and flood inundation forecast is provided as the end product to study the potential benefits of using the TIGGE ensemble forecasts. The results demonstrate satisfactory flood forecasting with clear signals of probability of floods up to a few days in advance, and show that TIGGE ensemble forecast data are a promising tool for forecasting of flood inundation, comparable with that driven by raingauge observations.

  7. Earth Global Reference Atmospheric Model (GRAM) Overview and Updates: DOLWG Meeting

    NASA Technical Reports Server (NTRS)

    White, Patrick

    2017-01-01

    What is Earth-GRAM (Global Reference Atmospheric Model): Provides monthly mean and standard deviation for any point in atmosphere - Monthly, Geographic, and Altitude Variation; Earth-GRAM is a C++ software package - Currently distributed as Earth-GRAM 2016; Atmospheric variables included: pressure, density, temperature, horizontal and vertical winds, speed of sound, and atmospheric constituents; Used by engineering community because of ability to create dispersions in atmosphere at a rapid runtime - Often embedded in trajectory simulation software; Not a forecast model; Does not readily capture localized atmospheric effects.

  8. Enhancing Cloud Radiative Processes and Radiation Efficiency in the Advanced Research Weather Research and Forecasting (WRF) Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iacono, Michael J.

    The objective of this research has been to evaluate and implement enhancements to the computational performance of the RRTMG radiative transfer option in the Advanced Research version of the Weather Research and Forecasting (WRF) model. Efficiency is as essential as accuracy for effective numerical weather prediction, and radiative transfer is a relatively time-consuming component of dynamical models, taking up to 30-50 percent of the total model simulation time. To address this concern, this research has implemented and tested a version of RRTMG that utilizes graphics processing unit (GPU) technology (hereinafter RRTMGPU) to greatly improve its computational performance; thereby permitting eithermore » more frequent simulation of radiative effects or other model enhancements. During the early stages of this project the development of RRTMGPU was completed at AER under separate NASA funding to accelerate the code for use in the Goddard Space Flight Center (GSFC) Goddard Earth Observing System GEOS-5 global model. It should be noted that this final report describes results related to the funded portion of the originally proposed work concerning the acceleration of RRTMG with GPUs in WRF. As a k-distribution model, RRTMG is especially well suited to this modification due to its relatively large internal pseudo-spectral (g-point) dimension that, when combined with the horizontal grid vector in the dynamical model, can take great advantage of the GPU capability. Thorough testing under several model configurations has been performed to ensure that RRTMGPU improves WRF model run time while having no significant impact on calculated radiative fluxes and heating rates or on dynamical model fields relative to the RRTMG radiation. The RRTMGPU codes have been provided to NCAR for possible application to the next public release of the WRF forecast model.« less

  9. Improving of local ozone forecasting by integrated models.

    PubMed

    Gradišar, Dejan; Grašič, Boštjan; Božnar, Marija Zlata; Mlakar, Primož; Kocijan, Juš

    2016-09-01

    This paper discuss the problem of forecasting the maximum ozone concentrations in urban microlocations, where reliable alerting of the local population when thresholds have been surpassed is necessary. To improve the forecast, the methodology of integrated models is proposed. The model is based on multilayer perceptron neural networks that use as inputs all available information from QualeAria air-quality model, WRF numerical weather prediction model and onsite measurements of meteorology and air pollution. While air-quality and meteorological models cover large geographical 3-dimensional space, their local resolution is often not satisfactory. On the other hand, empirical methods have the advantage of good local forecasts. In this paper, integrated models are used for improved 1-day-ahead forecasting of the maximum hourly value of ozone within each day for representative locations in Slovenia. The WRF meteorological model is used for forecasting meteorological variables and the QualeAria air-quality model for gas concentrations. Their predictions, together with measurements from ground stations, are used as inputs to a neural network. The model validation results show that integrated models noticeably improve ozone forecasts and provide better alert systems.

  10. Improving real-time inflow forecasting into hydropower reservoirs through a complementary modelling framework

    NASA Astrophysics Data System (ADS)

    Gragne, A. S.; Sharma, A.; Mehrotra, R.; Alfredsen, K.

    2015-08-01

    Accuracy of reservoir inflow forecasts is instrumental for maximizing the value of water resources and benefits gained through hydropower generation. Improving hourly reservoir inflow forecasts over a 24 h lead time is considered within the day-ahead (Elspot) market of the Nordic exchange market. A complementary modelling framework presents an approach for improving real-time forecasting without needing to modify the pre-existing forecasting model, but instead formulating an independent additive or complementary model that captures the structure the existing operational model may be missing. We present here the application of this principle for issuing improved hourly inflow forecasts into hydropower reservoirs over extended lead times, and the parameter estimation procedure reformulated to deal with bias, persistence and heteroscedasticity. The procedure presented comprises an error model added on top of an unalterable constant parameter conceptual model. This procedure is applied in the 207 km2 Krinsvatn catchment in central Norway. The structure of the error model is established based on attributes of the residual time series from the conceptual model. Besides improving forecast skills of operational models, the approach estimates the uncertainty in the complementary model structure and produces probabilistic inflow forecasts that entrain suitable information for reducing uncertainty in the decision-making processes in hydropower systems operation. Deterministic and probabilistic evaluations revealed an overall significant improvement in forecast accuracy for lead times up to 17 h. Evaluation of the percentage of observations bracketed in the forecasted 95 % confidence interval indicated that the degree of success in containing 95 % of the observations varies across seasons and hydrologic years.

  11. Evaluation and Applications of the Prediction of Intensity Model Error (PRIME) Model

    NASA Astrophysics Data System (ADS)

    Bhatia, K. T.; Nolan, D. S.; Demaria, M.; Schumacher, A.

    2015-12-01

    Forecasters and end users of tropical cyclone (TC) intensity forecasts would greatly benefit from a reliable expectation of model error to counteract the lack of consistency in TC intensity forecast performance. As a first step towards producing error predictions to accompany each TC intensity forecast, Bhatia and Nolan (2013) studied the relationship between synoptic parameters, TC attributes, and forecast errors. In this study, we build on previous results of Bhatia and Nolan (2013) by testing the ability of the Prediction of Intensity Model Error (PRIME) model to forecast the absolute error and bias of four leading intensity models available for guidance in the Atlantic basin. PRIME forecasts are independently evaluated at each 12-hour interval from 12 to 120 hours during the 2007-2014 Atlantic hurricane seasons. The absolute error and bias predictions of PRIME are compared to their respective climatologies to determine their skill. In addition to these results, we will present the performance of the operational version of PRIME run during the 2015 hurricane season. PRIME verification results show that it can reliably anticipate situations where particular models excel, and therefore could lead to a more informed protocol for hurricane evacuations and storm preparations. These positive conclusions suggest that PRIME forecasts also have the potential to lower the error in the original intensity forecasts of each model. As a result, two techniques are proposed to develop a post-processing procedure for a multimodel ensemble based on PRIME. The first approach is to inverse-weight models using PRIME absolute error predictions (higher predicted absolute error corresponds to lower weights). The second multimodel ensemble applies PRIME bias predictions to each model's intensity forecast and the mean of the corrected models is evaluated. The forecasts of both of these experimental ensembles are compared to those of the equal-weight ICON ensemble, which currently provides the most reliable forecasts in the Atlantic basin.

  12. MMAB Sea Ice Forecast Page

    Science.gov Websites

    verification statistics Grumbine, R. W., Virtual Floe Ice Drift Forecast Model Intercomparison, Weather and Forecasting, 13, 886-890, 1998. MMAB Note: Virtual Floe Ice Drift Forecast Model Intercomparison 1996 pdf ~47

  13. Stochastic Model of Seasonal Runoff Forecasts

    NASA Astrophysics Data System (ADS)

    Krzysztofowicz, Roman; Watada, Leslie M.

    1986-03-01

    Each year the National Weather Service and the Soil Conservation Service issue a monthly sequence of five (or six) categorical forecasts of the seasonal snowmelt runoff volume. To describe uncertainties in these forecasts for the purposes of optimal decision making, a stochastic model is formulated. It is a discrete-time, finite, continuous-space, nonstationary Markov process. Posterior densities of the actual runoff conditional upon a forecast, and transition densities of forecasts are obtained from a Bayesian information processor. Parametric densities are derived for the process with a normal prior density of the runoff and a linear model of the forecast error. The structure of the model and the estimation procedure are motivated by analyses of forecast records from five stations in the Snake River basin, from the period 1971-1983. The advantages of supplementing the current forecasting scheme with a Bayesian analysis are discussed.

  14. Time-Series Forecast Modeling on High-Bandwidth Network Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoo, Wucherl; Sim, Alex

    With the increasing number of geographically distributed scientific collaborations and the growing sizes of scientific data, it has become challenging for users to achieve the best possible network performance on a shared network. In this paper, we have developed a model to forecast expected bandwidth utilization on high-bandwidth wide area networks. The forecast model can improve the efficiency of the resource utilization and scheduling of data movements on high-bandwidth networks to accommodate ever increasing data volume for large-scale scientific data applications. A univariate time-series forecast model is developed with the Seasonal decomposition of Time series by Loess (STL) and themore » AutoRegressive Integrated Moving Average (ARIMA) on Simple Network Management Protocol (SNMP) path utilization measurement data. Compared with the traditional approach such as Box-Jenkins methodology to train the ARIMA model, our forecast model reduces computation time up to 92.6 %. It also shows resilience against abrupt network usage changes. Finally, our forecast model conducts the large number of multi-step forecast, and the forecast errors are within the mean absolute deviation (MAD) of the monitored measurements.« less

  15. Time-Series Forecast Modeling on High-Bandwidth Network Measurements

    DOE PAGES

    Yoo, Wucherl; Sim, Alex

    2016-06-24

    With the increasing number of geographically distributed scientific collaborations and the growing sizes of scientific data, it has become challenging for users to achieve the best possible network performance on a shared network. In this paper, we have developed a model to forecast expected bandwidth utilization on high-bandwidth wide area networks. The forecast model can improve the efficiency of the resource utilization and scheduling of data movements on high-bandwidth networks to accommodate ever increasing data volume for large-scale scientific data applications. A univariate time-series forecast model is developed with the Seasonal decomposition of Time series by Loess (STL) and themore » AutoRegressive Integrated Moving Average (ARIMA) on Simple Network Management Protocol (SNMP) path utilization measurement data. Compared with the traditional approach such as Box-Jenkins methodology to train the ARIMA model, our forecast model reduces computation time up to 92.6 %. It also shows resilience against abrupt network usage changes. Finally, our forecast model conducts the large number of multi-step forecast, and the forecast errors are within the mean absolute deviation (MAD) of the monitored measurements.« less

  16. Model Error Estimation for the CPTEC Eta Model

    NASA Technical Reports Server (NTRS)

    Tippett, Michael K.; daSilva, Arlindo

    1999-01-01

    Statistical data assimilation systems require the specification of forecast and observation error statistics. Forecast error is due to model imperfections and differences between the initial condition and the actual state of the atmosphere. Practical four-dimensional variational (4D-Var) methods try to fit the forecast state to the observations and assume that the model error is negligible. Here with a number of simplifying assumption, a framework is developed for isolating the model error given the forecast error at two lead-times. Two definitions are proposed for the Talagrand ratio tau, the fraction of the forecast error due to model error rather than initial condition error. Data from the CPTEC Eta Model running operationally over South America are used to calculate forecast error statistics and lower bounds for tau.

  17. Research on Nonlinear Time Series Forecasting of Time-Delay NN Embedded with Bayesian Regularization

    NASA Astrophysics Data System (ADS)

    Jiang, Weijin; Xu, Yusheng; Xu, Yuhui; Wang, Jianmin

    Based on the idea of nonlinear prediction of phase space reconstruction, this paper presented a time delay BP neural network model, whose generalization capability was improved by Bayesian regularization. Furthermore, the model is applied to forecast the imp&exp trades in one industry. The results showed that the improved model has excellent generalization capabilities, which not only learned the historical curve, but efficiently predicted the trend of business. Comparing with common evaluation of forecasts, we put on a conclusion that nonlinear forecast can not only focus on data combination and precision improvement, it also can vividly reflect the nonlinear characteristic of the forecasting system. While analyzing the forecasting precision of the model, we give a model judgment by calculating the nonlinear characteristic value of the combined serial and original serial, proved that the forecasting model can reasonably 'catch' the dynamic characteristic of the nonlinear system which produced the origin serial.

  18. A scoping review of malaria forecasting: past work and future directions

    PubMed Central

    Zinszer, Kate; Verma, Aman D; Charland, Katia; Brewer, Timothy F; Brownstein, John S; Sun, Zhuoyu; Buckeridge, David L

    2012-01-01

    Objectives There is a growing body of literature on malaria forecasting methods and the objective of our review is to identify and assess methods, including predictors, used to forecast malaria. Design Scoping review. Two independent reviewers searched information sources, assessed studies for inclusion and extracted data from each study. Information sources Search strategies were developed and the following databases were searched: CAB Abstracts, EMBASE, Global Health, MEDLINE, ProQuest Dissertations & Theses and Web of Science. Key journals and websites were also manually searched. Eligibility criteria for included studies We included studies that forecasted incidence, prevalence or epidemics of malaria over time. A description of the forecasting model and an assessment of the forecast accuracy of the model were requirements for inclusion. Studies were restricted to human populations and to autochthonous transmission settings. Results We identified 29 different studies that met our inclusion criteria for this review. The forecasting approaches included statistical modelling, mathematical modelling and machine learning methods. Climate-related predictors were used consistently in forecasting models, with the most common predictors being rainfall, relative humidity, temperature and the normalised difference vegetation index. Model evaluation was typically based on a reserved portion of data and accuracy was measured in a variety of ways including mean-squared error and correlation coefficients. We could not compare the forecast accuracy of models from the different studies as the evaluation measures differed across the studies. Conclusions Applying different forecasting methods to the same data, exploring the predictive ability of non-environmental variables, including transmission reducing interventions and using common forecast accuracy measures will allow malaria researchers to compare and improve models and methods, which should improve the quality of malaria forecasting. PMID:23180505

  19. Dynamical prediction of flu seasonality driven by ambient temperature: influenza vs. common cold

    NASA Astrophysics Data System (ADS)

    Postnikov, Eugene B.

    2016-01-01

    This work presents a comparative analysis of Influenzanet data for influenza itself and common cold in the Netherlands during the last 5 years, from the point of view of modelling by linearised SIRS equations parametrically driven by the ambient temperature. It is argued that this approach allows for the forecast of common cold, but not of influenza in a strict sense. The difference in their kinetic models is discussed with reference to the clinical background.

  20. Earth Global Reference Atmospheric Model (Earth-GRAM) GRAM Virtual Meeting

    NASA Technical Reports Server (NTRS)

    White, Patrick

    2017-01-01

    What is Earth-GRAM? Provide monthly mean and standard deviation for any point in atmosphere; Monthly, Geographic, and Altitude Variation. Earth-GRAM is a C++ software package; Currently distributed as Earth-GRAM 2016. Atmospheric variables included: pressure, density, temperature, horizontal and vertical winds, speed of sound, and atmospheric constituents. Used by engineering community because of ability to create dispersions inatmosphere at a rapid runtime; Often embedded in trajectory simulation software. Not a forecast model. Does not readily capture localized atmospheric effects.

  1. Development of a High Resolution Weather Forecast Model for Mesoamerica Using the NASA Ames Code I Private Cloud Computing Environment

    NASA Technical Reports Server (NTRS)

    Molthan, Andrew; Case, Jonathan; Venner, Jason; Moreno-Madrinan, Max J.; Delgado, Francisco

    2012-01-01

    Two projects at NASA Marshall Space Flight Center have collaborated to develop a high resolution weather forecast model for Mesoamerica: The NASA Short-term Prediction Research and Transition (SPoRT) Center, which integrates unique NASA satellite and weather forecast modeling capabilities into the operational weather forecasting community. NASA's SERVIR Program, which integrates satellite observations, ground-based data, and forecast models to improve disaster response in Central America, the Caribbean, Africa, and the Himalayas.

  2. A study for systematic errors of the GLA forecast model in tropical regions

    NASA Technical Reports Server (NTRS)

    Chen, Tsing-Chang; Baker, Wayman E.; Pfaendtner, James; Corrigan, Martin

    1988-01-01

    From the sensitivity studies performed with the Goddard Laboratory for Atmospheres (GLA) analysis/forecast system, it was revealed that the forecast errors in the tropics affect the ability to forecast midlatitude weather in some cases. Apparently, the forecast errors occurring in the tropics can propagate to midlatitudes. Therefore, the systematic error analysis of the GLA forecast system becomes a necessary step in improving the model's forecast performance. The major effort of this study is to examine the possible impact of the hydrological-cycle forecast error on dynamical fields in the GLA forecast system.

  3. An Integrated Enrollment Forecast Model. IR Applications, Volume 15, January 18, 2008

    ERIC Educational Resources Information Center

    Chen, Chau-Kuang

    2008-01-01

    Enrollment forecasting is the central component of effective budget and program planning. The integrated enrollment forecast model is developed to achieve a better understanding of the variables affecting student enrollment and, ultimately, to perform accurate forecasts. The transfer function model of the autoregressive integrated moving average…

  4. Can we use Earth Observations to improve monthly water level forecasts?

    NASA Astrophysics Data System (ADS)

    Slater, L. J.; Villarini, G.

    2017-12-01

    Dynamical-statistical hydrologic forecasting approaches benefit from different strengths in comparison with traditional hydrologic forecasting systems: they are computationally efficient, can integrate and `learn' from a broad selection of input data (e.g., General Circulation Model (GCM) forecasts, Earth Observation time series, teleconnection patterns), and can take advantage of recent progress in machine learning (e.g. multi-model blending, post-processing and ensembling techniques). Recent efforts to develop a dynamical-statistical ensemble approach for forecasting seasonal streamflow using both GCM forecasts and changing land cover have shown promising results over the U.S. Midwest. Here, we use climate forecasts from several GCMs of the North American Multi Model Ensemble (NMME) alongside 15-minute stage time series from the National River Flow Archive (NRFA) and land cover classes extracted from the European Space Agency's Climate Change Initiative 300 m annual Global Land Cover time series. With these data, we conduct systematic long-range probabilistic forecasting of monthly water levels in UK catchments over timescales ranging from one to twelve months ahead. We evaluate the improvement in model fit and model forecasting skill that comes from using land cover classes as predictors in the models. This work opens up new possibilities for combining Earth Observation time series with GCM forecasts to predict a variety of hazards from space using data science techniques.

  5. A Bayesian modelling method for post-processing daily sub-seasonal to seasonal rainfall forecasts from global climate models and evaluation for 12 Australian catchments

    NASA Astrophysics Data System (ADS)

    Schepen, Andrew; Zhao, Tongtiegang; Wang, Quan J.; Robertson, David E.

    2018-03-01

    Rainfall forecasts are an integral part of hydrological forecasting systems at sub-seasonal to seasonal timescales. In seasonal forecasting, global climate models (GCMs) are now the go-to source for rainfall forecasts. For hydrological applications however, GCM forecasts are often biased and unreliable in uncertainty spread, and calibration is therefore required before use. There are sophisticated statistical techniques for calibrating monthly and seasonal aggregations of the forecasts. However, calibration of seasonal forecasts at the daily time step typically uses very simple statistical methods or climate analogue methods. These methods generally lack the sophistication to achieve unbiased, reliable and coherent forecasts of daily amounts and seasonal accumulated totals. In this study, we propose and evaluate a Rainfall Post-Processing method for Seasonal forecasts (RPP-S), which is based on the Bayesian joint probability modelling approach for calibrating daily forecasts and the Schaake Shuffle for connecting the daily ensemble members of different lead times. We apply the method to post-process ACCESS-S forecasts for 12 perennial and ephemeral catchments across Australia and for 12 initialisation dates. RPP-S significantly reduces bias in raw forecasts and improves both skill and reliability. RPP-S forecasts are also more skilful and reliable than forecasts derived from ACCESS-S forecasts that have been post-processed using quantile mapping, especially for monthly and seasonal accumulations. Several opportunities to improve the robustness and skill of RPP-S are identified. The new RPP-S post-processed forecasts will be used in ensemble sub-seasonal to seasonal streamflow applications.

  6. A stochastic post-processing method for solar irradiance forecasts derived from NWPs models

    NASA Astrophysics Data System (ADS)

    Lara-Fanego, V.; Pozo-Vazquez, D.; Ruiz-Arias, J. A.; Santos-Alamillos, F. J.; Tovar-Pescador, J.

    2010-09-01

    Solar irradiance forecast is an important area of research for the future of the solar-based renewable energy systems. Numerical Weather Prediction models (NWPs) have proved to be a valuable tool for solar irradiance forecasting with lead time up to a few days. Nevertheless, these models show low skill in forecasting the solar irradiance under cloudy conditions. Additionally, climatic (averaged over seasons) aerosol loading are usually considered in these models, leading to considerable errors for the Direct Normal Irradiance (DNI) forecasts during high aerosols load conditions. In this work we propose a post-processing method for the Global Irradiance (GHI) and DNI forecasts derived from NWPs. Particularly, the methods is based on the use of Autoregressive Moving Average with External Explanatory Variables (ARMAX) stochastic models. These models are applied to the residuals of the NWPs forecasts and uses as external variables the measured cloud fraction and aerosol loading of the day previous to the forecast. The method is evaluated for a set one-moth length three-days-ahead forecast of the GHI and DNI, obtained based on the WRF mesoscale atmospheric model, for several locations in Andalusia (Southern Spain). The Cloud fraction is derived from MSG satellite estimates and the aerosol loading from the MODIS platform estimates. Both sources of information are readily available at the time of the forecast. Results showed a considerable improvement of the forecasting skill of the WRF model using the proposed post-processing method. Particularly, relative improvement (in terms of the RMSE) for the DNI during summer is about 20%. A similar value is obtained for the GHI during the winter.

  7. A comparative analysis of errors in long-term econometric forecasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tepel, R.

    1986-04-01

    The growing body of literature that documents forecast accuracy falls generally into two parts. The first is prescriptive and is carried out by modelers who use simulation analysis as a tool for model improvement. These studies are ex post, that is, they make use of known values for exogenous variables and generate an error measure wholly attributable to the model. The second type of analysis is descriptive and seeks to measure errors, identify patterns among errors and variables and compare forecasts from different sources. Most descriptive studies use an ex ante approach, that is, they evaluate model outputs based onmore » estimated (or forecasted) exogenous variables. In this case, it is the forecasting process, rather than the model, that is under scrutiny. This paper uses an ex ante approach to measure errors in forecast series prepared by Data Resources Incorporated (DRI), Wharton Econometric Forecasting Associates (Wharton), and Chase Econometrics (Chase) and to determine if systematic patterns of errors can be discerned between services, types of variables (by degree of aggregation), length of forecast and time at which the forecast is made. Errors are measured as the percent difference between actual and forecasted values for the historical period of 1971 to 1983.« less

  8. Forecasting daily patient volumes in the emergency department.

    PubMed

    Jones, Spencer S; Thomas, Alun; Evans, R Scott; Welch, Shari J; Haug, Peter J; Snow, Gregory L

    2008-02-01

    Shifts in the supply of and demand for emergency department (ED) resources make the efficient allocation of ED resources increasingly important. Forecasting is a vital activity that guides decision-making in many areas of economic, industrial, and scientific planning, but has gained little traction in the health care industry. There are few studies that explore the use of forecasting methods to predict patient volumes in the ED. The goals of this study are to explore and evaluate the use of several statistical forecasting methods to predict daily ED patient volumes at three diverse hospital EDs and to compare the accuracy of these methods to the accuracy of a previously proposed forecasting method. Daily patient arrivals at three hospital EDs were collected for the period January 1, 2005, through March 31, 2007. The authors evaluated the use of seasonal autoregressive integrated moving average, time series regression, exponential smoothing, and artificial neural network models to forecast daily patient volumes at each facility. Forecasts were made for horizons ranging from 1 to 30 days in advance. The forecast accuracy achieved by the various forecasting methods was compared to the forecast accuracy achieved when using a benchmark forecasting method already available in the emergency medicine literature. All time series methods considered in this analysis provided improved in-sample model goodness of fit. However, post-sample analysis revealed that time series regression models that augment linear regression models by accounting for serial autocorrelation offered only small improvements in terms of post-sample forecast accuracy, relative to multiple linear regression models, while seasonal autoregressive integrated moving average, exponential smoothing, and artificial neural network forecasting models did not provide consistently accurate forecasts of daily ED volumes. This study confirms the widely held belief that daily demand for ED services is characterized by seasonal and weekly patterns. The authors compared several time series forecasting methods to a benchmark multiple linear regression model. The results suggest that the existing methodology proposed in the literature, multiple linear regression based on calendar variables, is a reasonable approach to forecasting daily patient volumes in the ED. However, the authors conclude that regression-based models that incorporate calendar variables, account for site-specific special-day effects, and allow for residual autocorrelation provide a more appropriate, informative, and consistently accurate approach to forecasting daily ED patient volumes.

  9. New product forecasting with limited or no data

    NASA Astrophysics Data System (ADS)

    Ismai, Zuhaimy; Abu, Noratikah; Sufahani, Suliadi

    2016-10-01

    In the real world, forecasts would always be based on historical data with the assumption that the behaviour be the same for the future. But how do we forecast when there is no such data available? New product or new technologies normally has limited amount of data available. Knowing that forecasting is valuable for decision making, this paper presents forecasting of new product or new technologies using aggregate diffusion models and modified Bass Model. A newly launched Proton car and its penetration was chosen to demonstrate the possibility of forecasting sales demand where there is limited or no data available. The model was developed to forecast diffusion of new vehicle or an innovation in the Malaysian society. It is to represent the level of spread on the new vehicle among a given set of the society in terms of a simple mathematical function that elapsed since the introduction of the new product. This model will forecast the car sales volume. A procedure of the proposed diffusion model was designed and the parameters were estimated. Results obtained by applying the proposed diffusion model and numerical calculation shows that the model is robust and effective for forecasting demand of the new vehicle. The results reveal that newly developed modified Bass diffusion of demand function has significantly contributed for forecasting the diffusion of new Proton car or new product.

  10. Investigating NWP initialization sensitivities in heavy precipitation events

    NASA Astrophysics Data System (ADS)

    Frediani, M. E. B.; Anagnostou, E. N.; Papadopoulos, A.

    2010-09-01

    This study aims to investigate the effect of different types of model initialization applied to extreme storms simulations. Storms with extreme precipitation can usually produce flash floods that cause several damages to the society. Lives and property are destroyed from the landslides when they could be speared if forecasted a few hours in advance. The forecasts depend on several factors; among them the initialization fields play an important role. These fields are the starting point for the simulation and therefore it controls the quality of the forecast. This study evaluates the sensitivities of WRF to the initialization from two perspectives, (1) resolution and (2) initial atmospheric fields. Two storms that lead to flash flood are simulated. The first one happened in Northeast Italy in 04/09/2009 (NI), and the second in Germany, in 02/06/2008 (GE). These storms present contrasting characteristics, NI was a maritime originated storm enhanced by local orography while GE was a typical summer convection. Three different sources of atmospheric fields defining the initial conditions are applied: (a) ECMWF operational analysis at resolution of 0.25 deg, (b) GFS operational analysis at 0.5deg and (c) LAPS analysis at ~15km, produced operationally at HCMR. The rainfall forecasted is compared against in situ ground radar and surface rain gauges observations through a set of quantitative precipitation forecast scores.

  11. Optimization of the Costs and the Safety of Maritime Transport by Routing: The use of Currents Forecast in the Routing of Racing Sail Boats as a Prototype of Rout Optimization for Trading Ships

    NASA Astrophysics Data System (ADS)

    Theunynck, Denis; Peze, Thierry; Toumazou, Vincent; Zunquin, Gauthier; Cohen, Olivier; Monges, Arnaud

    2005-03-01

    It is interesting to see whether the model of routing designed for races and great Navy operations could be transferred to commercial navigation and if so, within which framework.Sail boat routing conquered its letters of nobility during great races like the « Route du Rhum » or the transatlantic race « Jacques Vabre ». It is the ultimate stage of the step begun by the Navy at the time of great operations, like D-day (Overlord )June 6, 1944, in Normandy1.Routing is, from the beginning, mainly based on statistical knowledge and weather forecast, but with the recent availability of reliable currents forecast, sail boats routers and/or skippers now have to learn how to use both winds and currents to obtain the best performance, that is to travel between two points in the shortest time possible in acceptable security conditions.Are the currents forecast only useful to racing sail boat ? Of course not, they are a great help to fisherman for whom the knowledge of currents is also the knowledge of sea temperature who indicates the probability of fish presence. They are also used in offshore work to predict the hardness of the sea during operation.A less developed field of application is the route optimization of trading ships. The idea is to optimize the use of currents to increase the relative speed of ships with no augmentation of fuel expense. This new field will require that currents forecasters learn about the specific needs of another type of clients. There is also a need of teaching because the future customers will have to learn how to use the information they will get.At this point, the introduction of the use of currents forecast in racing sail boats routing is only the first step. It is of great interest because it can rely on a high knowledge in routing.The main difference is of course that the wind direction and its force are of greater importance to a sail boat that they are for a trading ship for whom the point of interest will be the fuel consumption and the ETA respect.Despite that, sail boat routing could be use as a prototype to determine the needs, both in term of information and formations of ship routers and skippers2.

  12. Probabilistic postprocessing models for flow forecasts for a system of catchments and several lead times

    NASA Astrophysics Data System (ADS)

    Engeland, Kolbjorn; Steinsland, Ingelin

    2014-05-01

    This study introduces a methodology for the construction of probabilistic inflow forecasts for multiple catchments and lead times, and investigates criterions for evaluation of multi-variate forecasts. A post-processing approach is used, and a Gaussian model is applied for transformed variables. The post processing model has two main components, the mean model and the dependency model. The mean model is used to estimate the marginal distributions for forecasted inflow for each catchment and lead time, whereas the dependency models was used to estimate the full multivariate distribution of forecasts, i.e. co-variances between catchments and lead times. In operational situations, it is a straightforward task to use the models to sample inflow ensembles which inherit the dependencies between catchments and lead times. The methodology was tested and demonstrated in the river systems linked to the Ulla-Førre hydropower complex in southern Norway, where simultaneous probabilistic forecasts for five catchments and ten lead times were constructed. The methodology exhibits sufficient flexibility to utilize deterministic flow forecasts from a numerical hydrological model as well as statistical forecasts such as persistent forecasts and sliding window climatology forecasts. It also deals with variation in the relative weights of these forecasts with both catchment and lead time. When evaluating predictive performance in original space using cross validation, the case study found that it is important to include the persistent forecast for the initial lead times and the hydrological forecast for medium-term lead times. Sliding window climatology forecasts become more important for the latest lead times. Furthermore, operationally important features in this case study such as heteroscedasticity, lead time varying between lead time dependency and lead time varying between catchment dependency are captured. Two criterions were used for evaluating the added value of the dependency model. The first one was the Energy score (ES) that is a multi-dimensional generalization of continuous rank probability score (CRPS). ES was calculated for all lead-times and catchments together, for each catchment across all lead times and for each lead time across all catchments. The second criterion was to use CRPS for forecasted inflows accumulated over several lead times and catchments. The results showed that ES was not very sensitive to correct covariance structure, whereas CRPS for accumulated flows where more suitable for evaluating the dependency model. This indicates that it is more appropriate to evaluate relevant univariate variables that depends on the dependency structure then to evaluate the multivariate forecast directly.

  13. Statistical post-processing of seasonal multi-model forecasts: Why is it so hard to beat the multi-model mean?

    NASA Astrophysics Data System (ADS)

    Siegert, Stefan

    2017-04-01

    Initialised climate forecasts on seasonal time scales, run several months or even years ahead, are now an integral part of the battery of products offered by climate services world-wide. The availability of seasonal climate forecasts from various modeling centres gives rise to multi-model ensemble forecasts. Post-processing such seasonal-to-decadal multi-model forecasts is challenging 1) because the cross-correlation structure between multiple models and observations can be complicated, 2) because the amount of training data to fit the post-processing parameters is very limited, and 3) because the forecast skill of numerical models tends to be low on seasonal time scales. In this talk I will review new statistical post-processing frameworks for multi-model ensembles. I will focus particularly on Bayesian hierarchical modelling approaches, which are flexible enough to capture commonly made assumptions about collective and model-specific biases of multi-model ensembles. Despite the advances in statistical methodology, it turns out to be very difficult to out-perform the simplest post-processing method, which just recalibrates the multi-model ensemble mean by linear regression. I will discuss reasons for this, which are closely linked to the specific characteristics of seasonal multi-model forecasts. I explore possible directions for improvements, for example using informative priors on the post-processing parameters, and jointly modelling forecasts and observations.

  14. Evaluating probabilistic dengue risk forecasts from a prototype early warning system for Brazil.

    PubMed

    Lowe, Rachel; Coelho, Caio As; Barcellos, Christovam; Carvalho, Marilia Sá; Catão, Rafael De Castro; Coelho, Giovanini E; Ramalho, Walter Massa; Bailey, Trevor C; Stephenson, David B; Rodó, Xavier

    2016-02-24

    Recently, a prototype dengue early warning system was developed to produce probabilistic forecasts of dengue risk three months ahead of the 2014 World Cup in Brazil. Here, we evaluate the categorical dengue forecasts across all microregions in Brazil, using dengue cases reported in June 2014 to validate the model. We also compare the forecast model framework to a null model, based on seasonal averages of previously observed dengue incidence. When considering the ability of the two models to predict high dengue risk across Brazil, the forecast model produced more hits and fewer missed events than the null model, with a hit rate of 57% for the forecast model compared to 33% for the null model. This early warning model framework may be useful to public health services, not only ahead of mass gatherings, but also before the peak dengue season each year, to control potentially explosive dengue epidemics.

  15. A Hybrid Neural Network Model for Sales Forecasting Based on ARIMA and Search Popularity of Article Titles.

    PubMed

    Omar, Hani; Hoang, Van Hai; Liu, Duen-Ren

    2016-01-01

    Enhancing sales and operations planning through forecasting analysis and business intelligence is demanded in many industries and enterprises. Publishing industries usually pick attractive titles and headlines for their stories to increase sales, since popular article titles and headlines can attract readers to buy magazines. In this paper, information retrieval techniques are adopted to extract words from article titles. The popularity measures of article titles are then analyzed by using the search indexes obtained from Google search engine. Backpropagation Neural Networks (BPNNs) have successfully been used to develop prediction models for sales forecasting. In this study, we propose a novel hybrid neural network model for sales forecasting based on the prediction result of time series forecasting and the popularity of article titles. The proposed model uses the historical sales data, popularity of article titles, and the prediction result of a time series, Autoregressive Integrated Moving Average (ARIMA) forecasting method to learn a BPNN-based forecasting model. Our proposed forecasting model is experimentally evaluated by comparing with conventional sales prediction techniques. The experimental result shows that our proposed forecasting method outperforms conventional techniques which do not consider the popularity of title words.

  16. A Hybrid Neural Network Model for Sales Forecasting Based on ARIMA and Search Popularity of Article Titles

    PubMed Central

    Omar, Hani; Hoang, Van Hai; Liu, Duen-Ren

    2016-01-01

    Enhancing sales and operations planning through forecasting analysis and business intelligence is demanded in many industries and enterprises. Publishing industries usually pick attractive titles and headlines for their stories to increase sales, since popular article titles and headlines can attract readers to buy magazines. In this paper, information retrieval techniques are adopted to extract words from article titles. The popularity measures of article titles are then analyzed by using the search indexes obtained from Google search engine. Backpropagation Neural Networks (BPNNs) have successfully been used to develop prediction models for sales forecasting. In this study, we propose a novel hybrid neural network model for sales forecasting based on the prediction result of time series forecasting and the popularity of article titles. The proposed model uses the historical sales data, popularity of article titles, and the prediction result of a time series, Autoregressive Integrated Moving Average (ARIMA) forecasting method to learn a BPNN-based forecasting model. Our proposed forecasting model is experimentally evaluated by comparing with conventional sales prediction techniques. The experimental result shows that our proposed forecasting method outperforms conventional techniques which do not consider the popularity of title words. PMID:27313605

  17. Stationarity test with a direct test for heteroskedasticity in exchange rate forecasting models

    NASA Astrophysics Data System (ADS)

    Khin, Aye Aye; Chau, Wong Hong; Seong, Lim Chee; Bin, Raymond Ling Leh; Teng, Kevin Low Lock

    2017-05-01

    Global economic has been decreasing in the recent years, manifested by the greater exchange rates volatility on international commodity market. This study attempts to analyze some prominent exchange rate forecasting models on Malaysian commodity trading: univariate ARIMA, ARCH and GARCH models in conjunction with stationarity test on residual diagnosis direct testing of heteroskedasticity. All forecasting models utilized the monthly data from 1990 to 2015. Given a total of 312 observations, the data used to forecast both short-term and long-term exchange rate. The forecasting power statistics suggested that the forecasting performance of ARIMA (1, 1, 1) model is more efficient than the ARCH (1) and GARCH (1, 1) models. For ex-post forecast, exchange rate was increased from RM 3.50 per USD in January 2015 to RM 4.47 per USD in December 2015 based on the baseline data. For short-term ex-ante forecast, the analysis results indicate a decrease in exchange rate on 2016 June (RM 4.27 per USD) as compared with 2015 December. A more appropriate forecasting method of exchange rate is vital to aid the decision-making process and planning on the sustainable commodities' production in the world economy.

  18. Earthquake Rate Models for Evolving Induced Seismicity Hazard in the Central and Eastern US

    NASA Astrophysics Data System (ADS)

    Llenos, A. L.; Ellsworth, W. L.; Michael, A. J.

    2015-12-01

    Injection-induced earthquake rates can vary rapidly in space and time, which presents significant challenges to traditional probabilistic seismic hazard assessment methodologies that are based on a time-independent model of mainshock occurrence. To help society cope with rapidly evolving seismicity, the USGS is developing one-year hazard models for areas of induced seismicity in the central and eastern US to forecast the shaking due to all earthquakes, including aftershocks which are generally omitted from hazards assessments (Petersen et al., 2015). However, the spatial and temporal variability of the earthquake rates make them difficult to forecast even on time-scales as short as one year. An initial approach is to use the previous year's seismicity rate to forecast the next year's seismicity rate. However, in places such as northern Oklahoma the rates vary so rapidly over time that a simple linear extrapolation does not accurately forecast the future, even when the variability in the rates is modeled with simulations based on an Epidemic-Type Aftershock Sequence (ETAS) model (Ogata, JASA, 1988) to account for earthquake clustering. Instead of relying on a fixed time period for rate estimation, we explore another way to determine when the earthquake rate should be updated. This approach could also objectively identify new areas where the induced seismicity hazard model should be applied. We will estimate the background seismicity rate by optimizing a single set of ETAS aftershock triggering parameters across the most active induced seismicity zones -- Oklahoma, Guy-Greenbrier, the Raton Basin, and the Azle-Dallas-Fort Worth area -- with individual background rate parameters in each zone. The full seismicity rate, with uncertainties, can then be estimated using ETAS simulations and changes in rate can be detected by applying change point analysis in ETAS transformed time with methods already developed for Poisson processes.

  19. Value versus Accuracy: application of seasonal forecasts to a hydro-economic optimization model for the Sudanese Blue Nile

    NASA Astrophysics Data System (ADS)

    Satti, S.; Zaitchik, B. F.; Siddiqui, S.; Badr, H. S.; Shukla, S.; Peters-Lidard, C. D.

    2015-12-01

    The unpredictable nature of precipitation within the East African (EA) region makes it one of the most vulnerable, food insecure regions in the world. There is a vital need for forecasts to inform decision makers, both local and regional, and to help formulate the region's climate change adaptation strategies. Here, we present a suite of different seasonal forecast models, both statistical and dynamical, for the EA region. Objective regionalization is performed for EA on the basis of interannual variability in precipitation in both observations and models. This regionalization is applied as the basis for calculating a number of standard skill scores to evaluate each model's forecast accuracy. A dynamically linked Land Surface Model (LSM) is then applied to determine forecasted flows, which drive the Sudanese Hydroeconomic Optimization Model (SHOM). SHOM combines hydrologic, agronomic and economic inputs to determine the optimal decisions that maximize economic benefits along the Sudanese Blue Nile. This modeling sequence is designed to derive the potential added value of information of each forecasting model to agriculture and hydropower management. A rank of each model's forecasting skill score along with its added value of information is analyzed in order compare the performance of each forecast. This research aims to improve understanding of how characteristics of accuracy, lead time, and uncertainty of seasonal forecasts influence their utility to water resources decision makers who utilize them.

  20. Fixed points, stable manifolds, weather regimes, and their predictability

    DOE PAGES

    Deremble, Bruno; D'Andrea, Fabio; Ghil, Michael

    2009-10-27

    In a simple, one-layer atmospheric model, we study the links between low-frequency variability and the model’s fixed points in phase space. The model dynamics is characterized by the coexistence of multiple ''weather regimes.'' To investigate the transitions from one regime to another, we focus on the identification of stable manifolds associated with fixed points. We show that these manifolds act as separatrices between regimes. We track each manifold by making use of two local predictability measures arising from the meteorological applications of nonlinear dynamics, namely, ''bred vectors'' and singular vectors. These results are then verified in the framework of ensemblemore » forecasts issued from clouds (ensembles) of initial states. The divergence of the trajectories allows us to establish the connections between zones of low predictability, the geometry of the stable manifolds, and transitions between regimes.« less

  1. The main pillar: Assessment of space weather observational asset performance supporting nowcasting, forecasting, and research to operations

    PubMed Central

    Posner, A; Hesse, M; St Cyr, O C

    2014-01-01

    Space weather forecasting critically depends upon availability of timely and reliable observational data. It is therefore particularly important to understand how existing and newly planned observational assets perform during periods of severe space weather. Extreme space weather creates challenging conditions under which instrumentation and spacecraft may be impeded or in which parameters reach values that are outside the nominal observational range. This paper analyzes existing and upcoming observational capabilities for forecasting, and discusses how the findings may impact space weather research and its transition to operations. A single limitation to the assessment is lack of information provided to us on radiation monitor performance, which caused us not to fully assess (i.e., not assess short term) radiation storm forecasting. The assessment finds that at least two widely spaced coronagraphs including L4 would provide reliability for Earth-bound CMEs. Furthermore, all magnetic field measurements assessed fully meet requirements. However, with current or even with near term new assets in place, in the worst-case scenario there could be a near-complete lack of key near-real-time solar wind plasma data of severe disturbances heading toward and impacting Earth's magnetosphere. Models that attempt to simulate the effects of these disturbances in near real time or with archival data require solar wind plasma observations as input. Moreover, the study finds that near-future observational assets will be less capable of advancing the understanding of extreme geomagnetic disturbances at Earth, which might make the resulting space weather models unsuitable for transition to operations. Key Points Manuscript assesses current and near-future space weather assets Current assets unreliable for forecasting of severe geomagnetic storms Near-future assets will not improve the situation PMID:26213516

  2. Potential predictability and forecast skill in ensemble climate forecast: the skill-persistence rule

    NASA Astrophysics Data System (ADS)

    Jin, Y.; Rong, X.; Liu, Z.

    2017-12-01

    This study investigates the factors that impact the forecast skill for the real world (actual skill) and perfect model (perfect skill) in ensemble climate model forecast with a series of fully coupled general circulation model forecast experiments. It is found that the actual skill of sea surface temperature (SST) in seasonal forecast is substantially higher than the perfect skill on a large part of the tropical oceans, especially the tropical Indian Ocean and the central-eastern Pacific Ocean. The higher actual skill is found to be related to the higher observational SST persistence, suggesting a skill-persistence rule: a higher SST persistence in the real world than in the model could overwhelm the model bias to produce a higher forecast skill for the real world than for the perfect model. The relation between forecast skill and persistence is further examined using a first-order autoregressive model (AR1) analytically for theoretical solutions and numerically for analogue experiments. The AR1 model study shows that the skill-persistence rule is strictly valid in the case of infinite ensemble size, but can be distorted by the sampling error and non-AR1 processes.

  3. Short-Term Global Horizontal Irradiance Forecasting Based on Sky Imaging and Pattern Recognition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hodge, Brian S; Feng, Cong; Cui, Mingjian

    Accurate short-term forecasting is crucial for solar integration in the power grid. In this paper, a classification forecasting framework based on pattern recognition is developed for 1-hour-ahead global horizontal irradiance (GHI) forecasting. Three sets of models in the forecasting framework are trained by the data partitioned from the preprocessing analysis. The first two sets of models forecast GHI for the first four daylight hours of each day. Then the GHI values in the remaining hours are forecasted by an optimal machine learning model determined based on a weather pattern classification model in the third model set. The weather pattern ismore » determined by a support vector machine (SVM) classifier. The developed framework is validated by the GHI and sky imaging data from the National Renewable Energy Laboratory (NREL). Results show that the developed short-term forecasting framework outperforms the persistence benchmark by 16% in terms of the normalized mean absolute error and 25% in terms of the normalized root mean square error.« less

  4. Improving wave forecasting by integrating ensemble modelling and machine learning

    NASA Astrophysics Data System (ADS)

    O'Donncha, F.; Zhang, Y.; James, S. C.

    2017-12-01

    Modern smart-grid networks use technologies to instantly relay information on supply and demand to support effective decision making. Integration of renewable-energy resources with these systems demands accurate forecasting of energy production (and demand) capacities. For wave-energy converters, this requires wave-condition forecasting to enable estimates of energy production. Current operational wave forecasting systems exhibit substantial errors with wave-height RMSEs of 40 to 60 cm being typical, which limits the reliability of energy-generation predictions thereby impeding integration with the distribution grid. In this study, we integrate physics-based models with statistical learning aggregation techniques that combine forecasts from multiple, independent models into a single "best-estimate" prediction of the true state. The Simulating Waves Nearshore physics-based model is used to compute wind- and currents-augmented waves in the Monterey Bay area. Ensembles are developed based on multiple simulations perturbing input data (wave characteristics supplied at the model boundaries and winds) to the model. A learning-aggregation technique uses past observations and past model forecasts to calculate a weight for each model. The aggregated forecasts are compared to observation data to quantify the performance of the model ensemble and aggregation techniques. The appropriately weighted ensemble model outperforms an individual ensemble member with regard to forecasting wave conditions.

  5. An Econometric Model for Forecasting Income and Employment in Hawaii.

    ERIC Educational Resources Information Center

    Chau, Laurence C.

    This report presents the methodology for short-run forecasting of personal income and employment in Hawaii. The econometric model developed in the study is used to make actual forecasts through 1973 of income and employment, with major components forecasted separately. Several sets of forecasts are made, under different assumptions on external…

  6. A Unified Data Assimilation Strategy for Regional Coupled Atmosphere-Ocean Prediction Systems

    NASA Astrophysics Data System (ADS)

    Xie, Lian; Liu, Bin; Zhang, Fuqing; Weng, Yonghui

    2014-05-01

    Improving tropical cyclone (TC) forecasts is a top priority in weather forecasting. Assimilating various observational data to produce better initial conditions for numerical models using advanced data assimilation techniques has been shown to benefit TC intensity forecasts, whereas assimilating large-scale environmental circulation into regional models by spectral nudging or Scale-Selective Data Assimilation (SSDA) has been demonstrated to improve TC track forecasts. Meanwhile, taking into account various air-sea interaction processes by high-resolution coupled air-sea modelling systems has also been shown to improve TC intensity forecasts. Despite the advances in data assimilation and air-sea coupled models, large errors in TC intensity and track forecasting remain. For example, Hurricane Nate (2011) has brought considerable challenge for the TC operational forecasting community, with very large intensity forecast errors (27, 25, and 40 kts for 48, 72, and 96 h, respectively) for the official forecasts. Considering the slow-moving nature of Hurricane Nate, it is reasonable to hypothesize that air-sea interaction processes played a critical role in the intensity change of the storm, and accurate representation of the upper ocean dynamics and thermodynamics is necessary to quantitatively describe the air-sea interaction processes. Currently, data assimilation techniques are generally only applied to hurricane forecasting in stand-alone atmospheric or oceanic model. In fact, most of the regional hurricane forecasting models only included data assimilation techniques for improving the initial condition of the atmospheric model. In such a situation, the benefit of adjustments in one model (atmospheric or oceanic) by assimilating observational data can be compromised by errors from the other model. Thus, unified data assimilation techniques for coupled air-sea modelling systems, which not only simultaneously assimilate atmospheric and oceanic observations into the coupled air-sea modelling system, but also nudging the large-scale environmental flow in the regional model towards global model forecasts are of increasing necessity. In this presentation, we will outline a strategy for an integrated approach in air-sea coupled data assimilation and discuss its benefits and feasibility from incremental results for select historical hurricane cases.

  7. A probabilistic drought forecasting framework: A combined dynamical and statistical approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Hongxiang; Moradkhani, Hamid; Zarekarizi, Mahkameh

    In order to improve drought forecasting skill, this study develops a probabilistic drought forecasting framework comprised of dynamical and statistical modeling components. The novelty of this study is to seek the use of data assimilation to quantify initial condition uncertainty with the Monte Carlo ensemble members, rather than relying entirely on the hydrologic model or land surface model to generate a single deterministic initial condition, as currently implemented in the operational drought forecasting systems. Next, the initial condition uncertainty is quantified through data assimilation and coupled with a newly developed probabilistic drought forecasting model using a copula function. The initialmore » condition at each forecast start date are sampled from the data assimilation ensembles for forecast initialization. Finally, seasonal drought forecasting products are generated with the updated initial conditions. This study introduces the theory behind the proposed drought forecasting system, with an application in Columbia River Basin, Pacific Northwest, United States. Results from both synthetic and real case studies suggest that the proposed drought forecasting system significantly improves the seasonal drought forecasting skills and can facilitate the state drought preparation and declaration, at least three months before the official state drought declaration.« less

  8. Two-step forecast of geomagnetic storm using coronal mass ejection and solar wind condition

    PubMed Central

    Kim, R-S; Moon, Y-J; Gopalswamy, N; Park, Y-D; Kim, Y-H

    2014-01-01

    To forecast geomagnetic storms, we had examined initially observed parameters of coronal mass ejections (CMEs) and introduced an empirical storm forecast model in a previous study. Now we suggest a two-step forecast considering not only CME parameters observed in the solar vicinity but also solar wind conditions near Earth to improve the forecast capability. We consider the empirical solar wind criteria derived in this study (Bz ≤ −5 nT or Ey ≥ 3 mV/m for t≥ 2 h for moderate storms with minimum Dst less than −50 nT) and a Dst model developed by Temerin and Li (2002, 2006) (TL model). Using 55 CME-Dst pairs during 1997 to 2003, our solar wind criteria produce slightly better forecasts for 31 storm events (90%) than the forecasts based on the TL model (87%). However, the latter produces better forecasts for 24 nonstorm events (88%), while the former correctly forecasts only 71% of them. We then performed the two-step forecast. The results are as follows: (i) for 15 events that are incorrectly forecasted using CME parameters, 12 cases (80%) can be properly predicted based on solar wind conditions; (ii) if we forecast a storm when both CME and solar wind conditions are satisfied (∩), the critical success index becomes higher than that from the forecast using CME parameters alone, however, only 25 storm events (81%) are correctly forecasted; and (iii) if we forecast a storm when either set of these conditions is satisfied (∪), all geomagnetic storms are correctly forecasted. PMID:26213515

  9. Two-step forecast of geomagnetic storm using coronal mass ejection and solar wind condition.

    PubMed

    Kim, R-S; Moon, Y-J; Gopalswamy, N; Park, Y-D; Kim, Y-H

    2014-04-01

    To forecast geomagnetic storms, we had examined initially observed parameters of coronal mass ejections (CMEs) and introduced an empirical storm forecast model in a previous study. Now we suggest a two-step forecast considering not only CME parameters observed in the solar vicinity but also solar wind conditions near Earth to improve the forecast capability. We consider the empirical solar wind criteria derived in this study ( B z  ≤ -5 nT or E y  ≥ 3 mV/m for t ≥ 2 h for moderate storms with minimum Dst less than -50 nT) and a Dst model developed by Temerin and Li (2002, 2006) (TL model). Using 55 CME- Dst pairs during 1997 to 2003, our solar wind criteria produce slightly better forecasts for 31 storm events (90%) than the forecasts based on the TL model (87%). However, the latter produces better forecasts for 24 nonstorm events (88%), while the former correctly forecasts only 71% of them. We then performed the two-step forecast. The results are as follows: (i) for 15 events that are incorrectly forecasted using CME parameters, 12 cases (80%) can be properly predicted based on solar wind conditions; (ii) if we forecast a storm when both CME and solar wind conditions are satisfied (∩), the critical success index becomes higher than that from the forecast using CME parameters alone, however, only 25 storm events (81%) are correctly forecasted; and (iii) if we forecast a storm when either set of these conditions is satisfied (∪), all geomagnetic storms are correctly forecasted.

  10. Canadian Operational Air Quality Forecasting Systems: Status, Recent Progress, and Challenges

    NASA Astrophysics Data System (ADS)

    Pavlovic, Radenko; Davignon, Didier; Ménard, Sylvain; Munoz-Alpizar, Rodrigo; Landry, Hugo; Beaulieu, Paul-André; Gilbert, Samuel; Moran, Michael; Chen, Jack

    2017-04-01

    ECCC's Canadian Meteorological Centre Operations (CMCO) division runs a number of operational air quality (AQ)-related systems that revolve around the Regional Air Quality Deterministic Prediction System (RAQDPS). The RAQDPS generates 48-hour AQ forecasts and outputs hourly concentration fields of O3, PM2.5, NO2, and other pollutants twice daily on a North-American domain with 10-km horizontal grid spacing and 80 vertical levels. A closely related AQ forecast system with near-real-time wildfire emissions, known as FireWork, has been run by CMCO during the Canadian wildfire season (April to October) since 2014. This system became operational in June 2016. The CMCO`s operational AQ forecast systems also benefit from several support systems, such as a statistical post-processing model called UMOS-AQ that is applied to enhance forecast reliability at point locations with AQ monitors. The Regional Deterministic Air Quality Analysis (RDAQA) system has also been connected to the RAQDPS since February 2013, and hourly surface objective analyses are now available for O3, PM2.5, NO2, PM10, SO2 and, indirectly, the Canadian Air Quality Health Index. As of June 2015, another version of the RDAQA has been connected to FireWork (RDAQA-FW). For verification purposes, CMCO developed a third support system called Verification for Air QUality Models (VAQUM), which has a geospatial relational database core and which enables continuous monitoring of the AQ forecast systems' performance. Urban environments are particularly subject to AQ pollution. In order to improve the services offered, ECCC has recently been investing efforts to develop a high resolution air quality prediction capability for urban areas in Canada. In this presentation, a comprehensive description of the ECCC AQ systems will be provided, along with a discussion on AQ systems performance. Recent improvements, current challenges, and future directions of the Canadian operational AQ program will also be discussed.

  11. Improving High-resolution Weather Forecasts using the Weather Research and Forecasting (WRF) Model with Upgraded Kain-Fritsch Cumulus Scheme

    EPA Science Inventory

    High-resolution weather forecasting is affected by many aspects, i.e. model initial conditions, subgrid-scale cumulus convection and cloud microphysics schemes. Recent 12km grid studies using the Weather Research and Forecasting (WRF) model have identified the importance of inco...

  12. Forecasting the Impact of Technological Change on Manpower Utilization and Displacement: An Analytic Summary.

    ERIC Educational Resources Information Center

    Fechter, Alan

    Obstacles to producing forecasts of the impact of technological change and skill utilization are briefly discussed, and existing models for forecasting manpower requirements are described and analyzed. A survey of current literature reveals a concentration of models for producing long-range national forecasts, but few models for generating…

  13. Regional Air Quality forecAST (RAQAST) Over the U.S

    NASA Astrophysics Data System (ADS)

    Yoshida, Y.; Choi, Y.; Zeng, T.; Wang, Y.

    2005-12-01

    A regional chemistry and transport modeling system is used to provide 48-hour forecast of the concentrations of ozone and its precursors over the United States. Meteorological forecast is conducted using the NCAR/Penn State MM5 model. The regional chemistry and transport model simulates the sources, transport, chemistry, and deposition of 24 chemical tracers. The lateral and upper boundary conditions of trace gas concentrations are specified using the monthly mean output from the global GEOS-CHEM model. The initial and boundary conditions for meteorological fields are taken from the NOAA AVN forecast. The forecast has been operational since August, 2003. Model simulations are evaluated using surface, aircraft, and satellite measurements in the A'hindcast' mode. The next step is an automated forecast evaluation system.

  14. Demand forecast model based on CRM

    NASA Astrophysics Data System (ADS)

    Cai, Yuancui; Chen, Lichao

    2006-11-01

    With interiorizing day by day management thought that regarding customer as the centre, forecasting customer demand becomes more and more important. In the demand forecast of customer relationship management, the traditional forecast methods have very great limitation because much uncertainty of the demand, these all require new modeling to meet the demands of development. In this paper, the notion is that forecasting the demand according to characteristics of the potential customer, then modeling by it. The model first depicts customer adopting uniform multiple indexes. Secondly, the model acquires characteristic customers on the basis of data warehouse and the technology of data mining. The last, there get the most similar characteristic customer by their comparing and forecast the demands of new customer by the most similar characteristic customer.

  15. A New Multivariate Approach in Generating Ensemble Meteorological Forcings for Hydrological Forecasting

    NASA Astrophysics Data System (ADS)

    Khajehei, Sepideh; Moradkhani, Hamid

    2015-04-01

    Producing reliable and accurate hydrologic ensemble forecasts are subject to various sources of uncertainty, including meteorological forcing, initial conditions, model structure, and model parameters. Producing reliable and skillful precipitation ensemble forecasts is one approach to reduce the total uncertainty in hydrological applications. Currently, National Weather Prediction (NWP) models are developing ensemble forecasts for various temporal ranges. It is proven that raw products from NWP models are biased in mean and spread. Given the above state, there is a need for methods that are able to generate reliable ensemble forecasts for hydrological applications. One of the common techniques is to apply statistical procedures in order to generate ensemble forecast from NWP-generated single-value forecasts. The procedure is based on the bivariate probability distribution between the observation and single-value precipitation forecast. However, one of the assumptions of the current method is fitting Gaussian distribution to the marginal distributions of observed and modeled climate variable. Here, we have described and evaluated a Bayesian approach based on Copula functions to develop an ensemble precipitation forecast from the conditional distribution of single-value precipitation forecasts. Copula functions are known as the multivariate joint distribution of univariate marginal distributions, which are presented as an alternative procedure in capturing the uncertainties related to meteorological forcing. Copulas are capable of modeling the joint distribution of two variables with any level of correlation and dependency. This study is conducted over a sub-basin in the Columbia River Basin in USA using the monthly precipitation forecasts from Climate Forecast System (CFS) with 0.5x0.5 Deg. spatial resolution to reproduce the observations. The verification is conducted on a different period and the superiority of the procedure is compared with Ensemble Pre-Processor approach currently used by National Weather Service River Forecast Centers in USA.

  16. ENSURF: multi-model sea level forecast - implementation and validation results for the IBIROOS and Western Mediterranean regions

    NASA Astrophysics Data System (ADS)

    Pérez, B.; Brouwer, R.; Beckers, J.; Paradis, D.; Balseiro, C.; Lyons, K.; Cure, M.; Sotillo, M. G.; Hackett, B.; Verlaan, M.; Fanjul, E. A.

    2012-03-01

    ENSURF (Ensemble SURge Forecast) is a multi-model application for sea level forecast that makes use of several storm surge or circulation models and near-real time tide gauge data in the region, with the following main goals: 1. providing easy access to existing forecasts, as well as to its performance and model validation, by means of an adequate visualization tool; 2. generation of better forecasts of sea level, including confidence intervals, by means of the Bayesian Model Average technique (BMA). The Bayesian Model Average technique generates an overall forecast probability density function (PDF) by making a weighted average of the individual forecasts PDF's; the weights represent the Bayesian likelihood that a model will give the correct forecast and are continuously updated based on the performance of the models during a recent training period. This implies the technique needs the availability of sea level data from tide gauges in near-real time. The system was implemented for the European Atlantic facade (IBIROOS region) and Western Mediterranean coast based on the MATROOS visualization tool developed by Deltares. Results of validation of the different models and BMA implementation for the main harbours are presented for these regions where this kind of activity is performed for the first time. The system is currently operational at Puertos del Estado and has proved to be useful in the detection of calibration problems in some of the circulation models, in the identification of the systematic differences between baroclinic and barotropic models for sea level forecasts and to demonstrate the feasibility of providing an overall probabilistic forecast, based on the BMA method.

  17. An empirical investigation on different methods of economic growth rate forecast and its behavior from fifteen countries across five continents

    NASA Astrophysics Data System (ADS)

    Yin, Yip Chee; Hock-Eam, Lim

    2012-09-01

    Our empirical results show that we can predict GDP growth rate more accurately in continent with fewer large economies, compared to smaller economies like Malaysia. This difficulty is very likely positively correlated with subsidy or social security policies. The stage of economic development and level of competiveness also appears to have interactive effects on this forecast stability. These results are generally independent of the forecasting procedures. Countries with high stability in their economic growth, forecasting by model selection is better than model averaging. Overall forecast weight averaging (FWA) is a better forecasting procedure in most countries. FWA also outperforms simple model averaging (SMA) and has the same forecasting ability as Bayesian model averaging (BMA) in almost all countries.

  18. Model Forecast Skill and Sensitivity to Initial Conditions in the Seasonal Sea Ice Outlook

    NASA Technical Reports Server (NTRS)

    Blanchard-Wrigglesworth, E.; Cullather, R. I.; Wang, W.; Zhang, J.; Bitz, C. M.

    2015-01-01

    We explore the skill of predictions of September Arctic sea ice extent from dynamical models participating in the Sea Ice Outlook (SIO). Forecasts submitted in August, at roughly 2 month lead times, are skillful. However, skill is lower in forecasts submitted to SIO, which began in 2008, than in hindcasts (retrospective forecasts) of the last few decades. The multimodel mean SIO predictions offer slightly higher skill than the single-model SIO predictions, but neither beats a damped persistence forecast at longer than 2 month lead times. The models are largely unsuccessful at predicting each other, indicating a large difference in model physics and/or initial conditions. Motivated by this, we perform an initial condition sensitivity experiment with four SIO models, applying a fixed -1 m perturbation to the initial sea ice thickness. The significant range of the response among the models suggests that different model physics make a significant contribution to forecast uncertainty.

  19. A novel hybrid model for air quality index forecasting based on two-phase decomposition technique and modified extreme learning machine.

    PubMed

    Wang, Deyun; Wei, Shuai; Luo, Hongyuan; Yue, Chenqiang; Grunder, Olivier

    2017-02-15

    The randomness, non-stationarity and irregularity of air quality index (AQI) series bring the difficulty of AQI forecasting. To enhance forecast accuracy, a novel hybrid forecasting model combining two-phase decomposition technique and extreme learning machine (ELM) optimized by differential evolution (DE) algorithm is developed for AQI forecasting in this paper. In phase I, the complementary ensemble empirical mode decomposition (CEEMD) is utilized to decompose the AQI series into a set of intrinsic mode functions (IMFs) with different frequencies; in phase II, in order to further handle the high frequency IMFs which will increase the forecast difficulty, variational mode decomposition (VMD) is employed to decompose the high frequency IMFs into a number of variational modes (VMs). Then, the ELM model optimized by DE algorithm is applied to forecast all the IMFs and VMs. Finally, the forecast value of each high frequency IMF is obtained through adding up the forecast results of all corresponding VMs, and the forecast series of AQI is obtained by aggregating the forecast results of all IMFs. To verify and validate the proposed model, two daily AQI series from July 1, 2014 to June 30, 2016 collected from Beijing and Shanghai located in China are taken as the test cases to conduct the empirical study. The experimental results show that the proposed hybrid model based on two-phase decomposition technique is remarkably superior to all other considered models for its higher forecast accuracy. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Three-model ensemble wind prediction in southern Italy

    NASA Astrophysics Data System (ADS)

    Torcasio, Rosa Claudia; Federico, Stefano; Calidonna, Claudia Roberta; Avolio, Elenio; Drofa, Oxana; Landi, Tony Christian; Malguzzi, Piero; Buzzi, Andrea; Bonasoni, Paolo

    2016-03-01

    Quality of wind prediction is of great importance since a good wind forecast allows the prediction of available wind power, improving the penetration of renewable energies into the energy market. Here, a 1-year (1 December 2012 to 30 November 2013) three-model ensemble (TME) experiment for wind prediction is considered. The models employed, run operationally at National Research Council - Institute of Atmospheric Sciences and Climate (CNR-ISAC), are RAMS (Regional Atmospheric Modelling System), BOLAM (BOlogna Limited Area Model), and MOLOCH (MOdello LOCale in H coordinates). The area considered for the study is southern Italy and the measurements used for the forecast verification are those of the GTS (Global Telecommunication System). Comparison with observations is made every 3 h up to 48 h of forecast lead time. Results show that the three-model ensemble outperforms the forecast of each individual model. The RMSE improvement compared to the best model is between 22 and 30 %, depending on the season. It is also shown that the three-model ensemble outperforms the IFS (Integrated Forecasting System) of the ECMWF (European Centre for Medium-Range Weather Forecast) for the surface wind forecasts. Notably, the three-model ensemble forecast performs better than each unbiased model, showing the added value of the ensemble technique. Finally, the sensitivity of the three-model ensemble RMSE to the length of the training period is analysed.

  1. Statistical and dynamical forecast of regional precipitation after mature phase of ENSO

    NASA Astrophysics Data System (ADS)

    Sohn, S.; Min, Y.; Lee, J.; Tam, C.; Ahn, J.

    2010-12-01

    While the seasonal predictability of general circulation models (GCMs) has been improved, the current model atmosphere in the mid-latitude does not respond correctly to external forcing such as tropical sea surface temperature (SST), particularly over the East Asia and western North Pacific summer monsoon regions. In addition, the time-scale of prediction scope is considerably limited and the model forecast skill still is very poor beyond two weeks. Although recent studies indicate that coupled model based multi-model ensemble (MME) forecasts show the better performance, the long-lead forecasts exceeding 9 months still show a dramatic decrease of the seasonal predictability. This study aims at diagnosing the dynamical MME forecasts comprised of the state of art 1-tier models as well as comparing them with the statistical model forecasts, focusing on the East Asian summer precipitation predictions after mature phase of ENSO. The lagged impact of El Nino as major climate contributor on the summer monsoon in model environments is also evaluated, in the sense of the conditional probabilities. To evaluate the probability forecast skills, the reliability (attributes) diagram and the relative operating characteristics following the recommendations of the World Meteorological Organization (WMO) Standardized Verification System for Long-Range Forecasts are used in this study. The results should shed light on the prediction skill for dynamical model and also for the statistical model, in forecasting the East Asian summer monsoon rainfall with a long-lead time.

  2. National Centers for Environmental Prediction

    Science.gov Websites

    Products Operational Forecast Graphics Experimental Forecast Graphics Verification and Diagnostics Model PARALLEL/EXPERIMENTAL MODEL FORECAST GRAPHICS OPERATIONAL VERIFICATION / DIAGNOSTICS PARALLEL VERIFICATION Developmental Air Quality Forecasts and Verification Back to Table of Contents 2. PARALLEL/EXPERIMENTAL GRAPHICS

  3. National Centers for Environmental Prediction

    Science.gov Websites

    Operational Forecast Graphics Experimental Forecast Graphics Verification and Diagnostics Model Configuration /EXPERIMENTAL MODEL FORECAST GRAPHICS OPERATIONAL VERIFICATION / DIAGNOSTICS PARALLEL VERIFICATION / DIAGNOSTICS Developmental Air Quality Forecasts and Verification Back to Table of Contents 2. PARALLEL/EXPERIMENTAL GRAPHICS

  4. Multi-RCM ensemble downscaling of global seasonal forecasts (MRED)

    NASA Astrophysics Data System (ADS)

    Arritt, R. W.

    2008-12-01

    The Multi-RCM Ensemble Downscaling (MRED) project was recently initiated to address the question, Can regional climate models provide additional useful information from global seasonal forecasts? MRED will use a suite of regional climate models to downscale seasonal forecasts produced by the new National Centers for Environmental Prediction (NCEP) Climate Forecast System (CFS) seasonal forecast system and the NASA GEOS5 system. The initial focus will be on wintertime forecasts in order to evaluate topographic forcing, snowmelt, and the potential usefulness of higher resolution, especially for near-surface fields influenced by high resolution orography. Each regional model will cover the conterminous US (CONUS) at approximately 32 km resolution, and will perform an ensemble of 15 runs for each year 1982-2003 for the forecast period 1 December - 30 April. MRED will compare individual regional and global forecasts as well as ensemble mean precipitation and temperature forecasts, which are currently being used to drive macroscale land surface models (LSMs), as well as wind, humidity, radiation, turbulent heat fluxes, which are important for more advanced coupled macro-scale hydrologic models. Metrics of ensemble spread will also be evaluated. Extensive analysis will be performed to link improvements in downscaled forecast skill to regional forcings and physical mechanisms. Our overarching goal is to determine what additional skill can be provided by a community ensemble of high resolution regional models, which we believe will eventually define a strategy for more skillful and useful regional seasonal climate forecasts.

  5. Forecasting the mortality rates of Indonesian population by using neural network

    NASA Astrophysics Data System (ADS)

    Safitri, Lutfiani; Mardiyati, Sri; Rahim, Hendrisman

    2018-03-01

    A model that can represent a problem is required in conducting a forecasting. One of the models that has been acknowledged by the actuary community in forecasting mortality rate is the Lee-Certer model. Lee Carter model supported by Neural Network will be used to calculate mortality forecasting in Indonesia. The type of Neural Network used is feedforward neural network aligned with backpropagation algorithm in python programming language. And the final result of this study is mortality rate in forecasting Indonesia for the next few years

  6. Potential Technologies for Assessing Risk Associated with a Mesoscale Forecast

    DTIC Science & Technology

    2015-10-01

    American GFS models, and informally applied on the Weather Research and Forecasting ( WRF ) model. The current CI equation is as follows...Reen B, Penc R. Investigating surface bias errors in the Weather Research and Forecasting ( WRF ) model using a Geographic Information System (GIS). J...Forecast model ( WRF -ARW) with extensions that might include finer terrain resolutions and more detailed representations of the underlying atmospheric

  7. Evaluation of regression and neural network models for solar forecasting over different short-term horizons

    DOE PAGES

    Inanlouganji, Alireza; Reddy, T. Agami; Katipamula, Srinivas

    2018-04-13

    Forecasting solar irradiation has acquired immense importance in view of the exponential increase in the number of solar photovoltaic (PV) system installations. In this article, analyses results involving statistical and machine-learning techniques to predict solar irradiation for different forecasting horizons are reported. Yearlong typical meteorological year 3 (TMY3) datasets from three cities in the United States with different climatic conditions have been used in this analysis. A simple forecast approach that assumes consecutive days to be identical serves as a baseline model to compare forecasting alternatives. To account for seasonal variability and to capture short-term fluctuations, different variants of themore » lagged moving average (LMX) model with cloud cover as the input variable are evaluated. Finally, the proposed LMX model is evaluated against an artificial neural network (ANN) model. How the one-hour and 24-hour models can be used in conjunction to predict different short-term rolling horizons is discussed, and this joint application is illustrated for a four-hour rolling horizon forecast scheme. Lastly, the effect of using predicted cloud cover values, instead of measured ones, on the accuracy of the models is assessed. Results show that LMX models do not degrade in forecast accuracy if models are trained with the forecast cloud cover data.« less

  8. Skill of Ensemble Seasonal Probability Forecasts

    NASA Astrophysics Data System (ADS)

    Smith, Leonard A.; Binter, Roman; Du, Hailiang; Niehoerster, Falk

    2010-05-01

    In operational forecasting, the computational complexity of large simulation models is, ideally, justified by enhanced performance over simpler models. We will consider probability forecasts and contrast the skill of ENSEMBLES-based seasonal probability forecasts of interest to the finance sector (specifically temperature forecasts for Nino 3.4 and the Atlantic Main Development Region (MDR)). The ENSEMBLES model simulations will be contrasted against forecasts from statistical models based on the observations (climatological distributions) and empirical dynamics based on the observations but conditioned on the current state (dynamical climatology). For some start dates, individual ENSEMBLES models yield significant skill even at a lead-time of 14 months. The nature of this skill is discussed, and chances of application are noted. Questions surrounding the interpretation of probability forecasts based on these multi-model ensemble simulations are then considered; the distributions considered are formed by kernel dressing the ensemble and blending with the climatology. The sources of apparent (RMS) skill in distributions based on multi-model simulations is discussed, and it is demonstrated that the inclusion of "zero-skill" models in the long range can improve Root-Mean-Square-Error scores, casting some doubt on the common justification for the claim that all models should be included in forming an operational probability forecast. It is argued that the rational response varies with lead time.

  9. Evaluation of regression and neural network models for solar forecasting over different short-term horizons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Inanlouganji, Alireza; Reddy, T. Agami; Katipamula, Srinivas

    Forecasting solar irradiation has acquired immense importance in view of the exponential increase in the number of solar photovoltaic (PV) system installations. In this article, analyses results involving statistical and machine-learning techniques to predict solar irradiation for different forecasting horizons are reported. Yearlong typical meteorological year 3 (TMY3) datasets from three cities in the United States with different climatic conditions have been used in this analysis. A simple forecast approach that assumes consecutive days to be identical serves as a baseline model to compare forecasting alternatives. To account for seasonal variability and to capture short-term fluctuations, different variants of themore » lagged moving average (LMX) model with cloud cover as the input variable are evaluated. Finally, the proposed LMX model is evaluated against an artificial neural network (ANN) model. How the one-hour and 24-hour models can be used in conjunction to predict different short-term rolling horizons is discussed, and this joint application is illustrated for a four-hour rolling horizon forecast scheme. Lastly, the effect of using predicted cloud cover values, instead of measured ones, on the accuracy of the models is assessed. Results show that LMX models do not degrade in forecast accuracy if models are trained with the forecast cloud cover data.« less

  10. Skill of a global seasonal ensemble streamflow forecasting system

    NASA Astrophysics Data System (ADS)

    Candogan Yossef, Naze; Winsemius, Hessel; Weerts, Albrecht; van Beek, Rens; Bierkens, Marc

    2013-04-01

    Forecasting of water availability and scarcity is a prerequisite for managing the risks and opportunities caused by the inter-annual variability of streamflow. Reliable seasonal streamflow forecasts are necessary to prepare for an appropriate response in disaster relief, management of hydropower reservoirs, water supply, agriculture and navigation. Seasonal hydrological forecasting on a global scale could be valuable especially for developing regions of the world, where effective hydrological forecasting systems are scarce. In this study, we investigate the forecasting skill of the global seasonal streamflow forecasting system FEWS-World, using the global hydrological model PCR-GLOBWB. FEWS-World has been setup within the European Commission 7th Framework Programme project Global Water Scarcity Information Service (GLOWASIS). Skill is assessed in historical simulation mode as well as retroactive forecasting mode. The assessment in historical simulation mode used a meteorological forcing based on observations from the Climate Research Unit of the University of East Anglia and the ERA-40 reanalysis of the European Center for Medium-Range Weather Forecasts (ECMWF). We assessed the skill of the global hydrological model PCR-GLOBWB in reproducing past discharge extremes in 20 large rivers of the world. This preliminary assessment concluded that the prospects for seasonal forecasting with PCR-GLOBWB or comparable models are positive. However this assessment did not include actual meteorological forecasts. Thus the meteorological forcing errors were not assessed. Yet, in a forecasting setup, the predictive skill of a hydrological forecasting system is affected by errors due to uncertainty from numerical weather prediction models. For the assessment in retroactive forecasting mode, the model is forced with actual ensemble forecasts from the seasonal forecast archives of ECMWF. Skill is assessed at 78 stations on large river basins across the globe, for all the months of the year and for lead times up to 6 months. The forecasted discharges are compared with observed monthly streamflow records using the ensemble verification measures Brier Skill Score (BSS) and Continuous Ranked Probability Score (CRPS). The eventual goal is to transfer FEWS-World to operational forecasting mode, where the system will use operational seasonal forecasts from ECMWF. The results will be disseminated on the internet, and hopefully provide information that is valuable for users in data and model-poor regions of the world.

  11. Ensemble superparameterization versus stochastic parameterization: A comparison of model uncertainty representation in tropical weather prediction

    NASA Astrophysics Data System (ADS)

    Subramanian, Aneesh C.; Palmer, Tim N.

    2017-06-01

    Stochastic schemes to represent model uncertainty in the European Centre for Medium-Range Weather Forecasts (ECMWF) ensemble prediction system has helped improve its probabilistic forecast skill over the past decade by both improving its reliability and reducing the ensemble mean error. The largest uncertainties in the model arise from the model physics parameterizations. In the tropics, the parameterization of moist convection presents a major challenge for the accurate prediction of weather and climate. Superparameterization is a promising alternative strategy for including the effects of moist convection through explicit turbulent fluxes calculated from a cloud-resolving model (CRM) embedded within a global climate model (GCM). In this paper, we compare the impact of initial random perturbations in embedded CRMs, within the ECMWF ensemble prediction system, with stochastically perturbed physical tendency (SPPT) scheme as a way to represent model uncertainty in medium-range tropical weather forecasts. We especially focus on forecasts of tropical convection and dynamics during MJO events in October-November 2011. These are well-studied events for MJO dynamics as they were also heavily observed during the DYNAMO field campaign. We show that a multiscale ensemble modeling approach helps improve forecasts of certain aspects of tropical convection during the MJO events, while it also tends to deteriorate certain large-scale dynamic fields with respect to stochastically perturbed physical tendencies approach that is used operationally at ECMWF.Plain Language SummaryProbabilistic weather forecasts, especially for tropical weather, is still a significant challenge for global weather forecasting systems. Expressing uncertainty along with weather forecasts is important for informed decision making. Hence, we explore the use of a relatively new approach in using super-parameterization, where a cloud resolving model is embedded within a global model, in probabilistic tropical weather forecasts at medium range. We show that this approach helps improve modeling uncertainty in forecasts of certain features such as precipitation magnitude and location better, but forecasts of tropical winds are not necessarily improved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2001BAMS...82.2787N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2001BAMS...82.2787N"><span>Dynamical Downscaling of Seasonal Climate Prediction over Nordeste Brazil with ECHAM3 and NCEP's Regional Spectral Models at IRI.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nobre, Paulo; Moura, Antonio D.; Sun, Liqiang</p> <p>2001-12-01</p> <p>This study presents an evaluation of a seasonal climate forecast done with the International Research Institute for Climate Prediction (IRI) dynamical forecast system (regional model nested into a general circulation model) over northern South America for January-April 1999, encompassing the rainy season over Brazil's Nordeste. The one-way nesting is one in two tiers: first the NCEP's Regional Spectral Model (RSM) runs with an 80-km grid mesh forced by the ECHAM3 atmospheric general circulation model (AGCM) outputs; then the RSM runs with a finer grid mesh (20 km) forced by the forecasts generated by the RSM-80. An ensemble of three realizations is done. Lower boundary conditions over the oceans for both ECHAM and RSM model runs are sea surface temperature forecasts over the tropical oceans. Soil moisture is initialized by ECHAM's inputs. The rainfall forecasts generated by the regional model are compared with those of the AGCM and observations. It is shown that the regional model at 80-km resolution improves upon the AGCM rainfall forecast, reducing both seasonal bias and root-mean-square error. On the other hand, the RSM-20 forecasts presented larger errors, with spatial patterns that resemble those of local topography. The better forecast of the position and width of the intertropical convergence zone (ITCZ) over the tropical Atlantic by the RSM-80 model is one of the principal reasons for better-forecast scores of the RSM-80 relative to the AGCM. The regional model improved the spatial as well as the temporal details of rainfall distribution, and also presenting the minimum spread among the ensemble members. The statistics of synoptic-scale weather variability on seasonal timescales were best forecast with the regional 80-km model over the Nordeste. The possibility of forecasting the frequency distribution of dry and wet spells within the rainy season is encouraging.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.H13C1395A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.H13C1395A"><span>Multivariate Bias Correction Procedures for Improving Water Quality Predictions from the SWAT Model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Arumugam, S.; Libera, D.</p> <p>2017-12-01</p> <p>Water quality observations are usually not available on a continuous basis for longer than 1-2 years at a time over a decadal period given the labor requirements making calibrating and validating mechanistic models difficult. Further, any physical model predictions inherently have bias (i.e., under/over estimation) and require post-simulation techniques to preserve the long-term mean monthly attributes. This study suggests a multivariate bias-correction technique and compares to a common technique in improving the performance of the SWAT model in predicting daily streamflow and TN loads across the southeast based on split-sample validation. The approach is a dimension reduction technique, canonical correlation analysis (CCA) that regresses the observed multivariate attributes with the SWAT model simulated values. The common approach is a regression based technique that uses an ordinary least squares regression to adjust model values. The observed cross-correlation between loadings and streamflow is better preserved when using canonical correlation while simultaneously reducing individual biases. Additionally, canonical correlation analysis does a better job in preserving the observed joint likelihood of observed streamflow and loadings. These procedures were applied to 3 watersheds chosen from the Water Quality Network in the Southeast Region; specifically, watersheds with sufficiently large drainage areas and number of observed data points. The performance of these two approaches are compared for the observed period and over a multi-decadal period using loading estimates from the USGS LOADEST model. Lastly, the CCA technique is applied in a forecasting sense by using 1-month ahead forecasts of P & T from ECHAM4.5 as forcings in the SWAT model. Skill in using the SWAT model for forecasting loadings and streamflow at the monthly and seasonal timescale is also discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMNG33A0184L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMNG33A0184L"><span>Using Deep Learning for Targeted Data Selection, Improving Satellite Observation Utilization for Model Initialization</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lee, Y. J.; Bonfanti, C. E.; Trailovic, L.; Etherton, B.; Govett, M.; Stewart, J.</p> <p>2017-12-01</p> <p>At present, a fraction of all satellite observations are ultimately used for model assimilation. The satellite data assimilation process is computationally expensive and data are often reduced in resolution to allow timely incorporation into the forecast. This problem is only exacerbated by the recent launch of Geostationary Operational Environmental Satellite (GOES)-16 satellite and future satellites providing several order of magnitude increase in data volume. At the NOAA Earth System Research Laboratory (ESRL) we are researching the use of machine learning the improve the initial selection of satellite data to be used in the model assimilation process. In particular, we are investigating the use of deep learning. Deep learning is being applied to many image processing and computer vision problems with great success. Through our research, we are using convolutional neural network to find and mark regions of interest (ROI) to lead to intelligent extraction of observations from satellite observation systems. These targeted observations will be used to improve the quality of data selected for model assimilation and ultimately improve the impact of satellite data on weather forecasts. Our preliminary efforts to identify the ROI's are focused in two areas: applying and comparing state-of-art convolutional neural network models using the analysis data from the National Center for Environmental Prediction (NCEP) Global Forecast System (GFS) weather model, and using these results as a starting point to optimize convolution neural network model for pattern recognition on the higher resolution water vapor data from GOES-WEST and other satellite. This presentation will provide an introduction to our convolutional neural network model to identify and process these ROI's, along with the challenges of data preparation, training the model, and parameter optimization.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27665707','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27665707"><span>Evaluating the performance of infectious disease forecasts: A comparison of climate-driven and seasonal dengue forecasts for Mexico.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Johansson, Michael A; Reich, Nicholas G; Hota, Aditi; Brownstein, John S; Santillana, Mauricio</p> <p>2016-09-26</p> <p>Dengue viruses, which infect millions of people per year worldwide, cause large epidemics that strain healthcare systems. Despite diverse efforts to develop forecasting tools including autoregressive time series, climate-driven statistical, and mechanistic biological models, little work has been done to understand the contribution of different components to improved prediction. We developed a framework to assess and compare dengue forecasts produced from different types of models and evaluated the performance of seasonal autoregressive models with and without climate variables for forecasting dengue incidence in Mexico. Climate data did not significantly improve the predictive power of seasonal autoregressive models. Short-term and seasonal autocorrelation were key to improving short-term and long-term forecasts, respectively. Seasonal autoregressive models captured a substantial amount of dengue variability, but better models are needed to improve dengue forecasting. This framework contributes to the sparse literature of infectious disease prediction model evaluation, using state-of-the-art validation techniques such as out-of-sample testing and comparison to an appropriate reference model.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5036038','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5036038"><span>Evaluating the performance of infectious disease forecasts: A comparison of climate-driven and seasonal dengue forecasts for Mexico</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Johansson, Michael A.; Reich, Nicholas G.; Hota, Aditi; Brownstein, John S.; Santillana, Mauricio</p> <p>2016-01-01</p> <p>Dengue viruses, which infect millions of people per year worldwide, cause large epidemics that strain healthcare systems. Despite diverse efforts to develop forecasting tools including autoregressive time series, climate-driven statistical, and mechanistic biological models, little work has been done to understand the contribution of different components to improved prediction. We developed a framework to assess and compare dengue forecasts produced from different types of models and evaluated the performance of seasonal autoregressive models with and without climate variables for forecasting dengue incidence in Mexico. Climate data did not significantly improve the predictive power of seasonal autoregressive models. Short-term and seasonal autocorrelation were key to improving short-term and long-term forecasts, respectively. Seasonal autoregressive models captured a substantial amount of dengue variability, but better models are needed to improve dengue forecasting. This framework contributes to the sparse literature of infectious disease prediction model evaluation, using state-of-the-art validation techniques such as out-of-sample testing and comparison to an appropriate reference model. PMID:27665707</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006AGUFM.H41A0372L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006AGUFM.H41A0372L"><span>A seasonal hydrologic ensemble prediction system for water resource management</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Luo, L.; Wood, E. F.</p> <p>2006-12-01</p> <p>A seasonal hydrologic ensemble prediction system, developed for the Ohio River basin, has been improved and expanded to several other regions including the Eastern U.S., Africa and East Asia. The prediction system adopts the traditional Extended Streamflow Prediction (ESP) approach, utilizing the VIC (Variable Infiltration Capacity) hydrological model as the central tool for producing ensemble prediction of soil moisture, snow and streamflow with lead times up to 6-month. VIC is forced by observed meteorology to estimate the hydrological initial condition prior to the forecast, but during the forecast period the atmospheric forcing comes from statistically downscaled, seasonal forecast from dynamic climate models. The seasonal hydrologic ensemble prediction system is currently producing realtime seasonal hydrologic forecast for these regions on a monthly basis. Using hindcasts from a 19-year period (1981-1999), during which seasonal hindcasts from NCEP Climate Forecast System (CFS) and European Union DEMETER project are available, we evaluate the performance of the forecast system over our forecast regions. The evaluation shows that the prediction system using the current forecast approach is able to produce reliable and accurate precipitation, soil moisture and streamflow predictions. The overall skill is much higher then the traditional ESP. In particular, forecasts based on multiple climate model forecast are more skillful than single model-based forecast. This emphasizes the significant need for producing seasonal climate forecast with multiple climate models for hydrologic applications. Forecast from this system is expected to provide very valuable information about future hydrologic states and associated risks for end users, including water resource management and financial sectors.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFM.H21C1193S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFM.H21C1193S"><span>Decomposition of Sources of Errors in Seasonal Streamflow Forecasts in a Rainfall-Runoff Dominated Basin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sinha, T.; Arumugam, S.</p> <p>2012-12-01</p> <p>Seasonal streamflow forecasts contingent on climate forecasts can be effectively utilized in updating water management plans and optimize generation of hydroelectric power. Streamflow in the rainfall-runoff dominated basins critically depend on forecasted precipitation in contrast to snow dominated basins, where initial hydrological conditions (IHCs) are more important. Since precipitation forecasts from Atmosphere-Ocean-General Circulation Models are available at coarse scale (~2.8° by 2.8°), spatial and temporal downscaling of such forecasts are required to implement land surface models, which typically runs on finer spatial and temporal scales. Consequently, multiple sources are introduced at various stages in predicting seasonal streamflow. Therefore, in this study, we addresses the following science questions: 1) How do we attribute the errors in monthly streamflow forecasts to various sources - (i) model errors, (ii) spatio-temporal downscaling, (iii) imprecise initial conditions, iv) no forecasts, and (iv) imprecise forecasts? and 2) How does monthly streamflow forecast errors propagate with different lead time over various seasons? In this study, the Variable Infiltration Capacity (VIC) model is calibrated over Apalachicola River at Chattahoochee, FL in the southeastern US and implemented with observed 1/8° daily forcings to estimate reference streamflow during 1981 to 2010. The VIC model is then forced with different schemes under updated IHCs prior to forecasting period to estimate relative mean square errors due to: a) temporally disaggregation, b) spatial downscaling, c) Reverse Ensemble Streamflow Prediction (imprecise IHCs), d) ESP (no forecasts), and e) ECHAM4.5 precipitation forecasts. Finally, error propagation under different schemes are analyzed with different lead time over different seasons.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..1713173O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..1713173O"><span>Wind-Farm Forecasting Using the HARMONIE Weather Forecast Model and Bayes Model Averaging for Bias Removal.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>O'Brien, Enda; McKinstry, Alastair; Ralph, Adam</p> <p>2015-04-01</p> <p>Building on previous work presented at EGU 2013 (http://www.sciencedirect.com/science/article/pii/S1876610213016068 ), more results are available now from a different wind-farm in complex terrain in southwest Ireland. The basic approach is to interpolate wind-speed forecasts from an operational weather forecast model (i.e., HARMONIE in the case of Ireland) to the precise location of each wind-turbine, and then use Bayes Model Averaging (BMA; with statistical information collected from a prior training-period of e.g., 25 days) to remove systematic biases. Bias-corrected wind-speed forecasts (and associated power-generation forecasts) are then provided twice daily (at 5am and 5pm) out to 30 hours, with each forecast validation fed back to BMA for future learning. 30-hr forecasts from the operational Met Éireann HARMONIE model at 2.5km resolution have been validated against turbine SCADA observations since Jan. 2014. An extra high-resolution (0.5km grid-spacing) HARMONIE configuration has been run since Nov. 2014 as an extra member of the forecast "ensemble". A new version of HARMONIE with extra filters designed to stabilize high-resolution configurations has been run since Jan. 2015. Measures of forecast skill and forecast errors will be provided, and the contributions made by the various physical and computational enhancements to HARMONIE will be quantified.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AdSR...14..227L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AdSR...14..227L"><span>Wind power application research on the fusion of the determination and ensemble prediction</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lan, Shi; Lina, Xu; Yuzhu, Hao</p> <p>2017-07-01</p> <p>The fused product of wind speed for the wind farm is designed through the use of wind speed products of ensemble prediction from the European Centre for Medium-Range Weather Forecasts (ECMWF) and professional numerical model products on wind power based on Mesoscale Model5 (MM5) and Beijing Rapid Update Cycle (BJ-RUC), which are suitable for short-term wind power forecasting and electric dispatch. The single-valued forecast is formed by calculating the different ensemble statistics of the Bayesian probabilistic forecasting representing the uncertainty of ECMWF ensemble prediction. Using autoregressive integrated moving average (ARIMA) model to improve the time resolution of the single-valued forecast, and based on the Bayesian model averaging (BMA) and the deterministic numerical model prediction, the optimal wind speed forecasting curve and the confidence interval are provided. The result shows that the fusion forecast has made obvious improvement to the accuracy relative to the existing numerical forecasting products. Compared with the 0-24 h existing deterministic forecast in the validation period, the mean absolute error (MAE) is decreased by 24.3 % and the correlation coefficient (R) is increased by 12.5 %. In comparison with the ECMWF ensemble forecast, the MAE is reduced by 11.7 %, and R is increased 14.5 %. Additionally, MAE did not increase with the prolongation of the forecast ahead.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26081838','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26081838"><span>Forecasting malaria in a highly endemic country using environmental and clinical predictors.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zinszer, Kate; Kigozi, Ruth; Charland, Katia; Dorsey, Grant; Brewer, Timothy F; Brownstein, John S; Kamya, Moses R; Buckeridge, David L</p> <p>2015-06-18</p> <p>Malaria thrives in poor tropical and subtropical countries where local resources are limited. Accurate disease forecasts can provide public and clinical health services with the information needed to implement targeted approaches for malaria control that make effective use of limited resources. The objective of this study was to determine the relevance of environmental and clinical predictors of malaria across different settings in Uganda. Forecasting models were based on health facility data collected by the Uganda Malaria Surveillance Project and satellite-derived rainfall, temperature, and vegetation estimates from 2006 to 2013. Facility-specific forecasting models of confirmed malaria were developed using multivariate autoregressive integrated moving average models and produced weekly forecast horizons over a 52-week forecasting period. The model with the most accurate forecasts varied by site and by forecast horizon. Clinical predictors were retained in the models with the highest predictive power for all facility sites. The average error over the 52 forecasting horizons ranged from 26 to 128% whereas the cumulative burden forecast error ranged from 2 to 22%. Clinical data, such as drug treatment, could be used to improve the accuracy of malaria predictions in endemic settings when coupled with environmental predictors. Further exploration of malaria forecasting is necessary to improve its accuracy and value in practice, including examining other environmental and intervention predictors, including insecticide-treated nets.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1325660','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1325660"><span>Real-time Social Internet Data to Guide Forecasting Models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Del Valle, Sara Y.</p> <p></p> <p>Our goal is to improve decision support by monitoring and forecasting events using social media, mathematical models, and quantifying model uncertainty. Our approach is real-time, data-driven forecasts with quantified uncertainty: Not just for weather anymore. Information flow from human observations of events through an Internet system and classification algorithms is used to produce quantitatively uncertain forecast. In summary, we want to develop new tools to extract useful information from Internet data streams, develop new approaches to assimilate real-time information into predictive models, validate approaches by forecasting events, and our ultimate goal is to develop an event forecasting system using mathematicalmore » approaches and heterogeneous data streams.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70027098','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70027098"><span>Use of medium-range numerical weather prediction model output to produce forecasts of streamflow</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Clark, M.P.; Hay, L.E.</p> <p>2004-01-01</p> <p>This paper examines an archive containing over 40 years of 8-day atmospheric forecasts over the contiguous United States from the NCEP reanalysis project to assess the possibilities for using medium-range numerical weather prediction model output for predictions of streamflow. This analysis shows the biases in the NCEP forecasts to be quite extreme. In many regions, systematic precipitation biases exceed 100% of the mean, with temperature biases exceeding 3??C. In some locations, biases are even higher. The accuracy of NCEP precipitation and 2-m maximum temperature forecasts is computed by interpolating the NCEP model output for each forecast day to the location of each station in the NWS cooperative network and computing the correlation with station observations. Results show that the accuracy of the NCEP forecasts is rather low in many areas of the country. Most apparent is the generally low skill in precipitation forecasts (particularly in July) and low skill in temperature forecasts in the western United States, the eastern seaboard, and the southern tier of states. These results outline a clear need for additional processing of the NCEP Medium-Range Forecast Model (MRF) output before it is used for hydrologic predictions. Techniques of model output statistics (MOS) are used in this paper to downscale the NCEP forecasts to station locations. Forecasted atmospheric variables (e.g., total column precipitable water, 2-m air temperature) are used as predictors in a forward screening multiple linear regression model to improve forecasts of precipitation and temperature for stations in the National Weather Service cooperative network. This procedure effectively removes all systematic biases in the raw NCEP precipitation and temperature forecasts. MOS guidance also results in substantial improvements in the accuracy of maximum and minimum temperature forecasts throughout the country. For precipitation, forecast improvements were less impressive. MOS guidance increases he accuracy of precipitation forecasts over the northeastern United States, but overall, the accuracy of MOS-based precipitation forecasts is slightly lower than the raw NCEP forecasts. Four basins in the United States were chosen as case studies to evaluate the value of MRF output for predictions of streamflow. Streamflow forecasts using MRF output were generated for one rainfall-dominated basin (Alapaha River at Statenville, Georgia) and three snowmelt-dominated basins (Animas River at Durango, Colorado: East Fork of the Carson River near Gardnerville, Nevada: and Cle Elum River near Roslyn, Washington). Hydrologic model output forced with measured-station data were used as "truth" to focus attention on the hydrologic effects of errors in the MRF forecasts. Eight-day streamflow forecasts produced using the MOS-corrected MRF output as input (MOS) were compared with those produced using the climatic Ensemble Streamflow Prediction (ESP) technique. MOS-based streamflow forecasts showed increased skill in the snowmelt-dominated river basins, where daily variations in streamflow are strongly forced by temperature. In contrast, the skill of MOS forecasts in the rainfall-dominated basin (the Alapaha River) were equivalent to the skill of the ESP forecasts. Further improvements in streamflow forecasts require more accurate local-scale forecasts of precipitation and temperature, more accurate specification of basin initial conditions, and more accurate model simulations of streamflow. ?? 2004 American Meteorological Society.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.6277V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.6277V"><span>Extending data worth methods to select multiple observations targeting specific hydrological predictions of interest</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vilhelmsen, Troels N.; Ferré, Ty P. A.</p> <p>2016-04-01</p> <p>Hydrological models are often developed to forecasting future behavior in response due to natural or human induced changes in stresses affecting hydrologic systems. Commonly, these models are conceptualized and calibrated based on existing data/information about the hydrological conditions. However, most hydrologic systems lack sufficient data to constrain models with adequate certainty to support robust decision making. Therefore, a key element of a hydrologic study is the selection of additional data to improve model performance. Given the nature of hydrologic investigations, it is not practical to select data sequentially, i.e. to choose the next observation, collect it, refine the model, and then repeat the process. Rather, for timing and financial reasons, measurement campaigns include multiple wells or sampling points. There is a growing body of literature aimed at defining the expected data worth based on existing models. However, these are almost all limited to identifying single additional observations. In this study, we present a methodology for simultaneously selecting multiple potential new observations based on their expected ability to reduce the uncertainty of the forecasts of interest. This methodology is based on linear estimates of the predictive uncertainty, and it can be used to determine the optimal combinations of measurements (location and number) established to reduce the uncertainty of multiple predictions. The outcome of the analysis is an estimate of the optimal sampling locations; the optimal number of samples; as well as a probability map showing the locations within the investigated area that are most likely to provide useful information about the forecasting of interest.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..14.1462P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..14.1462P"><span>The Value of Humans in the Operational River Forecasting Enterprise</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pagano, T. C.</p> <p>2012-04-01</p> <p>The extent of human control over operational river forecasts, such as by adjusting model inputs and outputs, varies from nearly completely automated systems to those where forecasts are generated after discussion among a group of experts. Historical and realtime data availability, the complexity of hydrologic processes, forecast user needs, and forecasting institution support/resource availability (e.g. computing power, money for model maintenance) influence the character and effectiveness of operational forecasting systems. Automated data quality algorithms, if used at all, are typically very basic (e.g. checks for impossible values); substantial human effort is devoted to cleaning up forcing data using subjective methods. Similarly, although it is an active research topic, nearly all operational forecasting systems struggle to make quantitative use of Numerical Weather Prediction model-based precipitation forecasts, instead relying on the assessment of meteorologists. Conversely, while there is a strong tradition in meteorology of making raw model outputs available to forecast users via the Internet, this is rarely done in hydrology; Operational river forecasters express concerns about exposing users to raw guidance, due to the potential for misinterpretation and misuse. However, this limits the ability of users to build their confidence in operational products through their own value-added analyses. Forecasting agencies also struggle with provenance (i.e. documenting the production process and archiving the pieces that went into creating a forecast) although this is necessary for quantifying the benefits of human involvement in forecasting and diagnosing weak links in the forecasting chain. In hydrology, the space between model outputs and final operational products is nearly unstudied by the academic community, although some studies exist in other fields such as meteorology.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20028637','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20028637"><span>A stochastic HMM-based forecasting model for fuzzy time series.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Li, Sheng-Tun; Cheng, Yi-Chung</p> <p>2010-10-01</p> <p>Recently, fuzzy time series have attracted more academic attention than traditional time series due to their capability of dealing with the uncertainty and vagueness inherent in the data collected. The formulation of fuzzy relations is one of the key issues affecting forecasting results. Most of the present works adopt IF-THEN rules for relationship representation, which leads to higher computational overhead and rule redundancy. Sullivan and Woodall proposed a Markov-based formulation and a forecasting model to reduce computational overhead; however, its applicability is limited to handling one-factor problems. In this paper, we propose a novel forecasting model based on the hidden Markov model by enhancing Sullivan and Woodall's work to allow handling of two-factor forecasting problems. Moreover, in order to make the nature of conjecture and randomness of forecasting more realistic, the Monte Carlo method is adopted to estimate the outcome. To test the effectiveness of the resulting stochastic model, we conduct two experiments and compare the results with those from other models. The first experiment consists of forecasting the daily average temperature and cloud density in Taipei, Taiwan, and the second experiment is based on the Taiwan Weighted Stock Index by forecasting the exchange rate of the New Taiwan dollar against the U.S. dollar. In addition to improving forecasting accuracy, the proposed model adheres to the central limit theorem, and thus, the result statistically approximates to the real mean of the target value being forecast.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1914230B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1914230B"><span>Characterisation of flooding in Alexandria in October 2015 and suggested mitigating measures</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bhattacharya, Biswa; Zevenbergen, Chris; Wahaab, R. A. Wahaab R. A.; Elbarki, W. A. I. Elbarki W. A. I.; Busker, T. Busker T.; Salinas Rodriguez, C. N. A. Salinas Rodriguez C. N. A.</p> <p>2017-04-01</p> <p>In October 2015 Alexandria (Egypt) experienced exceptional flooding. The flooding was caused by heavy rainfall in a short period of time in a city which normally does not receive a large amount of rainfall. The heavy rainfall caused a tremendous volume of runoff, which the city's drainage system was unable to drain off to the Mediterranean Sea. Seven people have died due to the flood, and there were huge direct and indirect damages. The city does not have a flood forecasting system. An analysis with rainfall forecast from the European Centre for Medium Range Weather Forecast (ECMWF) showed that the extreme rainfall could have been forecasted about a week back. Naturally, if a flood forecasting model was in place the flooding could have been predicted well in advance. Alexandria, along with several other Arab cities, are not prepared at all for natural hazards. Preparedness actions leading to improved adaptation and resilience are not in place. The situation is being further exacerbated with rapid urbanisation and climate change. The local authorities estimate that about 30000 new buildings have been (illegally) constructed during the last five years at a location near the main pumping station (Max Point). This issue may have a very serious adverse effect on hydrology and requires further study to estimate the additional runoff from the newly urbanised areas. The World Bank has listed Alexandria as one of the five coastal cities, which may have very significant risk of coastal flooding due to the climate change. Setting up of a flood forecasting model along with an evidence-based research on the drainage system's capacity is seen as immediate actions that can significantly improve the preparedness of the city towards flooding. Furthermore, the region has got a number of large lakes, which potentially can be used to store extra water as a flood mitigation measure. Two water bodies, namely the Maryot Lake and the Airport Lake, are identified from which water can be pumped out in advance to keep storage available in case of flooding. Keywords: Alexandria, flood, Egypt, rainfall, forecasting.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://files.eric.ed.gov/fulltext/ED573085.pdf','ERIC'); return false;" href="http://files.eric.ed.gov/fulltext/ED573085.pdf"><span>A Comparison Study of Return Ratio-Based Academic Enrollment Forecasting Models. Professional File. Article 129, Spring 2013</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Zan, Xinxing Anna; Yoon, Sang Won; Khasawneh, Mohammad; Srihari, Krishnaswami</p> <p>2013-01-01</p> <p>In an effort to develop a low-cost and user-friendly forecasting model to minimize forecasting error, we have applied average and exponentially weighted return ratios to project undergraduate student enrollment. We tested the proposed forecasting models with different sets of historical enrollment data, such as university-, school-, and…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..15.8055T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..15.8055T"><span>Evaluation of annual, global seismicity forecasts, including ensemble models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Taroni, Matteo; Zechar, Jeremy; Marzocchi, Warner</p> <p>2013-04-01</p> <p>In 2009, the Collaboratory for the Study of the Earthquake Predictability (CSEP) initiated a prototype global earthquake forecast experiment. Three models participated in this experiment for 2009, 2010 and 2011—each model forecast the number of earthquakes above magnitude 6 in 1x1 degree cells that span the globe. Here we use likelihood-based metrics to evaluate the consistency of the forecasts with the observed seismicity. We compare model performance with statistical tests and a new method based on the peer-to-peer gambling score. The results of the comparisons are used to build ensemble models that are a weighted combination of the individual models. Notably, in these experiments the ensemble model always performs significantly better than the single best-performing model. Our results indicate the following: i) time-varying forecasts, if not updated after each major shock, may not provide significant advantages with respect to time-invariant models in 1-year forecast experiments; ii) the spatial distribution seems to be the most important feature to characterize the different forecasting performances of the models; iii) the interpretation of consistency tests may be misleading because some good models may be rejected while trivial models may pass consistency tests; iv) a proper ensemble modeling seems to be a valuable procedure to get the best performing model for practical purposes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFM.B41D..07L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFM.B41D..07L"><span>Data Assimilation at FLUXNET to Improve Models towards Ecological Forecasting (Invited)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Luo, Y.</p> <p>2009-12-01</p> <p>Dramatically increased volumes of data from observational and experimental networks such as FLUXNET call for transformation of ecological research to increase its emphasis on quantitative forecasting. Ecological forecasting will also meet the societal need to develop better strategies for natural resource management in a world of ongoing global change. Traditionally, ecological forecasting has been based on process-based models, informed by data in largely ad hoc ways. Although most ecological models incorporate some representation of mechanistic processes, today’s ecological models are generally not adequate to quantify real-world dynamics and provide reliable forecasts with accompanying estimates of uncertainty. A key tool to improve ecological forecasting is data assimilation, which uses data to inform initial conditions and to help constrain a model during simulation to yield results that approximate reality as closely as possible. In an era with dramatically increased availability of data from observational and experimental networks, data assimilation is a key technique that helps convert the raw data into ecologically meaningful products so as to accelerate our understanding of ecological processes, test ecological theory, forecast changes in ecological services, and better serve the society. This talk will use examples to illustrate how data from FLUXNET have been assimilated with process-based models to improve estimates of model parameters and state variables; to quantify uncertainties in ecological forecasting arising from observations, models and their interactions; and to evaluate information contributions of data and model toward short- and long-term forecasting of ecosystem responses to global change.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A14C..02S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A14C..02S"><span>Development and validation of a regional coupled forecasting system for S2S forecasts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sun, R.; Subramanian, A. C.; Hoteit, I.; Miller, A. J.; Ralph, M.; Cornuelle, B. D.</p> <p>2017-12-01</p> <p>Accurate and efficient forecasting of oceanic and atmospheric circulation is essential for a wide variety of high-impact societal needs, including: weather extremes; environmental protection and coastal management; management of fisheries, marine conservation; water resources; and renewable energy. Effective forecasting relies on high model fidelity and accurate initialization of the models with observed state of the ocean-atmosphere-land coupled system. A regional coupled ocean-atmosphere model with the Weather Research and Forecasting (WRF) model and the MITGCM ocean model coupled using the ESMF (Earth System Modeling Framework) coupling framework is developed to resolve mesoscale air-sea feedbacks. The regional coupled model allows oceanic mixed layer heat and momentum to interact with the atmospheric boundary layer dynamics at the mesoscale and submesoscale spatiotemporal regimes, thus leading to feedbacks which are otherwise not resolved in coarse resolution global coupled forecasting systems or regional uncoupled forecasting systems. The model is tested in two scenarios in the mesoscale eddy rich Red Sea and Western Indian Ocean region as well as mesoscale eddies and fronts of the California Current System. Recent studies show evidence for air-sea interactions involving the oceanic mesoscale in these two regions which can enhance predictability on sub seasonal timescale. We will present results from this newly developed regional coupled ocean-atmosphere model for forecasts over the Red Sea region as well as the California Current region. The forecasts will be validated against insitu observations in the region as well as reanalysis fields.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1815130S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1815130S"><span>Prospectively Evaluating the Collaboratory for the Study of Earthquake Predictability: An Evaluation of the UCERF2 and Updated Five-Year RELM Forecasts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Strader, Anne; Schneider, Max; Schorlemmer, Danijel; Liukis, Maria</p> <p>2016-04-01</p> <p>The Collaboratory for the Study of Earthquake Predictability (CSEP) was developed to rigorously test earthquake forecasts retrospectively and prospectively through reproducible, completely transparent experiments within a controlled environment (Zechar et al., 2010). During 2006-2011, thirteen five-year time-invariant prospective earthquake mainshock forecasts developed by the Regional Earthquake Likelihood Models (RELM) working group were evaluated through the CSEP testing center (Schorlemmer and Gerstenberger, 2007). The number, spatial, and magnitude components of the forecasts were compared to the respective observed seismicity components using a set of consistency tests (Schorlemmer et al., 2007, Zechar et al., 2010). In the initial experiment, all but three forecast models passed every test at the 95% significance level, with all forecasts displaying consistent log-likelihoods (L-test) and magnitude distributions (M-test) with the observed seismicity. In the ten-year RELM experiment update, we reevaluate these earthquake forecasts over an eight-year period from 2008-2016, to determine the consistency of previous likelihood testing results over longer time intervals. Additionally, we test the Uniform California Earthquake Rupture Forecast (UCERF2), developed by the U.S. Geological Survey (USGS), and the earthquake rate model developed by the California Geological Survey (CGS) and the USGS for the National Seismic Hazard Mapping Program (NSHMP) against the RELM forecasts. Both the UCERF2 and NSHMP forecasts pass all consistency tests, though the Helmstetter et al. (2007) and Shen et al. (2007) models exhibit greater information gain per earthquake according to the T- and W- tests (Rhoades et al., 2011). Though all but three RELM forecasts pass the spatial likelihood test (S-test), multiple forecasts fail the M-test due to overprediction of the number of earthquakes during the target period. Though there is no significant difference between the UCERF2 and NSHMP models, residual scores show that the NSHMP model is preferred in locations with earthquake occurrence, due to the lower seismicity rates forecasted by the UCERF2 model.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.H51N..08V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.H51N..08V"><span>Assessing skill of a global bimonthly streamflow ensemble prediction system</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>van Dijk, A. I.; Peña-Arancibia, J.; Sheffield, J.; Wood, E. F.</p> <p>2011-12-01</p> <p>Ideally, a seasonal streamflow forecasting system might be conceived of as a system that ingests skillful climate forecasts from general circulation models and propagates these through thoroughly calibrated hydrological models that are initialised using hydrometric observations. In practice, there are practical problems with each of these aspects. Instead, we analysed whether a comparatively simple hydrological model-based Ensemble Prediction System (EPS) can provide global bimonthly streamflow forecasts with some skill and if so, under what circumstances the greatest skill may be expected. The system tested produces ensemble forecasts for each of six annual bimonthly periods based on the previous 30 years of global daily gridded 1° resolution climate variables and an initialised global hydrological model. To incorporate some of the skill derived from ocean conditions, a post-EPS analog method was used to sample from the ensemble based on El Niño Southern Oscillation (ENSO), Indian Ocean Dipole (IOD), North Atlantic Oscillation (NAO) and Pacific Decadal Oscillation (PDO) index values observed prior to the forecast. Forecasts skill was assessed through a hind-casting experiment for the period 1979-2008. Potential skill was calculated with reference to a model run with the actual forcing for the forecast period (the 'perfect' model) and was compared to actual forecast skill calculated for each of the six forecast times for an average 411 Australian and 51 pan-tropical catchments. Significant potential skill in bimonthly forecasts was largely limited to northern regions during the snow melt period, seasonally wet tropical regions at the transition of wet to dry season, and the Indonesian region where rainfall is well correlated to ENSO. The actual skill was approximately 34-50% of the potential skill. We attribute this primarily to limitations in the model structure, parameterisation and global forcing data. Use of better climate forecasts and remote sensing observations of initial catchment conditions should help to increase actual skill in future. Future work also could address the potential skill gain from using weather and climate forecasts and from a calibrated and/or alternative hydrological model or model ensemble. The approach and data might be useful as a benchmark for joint seasonal forecasting experiments planned under GEWEX.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24548171','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24548171"><span>When idols look into the future: fair treatment modulates the affective forecasting error in talent show candidates.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Feys, Marjolein; Anseel, Frederik</p> <p>2015-03-01</p> <p>People's affective forecasts are often inaccurate because they tend to overestimate how they will feel after an event. As life decisions are often based on affective forecasts, it is crucial to find ways to manage forecasting errors. We examined the impact of a fair treatment on forecasting errors in candidates in a Belgian reality TV talent show. We found that perceptions of fair treatment increased the forecasting error for losers (a negative audition decision) but decreased it for winners (a positive audition decision). For winners, this effect was even more pronounced when candidates were highly invested in their self-view as a future pop idol whereas for losers, the effect was more pronounced when importance was low. The results in this study point to a potential paradox between maximizing happiness and decreasing forecasting errors. A fair treatment increased the forecasting error for losers, but actually made them happier. © 2014 The British Psychological Society.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1342861-epidemic-forecasting-messier-than-weather-forecasting-role-human-behavior-internet-data-streams-epidemic-forecast','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1342861-epidemic-forecasting-messier-than-weather-forecasting-role-human-behavior-internet-data-streams-epidemic-forecast"><span>Epidemic forecasting is messier than weather forecasting: The role of human behavior and internet data streams in epidemic forecast</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Moran, Kelly Renee; Fairchild, Geoffrey; Generous, Nicholas; ...</p> <p>2016-11-14</p> <p>Mathematical models, such as those that forecast the spread of epidemics or predict the weather, must overcome the challenges of integrating incomplete and inaccurate data in computer simulations, estimating the probability of multiple possible scenarios, incorporating changes in human behavior and/or the pathogen, and environmental factors. In the past 3 decades, the weather forecasting community has made significant advances in data collection, assimilating heterogeneous data steams into models and communicating the uncertainty of their predictions to the general public. Epidemic modelers are struggling with these same issues in forecasting the spread of emerging diseases, such as Zika virus infection andmore » Ebola virus disease. While weather models rely on physical systems, data from satellites, and weather stations, epidemic models rely on human interactions, multiple data sources such as clinical surveillance and Internet data, and environmental or biological factors that can change the pathogen dynamics. We describe some of similarities and differences between these 2 fields and how the epidemic modeling community is rising to the challenges posed by forecasting to help anticipate and guide the mitigation of epidemics. Here, we conclude that some of the fundamental differences between these 2 fields, such as human behavior, make disease forecasting more challenging than weather forecasting.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1342861','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1342861"><span>Epidemic forecasting is messier than weather forecasting: The role of human behavior and internet data streams in epidemic forecast</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Moran, Kelly Renee; Fairchild, Geoffrey; Generous, Nicholas</p> <p></p> <p>Mathematical models, such as those that forecast the spread of epidemics or predict the weather, must overcome the challenges of integrating incomplete and inaccurate data in computer simulations, estimating the probability of multiple possible scenarios, incorporating changes in human behavior and/or the pathogen, and environmental factors. In the past 3 decades, the weather forecasting community has made significant advances in data collection, assimilating heterogeneous data steams into models and communicating the uncertainty of their predictions to the general public. Epidemic modelers are struggling with these same issues in forecasting the spread of emerging diseases, such as Zika virus infection andmore » Ebola virus disease. While weather models rely on physical systems, data from satellites, and weather stations, epidemic models rely on human interactions, multiple data sources such as clinical surveillance and Internet data, and environmental or biological factors that can change the pathogen dynamics. We describe some of similarities and differences between these 2 fields and how the epidemic modeling community is rising to the challenges posed by forecasting to help anticipate and guide the mitigation of epidemics. Here, we conclude that some of the fundamental differences between these 2 fields, such as human behavior, make disease forecasting more challenging than weather forecasting.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5181546','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5181546"><span>Epidemic Forecasting is Messier Than Weather Forecasting: The Role of Human Behavior and Internet Data Streams in Epidemic Forecast</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Moran, Kelly R.; Fairchild, Geoffrey; Generous, Nicholas; Hickmann, Kyle; Osthus, Dave; Priedhorsky, Reid; Hyman, James; Del Valle, Sara Y.</p> <p>2016-01-01</p> <p>Mathematical models, such as those that forecast the spread of epidemics or predict the weather, must overcome the challenges of integrating incomplete and inaccurate data in computer simulations, estimating the probability of multiple possible scenarios, incorporating changes in human behavior and/or the pathogen, and environmental factors. In the past 3 decades, the weather forecasting community has made significant advances in data collection, assimilating heterogeneous data steams into models and communicating the uncertainty of their predictions to the general public. Epidemic modelers are struggling with these same issues in forecasting the spread of emerging diseases, such as Zika virus infection and Ebola virus disease. While weather models rely on physical systems, data from satellites, and weather stations, epidemic models rely on human interactions, multiple data sources such as clinical surveillance and Internet data, and environmental or biological factors that can change the pathogen dynamics. We describe some of similarities and differences between these 2 fields and how the epidemic modeling community is rising to the challenges posed by forecasting to help anticipate and guide the mitigation of epidemics. We conclude that some of the fundamental differences between these 2 fields, such as human behavior, make disease forecasting more challenging than weather forecasting. PMID:28830111</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AdAtS..35..813M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AdAtS..35..813M"><span>Comparisons of Three-Dimensional Variational Data Assimilation and Model Output Statistics in Improving Atmospheric Chemistry Forecasts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ma, Chaoqun; Wang, Tijian; Zang, Zengliang; Li, Zhijin</p> <p>2018-07-01</p> <p>Atmospheric chemistry models usually perform badly in forecasting wintertime air pollution because of their uncertainties. Generally, such uncertainties can be decreased effectively by techniques such as data assimilation (DA) and model output statistics (MOS). However, the relative importance and combined effects of the two techniques have not been clarified. Here, a one-month air quality forecast with the Weather Research and Forecasting-Chemistry (WRF-Chem) model was carried out in a virtually operational setup focusing on Hebei Province, China. Meanwhile, three-dimensional variational (3DVar) DA and MOS based on one-dimensional Kalman filtering were implemented separately and simultaneously to investigate their performance in improving the model forecast. Comparison with observations shows that the chemistry forecast with MOS outperforms that with 3DVar DA, which could be seen in all the species tested over the whole 72 forecast hours. Combined use of both techniques does not guarantee a better forecast than MOS only, with the improvements and degradations being small and appearing rather randomly. Results indicate that the implementation of MOS is more suitable than 3DVar DA in improving the operational forecasting ability of WRF-Chem.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1916551H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1916551H"><span>Ionosphere monitoring and forecast activities within the IAG working group "Ionosphere Prediction"</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hoque, Mainul; Garcia-Rigo, Alberto; Erdogan, Eren; Cueto Santamaría, Marta; Jakowski, Norbert; Berdermann, Jens; Hernandez-Pajares, Manuel; Schmidt, Michael; Wilken, Volker</p> <p>2017-04-01</p> <p>Ionospheric disturbances can affect technologies in space and on Earth disrupting satellite and airline operations, communications networks, navigation systems. As the world becomes ever more dependent on these technologies, ionospheric disturbances as part of space weather pose an increasing risk to the economic vitality and national security. Therefore, having the knowledge of ionospheric state in advance during space weather events is becoming more and more important. To promote scientific cooperation we recently formed a Working Group (WG) called "Ionosphere Predictions" within the International Association of Geodesy (IAG) under Sub-Commission 4.3 "Atmosphere Remote Sensing" of the Commission 4 "Positioning and Applications". The general objective of the WG is to promote the development of ionosphere prediction algorithm/models based on the dependence of ionospheric characteristics on solar and magnetic conditions combining data from different sensors to improve the spatial and temporal resolution and sensitivity taking advantage of different sounding geometries and latency. Our presented work enables the possibility to compare total electron content (TEC) prediction approaches/results from different centers contributing to this WG such as German Aerospace Center (DLR), Universitat Politècnica de Catalunya (UPC), Technische Universität München (TUM) and GMV. DLR developed a model-assisted TEC forecast algorithm taking benefit from actual trends of the TEC behavior at each grid point. Since during perturbations, characterized by large TEC fluctuations or ionization fronts, this approach may fail, the trend information is merged with the current background model which provides a stable climatological TEC behavior. The presented solution is a first step to regularly provide forecasted TEC services via SWACI/IMPC by DLR. UPC forecast model is based on applying linear regression to a temporal window of TEC maps in the Discrete Cosine Transform (DCT) domain. Performance tests are being conducted at the moment in order to improve UPC predicted products for 1-, 2-days ahead. In addition, UPC is working to enable short-term predictions based on UPC real-time GIMs (labelled URTG) and implementing an improved prediction approach. TUM developed a forecast method based on a time series analysis of TEC products which are either B-spline coefficients estimated by a Kalman filter or TEC grid maps derived from the B-spline coefficients. The forecast method uses a Fourier series expansion to extract the trend functions from the estimated TEC product. Then the trend functions are carried out to provide predicted TEC products. The forecast algorithm developed by GMV is based on the ionospheric delay estimation from previous epochs using GNSS data and the main dependence of ionospheric delays on solar and magnetic conditions. Since the ionospheric behavior is highly dependent on the region of the Earth, different region-based algorithmic modifications have been implemented in GMV's magicSBAS ionospheric algorithms to be able to estimate and forecast ionospheric delays worldwide. Different TEC prediction approaches outlined here will certainly help to learn about forecasting ionospheric ionization.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AIPC.1557..566I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AIPC.1557..566I"><span>A hybrid group method of data handling with discrete wavelet transform for GDP forecasting</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Isa, Nadira Mohamed; Shabri, Ani</p> <p>2013-09-01</p> <p>This study is proposed the application of hybridization model using Group Method of Data Handling (GMDH) and Discrete Wavelet Transform (DWT) in time series forecasting. The objective of this paper is to examine the flexibility of the hybridization GMDH in time series forecasting by using Gross Domestic Product (GDP). A time series data set is used in this study to demonstrate the effectiveness of the forecasting model. This data are utilized to forecast through an application aimed to handle real life time series. This experiment compares the performances of a hybrid model and a single model of Wavelet-Linear Regression (WR), Artificial Neural Network (ANN), and conventional GMDH. It is shown that the proposed model can provide a promising alternative technique in GDP forecasting.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29671384','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29671384"><span>Time-series-based hybrid mathematical modelling method adapted to forecast automotive and medical waste generation: Case study of Lithuania.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Karpušenkaitė, Aistė; Ruzgas, Tomas; Denafas, Gintaras</p> <p>2018-05-01</p> <p>The aim of the study was to create a hybrid forecasting method that could produce higher accuracy forecasts than previously used 'pure' time series methods. Mentioned methods were already tested with total automotive waste, hazardous automotive waste, and total medical waste generation, but demonstrated at least a 6% error rate in different cases and efforts were made to decrease it even more. Newly developed hybrid models used a random start generation method to incorporate different time-series advantages and it helped to increase the accuracy of forecasts by 3%-4% in hazardous automotive waste and total medical waste generation cases; the new model did not increase the accuracy of total automotive waste generation forecasts. Developed models' abilities to forecast short- and mid-term forecasts were tested using prediction horizon.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA600391','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA600391"><span>Statistical Analysis of Atmospheric Forecast Model Accuracy - A Focus on Multiple Atmospheric Variables and Location-Based Analysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2014-04-01</p> <p>WRF ) model is a numerical weather prediction system designed for operational forecasting and atmospheric research. This report examined WRF model... WRF , weather research and forecasting, atmospheric effects 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT SAR 18. NUMBER OF...and Forecasting ( WRF ) model. The authors would also like to thank Ms. Sherry Larson, STS Systems Integration, LLC, ARL Technical Publishing Branch</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MAP...130..265T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MAP...130..265T"><span>Fuzzy logic-based analogue forecasting and hybrid modelling of horizontal visibility</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tuba, Zoltán; Bottyán, Zsolt</p> <p>2018-04-01</p> <p>Forecasting visibility is one of the greatest challenges in aviation meteorology. At the same time, high accuracy visibility forecasts can significantly reduce or make avoidable weather-related risk in aviation as well. To improve forecasting visibility, this research links fuzzy logic-based analogue forecasting and post-processed numerical weather prediction model outputs in hybrid forecast. Performance of analogue forecasting model was improved by the application of Analytic Hierarchy Process. Then, linear combination of the mentioned outputs was applied to create ultra-short term hybrid visibility prediction which gradually shifts the focus from statistical to numerical products taking their advantages during the forecast period. It gives the opportunity to bring closer the numerical visibility forecast to the observations even it is wrong initially. Complete verification of categorical forecasts was carried out; results are available for persistence and terminal aerodrome forecasts (TAF) as well in order to compare. The average value of Heidke Skill Score (HSS) of examined airports of analogue and hybrid forecasts shows very similar results even at the end of forecast period where the rate of analogue prediction in the final hybrid output is 0.1-0.2 only. However, in case of poor visibility (1000-2500 m), hybrid (0.65) and analogue forecasts (0.64) have similar average of HSS in the first 6 h of forecast period, and have better performance than persistence (0.60) or TAF (0.56). Important achievement that hybrid model takes into consideration physics and dynamics of the atmosphere due to the increasing part of the numerical weather prediction. In spite of this, its performance is similar to the most effective visibility forecasting methods and does not follow the poor verification results of clearly numerical outputs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017E%26ES...95b2003K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017E%26ES...95b2003K"><span>Hybrid Stochastic Forecasting Model for Management of Large Open Water Reservoir with Storage Function</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kozel, Tomas; Stary, Milos</p> <p>2017-12-01</p> <p>The main advantage of stochastic forecasting is fan of possible value whose deterministic method of forecasting could not give us. Future development of random process is described better by stochastic then deterministic forecasting. Discharge in measurement profile could be categorized as random process. Content of article is construction and application of forecasting model for managed large open water reservoir with supply function. Model is based on neural networks (NS) and zone models, which forecasting values of average monthly flow from inputs values of average monthly flow, learned neural network and random numbers. Part of data was sorted to one moving zone. The zone is created around last measurement average monthly flow. Matrix of correlation was assembled only from data belonging to zone. The model was compiled for forecast of 1 to 12 month with using backward month flows (NS inputs) from 2 to 11 months for model construction. Data was got ridded of asymmetry with help of Box-Cox rule (Box, Cox, 1964), value r was found by optimization. In next step were data transform to standard normal distribution. The data were with monthly step and forecast is not recurring. 90 years long real flow series was used for compile of the model. First 75 years were used for calibration of model (matrix input-output relationship), last 15 years were used only for validation. Outputs of model were compared with real flow series. For comparison between real flow series (100% successfully of forecast) and forecasts, was used application to management of artificially made reservoir. Course of water reservoir management using Genetic algorithm (GE) + real flow series was compared with Fuzzy model (Fuzzy) + forecast made by Moving zone model. During evaluation process was founding the best size of zone. Results show that the highest number of input did not give the best results and ideal size of zone is in interval from 25 to 35, when course of management was almost same for all numbers from interval. Resulted course of management was compared with course, which was obtained from using GE + real flow series. Comparing results showed that fuzzy model with forecasted values has been able to manage main malfunction and artificially disorders made by model were founded essential, after values of water volume during management were evaluated. Forecasting model in combination with fuzzy model provide very good results in management of water reservoir with storage function and can be recommended for this purpose.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1998JApMe..37.1444S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1998JApMe..37.1444S"><span>Dispersion Modeling Using Ensemble Forecasts Compared to ETEX Measurements.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Straume, Anne Grete; N'dri Koffi, Ernest; Nodop, Katrin</p> <p>1998-11-01</p> <p>Numerous numerical models are developed to predict long-range transport of hazardous air pollution in connection with accidental releases. When evaluating and improving such a model, it is important to detect uncertainties connected to the meteorological input data. A Lagrangian dispersion model, the Severe Nuclear Accident Program, is used here to investigate the effect of errors in the meteorological input data due to analysis error. An ensemble forecast, produced at the European Centre for Medium-Range Weather Forecasts, is then used as model input. The ensemble forecast members are generated by perturbing the initial meteorological fields of the weather forecast. The perturbations are calculated from singular vectors meant to represent possible forecast developments generated by instabilities in the atmospheric flow during the early part of the forecast. The instabilities are generated by errors in the analyzed fields. Puff predictions from the dispersion model, using ensemble forecast input, are compared, and a large spread in the predicted puff evolutions is found. This shows that the quality of the meteorological input data is important for the success of the dispersion model. In order to evaluate the dispersion model, the calculations are compared with measurements from the European Tracer Experiment. The model manages to predict the measured puff evolution concerning shape and time of arrival to a fairly high extent, up to 60 h after the start of the release. The modeled puff is still too narrow in the advection direction.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ClDy..tmp..900J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ClDy..tmp..900J"><span>Potential predictability and forecast skill in ensemble climate forecast: a skill-persistence rule</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jin, Yishuai; Rong, Xinyao; Liu, Zhengyu</p> <p>2017-12-01</p> <p>This study investigates the factors relationship between the forecast skills for the real world (actual skill) and perfect model (perfect skill) in ensemble climate model forecast with a series of fully coupled general circulation model forecast experiments. It is found that the actual skill for sea surface temperature (SST) in seasonal forecast is substantially higher than the perfect skill on a large part of the tropical oceans, especially the tropical Indian Ocean and the central-eastern Pacific Ocean. The higher actual skill is found to be related to the higher observational SST persistence, suggesting a skill-persistence rule: a higher SST persistence in the real world than in the model could overwhelm the model bias to produce a higher forecast skill for the real world than for the perfect model. The relation between forecast skill and persistence is further proved using a first-order autoregressive model (AR1) analytically for theoretical solutions and numerically for analogue experiments. The AR1 model study shows that the skill-persistence rule is strictly valid in the case of infinite ensemble size, but could be distorted by sampling errors and non-AR1 processes. This study suggests that the so called "perfect skill" is model dependent and cannot serve as an accurate estimate of the true upper limit of real world prediction skill, unless the model can capture at least the persistence property of the observation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110004224','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110004224"><span>Verify MesoNAM Performance</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bauman, William H., III</p> <p>2010-01-01</p> <p>The AMU conducted an objective analysis of the MesoNAM forecasts compared to observed values from sensors at specified KSC/CCAFS wind towers by calculating the following statistics to verify the performance of the model: 1) Bias (mean difference), 2) Standard deviation of Bias, 3) Root Mean Square Error (RMSE), and 4) Hypothesis test for Bias = O. The 45 WS LWOs use the MesoNAM to support launch weather operations. However, the actual performance of the model at KSC and CCAFS had not been measured objectively. The analysis compared the MesoNAM forecast winds, temperature and dew point to the observed values from the sensors on wind towers. The data were stratified by tower sensor, month and onshore/offshore wind direction based on the orientation of the coastline to each tower's location. The model's performance statistics were then calculated for each wind tower based on sensor height and model initialization time. The period of record for the data used in this task was based on the operational start of the current MesoNAM in mid-August 2006 and so the task began with the first full month of data, September 2006, through May 2010. The analysis of model performance indicated: a) The accuracy decreased as the forecast valid time from the model initialization increased, b) There was a diurnal signal in T with a cool bias during the late night and a warm bias during the afternoon, c) There was a diurnal signal in Td with a low bias during the afternoon and a high bias during the late night, and d) The model parameters at each vertical level most closely matched the observed parameters at heights closest to those vertical levels. The AMU developed a GUI that consists of a multi-level drop-down menu written in JavaScript embedded within the HTML code. This tool allows the LWO to easily and efficiently navigate among the charts and spreadsheet files containing the model performance statistics. The objective statistics give the LWOs knowledge of the model's strengths and weaknesses and the GUI allows quick access to the data which will result in improved forecasts for operations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PApGe.174.1385R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PApGe.174.1385R"><span>Impact of Assimilation on Heavy Rainfall Simulations Using WRF Model: Sensitivity of Assimilation Results to Background Error Statistics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rakesh, V.; Kantharao, B.</p> <p>2017-03-01</p> <p>Data assimilation is considered as one of the effective tools for improving forecast skill of mesoscale models. However, for optimum utilization and effective assimilation of observations, many factors need to be taken into account while designing data assimilation methodology. One of the critical components that determines the amount and propagation observation information into the analysis, is model background error statistics (BES). The objective of this study is to quantify how BES in data assimilation impacts on simulation of heavy rainfall events over a southern state in India, Karnataka. Simulations of 40 heavy rainfall events were carried out using Weather Research and Forecasting Model with and without data assimilation. The assimilation experiments were conducted using global and regional BES while the experiment with no assimilation was used as the baseline for assessing the impact of data assimilation. The simulated rainfall is verified against high-resolution rain-gage observations over Karnataka. Statistical evaluation using several accuracy and skill measures shows that data assimilation has improved the heavy rainfall simulation. Our results showed that the experiment using regional BES outperformed the one which used global BES. Critical thermo-dynamic variables conducive for heavy rainfall like convective available potential energy simulated using regional BES is more realistic compared to global BES. It is pointed out that these results have important practical implications in design of forecast platforms while decision-making during extreme weather events</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017HESS...21.6007B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017HESS...21.6007B"><span>Assessment of an ensemble seasonal streamflow forecasting system for Australia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bennett, James C.; Wang, Quan J.; Robertson, David E.; Schepen, Andrew; Li, Ming; Michael, Kelvin</p> <p>2017-11-01</p> <p>Despite an increasing availability of skilful long-range streamflow forecasts, many water agencies still rely on simple resampled historical inflow sequences (stochastic scenarios) to plan operations over the coming year. We assess a recently developed forecasting system called <q>forecast guided stochastic scenarios</q> (FoGSS) as a skilful alternative to standard stochastic scenarios for the Australian continent. FoGSS uses climate forecasts from a coupled ocean-land-atmosphere prediction system, post-processed with the method of calibration, bridging and merging. Ensemble rainfall forecasts force a monthly rainfall-runoff model, while a staged hydrological error model quantifies and propagates hydrological forecast uncertainty through forecast lead times. FoGSS is able to generate ensemble streamflow forecasts in the form of monthly time series to a 12-month forecast horizon. FoGSS is tested on 63 Australian catchments that cover a wide range of climates, including 21 ephemeral rivers. In all perennial and many ephemeral catchments, FoGSS provides an effective alternative to resampled historical inflow sequences. FoGSS generally produces skilful forecasts at shorter lead times ( < 4 months), and transits to climatology-like forecasts at longer lead times. Forecasts are generally reliable and unbiased. However, FoGSS does not perform well in very dry catchments (catchments that experience zero flows more than half the time in some months), sometimes producing strongly negative forecast skill and poor reliability. We attempt to improve forecasts through the use of (i) ESP rainfall forcings, (ii) different rainfall-runoff models, and (iii) a Bayesian prior to encourage the error model to return climatology forecasts in months when the rainfall-runoff model performs poorly. Of these, the use of the prior offers the clearest benefit in very dry catchments, where it moderates strongly negative forecast skill and reduces bias in some instances. However, the prior does not remedy poor reliability in very dry catchments. Overall, FoGSS is an attractive alternative to historical inflow sequences in all but the driest catchments. We discuss ways in which forecast reliability in very dry catchments could be improved in future work.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/37056','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/37056"><span>Estimating contribution of wildland fires to ambient ozone levels in National Parks in the Sierra Nevada, California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Haiganoush K. Preisler; Shiyuan (Sharon) Zhong; Annie Esperanza; Timothy J. Brown; Andrzej Bytnerowicz; Leland Tarnay</p> <p>2010-01-01</p> <p>Data from four continuous ozone and weather monitoring sites operated by the National Park Service in Sierra Nevada, California, are used to develop an ozone forecasting model and to estimate the contribution of wildland fires on ambient ozone levels. The analyses of weather and ozone data pointed to the transport of ozone precursors from the Central Valley as an...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013PhDT.......407S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013PhDT.......407S"><span>Automation of energy demand forecasting</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Siddique, Sanzad</p> <p></p> <p>Automation of energy demand forecasting saves time and effort by searching automatically for an appropriate model in a candidate model space without manual intervention. This thesis introduces a search-based approach that improves the performance of the model searching process for econometrics models. Further improvements in the accuracy of the energy demand forecasting are achieved by integrating nonlinear transformations within the models. This thesis introduces machine learning techniques that are capable of modeling such nonlinearity. Algorithms for learning domain knowledge from time series data using the machine learning methods are also presented. The novel search based approach and the machine learning models are tested with synthetic data as well as with natural gas and electricity demand signals. Experimental results show that the model searching technique is capable of finding an appropriate forecasting model. Further experimental results demonstrate an improved forecasting accuracy achieved by using the novel machine learning techniques introduced in this thesis. This thesis presents an analysis of how the machine learning techniques learn domain knowledge. The learned domain knowledge is used to improve the forecast accuracy.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007PhyA..380..377C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007PhyA..380..377C"><span>Fuzzy time-series based on Fibonacci sequence for stock price forecasting</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chen, Tai-Liang; Cheng, Ching-Hsue; Jong Teoh, Hia</p> <p>2007-07-01</p> <p>Time-series models have been utilized to make reasonably accurate predictions in the areas of stock price movements, academic enrollments, weather, etc. For promoting the forecasting performance of fuzzy time-series models, this paper proposes a new model, which incorporates the concept of the Fibonacci sequence, the framework of Song and Chissom's model and the weighted method of Yu's model. This paper employs a 5-year period TSMC (Taiwan Semiconductor Manufacturing Company) stock price data and a 13-year period of TAIEX (Taiwan Stock Exchange Capitalization Weighted Stock Index) stock index data as experimental datasets. By comparing our forecasting performances with Chen's (Forecasting enrollments based on fuzzy time-series. Fuzzy Sets Syst. 81 (1996) 311-319), Yu's (Weighted fuzzy time-series models for TAIEX forecasting. Physica A 349 (2004) 609-624) and Huarng's (The application of neural networks to forecast fuzzy time series. Physica A 336 (2006) 481-491) models, we conclude that the proposed model surpasses in accuracy these conventional fuzzy time-series models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4775211','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4775211"><span>Evaluating probabilistic dengue risk forecasts from a prototype early warning system for Brazil</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Lowe, Rachel; Coelho, Caio AS; Barcellos, Christovam; Carvalho, Marilia Sá; Catão, Rafael De Castro; Coelho, Giovanini E; Ramalho, Walter Massa; Bailey, Trevor C; Stephenson, David B; Rodó, Xavier</p> <p>2016-01-01</p> <p>Recently, a prototype dengue early warning system was developed to produce probabilistic forecasts of dengue risk three months ahead of the 2014 World Cup in Brazil. Here, we evaluate the categorical dengue forecasts across all microregions in Brazil, using dengue cases reported in June 2014 to validate the model. We also compare the forecast model framework to a null model, based on seasonal averages of previously observed dengue incidence. When considering the ability of the two models to predict high dengue risk across Brazil, the forecast model produced more hits and fewer missed events than the null model, with a hit rate of 57% for the forecast model compared to 33% for the null model. This early warning model framework may be useful to public health services, not only ahead of mass gatherings, but also before the peak dengue season each year, to control potentially explosive dengue epidemics. DOI: http://dx.doi.org/10.7554/eLife.11285.001 PMID:26910315</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008AdSpR..42.1475C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008AdSpR..42.1475C"><span>Correlation between solar flare productivity and photospheric vector magnetic fields</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cui, Yanmei; Wang, Huaning</p> <p>2008-11-01</p> <p>Studying the statistical correlation between the solar flare productivity and photospheric magnetic fields is very important and necessary. It is helpful to set up a practical flare forecast model based on magnetic properties and improve the physical understanding of solar flare eruptions. In the previous study ([Cui, Y.M., Li, R., Zhang, L.Y., He, Y.L., Wang, H.N. Correlation between solar flare productivity and photospheric magnetic field properties 1. Maximum horizontal gradient, length of neutral line, number of singular points. Sol. Phys. 237, 45 59, 2006]; from now on we refer to this paper as ‘Paper I’), three measures of the maximum horizontal gradient, the length of the neutral line, and the number of singular points are computed from 23990 SOHO/MDI longitudinal magnetograms. The statistical relationship between the solar flare productivity and these three measures is well fitted with sigmoid functions. In the current work, the three measures of the length of strong-shear neutral line, total unsigned current, and total unsigned current helicity are computed from 1353 vector magnetograms observed at Huairou Solar Observing Station. The relationship between the solar flare productivity and the current three measures can also be well fitted with sigmoid functions. These results are expected to be beneficial to future operational flare forecasting models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002EGSGA..27.4894M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002EGSGA..27.4894M"><span>Pollen Dispersion Forecast At Regional Scale</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mangin, A.; Asthma Forecast System Team</p> <p></p> <p>The forecast of the pollen concentration is generally based on an identification of sim- ilar coincidence of measured pollen at given points and meteorological data that is searched in an archive and which, with the help of experts, allows building a predicted value. This may be classified under the family of statistical approaches for forecast- ing. While palynologists make these methods more and more accurate with the help of innovative techniques of regression against empirical rules and/or evolving mathe- matical structures (e.g. neural networks), the spatial dispersion of the pollen is not or poorly considered, mainly because it requires a lot of means and technique that are not familiar to this scientific discipline. The research on pollen forecasts are presently mainly focused on the problematic of modeling the behavior of pollen trends and sea- sons at one location regardless of the topography, the locations of emitters, the relative strengths of emitter, in one word the Sspatial backgroundT. This research work was a & cedil;successful attempt to go a step further combining this SlocalT approach with a trans- & cedil;port/dispersion modeling allowing the access to mapping of concentration. The areas of interest that were selected for the demonstration of feasibility were 200x200km zones centered on Cordoba, Barcelona and Bologna and four pollen types were ex- amined, namely: Cupressaceae, Olea europaea, Poaceae and Parietaria. At the end of this three-year European project in December 2001, the system was fully deployed and validated. The multidisciplinary team will present the original methodologies that were derived for modeling the numerous aspects of this problem and also some con- clusions regarding potential extent to other areas and taxa.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120002991','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120002991"><span>Cloud Computing Applications in Support of Earth Science Activities at Marshall Space Flight Center</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Molthan, Andrew L.; Limaye, Ashutosh S.; Srikishen, Jayanthi</p> <p>2011-01-01</p> <p>Currently, the NASA Nebula Cloud Computing Platform is available to Agency personnel in a pre-release status as the system undergoes a formal operational readiness review. Over the past year, two projects within the Earth Science Office at NASA Marshall Space Flight Center have been investigating the performance and value of Nebula s "Infrastructure as a Service", or "IaaS" concept and applying cloud computing concepts to advance their respective mission goals. The Short-term Prediction Research and Transition (SPoRT) Center focuses on the transition of unique NASA satellite observations and weather forecasting capabilities for use within the operational forecasting community through partnerships with NOAA s National Weather Service (NWS). SPoRT has evaluated the performance of the Weather Research and Forecasting (WRF) model on virtual machines deployed within Nebula and used Nebula instances to simulate local forecasts in support of regional forecast studies of interest to select NWS forecast offices. In addition to weather forecasting applications, rapidly deployable Nebula virtual machines have supported the processing of high resolution NASA satellite imagery to support disaster assessment following the historic severe weather and tornado outbreak of April 27, 2011. Other modeling and satellite analysis activities are underway in support of NASA s SERVIR program, which integrates satellite observations, ground-based data and forecast models to monitor environmental change and improve disaster response in Central America, the Caribbean, Africa, and the Himalayas. Leveraging SPoRT s experience, SERVIR is working to establish a real-time weather forecasting model for Central America. Other modeling efforts include hydrologic forecasts for Kenya, driven by NASA satellite observations and reanalysis data sets provided by the broader meteorological community. Forecast modeling efforts are supplemented by short-term forecasts of convective initiation, determined by geostationary satellite observations processed on virtual machines powered by Nebula.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.H51Q..01W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.H51Q..01W"><span>The Rise of Complexity in Flood Forecasting: Opportunities, Challenges and Tradeoffs</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wood, A. W.; Clark, M. P.; Nijssen, B.</p> <p>2017-12-01</p> <p>Operational flood forecasting is currently undergoing a major transformation. Most national flood forecasting services have relied for decades on lumped, highly calibrated conceptual hydrological models running on local office computing resources, providing deterministic streamflow predictions at gauged river locations that are important to stakeholders and emergency managers. A variety of recent technological advances now make it possible to run complex, high-to-hyper-resolution models for operational hydrologic prediction over large domains, and the US National Weather Service is now attempting to use hyper-resolution models to create new forecast services and products. Yet other `increased-complexity' forecasting strategies also exist that pursue different tradeoffs between model complexity (i.e., spatial resolution, physics) and streamflow forecast system objectives. There is currently a pressing need for a greater understanding in the hydrology community of the opportunities, challenges and tradeoffs associated with these different forecasting approaches, and for a greater participation by the hydrology community in evaluating, guiding and implementing these approaches. Intermediate-resolution forecast systems, for instance, use distributed land surface model (LSM) physics but retain the agility to deploy ensemble methods (including hydrologic data assimilation and hindcast-based post-processing). Fully coupled numerical weather prediction (NWP) systems, another example, use still coarser LSMs to produce ensemble streamflow predictions either at the model scale or after sub-grid scale runoff routing. Based on the direct experience of the authors and colleagues in research and operational forecasting, this presentation describes examples of different streamflow forecast paradigms, from the traditional to the recent hyper-resolution, to illustrate the range of choices facing forecast system developers. We also discuss the degree to which the strengths and weaknesses of each strategy map onto the requirements for different types of forecasting services (e.g., flash flooding, river flooding, seasonal water supply prediction).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70192624','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70192624"><span>Do we need demographic data to forecast plant population dynamics?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Tredennick, Andrew T.; Hooten, Mevin B.; Adler, Peter B.</p> <p>2017-01-01</p> <p>Rapid environmental change has generated growing interest in forecasts of future population trajectories. Traditional population models built with detailed demographic observations from one study site can address the impacts of environmental change at particular locations, but are difficult to scale up to the landscape and regional scales relevant to management decisions. An alternative is to build models using population-level data that are much easier to collect over broad spatial scales than individual-level data. However, it is unknown whether models built using population-level data adequately capture the effects of density-dependence and environmental forcing that are necessary to generate skillful forecasts.Here, we test the consequences of aggregating individual responses when forecasting the population states (percent cover) and trajectories of four perennial grass species in a semi-arid grassland in Montana, USA. We parameterized two population models for each species, one based on individual-level data (survival, growth and recruitment) and one on population-level data (percent cover), and compared their forecasting accuracy and forecast horizons with and without the inclusion of climate covariates. For both models, we used Bayesian ridge regression to weight the influence of climate covariates for optimal prediction.In the absence of climate effects, we found no significant difference between the forecast accuracy of models based on individual-level data and models based on population-level data. Climate effects were weak, but increased forecast accuracy for two species. Increases in accuracy with climate covariates were similar between model types.In our case study, percent cover models generated forecasts as accurate as those from a demographic model. For the goal of forecasting, models based on aggregated individual-level data may offer a practical alternative to data-intensive demographic models. Long time series of percent cover data already exist for many plant species. Modelers should exploit these data to predict the impacts of environmental change.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20030032926','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20030032926"><span>A Global Aerosol Model Forecast for the ACE-Asia Field Experiment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Chin, Mian; Ginoux, Paul; Lucchesi, Robert; Huebert, Barry; Weber, Rodney; Anderson, Tad; Masonis, Sarah; Blomquist, Byron; Bandy, Alan; Thornton, Donald</p> <p>2003-01-01</p> <p>We present the results of aerosol forecast during the Aerosol Characterization Experiment (ACE-Asia) field experiment in spring 2001, using the Georgia Tech/Goddard Global Ozone Chemistry Aerosol Radiation and Transport (GOCART) model and the meteorological forecast fields from the Goddard Earth Observing System Data Assimilation System (GEOS DAS). The aerosol model forecast provides direct information on aerosol optical thickness and concentrations, enabling effective flight planning, while feedbacks from measurements constantly evaluate the model, making successful model improvements. We verify the model forecast skill by comparing model predicted total aerosol extinction, dust, sulfate, and SO2 concentrations with those quantities measured by the C-130 aircraft during the ACE-Asia intensive operation period. The GEOS DAS meteorological forecast system shows excellent skills in predicting winds, relative humidity, and temperature for the ACE-Asia experiment area as well as for each individual flight, with skill scores usually above 0.7. The model is also skillful in forecast of pollution aerosols, with most scores above 0.5. The model correctly predicted the dust outbreak events and their trans-Pacific transport, but it constantly missed the high dust concentrations observed in the boundary layer. We attribute this missing dust source to the desertification regions in the Inner Mongolia Province in China, which have developed in recent years but were not included in the model during forecasting. After incorporating the desertification sources, the model is able to reproduce the observed high dust concentrations at low altitudes over the Yellow Sea. Two key elements for a successful aerosol model forecast are correct source locations that determine where the emissions take place, and realistic forecast winds and convection that determine where the aerosols are transported. We demonstrate that our global model can not only account for the large-scale intercontinental transport, but also produce the small-scale spatial and temporal variations that are adequate for aircraft measurements planning.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AdSR....6...35A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AdSR....6...35A"><span>An application of ensemble/multi model approach for wind power production forecasting</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Alessandrini, S.; Pinson, P.; Hagedorn, R.; Decimi, G.; Sperati, S.</p> <p>2011-02-01</p> <p>The wind power forecasts of the 3 days ahead period are becoming always more useful and important in reducing the problem of grid integration and energy price trading due to the increasing wind power penetration. Therefore it's clear that the accuracy of this forecast is one of the most important requirements for a successful application. The wind power forecast applied in this study is based on meteorological models that provide the 3 days ahead wind data. A Model Output Statistic correction is then performed to reduce systematic error caused, for instance, by a wrong representation of surface roughness or topography in the meteorological models. For this purpose a training of a Neural Network (NN) to link directly the forecasted meteorological data and the power data has been performed. One wind farm has been examined located in a mountain area in the south of Italy (Sicily). First we compare the performances of a prediction based on meteorological data coming from a single model with those obtained by the combination of models (RAMS, ECMWF deterministic, LAMI). It is shown that the multi models approach reduces the day-ahead normalized RMSE forecast error (normalized by nominal power) of at least 1% compared to the singles models approach. Finally we have focused on the possibility of using the ensemble model system (EPS by ECMWF) to estimate the hourly, three days ahead, power forecast accuracy. Contingency diagram between RMSE of the deterministic power forecast and the ensemble members spread of wind forecast have been produced. From this first analysis it seems that ensemble spread could be used as an indicator of the forecast's accuracy at least for the first three days ahead period.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <a id="backToTop" href="#top"> Top </a> <footer> <nav> <ul class="links"> <li><a href="/sitemap.html">Site Map</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://www.energy.gov/vulnerability-disclosure-policy" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>